1 // SPDX-License-Identifier: GPL-2.0-only
3 * linux/mm/page_alloc.c
5 * Manages the free list, the system allocates free pages here.
6 * Note that kmalloc() lives in slab.c
8 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
9 * Swap reorganised 29.12.95, Stephen Tweedie
10 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
11 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
12 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
13 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000
14 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
15 * (lots of bits borrowed from Ingo Molnar & Andrew Morton)
18 #include <linux/stddef.h>
20 #include <linux/highmem.h>
21 #include <linux/swap.h>
22 #include <linux/swapops.h>
23 #include <linux/interrupt.h>
24 #include <linux/pagemap.h>
25 #include <linux/jiffies.h>
26 #include <linux/memblock.h>
27 #include <linux/compiler.h>
28 #include <linux/kernel.h>
29 #include <linux/kasan.h>
30 #include <linux/kmsan.h>
31 #include <linux/module.h>
32 #include <linux/suspend.h>
33 #include <linux/pagevec.h>
34 #include <linux/blkdev.h>
35 #include <linux/slab.h>
36 #include <linux/ratelimit.h>
37 #include <linux/oom.h>
38 #include <linux/topology.h>
39 #include <linux/sysctl.h>
40 #include <linux/cpu.h>
41 #include <linux/cpuset.h>
42 #include <linux/memory_hotplug.h>
43 #include <linux/nodemask.h>
44 #include <linux/vmalloc.h>
45 #include <linux/vmstat.h>
46 #include <linux/mempolicy.h>
47 #include <linux/memremap.h>
48 #include <linux/stop_machine.h>
49 #include <linux/random.h>
50 #include <linux/sort.h>
51 #include <linux/pfn.h>
52 #include <linux/backing-dev.h>
53 #include <linux/fault-inject.h>
54 #include <linux/page-isolation.h>
55 #include <linux/debugobjects.h>
56 #include <linux/kmemleak.h>
57 #include <linux/compaction.h>
58 #include <trace/events/kmem.h>
59 #include <trace/events/oom.h>
60 #include <linux/prefetch.h>
61 #include <linux/mm_inline.h>
62 #include <linux/mmu_notifier.h>
63 #include <linux/migrate.h>
64 #include <linux/hugetlb.h>
65 #include <linux/sched/rt.h>
66 #include <linux/sched/mm.h>
67 #include <linux/page_owner.h>
68 #include <linux/page_table_check.h>
69 #include <linux/kthread.h>
70 #include <linux/memcontrol.h>
71 #include <linux/ftrace.h>
72 #include <linux/lockdep.h>
73 #include <linux/nmi.h>
74 #include <linux/psi.h>
75 #include <linux/padata.h>
76 #include <linux/khugepaged.h>
77 #include <linux/buffer_head.h>
78 #include <linux/delayacct.h>
79 #include <asm/sections.h>
80 #include <asm/tlbflush.h>
81 #include <asm/div64.h>
84 #include "page_reporting.h"
87 /* Free Page Internal flags: for internal, non-pcp variants of free_pages(). */
88 typedef int __bitwise fpi_t;
90 /* No special request */
91 #define FPI_NONE ((__force fpi_t)0)
94 * Skip free page reporting notification for the (possibly merged) page.
95 * This does not hinder free page reporting from grabbing the page,
96 * reporting it and marking it "reported" - it only skips notifying
97 * the free page reporting infrastructure about a newly freed page. For
98 * example, used when temporarily pulling a page from a freelist and
99 * putting it back unmodified.
101 #define FPI_SKIP_REPORT_NOTIFY ((__force fpi_t)BIT(0))
104 * Place the (possibly merged) page to the tail of the freelist. Will ignore
105 * page shuffling (relevant code - e.g., memory onlining - is expected to
106 * shuffle the whole zone).
108 * Note: No code should rely on this flag for correctness - it's purely
109 * to allow for optimizations when handing back either fresh pages
110 * (memory onlining) or untouched pages (page isolation, free page
113 #define FPI_TO_TAIL ((__force fpi_t)BIT(1))
116 * Don't poison memory with KASAN (only for the tag-based modes).
117 * During boot, all non-reserved memblock memory is exposed to page_alloc.
118 * Poisoning all that memory lengthens boot time, especially on systems with
119 * large amount of RAM. This flag is used to skip that poisoning.
120 * This is only done for the tag-based KASAN modes, as those are able to
121 * detect memory corruptions with the memory tags assigned by default.
122 * All memory allocated normally after boot gets poisoned as usual.
124 #define FPI_SKIP_KASAN_POISON ((__force fpi_t)BIT(2))
126 /* prevent >1 _updater_ of zone percpu pageset ->high and ->batch fields */
127 static DEFINE_MUTEX(pcp_batch_high_lock);
128 #define MIN_PERCPU_PAGELIST_HIGH_FRACTION (8)
130 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT_RT)
132 * On SMP, spin_trylock is sufficient protection.
133 * On PREEMPT_RT, spin_trylock is equivalent on both SMP and UP.
135 #define pcp_trylock_prepare(flags) do { } while (0)
136 #define pcp_trylock_finish(flag) do { } while (0)
139 /* UP spin_trylock always succeeds so disable IRQs to prevent re-entrancy. */
140 #define pcp_trylock_prepare(flags) local_irq_save(flags)
141 #define pcp_trylock_finish(flags) local_irq_restore(flags)
145 * Locking a pcp requires a PCP lookup followed by a spinlock. To avoid
146 * a migration causing the wrong PCP to be locked and remote memory being
147 * potentially allocated, pin the task to the CPU for the lookup+lock.
148 * preempt_disable is used on !RT because it is faster than migrate_disable.
149 * migrate_disable is used on RT because otherwise RT spinlock usage is
150 * interfered with and a high priority task cannot preempt the allocator.
152 #ifndef CONFIG_PREEMPT_RT
153 #define pcpu_task_pin() preempt_disable()
154 #define pcpu_task_unpin() preempt_enable()
156 #define pcpu_task_pin() migrate_disable()
157 #define pcpu_task_unpin() migrate_enable()
161 * Generic helper to lookup and a per-cpu variable with an embedded spinlock.
162 * Return value should be used with equivalent unlock helper.
164 #define pcpu_spin_lock(type, member, ptr) \
168 _ret = this_cpu_ptr(ptr); \
169 spin_lock(&_ret->member); \
173 #define pcpu_spin_trylock(type, member, ptr) \
177 _ret = this_cpu_ptr(ptr); \
178 if (!spin_trylock(&_ret->member)) { \
185 #define pcpu_spin_unlock(member, ptr) \
187 spin_unlock(&ptr->member); \
191 /* struct per_cpu_pages specific helpers. */
192 #define pcp_spin_lock(ptr) \
193 pcpu_spin_lock(struct per_cpu_pages, lock, ptr)
195 #define pcp_spin_trylock(ptr) \
196 pcpu_spin_trylock(struct per_cpu_pages, lock, ptr)
198 #define pcp_spin_unlock(ptr) \
199 pcpu_spin_unlock(lock, ptr)
201 #ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
202 DEFINE_PER_CPU(int, numa_node);
203 EXPORT_PER_CPU_SYMBOL(numa_node);
206 DEFINE_STATIC_KEY_TRUE(vm_numa_stat_key);
208 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
210 * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
211 * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
212 * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
213 * defined in <linux/topology.h>.
215 DEFINE_PER_CPU(int, _numa_mem_); /* Kernel "local memory" node */
216 EXPORT_PER_CPU_SYMBOL(_numa_mem_);
219 static DEFINE_MUTEX(pcpu_drain_mutex);
221 #ifdef CONFIG_GCC_PLUGIN_LATENT_ENTROPY
222 volatile unsigned long latent_entropy __latent_entropy;
223 EXPORT_SYMBOL(latent_entropy);
227 * Array of node states.
229 nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
230 [N_POSSIBLE] = NODE_MASK_ALL,
231 [N_ONLINE] = { { [0] = 1UL } },
233 [N_NORMAL_MEMORY] = { { [0] = 1UL } },
234 #ifdef CONFIG_HIGHMEM
235 [N_HIGH_MEMORY] = { { [0] = 1UL } },
237 [N_MEMORY] = { { [0] = 1UL } },
238 [N_CPU] = { { [0] = 1UL } },
241 EXPORT_SYMBOL(node_states);
243 atomic_long_t _totalram_pages __read_mostly;
244 EXPORT_SYMBOL(_totalram_pages);
245 unsigned long totalreserve_pages __read_mostly;
246 unsigned long totalcma_pages __read_mostly;
248 int percpu_pagelist_high_fraction;
249 gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
250 DEFINE_STATIC_KEY_MAYBE(CONFIG_INIT_ON_ALLOC_DEFAULT_ON, init_on_alloc);
251 EXPORT_SYMBOL(init_on_alloc);
253 DEFINE_STATIC_KEY_MAYBE(CONFIG_INIT_ON_FREE_DEFAULT_ON, init_on_free);
254 EXPORT_SYMBOL(init_on_free);
256 static bool _init_on_alloc_enabled_early __read_mostly
257 = IS_ENABLED(CONFIG_INIT_ON_ALLOC_DEFAULT_ON);
258 static int __init early_init_on_alloc(char *buf)
261 return kstrtobool(buf, &_init_on_alloc_enabled_early);
263 early_param("init_on_alloc", early_init_on_alloc);
265 static bool _init_on_free_enabled_early __read_mostly
266 = IS_ENABLED(CONFIG_INIT_ON_FREE_DEFAULT_ON);
267 static int __init early_init_on_free(char *buf)
269 return kstrtobool(buf, &_init_on_free_enabled_early);
271 early_param("init_on_free", early_init_on_free);
274 * A cached value of the page's pageblock's migratetype, used when the page is
275 * put on a pcplist. Used to avoid the pageblock migratetype lookup when
276 * freeing from pcplists in most cases, at the cost of possibly becoming stale.
277 * Also the migratetype set in the page does not necessarily match the pcplist
278 * index, e.g. page might have MIGRATE_CMA set but be on a pcplist with any
279 * other index - this ensures that it will be put on the correct CMA freelist.
281 static inline int get_pcppage_migratetype(struct page *page)
286 static inline void set_pcppage_migratetype(struct page *page, int migratetype)
288 page->index = migratetype;
291 #ifdef CONFIG_PM_SLEEP
293 * The following functions are used by the suspend/hibernate code to temporarily
294 * change gfp_allowed_mask in order to avoid using I/O during memory allocations
295 * while devices are suspended. To avoid races with the suspend/hibernate code,
296 * they should always be called with system_transition_mutex held
297 * (gfp_allowed_mask also should only be modified with system_transition_mutex
298 * held, unless the suspend/hibernate code is guaranteed not to run in parallel
299 * with that modification).
302 static gfp_t saved_gfp_mask;
304 void pm_restore_gfp_mask(void)
306 WARN_ON(!mutex_is_locked(&system_transition_mutex));
307 if (saved_gfp_mask) {
308 gfp_allowed_mask = saved_gfp_mask;
313 void pm_restrict_gfp_mask(void)
315 WARN_ON(!mutex_is_locked(&system_transition_mutex));
316 WARN_ON(saved_gfp_mask);
317 saved_gfp_mask = gfp_allowed_mask;
318 gfp_allowed_mask &= ~(__GFP_IO | __GFP_FS);
321 bool pm_suspended_storage(void)
323 if ((gfp_allowed_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS))
327 #endif /* CONFIG_PM_SLEEP */
329 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
330 unsigned int pageblock_order __read_mostly;
333 static void __free_pages_ok(struct page *page, unsigned int order,
337 * results with 256, 32 in the lowmem_reserve sysctl:
338 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
339 * 1G machine -> (16M dma, 784M normal, 224M high)
340 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
341 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
342 * HIGHMEM allocation will leave (224M+784M)/256 of ram reserved in ZONE_DMA
344 * TBD: should special case ZONE_DMA32 machines here - in those we normally
345 * don't need any ZONE_NORMAL reservation
347 int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES] = {
348 #ifdef CONFIG_ZONE_DMA
351 #ifdef CONFIG_ZONE_DMA32
355 #ifdef CONFIG_HIGHMEM
361 static char * const zone_names[MAX_NR_ZONES] = {
362 #ifdef CONFIG_ZONE_DMA
365 #ifdef CONFIG_ZONE_DMA32
369 #ifdef CONFIG_HIGHMEM
373 #ifdef CONFIG_ZONE_DEVICE
378 const char * const migratetype_names[MIGRATE_TYPES] = {
386 #ifdef CONFIG_MEMORY_ISOLATION
391 compound_page_dtor * const compound_page_dtors[NR_COMPOUND_DTORS] = {
392 [NULL_COMPOUND_DTOR] = NULL,
393 [COMPOUND_PAGE_DTOR] = free_compound_page,
394 #ifdef CONFIG_HUGETLB_PAGE
395 [HUGETLB_PAGE_DTOR] = free_huge_page,
397 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
398 [TRANSHUGE_PAGE_DTOR] = free_transhuge_page,
402 int min_free_kbytes = 1024;
403 int user_min_free_kbytes = -1;
404 int watermark_boost_factor __read_mostly = 15000;
405 int watermark_scale_factor = 10;
407 static unsigned long nr_kernel_pages __initdata;
408 static unsigned long nr_all_pages __initdata;
409 static unsigned long dma_reserve __initdata;
411 static unsigned long arch_zone_lowest_possible_pfn[MAX_NR_ZONES] __initdata;
412 static unsigned long arch_zone_highest_possible_pfn[MAX_NR_ZONES] __initdata;
413 static unsigned long required_kernelcore __initdata;
414 static unsigned long required_kernelcore_percent __initdata;
415 static unsigned long required_movablecore __initdata;
416 static unsigned long required_movablecore_percent __initdata;
417 static unsigned long zone_movable_pfn[MAX_NUMNODES] __initdata;
418 bool mirrored_kernelcore __initdata_memblock;
420 /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
422 EXPORT_SYMBOL(movable_zone);
425 unsigned int nr_node_ids __read_mostly = MAX_NUMNODES;
426 unsigned int nr_online_nodes __read_mostly = 1;
427 EXPORT_SYMBOL(nr_node_ids);
428 EXPORT_SYMBOL(nr_online_nodes);
431 int page_group_by_mobility_disabled __read_mostly;
433 bool deferred_struct_pages __meminitdata;
435 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
437 * During boot we initialize deferred pages on-demand, as needed, but once
438 * page_alloc_init_late() has finished, the deferred pages are all initialized,
439 * and we can permanently disable that path.
441 static DEFINE_STATIC_KEY_TRUE(deferred_pages);
443 static inline bool deferred_pages_enabled(void)
445 return static_branch_unlikely(&deferred_pages);
448 /* Returns true if the struct page for the pfn is initialised */
449 static inline bool __meminit early_page_initialised(unsigned long pfn)
451 int nid = early_pfn_to_nid(pfn);
453 if (node_online(nid) && pfn >= NODE_DATA(nid)->first_deferred_pfn)
460 * Returns true when the remaining initialisation should be deferred until
461 * later in the boot cycle when it can be parallelised.
463 static bool __meminit
464 defer_init(int nid, unsigned long pfn, unsigned long end_pfn)
466 static unsigned long prev_end_pfn, nr_initialised;
468 if (early_page_ext_enabled())
471 * prev_end_pfn static that contains the end of previous zone
472 * No need to protect because called very early in boot before smp_init.
474 if (prev_end_pfn != end_pfn) {
475 prev_end_pfn = end_pfn;
479 /* Always populate low zones for address-constrained allocations */
480 if (end_pfn < pgdat_end_pfn(NODE_DATA(nid)))
483 if (NODE_DATA(nid)->first_deferred_pfn != ULONG_MAX)
486 * We start only with one section of pages, more pages are added as
487 * needed until the rest of deferred pages are initialized.
490 if ((nr_initialised > PAGES_PER_SECTION) &&
491 (pfn & (PAGES_PER_SECTION - 1)) == 0) {
492 NODE_DATA(nid)->first_deferred_pfn = pfn;
498 static inline bool deferred_pages_enabled(void)
503 static inline bool early_page_initialised(unsigned long pfn)
508 static inline bool defer_init(int nid, unsigned long pfn, unsigned long end_pfn)
514 /* Return a pointer to the bitmap storing bits affecting a block of pages */
515 static inline unsigned long *get_pageblock_bitmap(const struct page *page,
518 #ifdef CONFIG_SPARSEMEM
519 return section_to_usemap(__pfn_to_section(pfn));
521 return page_zone(page)->pageblock_flags;
522 #endif /* CONFIG_SPARSEMEM */
525 static inline int pfn_to_bitidx(const struct page *page, unsigned long pfn)
527 #ifdef CONFIG_SPARSEMEM
528 pfn &= (PAGES_PER_SECTION-1);
530 pfn = pfn - pageblock_start_pfn(page_zone(page)->zone_start_pfn);
531 #endif /* CONFIG_SPARSEMEM */
532 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
535 static __always_inline
536 unsigned long __get_pfnblock_flags_mask(const struct page *page,
540 unsigned long *bitmap;
541 unsigned long bitidx, word_bitidx;
544 bitmap = get_pageblock_bitmap(page, pfn);
545 bitidx = pfn_to_bitidx(page, pfn);
546 word_bitidx = bitidx / BITS_PER_LONG;
547 bitidx &= (BITS_PER_LONG-1);
549 * This races, without locks, with set_pfnblock_flags_mask(). Ensure
550 * a consistent read of the memory array, so that results, even though
551 * racy, are not corrupted.
553 word = READ_ONCE(bitmap[word_bitidx]);
554 return (word >> bitidx) & mask;
558 * get_pfnblock_flags_mask - Return the requested group of flags for the pageblock_nr_pages block of pages
559 * @page: The page within the block of interest
560 * @pfn: The target page frame number
561 * @mask: mask of bits that the caller is interested in
563 * Return: pageblock_bits flags
565 unsigned long get_pfnblock_flags_mask(const struct page *page,
566 unsigned long pfn, unsigned long mask)
568 return __get_pfnblock_flags_mask(page, pfn, mask);
571 static __always_inline int get_pfnblock_migratetype(const struct page *page,
574 return __get_pfnblock_flags_mask(page, pfn, MIGRATETYPE_MASK);
578 * set_pfnblock_flags_mask - Set the requested group of flags for a pageblock_nr_pages block of pages
579 * @page: The page within the block of interest
580 * @flags: The flags to set
581 * @pfn: The target page frame number
582 * @mask: mask of bits that the caller is interested in
584 void set_pfnblock_flags_mask(struct page *page, unsigned long flags,
588 unsigned long *bitmap;
589 unsigned long bitidx, word_bitidx;
592 BUILD_BUG_ON(NR_PAGEBLOCK_BITS != 4);
593 BUILD_BUG_ON(MIGRATE_TYPES > (1 << PB_migratetype_bits));
595 bitmap = get_pageblock_bitmap(page, pfn);
596 bitidx = pfn_to_bitidx(page, pfn);
597 word_bitidx = bitidx / BITS_PER_LONG;
598 bitidx &= (BITS_PER_LONG-1);
600 VM_BUG_ON_PAGE(!zone_spans_pfn(page_zone(page), pfn), page);
605 word = READ_ONCE(bitmap[word_bitidx]);
607 } while (!try_cmpxchg(&bitmap[word_bitidx], &word, (word & ~mask) | flags));
610 void set_pageblock_migratetype(struct page *page, int migratetype)
612 if (unlikely(page_group_by_mobility_disabled &&
613 migratetype < MIGRATE_PCPTYPES))
614 migratetype = MIGRATE_UNMOVABLE;
616 set_pfnblock_flags_mask(page, (unsigned long)migratetype,
617 page_to_pfn(page), MIGRATETYPE_MASK);
620 #ifdef CONFIG_DEBUG_VM
621 static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
625 unsigned long pfn = page_to_pfn(page);
626 unsigned long sp, start_pfn;
629 seq = zone_span_seqbegin(zone);
630 start_pfn = zone->zone_start_pfn;
631 sp = zone->spanned_pages;
632 if (!zone_spans_pfn(zone, pfn))
634 } while (zone_span_seqretry(zone, seq));
637 pr_err("page 0x%lx outside node %d zone %s [ 0x%lx - 0x%lx ]\n",
638 pfn, zone_to_nid(zone), zone->name,
639 start_pfn, start_pfn + sp);
644 static int page_is_consistent(struct zone *zone, struct page *page)
646 if (zone != page_zone(page))
652 * Temporary debugging check for pages not lying within a given zone.
654 static int __maybe_unused bad_range(struct zone *zone, struct page *page)
656 if (page_outside_zone_boundaries(zone, page))
658 if (!page_is_consistent(zone, page))
664 static inline int __maybe_unused bad_range(struct zone *zone, struct page *page)
670 static void bad_page(struct page *page, const char *reason)
672 static unsigned long resume;
673 static unsigned long nr_shown;
674 static unsigned long nr_unshown;
677 * Allow a burst of 60 reports, then keep quiet for that minute;
678 * or allow a steady drip of one report per second.
680 if (nr_shown == 60) {
681 if (time_before(jiffies, resume)) {
687 "BUG: Bad page state: %lu messages suppressed\n",
694 resume = jiffies + 60 * HZ;
696 pr_alert("BUG: Bad page state in process %s pfn:%05lx\n",
697 current->comm, page_to_pfn(page));
698 dump_page(page, reason);
703 /* Leave bad fields for debug, except PageBuddy could make trouble */
704 page_mapcount_reset(page); /* remove PageBuddy */
705 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
708 static inline unsigned int order_to_pindex(int migratetype, int order)
712 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
713 if (order > PAGE_ALLOC_COSTLY_ORDER) {
714 VM_BUG_ON(order != pageblock_order);
715 return NR_LOWORDER_PCP_LISTS;
718 VM_BUG_ON(order > PAGE_ALLOC_COSTLY_ORDER);
721 return (MIGRATE_PCPTYPES * base) + migratetype;
724 static inline int pindex_to_order(unsigned int pindex)
726 int order = pindex / MIGRATE_PCPTYPES;
728 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
729 if (pindex == NR_LOWORDER_PCP_LISTS)
730 order = pageblock_order;
732 VM_BUG_ON(order > PAGE_ALLOC_COSTLY_ORDER);
738 static inline bool pcp_allowed_order(unsigned int order)
740 if (order <= PAGE_ALLOC_COSTLY_ORDER)
742 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
743 if (order == pageblock_order)
749 static inline void free_the_page(struct page *page, unsigned int order)
751 if (pcp_allowed_order(order)) /* Via pcp? */
752 free_unref_page(page, order);
754 __free_pages_ok(page, order, FPI_NONE);
758 * Higher-order pages are called "compound pages". They are structured thusly:
760 * The first PAGE_SIZE page is called the "head page" and have PG_head set.
762 * The remaining PAGE_SIZE pages are called "tail pages". PageTail() is encoded
763 * in bit 0 of page->compound_head. The rest of bits is pointer to head page.
765 * The first tail page's ->compound_dtor holds the offset in array of compound
766 * page destructors. See compound_page_dtors.
768 * The first tail page's ->compound_order holds the order of allocation.
769 * This usage means that zero-order pages may not be compound.
772 void free_compound_page(struct page *page)
774 mem_cgroup_uncharge(page_folio(page));
775 free_the_page(page, compound_order(page));
778 static void prep_compound_head(struct page *page, unsigned int order)
780 struct folio *folio = (struct folio *)page;
782 set_compound_page_dtor(page, COMPOUND_PAGE_DTOR);
783 set_compound_order(page, order);
784 atomic_set(&folio->_entire_mapcount, -1);
785 atomic_set(&folio->_nr_pages_mapped, 0);
786 atomic_set(&folio->_pincount, 0);
789 static void prep_compound_tail(struct page *head, int tail_idx)
791 struct page *p = head + tail_idx;
793 p->mapping = TAIL_MAPPING;
794 set_compound_head(p, head);
795 set_page_private(p, 0);
798 void prep_compound_page(struct page *page, unsigned int order)
801 int nr_pages = 1 << order;
804 for (i = 1; i < nr_pages; i++)
805 prep_compound_tail(page, i);
807 prep_compound_head(page, order);
810 void destroy_large_folio(struct folio *folio)
812 enum compound_dtor_id dtor = folio->_folio_dtor;
814 VM_BUG_ON_FOLIO(dtor >= NR_COMPOUND_DTORS, folio);
815 compound_page_dtors[dtor](&folio->page);
818 #ifdef CONFIG_DEBUG_PAGEALLOC
819 unsigned int _debug_guardpage_minorder;
821 bool _debug_pagealloc_enabled_early __read_mostly
822 = IS_ENABLED(CONFIG_DEBUG_PAGEALLOC_ENABLE_DEFAULT);
823 EXPORT_SYMBOL(_debug_pagealloc_enabled_early);
824 DEFINE_STATIC_KEY_FALSE(_debug_pagealloc_enabled);
825 EXPORT_SYMBOL(_debug_pagealloc_enabled);
827 DEFINE_STATIC_KEY_FALSE(_debug_guardpage_enabled);
829 static int __init early_debug_pagealloc(char *buf)
831 return kstrtobool(buf, &_debug_pagealloc_enabled_early);
833 early_param("debug_pagealloc", early_debug_pagealloc);
835 static int __init debug_guardpage_minorder_setup(char *buf)
839 if (kstrtoul(buf, 10, &res) < 0 || res > MAX_ORDER / 2) {
840 pr_err("Bad debug_guardpage_minorder value\n");
843 _debug_guardpage_minorder = res;
844 pr_info("Setting debug_guardpage_minorder to %lu\n", res);
847 early_param("debug_guardpage_minorder", debug_guardpage_minorder_setup);
849 static inline bool set_page_guard(struct zone *zone, struct page *page,
850 unsigned int order, int migratetype)
852 if (!debug_guardpage_enabled())
855 if (order >= debug_guardpage_minorder())
858 __SetPageGuard(page);
859 INIT_LIST_HEAD(&page->buddy_list);
860 set_page_private(page, order);
861 /* Guard pages are not available for any usage */
862 if (!is_migrate_isolate(migratetype))
863 __mod_zone_freepage_state(zone, -(1 << order), migratetype);
868 static inline void clear_page_guard(struct zone *zone, struct page *page,
869 unsigned int order, int migratetype)
871 if (!debug_guardpage_enabled())
874 __ClearPageGuard(page);
876 set_page_private(page, 0);
877 if (!is_migrate_isolate(migratetype))
878 __mod_zone_freepage_state(zone, (1 << order), migratetype);
881 static inline bool set_page_guard(struct zone *zone, struct page *page,
882 unsigned int order, int migratetype) { return false; }
883 static inline void clear_page_guard(struct zone *zone, struct page *page,
884 unsigned int order, int migratetype) {}
888 * Enable static keys related to various memory debugging and hardening options.
889 * Some override others, and depend on early params that are evaluated in the
890 * order of appearance. So we need to first gather the full picture of what was
891 * enabled, and then make decisions.
893 void __init init_mem_debugging_and_hardening(void)
895 bool page_poisoning_requested = false;
897 #ifdef CONFIG_PAGE_POISONING
899 * Page poisoning is debug page alloc for some arches. If
900 * either of those options are enabled, enable poisoning.
902 if (page_poisoning_enabled() ||
903 (!IS_ENABLED(CONFIG_ARCH_SUPPORTS_DEBUG_PAGEALLOC) &&
904 debug_pagealloc_enabled())) {
905 static_branch_enable(&_page_poisoning_enabled);
906 page_poisoning_requested = true;
910 if ((_init_on_alloc_enabled_early || _init_on_free_enabled_early) &&
911 page_poisoning_requested) {
912 pr_info("mem auto-init: CONFIG_PAGE_POISONING is on, "
913 "will take precedence over init_on_alloc and init_on_free\n");
914 _init_on_alloc_enabled_early = false;
915 _init_on_free_enabled_early = false;
918 if (_init_on_alloc_enabled_early)
919 static_branch_enable(&init_on_alloc);
921 static_branch_disable(&init_on_alloc);
923 if (_init_on_free_enabled_early)
924 static_branch_enable(&init_on_free);
926 static_branch_disable(&init_on_free);
928 if (IS_ENABLED(CONFIG_KMSAN) &&
929 (_init_on_alloc_enabled_early || _init_on_free_enabled_early))
930 pr_info("mem auto-init: please make sure init_on_alloc and init_on_free are disabled when running KMSAN\n");
932 #ifdef CONFIG_DEBUG_PAGEALLOC
933 if (!debug_pagealloc_enabled())
936 static_branch_enable(&_debug_pagealloc_enabled);
938 if (!debug_guardpage_minorder())
941 static_branch_enable(&_debug_guardpage_enabled);
945 static inline void set_buddy_order(struct page *page, unsigned int order)
947 set_page_private(page, order);
948 __SetPageBuddy(page);
951 #ifdef CONFIG_COMPACTION
952 static inline struct capture_control *task_capc(struct zone *zone)
954 struct capture_control *capc = current->capture_control;
956 return unlikely(capc) &&
957 !(current->flags & PF_KTHREAD) &&
959 capc->cc->zone == zone ? capc : NULL;
963 compaction_capture(struct capture_control *capc, struct page *page,
964 int order, int migratetype)
966 if (!capc || order != capc->cc->order)
969 /* Do not accidentally pollute CMA or isolated regions*/
970 if (is_migrate_cma(migratetype) ||
971 is_migrate_isolate(migratetype))
975 * Do not let lower order allocations pollute a movable pageblock.
976 * This might let an unmovable request use a reclaimable pageblock
977 * and vice-versa but no more than normal fallback logic which can
978 * have trouble finding a high-order free page.
980 if (order < pageblock_order && migratetype == MIGRATE_MOVABLE)
988 static inline struct capture_control *task_capc(struct zone *zone)
994 compaction_capture(struct capture_control *capc, struct page *page,
995 int order, int migratetype)
999 #endif /* CONFIG_COMPACTION */
1001 /* Used for pages not on another list */
1002 static inline void add_to_free_list(struct page *page, struct zone *zone,
1003 unsigned int order, int migratetype)
1005 struct free_area *area = &zone->free_area[order];
1007 list_add(&page->buddy_list, &area->free_list[migratetype]);
1011 /* Used for pages not on another list */
1012 static inline void add_to_free_list_tail(struct page *page, struct zone *zone,
1013 unsigned int order, int migratetype)
1015 struct free_area *area = &zone->free_area[order];
1017 list_add_tail(&page->buddy_list, &area->free_list[migratetype]);
1022 * Used for pages which are on another list. Move the pages to the tail
1023 * of the list - so the moved pages won't immediately be considered for
1024 * allocation again (e.g., optimization for memory onlining).
1026 static inline void move_to_free_list(struct page *page, struct zone *zone,
1027 unsigned int order, int migratetype)
1029 struct free_area *area = &zone->free_area[order];
1031 list_move_tail(&page->buddy_list, &area->free_list[migratetype]);
1034 static inline void del_page_from_free_list(struct page *page, struct zone *zone,
1037 /* clear reported state and update reported page count */
1038 if (page_reported(page))
1039 __ClearPageReported(page);
1041 list_del(&page->buddy_list);
1042 __ClearPageBuddy(page);
1043 set_page_private(page, 0);
1044 zone->free_area[order].nr_free--;
1048 * If this is not the largest possible page, check if the buddy
1049 * of the next-highest order is free. If it is, it's possible
1050 * that pages are being freed that will coalesce soon. In case,
1051 * that is happening, add the free page to the tail of the list
1052 * so it's less likely to be used soon and more likely to be merged
1053 * as a higher order page
1056 buddy_merge_likely(unsigned long pfn, unsigned long buddy_pfn,
1057 struct page *page, unsigned int order)
1059 unsigned long higher_page_pfn;
1060 struct page *higher_page;
1062 if (order >= MAX_ORDER - 2)
1065 higher_page_pfn = buddy_pfn & pfn;
1066 higher_page = page + (higher_page_pfn - pfn);
1068 return find_buddy_page_pfn(higher_page, higher_page_pfn, order + 1,
1073 * Freeing function for a buddy system allocator.
1075 * The concept of a buddy system is to maintain direct-mapped table
1076 * (containing bit values) for memory blocks of various "orders".
1077 * The bottom level table contains the map for the smallest allocatable
1078 * units of memory (here, pages), and each level above it describes
1079 * pairs of units from the levels below, hence, "buddies".
1080 * At a high level, all that happens here is marking the table entry
1081 * at the bottom level available, and propagating the changes upward
1082 * as necessary, plus some accounting needed to play nicely with other
1083 * parts of the VM system.
1084 * At each level, we keep a list of pages, which are heads of continuous
1085 * free pages of length of (1 << order) and marked with PageBuddy.
1086 * Page's order is recorded in page_private(page) field.
1087 * So when we are allocating or freeing one, we can derive the state of the
1088 * other. That is, if we allocate a small block, and both were
1089 * free, the remainder of the region must be split into blocks.
1090 * If a block is freed, and its buddy is also free, then this
1091 * triggers coalescing into a block of larger size.
1096 static inline void __free_one_page(struct page *page,
1098 struct zone *zone, unsigned int order,
1099 int migratetype, fpi_t fpi_flags)
1101 struct capture_control *capc = task_capc(zone);
1102 unsigned long buddy_pfn = 0;
1103 unsigned long combined_pfn;
1107 VM_BUG_ON(!zone_is_initialized(zone));
1108 VM_BUG_ON_PAGE(page->flags & PAGE_FLAGS_CHECK_AT_PREP, page);
1110 VM_BUG_ON(migratetype == -1);
1111 if (likely(!is_migrate_isolate(migratetype)))
1112 __mod_zone_freepage_state(zone, 1 << order, migratetype);
1114 VM_BUG_ON_PAGE(pfn & ((1 << order) - 1), page);
1115 VM_BUG_ON_PAGE(bad_range(zone, page), page);
1117 while (order < MAX_ORDER - 1) {
1118 if (compaction_capture(capc, page, order, migratetype)) {
1119 __mod_zone_freepage_state(zone, -(1 << order),
1124 buddy = find_buddy_page_pfn(page, pfn, order, &buddy_pfn);
1128 if (unlikely(order >= pageblock_order)) {
1130 * We want to prevent merge between freepages on pageblock
1131 * without fallbacks and normal pageblock. Without this,
1132 * pageblock isolation could cause incorrect freepage or CMA
1133 * accounting or HIGHATOMIC accounting.
1135 int buddy_mt = get_pageblock_migratetype(buddy);
1137 if (migratetype != buddy_mt
1138 && (!migratetype_is_mergeable(migratetype) ||
1139 !migratetype_is_mergeable(buddy_mt)))
1144 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page,
1145 * merge with it and move up one order.
