1 // SPDX-License-Identifier: GPL-2.0-only
3 * linux/mm/page_alloc.c
5 * Manages the free list, the system allocates free pages here.
6 * Note that kmalloc() lives in slab.c
8 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
9 * Swap reorganised 29.12.95, Stephen Tweedie
10 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
11 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
12 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
13 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000
14 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
15 * (lots of bits borrowed from Ingo Molnar & Andrew Morton)
18 #include <linux/stddef.h>
20 #include <linux/highmem.h>
21 #include <linux/swap.h>
22 #include <linux/swapops.h>
23 #include <linux/interrupt.h>
24 #include <linux/pagemap.h>
25 #include <linux/jiffies.h>
26 #include <linux/memblock.h>
27 #include <linux/compiler.h>
28 #include <linux/kernel.h>
29 #include <linux/kasan.h>
30 #include <linux/module.h>
31 #include <linux/suspend.h>
32 #include <linux/pagevec.h>
33 #include <linux/blkdev.h>
34 #include <linux/slab.h>
35 #include <linux/ratelimit.h>
36 #include <linux/oom.h>
37 #include <linux/topology.h>
38 #include <linux/sysctl.h>
39 #include <linux/cpu.h>
40 #include <linux/cpuset.h>
41 #include <linux/memory_hotplug.h>
42 #include <linux/nodemask.h>
43 #include <linux/vmalloc.h>
44 #include <linux/vmstat.h>
45 #include <linux/mempolicy.h>
46 #include <linux/memremap.h>
47 #include <linux/stop_machine.h>
48 #include <linux/random.h>
49 #include <linux/sort.h>
50 #include <linux/pfn.h>
51 #include <linux/backing-dev.h>
52 #include <linux/fault-inject.h>
53 #include <linux/page-isolation.h>
54 #include <linux/debugobjects.h>
55 #include <linux/kmemleak.h>
56 #include <linux/compaction.h>
57 #include <trace/events/kmem.h>
58 #include <trace/events/oom.h>
59 #include <linux/prefetch.h>
60 #include <linux/mm_inline.h>
61 #include <linux/mmu_notifier.h>
62 #include <linux/migrate.h>
63 #include <linux/hugetlb.h>
64 #include <linux/sched/rt.h>
65 #include <linux/sched/mm.h>
66 #include <linux/page_owner.h>
67 #include <linux/page_table_check.h>
68 #include <linux/kthread.h>
69 #include <linux/memcontrol.h>
70 #include <linux/ftrace.h>
71 #include <linux/lockdep.h>
72 #include <linux/nmi.h>
73 #include <linux/psi.h>
74 #include <linux/padata.h>
75 #include <linux/khugepaged.h>
76 #include <linux/buffer_head.h>
77 #include <linux/delayacct.h>
78 #include <asm/sections.h>
79 #include <asm/tlbflush.h>
80 #include <asm/div64.h>
83 #include "page_reporting.h"
86 /* Free Page Internal flags: for internal, non-pcp variants of free_pages(). */
87 typedef int __bitwise fpi_t;
89 /* No special request */
90 #define FPI_NONE ((__force fpi_t)0)
93 * Skip free page reporting notification for the (possibly merged) page.
94 * This does not hinder free page reporting from grabbing the page,
95 * reporting it and marking it "reported" - it only skips notifying
96 * the free page reporting infrastructure about a newly freed page. For
97 * example, used when temporarily pulling a page from a freelist and
98 * putting it back unmodified.
100 #define FPI_SKIP_REPORT_NOTIFY ((__force fpi_t)BIT(0))
103 * Place the (possibly merged) page to the tail of the freelist. Will ignore
104 * page shuffling (relevant code - e.g., memory onlining - is expected to
105 * shuffle the whole zone).
107 * Note: No code should rely on this flag for correctness - it's purely
108 * to allow for optimizations when handing back either fresh pages
109 * (memory onlining) or untouched pages (page isolation, free page
112 #define FPI_TO_TAIL ((__force fpi_t)BIT(1))
115 * Don't poison memory with KASAN (only for the tag-based modes).
116 * During boot, all non-reserved memblock memory is exposed to page_alloc.
117 * Poisoning all that memory lengthens boot time, especially on systems with
118 * large amount of RAM. This flag is used to skip that poisoning.
119 * This is only done for the tag-based KASAN modes, as those are able to
120 * detect memory corruptions with the memory tags assigned by default.
121 * All memory allocated normally after boot gets poisoned as usual.
123 #define FPI_SKIP_KASAN_POISON ((__force fpi_t)BIT(2))
125 /* prevent >1 _updater_ of zone percpu pageset ->high and ->batch fields */
126 static DEFINE_MUTEX(pcp_batch_high_lock);
127 #define MIN_PERCPU_PAGELIST_HIGH_FRACTION (8)
129 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT_RT)
131 * On SMP, spin_trylock is sufficient protection.
132 * On PREEMPT_RT, spin_trylock is equivalent on both SMP and UP.
134 #define pcp_trylock_prepare(flags) do { } while (0)
135 #define pcp_trylock_finish(flag) do { } while (0)
138 /* UP spin_trylock always succeeds so disable IRQs to prevent re-entrancy. */
139 #define pcp_trylock_prepare(flags) local_irq_save(flags)
140 #define pcp_trylock_finish(flags) local_irq_restore(flags)
144 * Locking a pcp requires a PCP lookup followed by a spinlock. To avoid
145 * a migration causing the wrong PCP to be locked and remote memory being
146 * potentially allocated, pin the task to the CPU for the lookup+lock.
147 * preempt_disable is used on !RT because it is faster than migrate_disable.
148 * migrate_disable is used on RT because otherwise RT spinlock usage is
149 * interfered with and a high priority task cannot preempt the allocator.
151 #ifndef CONFIG_PREEMPT_RT
152 #define pcpu_task_pin() preempt_disable()
153 #define pcpu_task_unpin() preempt_enable()
155 #define pcpu_task_pin() migrate_disable()
156 #define pcpu_task_unpin() migrate_enable()
160 * Generic helper to lookup and a per-cpu variable with an embedded spinlock.
161 * Return value should be used with equivalent unlock helper.
163 #define pcpu_spin_lock(type, member, ptr) \
167 _ret = this_cpu_ptr(ptr); \
168 spin_lock(&_ret->member); \
172 #define pcpu_spin_lock_irqsave(type, member, ptr, flags) \
176 _ret = this_cpu_ptr(ptr); \
177 spin_lock_irqsave(&_ret->member, flags); \
181 #define pcpu_spin_trylock_irqsave(type, member, ptr, flags) \
185 _ret = this_cpu_ptr(ptr); \
186 if (!spin_trylock_irqsave(&_ret->member, flags)) { \
193 #define pcpu_spin_unlock(member, ptr) \
195 spin_unlock(&ptr->member); \
199 #define pcpu_spin_unlock_irqrestore(member, ptr, flags) \
201 spin_unlock_irqrestore(&ptr->member, flags); \
205 /* struct per_cpu_pages specific helpers. */
206 #define pcp_spin_lock(ptr) \
207 pcpu_spin_lock(struct per_cpu_pages, lock, ptr)
209 #define pcp_spin_lock_irqsave(ptr, flags) \
210 pcpu_spin_lock_irqsave(struct per_cpu_pages, lock, ptr, flags)
212 #define pcp_spin_trylock_irqsave(ptr, flags) \
213 pcpu_spin_trylock_irqsave(struct per_cpu_pages, lock, ptr, flags)
215 #define pcp_spin_unlock(ptr) \
216 pcpu_spin_unlock(lock, ptr)
218 #define pcp_spin_unlock_irqrestore(ptr, flags) \
219 pcpu_spin_unlock_irqrestore(lock, ptr, flags)
220 #ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
221 DEFINE_PER_CPU(int, numa_node);
222 EXPORT_PER_CPU_SYMBOL(numa_node);
225 DEFINE_STATIC_KEY_TRUE(vm_numa_stat_key);
227 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
229 * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
230 * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
231 * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
232 * defined in <linux/topology.h>.
234 DEFINE_PER_CPU(int, _numa_mem_); /* Kernel "local memory" node */
235 EXPORT_PER_CPU_SYMBOL(_numa_mem_);
238 static DEFINE_MUTEX(pcpu_drain_mutex);
240 #ifdef CONFIG_GCC_PLUGIN_LATENT_ENTROPY
241 volatile unsigned long latent_entropy __latent_entropy;
242 EXPORT_SYMBOL(latent_entropy);
246 * Array of node states.
248 nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
249 [N_POSSIBLE] = NODE_MASK_ALL,
250 [N_ONLINE] = { { [0] = 1UL } },
252 [N_NORMAL_MEMORY] = { { [0] = 1UL } },
253 #ifdef CONFIG_HIGHMEM
254 [N_HIGH_MEMORY] = { { [0] = 1UL } },
256 [N_MEMORY] = { { [0] = 1UL } },
257 [N_CPU] = { { [0] = 1UL } },
260 EXPORT_SYMBOL(node_states);
262 atomic_long_t _totalram_pages __read_mostly;
263 EXPORT_SYMBOL(_totalram_pages);
264 unsigned long totalreserve_pages __read_mostly;
265 unsigned long totalcma_pages __read_mostly;
267 int percpu_pagelist_high_fraction;
268 gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
269 DEFINE_STATIC_KEY_MAYBE(CONFIG_INIT_ON_ALLOC_DEFAULT_ON, init_on_alloc);
270 EXPORT_SYMBOL(init_on_alloc);
272 DEFINE_STATIC_KEY_MAYBE(CONFIG_INIT_ON_FREE_DEFAULT_ON, init_on_free);
273 EXPORT_SYMBOL(init_on_free);
275 static bool _init_on_alloc_enabled_early __read_mostly
276 = IS_ENABLED(CONFIG_INIT_ON_ALLOC_DEFAULT_ON);
277 static int __init early_init_on_alloc(char *buf)
280 return kstrtobool(buf, &_init_on_alloc_enabled_early);
282 early_param("init_on_alloc", early_init_on_alloc);
284 static bool _init_on_free_enabled_early __read_mostly
285 = IS_ENABLED(CONFIG_INIT_ON_FREE_DEFAULT_ON);
286 static int __init early_init_on_free(char *buf)
288 return kstrtobool(buf, &_init_on_free_enabled_early);
290 early_param("init_on_free", early_init_on_free);
293 * A cached value of the page's pageblock's migratetype, used when the page is
294 * put on a pcplist. Used to avoid the pageblock migratetype lookup when
295 * freeing from pcplists in most cases, at the cost of possibly becoming stale.
296 * Also the migratetype set in the page does not necessarily match the pcplist
297 * index, e.g. page might have MIGRATE_CMA set but be on a pcplist with any
298 * other index - this ensures that it will be put on the correct CMA freelist.
300 static inline int get_pcppage_migratetype(struct page *page)
305 static inline void set_pcppage_migratetype(struct page *page, int migratetype)
307 page->index = migratetype;
310 #ifdef CONFIG_PM_SLEEP
312 * The following functions are used by the suspend/hibernate code to temporarily
313 * change gfp_allowed_mask in order to avoid using I/O during memory allocations
314 * while devices are suspended. To avoid races with the suspend/hibernate code,
315 * they should always be called with system_transition_mutex held
316 * (gfp_allowed_mask also should only be modified with system_transition_mutex
317 * held, unless the suspend/hibernate code is guaranteed not to run in parallel
318 * with that modification).
321 static gfp_t saved_gfp_mask;
323 void pm_restore_gfp_mask(void)
325 WARN_ON(!mutex_is_locked(&system_transition_mutex));
326 if (saved_gfp_mask) {
327 gfp_allowed_mask = saved_gfp_mask;
332 void pm_restrict_gfp_mask(void)
334 WARN_ON(!mutex_is_locked(&system_transition_mutex));
335 WARN_ON(saved_gfp_mask);
336 saved_gfp_mask = gfp_allowed_mask;
337 gfp_allowed_mask &= ~(__GFP_IO | __GFP_FS);
340 bool pm_suspended_storage(void)
342 if ((gfp_allowed_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS))
346 #endif /* CONFIG_PM_SLEEP */
348 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
349 unsigned int pageblock_order __read_mostly;
352 static void __free_pages_ok(struct page *page, unsigned int order,
356 * results with 256, 32 in the lowmem_reserve sysctl:
357 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
358 * 1G machine -> (16M dma, 784M normal, 224M high)
359 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
360 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
361 * HIGHMEM allocation will leave (224M+784M)/256 of ram reserved in ZONE_DMA
363 * TBD: should special case ZONE_DMA32 machines here - in those we normally
364 * don't need any ZONE_NORMAL reservation
366 int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES] = {
367 #ifdef CONFIG_ZONE_DMA
370 #ifdef CONFIG_ZONE_DMA32
374 #ifdef CONFIG_HIGHMEM
380 static char * const zone_names[MAX_NR_ZONES] = {
381 #ifdef CONFIG_ZONE_DMA
384 #ifdef CONFIG_ZONE_DMA32
388 #ifdef CONFIG_HIGHMEM
392 #ifdef CONFIG_ZONE_DEVICE
397 const char * const migratetype_names[MIGRATE_TYPES] = {
405 #ifdef CONFIG_MEMORY_ISOLATION
410 compound_page_dtor * const compound_page_dtors[NR_COMPOUND_DTORS] = {
411 [NULL_COMPOUND_DTOR] = NULL,
412 [COMPOUND_PAGE_DTOR] = free_compound_page,
413 #ifdef CONFIG_HUGETLB_PAGE
414 [HUGETLB_PAGE_DTOR] = free_huge_page,
416 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
417 [TRANSHUGE_PAGE_DTOR] = free_transhuge_page,
421 int min_free_kbytes = 1024;
422 int user_min_free_kbytes = -1;
423 int watermark_boost_factor __read_mostly = 15000;
424 int watermark_scale_factor = 10;
426 static unsigned long nr_kernel_pages __initdata;
427 static unsigned long nr_all_pages __initdata;
428 static unsigned long dma_reserve __initdata;
430 static unsigned long arch_zone_lowest_possible_pfn[MAX_NR_ZONES] __initdata;
431 static unsigned long arch_zone_highest_possible_pfn[MAX_NR_ZONES] __initdata;
432 static unsigned long required_kernelcore __initdata;
433 static unsigned long required_kernelcore_percent __initdata;
434 static unsigned long required_movablecore __initdata;
435 static unsigned long required_movablecore_percent __initdata;
436 static unsigned long zone_movable_pfn[MAX_NUMNODES] __initdata;
437 bool mirrored_kernelcore __initdata_memblock;
439 /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
441 EXPORT_SYMBOL(movable_zone);
444 unsigned int nr_node_ids __read_mostly = MAX_NUMNODES;
445 unsigned int nr_online_nodes __read_mostly = 1;
446 EXPORT_SYMBOL(nr_node_ids);
447 EXPORT_SYMBOL(nr_online_nodes);
450 int page_group_by_mobility_disabled __read_mostly;
452 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
454 * During boot we initialize deferred pages on-demand, as needed, but once
455 * page_alloc_init_late() has finished, the deferred pages are all initialized,
456 * and we can permanently disable that path.
458 static DEFINE_STATIC_KEY_TRUE(deferred_pages);
460 static inline bool deferred_pages_enabled(void)
462 return static_branch_unlikely(&deferred_pages);
465 /* Returns true if the struct page for the pfn is uninitialised */
466 static inline bool __meminit early_page_uninitialised(unsigned long pfn)
468 int nid = early_pfn_to_nid(pfn);
470 if (node_online(nid) && pfn >= NODE_DATA(nid)->first_deferred_pfn)
477 * Returns true when the remaining initialisation should be deferred until
478 * later in the boot cycle when it can be parallelised.
480 static bool __meminit
481 defer_init(int nid, unsigned long pfn, unsigned long end_pfn)
483 static unsigned long prev_end_pfn, nr_initialised;
486 * prev_end_pfn static that contains the end of previous zone
487 * No need to protect because called very early in boot before smp_init.
489 if (prev_end_pfn != end_pfn) {
490 prev_end_pfn = end_pfn;
494 /* Always populate low zones for address-constrained allocations */
495 if (end_pfn < pgdat_end_pfn(NODE_DATA(nid)))
498 if (NODE_DATA(nid)->first_deferred_pfn != ULONG_MAX)
501 * We start only with one section of pages, more pages are added as
502 * needed until the rest of deferred pages are initialized.
505 if ((nr_initialised > PAGES_PER_SECTION) &&
506 (pfn & (PAGES_PER_SECTION - 1)) == 0) {
507 NODE_DATA(nid)->first_deferred_pfn = pfn;
513 static inline bool deferred_pages_enabled(void)
518 static inline bool early_page_uninitialised(unsigned long pfn)
523 static inline bool defer_init(int nid, unsigned long pfn, unsigned long end_pfn)
529 /* Return a pointer to the bitmap storing bits affecting a block of pages */
530 static inline unsigned long *get_pageblock_bitmap(const struct page *page,
533 #ifdef CONFIG_SPARSEMEM
534 return section_to_usemap(__pfn_to_section(pfn));
536 return page_zone(page)->pageblock_flags;
537 #endif /* CONFIG_SPARSEMEM */
540 static inline int pfn_to_bitidx(const struct page *page, unsigned long pfn)
542 #ifdef CONFIG_SPARSEMEM
543 pfn &= (PAGES_PER_SECTION-1);
545 pfn = pfn - round_down(page_zone(page)->zone_start_pfn, pageblock_nr_pages);
546 #endif /* CONFIG_SPARSEMEM */
547 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
550 static __always_inline
551 unsigned long __get_pfnblock_flags_mask(const struct page *page,
555 unsigned long *bitmap;
556 unsigned long bitidx, word_bitidx;
559 bitmap = get_pageblock_bitmap(page, pfn);
560 bitidx = pfn_to_bitidx(page, pfn);
561 word_bitidx = bitidx / BITS_PER_LONG;
562 bitidx &= (BITS_PER_LONG-1);
564 * This races, without locks, with set_pfnblock_flags_mask(). Ensure
565 * a consistent read of the memory array, so that results, even though
566 * racy, are not corrupted.
568 word = READ_ONCE(bitmap[word_bitidx]);
569 return (word >> bitidx) & mask;
573 * get_pfnblock_flags_mask - Return the requested group of flags for the pageblock_nr_pages block of pages
574 * @page: The page within the block of interest
575 * @pfn: The target page frame number
576 * @mask: mask of bits that the caller is interested in
578 * Return: pageblock_bits flags
580 unsigned long get_pfnblock_flags_mask(const struct page *page,
581 unsigned long pfn, unsigned long mask)
583 return __get_pfnblock_flags_mask(page, pfn, mask);
586 static __always_inline int get_pfnblock_migratetype(const struct page *page,
589 return __get_pfnblock_flags_mask(page, pfn, MIGRATETYPE_MASK);
593 * set_pfnblock_flags_mask - Set the requested group of flags for a pageblock_nr_pages block of pages
594 * @page: The page within the block of interest
595 * @flags: The flags to set
596 * @pfn: The target page frame number
597 * @mask: mask of bits that the caller is interested in
599 void set_pfnblock_flags_mask(struct page *page, unsigned long flags,
603 unsigned long *bitmap;
604 unsigned long bitidx, word_bitidx;
607 BUILD_BUG_ON(NR_PAGEBLOCK_BITS != 4);
608 BUILD_BUG_ON(MIGRATE_TYPES > (1 << PB_migratetype_bits));
610 bitmap = get_pageblock_bitmap(page, pfn);
611 bitidx = pfn_to_bitidx(page, pfn);
612 word_bitidx = bitidx / BITS_PER_LONG;
613 bitidx &= (BITS_PER_LONG-1);
615 VM_BUG_ON_PAGE(!zone_spans_pfn(page_zone(page), pfn), page);
620 word = READ_ONCE(bitmap[word_bitidx]);
622 } while (!try_cmpxchg(&bitmap[word_bitidx], &word, (word & ~mask) | flags));
625 void set_pageblock_migratetype(struct page *page, int migratetype)
627 if (unlikely(page_group_by_mobility_disabled &&
628 migratetype < MIGRATE_PCPTYPES))
629 migratetype = MIGRATE_UNMOVABLE;
631 set_pfnblock_flags_mask(page, (unsigned long)migratetype,
632 page_to_pfn(page), MIGRATETYPE_MASK);
635 #ifdef CONFIG_DEBUG_VM
636 static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
640 unsigned long pfn = page_to_pfn(page);
641 unsigned long sp, start_pfn;
644 seq = zone_span_seqbegin(zone);
645 start_pfn = zone->zone_start_pfn;
646 sp = zone->spanned_pages;
647 if (!zone_spans_pfn(zone, pfn))
649 } while (zone_span_seqretry(zone, seq));
652 pr_err("page 0x%lx outside node %d zone %s [ 0x%lx - 0x%lx ]\n",
653 pfn, zone_to_nid(zone), zone->name,
654 start_pfn, start_pfn + sp);
659 static int page_is_consistent(struct zone *zone, struct page *page)
661 if (zone != page_zone(page))
667 * Temporary debugging check for pages not lying within a given zone.
669 static int __maybe_unused bad_range(struct zone *zone, struct page *page)
671 if (page_outside_zone_boundaries(zone, page))
673 if (!page_is_consistent(zone, page))
679 static inline int __maybe_unused bad_range(struct zone *zone, struct page *page)
685 static void bad_page(struct page *page, const char *reason)
687 static unsigned long resume;
688 static unsigned long nr_shown;
689 static unsigned long nr_unshown;
692 * Allow a burst of 60 reports, then keep quiet for that minute;
693 * or allow a steady drip of one report per second.
695 if (nr_shown == 60) {
696 if (time_before(jiffies, resume)) {
702 "BUG: Bad page state: %lu messages suppressed\n",
709 resume = jiffies + 60 * HZ;
711 pr_alert("BUG: Bad page state in process %s pfn:%05lx\n",
712 current->comm, page_to_pfn(page));
713 dump_page(page, reason);
718 /* Leave bad fields for debug, except PageBuddy could make trouble */
719 page_mapcount_reset(page); /* remove PageBuddy */
720 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
723 static inline unsigned int order_to_pindex(int migratetype, int order)
727 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
728 if (order > PAGE_ALLOC_COSTLY_ORDER) {
729 VM_BUG_ON(order != pageblock_order);
730 return NR_LOWORDER_PCP_LISTS;
733 VM_BUG_ON(order > PAGE_ALLOC_COSTLY_ORDER);
736 return (MIGRATE_PCPTYPES * base) + migratetype;
739 static inline int pindex_to_order(unsigned int pindex)
741 int order = pindex / MIGRATE_PCPTYPES;
743 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
744 if (pindex == NR_LOWORDER_PCP_LISTS)
745 order = pageblock_order;
747 VM_BUG_ON(order > PAGE_ALLOC_COSTLY_ORDER);
753 static inline bool pcp_allowed_order(unsigned int order)
755 if (order <= PAGE_ALLOC_COSTLY_ORDER)
757 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
758 if (order == pageblock_order)
764 static inline void free_the_page(struct page *page, unsigned int order)
766 if (pcp_allowed_order(order)) /* Via pcp? */
767 free_unref_page(page, order);
769 __free_pages_ok(page, order, FPI_NONE);
773 * Higher-order pages are called "compound pages". They are structured thusly:
775 * The first PAGE_SIZE page is called the "head page" and have PG_head set.
777 * The remaining PAGE_SIZE pages are called "tail pages". PageTail() is encoded
778 * in bit 0 of page->compound_head. The rest of bits is pointer to head page.
780 * The first tail page's ->compound_dtor holds the offset in array of compound
781 * page destructors. See compound_page_dtors.
783 * The first tail page's ->compound_order holds the order of allocation.
784 * This usage means that zero-order pages may not be compound.
787 void free_compound_page(struct page *page)
789 mem_cgroup_uncharge(page_folio(page));
790 free_the_page(page, compound_order(page));
793 static void prep_compound_head(struct page *page, unsigned int order)
795 set_compound_page_dtor(page, COMPOUND_PAGE_DTOR);
796 set_compound_order(page, order);
797 atomic_set(compound_mapcount_ptr(page), -1);
798 atomic_set(compound_pincount_ptr(page), 0);
801 static void prep_compound_tail(struct page *head, int tail_idx)
803 struct page *p = head + tail_idx;
805 p->mapping = TAIL_MAPPING;
806 set_compound_head(p, head);
809 void prep_compound_page(struct page *page, unsigned int order)
812 int nr_pages = 1 << order;
815 for (i = 1; i < nr_pages; i++)
816 prep_compound_tail(page, i);
818 prep_compound_head(page, order);
821 void destroy_large_folio(struct folio *folio)
823 enum compound_dtor_id dtor = folio_page(folio, 1)->compound_dtor;
825 VM_BUG_ON_FOLIO(dtor >= NR_COMPOUND_DTORS, folio);
826 compound_page_dtors[dtor](&folio->page);
829 #ifdef CONFIG_DEBUG_PAGEALLOC
830 unsigned int _debug_guardpage_minorder;
832 bool _debug_pagealloc_enabled_early __read_mostly
833 = IS_ENABLED(CONFIG_DEBUG_PAGEALLOC_ENABLE_DEFAULT);
834 EXPORT_SYMBOL(_debug_pagealloc_enabled_early);
835 DEFINE_STATIC_KEY_FALSE(_debug_pagealloc_enabled);
836 EXPORT_SYMBOL(_debug_pagealloc_enabled);
838 DEFINE_STATIC_KEY_FALSE(_debug_guardpage_enabled);
840 static int __init early_debug_pagealloc(char *buf)
842 return kstrtobool(buf, &_debug_pagealloc_enabled_early);
844 early_param("debug_pagealloc", early_debug_pagealloc);
846 static int __init debug_guardpage_minorder_setup(char *buf)
850 if (kstrtoul(buf, 10, &res) < 0 || res > MAX_ORDER / 2) {
851 pr_err("Bad debug_guardpage_minorder value\n");
854 _debug_guardpage_minorder = res;
855 pr_info("Setting debug_guardpage_minorder to %lu\n", res);
858 early_param("debug_guardpage_minorder", debug_guardpage_minorder_setup);
860 static inline bool set_page_guard(struct zone *zone, struct page *page,
861 unsigned int order, int migratetype)
863 if (!debug_guardpage_enabled())
866 if (order >= debug_guardpage_minorder())
869 __SetPageGuard(page);
870 INIT_LIST_HEAD(&page->buddy_list);
871 set_page_private(page, order);
872 /* Guard pages are not available for any usage */
873 __mod_zone_freepage_state(zone, -(1 << order), migratetype);
878 static inline void clear_page_guard(struct zone *zone, struct page *page,
879 unsigned int order, int migratetype)
881 if (!debug_guardpage_enabled())
884 __ClearPageGuard(page);
886 set_page_private(page, 0);
887 if (!is_migrate_isolate(migratetype))
888 __mod_zone_freepage_state(zone, (1 << order), migratetype);
891 static inline bool set_page_guard(struct zone *zone, struct page *page,
892 unsigned int order, int migratetype) { return false; }
893 static inline void clear_page_guard(struct zone *zone, struct page *page,
894 unsigned int order, int migratetype) {}
898 * Enable static keys related to various memory debugging and hardening options.
899 * Some override others, and depend on early params that are evaluated in the
900 * order of appearance. So we need to first gather the full picture of what was
901 * enabled, and then make decisions.
903 void init_mem_debugging_and_hardening(void)
905 bool page_poisoning_requested = false;
907 #ifdef CONFIG_PAGE_POISONING
909 * Page poisoning is debug page alloc for some arches. If
910 * either of those options are enabled, enable poisoning.
912 if (page_poisoning_enabled() ||
913 (!IS_ENABLED(CONFIG_ARCH_SUPPORTS_DEBUG_PAGEALLOC) &&
914 debug_pagealloc_enabled())) {
915 static_branch_enable(&_page_poisoning_enabled);
916 page_poisoning_requested = true;
920 if ((_init_on_alloc_enabled_early || _init_on_free_enabled_early) &&
921 page_poisoning_requested) {
922 pr_info("mem auto-init: CONFIG_PAGE_POISONING is on, "
923 "will take precedence over init_on_alloc and init_on_free\n");
924 _init_on_alloc_enabled_early = false;
925 _init_on_free_enabled_early = false;
928 if (_init_on_alloc_enabled_early)
929 static_branch_enable(&init_on_alloc);
931 static_branch_disable(&init_on_alloc);
933 if (_init_on_free_enabled_early)
934 static_branch_enable(&init_on_free);
936 static_branch_disable(&init_on_free);
938 #ifdef CONFIG_DEBUG_PAGEALLOC
939 if (!debug_pagealloc_enabled())
942 static_branch_enable(&_debug_pagealloc_enabled);
944 if (!debug_guardpage_minorder())
947 static_branch_enable(&_debug_guardpage_enabled);
951 static inline void set_buddy_order(struct page *page, unsigned int order)
953 set_page_private(page, order);
954 __SetPageBuddy(page);
957 #ifdef CONFIG_COMPACTION
958 static inline struct capture_control *task_capc(struct zone *zone)
960 struct capture_control *capc = current->capture_control;
962 return unlikely(capc) &&
963 !(current->flags & PF_KTHREAD) &&
965 capc->cc->zone == zone ? capc : NULL;
969 compaction_capture(struct capture_control *capc, struct page *page,
970 int order, int migratetype)
972 if (!capc || order != capc->cc->order)
975 /* Do not accidentally pollute CMA or isolated regions*/
976 if (is_migrate_cma(migratetype) ||
977 is_migrate_isolate(migratetype))
981 * Do not let lower order allocations pollute a movable pageblock.
982 * This might let an unmovable request use a reclaimable pageblock
983 * and vice-versa but no more than normal fallback logic which can
984 * have trouble finding a high-order free page.
986 if (order < pageblock_order && migratetype == MIGRATE_MOVABLE)
994 static inline struct capture_control *task_capc(struct zone *zone)
1000 compaction_capture(struct capture_control *capc, struct page *page,
1001 int order, int migratetype)
1005 #endif /* CONFIG_COMPACTION */
1007 /* Used for pages not on another list */
1008 static inline void add_to_free_list(struct page *page, struct zone *zone,
1009 unsigned int order, int migratetype)
1011 struct free_area *area = &zone->free_area[order];
1013 list_add(&page->buddy_list, &area->free_list[migratetype]);
1017 /* Used for pages not on another list */
1018 static inline void add_to_free_list_tail(struct page *page, struct zone *zone,
1019 unsigned int order, int migratetype)
1021 struct free_area *area = &zone->free_area[order];
1023 list_add_tail(&page->buddy_list, &area->free_list[migratetype]);
1028 * Used for pages which are on another list. Move the pages to the tail
1029 * of the list - so the moved pages won't immediately be considered for
1030 * allocation again (e.g., optimization for memory onlining).
1032 static inline void move_to_free_list(struct page *page, struct zone *zone,
1033 unsigned int order, int migratetype)
1035 struct free_area *area = &zone->free_area[order];
1037 list_move_tail(&page->buddy_list, &area->free_list[migratetype]);
1040 static inline void del_page_from_free_list(struct page *page, struct zone *zone,
1043 /* clear reported state and update reported page count */
1044 if (page_reported(page))
1045 __ClearPageReported(page);
1047 list_del(&page->buddy_list);
1048 __ClearPageBuddy(page);
1049 set_page_private(page, 0);
1050 zone->free_area[order].nr_free--;
1054 * If this is not the largest possible page, check if the buddy
1055 * of the next-highest order is free. If it is, it's possible
1056 * that pages are being freed that will coalesce soon. In case,
1057 * that is happening, add the free page to the tail of the list
1058 * so it's less likely to be used soon and more likely to be merged
1059 * as a higher order page
1062 buddy_merge_likely(unsigned long pfn, unsigned long buddy_pfn,
1063 struct page *page, unsigned int order)
1065 unsigned long higher_page_pfn;
1066 struct page *higher_page;
1068 if (order >= MAX_ORDER - 2)
1071 higher_page_pfn = buddy_pfn & pfn;
1072 higher_page = page + (higher_page_pfn - pfn);
1074 return find_buddy_page_pfn(higher_page, higher_page_pfn, order + 1,
1079 * Freeing function for a buddy system allocator.
1081 * The concept of a buddy system is to maintain direct-mapped table
1082 * (containing bit values) for memory blocks of various "orders".
1083 * The bottom level table contains the map for the smallest allocatable
1084 * units of memory (here, pages), and each level above it describes
1085 * pairs of units from the levels below, hence, "buddies".
1086 * At a high level, all that happens here is marking the table entry
1087 * at the bottom level available, and propagating the changes upward
1088 * as necessary, plus some accounting needed to play nicely with other
1089 * parts of the VM system.
1090 * At each level, we keep a list of pages, which are heads of continuous
1091 * free pages of length of (1 << order) and marked with PageBuddy.
1092 * Page's order is recorded in page_private(page) field.
1093 * So when we are allocating or freeing one, we can derive the state of the
1094 * other. That is, if we allocate a small block, and both were
1095 * free, the remainder of the region must be split into blocks.
1096 * If a block is freed, and its buddy is also free, then this
1097 * triggers coalescing into a block of larger size.
1102 static inline void __free_one_page(struct page *page,
1104 struct zone *zone, unsigned int order,
1105 int migratetype, fpi_t fpi_flags)
1107 struct capture_control *capc = task_capc(zone);
1108 unsigned long buddy_pfn;
1109 unsigned long combined_pfn;
1113 VM_BUG_ON(!zone_is_initialized(zone));
1114 VM_BUG_ON_PAGE(page->flags & PAGE_FLAGS_CHECK_AT_PREP, page);
1116 VM_BUG_ON(migratetype == -1);
1117 if (likely(!is_migrate_isolate(migratetype)))
1118 __mod_zone_freepage_state(zone, 1 << order, migratetype);
1120 VM_BUG_ON_PAGE(pfn & ((1 << order) - 1), page);
1121 VM_BUG_ON_PAGE(bad_range(zone, page), page);
1123 while (order < MAX_ORDER - 1) {
1124 if (compaction_capture(capc, page, order, migratetype)) {
1125 __mod_zone_freepage_state(zone, -(1 << order),
1130 buddy = find_buddy_page_pfn(page, pfn, order, &buddy_pfn);
1134 if (unlikely(order >= pageblock_order)) {
1136 * We want to prevent merge between freepages on pageblock
1137 * without fallbacks and normal pageblock. Without this,
1138 * pageblock isolation could cause incorrect freepage or CMA
1139 * accounting or HIGHATOMIC accounting.
1141 int buddy_mt = get_pageblock_migratetype(buddy);
1143 if (migratetype != buddy_mt
1144 && (!migratetype_is_mergeable(migratetype) ||
1145 !migratetype_is_mergeable(buddy_mt)))
1150 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page,
1151 * merge with it and move up one order.