1147 if (page_is_guard(buddy))
1148 clear_page_guard(zone, buddy, order, migratetype);
1150 del_page_from_free_list(buddy, zone, order);
1151 combined_pfn = buddy_pfn & pfn;
1152 page = page + (combined_pfn - pfn);
1158 set_buddy_order(page, order);
1160 if (fpi_flags & FPI_TO_TAIL)
1162 else if (is_shuffle_order(order))
1163 to_tail = shuffle_pick_tail();
1165 to_tail = buddy_merge_likely(pfn, buddy_pfn, page, order);
1168 add_to_free_list_tail(page, zone, order, migratetype);
1170 add_to_free_list(page, zone, order, migratetype);
1172 /* Notify page reporting subsystem of freed page */
1173 if (!(fpi_flags & FPI_SKIP_REPORT_NOTIFY))
1174 page_reporting_notify_free(order);
1178 * split_free_page() -- split a free page at split_pfn_offset
1179 * @free_page: the original free page
1180 * @order: the order of the page
1181 * @split_pfn_offset: split offset within the page
1183 * Return -ENOENT if the free page is changed, otherwise 0
1185 * It is used when the free page crosses two pageblocks with different migratetypes
1186 * at split_pfn_offset within the page. The split free page will be put into
1187 * separate migratetype lists afterwards. Otherwise, the function achieves
1190 int split_free_page(struct page *free_page,
1191 unsigned int order, unsigned long split_pfn_offset)
1193 struct zone *zone = page_zone(free_page);
1194 unsigned long free_page_pfn = page_to_pfn(free_page);
1196 unsigned long flags;
1197 int free_page_order;
1201 if (split_pfn_offset == 0)
1204 spin_lock_irqsave(&zone->lock, flags);
1206 if (!PageBuddy(free_page) || buddy_order(free_page) != order) {
1211 mt = get_pageblock_migratetype(free_page);
1212 if (likely(!is_migrate_isolate(mt)))
1213 __mod_zone_freepage_state(zone, -(1UL << order), mt);
1215 del_page_from_free_list(free_page, zone, order);
1216 for (pfn = free_page_pfn;
1217 pfn < free_page_pfn + (1UL << order);) {
1218 int mt = get_pfnblock_migratetype(pfn_to_page(pfn), pfn);
1220 free_page_order = min_t(unsigned int,
1221 pfn ? __ffs(pfn) : order,
1222 __fls(split_pfn_offset));
1223 __free_one_page(pfn_to_page(pfn), pfn, zone, free_page_order,
1225 pfn += 1UL << free_page_order;
1226 split_pfn_offset -= (1UL << free_page_order);
1227 /* we have done the first part, now switch to second part */
1228 if (split_pfn_offset == 0)
1229 split_pfn_offset = (1UL << order) - (pfn - free_page_pfn);
1232 spin_unlock_irqrestore(&zone->lock, flags);
1236 * A bad page could be due to a number of fields. Instead of multiple branches,
1237 * try and check multiple fields with one check. The caller must do a detailed
1238 * check if necessary.
1240 static inline bool page_expected_state(struct page *page,
1241 unsigned long check_flags)
1243 if (unlikely(atomic_read(&page->_mapcount) != -1))
1246 if (unlikely((unsigned long)page->mapping |
1247 page_ref_count(page) |
1251 (page->flags & check_flags)))
1257 static const char *page_bad_reason(struct page *page, unsigned long flags)
1259 const char *bad_reason = NULL;
1261 if (unlikely(atomic_read(&page->_mapcount) != -1))
1262 bad_reason = "nonzero mapcount";
1263 if (unlikely(page->mapping != NULL))
1264 bad_reason = "non-NULL mapping";
1265 if (unlikely(page_ref_count(page) != 0))
1266 bad_reason = "nonzero _refcount";
1267 if (unlikely(page->flags & flags)) {
1268 if (flags == PAGE_FLAGS_CHECK_AT_PREP)
1269 bad_reason = "PAGE_FLAGS_CHECK_AT_PREP flag(s) set";
1271 bad_reason = "PAGE_FLAGS_CHECK_AT_FREE flag(s) set";
1274 if (unlikely(page->memcg_data))
1275 bad_reason = "page still charged to cgroup";
1280 static void free_page_is_bad_report(struct page *page)
1283 page_bad_reason(page, PAGE_FLAGS_CHECK_AT_FREE));
1286 static inline bool free_page_is_bad(struct page *page)
1288 if (likely(page_expected_state(page, PAGE_FLAGS_CHECK_AT_FREE)))
1291 /* Something has gone sideways, find it */
1292 free_page_is_bad_report(page);
1296 static int free_tail_pages_check(struct page *head_page, struct page *page)
1298 struct folio *folio = (struct folio *)head_page;
1302 * We rely page->lru.next never has bit 0 set, unless the page
1303 * is PageTail(). Let's make sure that's true even for poisoned ->lru.
1305 BUILD_BUG_ON((unsigned long)LIST_POISON1 & 1);
1307 if (!IS_ENABLED(CONFIG_DEBUG_VM)) {
1311 switch (page - head_page) {
1313 /* the first tail page: these may be in place of ->mapping */
1314 if (unlikely(folio_entire_mapcount(folio))) {
1315 bad_page(page, "nonzero entire_mapcount");
1318 if (unlikely(atomic_read(&folio->_nr_pages_mapped))) {
1319 bad_page(page, "nonzero nr_pages_mapped");
1322 if (unlikely(atomic_read(&folio->_pincount))) {
1323 bad_page(page, "nonzero pincount");
1329 * the second tail page: ->mapping is
1330 * deferred_list.next -- ignore value.
1334 if (page->mapping != TAIL_MAPPING) {
1335 bad_page(page, "corrupted mapping in tail page");
1340 if (unlikely(!PageTail(page))) {
1341 bad_page(page, "PageTail not set");
1344 if (unlikely(compound_head(page) != head_page)) {
1345 bad_page(page, "compound_head not consistent");
1350 page->mapping = NULL;
1351 clear_compound_head(page);
1356 * Skip KASAN memory poisoning when either:
1358 * 1. Deferred memory initialization has not yet completed,
1359 * see the explanation below.
1360 * 2. Skipping poisoning is requested via FPI_SKIP_KASAN_POISON,
1361 * see the comment next to it.
1362 * 3. Skipping poisoning is requested via __GFP_SKIP_KASAN_POISON,
1363 * see the comment next to it.
1364 * 4. The allocation is excluded from being checked due to sampling,
1365 * see the call to kasan_unpoison_pages.
1367 * Poisoning pages during deferred memory init will greatly lengthen the
1368 * process and cause problem in large memory systems as the deferred pages
1369 * initialization is done with interrupt disabled.
1371 * Assuming that there will be no reference to those newly initialized
1372 * pages before they are ever allocated, this should have no effect on
1373 * KASAN memory tracking as the poison will be properly inserted at page
1374 * allocation time. The only corner case is when pages are allocated by
1375 * on-demand allocation and then freed again before the deferred pages
1376 * initialization is done, but this is not likely to happen.
1378 static inline bool should_skip_kasan_poison(struct page *page, fpi_t fpi_flags)
1380 return deferred_pages_enabled() ||
1381 (!IS_ENABLED(CONFIG_KASAN_GENERIC) &&
1382 (fpi_flags & FPI_SKIP_KASAN_POISON)) ||
1383 PageSkipKASanPoison(page);
1386 static void kernel_init_pages(struct page *page, int numpages)
1390 /* s390's use of memset() could override KASAN redzones. */
1391 kasan_disable_current();
1392 for (i = 0; i < numpages; i++)
1393 clear_highpage_kasan_tagged(page + i);
1394 kasan_enable_current();
1397 static __always_inline bool free_pages_prepare(struct page *page,
1398 unsigned int order, bool check_free, fpi_t fpi_flags)
1401 bool init = want_init_on_free();
1403 VM_BUG_ON_PAGE(PageTail(page), page);
1405 trace_mm_page_free(page, order);
1406 kmsan_free_page(page, order);
1408 if (unlikely(PageHWPoison(page)) && !order) {
1410 * Do not let hwpoison pages hit pcplists/buddy
1411 * Untie memcg state and reset page's owner
1413 if (memcg_kmem_online() && PageMemcgKmem(page))
1414 __memcg_kmem_uncharge_page(page, order);
1415 reset_page_owner(page, order);
1416 page_table_check_free(page, order);
1421 * Check tail pages before head page information is cleared to
1422 * avoid checking PageCompound for order-0 pages.
1424 if (unlikely(order)) {
1425 bool compound = PageCompound(page);
1428 VM_BUG_ON_PAGE(compound && compound_order(page) != order, page);
1431 ClearPageHasHWPoisoned(page);
1432 for (i = 1; i < (1 << order); i++) {
1434 bad += free_tail_pages_check(page, page + i);
1435 if (unlikely(free_page_is_bad(page + i))) {
1439 (page + i)->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1442 if (PageMappingFlags(page))
1443 page->mapping = NULL;
1444 if (memcg_kmem_online() && PageMemcgKmem(page))
1445 __memcg_kmem_uncharge_page(page, order);
1446 if (check_free && free_page_is_bad(page))
1451 page_cpupid_reset_last(page);
1452 page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1453 reset_page_owner(page, order);
1454 page_table_check_free(page, order);
1456 if (!PageHighMem(page)) {
1457 debug_check_no_locks_freed(page_address(page),
1458 PAGE_SIZE << order);
1459 debug_check_no_obj_freed(page_address(page),
1460 PAGE_SIZE << order);
1463 kernel_poison_pages(page, 1 << order);
1466 * As memory initialization might be integrated into KASAN,
1467 * KASAN poisoning and memory initialization code must be
1468 * kept together to avoid discrepancies in behavior.
1470 * With hardware tag-based KASAN, memory tags must be set before the
1471 * page becomes unavailable via debug_pagealloc or arch_free_page.
1473 if (!should_skip_kasan_poison(page, fpi_flags)) {
1474 kasan_poison_pages(page, order, init);
1476 /* Memory is already initialized if KASAN did it internally. */
1477 if (kasan_has_integrated_init())
1481 kernel_init_pages(page, 1 << order);
1484 * arch_free_page() can make the page's contents inaccessible. s390
1485 * does this. So nothing which can access the page's contents should
1486 * happen after this.
1488 arch_free_page(page, order);
1490 debug_pagealloc_unmap_pages(page, 1 << order);
1495 #ifdef CONFIG_DEBUG_VM
1497 * With DEBUG_VM enabled, order-0 pages are checked immediately when being freed
1498 * to pcp lists. With debug_pagealloc also enabled, they are also rechecked when
1499 * moved from pcp lists to free lists.
1501 static bool free_pcp_prepare(struct page *page, unsigned int order)
1503 return free_pages_prepare(page, order, true, FPI_NONE);
1506 /* return true if this page has an inappropriate state */
1507 static bool bulkfree_pcp_prepare(struct page *page)
1509 if (debug_pagealloc_enabled_static())
1510 return free_page_is_bad(page);
1516 * With DEBUG_VM disabled, order-0 pages being freed are checked only when
1517 * moving from pcp lists to free list in order to reduce overhead. With
1518 * debug_pagealloc enabled, they are checked also immediately when being freed
1521 static bool free_pcp_prepare(struct page *page, unsigned int order)
1523 if (debug_pagealloc_enabled_static())
1524 return free_pages_prepare(page, order, true, FPI_NONE);
1526 return free_pages_prepare(page, order, false, FPI_NONE);
1529 static bool bulkfree_pcp_prepare(struct page *page)
1531 return free_page_is_bad(page);
1533 #endif /* CONFIG_DEBUG_VM */
1536 * Frees a number of pages from the PCP lists
1537 * Assumes all pages on list are in same zone.
1538 * count is the number of pages to free.
1540 static void free_pcppages_bulk(struct zone *zone, int count,
1541 struct per_cpu_pages *pcp,
1544 unsigned long flags;
1546 int max_pindex = NR_PCP_LISTS - 1;
1548 bool isolated_pageblocks;
1552 * Ensure proper count is passed which otherwise would stuck in the
1553 * below while (list_empty(list)) loop.
1555 count = min(pcp->count, count);
1557 /* Ensure requested pindex is drained first. */
1558 pindex = pindex - 1;
1560 spin_lock_irqsave(&zone->lock, flags);
1561 isolated_pageblocks = has_isolate_pageblock(zone);
1564 struct list_head *list;
1567 /* Remove pages from lists in a round-robin fashion. */
1569 if (++pindex > max_pindex)
1570 pindex = min_pindex;
1571 list = &pcp->lists[pindex];
1572 if (!list_empty(list))
1575 if (pindex == max_pindex)
1577 if (pindex == min_pindex)
1581 order = pindex_to_order(pindex);
1582 nr_pages = 1 << order;
1586 page = list_last_entry(list, struct page, pcp_list);
1587 mt = get_pcppage_migratetype(page);
1589 /* must delete to avoid corrupting pcp list */
1590 list_del(&page->pcp_list);
1592 pcp->count -= nr_pages;
1594 if (bulkfree_pcp_prepare(page))
1597 /* MIGRATE_ISOLATE page should not go to pcplists */
1598 VM_BUG_ON_PAGE(is_migrate_isolate(mt), page);
1599 /* Pageblock could have been isolated meanwhile */
1600 if (unlikely(isolated_pageblocks))
1601 mt = get_pageblock_migratetype(page);
1603 __free_one_page(page, page_to_pfn(page), zone, order, mt, FPI_NONE);
1604 trace_mm_page_pcpu_drain(page, order, mt);
1605 } while (count > 0 && !list_empty(list));
1608 spin_unlock_irqrestore(&zone->lock, flags);
1611 static void free_one_page(struct zone *zone,
1612 struct page *page, unsigned long pfn,
1614 int migratetype, fpi_t fpi_flags)
1616 unsigned long flags;
1618 spin_lock_irqsave(&zone->lock, flags);
1619 if (unlikely(has_isolate_pageblock(zone) ||
1620 is_migrate_isolate(migratetype))) {
1621 migratetype = get_pfnblock_migratetype(page, pfn);
1623 __free_one_page(page, pfn, zone, order, migratetype, fpi_flags);
1624 spin_unlock_irqrestore(&zone->lock, flags);
1627 static void __meminit __init_single_page(struct page *page, unsigned long pfn,
1628 unsigned long zone, int nid)
1630 mm_zero_struct_page(page);
1631 set_page_links(page, zone, nid, pfn);
1632 init_page_count(page);
1633 page_mapcount_reset(page);
1634 page_cpupid_reset_last(page);
1635 page_kasan_tag_reset(page);
1637 INIT_LIST_HEAD(&page->lru);
1638 #ifdef WANT_PAGE_VIRTUAL
1639 /* The shift won't overflow because ZONE_NORMAL is below 4G. */
1640 if (!is_highmem_idx(zone))
1641 set_page_address(page, __va(pfn << PAGE_SHIFT));
1645 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1646 static void __meminit init_reserved_page(unsigned long pfn)
1651 if (early_page_initialised(pfn))
1654 nid = early_pfn_to_nid(pfn);
1655 pgdat = NODE_DATA(nid);
1657 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1658 struct zone *zone = &pgdat->node_zones[zid];
1660 if (zone_spans_pfn(zone, pfn))
1663 __init_single_page(pfn_to_page(pfn), pfn, zid, nid);
1666 static inline void init_reserved_page(unsigned long pfn)
1669 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
1672 * Initialised pages do not have PageReserved set. This function is
1673 * called for each range allocated by the bootmem allocator and
1674 * marks the pages PageReserved. The remaining valid pages are later
1675 * sent to the buddy page allocator.
1677 void __meminit reserve_bootmem_region(phys_addr_t start, phys_addr_t end)
1679 unsigned long start_pfn = PFN_DOWN(start);
1680 unsigned long end_pfn = PFN_UP(end);
1682 for (; start_pfn < end_pfn; start_pfn++) {
1683 if (pfn_valid(start_pfn)) {
1684 struct page *page = pfn_to_page(start_pfn);
1686 init_reserved_page(start_pfn);
1688 /* Avoid false-positive PageTail() */
1689 INIT_LIST_HEAD(&page->lru);
1692 * no need for atomic set_bit because the struct
1693 * page is not visible yet so nobody should
1696 __SetPageReserved(page);
1701 static void __free_pages_ok(struct page *page, unsigned int order,
1704 unsigned long flags;
1706 unsigned long pfn = page_to_pfn(page);
1707 struct zone *zone = page_zone(page);
1709 if (!free_pages_prepare(page, order, true, fpi_flags))
1713 * Calling get_pfnblock_migratetype() without spin_lock_irqsave() here
1714 * is used to avoid calling get_pfnblock_migratetype() under the lock.
1715 * This will reduce the lock holding time.
1717 migratetype = get_pfnblock_migratetype(page, pfn);
1719 spin_lock_irqsave(&zone->lock, flags);
1720 if (unlikely(has_isolate_pageblock(zone) ||
1721 is_migrate_isolate(migratetype))) {
1722 migratetype = get_pfnblock_migratetype(page, pfn);
1724 __free_one_page(page, pfn, zone, order, migratetype, fpi_flags);
1725 spin_unlock_irqrestore(&zone->lock, flags);
1727 __count_vm_events(PGFREE, 1 << order);
1730 void __free_pages_core(struct page *page, unsigned int order)
1732 unsigned int nr_pages = 1 << order;
1733 struct page *p = page;
1737 * When initializing the memmap, __init_single_page() sets the refcount
1738 * of all pages to 1 ("allocated"/"not free"). We have to set the
1739 * refcount of all involved pages to 0.
1742 for (loop = 0; loop < (nr_pages - 1); loop++, p++) {
1744 __ClearPageReserved(p);
1745 set_page_count(p, 0);
1747 __ClearPageReserved(p);
1748 set_page_count(p, 0);
1750 atomic_long_add(nr_pages, &page_zone(page)->managed_pages);
1753 * Bypass PCP and place fresh pages right to the tail, primarily
1754 * relevant for memory onlining.
1756 __free_pages_ok(page, order, FPI_TO_TAIL | FPI_SKIP_KASAN_POISON);
1762 * During memory init memblocks map pfns to nids. The search is expensive and
1763 * this caches recent lookups. The implementation of __early_pfn_to_nid
1764 * treats start/end as pfns.
1766 struct mminit_pfnnid_cache {
1767 unsigned long last_start;
1768 unsigned long last_end;
1772 static struct mminit_pfnnid_cache early_pfnnid_cache __meminitdata;
1775 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
1777 static int __meminit __early_pfn_to_nid(unsigned long pfn,
1778 struct mminit_pfnnid_cache *state)
1780 unsigned long start_pfn, end_pfn;
1783 if (state->last_start <= pfn && pfn < state->last_end)
1784 return state->last_nid;
1786 nid = memblock_search_pfn_nid(pfn, &start_pfn, &end_pfn);
1787 if (nid != NUMA_NO_NODE) {
1788 state->last_start = start_pfn;
1789 state->last_end = end_pfn;
1790 state->last_nid = nid;
1796 int __meminit early_pfn_to_nid(unsigned long pfn)
1798 static DEFINE_SPINLOCK(early_pfn_lock);
1801 spin_lock(&early_pfn_lock);
1802 nid = __early_pfn_to_nid(pfn, &early_pfnnid_cache);
1804 nid = first_online_node;
1805 spin_unlock(&early_pfn_lock);
1809 #endif /* CONFIG_NUMA */
1811 void __init memblock_free_pages(struct page *page, unsigned long pfn,
1814 if (!early_page_initialised(pfn))
1816 if (!kmsan_memblock_free_pages(page, order)) {
1817 /* KMSAN will take care of these pages. */
1820 __free_pages_core(page, order);
1824 * Check that the whole (or subset of) a pageblock given by the interval of
1825 * [start_pfn, end_pfn) is valid and within the same zone, before scanning it
1826 * with the migration of free compaction scanner.
1828 * Return struct page pointer of start_pfn, or NULL if checks were not passed.
1830 * It's possible on some configurations to have a setup like node0 node1 node0
1831 * i.e. it's possible that all pages within a zones range of pages do not
1832 * belong to a single zone. We assume that a border between node0 and node1
1833 * can occur within a single pageblock, but not a node0 node1 node0
1834 * interleaving within a single pageblock. It is therefore sufficient to check
1835 * the first and last page of a pageblock and avoid checking each individual
1836 * page in a pageblock.
1838 struct page *__pageblock_pfn_to_page(unsigned long start_pfn,
1839 unsigned long end_pfn, struct zone *zone)
1841 struct page *start_page;
1842 struct page *end_page;
1844 /* end_pfn is one past the range we are checking */
1847 if (!pfn_valid(start_pfn) || !pfn_valid(end_pfn))
1850 start_page = pfn_to_online_page(start_pfn);
1854 if (page_zone(start_page) != zone)
1857 end_page = pfn_to_page(end_pfn);
1859 /* This gives a shorter code than deriving page_zone(end_page) */
1860 if (page_zone_id(start_page) != page_zone_id(end_page))
1866 void set_zone_contiguous(struct zone *zone)
1868 unsigned long block_start_pfn = zone->zone_start_pfn;
1869 unsigned long block_end_pfn;
1871 block_end_pfn = pageblock_end_pfn(block_start_pfn);
1872 for (; block_start_pfn < zone_end_pfn(zone);
1873 block_start_pfn = block_end_pfn,
1874 block_end_pfn += pageblock_nr_pages) {
1876 block_end_pfn = min(block_end_pfn, zone_end_pfn(zone));
1878 if (!__pageblock_pfn_to_page(block_start_pfn,
1879 block_end_pfn, zone))
1884 /* We confirm that there is no hole */
1885 zone->contiguous = true;
1888 void clear_zone_contiguous(struct zone *zone)
1890 zone->contiguous = false;
1893 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1894 static void __init deferred_free_range(unsigned long pfn,
1895 unsigned long nr_pages)
1903 page = pfn_to_page(pfn);
1905 /* Free a large naturally-aligned chunk if possible */
1906 if (nr_pages == pageblock_nr_pages && pageblock_aligned(pfn)) {
1907 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
1908 __free_pages_core(page, pageblock_order);
1912 for (i = 0; i < nr_pages; i++, page++, pfn++) {
1913 if (pageblock_aligned(pfn))
1914 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
1915 __free_pages_core(page, 0);
1919 /* Completion tracking for deferred_init_memmap() threads */
1920 static atomic_t pgdat_init_n_undone __initdata;
1921 static __initdata DECLARE_COMPLETION(pgdat_init_all_done_comp);
1923 static inline void __init pgdat_init_report_one_done(void)
1925 if (atomic_dec_and_test(&pgdat_init_n_undone))
1926 complete(&pgdat_init_all_done_comp);
1930 * Returns true if page needs to be initialized or freed to buddy allocator.
1932 * We check if a current large page is valid by only checking the validity
1935 static inline bool __init deferred_pfn_valid(unsigned long pfn)
1937 if (pageblock_aligned(pfn) && !pfn_valid(pfn))
1943 * Free pages to buddy allocator. Try to free aligned pages in
1944 * pageblock_nr_pages sizes.
1946 static void __init deferred_free_pages(unsigned long pfn,
1947 unsigned long end_pfn)
1949 unsigned long nr_free = 0;
1951 for (; pfn < end_pfn; pfn++) {
1952 if (!deferred_pfn_valid(pfn)) {
1953 deferred_free_range(pfn - nr_free, nr_free);
1955 } else if (pageblock_aligned(pfn)) {
1956 deferred_free_range(pfn - nr_free, nr_free);
1962 /* Free the last block of pages to allocator */
1963 deferred_free_range(pfn - nr_free, nr_free);
1967 * Initialize struct pages. We minimize pfn page lookups and scheduler checks
1968 * by performing it only once every pageblock_nr_pages.
1969 * Return number of pages initialized.
1971 static unsigned long __init deferred_init_pages(struct zone *zone,
1973 unsigned long end_pfn)
1975 int nid = zone_to_nid(zone);
1976 unsigned long nr_pages = 0;
1977 int zid = zone_idx(zone);
1978 struct page *page = NULL;
1980 for (; pfn < end_pfn; pfn++) {
1981 if (!deferred_pfn_valid(pfn)) {
1984 } else if (!page || pageblock_aligned(pfn)) {
1985 page = pfn_to_page(pfn);
1989 __init_single_page(page, pfn, zid, nid);
1996 * This function is meant to pre-load the iterator for the zone init.
1997 * Specifically it walks through the ranges until we are caught up to the
1998 * first_init_pfn value and exits there. If we never encounter the value we
1999 * return false indicating there are no valid ranges left.
2002 deferred_init_mem_pfn_range_in_zone(u64 *i, struct zone *zone,
2003 unsigned long *spfn, unsigned long *epfn,
2004 unsigned long first_init_pfn)
2009 * Start out by walking through the ranges in this zone that have
2010 * already been initialized. We don't need to do anything with them
2011 * so we just need to flush them out of the system.
2013 for_each_free_mem_pfn_range_in_zone(j, zone, spfn, epfn) {
2014 if (*epfn <= first_init_pfn)
2016 if (*spfn < first_init_pfn)
2017 *spfn = first_init_pfn;
2026 * Initialize and free pages. We do it in two loops: first we initialize
2027 * struct page, then free to buddy allocator, because while we are
2028 * freeing pages we can access pages that are ahead (computing buddy
2029 * page in __free_one_page()).
2031 * In order to try and keep some memory in the cache we have the loop
2032 * broken along max page order boundaries. This way we will not cause
2033 * any issues with the buddy page computation.
2035 static unsigned long __init
2036 deferred_init_maxorder(u64 *i, struct zone *zone, unsigned long *start_pfn,
2037 unsigned long *end_pfn)
2039 unsigned long mo_pfn = ALIGN(*start_pfn + 1, MAX_ORDER_NR_PAGES);
2040 unsigned long spfn = *start_pfn, epfn = *end_pfn;
2041 unsigned long nr_pages = 0;
2044 /* First we loop through and initialize the page values */
2045 for_each_free_mem_pfn_range_in_zone_from(j, zone, start_pfn, end_pfn) {
2048 if (mo_pfn <= *start_pfn)
2051 t = min(mo_pfn, *end_pfn);
2052 nr_pages += deferred_init_pages(zone, *start_pfn, t);
2054 if (mo_pfn < *end_pfn) {
2055 *start_pfn = mo_pfn;
2060 /* Reset values and now loop through freeing pages as needed */
2063 for_each_free_mem_pfn_range_in_zone_from(j, zone, &spfn, &epfn) {
2069 t = min(mo_pfn, epfn);
2070 deferred_free_pages(spfn, t);
2080 deferred_init_memmap_chunk(unsigned long start_pfn, unsigned long end_pfn,
2083 unsigned long spfn, epfn;
2084 struct zone *zone = arg;
2087 deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn, start_pfn);
2090 * Initialize and free pages in MAX_ORDER sized increments so that we
2091 * can avoid introducing any issues with the buddy allocator.
2093 while (spfn < end_pfn) {
2094 deferred_init_maxorder(&i, zone, &spfn, &epfn);
2099 /* An arch may override for more concurrency. */
2101 deferred_page_init_max_threads(const struct cpumask *node_cpumask)
2106 /* Initialise remaining memory on a node */
2107 static int __init deferred_init_memmap(void *data)
2109 pg_data_t *pgdat = data;
2110 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
2111 unsigned long spfn = 0, epfn = 0;
2112 unsigned long first_init_pfn, flags;
2113 unsigned long start = jiffies;
2115 int zid, max_threads;
2118 /* Bind memory initialisation thread to a local node if possible */
2119 if (!cpumask_empty(cpumask))
2120 set_cpus_allowed_ptr(current, cpumask);
2122 pgdat_resize_lock(pgdat, &flags);
2123 first_init_pfn = pgdat->first_deferred_pfn;
2124 if (first_init_pfn == ULONG_MAX) {
2125 pgdat_resize_unlock(pgdat, &flags);
2126 pgdat_init_report_one_done();
2130 /* Sanity check boundaries */
2131 BUG_ON(pgdat->first_deferred_pfn < pgdat->node_start_pfn);
2132 BUG_ON(pgdat->first_deferred_pfn > pgdat_end_pfn(pgdat));
2133 pgdat->first_deferred_pfn = ULONG_MAX;
2136 * Once we unlock here, the zone cannot be grown anymore, thus if an
2137 * interrupt thread must allocate this early in boot, zone must be
2138 * pre-grown prior to start of deferred page initialization.
2140 pgdat_resize_unlock(pgdat, &flags);
2142 /* Only the highest zone is deferred so find it */
2143 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
2144 zone = pgdat->node_zones + zid;
2145 if (first_init_pfn < zone_end_pfn(zone))
2149 /* If the zone is empty somebody else may have cleared out the zone */
2150 if (!deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn,
2154 max_threads = deferred_page_init_max_threads(cpumask);
2156 while (spfn < epfn) {
2157 unsigned long epfn_align = ALIGN(epfn, PAGES_PER_SECTION);
2158 struct padata_mt_job job = {
2159 .thread_fn = deferred_init_memmap_chunk,
2162 .size = epfn_align - spfn,
2163 .align = PAGES_PER_SECTION,
2164 .min_chunk = PAGES_PER_SECTION,
2165 .max_threads = max_threads,
2168 padata_do_multithreaded(&job);
2169 deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn,
2173 /* Sanity check that the next zone really is unpopulated */
2174 WARN_ON(++zid < MAX_NR_ZONES && populated_zone(++zone));
2176 pr_info("node %d deferred pages initialised in %ums\n",
2177 pgdat->node_id, jiffies_to_msecs(jiffies - start));
2179 pgdat_init_report_one_done();
2184 * If this zone has deferred pages, try to grow it by initializing enough
2185 * deferred pages to satisfy the allocation specified by order, rounded up to
2186 * the nearest PAGES_PER_SECTION boundary. So we're adding memory in increments
2187 * of SECTION_SIZE bytes by initializing struct pages in increments of
2188 * PAGES_PER_SECTION * sizeof(struct page) bytes.
2190 * Return true when zone was grown, otherwise return false. We return true even
2191 * when we grow less than requested, to let the caller decide if there are
2192 * enough pages to satisfy the allocation.
2194 * Note: We use noinline because this function is needed only during boot, and
2195 * it is called from a __ref function _deferred_grow_zone. This way we are
2196 * making sure that it is not inlined into permanent text section.
2198 static noinline bool __init
2199 deferred_grow_zone(struct zone *zone, unsigned int order)
2201 unsigned long nr_pages_needed = ALIGN(1 << order, PAGES_PER_SECTION);
2202 pg_data_t *pgdat = zone->zone_pgdat;
2203 unsigned long first_deferred_pfn = pgdat->first_deferred_pfn;
2204 unsigned long spfn, epfn, flags;
2205 unsigned long nr_pages = 0;
2208 /* Only the last zone may have deferred pages */
2209 if (zone_end_pfn(zone) != pgdat_end_pfn(pgdat))
2212 pgdat_resize_lock(pgdat, &flags);
2215 * If someone grew this zone while we were waiting for spinlock, return
2216 * true, as there might be enough pages already.
2218 if (first_deferred_pfn != pgdat->first_deferred_pfn) {
2219 pgdat_resize_unlock(pgdat, &flags);
2223 /* If the zone is empty somebody else may have cleared out the zone */
2224 if (!deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn,
2225 first_deferred_pfn)) {
2226 pgdat->first_deferred_pfn = ULONG_MAX;
2227 pgdat_resize_unlock(pgdat, &flags);
2228 /* Retry only once. */
2229 return first_deferred_pfn != ULONG_MAX;
2233 * Initialize and free pages in MAX_ORDER sized increments so
2234 * that we can avoid introducing any issues with the buddy
2237 while (spfn < epfn) {
2238 /* update our first deferred PFN for this section */
2239 first_deferred_pfn = spfn;
2241 nr_pages += deferred_init_maxorder(&i, zone, &spfn, &epfn);
2242 touch_nmi_watchdog();
2244 /* We should only stop along section boundaries */
2245 if ((first_deferred_pfn ^ spfn) < PAGES_PER_SECTION)
2248 /* If our quota has been met we can stop here */
2249 if (nr_pages >= nr_pages_needed)
2253 pgdat->first_deferred_pfn = spfn;
2254 pgdat_resize_unlock(pgdat, &flags);
2256 return nr_pages > 0;
2260 * deferred_grow_zone() is __init, but it is called from
2261 * get_page_from_freelist() during early boot until deferred_pages permanently
2262 * disables this call. This is why we have refdata wrapper to avoid warning,
2263 * and to ensure that the function body gets unloaded.
2266 _deferred_grow_zone(struct zone *zone, unsigned int order)
2268 return deferred_grow_zone(zone, order);
2271 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
2273 void __init page_alloc_init_late(void)
2278 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
2280 /* There will be num_node_state(N_MEMORY) threads */
2281 atomic_set(&pgdat_init_n_undone, num_node_state(N_MEMORY));
2282 for_each_node_state(nid, N_MEMORY) {
2283 kthread_run(deferred_init_memmap, NODE_DATA(nid), "pgdatinit%d", nid);
2286 /* Block until all are initialised */
2287 wait_for_completion(&pgdat_init_all_done_comp);
2290 * We initialized the rest of the deferred pages. Permanently disable
2291 * on-demand struct page initialization.
2293 static_branch_disable(&deferred_pages);
2295 /* Reinit limits that are based on free pages after the kernel is up */
2296 files_maxfiles_init();
2301 /* Discard memblock private memory */
2304 for_each_node_state(nid, N_MEMORY)
2305 shuffle_free_memory(NODE_DATA(nid));
2307 for_each_populated_zone(zone)
2308 set_zone_contiguous(zone);
2312 /* Free whole pageblock and set its migration type to MIGRATE_CMA. */
2313 void __init init_cma_reserved_pageblock(struct page *page)
2315 unsigned i = pageblock_nr_pages;
2316 struct page *p = page;
2319 __ClearPageReserved(p);
2320 set_page_count(p, 0);
2323 set_pageblock_migratetype(page, MIGRATE_CMA);
2324 set_page_refcounted(page);
2325 __free_pages(page, pageblock_order);
2327 adjust_managed_page_count(page, pageblock_nr_pages);
2328 page_zone(page)->cma_pages += pageblock_nr_pages;
2333 * The order of subdivision here is critical for the IO subsystem.
2334 * Please do not alter this order without good reasons and regression
2335 * testing. Specifically, as large blocks of memory are subdivided,
2336 * the order in which smaller blocks are delivered depends on the order
2337 * they're subdivided in this function. This is the primary factor
2338 * influencing the order in which pages are delivered to the IO
2339 * subsystem according to empirical testing, and this is also justified
2340 * by considering the behavior of a buddy system containing a single
2341 * large block of memory acted on by a series of small allocations.
2342 * This behavior is a critical factor in sglist merging's success.
2346 static inline void expand(struct zone *zone, struct page *page,
2347 int low, int high, int migratetype)
2349 unsigned long size = 1 << high;
2351 while (high > low) {
2354 VM_BUG_ON_PAGE(bad_range(zone, &page[size]), &page[size]);
2357 * Mark as guard pages (or page), that will allow to
2358 * merge back to allocator when buddy will be freed.
2359 * Corresponding page table entries will not be touched,
2360 * pages will stay not present in virtual address space
2362 if (set_page_guard(zone, &page[size], high, migratetype))
2365 add_to_free_list(&page[size], zone, high, migratetype);
2366 set_buddy_order(&page[size], high);
2370 static void check_new_page_bad(struct page *page)
2372 if (unlikely(page->flags & __PG_HWPOISON)) {
2373 /* Don't complain about hwpoisoned pages */
2374 page_mapcount_reset(page); /* remove PageBuddy */
2379 page_bad_reason(page, PAGE_FLAGS_CHECK_AT_PREP));
2383 * This page is about to be returned from the page allocator
2385 static inline int check_new_page(struct page *page)
2387 if (likely(page_expected_state(page,
2388 PAGE_FLAGS_CHECK_AT_PREP|__PG_HWPOISON)))
2391 check_new_page_bad(page);
2395 static bool check_new_pages(struct page *page, unsigned int order)
2398 for (i = 0; i < (1 << order); i++) {
2399 struct page *p = page + i;
2401 if (unlikely(check_new_page(p)))
2408 #ifdef CONFIG_DEBUG_VM
2410 * With DEBUG_VM enabled, order-0 pages are checked for expected state when
2411 * being allocated from pcp lists. With debug_pagealloc also enabled, they are
2412 * also checked when pcp lists are refilled from the free lists.
2414 static inline bool check_pcp_refill(struct page *page, unsigned int order)
2416 if (debug_pagealloc_enabled_static())
2417 return check_new_pages(page, order);
2422 static inline bool check_new_pcp(struct page *page, unsigned int order)
2424 return check_new_pages(page, order);
2428 * With DEBUG_VM disabled, free order-0 pages are checked for expected state
2429 * when pcp lists are being refilled from the free lists. With debug_pagealloc
2430 * enabled, they are also checked when being allocated from the pcp lists.
2432 static inline bool check_pcp_refill(struct page *page, unsigned int order)
2434 return check_new_pages(page, order);
2436 static inline bool check_new_pcp(struct page *page, unsigned int order)
2438 if (debug_pagealloc_enabled_static())
2439 return check_new_pages(page, order);
2443 #endif /* CONFIG_DEBUG_VM */
2445 static inline bool should_skip_kasan_unpoison(gfp_t flags)
2447 /* Don't skip if a software KASAN mode is enabled. */
2448 if (IS_ENABLED(CONFIG_KASAN_GENERIC) ||
2449 IS_ENABLED(CONFIG_KASAN_SW_TAGS))
2452 /* Skip, if hardware tag-based KASAN is not enabled. */
2453 if (!kasan_hw_tags_enabled())
2457 * With hardware tag-based KASAN enabled, skip if this has been
2458 * requested via __GFP_SKIP_KASAN_UNPOISON.
2460 return flags & __GFP_SKIP_KASAN_UNPOISON;
2463 static inline bool should_skip_init(gfp_t flags)
2465 /* Don't skip, if hardware tag-based KASAN is not enabled. */
2466 if (!kasan_hw_tags_enabled())
2469 /* For hardware tag-based KASAN, skip if requested. */
2470 return (flags & __GFP_SKIP_ZERO);
2473 inline void post_alloc_hook(struct page *page, unsigned int order,
2476 bool init = !want_init_on_free() && want_init_on_alloc(gfp_flags) &&
2477 !should_skip_init(gfp_flags);
2478 bool zero_tags = init && (gfp_flags & __GFP_ZEROTAGS);
2479 bool reset_tags = true;
2482 set_page_private(page, 0);
2483 set_page_refcounted(page);
2485 arch_alloc_page(page, order);
2486 debug_pagealloc_map_pages(page, 1 << order);
2489 * Page unpoisoning must happen before memory initialization.
2490 * Otherwise, the poison pattern will be overwritten for __GFP_ZERO
2491 * allocations and the page unpoisoning code will complain.
2493 kernel_unpoison_pages(page, 1 << order);
2496 * As memory initialization might be integrated into KASAN,
2497 * KASAN unpoisoning and memory initializion code must be
2498 * kept together to avoid discrepancies in behavior.
2502 * If memory tags should be zeroed
2503 * (which happens only when memory should be initialized as well).
2506 /* Initialize both memory and memory tags. */
2507 for (i = 0; i != 1 << order; ++i)
2508 tag_clear_highpage(page + i);
2510 /* Take note that memory was initialized by the loop above. */
2513 if (!should_skip_kasan_unpoison(gfp_flags)) {
2514 /* Try unpoisoning (or setting tags) and initializing memory. */
2515 if (kasan_unpoison_pages(page, order, init)) {
2516 /* Take note that memory was initialized by KASAN. */
2517 if (kasan_has_integrated_init())
2519 /* Take note that memory tags were set by KASAN. */
2523 * KASAN decided to exclude this allocation from being
2524 * (un)poisoned due to sampling. Make KASAN skip
2525 * poisoning when the allocation is freed.
2527 SetPageSkipKASanPoison(page);
2531 * If memory tags have not been set by KASAN, reset the page tags to
2532 * ensure page_address() dereferencing does not fault.
2535 for (i = 0; i != 1 << order; ++i)
2536 page_kasan_tag_reset(page + i);
2538 /* If memory is still not initialized, initialize it now. */
2540 kernel_init_pages(page, 1 << order);
2541 /* Propagate __GFP_SKIP_KASAN_POISON to page flags. */
2542 if (kasan_hw_tags_enabled() && (gfp_flags & __GFP_SKIP_KASAN_POISON))
2543 SetPageSkipKASanPoison(page);
2545 set_page_owner(page, order, gfp_flags);
2546 page_table_check_alloc(page, order);
2549 static void prep_new_page(struct page *page, unsigned int order, gfp_t gfp_flags,
2550 unsigned int alloc_flags)
2552 post_alloc_hook(page, order, gfp_flags);
2554 if (order && (gfp_flags & __GFP_COMP))
2555 prep_compound_page(page, order);
2558 * page is set pfmemalloc when ALLOC_NO_WATERMARKS was necessary to
2559 * allocate the page. The expectation is that the caller is taking
2560 * steps that will free more memory. The caller should avoid the page
2561 * being used for !PFMEMALLOC purposes.
2563 if (alloc_flags & ALLOC_NO_WATERMARKS)
2564 set_page_pfmemalloc(page);
2566 clear_page_pfmemalloc(page);
2570 * Go through the free lists for the given migratetype and remove
2571 * the smallest available page from the freelists
2573 static __always_inline
2574 struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
2577 unsigned int current_order;
2578 struct free_area *area;
2581 /* Find a page of the appropriate size in the preferred list */
2582 for (current_order = order; current_order < MAX_ORDER; ++current_order) {
2583 area = &(zone->free_area[current_order]);
2584 page = get_page_from_free_area(area, migratetype);
2587 del_page_from_free_list(page, zone, current_order);
2588 expand(zone, page, order, current_order, migratetype);
2589 set_pcppage_migratetype(page, migratetype);
2590 trace_mm_page_alloc_zone_locked(page, order, migratetype,
2591 pcp_allowed_order(order) &&
2592 migratetype < MIGRATE_PCPTYPES);
2601 * This array describes the order lists are fallen back to when
2602 * the free lists for the desirable migrate type are depleted
2604 * The other migratetypes do not have fallbacks.
2606 static int fallbacks[MIGRATE_TYPES][MIGRATE_PCPTYPES - 1] = {
2607 [MIGRATE_UNMOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE },
2608 [MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE },
2609 [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE },
2613 static __always_inline struct page *__rmqueue_cma_fallback(struct zone *zone,
2616 return __rmqueue_smallest(zone, order, MIGRATE_CMA);
2619 static inline struct page *__rmqueue_cma_fallback(struct zone *zone,
2620 unsigned int order) { return NULL; }
2624 * Move the free pages in a range to the freelist tail of the requested type.
2625 * Note that start_page and end_pages are not aligned on a pageblock
2626 * boundary. If alignment is required, use move_freepages_block()
2628 static int move_freepages(struct zone *zone,
2629 unsigned long start_pfn, unsigned long end_pfn,
2630 int migratetype, int *num_movable)
2635 int pages_moved = 0;
2637 for (pfn = start_pfn; pfn <= end_pfn;) {
2638 page = pfn_to_page(pfn);
2639 if (!PageBuddy(page)) {
2641 * We assume that pages that could be isolated for
2642 * migration are movable. But we don't actually try
2643 * isolating, as that would be expensive.
2646 (PageLRU(page) || __PageMovable(page)))
2652 /* Make sure we are not inadvertently changing nodes */
2653 VM_BUG_ON_PAGE(page_to_nid(page) != zone_to_nid(zone), page);
2654 VM_BUG_ON_PAGE(page_zone(page) != zone, page);
2656 order = buddy_order(page);
2657 move_to_free_list(page, zone, order, migratetype);
2659 pages_moved += 1 << order;
2665 int move_freepages_block(struct zone *zone, struct page *page,
2666 int migratetype, int *num_movable)
2668 unsigned long start_pfn, end_pfn, pfn;
2673 pfn = page_to_pfn(page);
2674 start_pfn = pageblock_start_pfn(pfn);
2675 end_pfn = pageblock_end_pfn(pfn) - 1;
2677 /* Do not cross zone boundaries */
2678 if (!zone_spans_pfn(zone, start_pfn))
2680 if (!zone_spans_pfn(zone, end_pfn))
2683 return move_freepages(zone, start_pfn, end_pfn, migratetype,
2687 static void change_pageblock_range(struct page *pageblock_page,
2688 int start_order, int migratetype)
2690 int nr_pageblocks = 1 << (start_order - pageblock_order);
2692 while (nr_pageblocks--) {
2693 set_pageblock_migratetype(pageblock_page, migratetype);
2694 pageblock_page += pageblock_nr_pages;
2699 * When we are falling back to another migratetype during allocation, try to
2700 * steal extra free pages from the same pageblocks to satisfy further
2701 * allocations, instead of polluting multiple pageblocks.
2703 * If we are stealing a relatively large buddy page, it is likely there will
2704 * be more free pages in the pageblock, so try to steal them all. For
2705 * reclaimable and unmovable allocations, we steal regardless of page size,
2706 * as fragmentation caused by those allocations polluting movable pageblocks
2707 * is worse than movable allocations stealing from unmovable and reclaimable
2710 static bool can_steal_fallback(unsigned int order, int start_mt)
2713 * Leaving this order check is intended, although there is
2714 * relaxed order check in next check. The reason is that
2715 * we can actually steal whole pageblock if this condition met,
2716 * but, below check doesn't guarantee it and that is just heuristic
2717 * so could be changed anytime.
2719 if (order >= pageblock_order)
2722 if (order >= pageblock_order / 2 ||
2723 start_mt == MIGRATE_RECLAIMABLE ||
2724 start_mt == MIGRATE_UNMOVABLE ||
2725 page_group_by_mobility_disabled)
2731 static inline bool boost_watermark(struct zone *zone)
2733 unsigned long max_boost;
2735 if (!watermark_boost_factor)
2738 * Don't bother in zones that are unlikely to produce results.
2739 * On small machines, including kdump capture kernels running
2740 * in a small area, boosting the watermark can cause an out of
2741 * memory situation immediately.
2743 if ((pageblock_nr_pages * 4) > zone_managed_pages(zone))
2746 max_boost = mult_frac(zone->_watermark[WMARK_HIGH],
2747 watermark_boost_factor, 10000);
2750 * high watermark may be uninitialised if fragmentation occurs
2751 * very early in boot so do not boost. We do not fall
2752 * through and boost by pageblock_nr_pages as failing
2753 * allocations that early means that reclaim is not going
2754 * to help and it may even be impossible to reclaim the
2755 * boosted watermark resulting in a hang.
2760 max_boost = max(pageblock_nr_pages, max_boost);
2762 zone->watermark_boost = min(zone->watermark_boost + pageblock_nr_pages,
2769 * This function implements actual steal behaviour. If order is large enough,
2770 * we can steal whole pageblock. If not, we first move freepages in this
2771 * pageblock to our migratetype and determine how many already-allocated pages
2772 * are there in the pageblock with a compatible migratetype. If at least half
2773 * of pages are free or compatible, we can change migratetype of the pageblock
2774 * itself, so pages freed in the future will be put on the correct free list.
2776 static void steal_suitable_fallback(struct zone *zone, struct page *page,
2777 unsigned int alloc_flags, int start_type, bool whole_block)
2779 unsigned int current_order = buddy_order(page);
2780 int free_pages, movable_pages, alike_pages;
2783 old_block_type = get_pageblock_migratetype(page);
2786 * This can happen due to races and we want to prevent broken
2787 * highatomic accounting.
2789 if (is_migrate_highatomic(old_block_type))
2792 /* Take ownership for orders >= pageblock_order */
2793 if (current_order >= pageblock_order) {
2794 change_pageblock_range(page, current_order, start_type);
2799 * Boost watermarks to increase reclaim pressure to reduce the
2800 * likelihood of future fallbacks. Wake kswapd now as the node
2801 * may be balanced overall and kswapd will not wake naturally.
2803 if (boost_watermark(zone) && (alloc_flags & ALLOC_KSWAPD))
2804 set_bit(ZONE_BOOSTED_WATERMARK, &zone->flags);
2806 /* We are not allowed to try stealing from the whole block */
2810 free_pages = move_freepages_block(zone, page, start_type,
2813 * Determine how many pages are compatible with our allocation.
2814 * For movable allocation, it's the number of movable pages which
2815 * we just obtained. For other types it's a bit more tricky.
2817 if (start_type == MIGRATE_MOVABLE) {
2818 alike_pages = movable_pages;
2821 * If we are falling back a RECLAIMABLE or UNMOVABLE allocation
2822 * to MOVABLE pageblock, consider all non-movable pages as
2823 * compatible. If it's UNMOVABLE falling back to RECLAIMABLE or
2824 * vice versa, be conservative since we can't distinguish the
2825 * exact migratetype of non-movable pages.
2827 if (old_block_type == MIGRATE_MOVABLE)
2828 alike_pages = pageblock_nr_pages
2829 - (free_pages + movable_pages);
2834 /* moving whole block can fail due to zone boundary conditions */
2839 * If a sufficient number of pages in the block are either free or of
2840 * comparable migratability as our allocation, claim the whole block.
2842 if (free_pages + alike_pages >= (1 << (pageblock_order-1)) ||
2843 page_group_by_mobility_disabled)
2844 set_pageblock_migratetype(page, start_type);
2849 move_to_free_list(page, zone, current_order, start_type);
2853 * Check whether there is a suitable fallback freepage with requested order.
2854 * If only_stealable is true, this function returns fallback_mt only if
2855 * we can steal other freepages all together. This would help to reduce
2856 * fragmentation due to mixed migratetype pages in one pageblock.
2858 int find_suitable_fallback(struct free_area *area, unsigned int order,
2859 int migratetype, bool only_stealable, bool *can_steal)
2864 if (area->nr_free == 0)
2868 for (i = 0; i < MIGRATE_PCPTYPES - 1 ; i++) {
2869 fallback_mt = fallbacks[migratetype][i];
2870 if (free_area_empty(area, fallback_mt))
2873 if (can_steal_fallback(order, migratetype))
2876 if (!only_stealable)
2887 * Reserve a pageblock for exclusive use of high-order atomic allocations if
2888 * there are no empty page blocks that contain a page with a suitable order
2890 static void reserve_highatomic_pageblock(struct page *page, struct zone *zone,
2891 unsigned int alloc_order)
2894 unsigned long max_managed, flags;
2897 * Limit the number reserved to 1 pageblock or roughly 1% of a zone.
2898 * Check is race-prone but harmless.
2900 max_managed = (zone_managed_pages(zone) / 100) + pageblock_nr_pages;
2901 if (zone->nr_reserved_highatomic >= max_managed)
2904 spin_lock_irqsave(&zone->lock, flags);
2906 /* Recheck the nr_reserved_highatomic limit under the lock */
2907 if (zone->nr_reserved_highatomic >= max_managed)
2911 mt = get_pageblock_migratetype(page);
2912 /* Only reserve normal pageblocks (i.e., they can merge with others) */
2913 if (migratetype_is_mergeable(mt)) {
2914 zone->nr_reserved_highatomic += pageblock_nr_pages;
2915 set_pageblock_migratetype(page, MIGRATE_HIGHATOMIC);
2916 move_freepages_block(zone, page, MIGRATE_HIGHATOMIC, NULL);
2920 spin_unlock_irqrestore(&zone->lock, flags);
2924 * Used when an allocation is about to fail under memory pressure. This
2925 * potentially hurts the reliability of high-order allocations when under
2926 * intense memory pressure but failed atomic allocations should be easier
2927 * to recover from than an OOM.
2929 * If @force is true, try to unreserve a pageblock even though highatomic
2930 * pageblock is exhausted.
2932 static bool unreserve_highatomic_pageblock(const struct alloc_context *ac,
2935 struct zonelist *zonelist = ac->zonelist;
2936 unsigned long flags;
2943 for_each_zone_zonelist_nodemask(zone, z, zonelist, ac->highest_zoneidx,
2946 * Preserve at least one pageblock unless memory pressure
2949 if (!force && zone->nr_reserved_highatomic <=
2953 spin_lock_irqsave(&zone->lock, flags);
2954 for (order = 0; order < MAX_ORDER; order++) {
2955 struct free_area *area = &(zone->free_area[order]);
2957 page = get_page_from_free_area(area, MIGRATE_HIGHATOMIC);
2962 * In page freeing path, migratetype change is racy so
2963 * we can counter several free pages in a pageblock
2964 * in this loop although we changed the pageblock type
2965 * from highatomic to ac->migratetype. So we should
2966 * adjust the count once.
2968 if (is_migrate_highatomic_page(page)) {
2970 * It should never happen but changes to
2971 * locking could inadvertently allow a per-cpu
2972 * drain to add pages to MIGRATE_HIGHATOMIC
2973 * while unreserving so be safe and watch for
2976 zone->nr_reserved_highatomic -= min(
2978 zone->nr_reserved_highatomic);
2982 * Convert to ac->migratetype and avoid the normal
2983 * pageblock stealing heuristics. Minimally, the caller
2984 * is doing the work and needs the pages. More
2985 * importantly, if the block was always converted to
2986 * MIGRATE_UNMOVABLE or another type then the number
2987 * of pageblocks that cannot be completely freed
2990 set_pageblock_migratetype(page, ac->migratetype);
2991 ret = move_freepages_block(zone, page, ac->migratetype,
2994 spin_unlock_irqrestore(&zone->lock, flags);
2998 spin_unlock_irqrestore(&zone->lock, flags);
3005 * Try finding a free buddy page on the fallback list and put it on the free
3006 * list of requested migratetype, possibly along with other pages from the same
3007 * block, depending on fragmentation avoidance heuristics. Returns true if
3008 * fallback was found so that __rmqueue_smallest() can grab it.
3010 * The use of signed ints for order and current_order is a deliberate
3011 * deviation from the rest of this file, to make the for loop
3012 * condition simpler.
3014 static __always_inline bool
3015 __rmqueue_fallback(struct zone *zone, int order, int start_migratetype,
3016 unsigned int alloc_flags)
3018 struct free_area *area;
3020 int min_order = order;
3026 * Do not steal pages from freelists belonging to other pageblocks
3027 * i.e. orders < pageblock_order. If there are no local zones free,
3028 * the zonelists will be reiterated without ALLOC_NOFRAGMENT.
3030 if (order < pageblock_order && alloc_flags & ALLOC_NOFRAGMENT)
3031 min_order = pageblock_order;
3034 * Find the largest available free page in the other list. This roughly
3035 * approximates finding the pageblock with the most free pages, which
3036 * would be too costly to do exactly.
3038 for (current_order = MAX_ORDER - 1; current_order >= min_order;
3040 area = &(zone->free_area[current_order]);
3041 fallback_mt = find_suitable_fallback(area, current_order,
3042 start_migratetype, false, &can_steal);
3043 if (fallback_mt == -1)
3047 * We cannot steal all free pages from the pageblock and the
3048 * requested migratetype is movable. In that case it's better to
3049 * steal and split the smallest available page instead of the
3050 * largest available page, because even if the next movable
3051 * allocation falls back into a different pageblock than this
3052 * one, it won't cause permanent fragmentation.
3054 if (!can_steal && start_migratetype == MIGRATE_MOVABLE
3055 && current_order > order)
3064 for (current_order = order; current_order < MAX_ORDER;
3066 area = &(zone->free_area[current_order]);
3067 fallback_mt = find_suitable_fallback(area, current_order,
3068 start_migratetype, false, &can_steal);
3069 if (fallback_mt != -1)
3074 * This should not happen - we already found a suitable fallback
3075 * when looking for the largest page.
3077 VM_BUG_ON(current_order == MAX_ORDER);
3080 page = get_page_from_free_area(area, fallback_mt);
3082 steal_suitable_fallback(zone, page, alloc_flags, start_migratetype,
3085 trace_mm_page_alloc_extfrag(page, order, current_order,
3086 start_migratetype, fallback_mt);
3093 * Do the hard work of removing an element from the buddy allocator.
3094 * Call me with the zone->lock already held.
3096 static __always_inline struct page *
3097 __rmqueue(struct zone *zone, unsigned int order, int migratetype,
3098 unsigned int alloc_flags)
3102 if (IS_ENABLED(CONFIG_CMA)) {
3104 * Balance movable allocations between regular and CMA areas by
3105 * allocating from CMA when over half of the zone's free memory
3106 * is in the CMA area.
3108 if (alloc_flags & ALLOC_CMA &&
3109 zone_page_state(zone, NR_FREE_CMA_PAGES) >
3110 zone_page_state(zone, NR_FREE_PAGES) / 2) {
3111 page = __rmqueue_cma_fallback(zone, order);
3117 page = __rmqueue_smallest(zone, order, migratetype);
3118 if (unlikely(!page)) {
3119 if (alloc_flags & ALLOC_CMA)
3120 page = __rmqueue_cma_fallback(zone, order);
3122 if (!page && __rmqueue_fallback(zone, order, migratetype,
3130 * Obtain a specified number of elements from the buddy allocator, all under
3131 * a single hold of the lock, for efficiency. Add them to the supplied list.
3132 * Returns the number of new pages which were placed at *list.
3134 static int rmqueue_bulk(struct zone *zone, unsigned int order,
3135 unsigned long count, struct list_head *list,
3136 int migratetype, unsigned int alloc_flags)
3138 unsigned long flags;
3139 int i, allocated = 0;
3141 spin_lock_irqsave(&zone->lock, flags);
3142 for (i = 0; i < count; ++i) {
3143 struct page *page = __rmqueue(zone, order, migratetype,
3145 if (unlikely(page == NULL))
3148 if (unlikely(check_pcp_refill(page, order)))
3152 * Split buddy pages returned by expand() are received here in
3153 * physical page order. The page is added to the tail of
3154 * caller's list. From the callers perspective, the linked list
3155 * is ordered by page number under some conditions. This is
3156 * useful for IO devices that can forward direction from the
3157 * head, thus also in the physical page order. This is useful
3158 * for IO devices that can merge IO requests if the physical
3159 * pages are ordered properly.
3161 list_add_tail(&page->pcp_list, list);
3163 if (is_migrate_cma(get_pcppage_migratetype(page)))
3164 __mod_zone_page_state(zone, NR_FREE_CMA_PAGES,
3169 * i pages were removed from the buddy list even if some leak due
3170 * to check_pcp_refill failing so adjust NR_FREE_PAGES based
3171 * on i. Do not confuse with 'allocated' which is the number of
3172 * pages added to the pcp list.
3174 __mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order));
3175 spin_unlock_irqrestore(&zone->lock, flags);
3181 * Called from the vmstat counter updater to drain pagesets of this
3182 * currently executing processor on remote nodes after they have
3185 void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
3187 int to_drain, batch;
3189 batch = READ_ONCE(pcp->batch);
3190 to_drain = min(pcp->count, batch);
3192 spin_lock(&pcp->lock);
3193 free_pcppages_bulk(zone, to_drain, pcp, 0);
3194 spin_unlock(&pcp->lock);
3200 * Drain pcplists of the indicated processor and zone.
3202 static void drain_pages_zone(unsigned int cpu, struct zone *zone)
3204 struct per_cpu_pages *pcp;
3206 pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu);
3208 spin_lock(&pcp->lock);
3209 free_pcppages_bulk(zone, pcp->count, pcp, 0);
3210 spin_unlock(&pcp->lock);
3215 * Drain pcplists of all zones on the indicated processor.
3217 static void drain_pages(unsigned int cpu)
3221 for_each_populated_zone(zone) {
3222 drain_pages_zone(cpu, zone);
3227 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
3229 void drain_local_pages(struct zone *zone)
3231 int cpu = smp_processor_id();
3234 drain_pages_zone(cpu, zone);
3240 * The implementation of drain_all_pages(), exposing an extra parameter to
3241 * drain on all cpus.
3243 * drain_all_pages() is optimized to only execute on cpus where pcplists are
3244 * not empty. The check for non-emptiness can however race with a free to
3245 * pcplist that has not yet increased the pcp->count from 0 to 1. Callers
3246 * that need the guarantee that every CPU has drained can disable the
3247 * optimizing racy check.
3249 static void __drain_all_pages(struct zone *zone, bool force_all_cpus)
3254 * Allocate in the BSS so we won't require allocation in
3255 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y
3257 static cpumask_t cpus_with_pcps;
3260 * Do not drain if one is already in progress unless it's specific to
3261 * a zone. Such callers are primarily CMA and memory hotplug and need
3262 * the drain to be complete when the call returns.
3264 if (unlikely(!mutex_trylock(&pcpu_drain_mutex))) {
3267 mutex_lock(&pcpu_drain_mutex);
3271 * We don't care about racing with CPU hotplug event
3272 * as offline notification will cause the notified
3273 * cpu to drain that CPU pcps and on_each_cpu_mask
3274 * disables preemption as part of its processing
3276 for_each_online_cpu(cpu) {
3277 struct per_cpu_pages *pcp;
3279 bool has_pcps = false;
3281 if (force_all_cpus) {
3283 * The pcp.count check is racy, some callers need a
3284 * guarantee that no cpu is missed.
3288 pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu);
3292 for_each_populated_zone(z) {
3293 pcp = per_cpu_ptr(z->per_cpu_pageset, cpu);
3302 cpumask_set_cpu(cpu, &cpus_with_pcps);
3304 cpumask_clear_cpu(cpu, &cpus_with_pcps);
3307 for_each_cpu(cpu, &cpus_with_pcps) {
3309 drain_pages_zone(cpu, zone);
3314 mutex_unlock(&pcpu_drain_mutex);
3318 * Spill all the per-cpu pages from all CPUs back into the buddy allocator.
3320 * When zone parameter is non-NULL, spill just the single zone's pages.
3322 void drain_all_pages(struct zone *zone)
3324 __drain_all_pages(zone, false);
3327 #ifdef CONFIG_HIBERNATION
3330 * Touch the watchdog for every WD_PAGE_COUNT pages.
3332 #define WD_PAGE_COUNT (128*1024)
3334 void mark_free_pages(struct zone *zone)
3336 unsigned long pfn, max_zone_pfn, page_count = WD_PAGE_COUNT;
3337 unsigned long flags;
3338 unsigned int order, t;
3341 if (zone_is_empty(zone))
3344 spin_lock_irqsave(&zone->lock, flags);
3346 max_zone_pfn = zone_end_pfn(zone);
3347 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
3348 if (pfn_valid(pfn)) {
3349 page = pfn_to_page(pfn);
3351 if (!--page_count) {
3352 touch_nmi_watchdog();
3353 page_count = WD_PAGE_COUNT;
3356 if (page_zone(page) != zone)
3359 if (!swsusp_page_is_forbidden(page))
3360 swsusp_unset_page_free(page);
3363 for_each_migratetype_order(order, t) {
3364 list_for_each_entry(page,
3365 &zone->free_area[order].free_list[t], buddy_list) {
3368 pfn = page_to_pfn(page);
3369 for (i = 0; i < (1UL << order); i++) {
3370 if (!--page_count) {
3371 touch_nmi_watchdog();
3372 page_count = WD_PAGE_COUNT;
3374 swsusp_set_page_free(pfn_to_page(pfn + i));
3378 spin_unlock_irqrestore(&zone->lock, flags);
3380 #endif /* CONFIG_PM */
3382 static bool free_unref_page_prepare(struct page *page, unsigned long pfn,
3387 if (!free_pcp_prepare(page, order))
3390 migratetype = get_pfnblock_migratetype(page, pfn);
3391 set_pcppage_migratetype(page, migratetype);
3395 static int nr_pcp_free(struct per_cpu_pages *pcp, int high, int batch,
3398 int min_nr_free, max_nr_free;
3400 /* Free everything if batch freeing high-order pages. */
3401 if (unlikely(free_high))
3404 /* Check for PCP disabled or boot pageset */
3405 if (unlikely(high < batch))
3408 /* Leave at least pcp->batch pages on the list */
3409 min_nr_free = batch;
3410 max_nr_free = high - batch;
3413 * Double the number of pages freed each time there is subsequent
3414 * freeing of pages without any allocation.
3416 batch <<= pcp->free_factor;
3417 if (batch < max_nr_free)
3419 batch = clamp(batch, min_nr_free, max_nr_free);
3424 static int nr_pcp_high(struct per_cpu_pages *pcp, struct zone *zone,
3427 int high = READ_ONCE(pcp->high);
3429 if (unlikely(!high || free_high))
3432 if (!test_bit(ZONE_RECLAIM_ACTIVE, &zone->flags))
3436 * If reclaim is active, limit the number of pages that can be
3437 * stored on pcp lists
3439 return min(READ_ONCE(pcp->batch) << 2, high);
3442 static void free_unref_page_commit(struct zone *zone, struct per_cpu_pages *pcp,
3443 struct page *page, int migratetype,
3450 __count_vm_events(PGFREE, 1 << order);
3451 pindex = order_to_pindex(migratetype, order);
3452 list_add(&page->pcp_list, &pcp->lists[pindex]);
3453 pcp->count += 1 << order;
3456 * As high-order pages other than THP's stored on PCP can contribute
3457 * to fragmentation, limit the number stored when PCP is heavily
3458 * freeing without allocation. The remainder after bulk freeing
3459 * stops will be drained from vmstat refresh context.
3461 free_high = (pcp->free_factor && order && order <= PAGE_ALLOC_COSTLY_ORDER);
3463 high = nr_pcp_high(pcp, zone, free_high);
3464 if (pcp->count >= high) {
3465 int batch = READ_ONCE(pcp->batch);
3467 free_pcppages_bulk(zone, nr_pcp_free(pcp, high, batch, free_high), pcp, pindex);
3474 void free_unref_page(struct page *page, unsigned int order)
3476 unsigned long __maybe_unused UP_flags;
3477 struct per_cpu_pages *pcp;
3479 unsigned long pfn = page_to_pfn(page);
3482 if (!free_unref_page_prepare(page, pfn, order))
3486 * We only track unmovable, reclaimable and movable on pcp lists.
3487 * Place ISOLATE pages on the isolated list because they are being
3488 * offlined but treat HIGHATOMIC as movable pages so we can get those
3489 * areas back if necessary. Otherwise, we may have to free
3490 * excessively into the page allocator
3492 migratetype = get_pcppage_migratetype(page);
3493 if (unlikely(migratetype >= MIGRATE_PCPTYPES)) {
3494 if (unlikely(is_migrate_isolate(migratetype))) {
3495 free_one_page(page_zone(page), page, pfn, order, migratetype, FPI_NONE);
3498 migratetype = MIGRATE_MOVABLE;
3501 zone = page_zone(page);
3502 pcp_trylock_prepare(UP_flags);
3503 pcp = pcp_spin_trylock(zone->per_cpu_pageset);
3505 free_unref_page_commit(zone, pcp, page, migratetype, order);
3506 pcp_spin_unlock(pcp);
3508 free_one_page(zone, page, pfn, order, migratetype, FPI_NONE);
3510 pcp_trylock_finish(UP_flags);
3514 * Free a list of 0-order pages
3516 void free_unref_page_list(struct list_head *list)
3518 unsigned long __maybe_unused UP_flags;
3519 struct page *page, *next;
3520 struct per_cpu_pages *pcp = NULL;
3521 struct zone *locked_zone = NULL;
3522 int batch_count = 0;
3525 /* Prepare pages for freeing */
3526 list_for_each_entry_safe(page, next, list, lru) {
3527 unsigned long pfn = page_to_pfn(page);
3528 if (!free_unref_page_prepare(page, pfn, 0)) {
3529 list_del(&page->lru);
3534 * Free isolated pages directly to the allocator, see
3535 * comment in free_unref_page.
3537 migratetype = get_pcppage_migratetype(page);
3538 if (unlikely(is_migrate_isolate(migratetype))) {
3539 list_del(&page->lru);
3540 free_one_page(page_zone(page), page, pfn, 0, migratetype, FPI_NONE);
3545 list_for_each_entry_safe(page, next, list, lru) {
3546 struct zone *zone = page_zone(page);
3548 list_del(&page->lru);
3549 migratetype = get_pcppage_migratetype(page);
3552 * Either different zone requiring a different pcp lock or
3553 * excessive lock hold times when freeing a large list of
3556 if (zone != locked_zone || batch_count == SWAP_CLUSTER_MAX) {
3558 pcp_spin_unlock(pcp);
3559 pcp_trylock_finish(UP_flags);
3565 * trylock is necessary as pages may be getting freed
3566 * from IRQ or SoftIRQ context after an IO completion.
3568 pcp_trylock_prepare(UP_flags);
3569 pcp = pcp_spin_trylock(zone->per_cpu_pageset);
3570 if (unlikely(!pcp)) {
3571 pcp_trylock_finish(UP_flags);
3572 free_one_page(zone, page, page_to_pfn(page),
3573 0, migratetype, FPI_NONE);
3581 * Non-isolated types over MIGRATE_PCPTYPES get added
3582 * to the MIGRATE_MOVABLE pcp list.
3584 if (unlikely(migratetype >= MIGRATE_PCPTYPES))
3585 migratetype = MIGRATE_MOVABLE;
3587 trace_mm_page_free_batched(page);
3588 free_unref_page_commit(zone, pcp, page, migratetype, 0);
3593 pcp_spin_unlock(pcp);
3594 pcp_trylock_finish(UP_flags);
3599 * split_page takes a non-compound higher-order page, and splits it into
3600 * n (1<<order) sub-pages: page[0..n]
3601 * Each sub-page must be freed individually.
3603 * Note: this is probably too low level an operation for use in drivers.
3604 * Please consult with lkml before using this in your driver.