1153 if (page_is_guard(buddy))
1154 clear_page_guard(zone, buddy, order, migratetype);
1156 del_page_from_free_list(buddy, zone, order);
1157 combined_pfn = buddy_pfn & pfn;
1158 page = page + (combined_pfn - pfn);
1164 set_buddy_order(page, order);
1166 if (fpi_flags & FPI_TO_TAIL)
1168 else if (is_shuffle_order(order))
1169 to_tail = shuffle_pick_tail();
1171 to_tail = buddy_merge_likely(pfn, buddy_pfn, page, order);
1174 add_to_free_list_tail(page, zone, order, migratetype);
1176 add_to_free_list(page, zone, order, migratetype);
1178 /* Notify page reporting subsystem of freed page */
1179 if (!(fpi_flags & FPI_SKIP_REPORT_NOTIFY))
1180 page_reporting_notify_free(order);
1184 * split_free_page() -- split a free page at split_pfn_offset
1185 * @free_page: the original free page
1186 * @order: the order of the page
1187 * @split_pfn_offset: split offset within the page
1189 * Return -ENOENT if the free page is changed, otherwise 0
1191 * It is used when the free page crosses two pageblocks with different migratetypes
1192 * at split_pfn_offset within the page. The split free page will be put into
1193 * separate migratetype lists afterwards. Otherwise, the function achieves
1196 int split_free_page(struct page *free_page,
1197 unsigned int order, unsigned long split_pfn_offset)
1199 struct zone *zone = page_zone(free_page);
1200 unsigned long free_page_pfn = page_to_pfn(free_page);
1202 unsigned long flags;
1203 int free_page_order;
1207 if (split_pfn_offset == 0)
1210 spin_lock_irqsave(&zone->lock, flags);
1212 if (!PageBuddy(free_page) || buddy_order(free_page) != order) {
1217 mt = get_pageblock_migratetype(free_page);
1218 if (likely(!is_migrate_isolate(mt)))
1219 __mod_zone_freepage_state(zone, -(1UL << order), mt);
1221 del_page_from_free_list(free_page, zone, order);
1222 for (pfn = free_page_pfn;
1223 pfn < free_page_pfn + (1UL << order);) {
1224 int mt = get_pfnblock_migratetype(pfn_to_page(pfn), pfn);
1226 free_page_order = min_t(unsigned int,
1227 pfn ? __ffs(pfn) : order,
1228 __fls(split_pfn_offset));
1229 __free_one_page(pfn_to_page(pfn), pfn, zone, free_page_order,
1231 pfn += 1UL << free_page_order;
1232 split_pfn_offset -= (1UL << free_page_order);
1233 /* we have done the first part, now switch to second part */
1234 if (split_pfn_offset == 0)
1235 split_pfn_offset = (1UL << order) - (pfn - free_page_pfn);
1238 spin_unlock_irqrestore(&zone->lock, flags);
1242 * A bad page could be due to a number of fields. Instead of multiple branches,
1243 * try and check multiple fields with one check. The caller must do a detailed
1244 * check if necessary.
1246 static inline bool page_expected_state(struct page *page,
1247 unsigned long check_flags)
1249 if (unlikely(atomic_read(&page->_mapcount) != -1))
1252 if (unlikely((unsigned long)page->mapping |
1253 page_ref_count(page) |
1257 (page->flags & check_flags)))
1263 static const char *page_bad_reason(struct page *page, unsigned long flags)
1265 const char *bad_reason = NULL;
1267 if (unlikely(atomic_read(&page->_mapcount) != -1))
1268 bad_reason = "nonzero mapcount";
1269 if (unlikely(page->mapping != NULL))
1270 bad_reason = "non-NULL mapping";
1271 if (unlikely(page_ref_count(page) != 0))
1272 bad_reason = "nonzero _refcount";
1273 if (unlikely(page->flags & flags)) {
1274 if (flags == PAGE_FLAGS_CHECK_AT_PREP)
1275 bad_reason = "PAGE_FLAGS_CHECK_AT_PREP flag(s) set";
1277 bad_reason = "PAGE_FLAGS_CHECK_AT_FREE flag(s) set";
1280 if (unlikely(page->memcg_data))
1281 bad_reason = "page still charged to cgroup";
1286 static void check_free_page_bad(struct page *page)
1289 page_bad_reason(page, PAGE_FLAGS_CHECK_AT_FREE));
1292 static inline int check_free_page(struct page *page)
1294 if (likely(page_expected_state(page, PAGE_FLAGS_CHECK_AT_FREE)))
1297 /* Something has gone sideways, find it */
1298 check_free_page_bad(page);
1302 static int free_tail_pages_check(struct page *head_page, struct page *page)
1307 * We rely page->lru.next never has bit 0 set, unless the page
1308 * is PageTail(). Let's make sure that's true even for poisoned ->lru.
1310 BUILD_BUG_ON((unsigned long)LIST_POISON1 & 1);
1312 if (!IS_ENABLED(CONFIG_DEBUG_VM)) {
1316 switch (page - head_page) {
1318 /* the first tail page: ->mapping may be compound_mapcount() */
1319 if (unlikely(compound_mapcount(page))) {
1320 bad_page(page, "nonzero compound_mapcount");
1326 * the second tail page: ->mapping is
1327 * deferred_list.next -- ignore value.
1331 if (page->mapping != TAIL_MAPPING) {
1332 bad_page(page, "corrupted mapping in tail page");
1337 if (unlikely(!PageTail(page))) {
1338 bad_page(page, "PageTail not set");
1341 if (unlikely(compound_head(page) != head_page)) {
1342 bad_page(page, "compound_head not consistent");
1347 page->mapping = NULL;
1348 clear_compound_head(page);
1353 * Skip KASAN memory poisoning when either:
1355 * 1. Deferred memory initialization has not yet completed,
1356 * see the explanation below.
1357 * 2. Skipping poisoning is requested via FPI_SKIP_KASAN_POISON,
1358 * see the comment next to it.
1359 * 3. Skipping poisoning is requested via __GFP_SKIP_KASAN_POISON,
1360 * see the comment next to it.
1362 * Poisoning pages during deferred memory init will greatly lengthen the
1363 * process and cause problem in large memory systems as the deferred pages
1364 * initialization is done with interrupt disabled.
1366 * Assuming that there will be no reference to those newly initialized
1367 * pages before they are ever allocated, this should have no effect on
1368 * KASAN memory tracking as the poison will be properly inserted at page
1369 * allocation time. The only corner case is when pages are allocated by
1370 * on-demand allocation and then freed again before the deferred pages
1371 * initialization is done, but this is not likely to happen.
1373 static inline bool should_skip_kasan_poison(struct page *page, fpi_t fpi_flags)
1375 return deferred_pages_enabled() ||
1376 (!IS_ENABLED(CONFIG_KASAN_GENERIC) &&
1377 (fpi_flags & FPI_SKIP_KASAN_POISON)) ||
1378 PageSkipKASanPoison(page);
1381 static void kernel_init_pages(struct page *page, int numpages)
1385 /* s390's use of memset() could override KASAN redzones. */
1386 kasan_disable_current();
1387 for (i = 0; i < numpages; i++)
1388 clear_highpage_kasan_tagged(page + i);
1389 kasan_enable_current();
1392 static __always_inline bool free_pages_prepare(struct page *page,
1393 unsigned int order, bool check_free, fpi_t fpi_flags)
1396 bool init = want_init_on_free();
1398 VM_BUG_ON_PAGE(PageTail(page), page);
1400 trace_mm_page_free(page, order);
1402 if (unlikely(PageHWPoison(page)) && !order) {
1404 * Do not let hwpoison pages hit pcplists/buddy
1405 * Untie memcg state and reset page's owner
1407 if (memcg_kmem_enabled() && PageMemcgKmem(page))
1408 __memcg_kmem_uncharge_page(page, order);
1409 reset_page_owner(page, order);
1410 page_table_check_free(page, order);
1415 * Check tail pages before head page information is cleared to
1416 * avoid checking PageCompound for order-0 pages.
1418 if (unlikely(order)) {
1419 bool compound = PageCompound(page);
1422 VM_BUG_ON_PAGE(compound && compound_order(page) != order, page);
1425 ClearPageDoubleMap(page);
1426 ClearPageHasHWPoisoned(page);
1428 for (i = 1; i < (1 << order); i++) {
1430 bad += free_tail_pages_check(page, page + i);
1431 if (unlikely(check_free_page(page + i))) {
1435 (page + i)->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1438 if (PageMappingFlags(page))
1439 page->mapping = NULL;
1440 if (memcg_kmem_enabled() && PageMemcgKmem(page))
1441 __memcg_kmem_uncharge_page(page, order);
1443 bad += check_free_page(page);
1447 page_cpupid_reset_last(page);
1448 page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1449 reset_page_owner(page, order);
1450 page_table_check_free(page, order);
1452 if (!PageHighMem(page)) {
1453 debug_check_no_locks_freed(page_address(page),
1454 PAGE_SIZE << order);
1455 debug_check_no_obj_freed(page_address(page),
1456 PAGE_SIZE << order);
1459 kernel_poison_pages(page, 1 << order);
1462 * As memory initialization might be integrated into KASAN,
1463 * KASAN poisoning and memory initialization code must be
1464 * kept together to avoid discrepancies in behavior.
1466 * With hardware tag-based KASAN, memory tags must be set before the
1467 * page becomes unavailable via debug_pagealloc or arch_free_page.
1469 if (!should_skip_kasan_poison(page, fpi_flags)) {
1470 kasan_poison_pages(page, order, init);
1472 /* Memory is already initialized if KASAN did it internally. */
1473 if (kasan_has_integrated_init())
1477 kernel_init_pages(page, 1 << order);
1480 * arch_free_page() can make the page's contents inaccessible. s390
1481 * does this. So nothing which can access the page's contents should
1482 * happen after this.
1484 arch_free_page(page, order);
1486 debug_pagealloc_unmap_pages(page, 1 << order);
1491 #ifdef CONFIG_DEBUG_VM
1493 * With DEBUG_VM enabled, order-0 pages are checked immediately when being freed
1494 * to pcp lists. With debug_pagealloc also enabled, they are also rechecked when
1495 * moved from pcp lists to free lists.
1497 static bool free_pcp_prepare(struct page *page, unsigned int order)
1499 return free_pages_prepare(page, order, true, FPI_NONE);
1502 static bool bulkfree_pcp_prepare(struct page *page)
1504 if (debug_pagealloc_enabled_static())
1505 return check_free_page(page);
1511 * With DEBUG_VM disabled, order-0 pages being freed are checked only when
1512 * moving from pcp lists to free list in order to reduce overhead. With
1513 * debug_pagealloc enabled, they are checked also immediately when being freed
1516 static bool free_pcp_prepare(struct page *page, unsigned int order)
1518 if (debug_pagealloc_enabled_static())
1519 return free_pages_prepare(page, order, true, FPI_NONE);
1521 return free_pages_prepare(page, order, false, FPI_NONE);
1524 static bool bulkfree_pcp_prepare(struct page *page)
1526 return check_free_page(page);
1528 #endif /* CONFIG_DEBUG_VM */
1531 * Frees a number of pages from the PCP lists
1532 * Assumes all pages on list are in same zone.
1533 * count is the number of pages to free.
1535 static void free_pcppages_bulk(struct zone *zone, int count,
1536 struct per_cpu_pages *pcp,
1540 int max_pindex = NR_PCP_LISTS - 1;
1542 bool isolated_pageblocks;
1546 * Ensure proper count is passed which otherwise would stuck in the
1547 * below while (list_empty(list)) loop.
1549 count = min(pcp->count, count);
1551 /* Ensure requested pindex is drained first. */
1552 pindex = pindex - 1;
1554 /* Caller must hold IRQ-safe pcp->lock so IRQs are disabled. */
1555 spin_lock(&zone->lock);
1556 isolated_pageblocks = has_isolate_pageblock(zone);
1559 struct list_head *list;
1562 /* Remove pages from lists in a round-robin fashion. */
1564 if (++pindex > max_pindex)
1565 pindex = min_pindex;
1566 list = &pcp->lists[pindex];
1567 if (!list_empty(list))
1570 if (pindex == max_pindex)
1572 if (pindex == min_pindex)
1576 order = pindex_to_order(pindex);
1577 nr_pages = 1 << order;
1578 BUILD_BUG_ON(MAX_ORDER >= (1<<NR_PCP_ORDER_WIDTH));
1582 page = list_last_entry(list, struct page, pcp_list);
1583 mt = get_pcppage_migratetype(page);
1585 /* must delete to avoid corrupting pcp list */
1586 list_del(&page->pcp_list);
1588 pcp->count -= nr_pages;
1590 if (bulkfree_pcp_prepare(page))
1593 /* MIGRATE_ISOLATE page should not go to pcplists */
1594 VM_BUG_ON_PAGE(is_migrate_isolate(mt), page);
1595 /* Pageblock could have been isolated meanwhile */
1596 if (unlikely(isolated_pageblocks))
1597 mt = get_pageblock_migratetype(page);
1599 __free_one_page(page, page_to_pfn(page), zone, order, mt, FPI_NONE);
1600 trace_mm_page_pcpu_drain(page, order, mt);
1601 } while (count > 0 && !list_empty(list));
1604 spin_unlock(&zone->lock);
1607 static void free_one_page(struct zone *zone,
1608 struct page *page, unsigned long pfn,
1610 int migratetype, fpi_t fpi_flags)
1612 unsigned long flags;
1614 spin_lock_irqsave(&zone->lock, flags);
1615 if (unlikely(has_isolate_pageblock(zone) ||
1616 is_migrate_isolate(migratetype))) {
1617 migratetype = get_pfnblock_migratetype(page, pfn);
1619 __free_one_page(page, pfn, zone, order, migratetype, fpi_flags);
1620 spin_unlock_irqrestore(&zone->lock, flags);
1623 static void __meminit __init_single_page(struct page *page, unsigned long pfn,
1624 unsigned long zone, int nid)
1626 mm_zero_struct_page(page);
1627 set_page_links(page, zone, nid, pfn);
1628 init_page_count(page);
1629 page_mapcount_reset(page);
1630 page_cpupid_reset_last(page);
1631 page_kasan_tag_reset(page);
1633 INIT_LIST_HEAD(&page->lru);
1634 #ifdef WANT_PAGE_VIRTUAL
1635 /* The shift won't overflow because ZONE_NORMAL is below 4G. */
1636 if (!is_highmem_idx(zone))
1637 set_page_address(page, __va(pfn << PAGE_SHIFT));
1641 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1642 static void __meminit init_reserved_page(unsigned long pfn)
1647 if (!early_page_uninitialised(pfn))
1650 nid = early_pfn_to_nid(pfn);
1651 pgdat = NODE_DATA(nid);
1653 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1654 struct zone *zone = &pgdat->node_zones[zid];
1656 if (zone_spans_pfn(zone, pfn))
1659 __init_single_page(pfn_to_page(pfn), pfn, zid, nid);
1662 static inline void init_reserved_page(unsigned long pfn)
1665 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
1668 * Initialised pages do not have PageReserved set. This function is
1669 * called for each range allocated by the bootmem allocator and
1670 * marks the pages PageReserved. The remaining valid pages are later
1671 * sent to the buddy page allocator.
1673 void __meminit reserve_bootmem_region(phys_addr_t start, phys_addr_t end)
1675 unsigned long start_pfn = PFN_DOWN(start);
1676 unsigned long end_pfn = PFN_UP(end);
1678 for (; start_pfn < end_pfn; start_pfn++) {
1679 if (pfn_valid(start_pfn)) {
1680 struct page *page = pfn_to_page(start_pfn);
1682 init_reserved_page(start_pfn);
1684 /* Avoid false-positive PageTail() */
1685 INIT_LIST_HEAD(&page->lru);
1688 * no need for atomic set_bit because the struct
1689 * page is not visible yet so nobody should
1692 __SetPageReserved(page);
1697 static void __free_pages_ok(struct page *page, unsigned int order,
1700 unsigned long flags;
1702 unsigned long pfn = page_to_pfn(page);
1703 struct zone *zone = page_zone(page);
1705 if (!free_pages_prepare(page, order, true, fpi_flags))
1708 migratetype = get_pfnblock_migratetype(page, pfn);
1710 spin_lock_irqsave(&zone->lock, flags);
1711 if (unlikely(has_isolate_pageblock(zone) ||
1712 is_migrate_isolate(migratetype))) {
1713 migratetype = get_pfnblock_migratetype(page, pfn);
1715 __free_one_page(page, pfn, zone, order, migratetype, fpi_flags);
1716 spin_unlock_irqrestore(&zone->lock, flags);
1718 __count_vm_events(PGFREE, 1 << order);
1721 void __free_pages_core(struct page *page, unsigned int order)
1723 unsigned int nr_pages = 1 << order;
1724 struct page *p = page;
1728 * When initializing the memmap, __init_single_page() sets the refcount
1729 * of all pages to 1 ("allocated"/"not free"). We have to set the
1730 * refcount of all involved pages to 0.
1733 for (loop = 0; loop < (nr_pages - 1); loop++, p++) {
1735 __ClearPageReserved(p);
1736 set_page_count(p, 0);
1738 __ClearPageReserved(p);
1739 set_page_count(p, 0);
1741 atomic_long_add(nr_pages, &page_zone(page)->managed_pages);
1744 * Bypass PCP and place fresh pages right to the tail, primarily
1745 * relevant for memory onlining.
1747 __free_pages_ok(page, order, FPI_TO_TAIL | FPI_SKIP_KASAN_POISON);
1753 * During memory init memblocks map pfns to nids. The search is expensive and
1754 * this caches recent lookups. The implementation of __early_pfn_to_nid
1755 * treats start/end as pfns.
1757 struct mminit_pfnnid_cache {
1758 unsigned long last_start;
1759 unsigned long last_end;
1763 static struct mminit_pfnnid_cache early_pfnnid_cache __meminitdata;
1766 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
1768 static int __meminit __early_pfn_to_nid(unsigned long pfn,
1769 struct mminit_pfnnid_cache *state)
1771 unsigned long start_pfn, end_pfn;
1774 if (state->last_start <= pfn && pfn < state->last_end)
1775 return state->last_nid;
1777 nid = memblock_search_pfn_nid(pfn, &start_pfn, &end_pfn);
1778 if (nid != NUMA_NO_NODE) {
1779 state->last_start = start_pfn;
1780 state->last_end = end_pfn;
1781 state->last_nid = nid;
1787 int __meminit early_pfn_to_nid(unsigned long pfn)
1789 static DEFINE_SPINLOCK(early_pfn_lock);
1792 spin_lock(&early_pfn_lock);
1793 nid = __early_pfn_to_nid(pfn, &early_pfnnid_cache);
1795 nid = first_online_node;
1796 spin_unlock(&early_pfn_lock);
1800 #endif /* CONFIG_NUMA */
1802 void __init memblock_free_pages(struct page *page, unsigned long pfn,
1805 if (early_page_uninitialised(pfn))
1807 __free_pages_core(page, order);
1811 * Check that the whole (or subset of) a pageblock given by the interval of
1812 * [start_pfn, end_pfn) is valid and within the same zone, before scanning it
1813 * with the migration of free compaction scanner.
1815 * Return struct page pointer of start_pfn, or NULL if checks were not passed.
1817 * It's possible on some configurations to have a setup like node0 node1 node0
1818 * i.e. it's possible that all pages within a zones range of pages do not
1819 * belong to a single zone. We assume that a border between node0 and node1
1820 * can occur within a single pageblock, but not a node0 node1 node0
1821 * interleaving within a single pageblock. It is therefore sufficient to check
1822 * the first and last page of a pageblock and avoid checking each individual
1823 * page in a pageblock.
1825 struct page *__pageblock_pfn_to_page(unsigned long start_pfn,
1826 unsigned long end_pfn, struct zone *zone)
1828 struct page *start_page;
1829 struct page *end_page;
1831 /* end_pfn is one past the range we are checking */
1834 if (!pfn_valid(start_pfn) || !pfn_valid(end_pfn))
1837 start_page = pfn_to_online_page(start_pfn);
1841 if (page_zone(start_page) != zone)
1844 end_page = pfn_to_page(end_pfn);
1846 /* This gives a shorter code than deriving page_zone(end_page) */
1847 if (page_zone_id(start_page) != page_zone_id(end_page))
1853 void set_zone_contiguous(struct zone *zone)
1855 unsigned long block_start_pfn = zone->zone_start_pfn;
1856 unsigned long block_end_pfn;
1858 block_end_pfn = ALIGN(block_start_pfn + 1, pageblock_nr_pages);
1859 for (; block_start_pfn < zone_end_pfn(zone);
1860 block_start_pfn = block_end_pfn,
1861 block_end_pfn += pageblock_nr_pages) {
1863 block_end_pfn = min(block_end_pfn, zone_end_pfn(zone));
1865 if (!__pageblock_pfn_to_page(block_start_pfn,
1866 block_end_pfn, zone))
1871 /* We confirm that there is no hole */
1872 zone->contiguous = true;
1875 void clear_zone_contiguous(struct zone *zone)
1877 zone->contiguous = false;
1880 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1881 static void __init deferred_free_range(unsigned long pfn,
1882 unsigned long nr_pages)
1890 page = pfn_to_page(pfn);
1892 /* Free a large naturally-aligned chunk if possible */
1893 if (nr_pages == pageblock_nr_pages &&
1894 (pfn & (pageblock_nr_pages - 1)) == 0) {
1895 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
1896 __free_pages_core(page, pageblock_order);
1900 for (i = 0; i < nr_pages; i++, page++, pfn++) {
1901 if ((pfn & (pageblock_nr_pages - 1)) == 0)
1902 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
1903 __free_pages_core(page, 0);
1907 /* Completion tracking for deferred_init_memmap() threads */
1908 static atomic_t pgdat_init_n_undone __initdata;
1909 static __initdata DECLARE_COMPLETION(pgdat_init_all_done_comp);
1911 static inline void __init pgdat_init_report_one_done(void)
1913 if (atomic_dec_and_test(&pgdat_init_n_undone))
1914 complete(&pgdat_init_all_done_comp);
1918 * Returns true if page needs to be initialized or freed to buddy allocator.
1920 * First we check if pfn is valid on architectures where it is possible to have
1921 * holes within pageblock_nr_pages. On systems where it is not possible, this
1922 * function is optimized out.
1924 * Then, we check if a current large page is valid by only checking the validity
1927 static inline bool __init deferred_pfn_valid(unsigned long pfn)
1929 if (!(pfn & (pageblock_nr_pages - 1)) && !pfn_valid(pfn))
1935 * Free pages to buddy allocator. Try to free aligned pages in
1936 * pageblock_nr_pages sizes.
1938 static void __init deferred_free_pages(unsigned long pfn,
1939 unsigned long end_pfn)
1941 unsigned long nr_pgmask = pageblock_nr_pages - 1;
1942 unsigned long nr_free = 0;
1944 for (; pfn < end_pfn; pfn++) {
1945 if (!deferred_pfn_valid(pfn)) {
1946 deferred_free_range(pfn - nr_free, nr_free);
1948 } else if (!(pfn & nr_pgmask)) {
1949 deferred_free_range(pfn - nr_free, nr_free);
1955 /* Free the last block of pages to allocator */
1956 deferred_free_range(pfn - nr_free, nr_free);
1960 * Initialize struct pages. We minimize pfn page lookups and scheduler checks
1961 * by performing it only once every pageblock_nr_pages.
1962 * Return number of pages initialized.
1964 static unsigned long __init deferred_init_pages(struct zone *zone,
1966 unsigned long end_pfn)
1968 unsigned long nr_pgmask = pageblock_nr_pages - 1;
1969 int nid = zone_to_nid(zone);
1970 unsigned long nr_pages = 0;
1971 int zid = zone_idx(zone);
1972 struct page *page = NULL;
1974 for (; pfn < end_pfn; pfn++) {
1975 if (!deferred_pfn_valid(pfn)) {
1978 } else if (!page || !(pfn & nr_pgmask)) {
1979 page = pfn_to_page(pfn);
1983 __init_single_page(page, pfn, zid, nid);
1990 * This function is meant to pre-load the iterator for the zone init.
1991 * Specifically it walks through the ranges until we are caught up to the
1992 * first_init_pfn value and exits there. If we never encounter the value we
1993 * return false indicating there are no valid ranges left.
1996 deferred_init_mem_pfn_range_in_zone(u64 *i, struct zone *zone,
1997 unsigned long *spfn, unsigned long *epfn,
1998 unsigned long first_init_pfn)
2003 * Start out by walking through the ranges in this zone that have
2004 * already been initialized. We don't need to do anything with them
2005 * so we just need to flush them out of the system.
2007 for_each_free_mem_pfn_range_in_zone(j, zone, spfn, epfn) {
2008 if (*epfn <= first_init_pfn)
2010 if (*spfn < first_init_pfn)
2011 *spfn = first_init_pfn;
2020 * Initialize and free pages. We do it in two loops: first we initialize
2021 * struct page, then free to buddy allocator, because while we are
2022 * freeing pages we can access pages that are ahead (computing buddy
2023 * page in __free_one_page()).
2025 * In order to try and keep some memory in the cache we have the loop
2026 * broken along max page order boundaries. This way we will not cause
2027 * any issues with the buddy page computation.
2029 static unsigned long __init
2030 deferred_init_maxorder(u64 *i, struct zone *zone, unsigned long *start_pfn,
2031 unsigned long *end_pfn)
2033 unsigned long mo_pfn = ALIGN(*start_pfn + 1, MAX_ORDER_NR_PAGES);
2034 unsigned long spfn = *start_pfn, epfn = *end_pfn;
2035 unsigned long nr_pages = 0;
2038 /* First we loop through and initialize the page values */
2039 for_each_free_mem_pfn_range_in_zone_from(j, zone, start_pfn, end_pfn) {
2042 if (mo_pfn <= *start_pfn)
2045 t = min(mo_pfn, *end_pfn);
2046 nr_pages += deferred_init_pages(zone, *start_pfn, t);
2048 if (mo_pfn < *end_pfn) {
2049 *start_pfn = mo_pfn;
2054 /* Reset values and now loop through freeing pages as needed */
2057 for_each_free_mem_pfn_range_in_zone_from(j, zone, &spfn, &epfn) {
2063 t = min(mo_pfn, epfn);
2064 deferred_free_pages(spfn, t);
2074 deferred_init_memmap_chunk(unsigned long start_pfn, unsigned long end_pfn,
2077 unsigned long spfn, epfn;
2078 struct zone *zone = arg;
2081 deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn, start_pfn);
2084 * Initialize and free pages in MAX_ORDER sized increments so that we
2085 * can avoid introducing any issues with the buddy allocator.
2087 while (spfn < end_pfn) {
2088 deferred_init_maxorder(&i, zone, &spfn, &epfn);
2093 /* An arch may override for more concurrency. */
2095 deferred_page_init_max_threads(const struct cpumask *node_cpumask)
2100 /* Initialise remaining memory on a node */
2101 static int __init deferred_init_memmap(void *data)
2103 pg_data_t *pgdat = data;
2104 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
2105 unsigned long spfn = 0, epfn = 0;
2106 unsigned long first_init_pfn, flags;
2107 unsigned long start = jiffies;
2109 int zid, max_threads;
2112 /* Bind memory initialisation thread to a local node if possible */
2113 if (!cpumask_empty(cpumask))
2114 set_cpus_allowed_ptr(current, cpumask);
2116 pgdat_resize_lock(pgdat, &flags);
2117 first_init_pfn = pgdat->first_deferred_pfn;
2118 if (first_init_pfn == ULONG_MAX) {
2119 pgdat_resize_unlock(pgdat, &flags);
2120 pgdat_init_report_one_done();
2124 /* Sanity check boundaries */
2125 BUG_ON(pgdat->first_deferred_pfn < pgdat->node_start_pfn);
2126 BUG_ON(pgdat->first_deferred_pfn > pgdat_end_pfn(pgdat));
2127 pgdat->first_deferred_pfn = ULONG_MAX;
2130 * Once we unlock here, the zone cannot be grown anymore, thus if an
2131 * interrupt thread must allocate this early in boot, zone must be
2132 * pre-grown prior to start of deferred page initialization.
2134 pgdat_resize_unlock(pgdat, &flags);
2136 /* Only the highest zone is deferred so find it */
2137 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
2138 zone = pgdat->node_zones + zid;
2139 if (first_init_pfn < zone_end_pfn(zone))
2143 /* If the zone is empty somebody else may have cleared out the zone */
2144 if (!deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn,
2148 max_threads = deferred_page_init_max_threads(cpumask);
2150 while (spfn < epfn) {
2151 unsigned long epfn_align = ALIGN(epfn, PAGES_PER_SECTION);
2152 struct padata_mt_job job = {
2153 .thread_fn = deferred_init_memmap_chunk,
2156 .size = epfn_align - spfn,
2157 .align = PAGES_PER_SECTION,
2158 .min_chunk = PAGES_PER_SECTION,
2159 .max_threads = max_threads,
2162 padata_do_multithreaded(&job);
2163 deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn,
2167 /* Sanity check that the next zone really is unpopulated */
2168 WARN_ON(++zid < MAX_NR_ZONES && populated_zone(++zone));
2170 pr_info("node %d deferred pages initialised in %ums\n",
2171 pgdat->node_id, jiffies_to_msecs(jiffies - start));
2173 pgdat_init_report_one_done();
2178 * If this zone has deferred pages, try to grow it by initializing enough
2179 * deferred pages to satisfy the allocation specified by order, rounded up to
2180 * the nearest PAGES_PER_SECTION boundary. So we're adding memory in increments
2181 * of SECTION_SIZE bytes by initializing struct pages in increments of
2182 * PAGES_PER_SECTION * sizeof(struct page) bytes.
2184 * Return true when zone was grown, otherwise return false. We return true even
2185 * when we grow less than requested, to let the caller decide if there are
2186 * enough pages to satisfy the allocation.
2188 * Note: We use noinline because this function is needed only during boot, and
2189 * it is called from a __ref function _deferred_grow_zone. This way we are
2190 * making sure that it is not inlined into permanent text section.
2192 static noinline bool __init
2193 deferred_grow_zone(struct zone *zone, unsigned int order)
2195 unsigned long nr_pages_needed = ALIGN(1 << order, PAGES_PER_SECTION);
2196 pg_data_t *pgdat = zone->zone_pgdat;
2197 unsigned long first_deferred_pfn = pgdat->first_deferred_pfn;
2198 unsigned long spfn, epfn, flags;
2199 unsigned long nr_pages = 0;
2202 /* Only the last zone may have deferred pages */
2203 if (zone_end_pfn(zone) != pgdat_end_pfn(pgdat))
2206 pgdat_resize_lock(pgdat, &flags);
2209 * If someone grew this zone while we were waiting for spinlock, return
2210 * true, as there might be enough pages already.
2212 if (first_deferred_pfn != pgdat->first_deferred_pfn) {
2213 pgdat_resize_unlock(pgdat, &flags);
2217 /* If the zone is empty somebody else may have cleared out the zone */
2218 if (!deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn,
2219 first_deferred_pfn)) {
2220 pgdat->first_deferred_pfn = ULONG_MAX;
2221 pgdat_resize_unlock(pgdat, &flags);
2222 /* Retry only once. */
2223 return first_deferred_pfn != ULONG_MAX;
2227 * Initialize and free pages in MAX_ORDER sized increments so
2228 * that we can avoid introducing any issues with the buddy
2231 while (spfn < epfn) {
2232 /* update our first deferred PFN for this section */
2233 first_deferred_pfn = spfn;
2235 nr_pages += deferred_init_maxorder(&i, zone, &spfn, &epfn);
2236 touch_nmi_watchdog();
2238 /* We should only stop along section boundaries */
2239 if ((first_deferred_pfn ^ spfn) < PAGES_PER_SECTION)
2242 /* If our quota has been met we can stop here */
2243 if (nr_pages >= nr_pages_needed)
2247 pgdat->first_deferred_pfn = spfn;
2248 pgdat_resize_unlock(pgdat, &flags);
2250 return nr_pages > 0;
2254 * deferred_grow_zone() is __init, but it is called from
2255 * get_page_from_freelist() during early boot until deferred_pages permanently
2256 * disables this call. This is why we have refdata wrapper to avoid warning,
2257 * and to ensure that the function body gets unloaded.
2260 _deferred_grow_zone(struct zone *zone, unsigned int order)
2262 return deferred_grow_zone(zone, order);
2265 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
2267 void __init page_alloc_init_late(void)
2272 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
2274 /* There will be num_node_state(N_MEMORY) threads */
2275 atomic_set(&pgdat_init_n_undone, num_node_state(N_MEMORY));
2276 for_each_node_state(nid, N_MEMORY) {
2277 kthread_run(deferred_init_memmap, NODE_DATA(nid), "pgdatinit%d", nid);
2280 /* Block until all are initialised */
2281 wait_for_completion(&pgdat_init_all_done_comp);
2284 * We initialized the rest of the deferred pages. Permanently disable
2285 * on-demand struct page initialization.
2287 static_branch_disable(&deferred_pages);
2289 /* Reinit limits that are based on free pages after the kernel is up */
2290 files_maxfiles_init();
2295 /* Discard memblock private memory */
2298 for_each_node_state(nid, N_MEMORY)
2299 shuffle_free_memory(NODE_DATA(nid));
2301 for_each_populated_zone(zone)
2302 set_zone_contiguous(zone);
2306 /* Free whole pageblock and set its migration type to MIGRATE_CMA. */
2307 void __init init_cma_reserved_pageblock(struct page *page)
2309 unsigned i = pageblock_nr_pages;
2310 struct page *p = page;
2313 __ClearPageReserved(p);
2314 set_page_count(p, 0);
2317 set_pageblock_migratetype(page, MIGRATE_CMA);
2318 set_page_refcounted(page);
2319 __free_pages(page, pageblock_order);
2321 adjust_managed_page_count(page, pageblock_nr_pages);
2322 page_zone(page)->cma_pages += pageblock_nr_pages;
2327 * The order of subdivision here is critical for the IO subsystem.
2328 * Please do not alter this order without good reasons and regression
2329 * testing. Specifically, as large blocks of memory are subdivided,
2330 * the order in which smaller blocks are delivered depends on the order
2331 * they're subdivided in this function. This is the primary factor
2332 * influencing the order in which pages are delivered to the IO
2333 * subsystem according to empirical testing, and this is also justified
2334 * by considering the behavior of a buddy system containing a single
2335 * large block of memory acted on by a series of small allocations.
2336 * This behavior is a critical factor in sglist merging's success.
2340 static inline void expand(struct zone *zone, struct page *page,
2341 int low, int high, int migratetype)
2343 unsigned long size = 1 << high;
2345 while (high > low) {
2348 VM_BUG_ON_PAGE(bad_range(zone, &page[size]), &page[size]);
2351 * Mark as guard pages (or page), that will allow to
2352 * merge back to allocator when buddy will be freed.
2353 * Corresponding page table entries will not be touched,
2354 * pages will stay not present in virtual address space
2356 if (set_page_guard(zone, &page[size], high, migratetype))
2359 add_to_free_list(&page[size], zone, high, migratetype);
2360 set_buddy_order(&page[size], high);
2364 static void check_new_page_bad(struct page *page)
2366 if (unlikely(page->flags & __PG_HWPOISON)) {
2367 /* Don't complain about hwpoisoned pages */
2368 page_mapcount_reset(page); /* remove PageBuddy */
2373 page_bad_reason(page, PAGE_FLAGS_CHECK_AT_PREP));
2377 * This page is about to be returned from the page allocator
2379 static inline int check_new_page(struct page *page)
2381 if (likely(page_expected_state(page,
2382 PAGE_FLAGS_CHECK_AT_PREP|__PG_HWPOISON)))
2385 check_new_page_bad(page);
2389 static bool check_new_pages(struct page *page, unsigned int order)
2392 for (i = 0; i < (1 << order); i++) {
2393 struct page *p = page + i;
2395 if (unlikely(check_new_page(p)))
2402 #ifdef CONFIG_DEBUG_VM
2404 * With DEBUG_VM enabled, order-0 pages are checked for expected state when
2405 * being allocated from pcp lists. With debug_pagealloc also enabled, they are
2406 * also checked when pcp lists are refilled from the free lists.
2408 static inline bool check_pcp_refill(struct page *page, unsigned int order)
2410 if (debug_pagealloc_enabled_static())
2411 return check_new_pages(page, order);
2416 static inline bool check_new_pcp(struct page *page, unsigned int order)
2418 return check_new_pages(page, order);
2422 * With DEBUG_VM disabled, free order-0 pages are checked for expected state
2423 * when pcp lists are being refilled from the free lists. With debug_pagealloc
2424 * enabled, they are also checked when being allocated from the pcp lists.
2426 static inline bool check_pcp_refill(struct page *page, unsigned int order)
2428 return check_new_pages(page, order);
2430 static inline bool check_new_pcp(struct page *page, unsigned int order)
2432 if (debug_pagealloc_enabled_static())
2433 return check_new_pages(page, order);
2437 #endif /* CONFIG_DEBUG_VM */
2439 static inline bool should_skip_kasan_unpoison(gfp_t flags)
2441 /* Don't skip if a software KASAN mode is enabled. */
2442 if (IS_ENABLED(CONFIG_KASAN_GENERIC) ||
2443 IS_ENABLED(CONFIG_KASAN_SW_TAGS))
2446 /* Skip, if hardware tag-based KASAN is not enabled. */
2447 if (!kasan_hw_tags_enabled())
2451 * With hardware tag-based KASAN enabled, skip if this has been
2452 * requested via __GFP_SKIP_KASAN_UNPOISON.