3606 void split_page(struct page *page, unsigned int order)
3610 VM_BUG_ON_PAGE(PageCompound(page), page);
3611 VM_BUG_ON_PAGE(!page_count(page), page);
3613 for (i = 1; i < (1 << order); i++)
3614 set_page_refcounted(page + i);
3615 split_page_owner(page, 1 << order);
3616 split_page_memcg(page, 1 << order);
3618 EXPORT_SYMBOL_GPL(split_page);
3620 int __isolate_free_page(struct page *page, unsigned int order)
3622 struct zone *zone = page_zone(page);
3623 int mt = get_pageblock_migratetype(page);
3625 if (!is_migrate_isolate(mt)) {
3626 unsigned long watermark;
3628 * Obey watermarks as if the page was being allocated. We can
3629 * emulate a high-order watermark check with a raised order-0
3630 * watermark, because we already know our high-order page
3633 watermark = zone->_watermark[WMARK_MIN] + (1UL << order);
3634 if (!zone_watermark_ok(zone, 0, watermark, 0, ALLOC_CMA))
3637 __mod_zone_freepage_state(zone, -(1UL << order), mt);
3640 del_page_from_free_list(page, zone, order);
3643 * Set the pageblock if the isolated page is at least half of a
3646 if (order >= pageblock_order - 1) {
3647 struct page *endpage = page + (1 << order) - 1;
3648 for (; page < endpage; page += pageblock_nr_pages) {
3649 int mt = get_pageblock_migratetype(page);
3651 * Only change normal pageblocks (i.e., they can merge
3654 if (migratetype_is_mergeable(mt))
3655 set_pageblock_migratetype(page,
3660 return 1UL << order;
3664 * __putback_isolated_page - Return a now-isolated page back where we got it
3665 * @page: Page that was isolated
3666 * @order: Order of the isolated page
3667 * @mt: The page's pageblock's migratetype
3669 * This function is meant to return a page pulled from the free lists via
3670 * __isolate_free_page back to the free lists they were pulled from.
3672 void __putback_isolated_page(struct page *page, unsigned int order, int mt)
3674 struct zone *zone = page_zone(page);
3676 /* zone lock should be held when this function is called */
3677 lockdep_assert_held(&zone->lock);
3679 /* Return isolated page to tail of freelist. */
3680 __free_one_page(page, page_to_pfn(page), zone, order, mt,
3681 FPI_SKIP_REPORT_NOTIFY | FPI_TO_TAIL);
3685 * Update NUMA hit/miss statistics
3687 static inline void zone_statistics(struct zone *preferred_zone, struct zone *z,
3691 enum numa_stat_item local_stat = NUMA_LOCAL;
3693 /* skip numa counters update if numa stats is disabled */
3694 if (!static_branch_likely(&vm_numa_stat_key))
3697 if (zone_to_nid(z) != numa_node_id())
3698 local_stat = NUMA_OTHER;
3700 if (zone_to_nid(z) == zone_to_nid(preferred_zone))
3701 __count_numa_events(z, NUMA_HIT, nr_account);
3703 __count_numa_events(z, NUMA_MISS, nr_account);
3704 __count_numa_events(preferred_zone, NUMA_FOREIGN, nr_account);
3706 __count_numa_events(z, local_stat, nr_account);
3710 static __always_inline
3711 struct page *rmqueue_buddy(struct zone *preferred_zone, struct zone *zone,
3712 unsigned int order, unsigned int alloc_flags,
3716 unsigned long flags;
3720 spin_lock_irqsave(&zone->lock, flags);
3722 * order-0 request can reach here when the pcplist is skipped
3723 * due to non-CMA allocation context. HIGHATOMIC area is
3724 * reserved for high-order atomic allocation, so order-0
3725 * request should skip it.
3727 if (alloc_flags & ALLOC_HIGHATOMIC)
3728 page = __rmqueue_smallest(zone, order, MIGRATE_HIGHATOMIC);
3730 page = __rmqueue(zone, order, migratetype, alloc_flags);
3733 * If the allocation fails, allow OOM handling access
3734 * to HIGHATOMIC reserves as failing now is worse than
3735 * failing a high-order atomic allocation in the
3738 if (!page && (alloc_flags & ALLOC_OOM))
3739 page = __rmqueue_smallest(zone, order, MIGRATE_HIGHATOMIC);
3742 spin_unlock_irqrestore(&zone->lock, flags);
3746 __mod_zone_freepage_state(zone, -(1 << order),
3747 get_pcppage_migratetype(page));
3748 spin_unlock_irqrestore(&zone->lock, flags);
3749 } while (check_new_pages(page, order));
3751 __count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order);
3752 zone_statistics(preferred_zone, zone, 1);
3757 /* Remove page from the per-cpu list, caller must protect the list */
3759 struct page *__rmqueue_pcplist(struct zone *zone, unsigned int order,
3761 unsigned int alloc_flags,
3762 struct per_cpu_pages *pcp,
3763 struct list_head *list)
3768 if (list_empty(list)) {
3769 int batch = READ_ONCE(pcp->batch);
3773 * Scale batch relative to order if batch implies
3774 * free pages can be stored on the PCP. Batch can
3775 * be 1 for small zones or for boot pagesets which
3776 * should never store free pages as the pages may
3777 * belong to arbitrary zones.
3780 batch = max(batch >> order, 2);
3781 alloced = rmqueue_bulk(zone, order,
3783 migratetype, alloc_flags);
3785 pcp->count += alloced << order;
3786 if (unlikely(list_empty(list)))
3790 page = list_first_entry(list, struct page, pcp_list);
3791 list_del(&page->pcp_list);
3792 pcp->count -= 1 << order;
3793 } while (check_new_pcp(page, order));
3798 /* Lock and remove page from the per-cpu list */
3799 static struct page *rmqueue_pcplist(struct zone *preferred_zone,
3800 struct zone *zone, unsigned int order,
3801 int migratetype, unsigned int alloc_flags)
3803 struct per_cpu_pages *pcp;
3804 struct list_head *list;
3806 unsigned long __maybe_unused UP_flags;
3808 /* spin_trylock may fail due to a parallel drain or IRQ reentrancy. */
3809 pcp_trylock_prepare(UP_flags);
3810 pcp = pcp_spin_trylock(zone->per_cpu_pageset);
3812 pcp_trylock_finish(UP_flags);
3817 * On allocation, reduce the number of pages that are batch freed.
3818 * See nr_pcp_free() where free_factor is increased for subsequent
3821 pcp->free_factor >>= 1;
3822 list = &pcp->lists[order_to_pindex(migratetype, order)];
3823 page = __rmqueue_pcplist(zone, order, migratetype, alloc_flags, pcp, list);
3824 pcp_spin_unlock(pcp);
3825 pcp_trylock_finish(UP_flags);
3827 __count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order);
3828 zone_statistics(preferred_zone, zone, 1);
3834 * Allocate a page from the given zone.
3835 * Use pcplists for THP or "cheap" high-order allocations.
3839 * Do not instrument rmqueue() with KMSAN. This function may call
3840 * __msan_poison_alloca() through a call to set_pfnblock_flags_mask().
3841 * If __msan_poison_alloca() attempts to allocate pages for the stack depot, it
3842 * may call rmqueue() again, which will result in a deadlock.
3844 __no_sanitize_memory
3846 struct page *rmqueue(struct zone *preferred_zone,
3847 struct zone *zone, unsigned int order,
3848 gfp_t gfp_flags, unsigned int alloc_flags,
3854 * We most definitely don't want callers attempting to
3855 * allocate greater than order-1 page units with __GFP_NOFAIL.
3857 WARN_ON_ONCE((gfp_flags & __GFP_NOFAIL) && (order > 1));
3859 if (likely(pcp_allowed_order(order))) {
3861 * MIGRATE_MOVABLE pcplist could have the pages on CMA area and
3862 * we need to skip it when CMA area isn't allowed.
3864 if (!IS_ENABLED(CONFIG_CMA) || alloc_flags & ALLOC_CMA ||
3865 migratetype != MIGRATE_MOVABLE) {
3866 page = rmqueue_pcplist(preferred_zone, zone, order,
3867 migratetype, alloc_flags);
3873 page = rmqueue_buddy(preferred_zone, zone, order, alloc_flags,
3877 /* Separate test+clear to avoid unnecessary atomics */
3878 if (unlikely(test_bit(ZONE_BOOSTED_WATERMARK, &zone->flags))) {
3879 clear_bit(ZONE_BOOSTED_WATERMARK, &zone->flags);
3880 wakeup_kswapd(zone, 0, 0, zone_idx(zone));
3883 VM_BUG_ON_PAGE(page && bad_range(zone, page), page);
3887 #ifdef CONFIG_FAIL_PAGE_ALLOC
3890 struct fault_attr attr;
3892 bool ignore_gfp_highmem;
3893 bool ignore_gfp_reclaim;
3895 } fail_page_alloc = {
3896 .attr = FAULT_ATTR_INITIALIZER,
3897 .ignore_gfp_reclaim = true,
3898 .ignore_gfp_highmem = true,
3902 static int __init setup_fail_page_alloc(char *str)
3904 return setup_fault_attr(&fail_page_alloc.attr, str);
3906 __setup("fail_page_alloc=", setup_fail_page_alloc);
3908 static bool __should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
3912 if (order < fail_page_alloc.min_order)
3914 if (gfp_mask & __GFP_NOFAIL)
3916 if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
3918 if (fail_page_alloc.ignore_gfp_reclaim &&
3919 (gfp_mask & __GFP_DIRECT_RECLAIM))
3922 /* See comment in __should_failslab() */
3923 if (gfp_mask & __GFP_NOWARN)
3924 flags |= FAULT_NOWARN;
3926 return should_fail_ex(&fail_page_alloc.attr, 1 << order, flags);
3929 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
3931 static int __init fail_page_alloc_debugfs(void)
3933 umode_t mode = S_IFREG | 0600;
3936 dir = fault_create_debugfs_attr("fail_page_alloc", NULL,
3937 &fail_page_alloc.attr);
3939 debugfs_create_bool("ignore-gfp-wait", mode, dir,
3940 &fail_page_alloc.ignore_gfp_reclaim);
3941 debugfs_create_bool("ignore-gfp-highmem", mode, dir,
3942 &fail_page_alloc.ignore_gfp_highmem);
3943 debugfs_create_u32("min-order", mode, dir, &fail_page_alloc.min_order);
3948 late_initcall(fail_page_alloc_debugfs);
3950 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
3952 #else /* CONFIG_FAIL_PAGE_ALLOC */
3954 static inline bool __should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
3959 #endif /* CONFIG_FAIL_PAGE_ALLOC */
3961 noinline bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
3963 return __should_fail_alloc_page(gfp_mask, order);
3965 ALLOW_ERROR_INJECTION(should_fail_alloc_page, TRUE);
3967 static inline long __zone_watermark_unusable_free(struct zone *z,
3968 unsigned int order, unsigned int alloc_flags)
3970 long unusable_free = (1 << order) - 1;
3973 * If the caller does not have rights to reserves below the min
3974 * watermark then subtract the high-atomic reserves. This will
3975 * over-estimate the size of the atomic reserve but it avoids a search.
3977 if (likely(!(alloc_flags & ALLOC_RESERVES)))
3978 unusable_free += z->nr_reserved_highatomic;
3981 /* If allocation can't use CMA areas don't use free CMA pages */
3982 if (!(alloc_flags & ALLOC_CMA))
3983 unusable_free += zone_page_state(z, NR_FREE_CMA_PAGES);
3986 return unusable_free;
3990 * Return true if free base pages are above 'mark'. For high-order checks it
3991 * will return true of the order-0 watermark is reached and there is at least
3992 * one free page of a suitable size. Checking now avoids taking the zone lock
3993 * to check in the allocation paths if no pages are free.
3995 bool __zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
3996 int highest_zoneidx, unsigned int alloc_flags,
4002 /* free_pages may go negative - that's OK */
4003 free_pages -= __zone_watermark_unusable_free(z, order, alloc_flags);
4005 if (unlikely(alloc_flags & ALLOC_RESERVES)) {
4007 * __GFP_HIGH allows access to 50% of the min reserve as well
4010 if (alloc_flags & ALLOC_MIN_RESERVE) {
4014 * Non-blocking allocations (e.g. GFP_ATOMIC) can
4015 * access more reserves than just __GFP_HIGH. Other
4016 * non-blocking allocations requests such as GFP_NOWAIT
4017 * or (GFP_KERNEL & ~__GFP_DIRECT_RECLAIM) do not get
4018 * access to the min reserve.
4020 if (alloc_flags & ALLOC_NON_BLOCK)
4025 * OOM victims can try even harder than the normal reserve
4026 * users on the grounds that it's definitely going to be in
4027 * the exit path shortly and free memory. Any allocation it
4028 * makes during the free path will be small and short-lived.
4030 if (alloc_flags & ALLOC_OOM)
4035 * Check watermarks for an order-0 allocation request. If these
4036 * are not met, then a high-order request also cannot go ahead
4037 * even if a suitable page happened to be free.
4039 if (free_pages <= min + z->lowmem_reserve[highest_zoneidx])
4042 /* If this is an order-0 request then the watermark is fine */
4046 /* For a high-order request, check at least one suitable page is free */
4047 for (o = order; o < MAX_ORDER; o++) {
4048 struct free_area *area = &z->free_area[o];
4054 for (mt = 0; mt < MIGRATE_PCPTYPES; mt++) {
4055 if (!free_area_empty(area, mt))
4060 if ((alloc_flags & ALLOC_CMA) &&
4061 !free_area_empty(area, MIGRATE_CMA)) {
4065 if ((alloc_flags & (ALLOC_HIGHATOMIC|ALLOC_OOM)) &&
4066 !free_area_empty(area, MIGRATE_HIGHATOMIC)) {
4073 bool zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
4074 int highest_zoneidx, unsigned int alloc_flags)
4076 return __zone_watermark_ok(z, order, mark, highest_zoneidx, alloc_flags,
4077 zone_page_state(z, NR_FREE_PAGES));
4080 static inline bool zone_watermark_fast(struct zone *z, unsigned int order,
4081 unsigned long mark, int highest_zoneidx,
4082 unsigned int alloc_flags, gfp_t gfp_mask)
4086 free_pages = zone_page_state(z, NR_FREE_PAGES);
4089 * Fast check for order-0 only. If this fails then the reserves
4090 * need to be calculated.
4096 usable_free = free_pages;
4097 reserved = __zone_watermark_unusable_free(z, 0, alloc_flags);
4099 /* reserved may over estimate high-atomic reserves. */
4100 usable_free -= min(usable_free, reserved);
4101 if (usable_free > mark + z->lowmem_reserve[highest_zoneidx])
4105 if (__zone_watermark_ok(z, order, mark, highest_zoneidx, alloc_flags,
4110 * Ignore watermark boosting for __GFP_HIGH order-0 allocations
4111 * when checking the min watermark. The min watermark is the
4112 * point where boosting is ignored so that kswapd is woken up
4113 * when below the low watermark.
4115 if (unlikely(!order && (alloc_flags & ALLOC_MIN_RESERVE) && z->watermark_boost
4116 && ((alloc_flags & ALLOC_WMARK_MASK) == WMARK_MIN))) {
4117 mark = z->_watermark[WMARK_MIN];
4118 return __zone_watermark_ok(z, order, mark, highest_zoneidx,
4119 alloc_flags, free_pages);
4125 bool zone_watermark_ok_safe(struct zone *z, unsigned int order,
4126 unsigned long mark, int highest_zoneidx)
4128 long free_pages = zone_page_state(z, NR_FREE_PAGES);
4130 if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark)
4131 free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES);
4133 return __zone_watermark_ok(z, order, mark, highest_zoneidx, 0,
4138 int __read_mostly node_reclaim_distance = RECLAIM_DISTANCE;
4140 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
4142 return node_distance(zone_to_nid(local_zone), zone_to_nid(zone)) <=
4143 node_reclaim_distance;
4145 #else /* CONFIG_NUMA */
4146 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
4150 #endif /* CONFIG_NUMA */
4153 * The restriction on ZONE_DMA32 as being a suitable zone to use to avoid
4154 * fragmentation is subtle. If the preferred zone was HIGHMEM then
4155 * premature use of a lower zone may cause lowmem pressure problems that
4156 * are worse than fragmentation. If the next zone is ZONE_DMA then it is
4157 * probably too small. It only makes sense to spread allocations to avoid
4158 * fragmentation between the Normal and DMA32 zones.
4160 static inline unsigned int
4161 alloc_flags_nofragment(struct zone *zone, gfp_t gfp_mask)
4163 unsigned int alloc_flags;
4166 * __GFP_KSWAPD_RECLAIM is assumed to be the same as ALLOC_KSWAPD
4169 alloc_flags = (__force int) (gfp_mask & __GFP_KSWAPD_RECLAIM);
4171 #ifdef CONFIG_ZONE_DMA32
4175 if (zone_idx(zone) != ZONE_NORMAL)
4179 * If ZONE_DMA32 exists, assume it is the one after ZONE_NORMAL and
4180 * the pointer is within zone->zone_pgdat->node_zones[]. Also assume
4181 * on UMA that if Normal is populated then so is DMA32.
4183 BUILD_BUG_ON(ZONE_NORMAL - ZONE_DMA32 != 1);
4184 if (nr_online_nodes > 1 && !populated_zone(--zone))
4187 alloc_flags |= ALLOC_NOFRAGMENT;
4188 #endif /* CONFIG_ZONE_DMA32 */
4192 /* Must be called after current_gfp_context() which can change gfp_mask */
4193 static inline unsigned int gfp_to_alloc_flags_cma(gfp_t gfp_mask,
4194 unsigned int alloc_flags)
4197 if (gfp_migratetype(gfp_mask) == MIGRATE_MOVABLE)
4198 alloc_flags |= ALLOC_CMA;
4204 * get_page_from_freelist goes through the zonelist trying to allocate
4207 static struct page *
4208 get_page_from_freelist(gfp_t gfp_mask, unsigned int order, int alloc_flags,
4209 const struct alloc_context *ac)
4213 struct pglist_data *last_pgdat = NULL;
4214 bool last_pgdat_dirty_ok = false;
4219 * Scan zonelist, looking for a zone with enough free.
4220 * See also __cpuset_node_allowed() comment in kernel/cgroup/cpuset.c.
4222 no_fallback = alloc_flags & ALLOC_NOFRAGMENT;
4223 z = ac->preferred_zoneref;
4224 for_next_zone_zonelist_nodemask(zone, z, ac->highest_zoneidx,
4229 if (cpusets_enabled() &&
4230 (alloc_flags & ALLOC_CPUSET) &&
4231 !__cpuset_zone_allowed(zone, gfp_mask))
4234 * When allocating a page cache page for writing, we
4235 * want to get it from a node that is within its dirty
4236 * limit, such that no single node holds more than its
4237 * proportional share of globally allowed dirty pages.
4238 * The dirty limits take into account the node's
4239 * lowmem reserves and high watermark so that kswapd
4240 * should be able to balance it without having to
4241 * write pages from its LRU list.
4243 * XXX: For now, allow allocations to potentially
4244 * exceed the per-node dirty limit in the slowpath
4245 * (spread_dirty_pages unset) before going into reclaim,
4246 * which is important when on a NUMA setup the allowed
4247 * nodes are together not big enough to reach the
4248 * global limit. The proper fix for these situations
4249 * will require awareness of nodes in the
4250 * dirty-throttling and the flusher threads.
4252 if (ac->spread_dirty_pages) {
4253 if (last_pgdat != zone->zone_pgdat) {
4254 last_pgdat = zone->zone_pgdat;
4255 last_pgdat_dirty_ok = node_dirty_ok(zone->zone_pgdat);
4258 if (!last_pgdat_dirty_ok)
4262 if (no_fallback && nr_online_nodes > 1 &&
4263 zone != ac->preferred_zoneref->zone) {
4267 * If moving to a remote node, retry but allow
4268 * fragmenting fallbacks. Locality is more important
4269 * than fragmentation avoidance.
4271 local_nid = zone_to_nid(ac->preferred_zoneref->zone);
4272 if (zone_to_nid(zone) != local_nid) {
4273 alloc_flags &= ~ALLOC_NOFRAGMENT;
4278 mark = wmark_pages(zone, alloc_flags & ALLOC_WMARK_MASK);
4279 if (!zone_watermark_fast(zone, order, mark,
4280 ac->highest_zoneidx, alloc_flags,
4284 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
4286 * Watermark failed for this zone, but see if we can
4287 * grow this zone if it contains deferred pages.
4289 if (deferred_pages_enabled()) {
4290 if (_deferred_grow_zone(zone, order))
4294 /* Checked here to keep the fast path fast */
4295 BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
4296 if (alloc_flags & ALLOC_NO_WATERMARKS)
4299 if (!node_reclaim_enabled() ||
4300 !zone_allows_reclaim(ac->preferred_zoneref->zone, zone))
4303 ret = node_reclaim(zone->zone_pgdat, gfp_mask, order);
4305 case NODE_RECLAIM_NOSCAN:
4308 case NODE_RECLAIM_FULL:
4309 /* scanned but unreclaimable */
4312 /* did we reclaim enough */
4313 if (zone_watermark_ok(zone, order, mark,
4314 ac->highest_zoneidx, alloc_flags))
4322 page = rmqueue(ac->preferred_zoneref->zone, zone, order,
4323 gfp_mask, alloc_flags, ac->migratetype);
4325 prep_new_page(page, order, gfp_mask, alloc_flags);
4328 * If this is a high-order atomic allocation then check
4329 * if the pageblock should be reserved for the future
4331 if (unlikely(alloc_flags & ALLOC_HIGHATOMIC))
4332 reserve_highatomic_pageblock(page, zone, order);
4336 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
4337 /* Try again if zone has deferred pages */
4338 if (deferred_pages_enabled()) {
4339 if (_deferred_grow_zone(zone, order))
4347 * It's possible on a UMA machine to get through all zones that are
4348 * fragmented. If avoiding fragmentation, reset and try again.
4351 alloc_flags &= ~ALLOC_NOFRAGMENT;
4358 static void warn_alloc_show_mem(gfp_t gfp_mask, nodemask_t *nodemask)
4360 unsigned int filter = SHOW_MEM_FILTER_NODES;
4363 * This documents exceptions given to allocations in certain
4364 * contexts that are allowed to allocate outside current's set
4367 if (!(gfp_mask & __GFP_NOMEMALLOC))
4368 if (tsk_is_oom_victim(current) ||
4369 (current->flags & (PF_MEMALLOC | PF_EXITING)))
4370 filter &= ~SHOW_MEM_FILTER_NODES;
4371 if (!in_task() || !(gfp_mask & __GFP_DIRECT_RECLAIM))
4372 filter &= ~SHOW_MEM_FILTER_NODES;
4374 __show_mem(filter, nodemask, gfp_zone(gfp_mask));
4377 void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...)
4379 struct va_format vaf;
4381 static DEFINE_RATELIMIT_STATE(nopage_rs, 10*HZ, 1);
4383 if ((gfp_mask & __GFP_NOWARN) ||
4384 !__ratelimit(&nopage_rs) ||
4385 ((gfp_mask & __GFP_DMA) && !has_managed_dma()))
4388 va_start(args, fmt);
4391 pr_warn("%s: %pV, mode:%#x(%pGg), nodemask=%*pbl",
4392 current->comm, &vaf, gfp_mask, &gfp_mask,
4393 nodemask_pr_args(nodemask));
4396 cpuset_print_current_mems_allowed();
4399 warn_alloc_show_mem(gfp_mask, nodemask);
4402 static inline struct page *
4403 __alloc_pages_cpuset_fallback(gfp_t gfp_mask, unsigned int order,
4404 unsigned int alloc_flags,
4405 const struct alloc_context *ac)
4409 page = get_page_from_freelist(gfp_mask, order,
4410 alloc_flags|ALLOC_CPUSET, ac);
4412 * fallback to ignore cpuset restriction if our nodes
4416 page = get_page_from_freelist(gfp_mask, order,
4422 static inline struct page *
4423 __alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
4424 const struct alloc_context *ac, unsigned long *did_some_progress)
4426 struct oom_control oc = {
4427 .zonelist = ac->zonelist,
4428 .nodemask = ac->nodemask,
4430 .gfp_mask = gfp_mask,
4435 *did_some_progress = 0;
4438 * Acquire the oom lock. If that fails, somebody else is
4439 * making progress for us.
4441 if (!mutex_trylock(&oom_lock)) {
4442 *did_some_progress = 1;
4443 schedule_timeout_uninterruptible(1);
4448 * Go through the zonelist yet one more time, keep very high watermark
4449 * here, this is only to catch a parallel oom killing, we must fail if
4450 * we're still under heavy pressure. But make sure that this reclaim
4451 * attempt shall not depend on __GFP_DIRECT_RECLAIM && !__GFP_NORETRY
4452 * allocation which will never fail due to oom_lock already held.
4454 page = get_page_from_freelist((gfp_mask | __GFP_HARDWALL) &
4455 ~__GFP_DIRECT_RECLAIM, order,
4456 ALLOC_WMARK_HIGH|ALLOC_CPUSET, ac);
4460 /* Coredumps can quickly deplete all memory reserves */
4461 if (current->flags & PF_DUMPCORE)
4463 /* The OOM killer will not help higher order allocs */
4464 if (order > PAGE_ALLOC_COSTLY_ORDER)
4467 * We have already exhausted all our reclaim opportunities without any
4468 * success so it is time to admit defeat. We will skip the OOM killer
4469 * because it is very likely that the caller has a more reasonable
4470 * fallback than shooting a random task.
4472 * The OOM killer may not free memory on a specific node.
4474 if (gfp_mask & (__GFP_RETRY_MAYFAIL | __GFP_THISNODE))
4476 /* The OOM killer does not needlessly kill tasks for lowmem */
4477 if (ac->highest_zoneidx < ZONE_NORMAL)
4479 if (pm_suspended_storage())
4482 * XXX: GFP_NOFS allocations should rather fail than rely on
4483 * other request to make a forward progress.
4484 * We are in an unfortunate situation where out_of_memory cannot
4485 * do much for this context but let's try it to at least get
4486 * access to memory reserved if the current task is killed (see
4487 * out_of_memory). Once filesystems are ready to handle allocation
4488 * failures more gracefully we should just bail out here.
4491 /* Exhausted what can be done so it's blame time */
4492 if (out_of_memory(&oc) ||
4493 WARN_ON_ONCE_GFP(gfp_mask & __GFP_NOFAIL, gfp_mask)) {
4494 *did_some_progress = 1;
4497 * Help non-failing allocations by giving them access to memory
4500 if (gfp_mask & __GFP_NOFAIL)
4501 page = __alloc_pages_cpuset_fallback(gfp_mask, order,
4502 ALLOC_NO_WATERMARKS, ac);
4505 mutex_unlock(&oom_lock);
4510 * Maximum number of compaction retries with a progress before OOM
4511 * killer is consider as the only way to move forward.
4513 #define MAX_COMPACT_RETRIES 16
4515 #ifdef CONFIG_COMPACTION
4516 /* Try memory compaction for high-order allocations before reclaim */
4517 static struct page *
4518 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
4519 unsigned int alloc_flags, const struct alloc_context *ac,
4520 enum compact_priority prio, enum compact_result *compact_result)
4522 struct page *page = NULL;
4523 unsigned long pflags;
4524 unsigned int noreclaim_flag;
4529 psi_memstall_enter(&pflags);
4530 delayacct_compact_start();
4531 noreclaim_flag = memalloc_noreclaim_save();
4533 *compact_result = try_to_compact_pages(gfp_mask, order, alloc_flags, ac,
4536 memalloc_noreclaim_restore(noreclaim_flag);
4537 psi_memstall_leave(&pflags);
4538 delayacct_compact_end();
4540 if (*compact_result == COMPACT_SKIPPED)
4543 * At least in one zone compaction wasn't deferred or skipped, so let's
4544 * count a compaction stall
4546 count_vm_event(COMPACTSTALL);
4548 /* Prep a captured page if available */
4550 prep_new_page(page, order, gfp_mask, alloc_flags);
4552 /* Try get a page from the freelist if available */
4554 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
4557 struct zone *zone = page_zone(page);
4559 zone->compact_blockskip_flush = false;
4560 compaction_defer_reset(zone, order, true);
4561 count_vm_event(COMPACTSUCCESS);
4566 * It's bad if compaction run occurs and fails. The most likely reason
4567 * is that pages exist, but not enough to satisfy watermarks.
4569 count_vm_event(COMPACTFAIL);
4577 should_compact_retry(struct alloc_context *ac, int order, int alloc_flags,
4578 enum compact_result compact_result,
4579 enum compact_priority *compact_priority,
4580 int *compaction_retries)
4582 int max_retries = MAX_COMPACT_RETRIES;
4585 int retries = *compaction_retries;
4586 enum compact_priority priority = *compact_priority;
4591 if (fatal_signal_pending(current))
4594 if (compaction_made_progress(compact_result))
4595 (*compaction_retries)++;
4598 * compaction considers all the zone as desperately out of memory
4599 * so it doesn't really make much sense to retry except when the
4600 * failure could be caused by insufficient priority
4602 if (compaction_failed(compact_result))
4603 goto check_priority;
4606 * compaction was skipped because there are not enough order-0 pages
4607 * to work with, so we retry only if it looks like reclaim can help.
4609 if (compaction_needs_reclaim(compact_result)) {
4610 ret = compaction_zonelist_suitable(ac, order, alloc_flags);
4615 * make sure the compaction wasn't deferred or didn't bail out early
4616 * due to locks contention before we declare that we should give up.
4617 * But the next retry should use a higher priority if allowed, so
4618 * we don't just keep bailing out endlessly.
4620 if (compaction_withdrawn(compact_result)) {
4621 goto check_priority;
4625 * !costly requests are much more important than __GFP_RETRY_MAYFAIL
4626 * costly ones because they are de facto nofail and invoke OOM
4627 * killer to move on while costly can fail and users are ready
4628 * to cope with that. 1/4 retries is rather arbitrary but we
4629 * would need much more detailed feedback from compaction to
4630 * make a better decision.
4632 if (order > PAGE_ALLOC_COSTLY_ORDER)
4634 if (*compaction_retries <= max_retries) {
4640 * Make sure there are attempts at the highest priority if we exhausted
4641 * all retries or failed at the lower priorities.
4644 min_priority = (order > PAGE_ALLOC_COSTLY_ORDER) ?
4645 MIN_COMPACT_COSTLY_PRIORITY : MIN_COMPACT_PRIORITY;
4647 if (*compact_priority > min_priority) {
4648 (*compact_priority)--;
4649 *compaction_retries = 0;
4653 trace_compact_retry(order, priority, compact_result, retries, max_retries, ret);
4657 static inline struct page *
4658 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
4659 unsigned int alloc_flags, const struct alloc_context *ac,
4660 enum compact_priority prio, enum compact_result *compact_result)
4662 *compact_result = COMPACT_SKIPPED;
4667 should_compact_retry(struct alloc_context *ac, unsigned int order, int alloc_flags,
4668 enum compact_result compact_result,
4669 enum compact_priority *compact_priority,
4670 int *compaction_retries)
4675 if (!order || order > PAGE_ALLOC_COSTLY_ORDER)
4679 * There are setups with compaction disabled which would prefer to loop
4680 * inside the allocator rather than hit the oom killer prematurely.
4681 * Let's give them a good hope and keep retrying while the order-0
4682 * watermarks are OK.
4684 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
4685 ac->highest_zoneidx, ac->nodemask) {
4686 if (zone_watermark_ok(zone, 0, min_wmark_pages(zone),
4687 ac->highest_zoneidx, alloc_flags))
4692 #endif /* CONFIG_COMPACTION */
4694 #ifdef CONFIG_LOCKDEP
4695 static struct lockdep_map __fs_reclaim_map =
4696 STATIC_LOCKDEP_MAP_INIT("fs_reclaim", &__fs_reclaim_map);
4698 static bool __need_reclaim(gfp_t gfp_mask)
4700 /* no reclaim without waiting on it */
4701 if (!(gfp_mask & __GFP_DIRECT_RECLAIM))
4704 /* this guy won't enter reclaim */
4705 if (current->flags & PF_MEMALLOC)
4708 if (gfp_mask & __GFP_NOLOCKDEP)
4714 void __fs_reclaim_acquire(unsigned long ip)
4716 lock_acquire_exclusive(&__fs_reclaim_map, 0, 0, NULL, ip);
4719 void __fs_reclaim_release(unsigned long ip)
4721 lock_release(&__fs_reclaim_map, ip);
4724 void fs_reclaim_acquire(gfp_t gfp_mask)
4726 gfp_mask = current_gfp_context(gfp_mask);
4728 if (__need_reclaim(gfp_mask)) {
4729 if (gfp_mask & __GFP_FS)
4730 __fs_reclaim_acquire(_RET_IP_);
4732 #ifdef CONFIG_MMU_NOTIFIER
4733 lock_map_acquire(&__mmu_notifier_invalidate_range_start_map);
4734 lock_map_release(&__mmu_notifier_invalidate_range_start_map);
4739 EXPORT_SYMBOL_GPL(fs_reclaim_acquire);
4741 void fs_reclaim_release(gfp_t gfp_mask)
4743 gfp_mask = current_gfp_context(gfp_mask);
4745 if (__need_reclaim(gfp_mask)) {
4746 if (gfp_mask & __GFP_FS)
4747 __fs_reclaim_release(_RET_IP_);
4750 EXPORT_SYMBOL_GPL(fs_reclaim_release);
4754 * Zonelists may change due to hotplug during allocation. Detect when zonelists
4755 * have been rebuilt so allocation retries. Reader side does not lock and
4756 * retries the allocation if zonelist changes. Writer side is protected by the
4757 * embedded spin_lock.
4759 static DEFINE_SEQLOCK(zonelist_update_seq);
4761 static unsigned int zonelist_iter_begin(void)
4763 if (IS_ENABLED(CONFIG_MEMORY_HOTREMOVE))
4764 return read_seqbegin(&zonelist_update_seq);
4769 static unsigned int check_retry_zonelist(unsigned int seq)
4771 if (IS_ENABLED(CONFIG_MEMORY_HOTREMOVE))
4772 return read_seqretry(&zonelist_update_seq, seq);
4777 /* Perform direct synchronous page reclaim */
4778 static unsigned long
4779 __perform_reclaim(gfp_t gfp_mask, unsigned int order,
4780 const struct alloc_context *ac)
4782 unsigned int noreclaim_flag;
4783 unsigned long progress;
4787 /* We now go into synchronous reclaim */
4788 cpuset_memory_pressure_bump();
4789 fs_reclaim_acquire(gfp_mask);
4790 noreclaim_flag = memalloc_noreclaim_save();
4792 progress = try_to_free_pages(ac->zonelist, order, gfp_mask,
4795 memalloc_noreclaim_restore(noreclaim_flag);
4796 fs_reclaim_release(gfp_mask);
4803 /* The really slow allocator path where we enter direct reclaim */
4804 static inline struct page *
4805 __alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
4806 unsigned int alloc_flags, const struct alloc_context *ac,
4807 unsigned long *did_some_progress)
4809 struct page *page = NULL;
4810 unsigned long pflags;
4811 bool drained = false;
4813 psi_memstall_enter(&pflags);
4814 *did_some_progress = __perform_reclaim(gfp_mask, order, ac);
4815 if (unlikely(!(*did_some_progress)))
4819 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
4822 * If an allocation failed after direct reclaim, it could be because
4823 * pages are pinned on the per-cpu lists or in high alloc reserves.