2454 return flags & __GFP_SKIP_KASAN_UNPOISON;
2457 static inline bool should_skip_init(gfp_t flags)
2459 /* Don't skip, if hardware tag-based KASAN is not enabled. */
2460 if (!kasan_hw_tags_enabled())
2463 /* For hardware tag-based KASAN, skip if requested. */
2464 return (flags & __GFP_SKIP_ZERO);
2467 inline void post_alloc_hook(struct page *page, unsigned int order,
2470 bool init = !want_init_on_free() && want_init_on_alloc(gfp_flags) &&
2471 !should_skip_init(gfp_flags);
2472 bool init_tags = init && (gfp_flags & __GFP_ZEROTAGS);
2475 set_page_private(page, 0);
2476 set_page_refcounted(page);
2478 arch_alloc_page(page, order);
2479 debug_pagealloc_map_pages(page, 1 << order);
2482 * Page unpoisoning must happen before memory initialization.
2483 * Otherwise, the poison pattern will be overwritten for __GFP_ZERO
2484 * allocations and the page unpoisoning code will complain.
2486 kernel_unpoison_pages(page, 1 << order);
2489 * As memory initialization might be integrated into KASAN,
2490 * KASAN unpoisoning and memory initializion code must be
2491 * kept together to avoid discrepancies in behavior.
2495 * If memory tags should be zeroed (which happens only when memory
2496 * should be initialized as well).
2499 /* Initialize both memory and tags. */
2500 for (i = 0; i != 1 << order; ++i)
2501 tag_clear_highpage(page + i);
2503 /* Note that memory is already initialized by the loop above. */
2506 if (!should_skip_kasan_unpoison(gfp_flags)) {
2507 /* Unpoison shadow memory or set memory tags. */
2508 kasan_unpoison_pages(page, order, init);
2510 /* Note that memory is already initialized by KASAN. */
2511 if (kasan_has_integrated_init())
2514 /* Ensure page_address() dereferencing does not fault. */
2515 for (i = 0; i != 1 << order; ++i)
2516 page_kasan_tag_reset(page + i);
2518 /* If memory is still not initialized, do it now. */
2520 kernel_init_pages(page, 1 << order);
2521 /* Propagate __GFP_SKIP_KASAN_POISON to page flags. */
2522 if (kasan_hw_tags_enabled() && (gfp_flags & __GFP_SKIP_KASAN_POISON))
2523 SetPageSkipKASanPoison(page);
2525 set_page_owner(page, order, gfp_flags);
2526 page_table_check_alloc(page, order);
2529 static void prep_new_page(struct page *page, unsigned int order, gfp_t gfp_flags,
2530 unsigned int alloc_flags)
2532 post_alloc_hook(page, order, gfp_flags);
2534 if (order && (gfp_flags & __GFP_COMP))
2535 prep_compound_page(page, order);
2538 * page is set pfmemalloc when ALLOC_NO_WATERMARKS was necessary to
2539 * allocate the page. The expectation is that the caller is taking
2540 * steps that will free more memory. The caller should avoid the page
2541 * being used for !PFMEMALLOC purposes.
2543 if (alloc_flags & ALLOC_NO_WATERMARKS)
2544 set_page_pfmemalloc(page);
2546 clear_page_pfmemalloc(page);
2550 * Go through the free lists for the given migratetype and remove
2551 * the smallest available page from the freelists
2553 static __always_inline
2554 struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
2557 unsigned int current_order;
2558 struct free_area *area;
2561 /* Find a page of the appropriate size in the preferred list */
2562 for (current_order = order; current_order < MAX_ORDER; ++current_order) {
2563 area = &(zone->free_area[current_order]);
2564 page = get_page_from_free_area(area, migratetype);
2567 del_page_from_free_list(page, zone, current_order);
2568 expand(zone, page, order, current_order, migratetype);
2569 set_pcppage_migratetype(page, migratetype);
2570 trace_mm_page_alloc_zone_locked(page, order, migratetype,
2571 pcp_allowed_order(order) &&
2572 migratetype < MIGRATE_PCPTYPES);
2581 * This array describes the order lists are fallen back to when
2582 * the free lists for the desirable migrate type are depleted
2584 * The other migratetypes do not have fallbacks.
2586 static int fallbacks[MIGRATE_TYPES][3] = {
2587 [MIGRATE_UNMOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE, MIGRATE_TYPES },
2588 [MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_TYPES },
2589 [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE, MIGRATE_TYPES },
2593 static __always_inline struct page *__rmqueue_cma_fallback(struct zone *zone,
2596 return __rmqueue_smallest(zone, order, MIGRATE_CMA);
2599 static inline struct page *__rmqueue_cma_fallback(struct zone *zone,
2600 unsigned int order) { return NULL; }
2604 * Move the free pages in a range to the freelist tail of the requested type.
2605 * Note that start_page and end_pages are not aligned on a pageblock
2606 * boundary. If alignment is required, use move_freepages_block()
2608 static int move_freepages(struct zone *zone,
2609 unsigned long start_pfn, unsigned long end_pfn,
2610 int migratetype, int *num_movable)
2615 int pages_moved = 0;
2617 for (pfn = start_pfn; pfn <= end_pfn;) {
2618 page = pfn_to_page(pfn);
2619 if (!PageBuddy(page)) {
2621 * We assume that pages that could be isolated for
2622 * migration are movable. But we don't actually try
2623 * isolating, as that would be expensive.
2626 (PageLRU(page) || __PageMovable(page)))
2632 /* Make sure we are not inadvertently changing nodes */
2633 VM_BUG_ON_PAGE(page_to_nid(page) != zone_to_nid(zone), page);
2634 VM_BUG_ON_PAGE(page_zone(page) != zone, page);
2636 order = buddy_order(page);
2637 move_to_free_list(page, zone, order, migratetype);
2639 pages_moved += 1 << order;
2645 int move_freepages_block(struct zone *zone, struct page *page,
2646 int migratetype, int *num_movable)
2648 unsigned long start_pfn, end_pfn, pfn;
2653 pfn = page_to_pfn(page);
2654 start_pfn = pfn & ~(pageblock_nr_pages - 1);
2655 end_pfn = start_pfn + pageblock_nr_pages - 1;
2657 /* Do not cross zone boundaries */
2658 if (!zone_spans_pfn(zone, start_pfn))
2660 if (!zone_spans_pfn(zone, end_pfn))
2663 return move_freepages(zone, start_pfn, end_pfn, migratetype,
2667 static void change_pageblock_range(struct page *pageblock_page,
2668 int start_order, int migratetype)
2670 int nr_pageblocks = 1 << (start_order - pageblock_order);
2672 while (nr_pageblocks--) {
2673 set_pageblock_migratetype(pageblock_page, migratetype);
2674 pageblock_page += pageblock_nr_pages;
2679 * When we are falling back to another migratetype during allocation, try to
2680 * steal extra free pages from the same pageblocks to satisfy further
2681 * allocations, instead of polluting multiple pageblocks.
2683 * If we are stealing a relatively large buddy page, it is likely there will
2684 * be more free pages in the pageblock, so try to steal them all. For
2685 * reclaimable and unmovable allocations, we steal regardless of page size,
2686 * as fragmentation caused by those allocations polluting movable pageblocks
2687 * is worse than movable allocations stealing from unmovable and reclaimable
2690 static bool can_steal_fallback(unsigned int order, int start_mt)
2693 * Leaving this order check is intended, although there is
2694 * relaxed order check in next check. The reason is that
2695 * we can actually steal whole pageblock if this condition met,
2696 * but, below check doesn't guarantee it and that is just heuristic
2697 * so could be changed anytime.
2699 if (order >= pageblock_order)
2702 if (order >= pageblock_order / 2 ||
2703 start_mt == MIGRATE_RECLAIMABLE ||
2704 start_mt == MIGRATE_UNMOVABLE ||
2705 page_group_by_mobility_disabled)
2711 static inline bool boost_watermark(struct zone *zone)
2713 unsigned long max_boost;
2715 if (!watermark_boost_factor)
2718 * Don't bother in zones that are unlikely to produce results.
2719 * On small machines, including kdump capture kernels running
2720 * in a small area, boosting the watermark can cause an out of
2721 * memory situation immediately.
2723 if ((pageblock_nr_pages * 4) > zone_managed_pages(zone))
2726 max_boost = mult_frac(zone->_watermark[WMARK_HIGH],
2727 watermark_boost_factor, 10000);
2730 * high watermark may be uninitialised if fragmentation occurs
2731 * very early in boot so do not boost. We do not fall
2732 * through and boost by pageblock_nr_pages as failing
2733 * allocations that early means that reclaim is not going
2734 * to help and it may even be impossible to reclaim the
2735 * boosted watermark resulting in a hang.
2740 max_boost = max(pageblock_nr_pages, max_boost);
2742 zone->watermark_boost = min(zone->watermark_boost + pageblock_nr_pages,
2749 * This function implements actual steal behaviour. If order is large enough,
2750 * we can steal whole pageblock. If not, we first move freepages in this
2751 * pageblock to our migratetype and determine how many already-allocated pages
2752 * are there in the pageblock with a compatible migratetype. If at least half
2753 * of pages are free or compatible, we can change migratetype of the pageblock
2754 * itself, so pages freed in the future will be put on the correct free list.
2756 static void steal_suitable_fallback(struct zone *zone, struct page *page,
2757 unsigned int alloc_flags, int start_type, bool whole_block)
2759 unsigned int current_order = buddy_order(page);
2760 int free_pages, movable_pages, alike_pages;
2763 old_block_type = get_pageblock_migratetype(page);
2766 * This can happen due to races and we want to prevent broken
2767 * highatomic accounting.
2769 if (is_migrate_highatomic(old_block_type))
2772 /* Take ownership for orders >= pageblock_order */
2773 if (current_order >= pageblock_order) {
2774 change_pageblock_range(page, current_order, start_type);
2779 * Boost watermarks to increase reclaim pressure to reduce the
2780 * likelihood of future fallbacks. Wake kswapd now as the node
2781 * may be balanced overall and kswapd will not wake naturally.
2783 if (boost_watermark(zone) && (alloc_flags & ALLOC_KSWAPD))
2784 set_bit(ZONE_BOOSTED_WATERMARK, &zone->flags);
2786 /* We are not allowed to try stealing from the whole block */
2790 free_pages = move_freepages_block(zone, page, start_type,
2793 * Determine how many pages are compatible with our allocation.
2794 * For movable allocation, it's the number of movable pages which
2795 * we just obtained. For other types it's a bit more tricky.
2797 if (start_type == MIGRATE_MOVABLE) {
2798 alike_pages = movable_pages;
2801 * If we are falling back a RECLAIMABLE or UNMOVABLE allocation
2802 * to MOVABLE pageblock, consider all non-movable pages as
2803 * compatible. If it's UNMOVABLE falling back to RECLAIMABLE or
2804 * vice versa, be conservative since we can't distinguish the
2805 * exact migratetype of non-movable pages.
2807 if (old_block_type == MIGRATE_MOVABLE)
2808 alike_pages = pageblock_nr_pages
2809 - (free_pages + movable_pages);
2814 /* moving whole block can fail due to zone boundary conditions */
2819 * If a sufficient number of pages in the block are either free or of
2820 * comparable migratability as our allocation, claim the whole block.
2822 if (free_pages + alike_pages >= (1 << (pageblock_order-1)) ||
2823 page_group_by_mobility_disabled)
2824 set_pageblock_migratetype(page, start_type);
2829 move_to_free_list(page, zone, current_order, start_type);
2833 * Check whether there is a suitable fallback freepage with requested order.
2834 * If only_stealable is true, this function returns fallback_mt only if
2835 * we can steal other freepages all together. This would help to reduce
2836 * fragmentation due to mixed migratetype pages in one pageblock.
2838 int find_suitable_fallback(struct free_area *area, unsigned int order,
2839 int migratetype, bool only_stealable, bool *can_steal)
2844 if (area->nr_free == 0)
2849 fallback_mt = fallbacks[migratetype][i];
2850 if (fallback_mt == MIGRATE_TYPES)
2853 if (free_area_empty(area, fallback_mt))
2856 if (can_steal_fallback(order, migratetype))
2859 if (!only_stealable)
2870 * Reserve a pageblock for exclusive use of high-order atomic allocations if
2871 * there are no empty page blocks that contain a page with a suitable order
2873 static void reserve_highatomic_pageblock(struct page *page, struct zone *zone,
2874 unsigned int alloc_order)
2877 unsigned long max_managed, flags;
2880 * Limit the number reserved to 1 pageblock or roughly 1% of a zone.
2881 * Check is race-prone but harmless.
2883 max_managed = (zone_managed_pages(zone) / 100) + pageblock_nr_pages;
2884 if (zone->nr_reserved_highatomic >= max_managed)
2887 spin_lock_irqsave(&zone->lock, flags);
2889 /* Recheck the nr_reserved_highatomic limit under the lock */
2890 if (zone->nr_reserved_highatomic >= max_managed)
2894 mt = get_pageblock_migratetype(page);
2895 /* Only reserve normal pageblocks (i.e., they can merge with others) */
2896 if (migratetype_is_mergeable(mt)) {
2897 zone->nr_reserved_highatomic += pageblock_nr_pages;
2898 set_pageblock_migratetype(page, MIGRATE_HIGHATOMIC);
2899 move_freepages_block(zone, page, MIGRATE_HIGHATOMIC, NULL);
2903 spin_unlock_irqrestore(&zone->lock, flags);
2907 * Used when an allocation is about to fail under memory pressure. This
2908 * potentially hurts the reliability of high-order allocations when under
2909 * intense memory pressure but failed atomic allocations should be easier
2910 * to recover from than an OOM.
2912 * If @force is true, try to unreserve a pageblock even though highatomic
2913 * pageblock is exhausted.
2915 static bool unreserve_highatomic_pageblock(const struct alloc_context *ac,
2918 struct zonelist *zonelist = ac->zonelist;
2919 unsigned long flags;
2926 for_each_zone_zonelist_nodemask(zone, z, zonelist, ac->highest_zoneidx,
2929 * Preserve at least one pageblock unless memory pressure
2932 if (!force && zone->nr_reserved_highatomic <=
2936 spin_lock_irqsave(&zone->lock, flags);
2937 for (order = 0; order < MAX_ORDER; order++) {
2938 struct free_area *area = &(zone->free_area[order]);
2940 page = get_page_from_free_area(area, MIGRATE_HIGHATOMIC);
2945 * In page freeing path, migratetype change is racy so
2946 * we can counter several free pages in a pageblock
2947 * in this loop although we changed the pageblock type
2948 * from highatomic to ac->migratetype. So we should
2949 * adjust the count once.
2951 if (is_migrate_highatomic_page(page)) {
2953 * It should never happen but changes to
2954 * locking could inadvertently allow a per-cpu
2955 * drain to add pages to MIGRATE_HIGHATOMIC
2956 * while unreserving so be safe and watch for
2959 zone->nr_reserved_highatomic -= min(
2961 zone->nr_reserved_highatomic);
2965 * Convert to ac->migratetype and avoid the normal
2966 * pageblock stealing heuristics. Minimally, the caller
2967 * is doing the work and needs the pages. More
2968 * importantly, if the block was always converted to
2969 * MIGRATE_UNMOVABLE or another type then the number
2970 * of pageblocks that cannot be completely freed
2973 set_pageblock_migratetype(page, ac->migratetype);
2974 ret = move_freepages_block(zone, page, ac->migratetype,
2977 spin_unlock_irqrestore(&zone->lock, flags);
2981 spin_unlock_irqrestore(&zone->lock, flags);
2988 * Try finding a free buddy page on the fallback list and put it on the free
2989 * list of requested migratetype, possibly along with other pages from the same
2990 * block, depending on fragmentation avoidance heuristics. Returns true if
2991 * fallback was found so that __rmqueue_smallest() can grab it.
2993 * The use of signed ints for order and current_order is a deliberate
2994 * deviation from the rest of this file, to make the for loop
2995 * condition simpler.
2997 static __always_inline bool
2998 __rmqueue_fallback(struct zone *zone, int order, int start_migratetype,
2999 unsigned int alloc_flags)
3001 struct free_area *area;
3003 int min_order = order;
3009 * Do not steal pages from freelists belonging to other pageblocks
3010 * i.e. orders < pageblock_order. If there are no local zones free,
3011 * the zonelists will be reiterated without ALLOC_NOFRAGMENT.
3013 if (alloc_flags & ALLOC_NOFRAGMENT)
3014 min_order = pageblock_order;
3017 * Find the largest available free page in the other list. This roughly
3018 * approximates finding the pageblock with the most free pages, which
3019 * would be too costly to do exactly.
3021 for (current_order = MAX_ORDER - 1; current_order >= min_order;
3023 area = &(zone->free_area[current_order]);
3024 fallback_mt = find_suitable_fallback(area, current_order,
3025 start_migratetype, false, &can_steal);
3026 if (fallback_mt == -1)
3030 * We cannot steal all free pages from the pageblock and the
3031 * requested migratetype is movable. In that case it's better to
3032 * steal and split the smallest available page instead of the
3033 * largest available page, because even if the next movable
3034 * allocation falls back into a different pageblock than this
3035 * one, it won't cause permanent fragmentation.
3037 if (!can_steal && start_migratetype == MIGRATE_MOVABLE
3038 && current_order > order)
3047 for (current_order = order; current_order < MAX_ORDER;
3049 area = &(zone->free_area[current_order]);
3050 fallback_mt = find_suitable_fallback(area, current_order,
3051 start_migratetype, false, &can_steal);
3052 if (fallback_mt != -1)
3057 * This should not happen - we already found a suitable fallback
3058 * when looking for the largest page.
3060 VM_BUG_ON(current_order == MAX_ORDER);
3063 page = get_page_from_free_area(area, fallback_mt);
3065 steal_suitable_fallback(zone, page, alloc_flags, start_migratetype,
3068 trace_mm_page_alloc_extfrag(page, order, current_order,
3069 start_migratetype, fallback_mt);
3076 * Do the hard work of removing an element from the buddy allocator.
3077 * Call me with the zone->lock already held.
3079 static __always_inline struct page *
3080 __rmqueue(struct zone *zone, unsigned int order, int migratetype,
3081 unsigned int alloc_flags)
3085 if (IS_ENABLED(CONFIG_CMA)) {
3087 * Balance movable allocations between regular and CMA areas by
3088 * allocating from CMA when over half of the zone's free memory
3089 * is in the CMA area.
3091 if (alloc_flags & ALLOC_CMA &&
3092 zone_page_state(zone, NR_FREE_CMA_PAGES) >
3093 zone_page_state(zone, NR_FREE_PAGES) / 2) {
3094 page = __rmqueue_cma_fallback(zone, order);
3100 page = __rmqueue_smallest(zone, order, migratetype);
3101 if (unlikely(!page)) {
3102 if (alloc_flags & ALLOC_CMA)
3103 page = __rmqueue_cma_fallback(zone, order);
3105 if (!page && __rmqueue_fallback(zone, order, migratetype,
3113 * Obtain a specified number of elements from the buddy allocator, all under
3114 * a single hold of the lock, for efficiency. Add them to the supplied list.
3115 * Returns the number of new pages which were placed at *list.
3117 static int rmqueue_bulk(struct zone *zone, unsigned int order,
3118 unsigned long count, struct list_head *list,
3119 int migratetype, unsigned int alloc_flags)
3121 int i, allocated = 0;
3123 /* Caller must hold IRQ-safe pcp->lock so IRQs are disabled. */
3124 spin_lock(&zone->lock);
3125 for (i = 0; i < count; ++i) {
3126 struct page *page = __rmqueue(zone, order, migratetype,
3128 if (unlikely(page == NULL))
3131 if (unlikely(check_pcp_refill(page, order)))
3135 * Split buddy pages returned by expand() are received here in
3136 * physical page order. The page is added to the tail of
3137 * caller's list. From the callers perspective, the linked list
3138 * is ordered by page number under some conditions. This is
3139 * useful for IO devices that can forward direction from the
3140 * head, thus also in the physical page order. This is useful
3141 * for IO devices that can merge IO requests if the physical
3142 * pages are ordered properly.
3144 list_add_tail(&page->pcp_list, list);
3146 if (is_migrate_cma(get_pcppage_migratetype(page)))
3147 __mod_zone_page_state(zone, NR_FREE_CMA_PAGES,
3152 * i pages were removed from the buddy list even if some leak due
3153 * to check_pcp_refill failing so adjust NR_FREE_PAGES based
3154 * on i. Do not confuse with 'allocated' which is the number of
3155 * pages added to the pcp list.
3157 __mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order));
3158 spin_unlock(&zone->lock);
3164 * Called from the vmstat counter updater to drain pagesets of this
3165 * currently executing processor on remote nodes after they have
3168 void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
3170 int to_drain, batch;
3172 batch = READ_ONCE(pcp->batch);
3173 to_drain = min(pcp->count, batch);
3175 unsigned long flags;
3178 * free_pcppages_bulk expects IRQs disabled for zone->lock
3179 * so even though pcp->lock is not intended to be IRQ-safe,
3180 * it's needed in this context.
3182 spin_lock_irqsave(&pcp->lock, flags);
3183 free_pcppages_bulk(zone, to_drain, pcp, 0);
3184 spin_unlock_irqrestore(&pcp->lock, flags);
3190 * Drain pcplists of the indicated processor and zone.
3192 static void drain_pages_zone(unsigned int cpu, struct zone *zone)
3194 struct per_cpu_pages *pcp;
3196 pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu);
3198 unsigned long flags;
3200 /* See drain_zone_pages on why this is disabling IRQs */
3201 spin_lock_irqsave(&pcp->lock, flags);
3202 free_pcppages_bulk(zone, pcp->count, pcp, 0);
3203 spin_unlock_irqrestore(&pcp->lock, flags);
3208 * Drain pcplists of all zones on the indicated processor.
3210 static void drain_pages(unsigned int cpu)
3214 for_each_populated_zone(zone) {
3215 drain_pages_zone(cpu, zone);
3220 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
3222 void drain_local_pages(struct zone *zone)
3224 int cpu = smp_processor_id();
3227 drain_pages_zone(cpu, zone);
3233 * The implementation of drain_all_pages(), exposing an extra parameter to
3234 * drain on all cpus.
3236 * drain_all_pages() is optimized to only execute on cpus where pcplists are
3237 * not empty. The check for non-emptiness can however race with a free to
3238 * pcplist that has not yet increased the pcp->count from 0 to 1. Callers
3239 * that need the guarantee that every CPU has drained can disable the
3240 * optimizing racy check.
3242 static void __drain_all_pages(struct zone *zone, bool force_all_cpus)
3247 * Allocate in the BSS so we won't require allocation in
3248 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y
3250 static cpumask_t cpus_with_pcps;
3253 * Do not drain if one is already in progress unless it's specific to
3254 * a zone. Such callers are primarily CMA and memory hotplug and need
3255 * the drain to be complete when the call returns.
3257 if (unlikely(!mutex_trylock(&pcpu_drain_mutex))) {
3260 mutex_lock(&pcpu_drain_mutex);
3264 * We don't care about racing with CPU hotplug event
3265 * as offline notification will cause the notified
3266 * cpu to drain that CPU pcps and on_each_cpu_mask
3267 * disables preemption as part of its processing
3269 for_each_online_cpu(cpu) {
3270 struct per_cpu_pages *pcp;
3272 bool has_pcps = false;
3274 if (force_all_cpus) {
3276 * The pcp.count check is racy, some callers need a
3277 * guarantee that no cpu is missed.
3281 pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu);
3285 for_each_populated_zone(z) {
3286 pcp = per_cpu_ptr(z->per_cpu_pageset, cpu);
3295 cpumask_set_cpu(cpu, &cpus_with_pcps);
3297 cpumask_clear_cpu(cpu, &cpus_with_pcps);
3300 for_each_cpu(cpu, &cpus_with_pcps) {
3302 drain_pages_zone(cpu, zone);
3307 mutex_unlock(&pcpu_drain_mutex);
3311 * Spill all the per-cpu pages from all CPUs back into the buddy allocator.
3313 * When zone parameter is non-NULL, spill just the single zone's pages.
3315 void drain_all_pages(struct zone *zone)
3317 __drain_all_pages(zone, false);
3320 #ifdef CONFIG_HIBERNATION
3323 * Touch the watchdog for every WD_PAGE_COUNT pages.
3325 #define WD_PAGE_COUNT (128*1024)
3327 void mark_free_pages(struct zone *zone)
3329 unsigned long pfn, max_zone_pfn, page_count = WD_PAGE_COUNT;
3330 unsigned long flags;
3331 unsigned int order, t;
3334 if (zone_is_empty(zone))
3337 spin_lock_irqsave(&zone->lock, flags);
3339 max_zone_pfn = zone_end_pfn(zone);
3340 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
3341 if (pfn_valid(pfn)) {
3342 page = pfn_to_page(pfn);
3344 if (!--page_count) {
3345 touch_nmi_watchdog();
3346 page_count = WD_PAGE_COUNT;
3349 if (page_zone(page) != zone)
3352 if (!swsusp_page_is_forbidden(page))
3353 swsusp_unset_page_free(page);
3356 for_each_migratetype_order(order, t) {
3357 list_for_each_entry(page,
3358 &zone->free_area[order].free_list[t], buddy_list) {
3361 pfn = page_to_pfn(page);
3362 for (i = 0; i < (1UL << order); i++) {
3363 if (!--page_count) {
3364 touch_nmi_watchdog();
3365 page_count = WD_PAGE_COUNT;
3367 swsusp_set_page_free(pfn_to_page(pfn + i));
3371 spin_unlock_irqrestore(&zone->lock, flags);
3373 #endif /* CONFIG_PM */
3375 static bool free_unref_page_prepare(struct page *page, unsigned long pfn,
3380 if (!free_pcp_prepare(page, order))
3383 migratetype = get_pfnblock_migratetype(page, pfn);
3384 set_pcppage_migratetype(page, migratetype);
3388 static int nr_pcp_free(struct per_cpu_pages *pcp, int high, int batch,
3391 int min_nr_free, max_nr_free;
3393 /* Free everything if batch freeing high-order pages. */
3394 if (unlikely(free_high))
3397 /* Check for PCP disabled or boot pageset */
3398 if (unlikely(high < batch))
3401 /* Leave at least pcp->batch pages on the list */
3402 min_nr_free = batch;
3403 max_nr_free = high - batch;
3406 * Double the number of pages freed each time there is subsequent
3407 * freeing of pages without any allocation.
3409 batch <<= pcp->free_factor;
3410 if (batch < max_nr_free)
3412 batch = clamp(batch, min_nr_free, max_nr_free);
3417 static int nr_pcp_high(struct per_cpu_pages *pcp, struct zone *zone,
3420 int high = READ_ONCE(pcp->high);
3422 if (unlikely(!high || free_high))
3425 if (!test_bit(ZONE_RECLAIM_ACTIVE, &zone->flags))
3429 * If reclaim is active, limit the number of pages that can be
3430 * stored on pcp lists
3432 return min(READ_ONCE(pcp->batch) << 2, high);
3435 static void free_unref_page_commit(struct zone *zone, struct per_cpu_pages *pcp,
3436 struct page *page, int migratetype,
3443 __count_vm_event(PGFREE);
3444 pindex = order_to_pindex(migratetype, order);
3445 list_add(&page->pcp_list, &pcp->lists[pindex]);
3446 pcp->count += 1 << order;
3449 * As high-order pages other than THP's stored on PCP can contribute
3450 * to fragmentation, limit the number stored when PCP is heavily
3451 * freeing without allocation. The remainder after bulk freeing
3452 * stops will be drained from vmstat refresh context.
3454 free_high = (pcp->free_factor && order && order <= PAGE_ALLOC_COSTLY_ORDER);
3456 high = nr_pcp_high(pcp, zone, free_high);
3457 if (pcp->count >= high) {
3458 int batch = READ_ONCE(pcp->batch);
3460 free_pcppages_bulk(zone, nr_pcp_free(pcp, high, batch, free_high), pcp, pindex);
3467 void free_unref_page(struct page *page, unsigned int order)
3469 unsigned long flags;
3470 unsigned long __maybe_unused UP_flags;
3471 struct per_cpu_pages *pcp;
3473 unsigned long pfn = page_to_pfn(page);
3476 if (!free_unref_page_prepare(page, pfn, order))
3480 * We only track unmovable, reclaimable and movable on pcp lists.
3481 * Place ISOLATE pages on the isolated list because they are being
3482 * offlined but treat HIGHATOMIC as movable pages so we can get those
3483 * areas back if necessary. Otherwise, we may have to free
3484 * excessively into the page allocator
3486 migratetype = get_pcppage_migratetype(page);
3487 if (unlikely(migratetype >= MIGRATE_PCPTYPES)) {
3488 if (unlikely(is_migrate_isolate(migratetype))) {
3489 free_one_page(page_zone(page), page, pfn, order, migratetype, FPI_NONE);
3492 migratetype = MIGRATE_MOVABLE;
3495 zone = page_zone(page);
3496 pcp_trylock_prepare(UP_flags);
3497 pcp = pcp_spin_trylock_irqsave(zone->per_cpu_pageset, flags);
3499 free_unref_page_commit(zone, pcp, page, migratetype, order);
3500 pcp_spin_unlock_irqrestore(pcp, flags);
3502 free_one_page(zone, page, pfn, order, migratetype, FPI_NONE);
3504 pcp_trylock_finish(UP_flags);
3508 * Free a list of 0-order pages
3510 void free_unref_page_list(struct list_head *list)
3512 struct page *page, *next;
3513 struct per_cpu_pages *pcp = NULL;
3514 struct zone *locked_zone = NULL;
3515 unsigned long flags;
3516 int batch_count = 0;
3519 /* Prepare pages for freeing */
3520 list_for_each_entry_safe(page, next, list, lru) {
3521 unsigned long pfn = page_to_pfn(page);
3522 if (!free_unref_page_prepare(page, pfn, 0)) {
3523 list_del(&page->lru);
3528 * Free isolated pages directly to the allocator, see
3529 * comment in free_unref_page.
3531 migratetype = get_pcppage_migratetype(page);
3532 if (unlikely(is_migrate_isolate(migratetype))) {
3533 list_del(&page->lru);
3534 free_one_page(page_zone(page), page, pfn, 0, migratetype, FPI_NONE);
3539 list_for_each_entry_safe(page, next, list, lru) {
3540 struct zone *zone = page_zone(page);
3542 /* Different zone, different pcp lock. */
3543 if (zone != locked_zone) {
3545 pcp_spin_unlock_irqrestore(pcp, flags);
3548 pcp = pcp_spin_lock_irqsave(locked_zone->per_cpu_pageset, flags);
3552 * Non-isolated types over MIGRATE_PCPTYPES get added
3553 * to the MIGRATE_MOVABLE pcp list.
3555 migratetype = get_pcppage_migratetype(page);
3556 if (unlikely(migratetype >= MIGRATE_PCPTYPES))
3557 migratetype = MIGRATE_MOVABLE;
3559 trace_mm_page_free_batched(page);
3560 free_unref_page_commit(zone, pcp, page, migratetype, 0);
3563 * Guard against excessive IRQ disabled times when we get
3564 * a large list of pages to free.
3566 if (++batch_count == SWAP_CLUSTER_MAX) {
3567 pcp_spin_unlock_irqrestore(pcp, flags);
3569 pcp = pcp_spin_lock_irqsave(locked_zone->per_cpu_pageset, flags);
3574 pcp_spin_unlock_irqrestore(pcp, flags);
3578 * split_page takes a non-compound higher-order page, and splits it into
3579 * n (1<<order) sub-pages: page[0..n]
3580 * Each sub-page must be freed individually.
3582 * Note: this is probably too low level an operation for use in drivers.
3583 * Please consult with lkml before using this in your driver.
3585 void split_page(struct page *page, unsigned int order)
3589 VM_BUG_ON_PAGE(PageCompound(page), page);
3590 VM_BUG_ON_PAGE(!page_count(page), page);
3592 for (i = 1; i < (1 << order); i++)
3593 set_page_refcounted(page + i);
3594 split_page_owner(page, 1 << order);
3595 split_page_memcg(page, 1 << order);
3597 EXPORT_SYMBOL_GPL(split_page);
3599 int __isolate_free_page(struct page *page, unsigned int order)
3601 unsigned long watermark;
3605 BUG_ON(!PageBuddy(page));
3607 zone = page_zone(page);
3608 mt = get_pageblock_migratetype(page);
3610 if (!is_migrate_isolate(mt)) {
3612 * Obey watermarks as if the page was being allocated. We can
3613 * emulate a high-order watermark check with a raised order-0
3614 * watermark, because we already know our high-order page
3617 watermark = zone->_watermark[WMARK_MIN] + (1UL << order);
3618 if (!zone_watermark_ok(zone, 0, watermark, 0, ALLOC_CMA))
3621 __mod_zone_freepage_state(zone, -(1UL << order), mt);
3624 /* Remove page from free list */
3626 del_page_from_free_list(page, zone, order);
3629 * Set the pageblock if the isolated page is at least half of a
3632 if (order >= pageblock_order - 1) {
3633 struct page *endpage = page + (1 << order) - 1;
3634 for (; page < endpage; page += pageblock_nr_pages) {
3635 int mt = get_pageblock_migratetype(page);
3637 * Only change normal pageblocks (i.e., they can merge
3640 if (migratetype_is_mergeable(mt))
3641 set_pageblock_migratetype(page,
3647 return 1UL << order;
3651 * __putback_isolated_page - Return a now-isolated page back where we got it
3652 * @page: Page that was isolated
3653 * @order: Order of the isolated page
3654 * @mt: The page's pageblock's migratetype
3656 * This function is meant to return a page pulled from the free lists via
3657 * __isolate_free_page back to the free lists they were pulled from.
3659 void __putback_isolated_page(struct page *page, unsigned int order, int mt)
3661 struct zone *zone = page_zone(page);
3663 /* zone lock should be held when this function is called */
3664 lockdep_assert_held(&zone->lock);
3666 /* Return isolated page to tail of freelist. */
3667 __free_one_page(page, page_to_pfn(page), zone, order, mt,
3668 FPI_SKIP_REPORT_NOTIFY | FPI_TO_TAIL);
3672 * Update NUMA hit/miss statistics
3674 * Must be called with interrupts disabled.
3676 static inline void zone_statistics(struct zone *preferred_zone, struct zone *z,
3680 enum numa_stat_item local_stat = NUMA_LOCAL;
3682 /* skip numa counters update if numa stats is disabled */
3683 if (!static_branch_likely(&vm_numa_stat_key))
3686 if (zone_to_nid(z) != numa_node_id())
3687 local_stat = NUMA_OTHER;
3689 if (zone_to_nid(z) == zone_to_nid(preferred_zone))
3690 __count_numa_events(z, NUMA_HIT, nr_account);
3692 __count_numa_events(z, NUMA_MISS, nr_account);
3693 __count_numa_events(preferred_zone, NUMA_FOREIGN, nr_account);
3695 __count_numa_events(z, local_stat, nr_account);
3699 static __always_inline
3700 struct page *rmqueue_buddy(struct zone *preferred_zone, struct zone *zone,
3701 unsigned int order, unsigned int alloc_flags,
3705 unsigned long flags;
3709 spin_lock_irqsave(&zone->lock, flags);
3711 * order-0 request can reach here when the pcplist is skipped
3712 * due to non-CMA allocation context. HIGHATOMIC area is
3713 * reserved for high-order atomic allocation, so order-0
3714 * request should skip it.