4824 * Shrink them and try again
4826 if (!page && !drained) {
4827 unreserve_highatomic_pageblock(ac, false);
4828 drain_all_pages(NULL);
4833 psi_memstall_leave(&pflags);
4838 static void wake_all_kswapds(unsigned int order, gfp_t gfp_mask,
4839 const struct alloc_context *ac)
4843 pg_data_t *last_pgdat = NULL;
4844 enum zone_type highest_zoneidx = ac->highest_zoneidx;
4846 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, highest_zoneidx,
4848 if (!managed_zone(zone))
4850 if (last_pgdat != zone->zone_pgdat) {
4851 wakeup_kswapd(zone, gfp_mask, order, highest_zoneidx);
4852 last_pgdat = zone->zone_pgdat;
4857 static inline unsigned int
4858 gfp_to_alloc_flags(gfp_t gfp_mask, unsigned int order)
4860 unsigned int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
4863 * __GFP_HIGH is assumed to be the same as ALLOC_MIN_RESERVE
4864 * and __GFP_KSWAPD_RECLAIM is assumed to be the same as ALLOC_KSWAPD
4865 * to save two branches.
4867 BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_MIN_RESERVE);
4868 BUILD_BUG_ON(__GFP_KSWAPD_RECLAIM != (__force gfp_t) ALLOC_KSWAPD);
4871 * The caller may dip into page reserves a bit more if the caller
4872 * cannot run direct reclaim, or if the caller has realtime scheduling
4873 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will
4874 * set both ALLOC_NON_BLOCK and ALLOC_MIN_RESERVE(__GFP_HIGH).
4876 alloc_flags |= (__force int)
4877 (gfp_mask & (__GFP_HIGH | __GFP_KSWAPD_RECLAIM));
4879 if (!(gfp_mask & __GFP_DIRECT_RECLAIM)) {
4881 * Not worth trying to allocate harder for __GFP_NOMEMALLOC even
4882 * if it can't schedule.
4884 if (!(gfp_mask & __GFP_NOMEMALLOC)) {
4885 alloc_flags |= ALLOC_NON_BLOCK;
4888 alloc_flags |= ALLOC_HIGHATOMIC;
4892 * Ignore cpuset mems for non-blocking __GFP_HIGH (probably
4893 * GFP_ATOMIC) rather than fail, see the comment for
4894 * __cpuset_node_allowed().
4896 if (alloc_flags & ALLOC_MIN_RESERVE)
4897 alloc_flags &= ~ALLOC_CPUSET;
4898 } else if (unlikely(rt_task(current)) && in_task())
4899 alloc_flags |= ALLOC_MIN_RESERVE;
4901 alloc_flags = gfp_to_alloc_flags_cma(gfp_mask, alloc_flags);
4906 static bool oom_reserves_allowed(struct task_struct *tsk)
4908 if (!tsk_is_oom_victim(tsk))
4912 * !MMU doesn't have oom reaper so give access to memory reserves
4913 * only to the thread with TIF_MEMDIE set
4915 if (!IS_ENABLED(CONFIG_MMU) && !test_thread_flag(TIF_MEMDIE))
4922 * Distinguish requests which really need access to full memory
4923 * reserves from oom victims which can live with a portion of it
4925 static inline int __gfp_pfmemalloc_flags(gfp_t gfp_mask)
4927 if (unlikely(gfp_mask & __GFP_NOMEMALLOC))
4929 if (gfp_mask & __GFP_MEMALLOC)
4930 return ALLOC_NO_WATERMARKS;
4931 if (in_serving_softirq() && (current->flags & PF_MEMALLOC))
4932 return ALLOC_NO_WATERMARKS;
4933 if (!in_interrupt()) {
4934 if (current->flags & PF_MEMALLOC)
4935 return ALLOC_NO_WATERMARKS;
4936 else if (oom_reserves_allowed(current))
4943 bool gfp_pfmemalloc_allowed(gfp_t gfp_mask)
4945 return !!__gfp_pfmemalloc_flags(gfp_mask);
4949 * Checks whether it makes sense to retry the reclaim to make a forward progress
4950 * for the given allocation request.
4952 * We give up when we either have tried MAX_RECLAIM_RETRIES in a row
4953 * without success, or when we couldn't even meet the watermark if we
4954 * reclaimed all remaining pages on the LRU lists.
4956 * Returns true if a retry is viable or false to enter the oom path.
4959 should_reclaim_retry(gfp_t gfp_mask, unsigned order,
4960 struct alloc_context *ac, int alloc_flags,
4961 bool did_some_progress, int *no_progress_loops)
4968 * Costly allocations might have made a progress but this doesn't mean
4969 * their order will become available due to high fragmentation so
4970 * always increment the no progress counter for them
4972 if (did_some_progress && order <= PAGE_ALLOC_COSTLY_ORDER)
4973 *no_progress_loops = 0;
4975 (*no_progress_loops)++;
4978 * Make sure we converge to OOM if we cannot make any progress
4979 * several times in the row.
4981 if (*no_progress_loops > MAX_RECLAIM_RETRIES) {
4982 /* Before OOM, exhaust highatomic_reserve */
4983 return unreserve_highatomic_pageblock(ac, true);
4987 * Keep reclaiming pages while there is a chance this will lead
4988 * somewhere. If none of the target zones can satisfy our allocation
4989 * request even if all reclaimable pages are considered then we are
4990 * screwed and have to go OOM.
4992 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
4993 ac->highest_zoneidx, ac->nodemask) {
4994 unsigned long available;
4995 unsigned long reclaimable;
4996 unsigned long min_wmark = min_wmark_pages(zone);
4999 available = reclaimable = zone_reclaimable_pages(zone);
5000 available += zone_page_state_snapshot(zone, NR_FREE_PAGES);
5003 * Would the allocation succeed if we reclaimed all
5004 * reclaimable pages?
5006 wmark = __zone_watermark_ok(zone, order, min_wmark,
5007 ac->highest_zoneidx, alloc_flags, available);
5008 trace_reclaim_retry_zone(z, order, reclaimable,
5009 available, min_wmark, *no_progress_loops, wmark);
5017 * Memory allocation/reclaim might be called from a WQ context and the
5018 * current implementation of the WQ concurrency control doesn't
5019 * recognize that a particular WQ is congested if the worker thread is
5020 * looping without ever sleeping. Therefore we have to do a short sleep
5021 * here rather than calling cond_resched().
5023 if (current->flags & PF_WQ_WORKER)
5024 schedule_timeout_uninterruptible(1);
5031 check_retry_cpuset(int cpuset_mems_cookie, struct alloc_context *ac)
5034 * It's possible that cpuset's mems_allowed and the nodemask from
5035 * mempolicy don't intersect. This should be normally dealt with by
5036 * policy_nodemask(), but it's possible to race with cpuset update in
5037 * such a way the check therein was true, and then it became false
5038 * before we got our cpuset_mems_cookie here.
5039 * This assumes that for all allocations, ac->nodemask can come only
5040 * from MPOL_BIND mempolicy (whose documented semantics is to be ignored
5041 * when it does not intersect with the cpuset restrictions) or the
5042 * caller can deal with a violated nodemask.
5044 if (cpusets_enabled() && ac->nodemask &&
5045 !cpuset_nodemask_valid_mems_allowed(ac->nodemask)) {
5046 ac->nodemask = NULL;
5051 * When updating a task's mems_allowed or mempolicy nodemask, it is
5052 * possible to race with parallel threads in such a way that our
5053 * allocation can fail while the mask is being updated. If we are about
5054 * to fail, check if the cpuset changed during allocation and if so,
5057 if (read_mems_allowed_retry(cpuset_mems_cookie))
5063 static inline struct page *
5064 __alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
5065 struct alloc_context *ac)
5067 bool can_direct_reclaim = gfp_mask & __GFP_DIRECT_RECLAIM;
5068 const bool costly_order = order > PAGE_ALLOC_COSTLY_ORDER;
5069 struct page *page = NULL;
5070 unsigned int alloc_flags;
5071 unsigned long did_some_progress;
5072 enum compact_priority compact_priority;
5073 enum compact_result compact_result;
5074 int compaction_retries;
5075 int no_progress_loops;
5076 unsigned int cpuset_mems_cookie;
5077 unsigned int zonelist_iter_cookie;
5081 compaction_retries = 0;
5082 no_progress_loops = 0;
5083 compact_priority = DEF_COMPACT_PRIORITY;
5084 cpuset_mems_cookie = read_mems_allowed_begin();
5085 zonelist_iter_cookie = zonelist_iter_begin();
5088 * The fast path uses conservative alloc_flags to succeed only until
5089 * kswapd needs to be woken up, and to avoid the cost of setting up
5090 * alloc_flags precisely. So we do that now.
5092 alloc_flags = gfp_to_alloc_flags(gfp_mask, order);
5095 * We need to recalculate the starting point for the zonelist iterator
5096 * because we might have used different nodemask in the fast path, or
5097 * there was a cpuset modification and we are retrying - otherwise we
5098 * could end up iterating over non-eligible zones endlessly.
5100 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
5101 ac->highest_zoneidx, ac->nodemask);
5102 if (!ac->preferred_zoneref->zone)
5106 * Check for insane configurations where the cpuset doesn't contain
5107 * any suitable zone to satisfy the request - e.g. non-movable
5108 * GFP_HIGHUSER allocations from MOVABLE nodes only.
5110 if (cpusets_insane_config() && (gfp_mask & __GFP_HARDWALL)) {
5111 struct zoneref *z = first_zones_zonelist(ac->zonelist,
5112 ac->highest_zoneidx,
5113 &cpuset_current_mems_allowed);
5118 if (alloc_flags & ALLOC_KSWAPD)
5119 wake_all_kswapds(order, gfp_mask, ac);
5122 * The adjusted alloc_flags might result in immediate success, so try
5125 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
5130 * For costly allocations, try direct compaction first, as it's likely
5131 * that we have enough base pages and don't need to reclaim. For non-
5132 * movable high-order allocations, do that as well, as compaction will
5133 * try prevent permanent fragmentation by migrating from blocks of the
5135 * Don't try this for allocations that are allowed to ignore
5136 * watermarks, as the ALLOC_NO_WATERMARKS attempt didn't yet happen.
5138 if (can_direct_reclaim &&
5140 (order > 0 && ac->migratetype != MIGRATE_MOVABLE))
5141 && !gfp_pfmemalloc_allowed(gfp_mask)) {
5142 page = __alloc_pages_direct_compact(gfp_mask, order,
5144 INIT_COMPACT_PRIORITY,
5150 * Checks for costly allocations with __GFP_NORETRY, which
5151 * includes some THP page fault allocations
5153 if (costly_order && (gfp_mask & __GFP_NORETRY)) {
5155 * If allocating entire pageblock(s) and compaction
5156 * failed because all zones are below low watermarks
5157 * or is prohibited because it recently failed at this
5158 * order, fail immediately unless the allocator has
5159 * requested compaction and reclaim retry.
5162 * - potentially very expensive because zones are far
5163 * below their low watermarks or this is part of very
5164 * bursty high order allocations,
5165 * - not guaranteed to help because isolate_freepages()
5166 * may not iterate over freed pages as part of its
5168 * - unlikely to make entire pageblocks free on its
5171 if (compact_result == COMPACT_SKIPPED ||
5172 compact_result == COMPACT_DEFERRED)
5176 * Looks like reclaim/compaction is worth trying, but
5177 * sync compaction could be very expensive, so keep
5178 * using async compaction.
5180 compact_priority = INIT_COMPACT_PRIORITY;
5185 /* Ensure kswapd doesn't accidentally go to sleep as long as we loop */
5186 if (alloc_flags & ALLOC_KSWAPD)
5187 wake_all_kswapds(order, gfp_mask, ac);
5189 reserve_flags = __gfp_pfmemalloc_flags(gfp_mask);
5191 alloc_flags = gfp_to_alloc_flags_cma(gfp_mask, reserve_flags) |
5192 (alloc_flags & ALLOC_KSWAPD);
5195 * Reset the nodemask and zonelist iterators if memory policies can be
5196 * ignored. These allocations are high priority and system rather than
5199 if (!(alloc_flags & ALLOC_CPUSET) || reserve_flags) {
5200 ac->nodemask = NULL;
5201 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
5202 ac->highest_zoneidx, ac->nodemask);
5205 /* Attempt with potentially adjusted zonelist and alloc_flags */
5206 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
5210 /* Caller is not willing to reclaim, we can't balance anything */
5211 if (!can_direct_reclaim)
5214 /* Avoid recursion of direct reclaim */
5215 if (current->flags & PF_MEMALLOC)
5218 /* Try direct reclaim and then allocating */
5219 page = __alloc_pages_direct_reclaim(gfp_mask, order, alloc_flags, ac,
5220 &did_some_progress);
5224 /* Try direct compaction and then allocating */
5225 page = __alloc_pages_direct_compact(gfp_mask, order, alloc_flags, ac,
5226 compact_priority, &compact_result);
5230 /* Do not loop if specifically requested */
5231 if (gfp_mask & __GFP_NORETRY)
5235 * Do not retry costly high order allocations unless they are
5236 * __GFP_RETRY_MAYFAIL
5238 if (costly_order && !(gfp_mask & __GFP_RETRY_MAYFAIL))
5241 if (should_reclaim_retry(gfp_mask, order, ac, alloc_flags,
5242 did_some_progress > 0, &no_progress_loops))
5246 * It doesn't make any sense to retry for the compaction if the order-0
5247 * reclaim is not able to make any progress because the current
5248 * implementation of the compaction depends on the sufficient amount
5249 * of free memory (see __compaction_suitable)
5251 if (did_some_progress > 0 &&
5252 should_compact_retry(ac, order, alloc_flags,
5253 compact_result, &compact_priority,
5254 &compaction_retries))
5259 * Deal with possible cpuset update races or zonelist updates to avoid
5260 * a unnecessary OOM kill.
5262 if (check_retry_cpuset(cpuset_mems_cookie, ac) ||
5263 check_retry_zonelist(zonelist_iter_cookie))
5266 /* Reclaim has failed us, start killing things */
5267 page = __alloc_pages_may_oom(gfp_mask, order, ac, &did_some_progress);
5271 /* Avoid allocations with no watermarks from looping endlessly */
5272 if (tsk_is_oom_victim(current) &&
5273 (alloc_flags & ALLOC_OOM ||
5274 (gfp_mask & __GFP_NOMEMALLOC)))
5277 /* Retry as long as the OOM killer is making progress */
5278 if (did_some_progress) {
5279 no_progress_loops = 0;
5285 * Deal with possible cpuset update races or zonelist updates to avoid
5286 * a unnecessary OOM kill.
5288 if (check_retry_cpuset(cpuset_mems_cookie, ac) ||
5289 check_retry_zonelist(zonelist_iter_cookie))
5293 * Make sure that __GFP_NOFAIL request doesn't leak out and make sure
5296 if (gfp_mask & __GFP_NOFAIL) {
5298 * All existing users of the __GFP_NOFAIL are blockable, so warn
5299 * of any new users that actually require GFP_NOWAIT
5301 if (WARN_ON_ONCE_GFP(!can_direct_reclaim, gfp_mask))
5305 * PF_MEMALLOC request from this context is rather bizarre
5306 * because we cannot reclaim anything and only can loop waiting
5307 * for somebody to do a work for us
5309 WARN_ON_ONCE_GFP(current->flags & PF_MEMALLOC, gfp_mask);
5312 * non failing costly orders are a hard requirement which we
5313 * are not prepared for much so let's warn about these users
5314 * so that we can identify them and convert them to something
5317 WARN_ON_ONCE_GFP(costly_order, gfp_mask);
5320 * Help non-failing allocations by giving some access to memory
5321 * reserves normally used for high priority non-blocking
5322 * allocations but do not use ALLOC_NO_WATERMARKS because this
5323 * could deplete whole memory reserves which would just make
5324 * the situation worse.
5326 page = __alloc_pages_cpuset_fallback(gfp_mask, order, ALLOC_MIN_RESERVE, ac);
5334 warn_alloc(gfp_mask, ac->nodemask,
5335 "page allocation failure: order:%u", order);
5340 static inline bool prepare_alloc_pages(gfp_t gfp_mask, unsigned int order,
5341 int preferred_nid, nodemask_t *nodemask,
5342 struct alloc_context *ac, gfp_t *alloc_gfp,
5343 unsigned int *alloc_flags)
5345 ac->highest_zoneidx = gfp_zone(gfp_mask);
5346 ac->zonelist = node_zonelist(preferred_nid, gfp_mask);
5347 ac->nodemask = nodemask;
5348 ac->migratetype = gfp_migratetype(gfp_mask);
5350 if (cpusets_enabled()) {
5351 *alloc_gfp |= __GFP_HARDWALL;
5353 * When we are in the interrupt context, it is irrelevant
5354 * to the current task context. It means that any node ok.
5356 if (in_task() && !ac->nodemask)
5357 ac->nodemask = &cpuset_current_mems_allowed;
5359 *alloc_flags |= ALLOC_CPUSET;
5362 might_alloc(gfp_mask);
5364 if (should_fail_alloc_page(gfp_mask, order))
5367 *alloc_flags = gfp_to_alloc_flags_cma(gfp_mask, *alloc_flags);
5369 /* Dirty zone balancing only done in the fast path */
5370 ac->spread_dirty_pages = (gfp_mask & __GFP_WRITE);
5373 * The preferred zone is used for statistics but crucially it is
5374 * also used as the starting point for the zonelist iterator. It
5375 * may get reset for allocations that ignore memory policies.
5377 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
5378 ac->highest_zoneidx, ac->nodemask);
5384 * __alloc_pages_bulk - Allocate a number of order-0 pages to a list or array
5385 * @gfp: GFP flags for the allocation
5386 * @preferred_nid: The preferred NUMA node ID to allocate from
5387 * @nodemask: Set of nodes to allocate from, may be NULL
5388 * @nr_pages: The number of pages desired on the list or array
5389 * @page_list: Optional list to store the allocated pages
5390 * @page_array: Optional array to store the pages
5392 * This is a batched version of the page allocator that attempts to
5393 * allocate nr_pages quickly. Pages are added to page_list if page_list
5394 * is not NULL, otherwise it is assumed that the page_array is valid.
5396 * For lists, nr_pages is the number of pages that should be allocated.
5398 * For arrays, only NULL elements are populated with pages and nr_pages
5399 * is the maximum number of pages that will be stored in the array.
5401 * Returns the number of pages on the list or array.
5403 unsigned long __alloc_pages_bulk(gfp_t gfp, int preferred_nid,
5404 nodemask_t *nodemask, int nr_pages,
5405 struct list_head *page_list,
5406 struct page **page_array)
5409 unsigned long __maybe_unused UP_flags;
5412 struct per_cpu_pages *pcp;
5413 struct list_head *pcp_list;
5414 struct alloc_context ac;
5416 unsigned int alloc_flags = ALLOC_WMARK_LOW;
5417 int nr_populated = 0, nr_account = 0;
5420 * Skip populated array elements to determine if any pages need
5421 * to be allocated before disabling IRQs.
5423 while (page_array && nr_populated < nr_pages && page_array[nr_populated])
5426 /* No pages requested? */
5427 if (unlikely(nr_pages <= 0))
5430 /* Already populated array? */
5431 if (unlikely(page_array && nr_pages - nr_populated == 0))
5434 /* Bulk allocator does not support memcg accounting. */
5435 if (memcg_kmem_online() && (gfp & __GFP_ACCOUNT))
5438 /* Use the single page allocator for one page. */
5439 if (nr_pages - nr_populated == 1)
5442 #ifdef CONFIG_PAGE_OWNER
5444 * PAGE_OWNER may recurse into the allocator to allocate space to
5445 * save the stack with pagesets.lock held. Releasing/reacquiring
5446 * removes much of the performance benefit of bulk allocation so
5447 * force the caller to allocate one page at a time as it'll have
5448 * similar performance to added complexity to the bulk allocator.
5450 if (static_branch_unlikely(&page_owner_inited))
5454 /* May set ALLOC_NOFRAGMENT, fragmentation will return 1 page. */
5455 gfp &= gfp_allowed_mask;
5457 if (!prepare_alloc_pages(gfp, 0, preferred_nid, nodemask, &ac, &alloc_gfp, &alloc_flags))
5461 /* Find an allowed local zone that meets the low watermark. */
5462 for_each_zone_zonelist_nodemask(zone, z, ac.zonelist, ac.highest_zoneidx, ac.nodemask) {
5465 if (cpusets_enabled() && (alloc_flags & ALLOC_CPUSET) &&
5466 !__cpuset_zone_allowed(zone, gfp)) {
5470 if (nr_online_nodes > 1 && zone != ac.preferred_zoneref->zone &&
5471 zone_to_nid(zone) != zone_to_nid(ac.preferred_zoneref->zone)) {
5475 mark = wmark_pages(zone, alloc_flags & ALLOC_WMARK_MASK) + nr_pages;
5476 if (zone_watermark_fast(zone, 0, mark,
5477 zonelist_zone_idx(ac.preferred_zoneref),
5478 alloc_flags, gfp)) {
5484 * If there are no allowed local zones that meets the watermarks then
5485 * try to allocate a single page and reclaim if necessary.
5487 if (unlikely(!zone))
5490 /* spin_trylock may fail due to a parallel drain or IRQ reentrancy. */
5491 pcp_trylock_prepare(UP_flags);
5492 pcp = pcp_spin_trylock(zone->per_cpu_pageset);
5496 /* Attempt the batch allocation */
5497 pcp_list = &pcp->lists[order_to_pindex(ac.migratetype, 0)];
5498 while (nr_populated < nr_pages) {
5500 /* Skip existing pages */
5501 if (page_array && page_array[nr_populated]) {
5506 page = __rmqueue_pcplist(zone, 0, ac.migratetype, alloc_flags,
5508 if (unlikely(!page)) {
5509 /* Try and allocate at least one page */
5511 pcp_spin_unlock(pcp);
5518 prep_new_page(page, 0, gfp, 0);
5520 list_add(&page->lru, page_list);
5522 page_array[nr_populated] = page;
5526 pcp_spin_unlock(pcp);
5527 pcp_trylock_finish(UP_flags);
5529 __count_zid_vm_events(PGALLOC, zone_idx(zone), nr_account);
5530 zone_statistics(ac.preferred_zoneref->zone, zone, nr_account);
5533 return nr_populated;
5536 pcp_trylock_finish(UP_flags);
5539 page = __alloc_pages(gfp, 0, preferred_nid, nodemask);
5542 list_add(&page->lru, page_list);
5544 page_array[nr_populated] = page;
5550 EXPORT_SYMBOL_GPL(__alloc_pages_bulk);
5553 * This is the 'heart' of the zoned buddy allocator.
5555 struct page *__alloc_pages(gfp_t gfp, unsigned int order, int preferred_nid,
5556 nodemask_t *nodemask)
5559 unsigned int alloc_flags = ALLOC_WMARK_LOW;
5560 gfp_t alloc_gfp; /* The gfp_t that was actually used for allocation */
5561 struct alloc_context ac = { };
5564 * There are several places where we assume that the order value is sane
5565 * so bail out early if the request is out of bound.
5567 if (WARN_ON_ONCE_GFP(order >= MAX_ORDER, gfp))
5570 gfp &= gfp_allowed_mask;
5572 * Apply scoped allocation constraints. This is mainly about GFP_NOFS
5573 * resp. GFP_NOIO which has to be inherited for all allocation requests
5574 * from a particular context which has been marked by
5575 * memalloc_no{fs,io}_{save,restore}. And PF_MEMALLOC_PIN which ensures
5576 * movable zones are not used during allocation.
5578 gfp = current_gfp_context(gfp);
5580 if (!prepare_alloc_pages(gfp, order, preferred_nid, nodemask, &ac,
5581 &alloc_gfp, &alloc_flags))
5585 * Forbid the first pass from falling back to types that fragment
5586 * memory until all local zones are considered.
5588 alloc_flags |= alloc_flags_nofragment(ac.preferred_zoneref->zone, gfp);
5590 /* First allocation attempt */
5591 page = get_page_from_freelist(alloc_gfp, order, alloc_flags, &ac);
5596 ac.spread_dirty_pages = false;
5599 * Restore the original nodemask if it was potentially replaced with
5600 * &cpuset_current_mems_allowed to optimize the fast-path attempt.
5602 ac.nodemask = nodemask;
5604 page = __alloc_pages_slowpath(alloc_gfp, order, &ac);
5607 if (memcg_kmem_online() && (gfp & __GFP_ACCOUNT) && page &&
5608 unlikely(__memcg_kmem_charge_page(page, gfp, order) != 0)) {
5609 __free_pages(page, order);
5613 trace_mm_page_alloc(page, order, alloc_gfp, ac.migratetype);
5614 kmsan_alloc_page(page, order, alloc_gfp);
5618 EXPORT_SYMBOL(__alloc_pages);
5620 struct folio *__folio_alloc(gfp_t gfp, unsigned int order, int preferred_nid,
5621 nodemask_t *nodemask)
5623 struct page *page = __alloc_pages(gfp | __GFP_COMP, order,
5624 preferred_nid, nodemask);
5626 if (page && order > 1)
5627 prep_transhuge_page(page);
5628 return (struct folio *)page;
5630 EXPORT_SYMBOL(__folio_alloc);
5633 * Common helper functions. Never use with __GFP_HIGHMEM because the returned
5634 * address cannot represent highmem pages. Use alloc_pages and then kmap if
5635 * you need to access high mem.
5637 unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
5641 page = alloc_pages(gfp_mask & ~__GFP_HIGHMEM, order);
5644 return (unsigned long) page_address(page);
5646 EXPORT_SYMBOL(__get_free_pages);
5648 unsigned long get_zeroed_page(gfp_t gfp_mask)
5650 return __get_free_pages(gfp_mask | __GFP_ZERO, 0);
5652 EXPORT_SYMBOL(get_zeroed_page);
5655 * __free_pages - Free pages allocated with alloc_pages().
5656 * @page: The page pointer returned from alloc_pages().
5657 * @order: The order of the allocation.
5659 * This function can free multi-page allocations that are not compound
5660 * pages. It does not check that the @order passed in matches that of
5661 * the allocation, so it is easy to leak memory. Freeing more memory
5662 * than was allocated will probably emit a warning.
5664 * If the last reference to this page is speculative, it will be released
5665 * by put_page() which only frees the first page of a non-compound
5666 * allocation. To prevent the remaining pages from being leaked, we free
5667 * the subsequent pages here. If you want to use the page's reference
5668 * count to decide when to free the allocation, you should allocate a
5669 * compound page, and use put_page() instead of __free_pages().
5671 * Context: May be called in interrupt context or while holding a normal
5672 * spinlock, but not in NMI context or while holding a raw spinlock.
5674 void __free_pages(struct page *page, unsigned int order)
5676 /* get PageHead before we drop reference */
5677 int head = PageHead(page);
5679 if (put_page_testzero(page))
5680 free_the_page(page, order);
5683 free_the_page(page + (1 << order), order);
5685 EXPORT_SYMBOL(__free_pages);
5687 void free_pages(unsigned long addr, unsigned int order)
5690 VM_BUG_ON(!virt_addr_valid((void *)addr));
5691 __free_pages(virt_to_page((void *)addr), order);
5695 EXPORT_SYMBOL(free_pages);
5699 * An arbitrary-length arbitrary-offset area of memory which resides
5700 * within a 0 or higher order page. Multiple fragments within that page
5701 * are individually refcounted, in the page's reference counter.
5703 * The page_frag functions below provide a simple allocation framework for
5704 * page fragments. This is used by the network stack and network device
5705 * drivers to provide a backing region of memory for use as either an
5706 * sk_buff->head, or to be used in the "frags" portion of skb_shared_info.
5708 static struct page *__page_frag_cache_refill(struct page_frag_cache *nc,
5711 struct page *page = NULL;
5712 gfp_t gfp = gfp_mask;
5714 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
5715 gfp_mask |= __GFP_COMP | __GFP_NOWARN | __GFP_NORETRY |
5717 page = alloc_pages_node(NUMA_NO_NODE, gfp_mask,
5718 PAGE_FRAG_CACHE_MAX_ORDER);
5719 nc->size = page ? PAGE_FRAG_CACHE_MAX_SIZE : PAGE_SIZE;
5721 if (unlikely(!page))
5722 page = alloc_pages_node(NUMA_NO_NODE, gfp, 0);
5724 nc->va = page ? page_address(page) : NULL;
5729 void __page_frag_cache_drain(struct page *page, unsigned int count)
5731 VM_BUG_ON_PAGE(page_ref_count(page) == 0, page);
5733 if (page_ref_sub_and_test(page, count))
5734 free_the_page(page, compound_order(page));
5736 EXPORT_SYMBOL(__page_frag_cache_drain);
5738 void *page_frag_alloc_align(struct page_frag_cache *nc,
5739 unsigned int fragsz, gfp_t gfp_mask,
5740 unsigned int align_mask)
5742 unsigned int size = PAGE_SIZE;
5746 if (unlikely(!nc->va)) {
5748 page = __page_frag_cache_refill(nc, gfp_mask);
5752 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
5753 /* if size can vary use size else just use PAGE_SIZE */
5756 /* Even if we own the page, we do not use atomic_set().
5757 * This would break get_page_unless_zero() users.
5759 page_ref_add(page, PAGE_FRAG_CACHE_MAX_SIZE);
5761 /* reset page count bias and offset to start of new frag */
5762 nc->pfmemalloc = page_is_pfmemalloc(page);
5763 nc->pagecnt_bias = PAGE_FRAG_CACHE_MAX_SIZE + 1;
5767 offset = nc->offset - fragsz;
5768 if (unlikely(offset < 0)) {
5769 page = virt_to_page(nc->va);
5771 if (!page_ref_sub_and_test(page, nc->pagecnt_bias))
5774 if (unlikely(nc->pfmemalloc)) {
5775 free_the_page(page, compound_order(page));
5779 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
5780 /* if size can vary use size else just use PAGE_SIZE */
5783 /* OK, page count is 0, we can safely set it */
5784 set_page_count(page, PAGE_FRAG_CACHE_MAX_SIZE + 1);
5786 /* reset page count bias and offset to start of new frag */
5787 nc->pagecnt_bias = PAGE_FRAG_CACHE_MAX_SIZE + 1;
5788 offset = size - fragsz;
5789 if (unlikely(offset < 0)) {
5791 * The caller is trying to allocate a fragment
5792 * with fragsz > PAGE_SIZE but the cache isn't big
5793 * enough to satisfy the request, this may
5794 * happen in low memory conditions.
5795 * We don't release the cache page because
5796 * it could make memory pressure worse
5797 * so we simply return NULL here.
5804 offset &= align_mask;
5805 nc->offset = offset;
5807 return nc->va + offset;
5809 EXPORT_SYMBOL(page_frag_alloc_align);
5812 * Frees a page fragment allocated out of either a compound or order 0 page.
5814 void page_frag_free(void *addr)
5816 struct page *page = virt_to_head_page(addr);
5818 if (unlikely(put_page_testzero(page)))
5819 free_the_page(page, compound_order(page));
5821 EXPORT_SYMBOL(page_frag_free);
5823 static void *make_alloc_exact(unsigned long addr, unsigned int order,
5827 unsigned long nr = DIV_ROUND_UP(size, PAGE_SIZE);
5828 struct page *page = virt_to_page((void *)addr);
5829 struct page *last = page + nr;
5831 split_page_owner(page, 1 << order);
5832 split_page_memcg(page, 1 << order);
5833 while (page < --last)
5834 set_page_refcounted(last);
5836 last = page + (1UL << order);
5837 for (page += nr; page < last; page++)
5838 __free_pages_ok(page, 0, FPI_TO_TAIL);
5840 return (void *)addr;
5844 * alloc_pages_exact - allocate an exact number physically-contiguous pages.
5845 * @size: the number of bytes to allocate
5846 * @gfp_mask: GFP flags for the allocation, must not contain __GFP_COMP
5848 * This function is similar to alloc_pages(), except that it allocates the
5849 * minimum number of pages to satisfy the request. alloc_pages() can only
5850 * allocate memory in power-of-two pages.
5852 * This function is also limited by MAX_ORDER.
5854 * Memory allocated by this function must be released by free_pages_exact().
5856 * Return: pointer to the allocated area or %NULL in case of error.
5858 void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
5860 unsigned int order = get_order(size);
5863 if (WARN_ON_ONCE(gfp_mask & (__GFP_COMP | __GFP_HIGHMEM)))
5864 gfp_mask &= ~(__GFP_COMP | __GFP_HIGHMEM);
5866 addr = __get_free_pages(gfp_mask, order);
5867 return make_alloc_exact(addr, order, size);
5869 EXPORT_SYMBOL(alloc_pages_exact);
5872 * alloc_pages_exact_nid - allocate an exact number of physically-contiguous
5874 * @nid: the preferred node ID where memory should be allocated
5875 * @size: the number of bytes to allocate
5876 * @gfp_mask: GFP flags for the allocation, must not contain __GFP_COMP
5878 * Like alloc_pages_exact(), but try to allocate on node nid first before falling
5881 * Return: pointer to the allocated area or %NULL in case of error.
5883 void * __meminit alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask)
5885 unsigned int order = get_order(size);
5888 if (WARN_ON_ONCE(gfp_mask & (__GFP_COMP | __GFP_HIGHMEM)))
5889 gfp_mask &= ~(__GFP_COMP | __GFP_HIGHMEM);
5891 p = alloc_pages_node(nid, gfp_mask, order);
5894 return make_alloc_exact((unsigned long)page_address(p), order, size);
5898 * free_pages_exact - release memory allocated via alloc_pages_exact()
5899 * @virt: the value returned by alloc_pages_exact.
5900 * @size: size of allocation, same value as passed to alloc_pages_exact().
5902 * Release the memory allocated by a previous call to alloc_pages_exact.
5904 void free_pages_exact(void *virt, size_t size)
5906 unsigned long addr = (unsigned long)virt;
5907 unsigned long end = addr + PAGE_ALIGN(size);
5909 while (addr < end) {
5914 EXPORT_SYMBOL(free_pages_exact);
5917 * nr_free_zone_pages - count number of pages beyond high watermark
5918 * @offset: The zone index of the highest zone
5920 * nr_free_zone_pages() counts the number of pages which are beyond the
5921 * high watermark within all zones at or below a given zone index. For each
5922 * zone, the number of pages is calculated as:
5924 * nr_free_zone_pages = managed_pages - high_pages
5926 * Return: number of pages beyond high watermark.