3716 if (order > 0 && alloc_flags & ALLOC_HARDER)
3717 page = __rmqueue_smallest(zone, order, MIGRATE_HIGHATOMIC);
3719 page = __rmqueue(zone, order, migratetype, alloc_flags);
3721 spin_unlock_irqrestore(&zone->lock, flags);
3725 __mod_zone_freepage_state(zone, -(1 << order),
3726 get_pcppage_migratetype(page));
3727 spin_unlock_irqrestore(&zone->lock, flags);
3728 } while (check_new_pages(page, order));
3730 __count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order);
3731 zone_statistics(preferred_zone, zone, 1);
3736 /* Remove page from the per-cpu list, caller must protect the list */
3738 struct page *__rmqueue_pcplist(struct zone *zone, unsigned int order,
3740 unsigned int alloc_flags,
3741 struct per_cpu_pages *pcp,
3742 struct list_head *list)
3747 if (list_empty(list)) {
3748 int batch = READ_ONCE(pcp->batch);
3752 * Scale batch relative to order if batch implies
3753 * free pages can be stored on the PCP. Batch can
3754 * be 1 for small zones or for boot pagesets which
3755 * should never store free pages as the pages may
3756 * belong to arbitrary zones.
3759 batch = max(batch >> order, 2);
3760 alloced = rmqueue_bulk(zone, order,
3762 migratetype, alloc_flags);
3764 pcp->count += alloced << order;
3765 if (unlikely(list_empty(list)))
3769 page = list_first_entry(list, struct page, pcp_list);
3770 list_del(&page->pcp_list);
3771 pcp->count -= 1 << order;
3772 } while (check_new_pcp(page, order));
3777 /* Lock and remove page from the per-cpu list */
3778 static struct page *rmqueue_pcplist(struct zone *preferred_zone,
3779 struct zone *zone, unsigned int order,
3780 gfp_t gfp_flags, int migratetype,
3781 unsigned int alloc_flags)
3783 struct per_cpu_pages *pcp;
3784 struct list_head *list;
3786 unsigned long flags;
3787 unsigned long __maybe_unused UP_flags;
3790 * spin_trylock may fail due to a parallel drain. In the future, the
3791 * trylock will also protect against IRQ reentrancy.
3793 pcp_trylock_prepare(UP_flags);
3794 pcp = pcp_spin_trylock_irqsave(zone->per_cpu_pageset, flags);
3796 pcp_trylock_finish(UP_flags);
3801 * On allocation, reduce the number of pages that are batch freed.
3802 * See nr_pcp_free() where free_factor is increased for subsequent
3805 pcp->free_factor >>= 1;
3806 list = &pcp->lists[order_to_pindex(migratetype, order)];
3807 page = __rmqueue_pcplist(zone, order, migratetype, alloc_flags, pcp, list);
3808 pcp_spin_unlock_irqrestore(pcp, flags);
3809 pcp_trylock_finish(UP_flags);
3811 __count_zid_vm_events(PGALLOC, page_zonenum(page), 1);
3812 zone_statistics(preferred_zone, zone, 1);
3818 * Allocate a page from the given zone. Use pcplists for order-0 allocations.
3821 struct page *rmqueue(struct zone *preferred_zone,
3822 struct zone *zone, unsigned int order,
3823 gfp_t gfp_flags, unsigned int alloc_flags,
3829 * We most definitely don't want callers attempting to
3830 * allocate greater than order-1 page units with __GFP_NOFAIL.
3832 WARN_ON_ONCE((gfp_flags & __GFP_NOFAIL) && (order > 1));
3834 if (likely(pcp_allowed_order(order))) {
3836 * MIGRATE_MOVABLE pcplist could have the pages on CMA area and
3837 * we need to skip it when CMA area isn't allowed.
3839 if (!IS_ENABLED(CONFIG_CMA) || alloc_flags & ALLOC_CMA ||
3840 migratetype != MIGRATE_MOVABLE) {
3841 page = rmqueue_pcplist(preferred_zone, zone, order,
3842 gfp_flags, migratetype, alloc_flags);
3848 page = rmqueue_buddy(preferred_zone, zone, order, alloc_flags,
3852 /* Separate test+clear to avoid unnecessary atomics */
3853 if (unlikely(test_bit(ZONE_BOOSTED_WATERMARK, &zone->flags))) {
3854 clear_bit(ZONE_BOOSTED_WATERMARK, &zone->flags);
3855 wakeup_kswapd(zone, 0, 0, zone_idx(zone));
3858 VM_BUG_ON_PAGE(page && bad_range(zone, page), page);
3862 #ifdef CONFIG_FAIL_PAGE_ALLOC
3865 struct fault_attr attr;
3867 bool ignore_gfp_highmem;
3868 bool ignore_gfp_reclaim;
3870 } fail_page_alloc = {
3871 .attr = FAULT_ATTR_INITIALIZER,
3872 .ignore_gfp_reclaim = true,
3873 .ignore_gfp_highmem = true,
3877 static int __init setup_fail_page_alloc(char *str)
3879 return setup_fault_attr(&fail_page_alloc.attr, str);
3881 __setup("fail_page_alloc=", setup_fail_page_alloc);
3883 static bool __should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
3885 if (order < fail_page_alloc.min_order)
3887 if (gfp_mask & __GFP_NOFAIL)
3889 if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
3891 if (fail_page_alloc.ignore_gfp_reclaim &&
3892 (gfp_mask & __GFP_DIRECT_RECLAIM))
3895 if (gfp_mask & __GFP_NOWARN)
3896 fail_page_alloc.attr.no_warn = true;
3898 return should_fail(&fail_page_alloc.attr, 1 << order);
3901 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
3903 static int __init fail_page_alloc_debugfs(void)
3905 umode_t mode = S_IFREG | 0600;
3908 dir = fault_create_debugfs_attr("fail_page_alloc", NULL,
3909 &fail_page_alloc.attr);
3911 debugfs_create_bool("ignore-gfp-wait", mode, dir,
3912 &fail_page_alloc.ignore_gfp_reclaim);
3913 debugfs_create_bool("ignore-gfp-highmem", mode, dir,
3914 &fail_page_alloc.ignore_gfp_highmem);
3915 debugfs_create_u32("min-order", mode, dir, &fail_page_alloc.min_order);
3920 late_initcall(fail_page_alloc_debugfs);
3922 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
3924 #else /* CONFIG_FAIL_PAGE_ALLOC */
3926 static inline bool __should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
3931 #endif /* CONFIG_FAIL_PAGE_ALLOC */
3933 noinline bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
3935 return __should_fail_alloc_page(gfp_mask, order);
3937 ALLOW_ERROR_INJECTION(should_fail_alloc_page, TRUE);
3939 static inline long __zone_watermark_unusable_free(struct zone *z,
3940 unsigned int order, unsigned int alloc_flags)
3942 const bool alloc_harder = (alloc_flags & (ALLOC_HARDER|ALLOC_OOM));
3943 long unusable_free = (1 << order) - 1;
3946 * If the caller does not have rights to ALLOC_HARDER then subtract
3947 * the high-atomic reserves. This will over-estimate the size of the
3948 * atomic reserve but it avoids a search.
3950 if (likely(!alloc_harder))
3951 unusable_free += z->nr_reserved_highatomic;
3954 /* If allocation can't use CMA areas don't use free CMA pages */
3955 if (!(alloc_flags & ALLOC_CMA))
3956 unusable_free += zone_page_state(z, NR_FREE_CMA_PAGES);
3959 return unusable_free;
3963 * Return true if free base pages are above 'mark'. For high-order checks it
3964 * will return true of the order-0 watermark is reached and there is at least
3965 * one free page of a suitable size. Checking now avoids taking the zone lock
3966 * to check in the allocation paths if no pages are free.
3968 bool __zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
3969 int highest_zoneidx, unsigned int alloc_flags,
3974 const bool alloc_harder = (alloc_flags & (ALLOC_HARDER|ALLOC_OOM));
3976 /* free_pages may go negative - that's OK */
3977 free_pages -= __zone_watermark_unusable_free(z, order, alloc_flags);
3979 if (alloc_flags & ALLOC_HIGH)
3982 if (unlikely(alloc_harder)) {
3984 * OOM victims can try even harder than normal ALLOC_HARDER
3985 * users on the grounds that it's definitely going to be in
3986 * the exit path shortly and free memory. Any allocation it
3987 * makes during the free path will be small and short-lived.
3989 if (alloc_flags & ALLOC_OOM)
3996 * Check watermarks for an order-0 allocation request. If these
3997 * are not met, then a high-order request also cannot go ahead
3998 * even if a suitable page happened to be free.
4000 if (free_pages <= min + z->lowmem_reserve[highest_zoneidx])
4003 /* If this is an order-0 request then the watermark is fine */
4007 /* For a high-order request, check at least one suitable page is free */
4008 for (o = order; o < MAX_ORDER; o++) {
4009 struct free_area *area = &z->free_area[o];
4015 for (mt = 0; mt < MIGRATE_PCPTYPES; mt++) {
4016 if (!free_area_empty(area, mt))
4021 if ((alloc_flags & ALLOC_CMA) &&
4022 !free_area_empty(area, MIGRATE_CMA)) {
4026 if (alloc_harder && !free_area_empty(area, MIGRATE_HIGHATOMIC))
4032 bool zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
4033 int highest_zoneidx, unsigned int alloc_flags)
4035 return __zone_watermark_ok(z, order, mark, highest_zoneidx, alloc_flags,
4036 zone_page_state(z, NR_FREE_PAGES));
4039 static inline bool zone_watermark_fast(struct zone *z, unsigned int order,
4040 unsigned long mark, int highest_zoneidx,
4041 unsigned int alloc_flags, gfp_t gfp_mask)
4045 free_pages = zone_page_state(z, NR_FREE_PAGES);
4048 * Fast check for order-0 only. If this fails then the reserves
4049 * need to be calculated.
4055 usable_free = free_pages;
4056 reserved = __zone_watermark_unusable_free(z, 0, alloc_flags);
4058 /* reserved may over estimate high-atomic reserves. */
4059 usable_free -= min(usable_free, reserved);
4060 if (usable_free > mark + z->lowmem_reserve[highest_zoneidx])
4064 if (__zone_watermark_ok(z, order, mark, highest_zoneidx, alloc_flags,
4068 * Ignore watermark boosting for GFP_ATOMIC order-0 allocations
4069 * when checking the min watermark. The min watermark is the
4070 * point where boosting is ignored so that kswapd is woken up
4071 * when below the low watermark.
4073 if (unlikely(!order && (gfp_mask & __GFP_ATOMIC) && z->watermark_boost
4074 && ((alloc_flags & ALLOC_WMARK_MASK) == WMARK_MIN))) {
4075 mark = z->_watermark[WMARK_MIN];
4076 return __zone_watermark_ok(z, order, mark, highest_zoneidx,
4077 alloc_flags, free_pages);
4083 bool zone_watermark_ok_safe(struct zone *z, unsigned int order,
4084 unsigned long mark, int highest_zoneidx)
4086 long free_pages = zone_page_state(z, NR_FREE_PAGES);
4088 if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark)
4089 free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES);
4091 return __zone_watermark_ok(z, order, mark, highest_zoneidx, 0,
4096 int __read_mostly node_reclaim_distance = RECLAIM_DISTANCE;
4098 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
4100 return node_distance(zone_to_nid(local_zone), zone_to_nid(zone)) <=
4101 node_reclaim_distance;
4103 #else /* CONFIG_NUMA */
4104 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
4108 #endif /* CONFIG_NUMA */
4111 * The restriction on ZONE_DMA32 as being a suitable zone to use to avoid
4112 * fragmentation is subtle. If the preferred zone was HIGHMEM then
4113 * premature use of a lower zone may cause lowmem pressure problems that
4114 * are worse than fragmentation. If the next zone is ZONE_DMA then it is
4115 * probably too small. It only makes sense to spread allocations to avoid
4116 * fragmentation between the Normal and DMA32 zones.
4118 static inline unsigned int
4119 alloc_flags_nofragment(struct zone *zone, gfp_t gfp_mask)
4121 unsigned int alloc_flags;
4124 * __GFP_KSWAPD_RECLAIM is assumed to be the same as ALLOC_KSWAPD
4127 alloc_flags = (__force int) (gfp_mask & __GFP_KSWAPD_RECLAIM);
4129 #ifdef CONFIG_ZONE_DMA32
4133 if (zone_idx(zone) != ZONE_NORMAL)
4137 * If ZONE_DMA32 exists, assume it is the one after ZONE_NORMAL and
4138 * the pointer is within zone->zone_pgdat->node_zones[]. Also assume
4139 * on UMA that if Normal is populated then so is DMA32.
4141 BUILD_BUG_ON(ZONE_NORMAL - ZONE_DMA32 != 1);
4142 if (nr_online_nodes > 1 && !populated_zone(--zone))
4145 alloc_flags |= ALLOC_NOFRAGMENT;
4146 #endif /* CONFIG_ZONE_DMA32 */
4150 /* Must be called after current_gfp_context() which can change gfp_mask */
4151 static inline unsigned int gfp_to_alloc_flags_cma(gfp_t gfp_mask,
4152 unsigned int alloc_flags)
4155 if (gfp_migratetype(gfp_mask) == MIGRATE_MOVABLE)
4156 alloc_flags |= ALLOC_CMA;
4162 * get_page_from_freelist goes through the zonelist trying to allocate
4165 static struct page *
4166 get_page_from_freelist(gfp_t gfp_mask, unsigned int order, int alloc_flags,
4167 const struct alloc_context *ac)
4171 struct pglist_data *last_pgdat = NULL;
4172 bool last_pgdat_dirty_ok = false;
4177 * Scan zonelist, looking for a zone with enough free.
4178 * See also __cpuset_node_allowed() comment in kernel/cgroup/cpuset.c.
4180 no_fallback = alloc_flags & ALLOC_NOFRAGMENT;
4181 z = ac->preferred_zoneref;
4182 for_next_zone_zonelist_nodemask(zone, z, ac->highest_zoneidx,
4187 if (cpusets_enabled() &&
4188 (alloc_flags & ALLOC_CPUSET) &&
4189 !__cpuset_zone_allowed(zone, gfp_mask))
4192 * When allocating a page cache page for writing, we
4193 * want to get it from a node that is within its dirty
4194 * limit, such that no single node holds more than its
4195 * proportional share of globally allowed dirty pages.
4196 * The dirty limits take into account the node's
4197 * lowmem reserves and high watermark so that kswapd
4198 * should be able to balance it without having to
4199 * write pages from its LRU list.
4201 * XXX: For now, allow allocations to potentially
4202 * exceed the per-node dirty limit in the slowpath
4203 * (spread_dirty_pages unset) before going into reclaim,
4204 * which is important when on a NUMA setup the allowed
4205 * nodes are together not big enough to reach the
4206 * global limit. The proper fix for these situations
4207 * will require awareness of nodes in the
4208 * dirty-throttling and the flusher threads.
4210 if (ac->spread_dirty_pages) {
4211 if (last_pgdat != zone->zone_pgdat) {
4212 last_pgdat = zone->zone_pgdat;
4213 last_pgdat_dirty_ok = node_dirty_ok(zone->zone_pgdat);
4216 if (!last_pgdat_dirty_ok)
4220 if (no_fallback && nr_online_nodes > 1 &&
4221 zone != ac->preferred_zoneref->zone) {
4225 * If moving to a remote node, retry but allow
4226 * fragmenting fallbacks. Locality is more important
4227 * than fragmentation avoidance.
4229 local_nid = zone_to_nid(ac->preferred_zoneref->zone);
4230 if (zone_to_nid(zone) != local_nid) {
4231 alloc_flags &= ~ALLOC_NOFRAGMENT;
4236 mark = wmark_pages(zone, alloc_flags & ALLOC_WMARK_MASK);
4237 if (!zone_watermark_fast(zone, order, mark,
4238 ac->highest_zoneidx, alloc_flags,
4242 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
4244 * Watermark failed for this zone, but see if we can
4245 * grow this zone if it contains deferred pages.
4247 if (static_branch_unlikely(&deferred_pages)) {
4248 if (_deferred_grow_zone(zone, order))
4252 /* Checked here to keep the fast path fast */
4253 BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
4254 if (alloc_flags & ALLOC_NO_WATERMARKS)
4257 if (!node_reclaim_enabled() ||
4258 !zone_allows_reclaim(ac->preferred_zoneref->zone, zone))
4261 ret = node_reclaim(zone->zone_pgdat, gfp_mask, order);
4263 case NODE_RECLAIM_NOSCAN:
4266 case NODE_RECLAIM_FULL:
4267 /* scanned but unreclaimable */
4270 /* did we reclaim enough */
4271 if (zone_watermark_ok(zone, order, mark,
4272 ac->highest_zoneidx, alloc_flags))
4280 page = rmqueue(ac->preferred_zoneref->zone, zone, order,
4281 gfp_mask, alloc_flags, ac->migratetype);
4283 prep_new_page(page, order, gfp_mask, alloc_flags);
4286 * If this is a high-order atomic allocation then check
4287 * if the pageblock should be reserved for the future
4289 if (unlikely(order && (alloc_flags & ALLOC_HARDER)))
4290 reserve_highatomic_pageblock(page, zone, order);
4294 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
4295 /* Try again if zone has deferred pages */
4296 if (static_branch_unlikely(&deferred_pages)) {
4297 if (_deferred_grow_zone(zone, order))
4305 * It's possible on a UMA machine to get through all zones that are
4306 * fragmented. If avoiding fragmentation, reset and try again.
4309 alloc_flags &= ~ALLOC_NOFRAGMENT;
4316 static void warn_alloc_show_mem(gfp_t gfp_mask, nodemask_t *nodemask)
4318 unsigned int filter = SHOW_MEM_FILTER_NODES;
4321 * This documents exceptions given to allocations in certain
4322 * contexts that are allowed to allocate outside current's set
4325 if (!(gfp_mask & __GFP_NOMEMALLOC))
4326 if (tsk_is_oom_victim(current) ||
4327 (current->flags & (PF_MEMALLOC | PF_EXITING)))
4328 filter &= ~SHOW_MEM_FILTER_NODES;
4329 if (!in_task() || !(gfp_mask & __GFP_DIRECT_RECLAIM))
4330 filter &= ~SHOW_MEM_FILTER_NODES;
4332 show_mem(filter, nodemask);
4335 void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...)
4337 struct va_format vaf;
4339 static DEFINE_RATELIMIT_STATE(nopage_rs, 10*HZ, 1);
4341 if ((gfp_mask & __GFP_NOWARN) ||
4342 !__ratelimit(&nopage_rs) ||
4343 ((gfp_mask & __GFP_DMA) && !has_managed_dma()))
4346 va_start(args, fmt);
4349 pr_warn("%s: %pV, mode:%#x(%pGg), nodemask=%*pbl",
4350 current->comm, &vaf, gfp_mask, &gfp_mask,
4351 nodemask_pr_args(nodemask));
4354 cpuset_print_current_mems_allowed();
4357 warn_alloc_show_mem(gfp_mask, nodemask);
4360 static inline struct page *
4361 __alloc_pages_cpuset_fallback(gfp_t gfp_mask, unsigned int order,
4362 unsigned int alloc_flags,
4363 const struct alloc_context *ac)
4367 page = get_page_from_freelist(gfp_mask, order,
4368 alloc_flags|ALLOC_CPUSET, ac);
4370 * fallback to ignore cpuset restriction if our nodes
4374 page = get_page_from_freelist(gfp_mask, order,
4380 static inline struct page *
4381 __alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
4382 const struct alloc_context *ac, unsigned long *did_some_progress)
4384 struct oom_control oc = {
4385 .zonelist = ac->zonelist,
4386 .nodemask = ac->nodemask,
4388 .gfp_mask = gfp_mask,
4393 *did_some_progress = 0;
4396 * Acquire the oom lock. If that fails, somebody else is
4397 * making progress for us.
4399 if (!mutex_trylock(&oom_lock)) {
4400 *did_some_progress = 1;
4401 schedule_timeout_uninterruptible(1);
4406 * Go through the zonelist yet one more time, keep very high watermark
4407 * here, this is only to catch a parallel oom killing, we must fail if
4408 * we're still under heavy pressure. But make sure that this reclaim
4409 * attempt shall not depend on __GFP_DIRECT_RECLAIM && !__GFP_NORETRY
4410 * allocation which will never fail due to oom_lock already held.
4412 page = get_page_from_freelist((gfp_mask | __GFP_HARDWALL) &
4413 ~__GFP_DIRECT_RECLAIM, order,
4414 ALLOC_WMARK_HIGH|ALLOC_CPUSET, ac);
4418 /* Coredumps can quickly deplete all memory reserves */
4419 if (current->flags & PF_DUMPCORE)
4421 /* The OOM killer will not help higher order allocs */
4422 if (order > PAGE_ALLOC_COSTLY_ORDER)
4425 * We have already exhausted all our reclaim opportunities without any
4426 * success so it is time to admit defeat. We will skip the OOM killer
4427 * because it is very likely that the caller has a more reasonable
4428 * fallback than shooting a random task.
4430 * The OOM killer may not free memory on a specific node.
4432 if (gfp_mask & (__GFP_RETRY_MAYFAIL | __GFP_THISNODE))
4434 /* The OOM killer does not needlessly kill tasks for lowmem */
4435 if (ac->highest_zoneidx < ZONE_NORMAL)
4437 if (pm_suspended_storage())
4440 * XXX: GFP_NOFS allocations should rather fail than rely on
4441 * other request to make a forward progress.
4442 * We are in an unfortunate situation where out_of_memory cannot
4443 * do much for this context but let's try it to at least get
4444 * access to memory reserved if the current task is killed (see
4445 * out_of_memory). Once filesystems are ready to handle allocation
4446 * failures more gracefully we should just bail out here.
4449 /* Exhausted what can be done so it's blame time */
4450 if (out_of_memory(&oc) ||
4451 WARN_ON_ONCE_GFP(gfp_mask & __GFP_NOFAIL, gfp_mask)) {
4452 *did_some_progress = 1;
4455 * Help non-failing allocations by giving them access to memory
4458 if (gfp_mask & __GFP_NOFAIL)
4459 page = __alloc_pages_cpuset_fallback(gfp_mask, order,
4460 ALLOC_NO_WATERMARKS, ac);
4463 mutex_unlock(&oom_lock);
4468 * Maximum number of compaction retries with a progress before OOM
4469 * killer is consider as the only way to move forward.
4471 #define MAX_COMPACT_RETRIES 16
4473 #ifdef CONFIG_COMPACTION
4474 /* Try memory compaction for high-order allocations before reclaim */
4475 static struct page *
4476 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
4477 unsigned int alloc_flags, const struct alloc_context *ac,
4478 enum compact_priority prio, enum compact_result *compact_result)
4480 struct page *page = NULL;
4481 unsigned long pflags;
4482 unsigned int noreclaim_flag;
4487 psi_memstall_enter(&pflags);
4488 delayacct_compact_start();
4489 noreclaim_flag = memalloc_noreclaim_save();
4491 *compact_result = try_to_compact_pages(gfp_mask, order, alloc_flags, ac,
4494 memalloc_noreclaim_restore(noreclaim_flag);
4495 psi_memstall_leave(&pflags);
4496 delayacct_compact_end();
4498 if (*compact_result == COMPACT_SKIPPED)
4501 * At least in one zone compaction wasn't deferred or skipped, so let's
4502 * count a compaction stall
4504 count_vm_event(COMPACTSTALL);
4506 /* Prep a captured page if available */
4508 prep_new_page(page, order, gfp_mask, alloc_flags);
4510 /* Try get a page from the freelist if available */
4512 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
4515 struct zone *zone = page_zone(page);
4517 zone->compact_blockskip_flush = false;
4518 compaction_defer_reset(zone, order, true);
4519 count_vm_event(COMPACTSUCCESS);
4524 * It's bad if compaction run occurs and fails. The most likely reason
4525 * is that pages exist, but not enough to satisfy watermarks.
4527 count_vm_event(COMPACTFAIL);
4535 should_compact_retry(struct alloc_context *ac, int order, int alloc_flags,
4536 enum compact_result compact_result,
4537 enum compact_priority *compact_priority,
4538 int *compaction_retries)
4540 int max_retries = MAX_COMPACT_RETRIES;
4543 int retries = *compaction_retries;
4544 enum compact_priority priority = *compact_priority;
4549 if (fatal_signal_pending(current))
4552 if (compaction_made_progress(compact_result))
4553 (*compaction_retries)++;
4556 * compaction considers all the zone as desperately out of memory
4557 * so it doesn't really make much sense to retry except when the
4558 * failure could be caused by insufficient priority
4560 if (compaction_failed(compact_result))
4561 goto check_priority;
4564 * compaction was skipped because there are not enough order-0 pages
4565 * to work with, so we retry only if it looks like reclaim can help.
4567 if (compaction_needs_reclaim(compact_result)) {
4568 ret = compaction_zonelist_suitable(ac, order, alloc_flags);
4573 * make sure the compaction wasn't deferred or didn't bail out early
4574 * due to locks contention before we declare that we should give up.
4575 * But the next retry should use a higher priority if allowed, so
4576 * we don't just keep bailing out endlessly.
4578 if (compaction_withdrawn(compact_result)) {
4579 goto check_priority;
4583 * !costly requests are much more important than __GFP_RETRY_MAYFAIL
4584 * costly ones because they are de facto nofail and invoke OOM
4585 * killer to move on while costly can fail and users are ready
4586 * to cope with that. 1/4 retries is rather arbitrary but we
4587 * would need much more detailed feedback from compaction to
4588 * make a better decision.
4590 if (order > PAGE_ALLOC_COSTLY_ORDER)
4592 if (*compaction_retries <= max_retries) {
4598 * Make sure there are attempts at the highest priority if we exhausted
4599 * all retries or failed at the lower priorities.
4602 min_priority = (order > PAGE_ALLOC_COSTLY_ORDER) ?
4603 MIN_COMPACT_COSTLY_PRIORITY : MIN_COMPACT_PRIORITY;
4605 if (*compact_priority > min_priority) {
4606 (*compact_priority)--;
4607 *compaction_retries = 0;
4611 trace_compact_retry(order, priority, compact_result, retries, max_retries, ret);
4615 static inline struct page *
4616 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
4617 unsigned int alloc_flags, const struct alloc_context *ac,
4618 enum compact_priority prio, enum compact_result *compact_result)
4620 *compact_result = COMPACT_SKIPPED;
4625 should_compact_retry(struct alloc_context *ac, unsigned int order, int alloc_flags,
4626 enum compact_result compact_result,
4627 enum compact_priority *compact_priority,
4628 int *compaction_retries)
4633 if (!order || order > PAGE_ALLOC_COSTLY_ORDER)
4637 * There are setups with compaction disabled which would prefer to loop
4638 * inside the allocator rather than hit the oom killer prematurely.
4639 * Let's give them a good hope and keep retrying while the order-0
4640 * watermarks are OK.
4642 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
4643 ac->highest_zoneidx, ac->nodemask) {
4644 if (zone_watermark_ok(zone, 0, min_wmark_pages(zone),
4645 ac->highest_zoneidx, alloc_flags))
4650 #endif /* CONFIG_COMPACTION */
4652 #ifdef CONFIG_LOCKDEP
4653 static struct lockdep_map __fs_reclaim_map =
4654 STATIC_LOCKDEP_MAP_INIT("fs_reclaim", &__fs_reclaim_map);
4656 static bool __need_reclaim(gfp_t gfp_mask)
4658 /* no reclaim without waiting on it */
4659 if (!(gfp_mask & __GFP_DIRECT_RECLAIM))
4662 /* this guy won't enter reclaim */
4663 if (current->flags & PF_MEMALLOC)
4666 if (gfp_mask & __GFP_NOLOCKDEP)
4672 void __fs_reclaim_acquire(unsigned long ip)
4674 lock_acquire_exclusive(&__fs_reclaim_map, 0, 0, NULL, ip);
4677 void __fs_reclaim_release(unsigned long ip)
4679 lock_release(&__fs_reclaim_map, ip);
4682 void fs_reclaim_acquire(gfp_t gfp_mask)
4684 gfp_mask = current_gfp_context(gfp_mask);
4686 if (__need_reclaim(gfp_mask)) {
4687 if (gfp_mask & __GFP_FS)
4688 __fs_reclaim_acquire(_RET_IP_);
4690 #ifdef CONFIG_MMU_NOTIFIER
4691 lock_map_acquire(&__mmu_notifier_invalidate_range_start_map);
4692 lock_map_release(&__mmu_notifier_invalidate_range_start_map);
4697 EXPORT_SYMBOL_GPL(fs_reclaim_acquire);
4699 void fs_reclaim_release(gfp_t gfp_mask)
4701 gfp_mask = current_gfp_context(gfp_mask);
4703 if (__need_reclaim(gfp_mask)) {
4704 if (gfp_mask & __GFP_FS)
4705 __fs_reclaim_release(_RET_IP_);
4708 EXPORT_SYMBOL_GPL(fs_reclaim_release);
4712 * Zonelists may change due to hotplug during allocation. Detect when zonelists
4713 * have been rebuilt so allocation retries. Reader side does not lock and
4714 * retries the allocation if zonelist changes. Writer side is protected by the
4715 * embedded spin_lock.
4717 static DEFINE_SEQLOCK(zonelist_update_seq);
4719 static unsigned int zonelist_iter_begin(void)
4721 if (IS_ENABLED(CONFIG_MEMORY_HOTREMOVE))
4722 return read_seqbegin(&zonelist_update_seq);
4727 static unsigned int check_retry_zonelist(unsigned int seq)
4729 if (IS_ENABLED(CONFIG_MEMORY_HOTREMOVE))
4730 return read_seqretry(&zonelist_update_seq, seq);
4735 /* Perform direct synchronous page reclaim */
4736 static unsigned long
4737 __perform_reclaim(gfp_t gfp_mask, unsigned int order,
4738 const struct alloc_context *ac)
4740 unsigned int noreclaim_flag;
4741 unsigned long progress;
4745 /* We now go into synchronous reclaim */
4746 cpuset_memory_pressure_bump();
4747 fs_reclaim_acquire(gfp_mask);
4748 noreclaim_flag = memalloc_noreclaim_save();
4750 progress = try_to_free_pages(ac->zonelist, order, gfp_mask,
4753 memalloc_noreclaim_restore(noreclaim_flag);
4754 fs_reclaim_release(gfp_mask);
4761 /* The really slow allocator path where we enter direct reclaim */
4762 static inline struct page *
4763 __alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
4764 unsigned int alloc_flags, const struct alloc_context *ac,
4765 unsigned long *did_some_progress)
4767 struct page *page = NULL;
4768 unsigned long pflags;
4769 bool drained = false;
4771 psi_memstall_enter(&pflags);
4772 *did_some_progress = __perform_reclaim(gfp_mask, order, ac);
4773 if (unlikely(!(*did_some_progress)))
4777 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
4780 * If an allocation failed after direct reclaim, it could be because
4781 * pages are pinned on the per-cpu lists or in high alloc reserves.
4782 * Shrink them and try again
4784 if (!page && !drained) {
4785 unreserve_highatomic_pageblock(ac, false);
4786 drain_all_pages(NULL);
4791 psi_memstall_leave(&pflags);
4796 static void wake_all_kswapds(unsigned int order, gfp_t gfp_mask,
4797 const struct alloc_context *ac)
4801 pg_data_t *last_pgdat = NULL;
4802 enum zone_type highest_zoneidx = ac->highest_zoneidx;
4804 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, highest_zoneidx,
4806 if (!managed_zone(zone))
4808 if (last_pgdat != zone->zone_pgdat) {
4809 wakeup_kswapd(zone, gfp_mask, order, highest_zoneidx);
4810 last_pgdat = zone->zone_pgdat;
4815 static inline unsigned int
4816 gfp_to_alloc_flags(gfp_t gfp_mask)
4818 unsigned int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
4821 * __GFP_HIGH is assumed to be the same as ALLOC_HIGH
4822 * and __GFP_KSWAPD_RECLAIM is assumed to be the same as ALLOC_KSWAPD
4823 * to save two branches.
4825 BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_HIGH);
4826 BUILD_BUG_ON(__GFP_KSWAPD_RECLAIM != (__force gfp_t) ALLOC_KSWAPD);
4829 * The caller may dip into page reserves a bit more if the caller
4830 * cannot run direct reclaim, or if the caller has realtime scheduling
4831 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will
4832 * set both ALLOC_HARDER (__GFP_ATOMIC) and ALLOC_HIGH (__GFP_HIGH).
4834 alloc_flags |= (__force int)
4835 (gfp_mask & (__GFP_HIGH | __GFP_KSWAPD_RECLAIM));
4837 if (gfp_mask & __GFP_ATOMIC) {
4839 * Not worth trying to allocate harder for __GFP_NOMEMALLOC even
4840 * if it can't schedule.
4842 if (!(gfp_mask & __GFP_NOMEMALLOC))
4843 alloc_flags |= ALLOC_HARDER;
4845 * Ignore cpuset mems for GFP_ATOMIC rather than fail, see the
4846 * comment for __cpuset_node_allowed().
4848 alloc_flags &= ~ALLOC_CPUSET;
4849 } else if (unlikely(rt_task(current)) && in_task())
4850 alloc_flags |= ALLOC_HARDER;
4852 alloc_flags = gfp_to_alloc_flags_cma(gfp_mask, alloc_flags);
4857 static bool oom_reserves_allowed(struct task_struct *tsk)
4859 if (!tsk_is_oom_victim(tsk))
4863 * !MMU doesn't have oom reaper so give access to memory reserves
4864 * only to the thread with TIF_MEMDIE set
4866 if (!IS_ENABLED(CONFIG_MMU) && !test_thread_flag(TIF_MEMDIE))
4873 * Distinguish requests which really need access to full memory
4874 * reserves from oom victims which can live with a portion of it
4876 static inline int __gfp_pfmemalloc_flags(gfp_t gfp_mask)
4878 if (unlikely(gfp_mask & __GFP_NOMEMALLOC))
4880 if (gfp_mask & __GFP_MEMALLOC)
4881 return ALLOC_NO_WATERMARKS;
4882 if (in_serving_softirq() && (current->flags & PF_MEMALLOC))
4883 return ALLOC_NO_WATERMARKS;
4884 if (!in_interrupt()) {
4885 if (current->flags & PF_MEMALLOC)
4886 return ALLOC_NO_WATERMARKS;
4887 else if (oom_reserves_allowed(current))
4894 bool gfp_pfmemalloc_allowed(gfp_t gfp_mask)
4896 return !!__gfp_pfmemalloc_flags(gfp_mask);
4900 * Checks whether it makes sense to retry the reclaim to make a forward progress
4901 * for the given allocation request.
4903 * We give up when we either have tried MAX_RECLAIM_RETRIES in a row
4904 * without success, or when we couldn't even meet the watermark if we
4905 * reclaimed all remaining pages on the LRU lists.
4907 * Returns true if a retry is viable or false to enter the oom path.
4910 should_reclaim_retry(gfp_t gfp_mask, unsigned order,
4911 struct alloc_context *ac, int alloc_flags,
4912 bool did_some_progress, int *no_progress_loops)
4919 * Costly allocations might have made a progress but this doesn't mean
4920 * their order will become available due to high fragmentation so
4921 * always increment the no progress counter for them
4923 if (did_some_progress && order <= PAGE_ALLOC_COSTLY_ORDER)
4924 *no_progress_loops = 0;
4926 (*no_progress_loops)++;
4929 * Make sure we converge to OOM if we cannot make any progress
4930 * several times in the row.
4932 if (*no_progress_loops > MAX_RECLAIM_RETRIES) {
4933 /* Before OOM, exhaust highatomic_reserve */
4934 return unreserve_highatomic_pageblock(ac, true);
4938 * Keep reclaiming pages while there is a chance this will lead
4939 * somewhere. If none of the target zones can satisfy our allocation
4940 * request even if all reclaimable pages are considered then we are
4941 * screwed and have to go OOM.
4943 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
4944 ac->highest_zoneidx, ac->nodemask) {
4945 unsigned long available;
4946 unsigned long reclaimable;
4947 unsigned long min_wmark = min_wmark_pages(zone);
4950 available = reclaimable = zone_reclaimable_pages(zone);
4951 available += zone_page_state_snapshot(zone, NR_FREE_PAGES);
4954 * Would the allocation succeed if we reclaimed all
4955 * reclaimable pages?