5928 static unsigned long nr_free_zone_pages(int offset)
5933 /* Just pick one node, since fallback list is circular */
5934 unsigned long sum = 0;
5936 struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
5938 for_each_zone_zonelist(zone, z, zonelist, offset) {
5939 unsigned long size = zone_managed_pages(zone);
5940 unsigned long high = high_wmark_pages(zone);
5949 * nr_free_buffer_pages - count number of pages beyond high watermark
5951 * nr_free_buffer_pages() counts the number of pages which are beyond the high
5952 * watermark within ZONE_DMA and ZONE_NORMAL.
5954 * Return: number of pages beyond high watermark within ZONE_DMA and
5957 unsigned long nr_free_buffer_pages(void)
5959 return nr_free_zone_pages(gfp_zone(GFP_USER));
5961 EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
5963 static inline void show_node(struct zone *zone)
5965 if (IS_ENABLED(CONFIG_NUMA))
5966 printk("Node %d ", zone_to_nid(zone));
5969 long si_mem_available(void)
5972 unsigned long pagecache;
5973 unsigned long wmark_low = 0;
5974 unsigned long pages[NR_LRU_LISTS];
5975 unsigned long reclaimable;
5979 for (lru = LRU_BASE; lru < NR_LRU_LISTS; lru++)
5980 pages[lru] = global_node_page_state(NR_LRU_BASE + lru);
5983 wmark_low += low_wmark_pages(zone);
5986 * Estimate the amount of memory available for userspace allocations,
5987 * without causing swapping or OOM.
5989 available = global_zone_page_state(NR_FREE_PAGES) - totalreserve_pages;
5992 * Not all the page cache can be freed, otherwise the system will
5993 * start swapping or thrashing. Assume at least half of the page
5994 * cache, or the low watermark worth of cache, needs to stay.
5996 pagecache = pages[LRU_ACTIVE_FILE] + pages[LRU_INACTIVE_FILE];
5997 pagecache -= min(pagecache / 2, wmark_low);
5998 available += pagecache;
6001 * Part of the reclaimable slab and other kernel memory consists of
6002 * items that are in use, and cannot be freed. Cap this estimate at the
6005 reclaimable = global_node_page_state_pages(NR_SLAB_RECLAIMABLE_B) +
6006 global_node_page_state(NR_KERNEL_MISC_RECLAIMABLE);
6007 available += reclaimable - min(reclaimable / 2, wmark_low);
6013 EXPORT_SYMBOL_GPL(si_mem_available);
6015 void si_meminfo(struct sysinfo *val)
6017 val->totalram = totalram_pages();
6018 val->sharedram = global_node_page_state(NR_SHMEM);
6019 val->freeram = global_zone_page_state(NR_FREE_PAGES);
6020 val->bufferram = nr_blockdev_pages();
6021 val->totalhigh = totalhigh_pages();
6022 val->freehigh = nr_free_highpages();
6023 val->mem_unit = PAGE_SIZE;
6026 EXPORT_SYMBOL(si_meminfo);
6029 void si_meminfo_node(struct sysinfo *val, int nid)
6031 int zone_type; /* needs to be signed */
6032 unsigned long managed_pages = 0;
6033 unsigned long managed_highpages = 0;
6034 unsigned long free_highpages = 0;
6035 pg_data_t *pgdat = NODE_DATA(nid);
6037 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++)
6038 managed_pages += zone_managed_pages(&pgdat->node_zones[zone_type]);
6039 val->totalram = managed_pages;
6040 val->sharedram = node_page_state(pgdat, NR_SHMEM);
6041 val->freeram = sum_zone_node_page_state(nid, NR_FREE_PAGES);
6042 #ifdef CONFIG_HIGHMEM
6043 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
6044 struct zone *zone = &pgdat->node_zones[zone_type];
6046 if (is_highmem(zone)) {
6047 managed_highpages += zone_managed_pages(zone);
6048 free_highpages += zone_page_state(zone, NR_FREE_PAGES);
6051 val->totalhigh = managed_highpages;
6052 val->freehigh = free_highpages;
6054 val->totalhigh = managed_highpages;
6055 val->freehigh = free_highpages;
6057 val->mem_unit = PAGE_SIZE;
6062 * Determine whether the node should be displayed or not, depending on whether
6063 * SHOW_MEM_FILTER_NODES was passed to show_free_areas().
6065 static bool show_mem_node_skip(unsigned int flags, int nid, nodemask_t *nodemask)
6067 if (!(flags & SHOW_MEM_FILTER_NODES))
6071 * no node mask - aka implicit memory numa policy. Do not bother with
6072 * the synchronization - read_mems_allowed_begin - because we do not
6073 * have to be precise here.
6076 nodemask = &cpuset_current_mems_allowed;
6078 return !node_isset(nid, *nodemask);
6081 #define K(x) ((x) << (PAGE_SHIFT-10))
6083 static void show_migration_types(unsigned char type)
6085 static const char types[MIGRATE_TYPES] = {
6086 [MIGRATE_UNMOVABLE] = 'U',
6087 [MIGRATE_MOVABLE] = 'M',
6088 [MIGRATE_RECLAIMABLE] = 'E',
6089 [MIGRATE_HIGHATOMIC] = 'H',
6091 [MIGRATE_CMA] = 'C',
6093 #ifdef CONFIG_MEMORY_ISOLATION
6094 [MIGRATE_ISOLATE] = 'I',
6097 char tmp[MIGRATE_TYPES + 1];
6101 for (i = 0; i < MIGRATE_TYPES; i++) {
6102 if (type & (1 << i))
6107 printk(KERN_CONT "(%s) ", tmp);
6110 static bool node_has_managed_zones(pg_data_t *pgdat, int max_zone_idx)
6113 for (zone_idx = 0; zone_idx <= max_zone_idx; zone_idx++)
6114 if (zone_managed_pages(pgdat->node_zones + zone_idx))
6120 * Show free area list (used inside shift_scroll-lock stuff)
6121 * We also calculate the percentage fragmentation. We do this by counting the
6122 * memory on each free list with the exception of the first item on the list.
6125 * SHOW_MEM_FILTER_NODES: suppress nodes that are not allowed by current's
6128 void __show_free_areas(unsigned int filter, nodemask_t *nodemask, int max_zone_idx)
6130 unsigned long free_pcp = 0;
6135 for_each_populated_zone(zone) {
6136 if (zone_idx(zone) > max_zone_idx)
6138 if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
6141 for_each_online_cpu(cpu)
6142 free_pcp += per_cpu_ptr(zone->per_cpu_pageset, cpu)->count;
6145 printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n"
6146 " active_file:%lu inactive_file:%lu isolated_file:%lu\n"
6147 " unevictable:%lu dirty:%lu writeback:%lu\n"
6148 " slab_reclaimable:%lu slab_unreclaimable:%lu\n"
6149 " mapped:%lu shmem:%lu pagetables:%lu\n"
6150 " sec_pagetables:%lu bounce:%lu\n"
6151 " kernel_misc_reclaimable:%lu\n"
6152 " free:%lu free_pcp:%lu free_cma:%lu\n",
6153 global_node_page_state(NR_ACTIVE_ANON),
6154 global_node_page_state(NR_INACTIVE_ANON),
6155 global_node_page_state(NR_ISOLATED_ANON),
6156 global_node_page_state(NR_ACTIVE_FILE),
6157 global_node_page_state(NR_INACTIVE_FILE),
6158 global_node_page_state(NR_ISOLATED_FILE),
6159 global_node_page_state(NR_UNEVICTABLE),
6160 global_node_page_state(NR_FILE_DIRTY),
6161 global_node_page_state(NR_WRITEBACK),
6162 global_node_page_state_pages(NR_SLAB_RECLAIMABLE_B),
6163 global_node_page_state_pages(NR_SLAB_UNRECLAIMABLE_B),
6164 global_node_page_state(NR_FILE_MAPPED),
6165 global_node_page_state(NR_SHMEM),
6166 global_node_page_state(NR_PAGETABLE),
6167 global_node_page_state(NR_SECONDARY_PAGETABLE),
6168 global_zone_page_state(NR_BOUNCE),
6169 global_node_page_state(NR_KERNEL_MISC_RECLAIMABLE),
6170 global_zone_page_state(NR_FREE_PAGES),
6172 global_zone_page_state(NR_FREE_CMA_PAGES));
6174 for_each_online_pgdat(pgdat) {
6175 if (show_mem_node_skip(filter, pgdat->node_id, nodemask))
6177 if (!node_has_managed_zones(pgdat, max_zone_idx))
6181 " active_anon:%lukB"
6182 " inactive_anon:%lukB"
6183 " active_file:%lukB"
6184 " inactive_file:%lukB"
6185 " unevictable:%lukB"
6186 " isolated(anon):%lukB"
6187 " isolated(file):%lukB"
6192 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
6194 " shmem_pmdmapped: %lukB"
6197 " writeback_tmp:%lukB"
6198 " kernel_stack:%lukB"
6199 #ifdef CONFIG_SHADOW_CALL_STACK
6200 " shadow_call_stack:%lukB"
6203 " sec_pagetables:%lukB"
6204 " all_unreclaimable? %s"
6207 K(node_page_state(pgdat, NR_ACTIVE_ANON)),
6208 K(node_page_state(pgdat, NR_INACTIVE_ANON)),
6209 K(node_page_state(pgdat, NR_ACTIVE_FILE)),
6210 K(node_page_state(pgdat, NR_INACTIVE_FILE)),
6211 K(node_page_state(pgdat, NR_UNEVICTABLE)),
6212 K(node_page_state(pgdat, NR_ISOLATED_ANON)),
6213 K(node_page_state(pgdat, NR_ISOLATED_FILE)),
6214 K(node_page_state(pgdat, NR_FILE_MAPPED)),
6215 K(node_page_state(pgdat, NR_FILE_DIRTY)),
6216 K(node_page_state(pgdat, NR_WRITEBACK)),
6217 K(node_page_state(pgdat, NR_SHMEM)),
6218 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
6219 K(node_page_state(pgdat, NR_SHMEM_THPS)),
6220 K(node_page_state(pgdat, NR_SHMEM_PMDMAPPED)),
6221 K(node_page_state(pgdat, NR_ANON_THPS)),
6223 K(node_page_state(pgdat, NR_WRITEBACK_TEMP)),
6224 node_page_state(pgdat, NR_KERNEL_STACK_KB),
6225 #ifdef CONFIG_SHADOW_CALL_STACK
6226 node_page_state(pgdat, NR_KERNEL_SCS_KB),
6228 K(node_page_state(pgdat, NR_PAGETABLE)),
6229 K(node_page_state(pgdat, NR_SECONDARY_PAGETABLE)),
6230 pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES ?
6234 for_each_populated_zone(zone) {
6237 if (zone_idx(zone) > max_zone_idx)
6239 if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
6243 for_each_online_cpu(cpu)
6244 free_pcp += per_cpu_ptr(zone->per_cpu_pageset, cpu)->count;
6254 " reserved_highatomic:%luKB"
6255 " active_anon:%lukB"
6256 " inactive_anon:%lukB"
6257 " active_file:%lukB"
6258 " inactive_file:%lukB"
6259 " unevictable:%lukB"
6260 " writepending:%lukB"
6270 K(zone_page_state(zone, NR_FREE_PAGES)),
6271 K(zone->watermark_boost),
6272 K(min_wmark_pages(zone)),
6273 K(low_wmark_pages(zone)),
6274 K(high_wmark_pages(zone)),
6275 K(zone->nr_reserved_highatomic),
6276 K(zone_page_state(zone, NR_ZONE_ACTIVE_ANON)),
6277 K(zone_page_state(zone, NR_ZONE_INACTIVE_ANON)),
6278 K(zone_page_state(zone, NR_ZONE_ACTIVE_FILE)),
6279 K(zone_page_state(zone, NR_ZONE_INACTIVE_FILE)),
6280 K(zone_page_state(zone, NR_ZONE_UNEVICTABLE)),
6281 K(zone_page_state(zone, NR_ZONE_WRITE_PENDING)),
6282 K(zone->present_pages),
6283 K(zone_managed_pages(zone)),
6284 K(zone_page_state(zone, NR_MLOCK)),
6285 K(zone_page_state(zone, NR_BOUNCE)),
6287 K(this_cpu_read(zone->per_cpu_pageset->count)),
6288 K(zone_page_state(zone, NR_FREE_CMA_PAGES)));
6289 printk("lowmem_reserve[]:");
6290 for (i = 0; i < MAX_NR_ZONES; i++)
6291 printk(KERN_CONT " %ld", zone->lowmem_reserve[i]);
6292 printk(KERN_CONT "\n");
6295 for_each_populated_zone(zone) {
6297 unsigned long nr[MAX_ORDER], flags, total = 0;
6298 unsigned char types[MAX_ORDER];
6300 if (zone_idx(zone) > max_zone_idx)
6302 if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
6305 printk(KERN_CONT "%s: ", zone->name);
6307 spin_lock_irqsave(&zone->lock, flags);
6308 for (order = 0; order < MAX_ORDER; order++) {
6309 struct free_area *area = &zone->free_area[order];
6312 nr[order] = area->nr_free;
6313 total += nr[order] << order;
6316 for (type = 0; type < MIGRATE_TYPES; type++) {
6317 if (!free_area_empty(area, type))
6318 types[order] |= 1 << type;
6321 spin_unlock_irqrestore(&zone->lock, flags);
6322 for (order = 0; order < MAX_ORDER; order++) {
6323 printk(KERN_CONT "%lu*%lukB ",
6324 nr[order], K(1UL) << order);
6326 show_migration_types(types[order]);
6328 printk(KERN_CONT "= %lukB\n", K(total));
6331 for_each_online_node(nid) {
6332 if (show_mem_node_skip(filter, nid, nodemask))
6334 hugetlb_show_meminfo_node(nid);
6337 printk("%ld total pagecache pages\n", global_node_page_state(NR_FILE_PAGES));
6339 show_swap_cache_info();
6342 static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
6344 zoneref->zone = zone;
6345 zoneref->zone_idx = zone_idx(zone);
6349 * Builds allocation fallback zone lists.
6351 * Add all populated zones of a node to the zonelist.
6353 static int build_zonerefs_node(pg_data_t *pgdat, struct zoneref *zonerefs)
6356 enum zone_type zone_type = MAX_NR_ZONES;
6361 zone = pgdat->node_zones + zone_type;
6362 if (populated_zone(zone)) {
6363 zoneref_set_zone(zone, &zonerefs[nr_zones++]);
6364 check_highest_zone(zone_type);
6366 } while (zone_type);
6373 static int __parse_numa_zonelist_order(char *s)
6376 * We used to support different zonelists modes but they turned
6377 * out to be just not useful. Let's keep the warning in place
6378 * if somebody still use the cmd line parameter so that we do
6379 * not fail it silently
6381 if (!(*s == 'd' || *s == 'D' || *s == 'n' || *s == 'N')) {
6382 pr_warn("Ignoring unsupported numa_zonelist_order value: %s\n", s);
6388 char numa_zonelist_order[] = "Node";
6391 * sysctl handler for numa_zonelist_order
6393 int numa_zonelist_order_handler(struct ctl_table *table, int write,
6394 void *buffer, size_t *length, loff_t *ppos)
6397 return __parse_numa_zonelist_order(buffer);
6398 return proc_dostring(table, write, buffer, length, ppos);
6402 static int node_load[MAX_NUMNODES];
6405 * find_next_best_node - find the next node that should appear in a given node's fallback list
6406 * @node: node whose fallback list we're appending
6407 * @used_node_mask: nodemask_t of already used nodes
6409 * We use a number of factors to determine which is the next node that should
6410 * appear on a given node's fallback list. The node should not have appeared
6411 * already in @node's fallback list, and it should be the next closest node
6412 * according to the distance array (which contains arbitrary distance values
6413 * from each node to each node in the system), and should also prefer nodes
6414 * with no CPUs, since presumably they'll have very little allocation pressure
6415 * on them otherwise.
6417 * Return: node id of the found node or %NUMA_NO_NODE if no node is found.
6419 int find_next_best_node(int node, nodemask_t *used_node_mask)
6422 int min_val = INT_MAX;
6423 int best_node = NUMA_NO_NODE;
6425 /* Use the local node if we haven't already */
6426 if (!node_isset(node, *used_node_mask)) {
6427 node_set(node, *used_node_mask);
6431 for_each_node_state(n, N_MEMORY) {
6433 /* Don't want a node to appear more than once */
6434 if (node_isset(n, *used_node_mask))
6437 /* Use the distance array to find the distance */
6438 val = node_distance(node, n);
6440 /* Penalize nodes under us ("prefer the next node") */
6443 /* Give preference to headless and unused nodes */
6444 if (!cpumask_empty(cpumask_of_node(n)))
6445 val += PENALTY_FOR_NODE_WITH_CPUS;
6447 /* Slight preference for less loaded node */
6448 val *= MAX_NUMNODES;
6449 val += node_load[n];
6451 if (val < min_val) {
6458 node_set(best_node, *used_node_mask);
6465 * Build zonelists ordered by node and zones within node.
6466 * This results in maximum locality--normal zone overflows into local
6467 * DMA zone, if any--but risks exhausting DMA zone.
6469 static void build_zonelists_in_node_order(pg_data_t *pgdat, int *node_order,
6472 struct zoneref *zonerefs;
6475 zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs;
6477 for (i = 0; i < nr_nodes; i++) {
6480 pg_data_t *node = NODE_DATA(node_order[i]);
6482 nr_zones = build_zonerefs_node(node, zonerefs);
6483 zonerefs += nr_zones;
6485 zonerefs->zone = NULL;
6486 zonerefs->zone_idx = 0;
6490 * Build gfp_thisnode zonelists
6492 static void build_thisnode_zonelists(pg_data_t *pgdat)
6494 struct zoneref *zonerefs;
6497 zonerefs = pgdat->node_zonelists[ZONELIST_NOFALLBACK]._zonerefs;
6498 nr_zones = build_zonerefs_node(pgdat, zonerefs);
6499 zonerefs += nr_zones;
6500 zonerefs->zone = NULL;
6501 zonerefs->zone_idx = 0;
6505 * Build zonelists ordered by zone and nodes within zones.
6506 * This results in conserving DMA zone[s] until all Normal memory is
6507 * exhausted, but results in overflowing to remote node while memory
6508 * may still exist in local DMA zone.
6511 static void build_zonelists(pg_data_t *pgdat)
6513 static int node_order[MAX_NUMNODES];
6514 int node, nr_nodes = 0;
6515 nodemask_t used_mask = NODE_MASK_NONE;
6516 int local_node, prev_node;
6518 /* NUMA-aware ordering of nodes */
6519 local_node = pgdat->node_id;
6520 prev_node = local_node;
6522 memset(node_order, 0, sizeof(node_order));
6523 while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
6525 * We don't want to pressure a particular node.
6526 * So adding penalty to the first node in same
6527 * distance group to make it round-robin.
6529 if (node_distance(local_node, node) !=
6530 node_distance(local_node, prev_node))
6531 node_load[node] += 1;
6533 node_order[nr_nodes++] = node;
6537 build_zonelists_in_node_order(pgdat, node_order, nr_nodes);
6538 build_thisnode_zonelists(pgdat);
6539 pr_info("Fallback order for Node %d: ", local_node);
6540 for (node = 0; node < nr_nodes; node++)
6541 pr_cont("%d ", node_order[node]);
6545 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
6547 * Return node id of node used for "local" allocations.
6548 * I.e., first node id of first zone in arg node's generic zonelist.
6549 * Used for initializing percpu 'numa_mem', which is used primarily
6550 * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
6552 int local_memory_node(int node)
6556 z = first_zones_zonelist(node_zonelist(node, GFP_KERNEL),
6557 gfp_zone(GFP_KERNEL),
6559 return zone_to_nid(z->zone);
6563 static void setup_min_unmapped_ratio(void);
6564 static void setup_min_slab_ratio(void);
6565 #else /* CONFIG_NUMA */
6567 static void build_zonelists(pg_data_t *pgdat)
6569 int node, local_node;
6570 struct zoneref *zonerefs;
6573 local_node = pgdat->node_id;
6575 zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs;
6576 nr_zones = build_zonerefs_node(pgdat, zonerefs);
6577 zonerefs += nr_zones;
6580 * Now we build the zonelist so that it contains the zones
6581 * of all the other nodes.
6582 * We don't want to pressure a particular node, so when
6583 * building the zones for node N, we make sure that the
6584 * zones coming right after the local ones are those from
6585 * node N+1 (modulo N)
6587 for (node = local_node + 1; node < MAX_NUMNODES; node++) {
6588 if (!node_online(node))
6590 nr_zones = build_zonerefs_node(NODE_DATA(node), zonerefs);
6591 zonerefs += nr_zones;
6593 for (node = 0; node < local_node; node++) {
6594 if (!node_online(node))
6596 nr_zones = build_zonerefs_node(NODE_DATA(node), zonerefs);
6597 zonerefs += nr_zones;
6600 zonerefs->zone = NULL;
6601 zonerefs->zone_idx = 0;
6604 #endif /* CONFIG_NUMA */
6607 * Boot pageset table. One per cpu which is going to be used for all
6608 * zones and all nodes. The parameters will be set in such a way
6609 * that an item put on a list will immediately be handed over to
6610 * the buddy list. This is safe since pageset manipulation is done
6611 * with interrupts disabled.
6613 * The boot_pagesets must be kept even after bootup is complete for
6614 * unused processors and/or zones. They do play a role for bootstrapping
6615 * hotplugged processors.
6617 * zoneinfo_show() and maybe other functions do
6618 * not check if the processor is online before following the pageset pointer.
6619 * Other parts of the kernel may not check if the zone is available.
6621 static void per_cpu_pages_init(struct per_cpu_pages *pcp, struct per_cpu_zonestat *pzstats);
6622 /* These effectively disable the pcplists in the boot pageset completely */
6623 #define BOOT_PAGESET_HIGH 0
6624 #define BOOT_PAGESET_BATCH 1
6625 static DEFINE_PER_CPU(struct per_cpu_pages, boot_pageset);
6626 static DEFINE_PER_CPU(struct per_cpu_zonestat, boot_zonestats);
6627 static DEFINE_PER_CPU(struct per_cpu_nodestat, boot_nodestats);
6629 static void __build_all_zonelists(void *data)
6632 int __maybe_unused cpu;
6633 pg_data_t *self = data;
6635 write_seqlock(&zonelist_update_seq);
6638 memset(node_load, 0, sizeof(node_load));
6642 * This node is hotadded and no memory is yet present. So just
6643 * building zonelists is fine - no need to touch other nodes.
6645 if (self && !node_online(self->node_id)) {
6646 build_zonelists(self);
6649 * All possible nodes have pgdat preallocated
6652 for_each_node(nid) {
6653 pg_data_t *pgdat = NODE_DATA(nid);
6655 build_zonelists(pgdat);
6658 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
6660 * We now know the "local memory node" for each node--
6661 * i.e., the node of the first zone in the generic zonelist.
6662 * Set up numa_mem percpu variable for on-line cpus. During
6663 * boot, only the boot cpu should be on-line; we'll init the
6664 * secondary cpus' numa_mem as they come on-line. During
6665 * node/memory hotplug, we'll fixup all on-line cpus.
6667 for_each_online_cpu(cpu)
6668 set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu)));
6672 write_sequnlock(&zonelist_update_seq);
6675 static noinline void __init
6676 build_all_zonelists_init(void)
6680 __build_all_zonelists(NULL);
6683 * Initialize the boot_pagesets that are going to be used
6684 * for bootstrapping processors. The real pagesets for
6685 * each zone will be allocated later when the per cpu
6686 * allocator is available.
6688 * boot_pagesets are used also for bootstrapping offline
6689 * cpus if the system is already booted because the pagesets
6690 * are needed to initialize allocators on a specific cpu too.
6691 * F.e. the percpu allocator needs the page allocator which
6692 * needs the percpu allocator in order to allocate its pagesets
6693 * (a chicken-egg dilemma).
6695 for_each_possible_cpu(cpu)
6696 per_cpu_pages_init(&per_cpu(boot_pageset, cpu), &per_cpu(boot_zonestats, cpu));
6698 mminit_verify_zonelist();
6699 cpuset_init_current_mems_allowed();
6703 * unless system_state == SYSTEM_BOOTING.
6705 * __ref due to call of __init annotated helper build_all_zonelists_init
6706 * [protected by SYSTEM_BOOTING].
6708 void __ref build_all_zonelists(pg_data_t *pgdat)
6710 unsigned long vm_total_pages;
6712 if (system_state == SYSTEM_BOOTING) {
6713 build_all_zonelists_init();
6715 __build_all_zonelists(pgdat);
6716 /* cpuset refresh routine should be here */
6718 /* Get the number of free pages beyond high watermark in all zones. */
6719 vm_total_pages = nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
6721 * Disable grouping by mobility if the number of pages in the
6722 * system is too low to allow the mechanism to work. It would be
6723 * more accurate, but expensive to check per-zone. This check is
6724 * made on memory-hotadd so a system can start with mobility
6725 * disabled and enable it later
6727 if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
6728 page_group_by_mobility_disabled = 1;
6730 page_group_by_mobility_disabled = 0;
6732 pr_info("Built %u zonelists, mobility grouping %s. Total pages: %ld\n",
6734 page_group_by_mobility_disabled ? "off" : "on",
6737 pr_info("Policy zone: %s\n", zone_names[policy_zone]);
6741 /* If zone is ZONE_MOVABLE but memory is mirrored, it is an overlapped init */
6742 static bool __meminit
6743 overlap_memmap_init(unsigned long zone, unsigned long *pfn)
6745 static struct memblock_region *r;
6747 if (mirrored_kernelcore && zone == ZONE_MOVABLE) {
6748 if (!r || *pfn >= memblock_region_memory_end_pfn(r)) {
6749 for_each_mem_region(r) {
6750 if (*pfn < memblock_region_memory_end_pfn(r))
6754 if (*pfn >= memblock_region_memory_base_pfn(r) &&
6755 memblock_is_mirror(r)) {
6756 *pfn = memblock_region_memory_end_pfn(r);
6764 * Initially all pages are reserved - free ones are freed
6765 * up by memblock_free_all() once the early boot process is
6766 * done. Non-atomic initialization, single-pass.
6768 * All aligned pageblocks are initialized to the specified migratetype
6769 * (usually MIGRATE_MOVABLE). Besides setting the migratetype, no related
6770 * zone stats (e.g., nr_isolate_pageblock) are touched.
6772 void __meminit memmap_init_range(unsigned long size, int nid, unsigned long zone,
6773 unsigned long start_pfn, unsigned long zone_end_pfn,
6774 enum meminit_context context,
6775 struct vmem_altmap *altmap, int migratetype)
6777 unsigned long pfn, end_pfn = start_pfn + size;
6780 if (highest_memmap_pfn < end_pfn - 1)
6781 highest_memmap_pfn = end_pfn - 1;
6783 #ifdef CONFIG_ZONE_DEVICE
6785 * Honor reservation requested by the driver for this ZONE_DEVICE
6786 * memory. We limit the total number of pages to initialize to just
6787 * those that might contain the memory mapping. We will defer the
6788 * ZONE_DEVICE page initialization until after we have released
6791 if (zone == ZONE_DEVICE) {
6795 if (start_pfn == altmap->base_pfn)
6796 start_pfn += altmap->reserve;
6797 end_pfn = altmap->base_pfn + vmem_altmap_offset(altmap);
6801 for (pfn = start_pfn; pfn < end_pfn; ) {
6803 * There can be holes in boot-time mem_map[]s handed to this
6804 * function. They do not exist on hotplugged memory.
6806 if (context == MEMINIT_EARLY) {
6807 if (overlap_memmap_init(zone, &pfn))
6809 if (defer_init(nid, pfn, zone_end_pfn)) {
6810 deferred_struct_pages = true;
6815 page = pfn_to_page(pfn);
6816 __init_single_page(page, pfn, zone, nid);
6817 if (context == MEMINIT_HOTPLUG)
6818 __SetPageReserved(page);
6821 * Usually, we want to mark the pageblock MIGRATE_MOVABLE,
6822 * such that unmovable allocations won't be scattered all
6823 * over the place during system boot.
6825 if (pageblock_aligned(pfn)) {
6826 set_pageblock_migratetype(page, migratetype);
6833 #ifdef CONFIG_ZONE_DEVICE
6834 static void __ref __init_zone_device_page(struct page *page, unsigned long pfn,
6835 unsigned long zone_idx, int nid,
6836 struct dev_pagemap *pgmap)
6839 __init_single_page(page, pfn, zone_idx, nid);
6842 * Mark page reserved as it will need to wait for onlining
6843 * phase for it to be fully associated with a zone.
6845 * We can use the non-atomic __set_bit operation for setting
6846 * the flag as we are still initializing the pages.
6848 __SetPageReserved(page);
6851 * ZONE_DEVICE pages union ->lru with a ->pgmap back pointer
6852 * and zone_device_data. It is a bug if a ZONE_DEVICE page is
6853 * ever freed or placed on a driver-private list.
6855 page->pgmap = pgmap;
6856 page->zone_device_data = NULL;
6859 * Mark the block movable so that blocks are reserved for
6860 * movable at startup. This will force kernel allocations
6861 * to reserve their blocks rather than leaking throughout
6862 * the address space during boot when many long-lived
6863 * kernel allocations are made.
6865 * Please note that MEMINIT_HOTPLUG path doesn't clear memmap
6866 * because this is done early in section_activate()
6868 if (pageblock_aligned(pfn)) {
6869 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
6874 * ZONE_DEVICE pages are released directly to the driver page allocator
6875 * which will set the page count to 1 when allocating the page.
6877 if (pgmap->type == MEMORY_DEVICE_PRIVATE ||
6878 pgmap->type == MEMORY_DEVICE_COHERENT)
6879 set_page_count(page, 0);
6883 * With compound page geometry and when struct pages are stored in ram most
6884 * tail pages are reused. Consequently, the amount of unique struct pages to
6885 * initialize is a lot smaller that the total amount of struct pages being
6886 * mapped. This is a paired / mild layering violation with explicit knowledge
6887 * of how the sparse_vmemmap internals handle compound pages in the lack
6888 * of an altmap. See vmemmap_populate_compound_pages().
6890 static inline unsigned long compound_nr_pages(struct vmem_altmap *altmap,
6891 unsigned long nr_pages)
6893 return is_power_of_2(sizeof(struct page)) &&
6894 !altmap ? 2 * (PAGE_SIZE / sizeof(struct page)) : nr_pages;
6897 static void __ref memmap_init_compound(struct page *head,
6898 unsigned long head_pfn,
6899 unsigned long zone_idx, int nid,
6900 struct dev_pagemap *pgmap,
6901 unsigned long nr_pages)
6903 unsigned long pfn, end_pfn = head_pfn + nr_pages;
6904 unsigned int order = pgmap->vmemmap_shift;
6906 __SetPageHead(head);
6907 for (pfn = head_pfn + 1; pfn < end_pfn; pfn++) {
6908 struct page *page = pfn_to_page(pfn);
6910 __init_zone_device_page(page, pfn, zone_idx, nid, pgmap);
6911 prep_compound_tail(head, pfn - head_pfn);
6912 set_page_count(page, 0);
6915 * The first tail page stores important compound page info.
6916 * Call prep_compound_head() after the first tail page has
6917 * been initialized, to not have the data overwritten.
6919 if (pfn == head_pfn + 1)
6920 prep_compound_head(head, order);
6924 void __ref memmap_init_zone_device(struct zone *zone,
6925 unsigned long start_pfn,
6926 unsigned long nr_pages,
6927 struct dev_pagemap *pgmap)
6929 unsigned long pfn, end_pfn = start_pfn + nr_pages;
6930 struct pglist_data *pgdat = zone->zone_pgdat;
6931 struct vmem_altmap *altmap = pgmap_altmap(pgmap);
6932 unsigned int pfns_per_compound = pgmap_vmemmap_nr(pgmap);
6933 unsigned long zone_idx = zone_idx(zone);
6934 unsigned long start = jiffies;
6935 int nid = pgdat->node_id;
6937 if (WARN_ON_ONCE(!pgmap || zone_idx != ZONE_DEVICE))
6941 * The call to memmap_init should have already taken care
6942 * of the pages reserved for the memmap, so we can just jump to
6943 * the end of that region and start processing the device pages.
6946 start_pfn = altmap->base_pfn + vmem_altmap_offset(altmap);
6947 nr_pages = end_pfn - start_pfn;
6950 for (pfn = start_pfn; pfn < end_pfn; pfn += pfns_per_compound) {
6951 struct page *page = pfn_to_page(pfn);
6953 __init_zone_device_page(page, pfn, zone_idx, nid, pgmap);
6955 if (pfns_per_compound == 1)
6958 memmap_init_compound(page, pfn, zone_idx, nid, pgmap,
6959 compound_nr_pages(altmap, pfns_per_compound));
6962 pr_info("%s initialised %lu pages in %ums\n", __func__,
6963 nr_pages, jiffies_to_msecs(jiffies - start));
6967 static void __meminit zone_init_free_lists(struct zone *zone)
6969 unsigned int order, t;
6970 for_each_migratetype_order(order, t) {
6971 INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
6972 zone->free_area[order].nr_free = 0;
6977 * Only struct pages that correspond to ranges defined by memblock.memory
6978 * are zeroed and initialized by going through __init_single_page() during
6979 * memmap_init_zone_range().
6981 * But, there could be struct pages that correspond to holes in
6982 * memblock.memory. This can happen because of the following reasons:
6983 * - physical memory bank size is not necessarily the exact multiple of the
6984 * arbitrary section size
6985 * - early reserved memory may not be listed in memblock.memory
6986 * - memory layouts defined with memmap= kernel parameter may not align
6987 * nicely with memmap sections
6989 * Explicitly initialize those struct pages so that:
6990 * - PG_Reserved is set
6991 * - zone and node links point to zone and node that span the page if the
6992 * hole is in the middle of a zone
6993 * - zone and node links point to adjacent zone/node if the hole falls on
6994 * the zone boundary; the pages in such holes will be prepended to the
6995 * zone/node above the hole except for the trailing pages in the last
6996 * section that will be appended to the zone/node below.
6998 static void __init init_unavailable_range(unsigned long spfn,
7005 for (pfn = spfn; pfn < epfn; pfn++) {
7006 if (!pfn_valid(pageblock_start_pfn(pfn))) {
7007 pfn = pageblock_end_pfn(pfn) - 1;
7010 __init_single_page(pfn_to_page(pfn), pfn, zone, node);
7011 __SetPageReserved(pfn_to_page(pfn));
7016 pr_info("On node %d, zone %s: %lld pages in unavailable ranges",
7017 node, zone_names[zone], pgcnt);
7020 static void __init memmap_init_zone_range(struct zone *zone,
7021 unsigned long start_pfn,
7022 unsigned long end_pfn,
7023 unsigned long *hole_pfn)
7025 unsigned long zone_start_pfn = zone->zone_start_pfn;
7026 unsigned long zone_end_pfn = zone_start_pfn + zone->spanned_pages;
7027 int nid = zone_to_nid(zone), zone_id = zone_idx(zone);
7029 start_pfn = clamp(start_pfn, zone_start_pfn, zone_end_pfn);
7030 end_pfn = clamp(end_pfn, zone_start_pfn, zone_end_pfn);
7032 if (start_pfn >= end_pfn)
7035 memmap_init_range(end_pfn - start_pfn, nid, zone_id, start_pfn,
7036 zone_end_pfn, MEMINIT_EARLY, NULL, MIGRATE_MOVABLE);
7038 if (*hole_pfn < start_pfn)
7039 init_unavailable_range(*hole_pfn, start_pfn, zone_id, nid);
7041 *hole_pfn = end_pfn;
7044 static void __init memmap_init(void)
7046 unsigned long start_pfn, end_pfn;
7047 unsigned long hole_pfn = 0;
7048 int i, j, zone_id = 0, nid;
7050 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
7051 struct pglist_data *node = NODE_DATA(nid);
7053 for (j = 0; j < MAX_NR_ZONES; j++) {
7054 struct zone *zone = node->node_zones + j;
7056 if (!populated_zone(zone))
7059 memmap_init_zone_range(zone, start_pfn, end_pfn,
7065 #ifdef CONFIG_SPARSEMEM
7067 * Initialize the memory map for hole in the range [memory_end,
7069 * Append the pages in this hole to the highest zone in the last
7071 * The call to init_unavailable_range() is outside the ifdef to
7072 * silence the compiler warining about zone_id set but not used;
7073 * for FLATMEM it is a nop anyway
7075 end_pfn = round_up(end_pfn, PAGES_PER_SECTION);
7076 if (hole_pfn < end_pfn)
7078 init_unavailable_range(hole_pfn, end_pfn, zone_id, nid);
7081 void __init *memmap_alloc(phys_addr_t size, phys_addr_t align,
7082 phys_addr_t min_addr, int nid, bool exact_nid)
7087 ptr = memblock_alloc_exact_nid_raw(size, align, min_addr,
7088 MEMBLOCK_ALLOC_ACCESSIBLE,
7091 ptr = memblock_alloc_try_nid_raw(size, align, min_addr,
7092 MEMBLOCK_ALLOC_ACCESSIBLE,
7095 if (ptr && size > 0)
7096 page_init_poison(ptr, size);
7101 static int zone_batchsize(struct zone *zone)
7107 * The number of pages to batch allocate is either ~0.1%
7108 * of the zone or 1MB, whichever is smaller. The batch
7109 * size is striking a balance between allocation latency
7110 * and zone lock contention.
7112 batch = min(zone_managed_pages(zone) >> 10, SZ_1M / PAGE_SIZE);
7113 batch /= 4; /* We effectively *= 4 below */
7118 * Clamp the batch to a 2^n - 1 value. Having a power
7119 * of 2 value was found to be more likely to have
7120 * suboptimal cache aliasing properties in some cases.
7122 * For example if 2 tasks are alternately allocating
7123 * batches of pages, one task can end up with a lot
7124 * of pages of one half of the possible page colors
7125 * and the other with pages of the other colors.
7127 batch = rounddown_pow_of_two(batch + batch/2) - 1;
7132 /* The deferral and batching of frees should be suppressed under NOMMU
7135 * The problem is that NOMMU needs to be able to allocate large chunks
7136 * of contiguous memory as there's no hardware page translation to
7137 * assemble apparent contiguous memory from discontiguous pages.
7139 * Queueing large contiguous runs of pages for batching, however,
7140 * causes the pages to actually be freed in smaller chunks. As there
7141 * can be a significant delay between the individual batches being
7142 * recycled, this leads to the once large chunks of space being
7143 * fragmented and becoming unavailable for high-order allocations.
7149 static int zone_highsize(struct zone *zone, int batch, int cpu_online)
7154 unsigned long total_pages;
7156 if (!percpu_pagelist_high_fraction) {
7158 * By default, the high value of the pcp is based on the zone
7159 * low watermark so that if they are full then background
7160 * reclaim will not be started prematurely.
7162 total_pages = low_wmark_pages(zone);
7165 * If percpu_pagelist_high_fraction is configured, the high
7166 * value is based on a fraction of the managed pages in the
7169 total_pages = zone_managed_pages(zone) / percpu_pagelist_high_fraction;
7173 * Split the high value across all online CPUs local to the zone. Note
7174 * that early in boot that CPUs may not be online yet and that during
7175 * CPU hotplug that the cpumask is not yet updated when a CPU is being
7176 * onlined. For memory nodes that have no CPUs, split pcp->high across
7177 * all online CPUs to mitigate the risk that reclaim is triggered
7178 * prematurely due to pages stored on pcp lists.
7180 nr_split_cpus = cpumask_weight(cpumask_of_node(zone_to_nid(zone))) + cpu_online;
7182 nr_split_cpus = num_online_cpus();
7183 high = total_pages / nr_split_cpus;
7186 * Ensure high is at least batch*4. The multiple is based on the
7187 * historical relationship between high and batch.
7189 high = max(high, batch << 2);
7198 * pcp->high and pcp->batch values are related and generally batch is lower
7199 * than high. They are also related to pcp->count such that count is lower
7200 * than high, and as soon as it reaches high, the pcplist is flushed.
7202 * However, guaranteeing these relations at all times would require e.g. write
7203 * barriers here but also careful usage of read barriers at the read side, and
7204 * thus be prone to error and bad for performance. Thus the update only prevents
7205 * store tearing. Any new users of pcp->batch and pcp->high should ensure they
7206 * can cope with those fields changing asynchronously, and fully trust only the
7207 * pcp->count field on the local CPU with interrupts disabled.
7209 * mutex_is_locked(&pcp_batch_high_lock) required when calling this function
7210 * outside of boot time (or some other assurance that no concurrent updaters
7213 static void pageset_update(struct per_cpu_pages *pcp, unsigned long high,
7214 unsigned long batch)
7216 WRITE_ONCE(pcp->batch, batch);
7217 WRITE_ONCE(pcp->high, high);
7220 static void per_cpu_pages_init(struct per_cpu_pages *pcp, struct per_cpu_zonestat *pzstats)
7224 memset(pcp, 0, sizeof(*pcp));
7225 memset(pzstats, 0, sizeof(*pzstats));
7227 spin_lock_init(&pcp->lock);
7228 for (pindex = 0; pindex < NR_PCP_LISTS; pindex++)
7229 INIT_LIST_HEAD(&pcp->lists[pindex]);
7232 * Set batch and high values safe for a boot pageset. A true percpu
7233 * pageset's initialization will update them subsequently. Here we don't
7234 * need to be as careful as pageset_update() as nobody can access the
7237 pcp->high = BOOT_PAGESET_HIGH;
7238 pcp->batch = BOOT_PAGESET_BATCH;
7239 pcp->free_factor = 0;
7242 static void __zone_set_pageset_high_and_batch(struct zone *zone, unsigned long high,
7243 unsigned long batch)
7245 struct per_cpu_pages *pcp;
7248 for_each_possible_cpu(cpu) {
7249 pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu);
7250 pageset_update(pcp, high, batch);
7255 * Calculate and set new high and batch values for all per-cpu pagesets of a
7256 * zone based on the zone's size.
7258 static void zone_set_pageset_high_and_batch(struct zone *zone, int cpu_online)
7260 int new_high, new_batch;
7262 new_batch = max(1, zone_batchsize(zone));
7263 new_high = zone_highsize(zone, new_batch, cpu_online);
7265 if (zone->pageset_high == new_high &&
7266 zone->pageset_batch == new_batch)
7269 zone->pageset_high = new_high;
7270 zone->pageset_batch = new_batch;
7272 __zone_set_pageset_high_and_batch(zone, new_high, new_batch);
7275 void __meminit setup_zone_pageset(struct zone *zone)
7279 /* Size may be 0 on !SMP && !NUMA */
7280 if (sizeof(struct per_cpu_zonestat) > 0)
7281 zone->per_cpu_zonestats = alloc_percpu(struct per_cpu_zonestat);
7283 zone->per_cpu_pageset = alloc_percpu(struct per_cpu_pages);
7284 for_each_possible_cpu(cpu) {
7285 struct per_cpu_pages *pcp;
7286 struct per_cpu_zonestat *pzstats;
7288 pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu);
7289 pzstats = per_cpu_ptr(zone->per_cpu_zonestats, cpu);
7290 per_cpu_pages_init(pcp, pzstats);
7293 zone_set_pageset_high_and_batch(zone, 0);
7297 * The zone indicated has a new number of managed_pages; batch sizes and percpu
7298 * page high values need to be recalculated.
7300 static void zone_pcp_update(struct zone *zone, int cpu_online)
7302 mutex_lock(&pcp_batch_high_lock);
7303 zone_set_pageset_high_and_batch(zone, cpu_online);
7304 mutex_unlock(&pcp_batch_high_lock);
7308 * Allocate per cpu pagesets and initialize them.
7309 * Before this call only boot pagesets were available.
7311 void __init setup_per_cpu_pageset(void)
7313 struct pglist_data *pgdat;
7315 int __maybe_unused cpu;
7317 for_each_populated_zone(zone)
7318 setup_zone_pageset(zone);
7322 * Unpopulated zones continue using the boot pagesets.
7323 * The numa stats for these pagesets need to be reset.
7324 * Otherwise, they will end up skewing the stats of
7325 * the nodes these zones are associated with.
7327 for_each_possible_cpu(cpu) {
7328 struct per_cpu_zonestat *pzstats = &per_cpu(boot_zonestats, cpu);
7329 memset(pzstats->vm_numa_event, 0,
7330 sizeof(pzstats->vm_numa_event));
7334 for_each_online_pgdat(pgdat)
7335 pgdat->per_cpu_nodestats =
7336 alloc_percpu(struct per_cpu_nodestat);
7339 static __meminit void zone_pcp_init(struct zone *zone)
7342 * per cpu subsystem is not up at this point. The following code
7343 * relies on the ability of the linker to provide the
7344 * offset of a (static) per cpu variable into the per cpu area.
7346 zone->per_cpu_pageset = &boot_pageset;
7347 zone->per_cpu_zonestats = &boot_zonestats;
7348 zone->pageset_high = BOOT_PAGESET_HIGH;
7349 zone->pageset_batch = BOOT_PAGESET_BATCH;
7351 if (populated_zone(zone))
7352 pr_debug(" %s zone: %lu pages, LIFO batch:%u\n", zone->name,
7353 zone->present_pages, zone_batchsize(zone));
7356 void __meminit init_currently_empty_zone(struct zone *zone,
7357 unsigned long zone_start_pfn,
7360 struct pglist_data *pgdat = zone->zone_pgdat;
7361 int zone_idx = zone_idx(zone) + 1;
7363 if (zone_idx > pgdat->nr_zones)
7364 pgdat->nr_zones = zone_idx;
7366 zone->zone_start_pfn = zone_start_pfn;
7368 mminit_dprintk(MMINIT_TRACE, "memmap_init",
7369 "Initialising map node %d zone %lu pfns %lu -> %lu\n",
7371 (unsigned long)zone_idx(zone),
7372 zone_start_pfn, (zone_start_pfn + size));
7374 zone_init_free_lists(zone);
7375 zone->initialized = 1;
7379 * get_pfn_range_for_nid - Return the start and end page frames for a node
7380 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
7381 * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
7382 * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
7384 * It returns the start and end page frame of a node based on information
7385 * provided by memblock_set_node(). If called for a node
7386 * with no available memory, a warning is printed and the start and end
7389 void __init get_pfn_range_for_nid(unsigned int nid,
7390 unsigned long *start_pfn, unsigned long *end_pfn)
7392 unsigned long this_start_pfn, this_end_pfn;
7398 for_each_mem_pfn_range(i, nid, &this_start_pfn, &this_end_pfn, NULL) {
7399 *start_pfn = min(*start_pfn, this_start_pfn);
7400 *end_pfn = max(*end_pfn, this_end_pfn);
7403 if (*start_pfn == -1UL)
7408 * This finds a zone that can be used for ZONE_MOVABLE pages. The
7409 * assumption is made that zones within a node are ordered in monotonic
7410 * increasing memory addresses so that the "highest" populated zone is used
7412 static void __init find_usable_zone_for_movable(void)
7415 for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
7416 if (zone_index == ZONE_MOVABLE)
7419 if (arch_zone_highest_possible_pfn[zone_index] >
7420 arch_zone_lowest_possible_pfn[zone_index])
7424 VM_BUG_ON(zone_index == -1);
7425 movable_zone = zone_index;
7429 * The zone ranges provided by the architecture do not include ZONE_MOVABLE
7430 * because it is sized independent of architecture. Unlike the other zones,
7431 * the starting point for ZONE_MOVABLE is not fixed. It may be different
7432 * in each node depending on the size of each node and how evenly kernelcore
7433 * is distributed. This helper function adjusts the zone ranges
7434 * provided by the architecture for a given node by using the end of the
7435 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
7436 * zones within a node are in order of monotonic increases memory addresses
7438 static void __init adjust_zone_range_for_zone_movable(int nid,
7439 unsigned long zone_type,
7440 unsigned long node_start_pfn,
7441 unsigned long node_end_pfn,
7442 unsigned long *zone_start_pfn,
7443 unsigned long *zone_end_pfn)
7445 /* Only adjust if ZONE_MOVABLE is on this node */
7446 if (zone_movable_pfn[nid]) {
7447 /* Size ZONE_MOVABLE */
7448 if (zone_type == ZONE_MOVABLE) {
7449 *zone_start_pfn = zone_movable_pfn[nid];
7450 *zone_end_pfn = min(node_end_pfn,
7451 arch_zone_highest_possible_pfn[movable_zone]);
7453 /* Adjust for ZONE_MOVABLE starting within this range */
7454 } else if (!mirrored_kernelcore &&
7455 *zone_start_pfn < zone_movable_pfn[nid] &&
7456 *zone_end_pfn > zone_movable_pfn[nid]) {
7457 *zone_end_pfn = zone_movable_pfn[nid];
7459 /* Check if this whole range is within ZONE_MOVABLE */
7460 } else if (*zone_start_pfn >= zone_movable_pfn[nid])
7461 *zone_start_pfn = *zone_end_pfn;
7466 * Return the number of pages a zone spans in a node, including holes
7467 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
7469 static unsigned long __init zone_spanned_pages_in_node(int nid,
7470 unsigned long zone_type,
7471 unsigned long node_start_pfn,
7472 unsigned long node_end_pfn,
7473 unsigned long *zone_start_pfn,
7474 unsigned long *zone_end_pfn)
7476 unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
7477 unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
7478 /* When hotadd a new node from cpu_up(), the node should be empty */
7479 if (!node_start_pfn && !node_end_pfn)
7482 /* Get the start and end of the zone */
7483 *zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
7484 *zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
7485 adjust_zone_range_for_zone_movable(nid, zone_type,
7486 node_start_pfn, node_end_pfn,
7487 zone_start_pfn, zone_end_pfn);
7489 /* Check that this node has pages within the zone's required range */
7490 if (*zone_end_pfn < node_start_pfn || *zone_start_pfn > node_end_pfn)
7493 /* Move the zone boundaries inside the node if necessary */
7494 *zone_end_pfn = min(*zone_end_pfn, node_end_pfn);
7495 *zone_start_pfn = max(*zone_start_pfn, node_start_pfn);
7497 /* Return the spanned pages */
7498 return *zone_end_pfn - *zone_start_pfn;
7502 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
7503 * then all holes in the requested range will be accounted for.
7505 unsigned long __init __absent_pages_in_range(int nid,
7506 unsigned long range_start_pfn,
7507 unsigned long range_end_pfn)
7509 unsigned long nr_absent = range_end_pfn - range_start_pfn;
7510 unsigned long start_pfn, end_pfn;
7513 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
7514 start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn);
7515 end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn);
7516 nr_absent -= end_pfn - start_pfn;
7522 * absent_pages_in_range - Return number of page frames in holes within a range
7523 * @start_pfn: The start PFN to start searching for holes
7524 * @end_pfn: The end PFN to stop searching for holes
7526 * Return: the number of pages frames in memory holes within a range.
7528 unsigned long __init absent_pages_in_range(unsigned long start_pfn,
7529 unsigned long end_pfn)
7531 return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
7534 /* Return the number of page frames in holes in a zone on a node */
7535 static unsigned long __init zone_absent_pages_in_node(int nid,
7536 unsigned long zone_type,
7537 unsigned long node_start_pfn,
7538 unsigned long node_end_pfn)
7540 unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
7541 unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
7542 unsigned long zone_start_pfn, zone_end_pfn;
7543 unsigned long nr_absent;
7545 /* When hotadd a new node from cpu_up(), the node should be empty */
7546 if (!node_start_pfn && !node_end_pfn)
7549 zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
7550 zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
7552 adjust_zone_range_for_zone_movable(nid, zone_type,
7553 node_start_pfn, node_end_pfn,
7554 &zone_start_pfn, &zone_end_pfn);
7555 nr_absent = __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
7558 * ZONE_MOVABLE handling.
7559 * Treat pages to be ZONE_MOVABLE in ZONE_NORMAL as absent pages
7562 if (mirrored_kernelcore && zone_movable_pfn[nid]) {
7563 unsigned long start_pfn, end_pfn;
7564 struct memblock_region *r;
7566 for_each_mem_region(r) {
7567 start_pfn = clamp(memblock_region_memory_base_pfn(r),
7568 zone_start_pfn, zone_end_pfn);
7569 end_pfn = clamp(memblock_region_memory_end_pfn(r),
7570 zone_start_pfn, zone_end_pfn);
7572 if (zone_type == ZONE_MOVABLE &&
7573 memblock_is_mirror(r))
7574 nr_absent += end_pfn - start_pfn;
7576 if (zone_type == ZONE_NORMAL &&
7577 !memblock_is_mirror(r))
7578 nr_absent += end_pfn - start_pfn;
7585 static void __init calculate_node_totalpages(struct pglist_data *pgdat,
7586 unsigned long node_start_pfn,
7587 unsigned long node_end_pfn)
7589 unsigned long realtotalpages = 0, totalpages = 0;
7592 for (i = 0; i < MAX_NR_ZONES; i++) {
7593 struct zone *zone = pgdat->node_zones + i;
7594 unsigned long zone_start_pfn, zone_end_pfn;
7595 unsigned long spanned, absent;
7596 unsigned long size, real_size;
7598 spanned = zone_spanned_pages_in_node(pgdat->node_id, i,
7603 absent = zone_absent_pages_in_node(pgdat->node_id, i,
7608 real_size = size - absent;
7611 zone->zone_start_pfn = zone_start_pfn;
7613 zone->zone_start_pfn = 0;
7614 zone->spanned_pages = size;
7615 zone->present_pages = real_size;
7616 #if defined(CONFIG_MEMORY_HOTPLUG)
7617 zone->present_early_pages = real_size;
7621 realtotalpages += real_size;
7624 pgdat->node_spanned_pages = totalpages;
7625 pgdat->node_present_pages = realtotalpages;
7626 pr_debug("On node %d totalpages: %lu\n", pgdat->node_id, realtotalpages);
7629 #ifndef CONFIG_SPARSEMEM
7631 * Calculate the size of the zone->blockflags rounded to an unsigned long
7632 * Start by making sure zonesize is a multiple of pageblock_order by rounding
7633 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
7634 * round what is now in bits to nearest long in bits, then return it in
7637 static unsigned long __init usemap_size(unsigned long zone_start_pfn, unsigned long zonesize)
7639 unsigned long usemapsize;
7641 zonesize += zone_start_pfn & (pageblock_nr_pages-1);
7642 usemapsize = roundup(zonesize, pageblock_nr_pages);
7643 usemapsize = usemapsize >> pageblock_order;
7644 usemapsize *= NR_PAGEBLOCK_BITS;
7645 usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));
7647 return usemapsize / 8;
7650 static void __ref setup_usemap(struct zone *zone)
7652 unsigned long usemapsize = usemap_size(zone->zone_start_pfn,
7653 zone->spanned_pages);
7654 zone->pageblock_flags = NULL;
7656 zone->pageblock_flags =
7657 memblock_alloc_node(usemapsize, SMP_CACHE_BYTES,
7659 if (!zone->pageblock_flags)
7660 panic("Failed to allocate %ld bytes for zone %s pageblock flags on node %d\n",
7661 usemapsize, zone->name, zone_to_nid(zone));
7665 static inline void setup_usemap(struct zone *zone) {}
7666 #endif /* CONFIG_SPARSEMEM */
7668 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
7670 /* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
7671 void __init set_pageblock_order(void)
7673 unsigned int order = MAX_ORDER - 1;
7675 /* Check that pageblock_nr_pages has not already been setup */
7676 if (pageblock_order)
7679 /* Don't let pageblocks exceed the maximum allocation granularity. */
7680 if (HPAGE_SHIFT > PAGE_SHIFT && HUGETLB_PAGE_ORDER < order)
7681 order = HUGETLB_PAGE_ORDER;
7684 * Assume the largest contiguous order of interest is a huge page.
7685 * This value may be variable depending on boot parameters on IA64 and
7688 pageblock_order = order;
7690 #else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
7693 * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
7694 * is unused as pageblock_order is set at compile-time. See
7695 * include/linux/pageblock-flags.h for the values of pageblock_order based on
7698 void __init set_pageblock_order(void)
7702 #endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
7704 static unsigned long __init calc_memmap_size(unsigned long spanned_pages,
7705 unsigned long present_pages)
7707 unsigned long pages = spanned_pages;
7710 * Provide a more accurate estimation if there are holes within
7711 * the zone and SPARSEMEM is in use. If there are holes within the
7712 * zone, each populated memory region may cost us one or two extra
7713 * memmap pages due to alignment because memmap pages for each
7714 * populated regions may not be naturally aligned on page boundary.
7715 * So the (present_pages >> 4) heuristic is a tradeoff for that.
7717 if (spanned_pages > present_pages + (present_pages >> 4) &&
7718 IS_ENABLED(CONFIG_SPARSEMEM))
7719 pages = present_pages;
7721 return PAGE_ALIGN(pages * sizeof(struct page)) >> PAGE_SHIFT;
7724 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
7725 static void pgdat_init_split_queue(struct pglist_data *pgdat)
7727 struct deferred_split *ds_queue = &pgdat->deferred_split_queue;
7729 spin_lock_init(&ds_queue->split_queue_lock);
7730 INIT_LIST_HEAD(&ds_queue->split_queue);
7731 ds_queue->split_queue_len = 0;
7734 static void pgdat_init_split_queue(struct pglist_data *pgdat) {}
7737 #ifdef CONFIG_COMPACTION
7738 static void pgdat_init_kcompactd(struct pglist_data *pgdat)
7740 init_waitqueue_head(&pgdat->kcompactd_wait);
7743 static void pgdat_init_kcompactd(struct pglist_data *pgdat) {}
7746 static void __meminit pgdat_init_internals(struct pglist_data *pgdat)
7750 pgdat_resize_init(pgdat);
7751 pgdat_kswapd_lock_init(pgdat);
7753 pgdat_init_split_queue(pgdat);
7754 pgdat_init_kcompactd(pgdat);
7756 init_waitqueue_head(&pgdat->kswapd_wait);
7757 init_waitqueue_head(&pgdat->pfmemalloc_wait);
7759 for (i = 0; i < NR_VMSCAN_THROTTLE; i++)
7760 init_waitqueue_head(&pgdat->reclaim_wait[i]);
7762 pgdat_page_ext_init(pgdat);
7763 lruvec_init(&pgdat->__lruvec);
7766 static void __meminit zone_init_internals(struct zone *zone, enum zone_type idx, int nid,
7767 unsigned long remaining_pages)
7769 atomic_long_set(&zone->managed_pages, remaining_pages);
7770 zone_set_nid(zone, nid);
7771 zone->name = zone_names[idx];
7772 zone->zone_pgdat = NODE_DATA(nid);
7773 spin_lock_init(&zone->lock);
7774 zone_seqlock_init(zone);
7775 zone_pcp_init(zone);
7779 * Set up the zone data structures
7780 * - init pgdat internals
7781 * - init all zones belonging to this node
7783 * NOTE: this function is only called during memory hotplug
7785 #ifdef CONFIG_MEMORY_HOTPLUG
7786 void __ref free_area_init_core_hotplug(struct pglist_data *pgdat)
7788 int nid = pgdat->node_id;
7792 pgdat_init_internals(pgdat);
7794 if (pgdat->per_cpu_nodestats == &boot_nodestats)
7795 pgdat->per_cpu_nodestats = alloc_percpu(struct per_cpu_nodestat);
7798 * Reset the nr_zones, order and highest_zoneidx before reuse.
7799 * Note that kswapd will init kswapd_highest_zoneidx properly
7800 * when it starts in the near future.
7802 pgdat->nr_zones = 0;
7803 pgdat->kswapd_order = 0;
7804 pgdat->kswapd_highest_zoneidx = 0;
7805 pgdat->node_start_pfn = 0;
7806 for_each_online_cpu(cpu) {
7807 struct per_cpu_nodestat *p;
7809 p = per_cpu_ptr(pgdat->per_cpu_nodestats, cpu);
7810 memset(p, 0, sizeof(*p));
7813 for (z = 0; z < MAX_NR_ZONES; z++)
7814 zone_init_internals(&pgdat->node_zones[z], z, nid, 0);
7819 * Set up the zone data structures:
7820 * - mark all pages reserved
7821 * - mark all memory queues empty
7822 * - clear the memory bitmaps
7824 * NOTE: pgdat should get zeroed by caller.
7825 * NOTE: this function is only called during early init.
7827 static void __init free_area_init_core(struct pglist_data *pgdat)
7830 int nid = pgdat->node_id;
7832 pgdat_init_internals(pgdat);
7833 pgdat->per_cpu_nodestats = &boot_nodestats;
7835 for (j = 0; j < MAX_NR_ZONES; j++) {
7836 struct zone *zone = pgdat->node_zones + j;
7837 unsigned long size, freesize, memmap_pages;
7839 size = zone->spanned_pages;
7840 freesize = zone->present_pages;
7843 * Adjust freesize so that it accounts for how much memory
7844 * is used by this zone for memmap. This affects the watermark
7845 * and per-cpu initialisations
7847 memmap_pages = calc_memmap_size(size, freesize);
7848 if (!is_highmem_idx(j)) {
7849 if (freesize >= memmap_pages) {
7850 freesize -= memmap_pages;
7852 pr_debug(" %s zone: %lu pages used for memmap\n",
7853 zone_names[j], memmap_pages);
7855 pr_warn(" %s zone: %lu memmap pages exceeds freesize %lu\n",
7856 zone_names[j], memmap_pages, freesize);
7859 /* Account for reserved pages */
7860 if (j == 0 && freesize > dma_reserve) {
7861 freesize -= dma_reserve;
7862 pr_debug(" %s zone: %lu pages reserved\n", zone_names[0], dma_reserve);
7865 if (!is_highmem_idx(j))
7866 nr_kernel_pages += freesize;
7867 /* Charge for highmem memmap if there are enough kernel pages */
7868 else if (nr_kernel_pages > memmap_pages * 2)
7869 nr_kernel_pages -= memmap_pages;
7870 nr_all_pages += freesize;
7873 * Set an approximate value for lowmem here, it will be adjusted
7874 * when the bootmem allocator frees pages into the buddy system.
7875 * And all highmem pages will be managed by the buddy system.
7877 zone_init_internals(zone, j, nid, freesize);
7882 set_pageblock_order();
7884 init_currently_empty_zone(zone, zone->zone_start_pfn, size);
7888 #ifdef CONFIG_FLATMEM
7889 static void __init alloc_node_mem_map(struct pglist_data *pgdat)
7891 unsigned long __maybe_unused start = 0;
7892 unsigned long __maybe_unused offset = 0;
7894 /* Skip empty nodes */
7895 if (!pgdat->node_spanned_pages)
7898 start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
7899 offset = pgdat->node_start_pfn - start;
7900 /* ia64 gets its own node_mem_map, before this, without bootmem */
7901 if (!pgdat->node_mem_map) {
7902 unsigned long size, end;
7906 * The zone's endpoints aren't required to be MAX_ORDER
7907 * aligned but the node_mem_map endpoints must be in order
7908 * for the buddy allocator to function correctly.
7910 end = pgdat_end_pfn(pgdat);
7911 end = ALIGN(end, MAX_ORDER_NR_PAGES);
7912 size = (end - start) * sizeof(struct page);
7913 map = memmap_alloc(size, SMP_CACHE_BYTES, MEMBLOCK_LOW_LIMIT,
7914 pgdat->node_id, false);
7916 panic("Failed to allocate %ld bytes for node %d memory map\n",
7917 size, pgdat->node_id);
7918 pgdat->node_mem_map = map + offset;
7920 pr_debug("%s: node %d, pgdat %08lx, node_mem_map %08lx\n",
7921 __func__, pgdat->node_id, (unsigned long)pgdat,
7922 (unsigned long)pgdat->node_mem_map);
7925 * With no DISCONTIG, the global mem_map is just set as node 0's
7927 if (pgdat == NODE_DATA(0)) {
7928 mem_map = NODE_DATA(0)->node_mem_map;
7929 if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
7935 static inline void alloc_node_mem_map(struct pglist_data *pgdat) { }
7936 #endif /* CONFIG_FLATMEM */
7938 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
7939 static inline void pgdat_set_deferred_range(pg_data_t *pgdat)
7941 pgdat->first_deferred_pfn = ULONG_MAX;
7944 static inline void pgdat_set_deferred_range(pg_data_t *pgdat) {}
7947 static void __init free_area_init_node(int nid)
7949 pg_data_t *pgdat = NODE_DATA(nid);
7950 unsigned long start_pfn = 0;
7951 unsigned long end_pfn = 0;
7953 /* pg_data_t should be reset to zero when it's allocated */
7954 WARN_ON(pgdat->nr_zones || pgdat->kswapd_highest_zoneidx);
7956 get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
7958 pgdat->node_id = nid;
7959 pgdat->node_start_pfn = start_pfn;
7960 pgdat->per_cpu_nodestats = NULL;
7962 if (start_pfn != end_pfn) {
7963 pr_info("Initmem setup node %d [mem %#018Lx-%#018Lx]\n", nid,
7964 (u64)start_pfn << PAGE_SHIFT,
7965 end_pfn ? ((u64)end_pfn << PAGE_SHIFT) - 1 : 0);
7967 pr_info("Initmem setup node %d as memoryless\n", nid);
7970 calculate_node_totalpages(pgdat, start_pfn, end_pfn);
7972 alloc_node_mem_map(pgdat);
7973 pgdat_set_deferred_range(pgdat);
7975 free_area_init_core(pgdat);
7976 lru_gen_init_pgdat(pgdat);
7979 static void __init free_area_init_memoryless_node(int nid)
7981 free_area_init_node(nid);
7984 #if MAX_NUMNODES > 1
7986 * Figure out the number of possible node ids.
7988 void __init setup_nr_node_ids(void)
7990 unsigned int highest;
7992 highest = find_last_bit(node_possible_map.bits, MAX_NUMNODES);
7993 nr_node_ids = highest + 1;
7998 * node_map_pfn_alignment - determine the maximum internode alignment
8000 * This function should be called after node map is populated and sorted.
8001 * It calculates the maximum power of two alignment which can distinguish
8004 * For example, if all nodes are 1GiB and aligned to 1GiB, the return value
8005 * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)). If the
8006 * nodes are shifted by 256MiB, 256MiB. Note that if only the last node is
8007 * shifted, 1GiB is enough and this function will indicate so.
8009 * This is used to test whether pfn -> nid mapping of the chosen memory
8010 * model has fine enough granularity to avoid incorrect mapping for the
8011 * populated node map.
8013 * Return: the determined alignment in pfn's. 0 if there is no alignment
8014 * requirement (single node).
8016 unsigned long __init node_map_pfn_alignment(void)
8018 unsigned long accl_mask = 0, last_end = 0;
8019 unsigned long start, end, mask;
8020 int last_nid = NUMA_NO_NODE;
8023 for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid) {
8024 if (!start || last_nid < 0 || last_nid == nid) {
8031 * Start with a mask granular enough to pin-point to the
8032 * start pfn and tick off bits one-by-one until it becomes
8033 * too coarse to separate the current node from the last.
8035 mask = ~((1 << __ffs(start)) - 1);
8036 while (mask && last_end <= (start & (mask << 1)))
8039 /* accumulate all internode masks */
8043 /* convert mask to number of pages */
8044 return ~accl_mask + 1;
8048 * early_calculate_totalpages()
8049 * Sum pages in active regions for movable zone.
8050 * Populate N_MEMORY for calculating usable_nodes.
8052 static unsigned long __init early_calculate_totalpages(void)
8054 unsigned long totalpages = 0;
8055 unsigned long start_pfn, end_pfn;
8058 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
8059 unsigned long pages = end_pfn - start_pfn;
8061 totalpages += pages;
8063 node_set_state(nid, N_MEMORY);
8069 * Find the PFN the Movable zone begins in each node. Kernel memory
8070 * is spread evenly between nodes as long as the nodes have enough
8071 * memory. When they don't, some nodes will have more kernelcore than
8074 static void __init find_zone_movable_pfns_for_nodes(void)
8077 unsigned long usable_startpfn;
8078 unsigned long kernelcore_node, kernelcore_remaining;
8079 /* save the state before borrow the nodemask */
8080 nodemask_t saved_node_state = node_states[N_MEMORY];
8081 unsigned long totalpages = early_calculate_totalpages();
8082 int usable_nodes = nodes_weight(node_states[N_MEMORY]);
8083 struct memblock_region *r;
8085 /* Need to find movable_zone earlier when movable_node is specified. */
8086 find_usable_zone_for_movable();
8089 * If movable_node is specified, ignore kernelcore and movablecore
8092 if (movable_node_is_enabled()) {
8093 for_each_mem_region(r) {
8094 if (!memblock_is_hotpluggable(r))
8097 nid = memblock_get_region_node(r);
8099 usable_startpfn = PFN_DOWN(r->base);
8100 zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
8101 min(usable_startpfn, zone_movable_pfn[nid]) :
8109 * If kernelcore=mirror is specified, ignore movablecore option
8111 if (mirrored_kernelcore) {
8112 bool mem_below_4gb_not_mirrored = false;
8114 for_each_mem_region(r) {
8115 if (memblock_is_mirror(r))
8118 nid = memblock_get_region_node(r);
8120 usable_startpfn = memblock_region_memory_base_pfn(r);
8122 if (usable_startpfn < PHYS_PFN(SZ_4G)) {
8123 mem_below_4gb_not_mirrored = true;
8127 zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
8128 min(usable_startpfn, zone_movable_pfn[nid]) :
8132 if (mem_below_4gb_not_mirrored)
8133 pr_warn("This configuration results in unmirrored kernel memory.\n");
8139 * If kernelcore=nn% or movablecore=nn% was specified, calculate the
8140 * amount of necessary memory.