4957 wmark = __zone_watermark_ok(zone, order, min_wmark,
4958 ac->highest_zoneidx, alloc_flags, available);
4959 trace_reclaim_retry_zone(z, order, reclaimable,
4960 available, min_wmark, *no_progress_loops, wmark);
4968 * Memory allocation/reclaim might be called from a WQ context and the
4969 * current implementation of the WQ concurrency control doesn't
4970 * recognize that a particular WQ is congested if the worker thread is
4971 * looping without ever sleeping. Therefore we have to do a short sleep
4972 * here rather than calling cond_resched().
4974 if (current->flags & PF_WQ_WORKER)
4975 schedule_timeout_uninterruptible(1);
4982 check_retry_cpuset(int cpuset_mems_cookie, struct alloc_context *ac)
4985 * It's possible that cpuset's mems_allowed and the nodemask from
4986 * mempolicy don't intersect. This should be normally dealt with by
4987 * policy_nodemask(), but it's possible to race with cpuset update in
4988 * such a way the check therein was true, and then it became false
4989 * before we got our cpuset_mems_cookie here.
4990 * This assumes that for all allocations, ac->nodemask can come only
4991 * from MPOL_BIND mempolicy (whose documented semantics is to be ignored
4992 * when it does not intersect with the cpuset restrictions) or the
4993 * caller can deal with a violated nodemask.
4995 if (cpusets_enabled() && ac->nodemask &&
4996 !cpuset_nodemask_valid_mems_allowed(ac->nodemask)) {
4997 ac->nodemask = NULL;
5002 * When updating a task's mems_allowed or mempolicy nodemask, it is
5003 * possible to race with parallel threads in such a way that our
5004 * allocation can fail while the mask is being updated. If we are about
5005 * to fail, check if the cpuset changed during allocation and if so,
5008 if (read_mems_allowed_retry(cpuset_mems_cookie))
5014 static inline struct page *
5015 __alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
5016 struct alloc_context *ac)
5018 bool can_direct_reclaim = gfp_mask & __GFP_DIRECT_RECLAIM;
5019 const bool costly_order = order > PAGE_ALLOC_COSTLY_ORDER;
5020 struct page *page = NULL;
5021 unsigned int alloc_flags;
5022 unsigned long did_some_progress;
5023 enum compact_priority compact_priority;
5024 enum compact_result compact_result;
5025 int compaction_retries;
5026 int no_progress_loops;
5027 unsigned int cpuset_mems_cookie;
5028 unsigned int zonelist_iter_cookie;
5032 * We also sanity check to catch abuse of atomic reserves being used by
5033 * callers that are not in atomic context.
5035 if (WARN_ON_ONCE((gfp_mask & (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)) ==
5036 (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)))
5037 gfp_mask &= ~__GFP_ATOMIC;
5040 compaction_retries = 0;
5041 no_progress_loops = 0;
5042 compact_priority = DEF_COMPACT_PRIORITY;
5043 cpuset_mems_cookie = read_mems_allowed_begin();
5044 zonelist_iter_cookie = zonelist_iter_begin();
5047 * The fast path uses conservative alloc_flags to succeed only until
5048 * kswapd needs to be woken up, and to avoid the cost of setting up
5049 * alloc_flags precisely. So we do that now.
5051 alloc_flags = gfp_to_alloc_flags(gfp_mask);
5054 * We need to recalculate the starting point for the zonelist iterator
5055 * because we might have used different nodemask in the fast path, or
5056 * there was a cpuset modification and we are retrying - otherwise we
5057 * could end up iterating over non-eligible zones endlessly.
5059 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
5060 ac->highest_zoneidx, ac->nodemask);
5061 if (!ac->preferred_zoneref->zone)
5065 * Check for insane configurations where the cpuset doesn't contain
5066 * any suitable zone to satisfy the request - e.g. non-movable
5067 * GFP_HIGHUSER allocations from MOVABLE nodes only.
5069 if (cpusets_insane_config() && (gfp_mask & __GFP_HARDWALL)) {
5070 struct zoneref *z = first_zones_zonelist(ac->zonelist,
5071 ac->highest_zoneidx,
5072 &cpuset_current_mems_allowed);
5077 if (alloc_flags & ALLOC_KSWAPD)
5078 wake_all_kswapds(order, gfp_mask, ac);
5081 * The adjusted alloc_flags might result in immediate success, so try
5084 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
5089 * For costly allocations, try direct compaction first, as it's likely
5090 * that we have enough base pages and don't need to reclaim. For non-
5091 * movable high-order allocations, do that as well, as compaction will
5092 * try prevent permanent fragmentation by migrating from blocks of the
5094 * Don't try this for allocations that are allowed to ignore
5095 * watermarks, as the ALLOC_NO_WATERMARKS attempt didn't yet happen.
5097 if (can_direct_reclaim &&
5099 (order > 0 && ac->migratetype != MIGRATE_MOVABLE))
5100 && !gfp_pfmemalloc_allowed(gfp_mask)) {
5101 page = __alloc_pages_direct_compact(gfp_mask, order,
5103 INIT_COMPACT_PRIORITY,
5109 * Checks for costly allocations with __GFP_NORETRY, which
5110 * includes some THP page fault allocations
5112 if (costly_order && (gfp_mask & __GFP_NORETRY)) {
5114 * If allocating entire pageblock(s) and compaction
5115 * failed because all zones are below low watermarks
5116 * or is prohibited because it recently failed at this
5117 * order, fail immediately unless the allocator has
5118 * requested compaction and reclaim retry.
5121 * - potentially very expensive because zones are far
5122 * below their low watermarks or this is part of very
5123 * bursty high order allocations,
5124 * - not guaranteed to help because isolate_freepages()
5125 * may not iterate over freed pages as part of its
5127 * - unlikely to make entire pageblocks free on its
5130 if (compact_result == COMPACT_SKIPPED ||
5131 compact_result == COMPACT_DEFERRED)
5135 * Looks like reclaim/compaction is worth trying, but
5136 * sync compaction could be very expensive, so keep
5137 * using async compaction.
5139 compact_priority = INIT_COMPACT_PRIORITY;
5144 /* Ensure kswapd doesn't accidentally go to sleep as long as we loop */
5145 if (alloc_flags & ALLOC_KSWAPD)
5146 wake_all_kswapds(order, gfp_mask, ac);
5148 reserve_flags = __gfp_pfmemalloc_flags(gfp_mask);
5150 alloc_flags = gfp_to_alloc_flags_cma(gfp_mask, reserve_flags);
5153 * Reset the nodemask and zonelist iterators if memory policies can be
5154 * ignored. These allocations are high priority and system rather than
5157 if (!(alloc_flags & ALLOC_CPUSET) || reserve_flags) {
5158 ac->nodemask = NULL;
5159 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
5160 ac->highest_zoneidx, ac->nodemask);
5163 /* Attempt with potentially adjusted zonelist and alloc_flags */
5164 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
5168 /* Caller is not willing to reclaim, we can't balance anything */
5169 if (!can_direct_reclaim)
5172 /* Avoid recursion of direct reclaim */
5173 if (current->flags & PF_MEMALLOC)
5176 /* Try direct reclaim and then allocating */
5177 page = __alloc_pages_direct_reclaim(gfp_mask, order, alloc_flags, ac,
5178 &did_some_progress);
5182 /* Try direct compaction and then allocating */
5183 page = __alloc_pages_direct_compact(gfp_mask, order, alloc_flags, ac,
5184 compact_priority, &compact_result);
5188 /* Do not loop if specifically requested */
5189 if (gfp_mask & __GFP_NORETRY)
5193 * Do not retry costly high order allocations unless they are
5194 * __GFP_RETRY_MAYFAIL
5196 if (costly_order && !(gfp_mask & __GFP_RETRY_MAYFAIL))
5199 if (should_reclaim_retry(gfp_mask, order, ac, alloc_flags,
5200 did_some_progress > 0, &no_progress_loops))
5204 * It doesn't make any sense to retry for the compaction if the order-0
5205 * reclaim is not able to make any progress because the current
5206 * implementation of the compaction depends on the sufficient amount
5207 * of free memory (see __compaction_suitable)
5209 if (did_some_progress > 0 &&
5210 should_compact_retry(ac, order, alloc_flags,
5211 compact_result, &compact_priority,
5212 &compaction_retries))
5217 * Deal with possible cpuset update races or zonelist updates to avoid
5218 * a unnecessary OOM kill.
5220 if (check_retry_cpuset(cpuset_mems_cookie, ac) ||
5221 check_retry_zonelist(zonelist_iter_cookie))
5224 /* Reclaim has failed us, start killing things */
5225 page = __alloc_pages_may_oom(gfp_mask, order, ac, &did_some_progress);
5229 /* Avoid allocations with no watermarks from looping endlessly */
5230 if (tsk_is_oom_victim(current) &&
5231 (alloc_flags & ALLOC_OOM ||
5232 (gfp_mask & __GFP_NOMEMALLOC)))
5235 /* Retry as long as the OOM killer is making progress */
5236 if (did_some_progress) {
5237 no_progress_loops = 0;
5243 * Deal with possible cpuset update races or zonelist updates to avoid
5244 * a unnecessary OOM kill.
5246 if (check_retry_cpuset(cpuset_mems_cookie, ac) ||
5247 check_retry_zonelist(zonelist_iter_cookie))
5251 * Make sure that __GFP_NOFAIL request doesn't leak out and make sure
5254 if (gfp_mask & __GFP_NOFAIL) {
5256 * All existing users of the __GFP_NOFAIL are blockable, so warn
5257 * of any new users that actually require GFP_NOWAIT
5259 if (WARN_ON_ONCE_GFP(!can_direct_reclaim, gfp_mask))
5263 * PF_MEMALLOC request from this context is rather bizarre
5264 * because we cannot reclaim anything and only can loop waiting
5265 * for somebody to do a work for us
5267 WARN_ON_ONCE_GFP(current->flags & PF_MEMALLOC, gfp_mask);
5270 * non failing costly orders are a hard requirement which we
5271 * are not prepared for much so let's warn about these users
5272 * so that we can identify them and convert them to something
5275 WARN_ON_ONCE_GFP(order > PAGE_ALLOC_COSTLY_ORDER, gfp_mask);
5278 * Help non-failing allocations by giving them access to memory
5279 * reserves but do not use ALLOC_NO_WATERMARKS because this
5280 * could deplete whole memory reserves which would just make
5281 * the situation worse
5283 page = __alloc_pages_cpuset_fallback(gfp_mask, order, ALLOC_HARDER, ac);
5291 warn_alloc(gfp_mask, ac->nodemask,
5292 "page allocation failure: order:%u", order);
5297 static inline bool prepare_alloc_pages(gfp_t gfp_mask, unsigned int order,
5298 int preferred_nid, nodemask_t *nodemask,
5299 struct alloc_context *ac, gfp_t *alloc_gfp,
5300 unsigned int *alloc_flags)
5302 ac->highest_zoneidx = gfp_zone(gfp_mask);
5303 ac->zonelist = node_zonelist(preferred_nid, gfp_mask);
5304 ac->nodemask = nodemask;
5305 ac->migratetype = gfp_migratetype(gfp_mask);
5307 if (cpusets_enabled()) {
5308 *alloc_gfp |= __GFP_HARDWALL;
5310 * When we are in the interrupt context, it is irrelevant
5311 * to the current task context. It means that any node ok.
5313 if (in_task() && !ac->nodemask)
5314 ac->nodemask = &cpuset_current_mems_allowed;
5316 *alloc_flags |= ALLOC_CPUSET;
5319 might_alloc(gfp_mask);
5321 if (should_fail_alloc_page(gfp_mask, order))
5324 *alloc_flags = gfp_to_alloc_flags_cma(gfp_mask, *alloc_flags);
5326 /* Dirty zone balancing only done in the fast path */
5327 ac->spread_dirty_pages = (gfp_mask & __GFP_WRITE);
5330 * The preferred zone is used for statistics but crucially it is
5331 * also used as the starting point for the zonelist iterator. It
5332 * may get reset for allocations that ignore memory policies.
5334 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
5335 ac->highest_zoneidx, ac->nodemask);
5341 * __alloc_pages_bulk - Allocate a number of order-0 pages to a list or array
5342 * @gfp: GFP flags for the allocation
5343 * @preferred_nid: The preferred NUMA node ID to allocate from
5344 * @nodemask: Set of nodes to allocate from, may be NULL
5345 * @nr_pages: The number of pages desired on the list or array
5346 * @page_list: Optional list to store the allocated pages
5347 * @page_array: Optional array to store the pages
5349 * This is a batched version of the page allocator that attempts to
5350 * allocate nr_pages quickly. Pages are added to page_list if page_list
5351 * is not NULL, otherwise it is assumed that the page_array is valid.
5353 * For lists, nr_pages is the number of pages that should be allocated.
5355 * For arrays, only NULL elements are populated with pages and nr_pages
5356 * is the maximum number of pages that will be stored in the array.
5358 * Returns the number of pages on the list or array.
5360 unsigned long __alloc_pages_bulk(gfp_t gfp, int preferred_nid,
5361 nodemask_t *nodemask, int nr_pages,
5362 struct list_head *page_list,
5363 struct page **page_array)
5366 unsigned long flags;
5367 unsigned long __maybe_unused UP_flags;
5370 struct per_cpu_pages *pcp;
5371 struct list_head *pcp_list;
5372 struct alloc_context ac;
5374 unsigned int alloc_flags = ALLOC_WMARK_LOW;
5375 int nr_populated = 0, nr_account = 0;
5378 * Skip populated array elements to determine if any pages need
5379 * to be allocated before disabling IRQs.
5381 while (page_array && nr_populated < nr_pages && page_array[nr_populated])
5384 /* No pages requested? */
5385 if (unlikely(nr_pages <= 0))
5388 /* Already populated array? */
5389 if (unlikely(page_array && nr_pages - nr_populated == 0))
5392 /* Bulk allocator does not support memcg accounting. */
5393 if (memcg_kmem_enabled() && (gfp & __GFP_ACCOUNT))
5396 /* Use the single page allocator for one page. */
5397 if (nr_pages - nr_populated == 1)
5400 #ifdef CONFIG_PAGE_OWNER
5402 * PAGE_OWNER may recurse into the allocator to allocate space to
5403 * save the stack with pagesets.lock held. Releasing/reacquiring
5404 * removes much of the performance benefit of bulk allocation so
5405 * force the caller to allocate one page at a time as it'll have
5406 * similar performance to added complexity to the bulk allocator.
5408 if (static_branch_unlikely(&page_owner_inited))
5412 /* May set ALLOC_NOFRAGMENT, fragmentation will return 1 page. */
5413 gfp &= gfp_allowed_mask;
5415 if (!prepare_alloc_pages(gfp, 0, preferred_nid, nodemask, &ac, &alloc_gfp, &alloc_flags))
5419 /* Find an allowed local zone that meets the low watermark. */
5420 for_each_zone_zonelist_nodemask(zone, z, ac.zonelist, ac.highest_zoneidx, ac.nodemask) {
5423 if (cpusets_enabled() && (alloc_flags & ALLOC_CPUSET) &&
5424 !__cpuset_zone_allowed(zone, gfp)) {
5428 if (nr_online_nodes > 1 && zone != ac.preferred_zoneref->zone &&
5429 zone_to_nid(zone) != zone_to_nid(ac.preferred_zoneref->zone)) {
5433 mark = wmark_pages(zone, alloc_flags & ALLOC_WMARK_MASK) + nr_pages;
5434 if (zone_watermark_fast(zone, 0, mark,
5435 zonelist_zone_idx(ac.preferred_zoneref),
5436 alloc_flags, gfp)) {
5442 * If there are no allowed local zones that meets the watermarks then
5443 * try to allocate a single page and reclaim if necessary.
5445 if (unlikely(!zone))
5448 /* Is a parallel drain in progress? */
5449 pcp_trylock_prepare(UP_flags);
5450 pcp = pcp_spin_trylock_irqsave(zone->per_cpu_pageset, flags);
5454 /* Attempt the batch allocation */
5455 pcp_list = &pcp->lists[order_to_pindex(ac.migratetype, 0)];
5456 while (nr_populated < nr_pages) {
5458 /* Skip existing pages */
5459 if (page_array && page_array[nr_populated]) {
5464 page = __rmqueue_pcplist(zone, 0, ac.migratetype, alloc_flags,
5466 if (unlikely(!page)) {
5467 /* Try and allocate at least one page */
5469 pcp_spin_unlock_irqrestore(pcp, flags);
5476 prep_new_page(page, 0, gfp, 0);
5478 list_add(&page->lru, page_list);
5480 page_array[nr_populated] = page;
5484 pcp_spin_unlock_irqrestore(pcp, flags);
5485 pcp_trylock_finish(UP_flags);
5487 __count_zid_vm_events(PGALLOC, zone_idx(zone), nr_account);
5488 zone_statistics(ac.preferred_zoneref->zone, zone, nr_account);
5491 return nr_populated;
5494 pcp_trylock_finish(UP_flags);
5497 page = __alloc_pages(gfp, 0, preferred_nid, nodemask);
5500 list_add(&page->lru, page_list);
5502 page_array[nr_populated] = page;
5508 EXPORT_SYMBOL_GPL(__alloc_pages_bulk);
5511 * This is the 'heart' of the zoned buddy allocator.
5513 struct page *__alloc_pages(gfp_t gfp, unsigned int order, int preferred_nid,
5514 nodemask_t *nodemask)
5517 unsigned int alloc_flags = ALLOC_WMARK_LOW;
5518 gfp_t alloc_gfp; /* The gfp_t that was actually used for allocation */
5519 struct alloc_context ac = { };
5522 * There are several places where we assume that the order value is sane
5523 * so bail out early if the request is out of bound.
5525 if (WARN_ON_ONCE_GFP(order >= MAX_ORDER, gfp))
5528 gfp &= gfp_allowed_mask;
5530 * Apply scoped allocation constraints. This is mainly about GFP_NOFS
5531 * resp. GFP_NOIO which has to be inherited for all allocation requests
5532 * from a particular context which has been marked by
5533 * memalloc_no{fs,io}_{save,restore}. And PF_MEMALLOC_PIN which ensures
5534 * movable zones are not used during allocation.
5536 gfp = current_gfp_context(gfp);
5538 if (!prepare_alloc_pages(gfp, order, preferred_nid, nodemask, &ac,
5539 &alloc_gfp, &alloc_flags))
5543 * Forbid the first pass from falling back to types that fragment
5544 * memory until all local zones are considered.
5546 alloc_flags |= alloc_flags_nofragment(ac.preferred_zoneref->zone, gfp);
5548 /* First allocation attempt */
5549 page = get_page_from_freelist(alloc_gfp, order, alloc_flags, &ac);
5554 ac.spread_dirty_pages = false;
5557 * Restore the original nodemask if it was potentially replaced with
5558 * &cpuset_current_mems_allowed to optimize the fast-path attempt.
5560 ac.nodemask = nodemask;
5562 page = __alloc_pages_slowpath(alloc_gfp, order, &ac);
5565 if (memcg_kmem_enabled() && (gfp & __GFP_ACCOUNT) && page &&
5566 unlikely(__memcg_kmem_charge_page(page, gfp, order) != 0)) {
5567 __free_pages(page, order);
5571 trace_mm_page_alloc(page, order, alloc_gfp, ac.migratetype);
5575 EXPORT_SYMBOL(__alloc_pages);
5577 struct folio *__folio_alloc(gfp_t gfp, unsigned int order, int preferred_nid,
5578 nodemask_t *nodemask)
5580 struct page *page = __alloc_pages(gfp | __GFP_COMP, order,
5581 preferred_nid, nodemask);
5583 if (page && order > 1)
5584 prep_transhuge_page(page);
5585 return (struct folio *)page;
5587 EXPORT_SYMBOL(__folio_alloc);
5590 * Common helper functions. Never use with __GFP_HIGHMEM because the returned
5591 * address cannot represent highmem pages. Use alloc_pages and then kmap if
5592 * you need to access high mem.
5594 unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
5598 page = alloc_pages(gfp_mask & ~__GFP_HIGHMEM, order);
5601 return (unsigned long) page_address(page);
5603 EXPORT_SYMBOL(__get_free_pages);
5605 unsigned long get_zeroed_page(gfp_t gfp_mask)
5607 return __get_free_pages(gfp_mask | __GFP_ZERO, 0);
5609 EXPORT_SYMBOL(get_zeroed_page);
5612 * __free_pages - Free pages allocated with alloc_pages().
5613 * @page: The page pointer returned from alloc_pages().
5614 * @order: The order of the allocation.
5616 * This function can free multi-page allocations that are not compound
5617 * pages. It does not check that the @order passed in matches that of
5618 * the allocation, so it is easy to leak memory. Freeing more memory
5619 * than was allocated will probably emit a warning.
5621 * If the last reference to this page is speculative, it will be released
5622 * by put_page() which only frees the first page of a non-compound
5623 * allocation. To prevent the remaining pages from being leaked, we free
5624 * the subsequent pages here. If you want to use the page's reference
5625 * count to decide when to free the allocation, you should allocate a
5626 * compound page, and use put_page() instead of __free_pages().
5628 * Context: May be called in interrupt context or while holding a normal
5629 * spinlock, but not in NMI context or while holding a raw spinlock.
5631 void __free_pages(struct page *page, unsigned int order)
5633 if (put_page_testzero(page))
5634 free_the_page(page, order);
5635 else if (!PageHead(page))
5637 free_the_page(page + (1 << order), order);
5639 EXPORT_SYMBOL(__free_pages);
5641 void free_pages(unsigned long addr, unsigned int order)
5644 VM_BUG_ON(!virt_addr_valid((void *)addr));
5645 __free_pages(virt_to_page((void *)addr), order);
5649 EXPORT_SYMBOL(free_pages);
5653 * An arbitrary-length arbitrary-offset area of memory which resides
5654 * within a 0 or higher order page. Multiple fragments within that page
5655 * are individually refcounted, in the page's reference counter.
5657 * The page_frag functions below provide a simple allocation framework for
5658 * page fragments. This is used by the network stack and network device
5659 * drivers to provide a backing region of memory for use as either an
5660 * sk_buff->head, or to be used in the "frags" portion of skb_shared_info.
5662 static struct page *__page_frag_cache_refill(struct page_frag_cache *nc,
5665 struct page *page = NULL;
5666 gfp_t gfp = gfp_mask;
5668 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
5669 gfp_mask |= __GFP_COMP | __GFP_NOWARN | __GFP_NORETRY |
5671 page = alloc_pages_node(NUMA_NO_NODE, gfp_mask,
5672 PAGE_FRAG_CACHE_MAX_ORDER);
5673 nc->size = page ? PAGE_FRAG_CACHE_MAX_SIZE : PAGE_SIZE;
5675 if (unlikely(!page))
5676 page = alloc_pages_node(NUMA_NO_NODE, gfp, 0);
5678 nc->va = page ? page_address(page) : NULL;
5683 void __page_frag_cache_drain(struct page *page, unsigned int count)
5685 VM_BUG_ON_PAGE(page_ref_count(page) == 0, page);
5687 if (page_ref_sub_and_test(page, count))
5688 free_the_page(page, compound_order(page));
5690 EXPORT_SYMBOL(__page_frag_cache_drain);
5692 void *page_frag_alloc_align(struct page_frag_cache *nc,
5693 unsigned int fragsz, gfp_t gfp_mask,
5694 unsigned int align_mask)
5696 unsigned int size = PAGE_SIZE;
5700 if (unlikely(!nc->va)) {
5702 page = __page_frag_cache_refill(nc, gfp_mask);
5706 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
5707 /* if size can vary use size else just use PAGE_SIZE */
5710 /* Even if we own the page, we do not use atomic_set().
5711 * This would break get_page_unless_zero() users.
5713 page_ref_add(page, PAGE_FRAG_CACHE_MAX_SIZE);
5715 /* reset page count bias and offset to start of new frag */
5716 nc->pfmemalloc = page_is_pfmemalloc(page);
5717 nc->pagecnt_bias = PAGE_FRAG_CACHE_MAX_SIZE + 1;
5721 offset = nc->offset - fragsz;
5722 if (unlikely(offset < 0)) {
5723 page = virt_to_page(nc->va);
5725 if (!page_ref_sub_and_test(page, nc->pagecnt_bias))
5728 if (unlikely(nc->pfmemalloc)) {
5729 free_the_page(page, compound_order(page));
5733 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
5734 /* if size can vary use size else just use PAGE_SIZE */
5737 /* OK, page count is 0, we can safely set it */
5738 set_page_count(page, PAGE_FRAG_CACHE_MAX_SIZE + 1);
5740 /* reset page count bias and offset to start of new frag */
5741 nc->pagecnt_bias = PAGE_FRAG_CACHE_MAX_SIZE + 1;
5742 offset = size - fragsz;
5743 if (unlikely(offset < 0)) {
5745 * The caller is trying to allocate a fragment
5746 * with fragsz > PAGE_SIZE but the cache isn't big
5747 * enough to satisfy the request, this may
5748 * happen in low memory conditions.
5749 * We don't release the cache page because
5750 * it could make memory pressure worse
5751 * so we simply return NULL here.
5758 offset &= align_mask;
5759 nc->offset = offset;
5761 return nc->va + offset;
5763 EXPORT_SYMBOL(page_frag_alloc_align);
5766 * Frees a page fragment allocated out of either a compound or order 0 page.
5768 void page_frag_free(void *addr)
5770 struct page *page = virt_to_head_page(addr);
5772 if (unlikely(put_page_testzero(page)))
5773 free_the_page(page, compound_order(page));
5775 EXPORT_SYMBOL(page_frag_free);
5777 static void *make_alloc_exact(unsigned long addr, unsigned int order,
5781 unsigned long alloc_end = addr + (PAGE_SIZE << order);
5782 unsigned long used = addr + PAGE_ALIGN(size);
5784 split_page(virt_to_page((void *)addr), order);
5785 while (used < alloc_end) {
5790 return (void *)addr;
5794 * alloc_pages_exact - allocate an exact number physically-contiguous pages.
5795 * @size: the number of bytes to allocate
5796 * @gfp_mask: GFP flags for the allocation, must not contain __GFP_COMP
5798 * This function is similar to alloc_pages(), except that it allocates the
5799 * minimum number of pages to satisfy the request. alloc_pages() can only
5800 * allocate memory in power-of-two pages.
5802 * This function is also limited by MAX_ORDER.
5804 * Memory allocated by this function must be released by free_pages_exact().
5806 * Return: pointer to the allocated area or %NULL in case of error.
5808 void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
5810 unsigned int order = get_order(size);
5813 if (WARN_ON_ONCE(gfp_mask & (__GFP_COMP | __GFP_HIGHMEM)))
5814 gfp_mask &= ~(__GFP_COMP | __GFP_HIGHMEM);
5816 addr = __get_free_pages(gfp_mask, order);
5817 return make_alloc_exact(addr, order, size);
5819 EXPORT_SYMBOL(alloc_pages_exact);
5822 * alloc_pages_exact_nid - allocate an exact number of physically-contiguous
5824 * @nid: the preferred node ID where memory should be allocated
5825 * @size: the number of bytes to allocate
5826 * @gfp_mask: GFP flags for the allocation, must not contain __GFP_COMP
5828 * Like alloc_pages_exact(), but try to allocate on node nid first before falling
5831 * Return: pointer to the allocated area or %NULL in case of error.
5833 void * __meminit alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask)
5835 unsigned int order = get_order(size);
5838 if (WARN_ON_ONCE(gfp_mask & (__GFP_COMP | __GFP_HIGHMEM)))
5839 gfp_mask &= ~(__GFP_COMP | __GFP_HIGHMEM);
5841 p = alloc_pages_node(nid, gfp_mask, order);
5844 return make_alloc_exact((unsigned long)page_address(p), order, size);
5848 * free_pages_exact - release memory allocated via alloc_pages_exact()
5849 * @virt: the value returned by alloc_pages_exact.
5850 * @size: size of allocation, same value as passed to alloc_pages_exact().
5852 * Release the memory allocated by a previous call to alloc_pages_exact.
5854 void free_pages_exact(void *virt, size_t size)
5856 unsigned long addr = (unsigned long)virt;
5857 unsigned long end = addr + PAGE_ALIGN(size);
5859 while (addr < end) {
5864 EXPORT_SYMBOL(free_pages_exact);
5867 * nr_free_zone_pages - count number of pages beyond high watermark
5868 * @offset: The zone index of the highest zone
5870 * nr_free_zone_pages() counts the number of pages which are beyond the
5871 * high watermark within all zones at or below a given zone index. For each
5872 * zone, the number of pages is calculated as:
5874 * nr_free_zone_pages = managed_pages - high_pages
5876 * Return: number of pages beyond high watermark.
5878 static unsigned long nr_free_zone_pages(int offset)
5883 /* Just pick one node, since fallback list is circular */
5884 unsigned long sum = 0;
5886 struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
5888 for_each_zone_zonelist(zone, z, zonelist, offset) {
5889 unsigned long size = zone_managed_pages(zone);
5890 unsigned long high = high_wmark_pages(zone);
5899 * nr_free_buffer_pages - count number of pages beyond high watermark
5901 * nr_free_buffer_pages() counts the number of pages which are beyond the high
5902 * watermark within ZONE_DMA and ZONE_NORMAL.
5904 * Return: number of pages beyond high watermark within ZONE_DMA and
5907 unsigned long nr_free_buffer_pages(void)
5909 return nr_free_zone_pages(gfp_zone(GFP_USER));
5911 EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
5913 static inline void show_node(struct zone *zone)
5915 if (IS_ENABLED(CONFIG_NUMA))
5916 printk("Node %d ", zone_to_nid(zone));
5919 long si_mem_available(void)
5922 unsigned long pagecache;
5923 unsigned long wmark_low = 0;
5924 unsigned long pages[NR_LRU_LISTS];
5925 unsigned long reclaimable;
5929 for (lru = LRU_BASE; lru < NR_LRU_LISTS; lru++)
5930 pages[lru] = global_node_page_state(NR_LRU_BASE + lru);
5933 wmark_low += low_wmark_pages(zone);
5936 * Estimate the amount of memory available for userspace allocations,
5937 * without causing swapping or OOM.
5939 available = global_zone_page_state(NR_FREE_PAGES) - totalreserve_pages;
5942 * Not all the page cache can be freed, otherwise the system will
5943 * start swapping or thrashing. Assume at least half of the page
5944 * cache, or the low watermark worth of cache, needs to stay.
5946 pagecache = pages[LRU_ACTIVE_FILE] + pages[LRU_INACTIVE_FILE];
5947 pagecache -= min(pagecache / 2, wmark_low);
5948 available += pagecache;
5951 * Part of the reclaimable slab and other kernel memory consists of
5952 * items that are in use, and cannot be freed. Cap this estimate at the
5955 reclaimable = global_node_page_state_pages(NR_SLAB_RECLAIMABLE_B) +
5956 global_node_page_state(NR_KERNEL_MISC_RECLAIMABLE);
5957 available += reclaimable - min(reclaimable / 2, wmark_low);
5963 EXPORT_SYMBOL_GPL(si_mem_available);
5965 void si_meminfo(struct sysinfo *val)
5967 val->totalram = totalram_pages();
5968 val->sharedram = global_node_page_state(NR_SHMEM);
5969 val->freeram = global_zone_page_state(NR_FREE_PAGES);
5970 val->bufferram = nr_blockdev_pages();
5971 val->totalhigh = totalhigh_pages();
5972 val->freehigh = nr_free_highpages();
5973 val->mem_unit = PAGE_SIZE;
5976 EXPORT_SYMBOL(si_meminfo);
5979 void si_meminfo_node(struct sysinfo *val, int nid)
5981 int zone_type; /* needs to be signed */
5982 unsigned long managed_pages = 0;
5983 unsigned long managed_highpages = 0;
5984 unsigned long free_highpages = 0;
5985 pg_data_t *pgdat = NODE_DATA(nid);
5987 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++)
5988 managed_pages += zone_managed_pages(&pgdat->node_zones[zone_type]);
5989 val->totalram = managed_pages;
5990 val->sharedram = node_page_state(pgdat, NR_SHMEM);
5991 val->freeram = sum_zone_node_page_state(nid, NR_FREE_PAGES);
5992 #ifdef CONFIG_HIGHMEM
5993 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
5994 struct zone *zone = &pgdat->node_zones[zone_type];
5996 if (is_highmem(zone)) {
5997 managed_highpages += zone_managed_pages(zone);
5998 free_highpages += zone_page_state(zone, NR_FREE_PAGES);
6001 val->totalhigh = managed_highpages;
6002 val->freehigh = free_highpages;
6004 val->totalhigh = managed_highpages;
6005 val->freehigh = free_highpages;
6007 val->mem_unit = PAGE_SIZE;
6012 * Determine whether the node should be displayed or not, depending on whether
6013 * SHOW_MEM_FILTER_NODES was passed to show_free_areas().
6015 static bool show_mem_node_skip(unsigned int flags, int nid, nodemask_t *nodemask)
6017 if (!(flags & SHOW_MEM_FILTER_NODES))
6021 * no node mask - aka implicit memory numa policy. Do not bother with
6022 * the synchronization - read_mems_allowed_begin - because we do not
6023 * have to be precise here.
6026 nodemask = &cpuset_current_mems_allowed;
6028 return !node_isset(nid, *nodemask);
6031 #define K(x) ((x) << (PAGE_SHIFT-10))
6033 static void show_migration_types(unsigned char type)
6035 static const char types[MIGRATE_TYPES] = {
6036 [MIGRATE_UNMOVABLE] = 'U',
6037 [MIGRATE_MOVABLE] = 'M',
6038 [MIGRATE_RECLAIMABLE] = 'E',
6039 [MIGRATE_HIGHATOMIC] = 'H',
6041 [MIGRATE_CMA] = 'C',
6043 #ifdef CONFIG_MEMORY_ISOLATION
6044 [MIGRATE_ISOLATE] = 'I',
6047 char tmp[MIGRATE_TYPES + 1];
6051 for (i = 0; i < MIGRATE_TYPES; i++) {
6052 if (type & (1 << i))
6057 printk(KERN_CONT "(%s) ", tmp);
6061 * Show free area list (used inside shift_scroll-lock stuff)
6062 * We also calculate the percentage fragmentation. We do this by counting the
6063 * memory on each free list with the exception of the first item on the list.
6066 * SHOW_MEM_FILTER_NODES: suppress nodes that are not allowed by current's
6069 void show_free_areas(unsigned int filter, nodemask_t *nodemask)
6071 unsigned long free_pcp = 0;
6076 for_each_populated_zone(zone) {
6077 if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
6080 for_each_online_cpu(cpu)
6081 free_pcp += per_cpu_ptr(zone->per_cpu_pageset, cpu)->count;
6084 printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n"
6085 " active_file:%lu inactive_file:%lu isolated_file:%lu\n"
6086 " unevictable:%lu dirty:%lu writeback:%lu\n"
6087 " slab_reclaimable:%lu slab_unreclaimable:%lu\n"
6088 " mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n"
6089 " kernel_misc_reclaimable:%lu\n"
6090 " free:%lu free_pcp:%lu free_cma:%lu\n",
6091 global_node_page_state(NR_ACTIVE_ANON),
6092 global_node_page_state(NR_INACTIVE_ANON),
6093 global_node_page_state(NR_ISOLATED_ANON),
6094 global_node_page_state(NR_ACTIVE_FILE),
6095 global_node_page_state(NR_INACTIVE_FILE),
6096 global_node_page_state(NR_ISOLATED_FILE),
6097 global_node_page_state(NR_UNEVICTABLE),
6098 global_node_page_state(NR_FILE_DIRTY),
6099 global_node_page_state(NR_WRITEBACK),
6100 global_node_page_state_pages(NR_SLAB_RECLAIMABLE_B),
6101 global_node_page_state_pages(NR_SLAB_UNRECLAIMABLE_B),
6102 global_node_page_state(NR_FILE_MAPPED),
6103 global_node_page_state(NR_SHMEM),
6104 global_node_page_state(NR_PAGETABLE),
6105 global_zone_page_state(NR_BOUNCE),
6106 global_node_page_state(NR_KERNEL_MISC_RECLAIMABLE),
6107 global_zone_page_state(NR_FREE_PAGES),
6109 global_zone_page_state(NR_FREE_CMA_PAGES));
6111 for_each_online_pgdat(pgdat) {
6112 if (show_mem_node_skip(filter, pgdat->node_id, nodemask))
6116 " active_anon:%lukB"
6117 " inactive_anon:%lukB"
6118 " active_file:%lukB"
6119 " inactive_file:%lukB"
6120 " unevictable:%lukB"
6121 " isolated(anon):%lukB"
6122 " isolated(file):%lukB"
6127 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
6129 " shmem_pmdmapped: %lukB"
6132 " writeback_tmp:%lukB"
6133 " kernel_stack:%lukB"
6134 #ifdef CONFIG_SHADOW_CALL_STACK
6135 " shadow_call_stack:%lukB"
6138 " all_unreclaimable? %s"
6141 K(node_page_state(pgdat, NR_ACTIVE_ANON)),
6142 K(node_page_state(pgdat, NR_INACTIVE_ANON)),
6143 K(node_page_state(pgdat, NR_ACTIVE_FILE)),
6144 K(node_page_state(pgdat, NR_INACTIVE_FILE)),
6145 K(node_page_state(pgdat, NR_UNEVICTABLE)),
6146 K(node_page_state(pgdat, NR_ISOLATED_ANON)),
6147 K(node_page_state(pgdat, NR_ISOLATED_FILE)),
6148 K(node_page_state(pgdat, NR_FILE_MAPPED)),
6149 K(node_page_state(pgdat, NR_FILE_DIRTY)),
6150 K(node_page_state(pgdat, NR_WRITEBACK)),
6151 K(node_page_state(pgdat, NR_SHMEM)),
6152 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
6153 K(node_page_state(pgdat, NR_SHMEM_THPS)),
6154 K(node_page_state(pgdat, NR_SHMEM_PMDMAPPED)),
6155 K(node_page_state(pgdat, NR_ANON_THPS)),
6157 K(node_page_state(pgdat, NR_WRITEBACK_TEMP)),
6158 node_page_state(pgdat, NR_KERNEL_STACK_KB),
6159 #ifdef CONFIG_SHADOW_CALL_STACK
6160 node_page_state(pgdat, NR_KERNEL_SCS_KB),
6162 K(node_page_state(pgdat, NR_PAGETABLE)),
6163 pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES ?
6167 for_each_populated_zone(zone) {
6170 if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
6174 for_each_online_cpu(cpu)
6175 free_pcp += per_cpu_ptr(zone->per_cpu_pageset, cpu)->count;
6185 " reserved_highatomic:%luKB"
6186 " active_anon:%lukB"
6187 " inactive_anon:%lukB"
6188 " active_file:%lukB"
6189 " inactive_file:%lukB"
6190 " unevictable:%lukB"
6191 " writepending:%lukB"
6201 K(zone_page_state(zone, NR_FREE_PAGES)),
6202 K(zone->watermark_boost),
6203 K(min_wmark_pages(zone)),
6204 K(low_wmark_pages(zone)),
6205 K(high_wmark_pages(zone)),
6206 K(zone->nr_reserved_highatomic),
6207 K(zone_page_state(zone, NR_ZONE_ACTIVE_ANON)),
6208 K(zone_page_state(zone, NR_ZONE_INACTIVE_ANON)),
6209 K(zone_page_state(zone, NR_ZONE_ACTIVE_FILE)),
6210 K(zone_page_state(zone, NR_ZONE_INACTIVE_FILE)),
6211 K(zone_page_state(zone, NR_ZONE_UNEVICTABLE)),
6212 K(zone_page_state(zone, NR_ZONE_WRITE_PENDING)),
6213 K(zone->present_pages),
6214 K(zone_managed_pages(zone)),
6215 K(zone_page_state(zone, NR_MLOCK)),
6216 K(zone_page_state(zone, NR_BOUNCE)),
6218 K(this_cpu_read(zone->per_cpu_pageset->count)),
6219 K(zone_page_state(zone, NR_FREE_CMA_PAGES)));
6220 printk("lowmem_reserve[]:");
6221 for (i = 0; i < MAX_NR_ZONES; i++)
6222 printk(KERN_CONT " %ld", zone->lowmem_reserve[i]);
6223 printk(KERN_CONT "\n");
6226 for_each_populated_zone(zone) {
6228 unsigned long nr[MAX_ORDER], flags, total = 0;
6229 unsigned char types[MAX_ORDER];
6231 if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
6234 printk(KERN_CONT "%s: ", zone->name);
6236 spin_lock_irqsave(&zone->lock, flags);
6237 for (order = 0; order < MAX_ORDER; order++) {
6238 struct free_area *area = &zone->free_area[order];
6241 nr[order] = area->nr_free;
6242 total += nr[order] << order;
6245 for (type = 0; type < MIGRATE_TYPES; type++) {
6246 if (!free_area_empty(area, type))
6247 types[order] |= 1 << type;
6250 spin_unlock_irqrestore(&zone->lock, flags);
6251 for (order = 0; order < MAX_ORDER; order++) {
6252 printk(KERN_CONT "%lu*%lukB ",
6253 nr[order], K(1UL) << order);
6255 show_migration_types(types[order]);
6257 printk(KERN_CONT "= %lukB\n", K(total));
6260 for_each_online_node(nid) {
6261 if (show_mem_node_skip(filter, nid, nodemask))
6263 hugetlb_show_meminfo_node(nid);
6266 printk("%ld total pagecache pages\n", global_node_page_state(NR_FILE_PAGES));
6268 show_swap_cache_info();
6271 static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
6273 zoneref->zone = zone;
6274 zoneref->zone_idx = zone_idx(zone);
6278 * Builds allocation fallback zone lists.
6280 * Add all populated zones of a node to the zonelist.
6282 static int build_zonerefs_node(pg_data_t *pgdat, struct zoneref *zonerefs)
6285 enum zone_type zone_type = MAX_NR_ZONES;
6290 zone = pgdat->node_zones + zone_type;
6291 if (populated_zone(zone)) {
6292 zoneref_set_zone(zone, &zonerefs[nr_zones++]);
6293 check_highest_zone(zone_type);
6295 } while (zone_type);
6302 static int __parse_numa_zonelist_order(char *s)
6305 * We used to support different zonelists modes but they turned
6306 * out to be just not useful. Let's keep the warning in place
6307 * if somebody still use the cmd line parameter so that we do
6308 * not fail it silently
6310 if (!(*s == 'd' || *s == 'D' || *s == 'n' || *s == 'N')) {
6311 pr_warn("Ignoring unsupported numa_zonelist_order value: %s\n", s);
6317 char numa_zonelist_order[] = "Node";
6320 * sysctl handler for numa_zonelist_order
6322 int numa_zonelist_order_handler(struct ctl_table *table, int write,
6323 void *buffer, size_t *length, loff_t *ppos)
6326 return __parse_numa_zonelist_order(buffer);
6327 return proc_dostring(table, write, buffer, length, ppos);
6331 static int node_load[MAX_NUMNODES];
6334 * find_next_best_node - find the next node that should appear in a given node's fallback list
6335 * @node: node whose fallback list we're appending
6336 * @used_node_mask: nodemask_t of already used nodes
6338 * We use a number of factors to determine which is the next node that should
6339 * appear on a given node's fallback list. The node should not have appeared
6340 * already in @node's fallback list, and it should be the next closest node
6341 * according to the distance array (which contains arbitrary distance values
6342 * from each node to each node in the system), and should also prefer nodes
6343 * with no CPUs, since presumably they'll have very little allocation pressure
6344 * on them otherwise.
6346 * Return: node id of the found node or %NUMA_NO_NODE if no node is found.
6348 int find_next_best_node(int node, nodemask_t *used_node_mask)
6351 int min_val = INT_MAX;
6352 int best_node = NUMA_NO_NODE;
6354 /* Use the local node if we haven't already */
6355 if (!node_isset(node, *used_node_mask)) {
6356 node_set(node, *used_node_mask);
6360 for_each_node_state(n, N_MEMORY) {
6362 /* Don't want a node to appear more than once */
6363 if (node_isset(n, *used_node_mask))
6366 /* Use the distance array to find the distance */
6367 val = node_distance(node, n);
6369 /* Penalize nodes under us ("prefer the next node") */
6372 /* Give preference to headless and unused nodes */
6373 if (!cpumask_empty(cpumask_of_node(n)))
6374 val += PENALTY_FOR_NODE_WITH_CPUS;
6376 /* Slight preference for less loaded node */
6377 val *= MAX_NUMNODES;
6378 val += node_load[n];
6380 if (val < min_val) {
6387 node_set(best_node, *used_node_mask);
6394 * Build zonelists ordered by node and zones within node.
6395 * This results in maximum locality--normal zone overflows into local
6396 * DMA zone, if any--but risks exhausting DMA zone.
6398 static void build_zonelists_in_node_order(pg_data_t *pgdat, int *node_order,
6401 struct zoneref *zonerefs;
6404 zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs;
6406 for (i = 0; i < nr_nodes; i++) {
6409 pg_data_t *node = NODE_DATA(node_order[i]);
6411 nr_zones = build_zonerefs_node(node, zonerefs);
6412 zonerefs += nr_zones;
6414 zonerefs->zone = NULL;
6415 zonerefs->zone_idx = 0;
6419 * Build gfp_thisnode zonelists
6421 static void build_thisnode_zonelists(pg_data_t *pgdat)
6423 struct zoneref *zonerefs;
6426 zonerefs = pgdat->node_zonelists[ZONELIST_NOFALLBACK]._zonerefs;
6427 nr_zones = build_zonerefs_node(pgdat, zonerefs);
6428 zonerefs += nr_zones;
6429 zonerefs->zone = NULL;
6430 zonerefs->zone_idx = 0;
6434 * Build zonelists ordered by zone and nodes within zones.
6435 * This results in conserving DMA zone[s] until all Normal memory is
6436 * exhausted, but results in overflowing to remote node while memory
6437 * may still exist in local DMA zone.
6440 static void build_zonelists(pg_data_t *pgdat)
6442 static int node_order[MAX_NUMNODES];
6443 int node, nr_nodes = 0;
6444 nodemask_t used_mask = NODE_MASK_NONE;
6445 int local_node, prev_node;
6447 /* NUMA-aware ordering of nodes */
6448 local_node = pgdat->node_id;
6449 prev_node = local_node;
6451 memset(node_order, 0, sizeof(node_order));
6452 while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
6454 * We don't want to pressure a particular node.
6455 * So adding penalty to the first node in same
6456 * distance group to make it round-robin.
6458 if (node_distance(local_node, node) !=
6459 node_distance(local_node, prev_node))
6460 node_load[node] += 1;
6462 node_order[nr_nodes++] = node;
6466 build_zonelists_in_node_order(pgdat, node_order, nr_nodes);
6467 build_thisnode_zonelists(pgdat);
6468 pr_info("Fallback order for Node %d: ", local_node);
6469 for (node = 0; node < nr_nodes; node++)
6470 pr_cont("%d ", node_order[node]);
6474 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
6476 * Return node id of node used for "local" allocations.
6477 * I.e., first node id of first zone in arg node's generic zonelist.
6478 * Used for initializing percpu 'numa_mem', which is used primarily
6479 * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
6481 int local_memory_node(int node)
6485 z = first_zones_zonelist(node_zonelist(node, GFP_KERNEL),
6486 gfp_zone(GFP_KERNEL),
6488 return zone_to_nid(z->zone);
6492 static void setup_min_unmapped_ratio(void);
6493 static void setup_min_slab_ratio(void);
6494 #else /* CONFIG_NUMA */
6496 static void build_zonelists(pg_data_t *pgdat)
6498 int node, local_node;
6499 struct zoneref *zonerefs;
6502 local_node = pgdat->node_id;
6504 zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs;
6505 nr_zones = build_zonerefs_node(pgdat, zonerefs);
6506 zonerefs += nr_zones;
6509 * Now we build the zonelist so that it contains the zones
6510 * of all the other nodes.
6511 * We don't want to pressure a particular node, so when
6512 * building the zones for node N, we make sure that the
6513 * zones coming right after the local ones are those from
6514 * node N+1 (modulo N)
6516 for (node = local_node + 1; node < MAX_NUMNODES; node++) {
6517 if (!node_online(node))
6519 nr_zones = build_zonerefs_node(NODE_DATA(node), zonerefs);
6520 zonerefs += nr_zones;
6522 for (node = 0; node < local_node; node++) {
6523 if (!node_online(node))
6525 nr_zones = build_zonerefs_node(NODE_DATA(node), zonerefs);
6526 zonerefs += nr_zones;
6529 zonerefs->zone = NULL;
6530 zonerefs->zone_idx = 0;
6533 #endif /* CONFIG_NUMA */
6536 * Boot pageset table. One per cpu which is going to be used for all
6537 * zones and all nodes. The parameters will be set in such a way
6538 * that an item put on a list will immediately be handed over to
6539 * the buddy list. This is safe since pageset manipulation is done
6540 * with interrupts disabled.
6542 * The boot_pagesets must be kept even after bootup is complete for
6543 * unused processors and/or zones. They do play a role for bootstrapping
6544 * hotplugged processors.
6546 * zoneinfo_show() and maybe other functions do
6547 * not check if the processor is online before following the pageset pointer.
6548 * Other parts of the kernel may not check if the zone is available.
6550 static void per_cpu_pages_init(struct per_cpu_pages *pcp, struct per_cpu_zonestat *pzstats);
6551 /* These effectively disable the pcplists in the boot pageset completely */
6552 #define BOOT_PAGESET_HIGH 0
6553 #define BOOT_PAGESET_BATCH 1
6554 static DEFINE_PER_CPU(struct per_cpu_pages, boot_pageset);
6555 static DEFINE_PER_CPU(struct per_cpu_zonestat, boot_zonestats);
6556 DEFINE_PER_CPU(struct per_cpu_nodestat, boot_nodestats);
6558 static void __build_all_zonelists(void *data)
6561 int __maybe_unused cpu;
6562 pg_data_t *self = data;
6564 write_seqlock(&zonelist_update_seq);
6567 memset(node_load, 0, sizeof(node_load));
6571 * This node is hotadded and no memory is yet present. So just
6572 * building zonelists is fine - no need to touch other nodes.
6574 if (self && !node_online(self->node_id)) {
6575 build_zonelists(self);
6578 * All possible nodes have pgdat preallocated
6581 for_each_node(nid) {
6582 pg_data_t *pgdat = NODE_DATA(nid);
6584 build_zonelists(pgdat);
6587 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
6589 * We now know the "local memory node" for each node--
6590 * i.e., the node of the first zone in the generic zonelist.
6591 * Set up numa_mem percpu variable for on-line cpus. During
6592 * boot, only the boot cpu should be on-line; we'll init the
6593 * secondary cpus' numa_mem as they come on-line. During
6594 * node/memory hotplug, we'll fixup all on-line cpus.
6596 for_each_online_cpu(cpu)
6597 set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu)));
6601 write_sequnlock(&zonelist_update_seq);
6604 static noinline void __init
6605 build_all_zonelists_init(void)
6609 __build_all_zonelists(NULL);
6612 * Initialize the boot_pagesets that are going to be used
6613 * for bootstrapping processors. The real pagesets for
6614 * each zone will be allocated later when the per cpu
6615 * allocator is available.
6617 * boot_pagesets are used also for bootstrapping offline
6618 * cpus if the system is already booted because the pagesets
6619 * are needed to initialize allocators on a specific cpu too.
6620 * F.e. the percpu allocator needs the page allocator which
6621 * needs the percpu allocator in order to allocate its pagesets
6622 * (a chicken-egg dilemma).
6624 for_each_possible_cpu(cpu)
6625 per_cpu_pages_init(&per_cpu(boot_pageset, cpu), &per_cpu(boot_zonestats, cpu));
6627 mminit_verify_zonelist();
6628 cpuset_init_current_mems_allowed();
6632 * unless system_state == SYSTEM_BOOTING.
6634 * __ref due to call of __init annotated helper build_all_zonelists_init
6635 * [protected by SYSTEM_BOOTING].
6637 void __ref build_all_zonelists(pg_data_t *pgdat)
6639 unsigned long vm_total_pages;
6641 if (system_state == SYSTEM_BOOTING) {
6642 build_all_zonelists_init();
6644 __build_all_zonelists(pgdat);
6645 /* cpuset refresh routine should be here */
6647 /* Get the number of free pages beyond high watermark in all zones. */
6648 vm_total_pages = nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
6650 * Disable grouping by mobility if the number of pages in the
6651 * system is too low to allow the mechanism to work. It would be
6652 * more accurate, but expensive to check per-zone. This check is
6653 * made on memory-hotadd so a system can start with mobility
6654 * disabled and enable it later
6656 if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
6657 page_group_by_mobility_disabled = 1;
6659 page_group_by_mobility_disabled = 0;
6661 pr_info("Built %u zonelists, mobility grouping %s. Total pages: %ld\n",
6663 page_group_by_mobility_disabled ? "off" : "on",
6666 pr_info("Policy zone: %s\n", zone_names[policy_zone]);
6670 /* If zone is ZONE_MOVABLE but memory is mirrored, it is an overlapped init */
6671 static bool __meminit
6672 overlap_memmap_init(unsigned long zone, unsigned long *pfn)
6674 static struct memblock_region *r;
6676 if (mirrored_kernelcore && zone == ZONE_MOVABLE) {
6677 if (!r || *pfn >= memblock_region_memory_end_pfn(r)) {
6678 for_each_mem_region(r) {
6679 if (*pfn < memblock_region_memory_end_pfn(r))
6683 if (*pfn >= memblock_region_memory_base_pfn(r) &&
6684 memblock_is_mirror(r)) {
6685 *pfn = memblock_region_memory_end_pfn(r);
6693 * Initially all pages are reserved - free ones are freed
6694 * up by memblock_free_all() once the early boot process is
6695 * done. Non-atomic initialization, single-pass.
6697 * All aligned pageblocks are initialized to the specified migratetype
6698 * (usually MIGRATE_MOVABLE). Besides setting the migratetype, no related
6699 * zone stats (e.g., nr_isolate_pageblock) are touched.
6701 void __meminit memmap_init_range(unsigned long size, int nid, unsigned long zone,
6702 unsigned long start_pfn, unsigned long zone_end_pfn,
6703 enum meminit_context context,
6704 struct vmem_altmap *altmap, int migratetype)
6706 unsigned long pfn, end_pfn = start_pfn + size;
6709 if (highest_memmap_pfn < end_pfn - 1)
6710 highest_memmap_pfn = end_pfn - 1;
6712 #ifdef CONFIG_ZONE_DEVICE
6714 * Honor reservation requested by the driver for this ZONE_DEVICE
6715 * memory. We limit the total number of pages to initialize to just
6716 * those that might contain the memory mapping. We will defer the
6717 * ZONE_DEVICE page initialization until after we have released
6720 if (zone == ZONE_DEVICE) {
6724 if (start_pfn == altmap->base_pfn)
6725 start_pfn += altmap->reserve;
6726 end_pfn = altmap->base_pfn + vmem_altmap_offset(altmap);
6730 for (pfn = start_pfn; pfn < end_pfn; ) {
6732 * There can be holes in boot-time mem_map[]s handed to this
6733 * function. They do not exist on hotplugged memory.
6735 if (context == MEMINIT_EARLY) {
6736 if (overlap_memmap_init(zone, &pfn))
6738 if (defer_init(nid, pfn, zone_end_pfn))
6742 page = pfn_to_page(pfn);
6743 __init_single_page(page, pfn, zone, nid);
6744 if (context == MEMINIT_HOTPLUG)
6745 __SetPageReserved(page);
6748 * Usually, we want to mark the pageblock MIGRATE_MOVABLE,
6749 * such that unmovable allocations won't be scattered all
6750 * over the place during system boot.
6752 if (IS_ALIGNED(pfn, pageblock_nr_pages)) {
6753 set_pageblock_migratetype(page, migratetype);
6760 #ifdef CONFIG_ZONE_DEVICE
6761 static void __ref __init_zone_device_page(struct page *page, unsigned long pfn,
6762 unsigned long zone_idx, int nid,
6763 struct dev_pagemap *pgmap)
6766 __init_single_page(page, pfn, zone_idx, nid);
6769 * Mark page reserved as it will need to wait for onlining
6770 * phase for it to be fully associated with a zone.
6772 * We can use the non-atomic __set_bit operation for setting
6773 * the flag as we are still initializing the pages.
6775 __SetPageReserved(page);
6778 * ZONE_DEVICE pages union ->lru with a ->pgmap back pointer
6779 * and zone_device_data. It is a bug if a ZONE_DEVICE page is
6780 * ever freed or placed on a driver-private list.
6782 page->pgmap = pgmap;
6783 page->zone_device_data = NULL;
6786 * Mark the block movable so that blocks are reserved for
6787 * movable at startup. This will force kernel allocations
6788 * to reserve their blocks rather than leaking throughout
6789 * the address space during boot when many long-lived
6790 * kernel allocations are made.
6792 * Please note that MEMINIT_HOTPLUG path doesn't clear memmap
6793 * because this is done early in section_activate()
6795 if (IS_ALIGNED(pfn, pageblock_nr_pages)) {
6796 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
6802 * With compound page geometry and when struct pages are stored in ram most
6803 * tail pages are reused. Consequently, the amount of unique struct pages to
6804 * initialize is a lot smaller that the total amount of struct pages being
6805 * mapped. This is a paired / mild layering violation with explicit knowledge
6806 * of how the sparse_vmemmap internals handle compound pages in the lack
6807 * of an altmap. See vmemmap_populate_compound_pages().
6809 static inline unsigned long compound_nr_pages(struct vmem_altmap *altmap,
6810 unsigned long nr_pages)
6812 return is_power_of_2(sizeof(struct page)) &&
6813 !altmap ? 2 * (PAGE_SIZE / sizeof(struct page)) : nr_pages;
6816 static void __ref memmap_init_compound(struct page *head,
6817 unsigned long head_pfn,
6818 unsigned long zone_idx, int nid,
6819 struct dev_pagemap *pgmap,
6820 unsigned long nr_pages)
6822 unsigned long pfn, end_pfn = head_pfn + nr_pages;
6823 unsigned int order = pgmap->vmemmap_shift;
6825 __SetPageHead(head);
6826 for (pfn = head_pfn + 1; pfn < end_pfn; pfn++) {
6827 struct page *page = pfn_to_page(pfn);
6829 __init_zone_device_page(page, pfn, zone_idx, nid, pgmap);
6830 prep_compound_tail(head, pfn - head_pfn);
6831 set_page_count(page, 0);
6834 * The first tail page stores compound_mapcount_ptr() and
6835 * compound_order() and the second tail page stores
6836 * compound_pincount_ptr(). Call prep_compound_head() after
6837 * the first and second tail pages have been initialized to
6838 * not have the data overwritten.
6840 if (pfn == head_pfn + 2)
6841 prep_compound_head(head, order);
6845 void __ref memmap_init_zone_device(struct zone *zone,
6846 unsigned long start_pfn,
6847 unsigned long nr_pages,
6848 struct dev_pagemap *pgmap)
6850 unsigned long pfn, end_pfn = start_pfn + nr_pages;
6851 struct pglist_data *pgdat = zone->zone_pgdat;
6852 struct vmem_altmap *altmap = pgmap_altmap(pgmap);
6853 unsigned int pfns_per_compound = pgmap_vmemmap_nr(pgmap);
6854 unsigned long zone_idx = zone_idx(zone);
6855 unsigned long start = jiffies;
6856 int nid = pgdat->node_id;
6858 if (WARN_ON_ONCE(!pgmap || zone_idx(zone) != ZONE_DEVICE))
6862 * The call to memmap_init should have already taken care
6863 * of the pages reserved for the memmap, so we can just jump to
6864 * the end of that region and start processing the device pages.
6867 start_pfn = altmap->base_pfn + vmem_altmap_offset(altmap);
6868 nr_pages = end_pfn - start_pfn;
6871 for (pfn = start_pfn; pfn < end_pfn; pfn += pfns_per_compound) {
6872 struct page *page = pfn_to_page(pfn);
6874 __init_zone_device_page(page, pfn, zone_idx, nid, pgmap);
6876 if (pfns_per_compound == 1)
6879 memmap_init_compound(page, pfn, zone_idx, nid, pgmap,
6880 compound_nr_pages(altmap, pfns_per_compound));
6883 pr_info("%s initialised %lu pages in %ums\n", __func__,
6884 nr_pages, jiffies_to_msecs(jiffies - start));
6888 static void __meminit zone_init_free_lists(struct zone *zone)
6890 unsigned int order, t;
6891 for_each_migratetype_order(order, t) {
6892 INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
6893 zone->free_area[order].nr_free = 0;
6898 * Only struct pages that correspond to ranges defined by memblock.memory
6899 * are zeroed and initialized by going through __init_single_page() during
6900 * memmap_init_zone_range().
6902 * But, there could be struct pages that correspond to holes in
6903 * memblock.memory. This can happen because of the following reasons:
6904 * - physical memory bank size is not necessarily the exact multiple of the
6905 * arbitrary section size
6906 * - early reserved memory may not be listed in memblock.memory
6907 * - memory layouts defined with memmap= kernel parameter may not align
6908 * nicely with memmap sections
6910 * Explicitly initialize those struct pages so that:
6911 * - PG_Reserved is set
6912 * - zone and node links point to zone and node that span the page if the
6913 * hole is in the middle of a zone
6914 * - zone and node links point to adjacent zone/node if the hole falls on
6915 * the zone boundary; the pages in such holes will be prepended to the
6916 * zone/node above the hole except for the trailing pages in the last
6917 * section that will be appended to the zone/node below.
6919 static void __init init_unavailable_range(unsigned long spfn,
6926 for (pfn = spfn; pfn < epfn; pfn++) {
6927 if (!pfn_valid(ALIGN_DOWN(pfn, pageblock_nr_pages))) {
6928 pfn = ALIGN_DOWN(pfn, pageblock_nr_pages)
6929 + pageblock_nr_pages - 1;
6932 __init_single_page(pfn_to_page(pfn), pfn, zone, node);
6933 __SetPageReserved(pfn_to_page(pfn));
6938 pr_info("On node %d, zone %s: %lld pages in unavailable ranges",
6939 node, zone_names[zone], pgcnt);
6942 static void __init memmap_init_zone_range(struct zone *zone,
6943 unsigned long start_pfn,
6944 unsigned long end_pfn,
6945 unsigned long *hole_pfn)
6947 unsigned long zone_start_pfn = zone->zone_start_pfn;
6948 unsigned long zone_end_pfn = zone_start_pfn + zone->spanned_pages;
6949 int nid = zone_to_nid(zone), zone_id = zone_idx(zone);
6951 start_pfn = clamp(start_pfn, zone_start_pfn, zone_end_pfn);
6952 end_pfn = clamp(end_pfn, zone_start_pfn, zone_end_pfn);
6954 if (start_pfn >= end_pfn)
6957 memmap_init_range(end_pfn - start_pfn, nid, zone_id, start_pfn,
6958 zone_end_pfn, MEMINIT_EARLY, NULL, MIGRATE_MOVABLE);
6960 if (*hole_pfn < start_pfn)
6961 init_unavailable_range(*hole_pfn, start_pfn, zone_id, nid);
6963 *hole_pfn = end_pfn;
6966 static void __init memmap_init(void)
6968 unsigned long start_pfn, end_pfn;
6969 unsigned long hole_pfn = 0;
6970 int i, j, zone_id = 0, nid;
6972 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
6973 struct pglist_data *node = NODE_DATA(nid);
6975 for (j = 0; j < MAX_NR_ZONES; j++) {
6976 struct zone *zone = node->node_zones + j;
6978 if (!populated_zone(zone))
6981 memmap_init_zone_range(zone, start_pfn, end_pfn,
6987 #ifdef CONFIG_SPARSEMEM
6989 * Initialize the memory map for hole in the range [memory_end,
6991 * Append the pages in this hole to the highest zone in the last
6993 * The call to init_unavailable_range() is outside the ifdef to
6994 * silence the compiler warining about zone_id set but not used;
6995 * for FLATMEM it is a nop anyway
6997 end_pfn = round_up(end_pfn, PAGES_PER_SECTION);
6998 if (hole_pfn < end_pfn)
7000 init_unavailable_range(hole_pfn, end_pfn, zone_id, nid);
7003 void __init *memmap_alloc(phys_addr_t size, phys_addr_t align,
7004 phys_addr_t min_addr, int nid, bool exact_nid)
7009 ptr = memblock_alloc_exact_nid_raw(size, align, min_addr,
7010 MEMBLOCK_ALLOC_ACCESSIBLE,
7013 ptr = memblock_alloc_try_nid_raw(size, align, min_addr,
7014 MEMBLOCK_ALLOC_ACCESSIBLE,
7017 if (ptr && size > 0)
7018 page_init_poison(ptr, size);
7023 static int zone_batchsize(struct zone *zone)
7029 * The number of pages to batch allocate is either ~0.1%
7030 * of the zone or 1MB, whichever is smaller. The batch
7031 * size is striking a balance between allocation latency
7032 * and zone lock contention.
7034 batch = min(zone_managed_pages(zone) >> 10, (1024 * 1024) / PAGE_SIZE);
7035 batch /= 4; /* We effectively *= 4 below */
7040 * Clamp the batch to a 2^n - 1 value. Having a power
7041 * of 2 value was found to be more likely to have
7042 * suboptimal cache aliasing properties in some cases.
7044 * For example if 2 tasks are alternately allocating
7045 * batches of pages, one task can end up with a lot
7046 * of pages of one half of the possible page colors
7047 * and the other with pages of the other colors.
7049 batch = rounddown_pow_of_two(batch + batch/2) - 1;
7054 /* The deferral and batching of frees should be suppressed under NOMMU
7057 * The problem is that NOMMU needs to be able to allocate large chunks
7058 * of contiguous memory as there's no hardware page translation to
7059 * assemble apparent contiguous memory from discontiguous pages.
7061 * Queueing large contiguous runs of pages for batching, however,
7062 * causes the pages to actually be freed in smaller chunks. As there
7063 * can be a significant delay between the individual batches being
7064 * recycled, this leads to the once large chunks of space being
7065 * fragmented and becoming unavailable for high-order allocations.
7071 static int zone_highsize(struct zone *zone, int batch, int cpu_online)
7076 unsigned long total_pages;
7078 if (!percpu_pagelist_high_fraction) {
7080 * By default, the high value of the pcp is based on the zone
7081 * low watermark so that if they are full then background
7082 * reclaim will not be started prematurely.
7084 total_pages = low_wmark_pages(zone);
7087 * If percpu_pagelist_high_fraction is configured, the high
7088 * value is based on a fraction of the managed pages in the
7091 total_pages = zone_managed_pages(zone) / percpu_pagelist_high_fraction;
7095 * Split the high value across all online CPUs local to the zone. Note
7096 * that early in boot that CPUs may not be online yet and that during
7097 * CPU hotplug that the cpumask is not yet updated when a CPU is being
7098 * onlined. For memory nodes that have no CPUs, split pcp->high across
7099 * all online CPUs to mitigate the risk that reclaim is triggered
7100 * prematurely due to pages stored on pcp lists.
7102 nr_split_cpus = cpumask_weight(cpumask_of_node(zone_to_nid(zone))) + cpu_online;
7104 nr_split_cpus = num_online_cpus();
7105 high = total_pages / nr_split_cpus;
7108 * Ensure high is at least batch*4. The multiple is based on the
7109 * historical relationship between high and batch.
7111 high = max(high, batch << 2);
7120 * pcp->high and pcp->batch values are related and generally batch is lower
7121 * than high. They are also related to pcp->count such that count is lower
7122 * than high, and as soon as it reaches high, the pcplist is flushed.
7124 * However, guaranteeing these relations at all times would require e.g. write
7125 * barriers here but also careful usage of read barriers at the read side, and
7126 * thus be prone to error and bad for performance. Thus the update only prevents
7127 * store tearing. Any new users of pcp->batch and pcp->high should ensure they
7128 * can cope with those fields changing asynchronously, and fully trust only the
7129 * pcp->count field on the local CPU with interrupts disabled.
7131 * mutex_is_locked(&pcp_batch_high_lock) required when calling this function
7132 * outside of boot time (or some other assurance that no concurrent updaters
7135 static void pageset_update(struct per_cpu_pages *pcp, unsigned long high,
7136 unsigned long batch)
7138 WRITE_ONCE(pcp->batch, batch);
7139 WRITE_ONCE(pcp->high, high);
7142 static void per_cpu_pages_init(struct per_cpu_pages *pcp, struct per_cpu_zonestat *pzstats)
7146 memset(pcp, 0, sizeof(*pcp));
7147 memset(pzstats, 0, sizeof(*pzstats));
7149 spin_lock_init(&pcp->lock);
7150 for (pindex = 0; pindex < NR_PCP_LISTS; pindex++)
7151 INIT_LIST_HEAD(&pcp->lists[pindex]);
7154 * Set batch and high values safe for a boot pageset. A true percpu
7155 * pageset's initialization will update them subsequently. Here we don't
7156 * need to be as careful as pageset_update() as nobody can access the
7159 pcp->high = BOOT_PAGESET_HIGH;
7160 pcp->batch = BOOT_PAGESET_BATCH;
7161 pcp->free_factor = 0;
7164 static void __zone_set_pageset_high_and_batch(struct zone *zone, unsigned long high,
7165 unsigned long batch)
7167 struct per_cpu_pages *pcp;
7170 for_each_possible_cpu(cpu) {
7171 pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu);
7172 pageset_update(pcp, high, batch);
7177 * Calculate and set new high and batch values for all per-cpu pagesets of a
7178 * zone based on the zone's size.
7180 static void zone_set_pageset_high_and_batch(struct zone *zone, int cpu_online)
7182 int new_high, new_batch;
7184 new_batch = max(1, zone_batchsize(zone));
7185 new_high = zone_highsize(zone, new_batch, cpu_online);
7187 if (zone->pageset_high == new_high &&
7188 zone->pageset_batch == new_batch)
7191 zone->pageset_high = new_high;
7192 zone->pageset_batch = new_batch;
7194 __zone_set_pageset_high_and_batch(zone, new_high, new_batch);
7197 void __meminit setup_zone_pageset(struct zone *zone)
7201 /* Size may be 0 on !SMP && !NUMA */
7202 if (sizeof(struct per_cpu_zonestat) > 0)
7203 zone->per_cpu_zonestats = alloc_percpu(struct per_cpu_zonestat);
7205 zone->per_cpu_pageset = alloc_percpu(struct per_cpu_pages);
7206 for_each_possible_cpu(cpu) {
7207 struct per_cpu_pages *pcp;
7208 struct per_cpu_zonestat *pzstats;
7210 pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu);
7211 pzstats = per_cpu_ptr(zone->per_cpu_zonestats, cpu);
7212 per_cpu_pages_init(pcp, pzstats);
7215 zone_set_pageset_high_and_batch(zone, 0);
7219 * Allocate per cpu pagesets and initialize them.
7220 * Before this call only boot pagesets were available.
7222 void __init setup_per_cpu_pageset(void)
7224 struct pglist_data *pgdat;
7226 int __maybe_unused cpu;
7228 for_each_populated_zone(zone)
7229 setup_zone_pageset(zone);
7233 * Unpopulated zones continue using the boot pagesets.
7234 * The numa stats for these pagesets need to be reset.
7235 * Otherwise, they will end up skewing the stats of
7236 * the nodes these zones are associated with.
7238 for_each_possible_cpu(cpu) {
7239 struct per_cpu_zonestat *pzstats = &per_cpu(boot_zonestats, cpu);
7240 memset(pzstats->vm_numa_event, 0,
7241 sizeof(pzstats->vm_numa_event));
7245 for_each_online_pgdat(pgdat)
7246 pgdat->per_cpu_nodestats =
7247 alloc_percpu(struct per_cpu_nodestat);
7250 static __meminit void zone_pcp_init(struct zone *zone)
7253 * per cpu subsystem is not up at this point. The following code
7254 * relies on the ability of the linker to provide the
7255 * offset of a (static) per cpu variable into the per cpu area.
7257 zone->per_cpu_pageset = &boot_pageset;
7258 zone->per_cpu_zonestats = &boot_zonestats;
7259 zone->pageset_high = BOOT_PAGESET_HIGH;
7260 zone->pageset_batch = BOOT_PAGESET_BATCH;
7262 if (populated_zone(zone))
7263 pr_debug(" %s zone: %lu pages, LIFO batch:%u\n", zone->name,
7264 zone->present_pages, zone_batchsize(zone));
7267 void __meminit init_currently_empty_zone(struct zone *zone,
7268 unsigned long zone_start_pfn,
7271 struct pglist_data *pgdat = zone->zone_pgdat;
7272 int zone_idx = zone_idx(zone) + 1;
7274 if (zone_idx > pgdat->nr_zones)
7275 pgdat->nr_zones = zone_idx;
7277 zone->zone_start_pfn = zone_start_pfn;
7279 mminit_dprintk(MMINIT_TRACE, "memmap_init",
7280 "Initialising map node %d zone %lu pfns %lu -> %lu\n",
7282 (unsigned long)zone_idx(zone),
7283 zone_start_pfn, (zone_start_pfn + size));
7285 zone_init_free_lists(zone);
7286 zone->initialized = 1;
7290 * get_pfn_range_for_nid - Return the start and end page frames for a node
7291 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
7292 * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
7293 * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
7295 * It returns the start and end page frame of a node based on information
7296 * provided by memblock_set_node(). If called for a node
7297 * with no available memory, a warning is printed and the start and end
7300 void __init get_pfn_range_for_nid(unsigned int nid,
7301 unsigned long *start_pfn, unsigned long *end_pfn)
7303 unsigned long this_start_pfn, this_end_pfn;
7309 for_each_mem_pfn_range(i, nid, &this_start_pfn, &this_end_pfn, NULL) {
7310 *start_pfn = min(*start_pfn, this_start_pfn);
7311 *end_pfn = max(*end_pfn, this_end_pfn);
7314 if (*start_pfn == -1UL)
7319 * This finds a zone that can be used for ZONE_MOVABLE pages. The
7320 * assumption is made that zones within a node are ordered in monotonic
7321 * increasing memory addresses so that the "highest" populated zone is used
7323 static void __init find_usable_zone_for_movable(void)
7326 for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
7327 if (zone_index == ZONE_MOVABLE)
7330 if (arch_zone_highest_possible_pfn[zone_index] >
7331 arch_zone_lowest_possible_pfn[zone_index])
7335 VM_BUG_ON(zone_index == -1);
7336 movable_zone = zone_index;
7340 * The zone ranges provided by the architecture do not include ZONE_MOVABLE
7341 * because it is sized independent of architecture. Unlike the other zones,
7342 * the starting point for ZONE_MOVABLE is not fixed. It may be different
7343 * in each node depending on the size of each node and how evenly kernelcore
7344 * is distributed. This helper function adjusts the zone ranges
7345 * provided by the architecture for a given node by using the end of the
7346 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
7347 * zones within a node are in order of monotonic increases memory addresses
7349 static void __init adjust_zone_range_for_zone_movable(int nid,
7350 unsigned long zone_type,
7351 unsigned long node_start_pfn,
7352 unsigned long node_end_pfn,
7353 unsigned long *zone_start_pfn,
7354 unsigned long *zone_end_pfn)
7356 /* Only adjust if ZONE_MOVABLE is on this node */
7357 if (zone_movable_pfn[nid]) {
7358 /* Size ZONE_MOVABLE */
7359 if (zone_type == ZONE_MOVABLE) {
7360 *zone_start_pfn = zone_movable_pfn[nid];
7361 *zone_end_pfn = min(node_end_pfn,
7362 arch_zone_highest_possible_pfn[movable_zone]);
7364 /* Adjust for ZONE_MOVABLE starting within this range */
7365 } else if (!mirrored_kernelcore &&
7366 *zone_start_pfn < zone_movable_pfn[nid] &&
7367 *zone_end_pfn > zone_movable_pfn[nid]) {
7368 *zone_end_pfn = zone_movable_pfn[nid];
7370 /* Check if this whole range is within ZONE_MOVABLE */
7371 } else if (*zone_start_pfn >= zone_movable_pfn[nid])
7372 *zone_start_pfn = *zone_end_pfn;
7377 * Return the number of pages a zone spans in a node, including holes
7378 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
7380 static unsigned long __init zone_spanned_pages_in_node(int nid,
7381 unsigned long zone_type,
7382 unsigned long node_start_pfn,
7383 unsigned long node_end_pfn,
7384 unsigned long *zone_start_pfn,
7385 unsigned long *zone_end_pfn)
7387 unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
7388 unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
7389 /* When hotadd a new node from cpu_up(), the node should be empty */
7390 if (!node_start_pfn && !node_end_pfn)
7393 /* Get the start and end of the zone */
7394 *zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
7395 *zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
7396 adjust_zone_range_for_zone_movable(nid, zone_type,
7397 node_start_pfn, node_end_pfn,
7398 zone_start_pfn, zone_end_pfn);
7400 /* Check that this node has pages within the zone's required range */
7401 if (*zone_end_pfn < node_start_pfn || *zone_start_pfn > node_end_pfn)
7404 /* Move the zone boundaries inside the node if necessary */
7405 *zone_end_pfn = min(*zone_end_pfn, node_end_pfn);
7406 *zone_start_pfn = max(*zone_start_pfn, node_start_pfn);
7408 /* Return the spanned pages */
7409 return *zone_end_pfn - *zone_start_pfn;
7413 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
7414 * then all holes in the requested range will be accounted for.
7416 unsigned long __init __absent_pages_in_range(int nid,
7417 unsigned long range_start_pfn,
7418 unsigned long range_end_pfn)
7420 unsigned long nr_absent = range_end_pfn - range_start_pfn;
7421 unsigned long start_pfn, end_pfn;
7424 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
7425 start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn);
7426 end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn);
7427 nr_absent -= end_pfn - start_pfn;
7433 * absent_pages_in_range - Return number of page frames in holes within a range
7434 * @start_pfn: The start PFN to start searching for holes
7435 * @end_pfn: The end PFN to stop searching for holes
7437 * Return: the number of pages frames in memory holes within a range.
7439 unsigned long __init absent_pages_in_range(unsigned long start_pfn,
7440 unsigned long end_pfn)
7442 return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
7445 /* Return the number of page frames in holes in a zone on a node */
7446 static unsigned long __init zone_absent_pages_in_node(int nid,
7447 unsigned long zone_type,
7448 unsigned long node_start_pfn,
7449 unsigned long node_end_pfn)
7451 unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
7452 unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
7453 unsigned long zone_start_pfn, zone_end_pfn;
7454 unsigned long nr_absent;
7456 /* When hotadd a new node from cpu_up(), the node should be empty */
7457 if (!node_start_pfn && !node_end_pfn)
7460 zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
7461 zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
7463 adjust_zone_range_for_zone_movable(nid, zone_type,
7464 node_start_pfn, node_end_pfn,
7465 &zone_start_pfn, &zone_end_pfn);
7466 nr_absent = __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
7469 * ZONE_MOVABLE handling.
7470 * Treat pages to be ZONE_MOVABLE in ZONE_NORMAL as absent pages
7473 if (mirrored_kernelcore && zone_movable_pfn[nid]) {
7474 unsigned long start_pfn, end_pfn;
7475 struct memblock_region *r;
7477 for_each_mem_region(r) {
7478 start_pfn = clamp(memblock_region_memory_base_pfn(r),
7479 zone_start_pfn, zone_end_pfn);
7480 end_pfn = clamp(memblock_region_memory_end_pfn(r),
7481 zone_start_pfn, zone_end_pfn);
7483 if (zone_type == ZONE_MOVABLE &&
7484 memblock_is_mirror(r))
7485 nr_absent += end_pfn - start_pfn;
7487 if (zone_type == ZONE_NORMAL &&
7488 !memblock_is_mirror(r))
7489 nr_absent += end_pfn - start_pfn;
7496 static void __init calculate_node_totalpages(struct pglist_data *pgdat,
7497 unsigned long node_start_pfn,
7498 unsigned long node_end_pfn)
7500 unsigned long realtotalpages = 0, totalpages = 0;
7503 for (i = 0; i < MAX_NR_ZONES; i++) {
7504 struct zone *zone = pgdat->node_zones + i;
7505 unsigned long zone_start_pfn, zone_end_pfn;
7506 unsigned long spanned, absent;
7507 unsigned long size, real_size;
7509 spanned = zone_spanned_pages_in_node(pgdat->node_id, i,
7514 absent = zone_absent_pages_in_node(pgdat->node_id, i,
7519 real_size = size - absent;
7522 zone->zone_start_pfn = zone_start_pfn;
7524 zone->zone_start_pfn = 0;
7525 zone->spanned_pages = size;
7526 zone->present_pages = real_size;
7527 #if defined(CONFIG_MEMORY_HOTPLUG)
7528 zone->present_early_pages = real_size;
7532 realtotalpages += real_size;
7535 pgdat->node_spanned_pages = totalpages;
7536 pgdat->node_present_pages = realtotalpages;
7537 pr_debug("On node %d totalpages: %lu\n", pgdat->node_id, realtotalpages);
7540 #ifndef CONFIG_SPARSEMEM
7542 * Calculate the size of the zone->blockflags rounded to an unsigned long
7543 * Start by making sure zonesize is a multiple of pageblock_order by rounding
7544 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
7545 * round what is now in bits to nearest long in bits, then return it in
7548 static unsigned long __init usemap_size(unsigned long zone_start_pfn, unsigned long zonesize)
7550 unsigned long usemapsize;
7552 zonesize += zone_start_pfn & (pageblock_nr_pages-1);
7553 usemapsize = roundup(zonesize, pageblock_nr_pages);
7554 usemapsize = usemapsize >> pageblock_order;
7555 usemapsize *= NR_PAGEBLOCK_BITS;
7556 usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));
7558 return usemapsize / 8;
7561 static void __ref setup_usemap(struct zone *zone)
7563 unsigned long usemapsize = usemap_size(zone->zone_start_pfn,
7564 zone->spanned_pages);
7565 zone->pageblock_flags = NULL;
7567 zone->pageblock_flags =
7568 memblock_alloc_node(usemapsize, SMP_CACHE_BYTES,
7570 if (!zone->pageblock_flags)
7571 panic("Failed to allocate %ld bytes for zone %s pageblock flags on node %d\n",
7572 usemapsize, zone->name, zone_to_nid(zone));
7576 static inline void setup_usemap(struct zone *zone) {}
7577 #endif /* CONFIG_SPARSEMEM */
7579 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
7581 /* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
7582 void __init set_pageblock_order(void)
7584 unsigned int order = MAX_ORDER - 1;
7586 /* Check that pageblock_nr_pages has not already been setup */
7587 if (pageblock_order)
7590 /* Don't let pageblocks exceed the maximum allocation granularity. */
7591 if (HPAGE_SHIFT > PAGE_SHIFT && HUGETLB_PAGE_ORDER < order)
7592 order = HUGETLB_PAGE_ORDER;
7595 * Assume the largest contiguous order of interest is a huge page.
7596 * This value may be variable depending on boot parameters on IA64 and
7599 pageblock_order = order;
7601 #else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
7604 * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
7605 * is unused as pageblock_order is set at compile-time. See
7606 * include/linux/pageblock-flags.h for the values of pageblock_order based on
7609 void __init set_pageblock_order(void)
7613 #endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
7615 static unsigned long __init calc_memmap_size(unsigned long spanned_pages,
7616 unsigned long present_pages)
7618 unsigned long pages = spanned_pages;
7621 * Provide a more accurate estimation if there are holes within
7622 * the zone and SPARSEMEM is in use. If there are holes within the
7623 * zone, each populated memory region may cost us one or two extra
7624 * memmap pages due to alignment because memmap pages for each
7625 * populated regions may not be naturally aligned on page boundary.
7626 * So the (present_pages >> 4) heuristic is a tradeoff for that.
7628 if (spanned_pages > present_pages + (present_pages >> 4) &&
7629 IS_ENABLED(CONFIG_SPARSEMEM))
7630 pages = present_pages;
7632 return PAGE_ALIGN(pages * sizeof(struct page)) >> PAGE_SHIFT;
7635 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
7636 static void pgdat_init_split_queue(struct pglist_data *pgdat)
7638 struct deferred_split *ds_queue = &pgdat->deferred_split_queue;
7640 spin_lock_init(&ds_queue->split_queue_lock);
7641 INIT_LIST_HEAD(&ds_queue->split_queue);
7642 ds_queue->split_queue_len = 0;
7645 static void pgdat_init_split_queue(struct pglist_data *pgdat) {}
7648 #ifdef CONFIG_COMPACTION
7649 static void pgdat_init_kcompactd(struct pglist_data *pgdat)
7651 init_waitqueue_head(&pgdat->kcompactd_wait);
7654 static void pgdat_init_kcompactd(struct pglist_data *pgdat) {}
7657 static void __meminit pgdat_init_internals(struct pglist_data *pgdat)
7661 pgdat_resize_init(pgdat);
7663 pgdat_init_split_queue(pgdat);
7664 pgdat_init_kcompactd(pgdat);
7666 init_waitqueue_head(&pgdat->kswapd_wait);
7667 init_waitqueue_head(&pgdat->pfmemalloc_wait);
7669 for (i = 0; i < NR_VMSCAN_THROTTLE; i++)
7670 init_waitqueue_head(&pgdat->reclaim_wait[i]);
7672 pgdat_page_ext_init(pgdat);
7673 lruvec_init(&pgdat->__lruvec);
7676 static void __meminit zone_init_internals(struct zone *zone, enum zone_type idx, int nid,
7677 unsigned long remaining_pages)
7679 atomic_long_set(&zone->managed_pages, remaining_pages);
7680 zone_set_nid(zone, nid);
7681 zone->name = zone_names[idx];
7682 zone->zone_pgdat = NODE_DATA(nid);
7683 spin_lock_init(&zone->lock);
7684 zone_seqlock_init(zone);
7685 zone_pcp_init(zone);
7689 * Set up the zone data structures
7690 * - init pgdat internals
7691 * - init all zones belonging to this node
7693 * NOTE: this function is only called during memory hotplug
7695 #ifdef CONFIG_MEMORY_HOTPLUG
7696 void __ref free_area_init_core_hotplug(struct pglist_data *pgdat)
7698 int nid = pgdat->node_id;
7702 pgdat_init_internals(pgdat);
7704 if (pgdat->per_cpu_nodestats == &boot_nodestats)
7705 pgdat->per_cpu_nodestats = alloc_percpu(struct per_cpu_nodestat);
7708 * Reset the nr_zones, order and highest_zoneidx before reuse.
7709 * Note that kswapd will init kswapd_highest_zoneidx properly
7710 * when it starts in the near future.
7712 pgdat->nr_zones = 0;
7713 pgdat->kswapd_order = 0;
7714 pgdat->kswapd_highest_zoneidx = 0;
7715 pgdat->node_start_pfn = 0;
7716 for_each_online_cpu(cpu) {
7717 struct per_cpu_nodestat *p;
7719 p = per_cpu_ptr(pgdat->per_cpu_nodestats, cpu);
7720 memset(p, 0, sizeof(*p));
7723 for (z = 0; z < MAX_NR_ZONES; z++)
7724 zone_init_internals(&pgdat->node_zones[z], z, nid, 0);
7729 * Set up the zone data structures:
7730 * - mark all pages reserved
7731 * - mark all memory queues empty
7732 * - clear the memory bitmaps
7734 * NOTE: pgdat should get zeroed by caller.
7735 * NOTE: this function is only called during early init.
7737 static void __init free_area_init_core(struct pglist_data *pgdat)
7740 int nid = pgdat->node_id;
7742 pgdat_init_internals(pgdat);
7743 pgdat->per_cpu_nodestats = &boot_nodestats;
7745 for (j = 0; j < MAX_NR_ZONES; j++) {
7746 struct zone *zone = pgdat->node_zones + j;
7747 unsigned long size, freesize, memmap_pages;
7749 size = zone->spanned_pages;
7750 freesize = zone->present_pages;
7753 * Adjust freesize so that it accounts for how much memory
7754 * is used by this zone for memmap. This affects the watermark
7755 * and per-cpu initialisations
7757 memmap_pages = calc_memmap_size(size, freesize);
7758 if (!is_highmem_idx(j)) {
7759 if (freesize >= memmap_pages) {
7760 freesize -= memmap_pages;
7762 pr_debug(" %s zone: %lu pages used for memmap\n",
7763 zone_names[j], memmap_pages);
7765 pr_warn(" %s zone: %lu memmap pages exceeds freesize %lu\n",
7766 zone_names[j], memmap_pages, freesize);
7769 /* Account for reserved pages */
7770 if (j == 0 && freesize > dma_reserve) {
7771 freesize -= dma_reserve;
7772 pr_debug(" %s zone: %lu pages reserved\n", zone_names[0], dma_reserve);
7775 if (!is_highmem_idx(j))
7776 nr_kernel_pages += freesize;
7777 /* Charge for highmem memmap if there are enough kernel pages */
7778 else if (nr_kernel_pages > memmap_pages * 2)
7779 nr_kernel_pages -= memmap_pages;
7780 nr_all_pages += freesize;
7783 * Set an approximate value for lowmem here, it will be adjusted
7784 * when the bootmem allocator frees pages into the buddy system.
7785 * And all highmem pages will be managed by the buddy system.
7787 zone_init_internals(zone, j, nid, freesize);
7792 set_pageblock_order();
7794 init_currently_empty_zone(zone, zone->zone_start_pfn, size);
7798 #ifdef CONFIG_FLATMEM
7799 static void __init alloc_node_mem_map(struct pglist_data *pgdat)
7801 unsigned long __maybe_unused start = 0;
7802 unsigned long __maybe_unused offset = 0;
7804 /* Skip empty nodes */
7805 if (!pgdat->node_spanned_pages)
7808 start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
7809 offset = pgdat->node_start_pfn - start;
7810 /* ia64 gets its own node_mem_map, before this, without bootmem */
7811 if (!pgdat->node_mem_map) {
7812 unsigned long size, end;
7816 * The zone's endpoints aren't required to be MAX_ORDER
7817 * aligned but the node_mem_map endpoints must be in order
7818 * for the buddy allocator to function correctly.
7820 end = pgdat_end_pfn(pgdat);
7821 end = ALIGN(end, MAX_ORDER_NR_PAGES);
7822 size = (end - start) * sizeof(struct page);
7823 map = memmap_alloc(size, SMP_CACHE_BYTES, MEMBLOCK_LOW_LIMIT,
7824 pgdat->node_id, false);
7826 panic("Failed to allocate %ld bytes for node %d memory map\n",
7827 size, pgdat->node_id);
7828 pgdat->node_mem_map = map + offset;
7830 pr_debug("%s: node %d, pgdat %08lx, node_mem_map %08lx\n",
7831 __func__, pgdat->node_id, (unsigned long)pgdat,
7832 (unsigned long)pgdat->node_mem_map);
7835 * With no DISCONTIG, the global mem_map is just set as node 0's
7837 if (pgdat == NODE_DATA(0)) {
7838 mem_map = NODE_DATA(0)->node_mem_map;
7839 if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
7845 static inline void alloc_node_mem_map(struct pglist_data *pgdat) { }
7846 #endif /* CONFIG_FLATMEM */
7848 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
7849 static inline void pgdat_set_deferred_range(pg_data_t *pgdat)
7851 pgdat->first_deferred_pfn = ULONG_MAX;
7854 static inline void pgdat_set_deferred_range(pg_data_t *pgdat) {}
7857 static void __init free_area_init_node(int nid)
7859 pg_data_t *pgdat = NODE_DATA(nid);
7860 unsigned long start_pfn = 0;
7861 unsigned long end_pfn = 0;
7863 /* pg_data_t should be reset to zero when it's allocated */
7864 WARN_ON(pgdat->nr_zones || pgdat->kswapd_highest_zoneidx);
7866 get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
7868 pgdat->node_id = nid;
7869 pgdat->node_start_pfn = start_pfn;
7870 pgdat->per_cpu_nodestats = NULL;
7872 if (start_pfn != end_pfn) {
7873 pr_info("Initmem setup node %d [mem %#018Lx-%#018Lx]\n", nid,
7874 (u64)start_pfn << PAGE_SHIFT,
7875 end_pfn ? ((u64)end_pfn << PAGE_SHIFT) - 1 : 0);
7877 pr_info("Initmem setup node %d as memoryless\n", nid);
7880 calculate_node_totalpages(pgdat, start_pfn, end_pfn);
7882 alloc_node_mem_map(pgdat);
7883 pgdat_set_deferred_range(pgdat);
7885 free_area_init_core(pgdat);
7888 static void __init free_area_init_memoryless_node(int nid)
7890 free_area_init_node(nid);
7893 #if MAX_NUMNODES > 1
7895 * Figure out the number of possible node ids.
7897 void __init setup_nr_node_ids(void)
7899 unsigned int highest;
7901 highest = find_last_bit(node_possible_map.bits, MAX_NUMNODES);
7902 nr_node_ids = highest + 1;
7907 * node_map_pfn_alignment - determine the maximum internode alignment
7909 * This function should be called after node map is populated and sorted.
7910 * It calculates the maximum power of two alignment which can distinguish
7913 * For example, if all nodes are 1GiB and aligned to 1GiB, the return value
7914 * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)). If the
7915 * nodes are shifted by 256MiB, 256MiB. Note that if only the last node is
7916 * shifted, 1GiB is enough and this function will indicate so.
7918 * This is used to test whether pfn -> nid mapping of the chosen memory
7919 * model has fine enough granularity to avoid incorrect mapping for the
7920 * populated node map.
7922 * Return: the determined alignment in pfn's. 0 if there is no alignment
7923 * requirement (single node).
7925 unsigned long __init node_map_pfn_alignment(void)
7927 unsigned long accl_mask = 0, last_end = 0;
7928 unsigned long start, end, mask;
7929 int last_nid = NUMA_NO_NODE;
7932 for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid) {
7933 if (!start || last_nid < 0 || last_nid == nid) {
7940 * Start with a mask granular enough to pin-point to the
7941 * start pfn and tick off bits one-by-one until it becomes
7942 * too coarse to separate the current node from the last.
7944 mask = ~((1 << __ffs(start)) - 1);
7945 while (mask && last_end <= (start & (mask << 1)))
7948 /* accumulate all internode masks */
7952 /* convert mask to number of pages */
7953 return ~accl_mask + 1;
7957 * find_min_pfn_with_active_regions - Find the minimum PFN registered
7959 * Return: the minimum PFN based on information provided via
7960 * memblock_set_node().
7962 unsigned long __init find_min_pfn_with_active_regions(void)
7964 return PHYS_PFN(memblock_start_of_DRAM());
7968 * early_calculate_totalpages()
7969 * Sum pages in active regions for movable zone.
7970 * Populate N_MEMORY for calculating usable_nodes.
7972 static unsigned long __init early_calculate_totalpages(void)
7974 unsigned long totalpages = 0;
7975 unsigned long start_pfn, end_pfn;
7978 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
7979 unsigned long pages = end_pfn - start_pfn;
7981 totalpages += pages;
7983 node_set_state(nid, N_MEMORY);
7989 * Find the PFN the Movable zone begins in each node. Kernel memory
7990 * is spread evenly between nodes as long as the nodes have enough
7991 * memory. When they don't, some nodes will have more kernelcore than
7994 static void __init find_zone_movable_pfns_for_nodes(void)
7997 unsigned long usable_startpfn;
7998 unsigned long kernelcore_node, kernelcore_remaining;
7999 /* save the state before borrow the nodemask */
8000 nodemask_t saved_node_state = node_states[N_MEMORY];
8001 unsigned long totalpages = early_calculate_totalpages();
8002 int usable_nodes = nodes_weight(node_states[N_MEMORY]);
8003 struct memblock_region *r;
8005 /* Need to find movable_zone earlier when movable_node is specified. */
8006 find_usable_zone_for_movable();
8009 * If movable_node is specified, ignore kernelcore and movablecore
8012 if (movable_node_is_enabled()) {
8013 for_each_mem_region(r) {
8014 if (!memblock_is_hotpluggable(r))
8017 nid = memblock_get_region_node(r);
8019 usable_startpfn = PFN_DOWN(r->base);
8020 zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
8021 min(usable_startpfn, zone_movable_pfn[nid]) :
8029 * If kernelcore=mirror is specified, ignore movablecore option
8031 if (mirrored_kernelcore) {
8032 bool mem_below_4gb_not_mirrored = false;
8034 for_each_mem_region(r) {
8035 if (memblock_is_mirror(r))
8038 nid = memblock_get_region_node(r);
8040 usable_startpfn = memblock_region_memory_base_pfn(r);
8042 if (usable_startpfn < PHYS_PFN(SZ_4G)) {
8043 mem_below_4gb_not_mirrored = true;
8047 zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
8048 min(usable_startpfn, zone_movable_pfn[nid]) :
8052 if (mem_below_4gb_not_mirrored)
8053 pr_warn("This configuration results in unmirrored kernel memory.\n");
8059 * If kernelcore=nn% or movablecore=nn% was specified, calculate the
8060 * amount of necessary memory.
8062 if (required_kernelcore_percent)
8063 required_kernelcore = (totalpages * 100 * required_kernelcore_percent) /
8065 if (required_movablecore_percent)
8066 required_movablecore = (totalpages * 100 * required_movablecore_percent) /
8070 * If movablecore= was specified, calculate what size of
8071 * kernelcore that corresponds so that memory usable for
8072 * any allocation type is evenly spread. If both kernelcore
8073 * and movablecore are specified, then the value of kernelcore
8074 * will be used for required_kernelcore if it's greater than
8075 * what movablecore would have allowed.
8077 if (required_movablecore) {
8078 unsigned long corepages;
8081 * Round-up so that ZONE_MOVABLE is at least as large as what
8082 * was requested by the user
8084 required_movablecore =
8085 roundup(required_movablecore, MAX_ORDER_NR_PAGES);
8086 required_movablecore = min(totalpages, required_movablecore);
8087 corepages = totalpages - required_movablecore;
8089 required_kernelcore = max(required_kernelcore, corepages);
8093 * If kernelcore was not specified or kernelcore size is larger
8094 * than totalpages, there is no ZONE_MOVABLE.
8096 if (!required_kernelcore || required_kernelcore >= totalpages)
8099 /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
8100 usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
8103 /* Spread kernelcore memory as evenly as possible throughout nodes */
8104 kernelcore_node = required_kernelcore / usable_nodes;
8105 for_each_node_state(nid, N_MEMORY) {
8106 unsigned long start_pfn, end_pfn;
8109 * Recalculate kernelcore_node if the division per node
8110 * now exceeds what is necessary to satisfy the requested
8111 * amount of memory for the kernel
8113 if (required_kernelcore < kernelcore_node)
8114 kernelcore_node = required_kernelcore / usable_nodes;
8117 * As the map is walked, we track how much memory is usable
8118 * by the kernel using kernelcore_remaining. When it is
8119 * 0, the rest of the node is usable by ZONE_MOVABLE
8121 kernelcore_remaining = kernelcore_node;
8123 /* Go through each range of PFNs within this node */
8124 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
8125 unsigned long size_pages;
8127 start_pfn = max(start_pfn, zone_movable_pfn[nid]);
8128 if (start_pfn >= end_pfn)
8131 /* Account for what is only usable for kernelcore */
8132 if (start_pfn < usable_startpfn) {
8133 unsigned long kernel_pages;
8134 kernel_pages = min(end_pfn, usable_startpfn)
8137 kernelcore_remaining -= min(kernel_pages,
8138 kernelcore_remaining);
8139 required_kernelcore -= min(kernel_pages,
8140 required_kernelcore);
8142 /* Continue if range is now fully accounted */
8143 if (end_pfn <= usable_startpfn) {
8146 * Push zone_movable_pfn to the end so
8147 * that if we have to rebalance
8148 * kernelcore across nodes, we will
8149 * not double account here
8151 zone_movable_pfn[nid] = end_pfn;
8154 start_pfn = usable_startpfn;
8158 * The usable PFN range for ZONE_MOVABLE is from
8159 * start_pfn->end_pfn. Calculate size_pages as the
8160 * number of pages used as kernelcore
8162 size_pages = end_pfn - start_pfn;
8163 if (size_pages > kernelcore_remaining)
8164 size_pages = kernelcore_remaining;
8165 zone_movable_pfn[nid] = start_pfn + size_pages;
8168 * Some kernelcore has been met, update counts and
8169 * break if the kernelcore for this node has been
8172 required_kernelcore -= min(required_kernelcore,
8174 kernelcore_remaining -= size_pages;
8175 if (!kernelcore_remaining)
8181 * If there is still required_kernelcore, we do another pass with one
8182 * less node in the count. This will push zone_movable_pfn[nid] further
8183 * along on the nodes that still have memory until kernelcore is
8187 if (usable_nodes && required_kernelcore > usable_nodes)
8191 /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
8192 for (nid = 0; nid < MAX_NUMNODES; nid++) {
8193 unsigned long start_pfn, end_pfn;
8195 zone_movable_pfn[nid] =
8196 roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
8198 get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
8199 if (zone_movable_pfn[nid] >= end_pfn)
8200 zone_movable_pfn[nid] = 0;
8204 /* restore the node_state */
8205 node_states[N_MEMORY] = saved_node_state;
8208 /* Any regular or high memory on that node ? */
8209 static void check_for_memory(pg_data_t *pgdat, int nid)
8211 enum zone_type zone_type;
8213 for (zone_type = 0; zone_type <= ZONE_MOVABLE - 1; zone_type++) {
8214 struct zone *zone = &pgdat->node_zones[zone_type];
8215 if (populated_zone(zone)) {
8216 if (IS_ENABLED(CONFIG_HIGHMEM))
8217 node_set_state(nid, N_HIGH_MEMORY);
8218 if (zone_type <= ZONE_NORMAL)
8219 node_set_state(nid, N_NORMAL_MEMORY);
8226 * Some architectures, e.g. ARC may have ZONE_HIGHMEM below ZONE_NORMAL. For
8227 * such cases we allow max_zone_pfn sorted in the descending order
8229 bool __weak arch_has_descending_max_zone_pfns(void)
8235 * free_area_init - Initialise all pg_data_t and zone data
8236 * @max_zone_pfn: an array of max PFNs for each zone
8238 * This will call free_area_init_node() for each active node in the system.
8239 * Using the page ranges provided by memblock_set_node(), the size of each
8240 * zone in each node and their holes is calculated. If the maximum PFN
8241 * between two adjacent zones match, it is assumed that the zone is empty.
8242 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
8243 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
8244 * starts where the previous one ended. For example, ZONE_DMA32 starts
8245 * at arch_max_dma_pfn.
8247 void __init free_area_init(unsigned long *max_zone_pfn)
8249 unsigned long start_pfn, end_pfn;
8253 /* Record where the zone boundaries are */
8254 memset(arch_zone_lowest_possible_pfn, 0,
8255 sizeof(arch_zone_lowest_possible_pfn));
8256 memset(arch_zone_highest_possible_pfn, 0,
8257 sizeof(arch_zone_highest_possible_pfn));
8259 start_pfn = find_min_pfn_with_active_regions();
8260 descending = arch_has_descending_max_zone_pfns();
8262 for (i = 0; i < MAX_NR_ZONES; i++) {
8264 zone = MAX_NR_ZONES - i - 1;
8268 if (zone == ZONE_MOVABLE)
8271 end_pfn = max(max_zone_pfn[zone], start_pfn);
8272 arch_zone_lowest_possible_pfn[zone] = start_pfn;
8273 arch_zone_highest_possible_pfn[zone] = end_pfn;
8275 start_pfn = end_pfn;
8278 /* Find the PFNs that ZONE_MOVABLE begins at in each node */
8279 memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
8280 find_zone_movable_pfns_for_nodes();
8282 /* Print out the zone ranges */
8283 pr_info("Zone ranges:\n");
8284 for (i = 0; i < MAX_NR_ZONES; i++) {
8285 if (i == ZONE_MOVABLE)
8287 pr_info(" %-8s ", zone_names[i]);
8288 if (arch_zone_lowest_possible_pfn[i] ==
8289 arch_zone_highest_possible_pfn[i])
8292 pr_cont("[mem %#018Lx-%#018Lx]\n",
8293 (u64)arch_zone_lowest_possible_pfn[i]
8295 ((u64)arch_zone_highest_possible_pfn[i]
8296 << PAGE_SHIFT) - 1);
8299 /* Print out the PFNs ZONE_MOVABLE begins at in each node */
8300 pr_info("Movable zone start for each node\n");
8301 for (i = 0; i < MAX_NUMNODES; i++) {
8302 if (zone_movable_pfn[i])
8303 pr_info(" Node %d: %#018Lx\n", i,
8304 (u64)zone_movable_pfn[i] << PAGE_SHIFT);
8308 * Print out the early node map, and initialize the
8309 * subsection-map relative to active online memory ranges to
8310 * enable future "sub-section" extensions of the memory map.
8312 pr_info("Early memory node ranges\n");
8313 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
8314 pr_info(" node %3d: [mem %#018Lx-%#018Lx]\n", nid,
8315 (u64)start_pfn << PAGE_SHIFT,
8316 ((u64)end_pfn << PAGE_SHIFT) - 1);
8317 subsection_map_init(start_pfn, end_pfn - start_pfn);
8320 /* Initialise every node */
8321 mminit_verify_pageflags_layout();
8322 setup_nr_node_ids();
8323 for_each_node(nid) {
8326 if (!node_online(nid)) {
8327 pr_info("Initializing node %d as memoryless\n", nid);
8329 /* Allocator not initialized yet */
8330 pgdat = arch_alloc_nodedata(nid);
8332 pr_err("Cannot allocate %zuB for node %d.\n",
8333 sizeof(*pgdat), nid);
8336 arch_refresh_nodedata(nid, pgdat);
8337 free_area_init_memoryless_node(nid);
8340 * We do not want to confuse userspace by sysfs
8341 * files/directories for node without any memory
8342 * attached to it, so this node is not marked as
8343 * N_MEMORY and not marked online so that no sysfs
8344 * hierarchy will be created via register_one_node for
8345 * it. The pgdat will get fully initialized by
8346 * hotadd_init_pgdat() when memory is hotplugged into
8352 pgdat = NODE_DATA(nid);
8353 free_area_init_node(nid);
8355 /* Any memory on that node */
8356 if (pgdat->node_present_pages)
8357 node_set_state(nid, N_MEMORY);
8358 check_for_memory(pgdat, nid);
8364 static int __init cmdline_parse_core(char *p, unsigned long *core,
8365 unsigned long *percent)
8367 unsigned long long coremem;
8373 /* Value may be a percentage of total memory, otherwise bytes */
8374 coremem = simple_strtoull(p, &endptr, 0);
8375 if (*endptr == '%') {
8376 /* Paranoid check for percent values greater than 100 */
8377 WARN_ON(coremem > 100);
8381 coremem = memparse(p, &p);
8382 /* Paranoid check that UL is enough for the coremem value */
8383 WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
8385 *core = coremem >> PAGE_SHIFT;
8392 * kernelcore=size sets the amount of memory for use for allocations that
8393 * cannot be reclaimed or migrated.
8395 static int __init cmdline_parse_kernelcore(char *p)
8397 /* parse kernelcore=mirror */
8398 if (parse_option_str(p, "mirror")) {
8399 mirrored_kernelcore = true;
8403 return cmdline_parse_core(p, &required_kernelcore,
8404 &required_kernelcore_percent);
8408 * movablecore=size sets the amount of memory for use for allocations that
8409 * can be reclaimed or migrated.
8411 static int __init cmdline_parse_movablecore(char *p)
8413 return cmdline_parse_core(p, &required_movablecore,
8414 &required_movablecore_percent);
8417 early_param("kernelcore", cmdline_parse_kernelcore);
8418 early_param("movablecore", cmdline_parse_movablecore);
8420 void adjust_managed_page_count(struct page *page, long count)
8422 atomic_long_add(count, &page_zone(page)->managed_pages);
8423 totalram_pages_add(count);
8424 #ifdef CONFIG_HIGHMEM
8425 if (PageHighMem(page))
8426 totalhigh_pages_add(count);
8429 EXPORT_SYMBOL(adjust_managed_page_count);
8431 unsigned long free_reserved_area(void *start, void *end, int poison, const char *s)
8434 unsigned long pages = 0;
8436 start = (void *)PAGE_ALIGN((unsigned long)start);
8437 end = (void *)((unsigned long)end & PAGE_MASK);
8438 for (pos = start; pos < end; pos += PAGE_SIZE, pages++) {
8439 struct page *page = virt_to_page(pos);
8440 void *direct_map_addr;
8443 * 'direct_map_addr' might be different from 'pos'
8444 * because some architectures' virt_to_page()
8445 * work with aliases. Getting the direct map
8446 * address ensures that we get a _writeable_
8447 * alias for the memset().
8449 direct_map_addr = page_address(page);
8451 * Perform a kasan-unchecked memset() since this memory
8452 * has not been initialized.
8454 direct_map_addr = kasan_reset_tag(direct_map_addr);
8455 if ((unsigned int)poison <= 0xFF)
8456 memset(direct_map_addr, poison, PAGE_SIZE);
8458 free_reserved_page(page);
8462 pr_info("Freeing %s memory: %ldK\n", s, K(pages));
8467 void __init mem_init_print_info(void)
8469 unsigned long physpages, codesize, datasize, rosize, bss_size;
8470 unsigned long init_code_size, init_data_size;
8472 physpages = get_num_physpages();
8473 codesize = _etext - _stext;
8474 datasize = _edata - _sdata;
8475 rosize = __end_rodata - __start_rodata;
8476 bss_size = __bss_stop - __bss_start;
8477 init_data_size = __init_end - __init_begin;
8478 init_code_size = _einittext - _sinittext;
8481 * Detect special cases and adjust section sizes accordingly:
8482 * 1) .init.* may be embedded into .data sections
8483 * 2) .init.text.* may be out of [__init_begin, __init_end],
8484 * please refer to arch/tile/kernel/vmlinux.lds.S.
8485 * 3) .rodata.* may be embedded into .text or .data sections.
8487 #define adj_init_size(start, end, size, pos, adj) \
8489 if (&start[0] <= &pos[0] && &pos[0] < &end[0] && size > adj) \
8493 adj_init_size(__init_begin, __init_end, init_data_size,
8494 _sinittext, init_code_size);
8495 adj_init_size(_stext, _etext, codesize, _sinittext, init_code_size);
8496 adj_init_size(_sdata, _edata, datasize, __init_begin, init_data_size);
8497 adj_init_size(_stext, _etext, codesize, __start_rodata, rosize);
8498 adj_init_size(_sdata, _edata, datasize, __start_rodata, rosize);
8500 #undef adj_init_size
8502 pr_info("Memory: %luK/%luK available (%luK kernel code, %luK rwdata, %luK rodata, %luK init, %luK bss, %luK reserved, %luK cma-reserved"
8503 #ifdef CONFIG_HIGHMEM
8507 K(nr_free_pages()), K(physpages),
8508 codesize >> 10, datasize >> 10, rosize >> 10,
8509 (init_data_size + init_code_size) >> 10, bss_size >> 10,
8510 K(physpages - totalram_pages() - totalcma_pages),
8512 #ifdef CONFIG_HIGHMEM
8513 , K(totalhigh_pages())
8519 * set_dma_reserve - set the specified number of pages reserved in the first zone
8520 * @new_dma_reserve: The number of pages to mark reserved
8522 * The per-cpu batchsize and zone watermarks are determined by managed_pages.
8523 * In the DMA zone, a significant percentage may be consumed by kernel image
8524 * and other unfreeable allocations which can skew the watermarks badly. This
8525 * function may optionally be used to account for unfreeable pages in the
8526 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
8527 * smaller per-cpu batchsize.
8529 void __init set_dma_reserve(unsigned long new_dma_reserve)
8531 dma_reserve = new_dma_reserve;
8534 static int page_alloc_cpu_dead(unsigned int cpu)
8538 lru_add_drain_cpu(cpu);
8539 mlock_page_drain_remote(cpu);
8543 * Spill the event counters of the dead processor
8544 * into the current processors event counters.
8545 * This artificially elevates the count of the current
8548 vm_events_fold_cpu(cpu);
8551 * Zero the differential counters of the dead processor
8552 * so that the vm statistics are consistent.
8554 * This is only okay since the processor is dead and cannot
8555 * race with what we are doing.
8557 cpu_vm_stats_fold(cpu);
8559 for_each_populated_zone(zone)
8560 zone_pcp_update(zone, 0);
8565 static int page_alloc_cpu_online(unsigned int cpu)
8569 for_each_populated_zone(zone)
8570 zone_pcp_update(zone, 1);
8575 int hashdist = HASHDIST_DEFAULT;
8577 static int __init set_hashdist(char *str)
8581 hashdist = simple_strtoul(str, &str, 0);
8584 __setup("hashdist=", set_hashdist);
8587 void __init page_alloc_init(void)
8592 if (num_node_state(N_MEMORY) == 1)
8596 ret = cpuhp_setup_state_nocalls(CPUHP_PAGE_ALLOC,
8597 "mm/page_alloc:pcp",
8598 page_alloc_cpu_online,
8599 page_alloc_cpu_dead);
8604 * calculate_totalreserve_pages - called when sysctl_lowmem_reserve_ratio
8605 * or min_free_kbytes changes.
8607 static void calculate_totalreserve_pages(void)
8609 struct pglist_data *pgdat;
8610 unsigned long reserve_pages = 0;
8611 enum zone_type i, j;
8613 for_each_online_pgdat(pgdat) {
8615 pgdat->totalreserve_pages = 0;
8617 for (i = 0; i < MAX_NR_ZONES; i++) {
8618 struct zone *zone = pgdat->node_zones + i;
8620 unsigned long managed_pages = zone_managed_pages(zone);
8622 /* Find valid and maximum lowmem_reserve in the zone */
8623 for (j = i; j < MAX_NR_ZONES; j++) {
8624 if (zone->lowmem_reserve[j] > max)
8625 max = zone->lowmem_reserve[j];
8628 /* we treat the high watermark as reserved pages. */
8629 max += high_wmark_pages(zone);
8631 if (max > managed_pages)
8632 max = managed_pages;
8634 pgdat->totalreserve_pages += max;
8636 reserve_pages += max;
8639 totalreserve_pages = reserve_pages;
8643 * setup_per_zone_lowmem_reserve - called whenever
8644 * sysctl_lowmem_reserve_ratio changes. Ensures that each zone
8645 * has a correct pages reserved value, so an adequate number of
8646 * pages are left in the zone after a successful __alloc_pages().
8648 static void setup_per_zone_lowmem_reserve(void)
8650 struct pglist_data *pgdat;
8651 enum zone_type i, j;
8653 for_each_online_pgdat(pgdat) {
8654 for (i = 0; i < MAX_NR_ZONES - 1; i++) {
8655 struct zone *zone = &pgdat->node_zones[i];
8656 int ratio = sysctl_lowmem_reserve_ratio[i];
8657 bool clear = !ratio || !zone_managed_pages(zone);
8658 unsigned long managed_pages = 0;
8660 for (j = i + 1; j < MAX_NR_ZONES; j++) {
8661 struct zone *upper_zone = &pgdat->node_zones[j];
8663 managed_pages += zone_managed_pages(upper_zone);
8666 zone->lowmem_reserve[j] = 0;
8668 zone->lowmem_reserve[j] = managed_pages / ratio;
8673 /* update totalreserve_pages */
8674 calculate_totalreserve_pages();
8677 static void __setup_per_zone_wmarks(void)
8679 unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
8680 unsigned long lowmem_pages = 0;
8682 unsigned long flags;
8684 /* Calculate total number of !ZONE_HIGHMEM pages */
8685 for_each_zone(zone) {
8686 if (!is_highmem(zone))
8687 lowmem_pages += zone_managed_pages(zone);
8690 for_each_zone(zone) {
8693 spin_lock_irqsave(&zone->lock, flags);
8694 tmp = (u64)pages_min * zone_managed_pages(zone);
8695 do_div(tmp, lowmem_pages);
8696 if (is_highmem(zone)) {
8698 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
8699 * need highmem pages, so cap pages_min to a small
8702 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
8703 * deltas control async page reclaim, and so should
8704 * not be capped for highmem.
8706 unsigned long min_pages;
8708 min_pages = zone_managed_pages(zone) / 1024;
8709 min_pages = clamp(min_pages, SWAP_CLUSTER_MAX, 128UL);
8710 zone->_watermark[WMARK_MIN] = min_pages;
8713 * If it's a lowmem zone, reserve a number of pages
8714 * proportionate to the zone's size.
8716 zone->_watermark[WMARK_MIN] = tmp;
8720 * Set the kswapd watermarks distance according to the
8721 * scale factor in proportion to available memory, but
8722 * ensure a minimum size on small systems.
8724 tmp = max_t(u64, tmp >> 2,
8725 mult_frac(zone_managed_pages(zone),
8726 watermark_scale_factor, 10000));
8728 zone->watermark_boost = 0;
8729 zone->_watermark[WMARK_LOW] = min_wmark_pages(zone) + tmp;
8730 zone->_watermark[WMARK_HIGH] = low_wmark_pages(zone) + tmp;
8731 zone->_watermark[WMARK_PROMO] = high_wmark_pages(zone) + tmp;
8733 spin_unlock_irqrestore(&zone->lock, flags);
8736 /* update totalreserve_pages */
8737 calculate_totalreserve_pages();
8741 * setup_per_zone_wmarks - called when min_free_kbytes changes
8742 * or when memory is hot-{added|removed}
8744 * Ensures that the watermark[min,low,high] values for each zone are set
8745 * correctly with respect to min_free_kbytes.
8747 void setup_per_zone_wmarks(void)
8750 static DEFINE_SPINLOCK(lock);
8753 __setup_per_zone_wmarks();
8757 * The watermark size have changed so update the pcpu batch
8758 * and high limits or the limits may be inappropriate.
8761 zone_pcp_update(zone, 0);
8765 * Initialise min_free_kbytes.
8767 * For small machines we want it small (128k min). For large machines
8768 * we want it large (256MB max). But it is not linear, because network
8769 * bandwidth does not increase linearly with machine size. We use
8771 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
8772 * min_free_kbytes = sqrt(lowmem_kbytes * 16)
8788 void calculate_min_free_kbytes(void)
8790 unsigned long lowmem_kbytes;
8791 int new_min_free_kbytes;
8793 lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
8794 new_min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
8796 if (new_min_free_kbytes > user_min_free_kbytes)
8797 min_free_kbytes = clamp(new_min_free_kbytes, 128, 262144);
8799 pr_warn("min_free_kbytes is not updated to %d because user defined value %d is preferred\n",
8800 new_min_free_kbytes, user_min_free_kbytes);
8804 int __meminit init_per_zone_wmark_min(void)
8806 calculate_min_free_kbytes();
8807 setup_per_zone_wmarks();
8808 refresh_zone_stat_thresholds();
8809 setup_per_zone_lowmem_reserve();
8812 setup_min_unmapped_ratio();
8813 setup_min_slab_ratio();
8816 khugepaged_min_free_kbytes_update();
8820 postcore_initcall(init_per_zone_wmark_min)
8823 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
8824 * that we can call two helper functions whenever min_free_kbytes
8827 int min_free_kbytes_sysctl_handler(struct ctl_table *table, int write,
8828 void *buffer, size_t *length, loff_t *ppos)
8832 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
8837 user_min_free_kbytes = min_free_kbytes;
8838 setup_per_zone_wmarks();
8843 int watermark_scale_factor_sysctl_handler(struct ctl_table *table, int write,
8844 void *buffer, size_t *length, loff_t *ppos)
8848 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
8853 setup_per_zone_wmarks();
8859 static void setup_min_unmapped_ratio(void)
8864 for_each_online_pgdat(pgdat)
8865 pgdat->min_unmapped_pages = 0;
8868 zone->zone_pgdat->min_unmapped_pages += (zone_managed_pages(zone) *
8869 sysctl_min_unmapped_ratio) / 100;
8873 int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *table, int write,
8874 void *buffer, size_t *length, loff_t *ppos)
8878 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
8882 setup_min_unmapped_ratio();
8887 static void setup_min_slab_ratio(void)
8892 for_each_online_pgdat(pgdat)
8893 pgdat->min_slab_pages = 0;
8896 zone->zone_pgdat->min_slab_pages += (zone_managed_pages(zone) *
8897 sysctl_min_slab_ratio) / 100;
8900 int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *table, int write,
8901 void *buffer, size_t *length, loff_t *ppos)
8905 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
8909 setup_min_slab_ratio();
8916 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
8917 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
8918 * whenever sysctl_lowmem_reserve_ratio changes.
8920 * The reserve ratio obviously has absolutely no relation with the
8921 * minimum watermarks. The lowmem reserve ratio can only make sense
8922 * if in function of the boot time zone sizes.
8924 int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *table, int write,
8925 void *buffer, size_t *length, loff_t *ppos)
8929 proc_dointvec_minmax(table, write, buffer, length, ppos);
8931 for (i = 0; i < MAX_NR_ZONES; i++) {
8932 if (sysctl_lowmem_reserve_ratio[i] < 1)
8933 sysctl_lowmem_reserve_ratio[i] = 0;
8936 setup_per_zone_lowmem_reserve();
8941 * percpu_pagelist_high_fraction - changes the pcp->high for each zone on each
8942 * cpu. It is the fraction of total pages in each zone that a hot per cpu
8943 * pagelist can have before it gets flushed back to buddy allocator.
8945 int percpu_pagelist_high_fraction_sysctl_handler(struct ctl_table *table,
8946 int write, void *buffer, size_t *length, loff_t *ppos)
8949 int old_percpu_pagelist_high_fraction;
8952 mutex_lock(&pcp_batch_high_lock);
8953 old_percpu_pagelist_high_fraction = percpu_pagelist_high_fraction;
8955 ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
8956 if (!write || ret < 0)
8959 /* Sanity checking to avoid pcp imbalance */
8960 if (percpu_pagelist_high_fraction &&
8961 percpu_pagelist_high_fraction < MIN_PERCPU_PAGELIST_HIGH_FRACTION) {
8962 percpu_pagelist_high_fraction = old_percpu_pagelist_high_fraction;
8968 if (percpu_pagelist_high_fraction == old_percpu_pagelist_high_fraction)
8971 for_each_populated_zone(zone)
8972 zone_set_pageset_high_and_batch(zone, 0);
8974 mutex_unlock(&pcp_batch_high_lock);
8978 #ifndef __HAVE_ARCH_RESERVED_KERNEL_PAGES
8980 * Returns the number of pages that arch has reserved but
8981 * is not known to alloc_large_system_hash().
8983 static unsigned long __init arch_reserved_kernel_pages(void)
8990 * Adaptive scale is meant to reduce sizes of hash tables on large memory
8991 * machines. As memory size is increased the scale is also increased but at
8992 * slower pace. Starting from ADAPT_SCALE_BASE (64G), every time memory
8993 * quadruples the scale is increased by one, which means the size of hash table
8994 * only doubles, instead of quadrupling as well.
8995 * Because 32-bit systems cannot have large physical memory, where this scaling
8996 * makes sense, it is disabled on such platforms.
8998 #if __BITS_PER_LONG > 32
8999 #define ADAPT_SCALE_BASE (64ul << 30)
9000 #define ADAPT_SCALE_SHIFT 2
9001 #define ADAPT_SCALE_NPAGES (ADAPT_SCALE_BASE >> PAGE_SHIFT)
9005 * allocate a large system hash table from bootmem
9006 * - it is assumed that the hash table must contain an exact power-of-2
9007 * quantity of entries
9008 * - limit is the number of hash buckets, not the total allocation size
9010 void *__init alloc_large_system_hash(const char *tablename,
9011 unsigned long bucketsize,
9012 unsigned long numentries,
9015 unsigned int *_hash_shift,
9016 unsigned int *_hash_mask,
9017 unsigned long low_limit,
9018 unsigned long high_limit)
9020 unsigned long long max = high_limit;
9021 unsigned long log2qty, size;
9027 /* allow the kernel cmdline to have a say */
9029 /* round applicable memory size up to nearest megabyte */
9030 numentries = nr_kernel_pages;
9031 numentries -= arch_reserved_kernel_pages();
9033 /* It isn't necessary when PAGE_SIZE >= 1MB */
9034 if (PAGE_SHIFT < 20)
9035 numentries = round_up(numentries, (1<<20)/PAGE_SIZE);
9037 #if __BITS_PER_LONG > 32
9039 unsigned long adapt;
9041 for (adapt = ADAPT_SCALE_NPAGES; adapt < numentries;
9042 adapt <<= ADAPT_SCALE_SHIFT)
9047 /* limit to 1 bucket per 2^scale bytes of low memory */
9048 if (scale > PAGE_SHIFT)
9049 numentries >>= (scale - PAGE_SHIFT);
9051 numentries <<= (PAGE_SHIFT - scale);
9053 /* Make sure we've got at least a 0-order allocation.. */
9054 if (unlikely(flags & HASH_SMALL)) {
9055 /* Makes no sense without HASH_EARLY */
9056 WARN_ON(!(flags & HASH_EARLY));
9057 if (!(numentries >> *_hash_shift)) {
9058 numentries = 1UL << *_hash_shift;
9059 BUG_ON(!numentries);
9061 } else if (unlikely((numentries * bucketsize) < PAGE_SIZE))
9062 numentries = PAGE_SIZE / bucketsize;
9064 numentries = roundup_pow_of_two(numentries);
9066 /* limit allocation size to 1/16 total memory by default */
9068 max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
9069 do_div(max, bucketsize);
9071 max = min(max, 0x80000000ULL);
9073 if (numentries < low_limit)
9074 numentries = low_limit;
9075 if (numentries > max)
9078 log2qty = ilog2(numentries);
9080 gfp_flags = (flags & HASH_ZERO) ? GFP_ATOMIC | __GFP_ZERO : GFP_ATOMIC;
9083 size = bucketsize << log2qty;
9084 if (flags & HASH_EARLY) {
9085 if (flags & HASH_ZERO)
9086 table = memblock_alloc(size, SMP_CACHE_BYTES);
9088 table = memblock_alloc_raw(size,
9090 } else if (get_order(size) >= MAX_ORDER || hashdist) {
9091 table = vmalloc_huge(size, gfp_flags);
9094 huge = is_vm_area_hugepages(table);
9097 * If bucketsize is not a power-of-two, we may free
9098 * some pages at the end of hash table which
9099 * alloc_pages_exact() automatically does
9101 table = alloc_pages_exact(size, gfp_flags);
9102 kmemleak_alloc(table, size, 1, gfp_flags);
9104 } while (!table && size > PAGE_SIZE && --log2qty);
9107 panic("Failed to allocate %s hash table\n", tablename);
9109 pr_info("%s hash table entries: %ld (order: %d, %lu bytes, %s)\n",
9110 tablename, 1UL << log2qty, ilog2(size) - PAGE_SHIFT, size,
9111 virt ? (huge ? "vmalloc hugepage" : "vmalloc") : "linear");
9114 *_hash_shift = log2qty;
9116 *_hash_mask = (1 << log2qty) - 1;
9121 #ifdef CONFIG_CONTIG_ALLOC
9122 #if defined(CONFIG_DYNAMIC_DEBUG) || \
9123 (defined(CONFIG_DYNAMIC_DEBUG_CORE) && defined(DYNAMIC_DEBUG_MODULE))
9124 /* Usage: See admin-guide/dynamic-debug-howto.rst */
9125 static void alloc_contig_dump_pages(struct list_head *page_list)
9127 DEFINE_DYNAMIC_DEBUG_METADATA(descriptor, "migrate failure");
9129 if (DYNAMIC_DEBUG_BRANCH(descriptor)) {
9133 list_for_each_entry(page, page_list, lru)
9134 dump_page(page, "migration failure");
9138 static inline void alloc_contig_dump_pages(struct list_head *page_list)
9143 /* [start, end) must belong to a single zone. */
9144 int __alloc_contig_migrate_range(struct compact_control *cc,
9145 unsigned long start, unsigned long end)
9147 /* This function is based on compact_zone() from compaction.c. */
9148 unsigned int nr_reclaimed;
9149 unsigned long pfn = start;
9150 unsigned int tries = 0;
9152 struct migration_target_control mtc = {
9153 .nid = zone_to_nid(cc->zone),
9154 .gfp_mask = GFP_USER | __GFP_MOVABLE | __GFP_RETRY_MAYFAIL,
9157 lru_cache_disable();
9159 while (pfn < end || !list_empty(&cc->migratepages)) {
9160 if (fatal_signal_pending(current)) {
9165 if (list_empty(&cc->migratepages)) {
9166 cc->nr_migratepages = 0;
9167 ret = isolate_migratepages_range(cc, pfn, end);
9168 if (ret && ret != -EAGAIN)
9170 pfn = cc->migrate_pfn;
9172 } else if (++tries == 5) {
9177 nr_reclaimed = reclaim_clean_pages_from_list(cc->zone,
9179 cc->nr_migratepages -= nr_reclaimed;
9181 ret = migrate_pages(&cc->migratepages, alloc_migration_target,
9182 NULL, (unsigned long)&mtc, cc->mode, MR_CONTIG_RANGE, NULL);
9185 * On -ENOMEM, migrate_pages() bails out right away. It is pointless
9186 * to retry again over this error, so do the same here.
9194 if (!(cc->gfp_mask & __GFP_NOWARN) && ret == -EBUSY)
9195 alloc_contig_dump_pages(&cc->migratepages);
9196 putback_movable_pages(&cc->migratepages);
9203 * alloc_contig_range() -- tries to allocate given range of pages
9204 * @start: start PFN to allocate
9205 * @end: one-past-the-last PFN to allocate
9206 * @migratetype: migratetype of the underlying pageblocks (either
9207 * #MIGRATE_MOVABLE or #MIGRATE_CMA). All pageblocks
9208 * in range must have the same migratetype and it must
9209 * be either of the two.
9210 * @gfp_mask: GFP mask to use during compaction
9212 * The PFN range does not have to be pageblock aligned. The PFN range must
9213 * belong to a single zone.
9215 * The first thing this routine does is attempt to MIGRATE_ISOLATE all
9216 * pageblocks in the range. Once isolated, the pageblocks should not
9217 * be modified by others.
9219 * Return: zero on success or negative error code. On success all
9220 * pages which PFN is in [start, end) are allocated for the caller and
9221 * need to be freed with free_contig_range().
9223 int alloc_contig_range(unsigned long start, unsigned long end,
9224 unsigned migratetype, gfp_t gfp_mask)
9226 unsigned long outer_start, outer_end;
9230 struct compact_control cc = {
9231 .nr_migratepages = 0,
9233 .zone = page_zone(pfn_to_page(start)),
9234 .mode = MIGRATE_SYNC,
9235 .ignore_skip_hint = true,
9236 .no_set_skip_hint = true,
9237 .gfp_mask = current_gfp_context(gfp_mask),
9238 .alloc_contig = true,
9240 INIT_LIST_HEAD(&cc.migratepages);
9243 * What we do here is we mark all pageblocks in range as
9244 * MIGRATE_ISOLATE. Because pageblock and max order pages may
9245 * have different sizes, and due to the way page allocator
9246 * work, start_isolate_page_range() has special handlings for this.
9248 * Once the pageblocks are marked as MIGRATE_ISOLATE, we
9249 * migrate the pages from an unaligned range (ie. pages that
9250 * we are interested in). This will put all the pages in
9251 * range back to page allocator as MIGRATE_ISOLATE.
9253 * When this is done, we take the pages in range from page
9254 * allocator removing them from the buddy system. This way
9255 * page allocator will never consider using them.
9257 * This lets us mark the pageblocks back as
9258 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the
9259 * aligned range but not in the unaligned, original range are
9260 * put back to page allocator so that buddy can use them.
9263 ret = start_isolate_page_range(start, end, migratetype, 0, gfp_mask);
9267 drain_all_pages(cc.zone);
9270 * In case of -EBUSY, we'd like to know which page causes problem.
9271 * So, just fall through. test_pages_isolated() has a tracepoint
9272 * which will report the busy page.
9274 * It is possible that busy pages could become available before
9275 * the call to test_pages_isolated, and the range will actually be
9276 * allocated. So, if we fall through be sure to clear ret so that
9277 * -EBUSY is not accidentally used or returned to caller.
9279 ret = __alloc_contig_migrate_range(&cc, start, end);
9280 if (ret && ret != -EBUSY)
9285 * Pages from [start, end) are within a pageblock_nr_pages
9286 * aligned blocks that are marked as MIGRATE_ISOLATE. What's
9287 * more, all pages in [start, end) are free in page allocator.
9288 * What we are going to do is to allocate all pages from
9289 * [start, end) (that is remove them from page allocator).
9291 * The only problem is that pages at the beginning and at the
9292 * end of interesting range may be not aligned with pages that
9293 * page allocator holds, ie. they can be part of higher order
9294 * pages. Because of this, we reserve the bigger range and
9295 * once this is done free the pages we are not interested in.
9297 * We don't have to hold zone->lock here because the pages are
9298 * isolated thus they won't get removed from buddy.
9302 outer_start = start;
9303 while (!PageBuddy(pfn_to_page(outer_start))) {
9304 if (++order >= MAX_ORDER) {
9305 outer_start = start;
9308 outer_start &= ~0UL << order;
9311 if (outer_start != start) {
9312 order = buddy_order(pfn_to_page(outer_start));
9315 * outer_start page could be small order buddy page and
9316 * it doesn't include start page. Adjust outer_start
9317 * in this case to report failed page properly
9318 * on tracepoint in test_pages_isolated()
9320 if (outer_start + (1UL << order) <= start)
9321 outer_start = start;
9324 /* Make sure the range is really isolated. */
9325 if (test_pages_isolated(outer_start, end, 0)) {
9330 /* Grab isolated pages from freelists. */
9331 outer_end = isolate_freepages_range(&cc, outer_start, end);
9337 /* Free head and tail (if any) */
9338 if (start != outer_start)
9339 free_contig_range(outer_start, start - outer_start);
9340 if (end != outer_end)
9341 free_contig_range(end, outer_end - end);
9344 undo_isolate_page_range(start, end, migratetype);
9347 EXPORT_SYMBOL(alloc_contig_range);
9349 static int __alloc_contig_pages(unsigned long start_pfn,
9350 unsigned long nr_pages, gfp_t gfp_mask)
9352 unsigned long end_pfn = start_pfn + nr_pages;
9354 return alloc_contig_range(start_pfn, end_pfn, MIGRATE_MOVABLE,
9358 static bool pfn_range_valid_contig(struct zone *z, unsigned long start_pfn,
9359 unsigned long nr_pages)
9361 unsigned long i, end_pfn = start_pfn + nr_pages;
9364 for (i = start_pfn; i < end_pfn; i++) {
9365 page = pfn_to_online_page(i);
9369 if (page_zone(page) != z)
9372 if (PageReserved(page))
9378 static bool zone_spans_last_pfn(const struct zone *zone,
9379 unsigned long start_pfn, unsigned long nr_pages)
9381 unsigned long last_pfn = start_pfn + nr_pages - 1;
9383 return zone_spans_pfn(zone, last_pfn);
9387 * alloc_contig_pages() -- tries to find and allocate contiguous range of pages
9388 * @nr_pages: Number of contiguous pages to allocate
9389 * @gfp_mask: GFP mask to limit search and used during compaction
9391 * @nodemask: Mask for other possible nodes
9393 * This routine is a wrapper around alloc_contig_range(). It scans over zones
9394 * on an applicable zonelist to find a contiguous pfn range which can then be
9395 * tried for allocation with alloc_contig_range(). This routine is intended
9396 * for allocation requests which can not be fulfilled with the buddy allocator.
9398 * The allocated memory is always aligned to a page boundary. If nr_pages is a
9399 * power of two, then allocated range is also guaranteed to be aligned to same
9400 * nr_pages (e.g. 1GB request would be aligned to 1GB).
9402 * Allocated pages can be freed with free_contig_range() or by manually calling
9403 * __free_page() on each allocated page.
9405 * Return: pointer to contiguous pages on success, or NULL if not successful.
9407 struct page *alloc_contig_pages(unsigned long nr_pages, gfp_t gfp_mask,
9408 int nid, nodemask_t *nodemask)
9410 unsigned long ret, pfn, flags;
9411 struct zonelist *zonelist;
9415 zonelist = node_zonelist(nid, gfp_mask);
9416 for_each_zone_zonelist_nodemask(zone, z, zonelist,
9417 gfp_zone(gfp_mask), nodemask) {
9418 spin_lock_irqsave(&zone->lock, flags);
9420 pfn = ALIGN(zone->zone_start_pfn, nr_pages);
9421 while (zone_spans_last_pfn(zone, pfn, nr_pages)) {
9422 if (pfn_range_valid_contig(zone, pfn, nr_pages)) {
9424 * We release the zone lock here because
9425 * alloc_contig_range() will also lock the zone
9426 * at some point. If there's an allocation
9427 * spinning on this lock, it may win the race
9428 * and cause alloc_contig_range() to fail...
9430 spin_unlock_irqrestore(&zone->lock, flags);
9431 ret = __alloc_contig_pages(pfn, nr_pages,
9434 return pfn_to_page(pfn);
9435 spin_lock_irqsave(&zone->lock, flags);
9439 spin_unlock_irqrestore(&zone->lock, flags);
9443 #endif /* CONFIG_CONTIG_ALLOC */
9445 void free_contig_range(unsigned long pfn, unsigned long nr_pages)
9447 unsigned long count = 0;
9449 for (; nr_pages--; pfn++) {
9450 struct page *page = pfn_to_page(pfn);
9452 count += page_count(page) != 1;
9455 WARN(count != 0, "%lu pages are still in use!\n", count);
9457 EXPORT_SYMBOL(free_contig_range);
9460 * The zone indicated has a new number of managed_pages; batch sizes and percpu
9461 * page high values need to be recalculated.
9463 void zone_pcp_update(struct zone *zone, int cpu_online)
9465 mutex_lock(&pcp_batch_high_lock);
9466 zone_set_pageset_high_and_batch(zone, cpu_online);
9467 mutex_unlock(&pcp_batch_high_lock);
9471 * Effectively disable pcplists for the zone by setting the high limit to 0
9472 * and draining all cpus. A concurrent page freeing on another CPU that's about
9473 * to put the page on pcplist will either finish before the drain and the page
9474 * will be drained, or observe the new high limit and skip the pcplist.
9476 * Must be paired with a call to zone_pcp_enable().
9478 void zone_pcp_disable(struct zone *zone)
9480 mutex_lock(&pcp_batch_high_lock);
9481 __zone_set_pageset_high_and_batch(zone, 0, 1);
9482 __drain_all_pages(zone, true);
9485 void zone_pcp_enable(struct zone *zone)
9487 __zone_set_pageset_high_and_batch(zone, zone->pageset_high, zone->pageset_batch);
9488 mutex_unlock(&pcp_batch_high_lock);
9491 void zone_pcp_reset(struct zone *zone)
9494 struct per_cpu_zonestat *pzstats;
9496 if (zone->per_cpu_pageset != &boot_pageset) {
9497 for_each_online_cpu(cpu) {
9498 pzstats = per_cpu_ptr(zone->per_cpu_zonestats, cpu);
9499 drain_zonestat(zone, pzstats);
9501 free_percpu(zone->per_cpu_pageset);
9502 free_percpu(zone->per_cpu_zonestats);
9503 zone->per_cpu_pageset = &boot_pageset;
9504 zone->per_cpu_zonestats = &boot_zonestats;
9508 #ifdef CONFIG_MEMORY_HOTREMOVE
9510 * All pages in the range must be in a single zone, must not contain holes,
9511 * must span full sections, and must be isolated before calling this function.
9513 void __offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
9515 unsigned long pfn = start_pfn;
9519 unsigned long flags;
9521 offline_mem_sections(pfn, end_pfn);
9522 zone = page_zone(pfn_to_page(pfn));
9523 spin_lock_irqsave(&zone->lock, flags);
9524 while (pfn < end_pfn) {
9525 page = pfn_to_page(pfn);
9527 * The HWPoisoned page may be not in buddy system, and
9528 * page_count() is not 0.
9530 if (unlikely(!PageBuddy(page) && PageHWPoison(page))) {
9535 * At this point all remaining PageOffline() pages have a
9536 * reference count of 0 and can simply be skipped.
9538 if (PageOffline(page)) {
9539 BUG_ON(page_count(page));
9540 BUG_ON(PageBuddy(page));
9545 BUG_ON(page_count(page));
9546 BUG_ON(!PageBuddy(page));
9547 order = buddy_order(page);
9548 del_page_from_free_list(page, zone, order);
9549 pfn += (1 << order);
9551 spin_unlock_irqrestore(&zone->lock, flags);
9556 * This function returns a stable result only if called under zone lock.
9558 bool is_free_buddy_page(struct page *page)
9560 unsigned long pfn = page_to_pfn(page);
9563 for (order = 0; order < MAX_ORDER; order++) {
9564 struct page *page_head = page - (pfn & ((1 << order) - 1));
9566 if (PageBuddy(page_head) &&
9567 buddy_order_unsafe(page_head) >= order)
9571 return order < MAX_ORDER;
9573 EXPORT_SYMBOL(is_free_buddy_page);
9575 #ifdef CONFIG_MEMORY_FAILURE
9577 * Break down a higher-order page in sub-pages, and keep our target out of
9580 static void break_down_buddy_pages(struct zone *zone, struct page *page,
9581 struct page *target, int low, int high,
9584 unsigned long size = 1 << high;
9585 struct page *current_buddy, *next_page;
9587 while (high > low) {
9591 if (target >= &page[size]) {
9592 next_page = page + size;
9593 current_buddy = page;
9596 current_buddy = page + size;
9599 if (set_page_guard(zone, current_buddy, high, migratetype))
9602 if (current_buddy != target) {
9603 add_to_free_list(current_buddy, zone, high, migratetype);
9604 set_buddy_order(current_buddy, high);
9611 * Take a page that will be marked as poisoned off the buddy allocator.
9613 bool take_page_off_buddy(struct page *page)
9615 struct zone *zone = page_zone(page);
9616 unsigned long pfn = page_to_pfn(page);
9617 unsigned long flags;
9621 spin_lock_irqsave(&zone->lock, flags);
9622 for (order = 0; order < MAX_ORDER; order++) {
9623 struct page *page_head = page - (pfn & ((1 << order) - 1));
9624 int page_order = buddy_order(page_head);
9626 if (PageBuddy(page_head) && page_order >= order) {
9627 unsigned long pfn_head = page_to_pfn(page_head);
9628 int migratetype = get_pfnblock_migratetype(page_head,
9631 del_page_from_free_list(page_head, zone, page_order);
9632 break_down_buddy_pages(zone, page_head, page, 0,
9633 page_order, migratetype);
9634 SetPageHWPoisonTakenOff(page);
9635 if (!is_migrate_isolate(migratetype))
9636 __mod_zone_freepage_state(zone, -1, migratetype);
9640 if (page_count(page_head) > 0)
9643 spin_unlock_irqrestore(&zone->lock, flags);
9648 * Cancel takeoff done by take_page_off_buddy().
9650 bool put_page_back_buddy(struct page *page)
9652 struct zone *zone = page_zone(page);
9653 unsigned long pfn = page_to_pfn(page);
9654 unsigned long flags;
9655 int migratetype = get_pfnblock_migratetype(page, pfn);
9658 spin_lock_irqsave(&zone->lock, flags);
9659 if (put_page_testzero(page)) {
9660 ClearPageHWPoisonTakenOff(page);
9661 __free_one_page(page, pfn, zone, 0, migratetype, FPI_NONE);
9662 if (TestClearPageHWPoison(page)) {
9666 spin_unlock_irqrestore(&zone->lock, flags);
9672 #ifdef CONFIG_ZONE_DMA
9673 bool has_managed_dma(void)
9675 struct pglist_data *pgdat;
9677 for_each_online_pgdat(pgdat) {
9678 struct zone *zone = &pgdat->node_zones[ZONE_DMA];
9680 if (managed_zone(zone))
9685 #endif /* CONFIG_ZONE_DMA */