8142 if (required_kernelcore_percent)
8143 required_kernelcore = (totalpages * 100 * required_kernelcore_percent) /
8145 if (required_movablecore_percent)
8146 required_movablecore = (totalpages * 100 * required_movablecore_percent) /
8150 * If movablecore= was specified, calculate what size of
8151 * kernelcore that corresponds so that memory usable for
8152 * any allocation type is evenly spread. If both kernelcore
8153 * and movablecore are specified, then the value of kernelcore
8154 * will be used for required_kernelcore if it's greater than
8155 * what movablecore would have allowed.
8157 if (required_movablecore) {
8158 unsigned long corepages;
8161 * Round-up so that ZONE_MOVABLE is at least as large as what
8162 * was requested by the user
8164 required_movablecore =
8165 roundup(required_movablecore, MAX_ORDER_NR_PAGES);
8166 required_movablecore = min(totalpages, required_movablecore);
8167 corepages = totalpages - required_movablecore;
8169 required_kernelcore = max(required_kernelcore, corepages);
8173 * If kernelcore was not specified or kernelcore size is larger
8174 * than totalpages, there is no ZONE_MOVABLE.
8176 if (!required_kernelcore || required_kernelcore >= totalpages)
8179 /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
8180 usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
8183 /* Spread kernelcore memory as evenly as possible throughout nodes */
8184 kernelcore_node = required_kernelcore / usable_nodes;
8185 for_each_node_state(nid, N_MEMORY) {
8186 unsigned long start_pfn, end_pfn;
8189 * Recalculate kernelcore_node if the division per node
8190 * now exceeds what is necessary to satisfy the requested
8191 * amount of memory for the kernel
8193 if (required_kernelcore < kernelcore_node)
8194 kernelcore_node = required_kernelcore / usable_nodes;
8197 * As the map is walked, we track how much memory is usable
8198 * by the kernel using kernelcore_remaining. When it is
8199 * 0, the rest of the node is usable by ZONE_MOVABLE
8201 kernelcore_remaining = kernelcore_node;
8203 /* Go through each range of PFNs within this node */
8204 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
8205 unsigned long size_pages;
8207 start_pfn = max(start_pfn, zone_movable_pfn[nid]);
8208 if (start_pfn >= end_pfn)
8211 /* Account for what is only usable for kernelcore */
8212 if (start_pfn < usable_startpfn) {
8213 unsigned long kernel_pages;
8214 kernel_pages = min(end_pfn, usable_startpfn)
8217 kernelcore_remaining -= min(kernel_pages,
8218 kernelcore_remaining);
8219 required_kernelcore -= min(kernel_pages,
8220 required_kernelcore);
8222 /* Continue if range is now fully accounted */
8223 if (end_pfn <= usable_startpfn) {
8226 * Push zone_movable_pfn to the end so
8227 * that if we have to rebalance
8228 * kernelcore across nodes, we will
8229 * not double account here
8231 zone_movable_pfn[nid] = end_pfn;
8234 start_pfn = usable_startpfn;
8238 * The usable PFN range for ZONE_MOVABLE is from
8239 * start_pfn->end_pfn. Calculate size_pages as the
8240 * number of pages used as kernelcore
8242 size_pages = end_pfn - start_pfn;
8243 if (size_pages > kernelcore_remaining)
8244 size_pages = kernelcore_remaining;
8245 zone_movable_pfn[nid] = start_pfn + size_pages;
8248 * Some kernelcore has been met, update counts and
8249 * break if the kernelcore for this node has been
8252 required_kernelcore -= min(required_kernelcore,
8254 kernelcore_remaining -= size_pages;
8255 if (!kernelcore_remaining)
8261 * If there is still required_kernelcore, we do another pass with one
8262 * less node in the count. This will push zone_movable_pfn[nid] further
8263 * along on the nodes that still have memory until kernelcore is
8267 if (usable_nodes && required_kernelcore > usable_nodes)
8271 /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
8272 for (nid = 0; nid < MAX_NUMNODES; nid++) {
8273 unsigned long start_pfn, end_pfn;
8275 zone_movable_pfn[nid] =
8276 roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
8278 get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
8279 if (zone_movable_pfn[nid] >= end_pfn)
8280 zone_movable_pfn[nid] = 0;
8284 /* restore the node_state */
8285 node_states[N_MEMORY] = saved_node_state;
8288 /* Any regular or high memory on that node ? */
8289 static void check_for_memory(pg_data_t *pgdat, int nid)
8291 enum zone_type zone_type;
8293 for (zone_type = 0; zone_type <= ZONE_MOVABLE - 1; zone_type++) {
8294 struct zone *zone = &pgdat->node_zones[zone_type];
8295 if (populated_zone(zone)) {
8296 if (IS_ENABLED(CONFIG_HIGHMEM))
8297 node_set_state(nid, N_HIGH_MEMORY);
8298 if (zone_type <= ZONE_NORMAL)
8299 node_set_state(nid, N_NORMAL_MEMORY);
8306 * Some architectures, e.g. ARC may have ZONE_HIGHMEM below ZONE_NORMAL. For
8307 * such cases we allow max_zone_pfn sorted in the descending order
8309 bool __weak arch_has_descending_max_zone_pfns(void)
8315 * free_area_init - Initialise all pg_data_t and zone data
8316 * @max_zone_pfn: an array of max PFNs for each zone
8318 * This will call free_area_init_node() for each active node in the system.
8319 * Using the page ranges provided by memblock_set_node(), the size of each
8320 * zone in each node and their holes is calculated. If the maximum PFN
8321 * between two adjacent zones match, it is assumed that the zone is empty.
8322 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
8323 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
8324 * starts where the previous one ended. For example, ZONE_DMA32 starts
8325 * at arch_max_dma_pfn.
8327 void __init free_area_init(unsigned long *max_zone_pfn)
8329 unsigned long start_pfn, end_pfn;
8333 /* Record where the zone boundaries are */
8334 memset(arch_zone_lowest_possible_pfn, 0,
8335 sizeof(arch_zone_lowest_possible_pfn));
8336 memset(arch_zone_highest_possible_pfn, 0,
8337 sizeof(arch_zone_highest_possible_pfn));
8339 start_pfn = PHYS_PFN(memblock_start_of_DRAM());
8340 descending = arch_has_descending_max_zone_pfns();
8342 for (i = 0; i < MAX_NR_ZONES; i++) {
8344 zone = MAX_NR_ZONES - i - 1;
8348 if (zone == ZONE_MOVABLE)
8351 end_pfn = max(max_zone_pfn[zone], start_pfn);
8352 arch_zone_lowest_possible_pfn[zone] = start_pfn;
8353 arch_zone_highest_possible_pfn[zone] = end_pfn;
8355 start_pfn = end_pfn;
8358 /* Find the PFNs that ZONE_MOVABLE begins at in each node */
8359 memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
8360 find_zone_movable_pfns_for_nodes();
8362 /* Print out the zone ranges */
8363 pr_info("Zone ranges:\n");
8364 for (i = 0; i < MAX_NR_ZONES; i++) {
8365 if (i == ZONE_MOVABLE)
8367 pr_info(" %-8s ", zone_names[i]);
8368 if (arch_zone_lowest_possible_pfn[i] ==
8369 arch_zone_highest_possible_pfn[i])
8372 pr_cont("[mem %#018Lx-%#018Lx]\n",
8373 (u64)arch_zone_lowest_possible_pfn[i]
8375 ((u64)arch_zone_highest_possible_pfn[i]
8376 << PAGE_SHIFT) - 1);
8379 /* Print out the PFNs ZONE_MOVABLE begins at in each node */
8380 pr_info("Movable zone start for each node\n");
8381 for (i = 0; i < MAX_NUMNODES; i++) {
8382 if (zone_movable_pfn[i])
8383 pr_info(" Node %d: %#018Lx\n", i,
8384 (u64)zone_movable_pfn[i] << PAGE_SHIFT);
8388 * Print out the early node map, and initialize the
8389 * subsection-map relative to active online memory ranges to
8390 * enable future "sub-section" extensions of the memory map.
8392 pr_info("Early memory node ranges\n");
8393 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
8394 pr_info(" node %3d: [mem %#018Lx-%#018Lx]\n", nid,
8395 (u64)start_pfn << PAGE_SHIFT,
8396 ((u64)end_pfn << PAGE_SHIFT) - 1);
8397 subsection_map_init(start_pfn, end_pfn - start_pfn);
8400 /* Initialise every node */
8401 mminit_verify_pageflags_layout();
8402 setup_nr_node_ids();
8403 for_each_node(nid) {
8406 if (!node_online(nid)) {
8407 pr_info("Initializing node %d as memoryless\n", nid);
8409 /* Allocator not initialized yet */
8410 pgdat = arch_alloc_nodedata(nid);
8412 panic("Cannot allocate %zuB for node %d.\n",
8413 sizeof(*pgdat), nid);
8414 arch_refresh_nodedata(nid, pgdat);
8415 free_area_init_memoryless_node(nid);
8418 * We do not want to confuse userspace by sysfs
8419 * files/directories for node without any memory
8420 * attached to it, so this node is not marked as
8421 * N_MEMORY and not marked online so that no sysfs
8422 * hierarchy will be created via register_one_node for
8423 * it. The pgdat will get fully initialized by
8424 * hotadd_init_pgdat() when memory is hotplugged into
8430 pgdat = NODE_DATA(nid);
8431 free_area_init_node(nid);
8433 /* Any memory on that node */
8434 if (pgdat->node_present_pages)
8435 node_set_state(nid, N_MEMORY);
8436 check_for_memory(pgdat, nid);
8442 static int __init cmdline_parse_core(char *p, unsigned long *core,
8443 unsigned long *percent)
8445 unsigned long long coremem;
8451 /* Value may be a percentage of total memory, otherwise bytes */
8452 coremem = simple_strtoull(p, &endptr, 0);
8453 if (*endptr == '%') {
8454 /* Paranoid check for percent values greater than 100 */
8455 WARN_ON(coremem > 100);
8459 coremem = memparse(p, &p);
8460 /* Paranoid check that UL is enough for the coremem value */
8461 WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
8463 *core = coremem >> PAGE_SHIFT;
8470 * kernelcore=size sets the amount of memory for use for allocations that
8471 * cannot be reclaimed or migrated.
8473 static int __init cmdline_parse_kernelcore(char *p)
8475 /* parse kernelcore=mirror */
8476 if (parse_option_str(p, "mirror")) {
8477 mirrored_kernelcore = true;
8481 return cmdline_parse_core(p, &required_kernelcore,
8482 &required_kernelcore_percent);
8486 * movablecore=size sets the amount of memory for use for allocations that
8487 * can be reclaimed or migrated.
8489 static int __init cmdline_parse_movablecore(char *p)
8491 return cmdline_parse_core(p, &required_movablecore,
8492 &required_movablecore_percent);
8495 early_param("kernelcore", cmdline_parse_kernelcore);
8496 early_param("movablecore", cmdline_parse_movablecore);
8498 void adjust_managed_page_count(struct page *page, long count)
8500 atomic_long_add(count, &page_zone(page)->managed_pages);
8501 totalram_pages_add(count);
8502 #ifdef CONFIG_HIGHMEM
8503 if (PageHighMem(page))
8504 totalhigh_pages_add(count);
8507 EXPORT_SYMBOL(adjust_managed_page_count);
8509 unsigned long free_reserved_area(void *start, void *end, int poison, const char *s)
8512 unsigned long pages = 0;
8514 start = (void *)PAGE_ALIGN((unsigned long)start);
8515 end = (void *)((unsigned long)end & PAGE_MASK);
8516 for (pos = start; pos < end; pos += PAGE_SIZE, pages++) {
8517 struct page *page = virt_to_page(pos);
8518 void *direct_map_addr;
8521 * 'direct_map_addr' might be different from 'pos'
8522 * because some architectures' virt_to_page()
8523 * work with aliases. Getting the direct map
8524 * address ensures that we get a _writeable_
8525 * alias for the memset().
8527 direct_map_addr = page_address(page);
8529 * Perform a kasan-unchecked memset() since this memory
8530 * has not been initialized.
8532 direct_map_addr = kasan_reset_tag(direct_map_addr);
8533 if ((unsigned int)poison <= 0xFF)
8534 memset(direct_map_addr, poison, PAGE_SIZE);
8536 free_reserved_page(page);
8540 pr_info("Freeing %s memory: %ldK\n", s, K(pages));
8545 void __init mem_init_print_info(void)
8547 unsigned long physpages, codesize, datasize, rosize, bss_size;
8548 unsigned long init_code_size, init_data_size;
8550 physpages = get_num_physpages();
8551 codesize = _etext - _stext;
8552 datasize = _edata - _sdata;
8553 rosize = __end_rodata - __start_rodata;
8554 bss_size = __bss_stop - __bss_start;
8555 init_data_size = __init_end - __init_begin;
8556 init_code_size = _einittext - _sinittext;
8559 * Detect special cases and adjust section sizes accordingly:
8560 * 1) .init.* may be embedded into .data sections
8561 * 2) .init.text.* may be out of [__init_begin, __init_end],
8562 * please refer to arch/tile/kernel/vmlinux.lds.S.
8563 * 3) .rodata.* may be embedded into .text or .data sections.
8565 #define adj_init_size(start, end, size, pos, adj) \
8567 if (&start[0] <= &pos[0] && &pos[0] < &end[0] && size > adj) \
8571 adj_init_size(__init_begin, __init_end, init_data_size,
8572 _sinittext, init_code_size);
8573 adj_init_size(_stext, _etext, codesize, _sinittext, init_code_size);
8574 adj_init_size(_sdata, _edata, datasize, __init_begin, init_data_size);
8575 adj_init_size(_stext, _etext, codesize, __start_rodata, rosize);
8576 adj_init_size(_sdata, _edata, datasize, __start_rodata, rosize);
8578 #undef adj_init_size
8580 pr_info("Memory: %luK/%luK available (%luK kernel code, %luK rwdata, %luK rodata, %luK init, %luK bss, %luK reserved, %luK cma-reserved"
8581 #ifdef CONFIG_HIGHMEM
8585 K(nr_free_pages()), K(physpages),
8586 codesize / SZ_1K, datasize / SZ_1K, rosize / SZ_1K,
8587 (init_data_size + init_code_size) / SZ_1K, bss_size / SZ_1K,
8588 K(physpages - totalram_pages() - totalcma_pages),
8590 #ifdef CONFIG_HIGHMEM
8591 , K(totalhigh_pages())
8597 * set_dma_reserve - set the specified number of pages reserved in the first zone
8598 * @new_dma_reserve: The number of pages to mark reserved
8600 * The per-cpu batchsize and zone watermarks are determined by managed_pages.
8601 * In the DMA zone, a significant percentage may be consumed by kernel image
8602 * and other unfreeable allocations which can skew the watermarks badly. This
8603 * function may optionally be used to account for unfreeable pages in the
8604 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
8605 * smaller per-cpu batchsize.
8607 void __init set_dma_reserve(unsigned long new_dma_reserve)
8609 dma_reserve = new_dma_reserve;
8612 static int page_alloc_cpu_dead(unsigned int cpu)
8616 lru_add_drain_cpu(cpu);
8617 mlock_drain_remote(cpu);
8621 * Spill the event counters of the dead processor
8622 * into the current processors event counters.
8623 * This artificially elevates the count of the current
8626 vm_events_fold_cpu(cpu);
8629 * Zero the differential counters of the dead processor
8630 * so that the vm statistics are consistent.
8632 * This is only okay since the processor is dead and cannot
8633 * race with what we are doing.
8635 cpu_vm_stats_fold(cpu);
8637 for_each_populated_zone(zone)
8638 zone_pcp_update(zone, 0);
8643 static int page_alloc_cpu_online(unsigned int cpu)
8647 for_each_populated_zone(zone)
8648 zone_pcp_update(zone, 1);
8653 int hashdist = HASHDIST_DEFAULT;
8655 static int __init set_hashdist(char *str)
8659 hashdist = simple_strtoul(str, &str, 0);
8662 __setup("hashdist=", set_hashdist);
8665 void __init page_alloc_init(void)
8670 if (num_node_state(N_MEMORY) == 1)
8674 ret = cpuhp_setup_state_nocalls(CPUHP_PAGE_ALLOC,
8675 "mm/page_alloc:pcp",
8676 page_alloc_cpu_online,
8677 page_alloc_cpu_dead);
8682 * calculate_totalreserve_pages - called when sysctl_lowmem_reserve_ratio
8683 * or min_free_kbytes changes.
8685 static void calculate_totalreserve_pages(void)
8687 struct pglist_data *pgdat;
8688 unsigned long reserve_pages = 0;
8689 enum zone_type i, j;
8691 for_each_online_pgdat(pgdat) {
8693 pgdat->totalreserve_pages = 0;
8695 for (i = 0; i < MAX_NR_ZONES; i++) {
8696 struct zone *zone = pgdat->node_zones + i;
8698 unsigned long managed_pages = zone_managed_pages(zone);
8700 /* Find valid and maximum lowmem_reserve in the zone */
8701 for (j = i; j < MAX_NR_ZONES; j++) {
8702 if (zone->lowmem_reserve[j] > max)
8703 max = zone->lowmem_reserve[j];
8706 /* we treat the high watermark as reserved pages. */
8707 max += high_wmark_pages(zone);
8709 if (max > managed_pages)
8710 max = managed_pages;
8712 pgdat->totalreserve_pages += max;
8714 reserve_pages += max;
8717 totalreserve_pages = reserve_pages;
8721 * setup_per_zone_lowmem_reserve - called whenever
8722 * sysctl_lowmem_reserve_ratio changes. Ensures that each zone
8723 * has a correct pages reserved value, so an adequate number of
8724 * pages are left in the zone after a successful __alloc_pages().
8726 static void setup_per_zone_lowmem_reserve(void)
8728 struct pglist_data *pgdat;
8729 enum zone_type i, j;
8731 for_each_online_pgdat(pgdat) {
8732 for (i = 0; i < MAX_NR_ZONES - 1; i++) {
8733 struct zone *zone = &pgdat->node_zones[i];
8734 int ratio = sysctl_lowmem_reserve_ratio[i];
8735 bool clear = !ratio || !zone_managed_pages(zone);
8736 unsigned long managed_pages = 0;
8738 for (j = i + 1; j < MAX_NR_ZONES; j++) {
8739 struct zone *upper_zone = &pgdat->node_zones[j];
8741 managed_pages += zone_managed_pages(upper_zone);
8744 zone->lowmem_reserve[j] = 0;
8746 zone->lowmem_reserve[j] = managed_pages / ratio;
8751 /* update totalreserve_pages */
8752 calculate_totalreserve_pages();
8755 static void __setup_per_zone_wmarks(void)
8757 unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
8758 unsigned long lowmem_pages = 0;
8760 unsigned long flags;
8762 /* Calculate total number of !ZONE_HIGHMEM pages */
8763 for_each_zone(zone) {
8764 if (!is_highmem(zone))
8765 lowmem_pages += zone_managed_pages(zone);
8768 for_each_zone(zone) {
8771 spin_lock_irqsave(&zone->lock, flags);
8772 tmp = (u64)pages_min * zone_managed_pages(zone);
8773 do_div(tmp, lowmem_pages);
8774 if (is_highmem(zone)) {
8776 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
8777 * need highmem pages, so cap pages_min to a small
8780 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
8781 * deltas control async page reclaim, and so should
8782 * not be capped for highmem.
8784 unsigned long min_pages;
8786 min_pages = zone_managed_pages(zone) / 1024;
8787 min_pages = clamp(min_pages, SWAP_CLUSTER_MAX, 128UL);
8788 zone->_watermark[WMARK_MIN] = min_pages;
8791 * If it's a lowmem zone, reserve a number of pages
8792 * proportionate to the zone's size.
8794 zone->_watermark[WMARK_MIN] = tmp;
8798 * Set the kswapd watermarks distance according to the
8799 * scale factor in proportion to available memory, but
8800 * ensure a minimum size on small systems.
8802 tmp = max_t(u64, tmp >> 2,
8803 mult_frac(zone_managed_pages(zone),
8804 watermark_scale_factor, 10000));
8806 zone->watermark_boost = 0;
8807 zone->_watermark[WMARK_LOW] = min_wmark_pages(zone) + tmp;
8808 zone->_watermark[WMARK_HIGH] = low_wmark_pages(zone) + tmp;
8809 zone->_watermark[WMARK_PROMO] = high_wmark_pages(zone) + tmp;
8811 spin_unlock_irqrestore(&zone->lock, flags);
8814 /* update totalreserve_pages */
8815 calculate_totalreserve_pages();
8819 * setup_per_zone_wmarks - called when min_free_kbytes changes
8820 * or when memory is hot-{added|removed}
8822 * Ensures that the watermark[min,low,high] values for each zone are set
8823 * correctly with respect to min_free_kbytes.
8825 void setup_per_zone_wmarks(void)
8828 static DEFINE_SPINLOCK(lock);
8831 __setup_per_zone_wmarks();
8835 * The watermark size have changed so update the pcpu batch
8836 * and high limits or the limits may be inappropriate.
8839 zone_pcp_update(zone, 0);
8843 * Initialise min_free_kbytes.
8845 * For small machines we want it small (128k min). For large machines
8846 * we want it large (256MB max). But it is not linear, because network
8847 * bandwidth does not increase linearly with machine size. We use
8849 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
8850 * min_free_kbytes = sqrt(lowmem_kbytes * 16)
8866 void calculate_min_free_kbytes(void)
8868 unsigned long lowmem_kbytes;
8869 int new_min_free_kbytes;
8871 lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
8872 new_min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
8874 if (new_min_free_kbytes > user_min_free_kbytes)
8875 min_free_kbytes = clamp(new_min_free_kbytes, 128, 262144);
8877 pr_warn("min_free_kbytes is not updated to %d because user defined value %d is preferred\n",
8878 new_min_free_kbytes, user_min_free_kbytes);
8882 int __meminit init_per_zone_wmark_min(void)
8884 calculate_min_free_kbytes();
8885 setup_per_zone_wmarks();
8886 refresh_zone_stat_thresholds();
8887 setup_per_zone_lowmem_reserve();
8890 setup_min_unmapped_ratio();
8891 setup_min_slab_ratio();
8894 khugepaged_min_free_kbytes_update();
8898 postcore_initcall(init_per_zone_wmark_min)
8901 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
8902 * that we can call two helper functions whenever min_free_kbytes
8905 int min_free_kbytes_sysctl_handler(struct ctl_table *table, int write,
8906 void *buffer, size_t *length, loff_t *ppos)
8910 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
8915 user_min_free_kbytes = min_free_kbytes;
8916 setup_per_zone_wmarks();
8921 int watermark_scale_factor_sysctl_handler(struct ctl_table *table, int write,
8922 void *buffer, size_t *length, loff_t *ppos)
8926 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
8931 setup_per_zone_wmarks();
8937 static void setup_min_unmapped_ratio(void)
8942 for_each_online_pgdat(pgdat)
8943 pgdat->min_unmapped_pages = 0;
8946 zone->zone_pgdat->min_unmapped_pages += (zone_managed_pages(zone) *
8947 sysctl_min_unmapped_ratio) / 100;
8951 int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *table, int write,
8952 void *buffer, size_t *length, loff_t *ppos)
8956 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
8960 setup_min_unmapped_ratio();
8965 static void setup_min_slab_ratio(void)
8970 for_each_online_pgdat(pgdat)
8971 pgdat->min_slab_pages = 0;
8974 zone->zone_pgdat->min_slab_pages += (zone_managed_pages(zone) *
8975 sysctl_min_slab_ratio) / 100;
8978 int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *table, int write,
8979 void *buffer, size_t *length, loff_t *ppos)
8983 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
8987 setup_min_slab_ratio();
8994 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
8995 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
8996 * whenever sysctl_lowmem_reserve_ratio changes.
8998 * The reserve ratio obviously has absolutely no relation with the
8999 * minimum watermarks. The lowmem reserve ratio can only make sense
9000 * if in function of the boot time zone sizes.
9002 int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *table, int write,
9003 void *buffer, size_t *length, loff_t *ppos)
9007 proc_dointvec_minmax(table, write, buffer, length, ppos);
9009 for (i = 0; i < MAX_NR_ZONES; i++) {
9010 if (sysctl_lowmem_reserve_ratio[i] < 1)
9011 sysctl_lowmem_reserve_ratio[i] = 0;
9014 setup_per_zone_lowmem_reserve();
9019 * percpu_pagelist_high_fraction - changes the pcp->high for each zone on each
9020 * cpu. It is the fraction of total pages in each zone that a hot per cpu
9021 * pagelist can have before it gets flushed back to buddy allocator.
9023 int percpu_pagelist_high_fraction_sysctl_handler(struct ctl_table *table,
9024 int write, void *buffer, size_t *length, loff_t *ppos)
9027 int old_percpu_pagelist_high_fraction;
9030 mutex_lock(&pcp_batch_high_lock);
9031 old_percpu_pagelist_high_fraction = percpu_pagelist_high_fraction;
9033 ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
9034 if (!write || ret < 0)
9037 /* Sanity checking to avoid pcp imbalance */
9038 if (percpu_pagelist_high_fraction &&
9039 percpu_pagelist_high_fraction < MIN_PERCPU_PAGELIST_HIGH_FRACTION) {
9040 percpu_pagelist_high_fraction = old_percpu_pagelist_high_fraction;
9046 if (percpu_pagelist_high_fraction == old_percpu_pagelist_high_fraction)
9049 for_each_populated_zone(zone)
9050 zone_set_pageset_high_and_batch(zone, 0);
9052 mutex_unlock(&pcp_batch_high_lock);
9056 #ifndef __HAVE_ARCH_RESERVED_KERNEL_PAGES
9058 * Returns the number of pages that arch has reserved but
9059 * is not known to alloc_large_system_hash().
9061 static unsigned long __init arch_reserved_kernel_pages(void)
9068 * Adaptive scale is meant to reduce sizes of hash tables on large memory
9069 * machines. As memory size is increased the scale is also increased but at
9070 * slower pace. Starting from ADAPT_SCALE_BASE (64G), every time memory
9071 * quadruples the scale is increased by one, which means the size of hash table
9072 * only doubles, instead of quadrupling as well.
9073 * Because 32-bit systems cannot have large physical memory, where this scaling
9074 * makes sense, it is disabled on such platforms.
9076 #if __BITS_PER_LONG > 32
9077 #define ADAPT_SCALE_BASE (64ul << 30)
9078 #define ADAPT_SCALE_SHIFT 2
9079 #define ADAPT_SCALE_NPAGES (ADAPT_SCALE_BASE >> PAGE_SHIFT)
9083 * allocate a large system hash table from bootmem
9084 * - it is assumed that the hash table must contain an exact power-of-2
9085 * quantity of entries
9086 * - limit is the number of hash buckets, not the total allocation size
9088 void *__init alloc_large_system_hash(const char *tablename,
9089 unsigned long bucketsize,
9090 unsigned long numentries,
9093 unsigned int *_hash_shift,
9094 unsigned int *_hash_mask,
9095 unsigned long low_limit,
9096 unsigned long high_limit)
9098 unsigned long long max = high_limit;
9099 unsigned long log2qty, size;
9105 /* allow the kernel cmdline to have a say */
9107 /* round applicable memory size up to nearest megabyte */
9108 numentries = nr_kernel_pages;
9109 numentries -= arch_reserved_kernel_pages();
9111 /* It isn't necessary when PAGE_SIZE >= 1MB */
9112 if (PAGE_SIZE < SZ_1M)
9113 numentries = round_up(numentries, SZ_1M / PAGE_SIZE);
9115 #if __BITS_PER_LONG > 32
9117 unsigned long adapt;
9119 for (adapt = ADAPT_SCALE_NPAGES; adapt < numentries;
9120 adapt <<= ADAPT_SCALE_SHIFT)
9125 /* limit to 1 bucket per 2^scale bytes of low memory */
9126 if (scale > PAGE_SHIFT)
9127 numentries >>= (scale - PAGE_SHIFT);
9129 numentries <<= (PAGE_SHIFT - scale);
9131 /* Make sure we've got at least a 0-order allocation.. */
9132 if (unlikely(flags & HASH_SMALL)) {
9133 /* Makes no sense without HASH_EARLY */
9134 WARN_ON(!(flags & HASH_EARLY));
9135 if (!(numentries >> *_hash_shift)) {
9136 numentries = 1UL << *_hash_shift;
9137 BUG_ON(!numentries);
9139 } else if (unlikely((numentries * bucketsize) < PAGE_SIZE))
9140 numentries = PAGE_SIZE / bucketsize;
9142 numentries = roundup_pow_of_two(numentries);
9144 /* limit allocation size to 1/16 total memory by default */
9146 max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
9147 do_div(max, bucketsize);
9149 max = min(max, 0x80000000ULL);
9151 if (numentries < low_limit)
9152 numentries = low_limit;
9153 if (numentries > max)
9156 log2qty = ilog2(numentries);
9158 gfp_flags = (flags & HASH_ZERO) ? GFP_ATOMIC | __GFP_ZERO : GFP_ATOMIC;
9161 size = bucketsize << log2qty;
9162 if (flags & HASH_EARLY) {
9163 if (flags & HASH_ZERO)
9164 table = memblock_alloc(size, SMP_CACHE_BYTES);
9166 table = memblock_alloc_raw(size,
9168 } else if (get_order(size) >= MAX_ORDER || hashdist) {
9169 table = vmalloc_huge(size, gfp_flags);
9172 huge = is_vm_area_hugepages(table);
9175 * If bucketsize is not a power-of-two, we may free
9176 * some pages at the end of hash table which
9177 * alloc_pages_exact() automatically does
9179 table = alloc_pages_exact(size, gfp_flags);
9180 kmemleak_alloc(table, size, 1, gfp_flags);
9182 } while (!table && size > PAGE_SIZE && --log2qty);
9185 panic("Failed to allocate %s hash table\n", tablename);
9187 pr_info("%s hash table entries: %ld (order: %d, %lu bytes, %s)\n",
9188 tablename, 1UL << log2qty, ilog2(size) - PAGE_SHIFT, size,
9189 virt ? (huge ? "vmalloc hugepage" : "vmalloc") : "linear");
9192 *_hash_shift = log2qty;
9194 *_hash_mask = (1 << log2qty) - 1;
9199 #ifdef CONFIG_CONTIG_ALLOC
9200 #if defined(CONFIG_DYNAMIC_DEBUG) || \
9201 (defined(CONFIG_DYNAMIC_DEBUG_CORE) && defined(DYNAMIC_DEBUG_MODULE))
9202 /* Usage: See admin-guide/dynamic-debug-howto.rst */
9203 static void alloc_contig_dump_pages(struct list_head *page_list)
9205 DEFINE_DYNAMIC_DEBUG_METADATA(descriptor, "migrate failure");
9207 if (DYNAMIC_DEBUG_BRANCH(descriptor)) {
9211 list_for_each_entry(page, page_list, lru)
9212 dump_page(page, "migration failure");
9216 static inline void alloc_contig_dump_pages(struct list_head *page_list)
9221 /* [start, end) must belong to a single zone. */
9222 int __alloc_contig_migrate_range(struct compact_control *cc,
9223 unsigned long start, unsigned long end)
9225 /* This function is based on compact_zone() from compaction.c. */
9226 unsigned int nr_reclaimed;
9227 unsigned long pfn = start;
9228 unsigned int tries = 0;
9230 struct migration_target_control mtc = {
9231 .nid = zone_to_nid(cc->zone),
9232 .gfp_mask = GFP_USER | __GFP_MOVABLE | __GFP_RETRY_MAYFAIL,
9235 lru_cache_disable();
9237 while (pfn < end || !list_empty(&cc->migratepages)) {
9238 if (fatal_signal_pending(current)) {
9243 if (list_empty(&cc->migratepages)) {
9244 cc->nr_migratepages = 0;
9245 ret = isolate_migratepages_range(cc, pfn, end);
9246 if (ret && ret != -EAGAIN)
9248 pfn = cc->migrate_pfn;
9250 } else if (++tries == 5) {
9255 nr_reclaimed = reclaim_clean_pages_from_list(cc->zone,
9257 cc->nr_migratepages -= nr_reclaimed;
9259 ret = migrate_pages(&cc->migratepages, alloc_migration_target,
9260 NULL, (unsigned long)&mtc, cc->mode, MR_CONTIG_RANGE, NULL);
9263 * On -ENOMEM, migrate_pages() bails out right away. It is pointless
9264 * to retry again over this error, so do the same here.
9272 if (!(cc->gfp_mask & __GFP_NOWARN) && ret == -EBUSY)
9273 alloc_contig_dump_pages(&cc->migratepages);
9274 putback_movable_pages(&cc->migratepages);
9281 * alloc_contig_range() -- tries to allocate given range of pages
9282 * @start: start PFN to allocate
9283 * @end: one-past-the-last PFN to allocate
9284 * @migratetype: migratetype of the underlying pageblocks (either
9285 * #MIGRATE_MOVABLE or #MIGRATE_CMA). All pageblocks
9286 * in range must have the same migratetype and it must
9287 * be either of the two.
9288 * @gfp_mask: GFP mask to use during compaction
9290 * The PFN range does not have to be pageblock aligned. The PFN range must
9291 * belong to a single zone.
9293 * The first thing this routine does is attempt to MIGRATE_ISOLATE all
9294 * pageblocks in the range. Once isolated, the pageblocks should not
9295 * be modified by others.
9297 * Return: zero on success or negative error code. On success all
9298 * pages which PFN is in [start, end) are allocated for the caller and
9299 * need to be freed with free_contig_range().
9301 int alloc_contig_range(unsigned long start, unsigned long end,
9302 unsigned migratetype, gfp_t gfp_mask)
9304 unsigned long outer_start, outer_end;
9308 struct compact_control cc = {
9309 .nr_migratepages = 0,
9311 .zone = page_zone(pfn_to_page(start)),
9312 .mode = MIGRATE_SYNC,
9313 .ignore_skip_hint = true,
9314 .no_set_skip_hint = true,
9315 .gfp_mask = current_gfp_context(gfp_mask),
9316 .alloc_contig = true,
9318 INIT_LIST_HEAD(&cc.migratepages);
9321 * What we do here is we mark all pageblocks in range as
9322 * MIGRATE_ISOLATE. Because pageblock and max order pages may
9323 * have different sizes, and due to the way page allocator
9324 * work, start_isolate_page_range() has special handlings for this.
9326 * Once the pageblocks are marked as MIGRATE_ISOLATE, we
9327 * migrate the pages from an unaligned range (ie. pages that
9328 * we are interested in). This will put all the pages in
9329 * range back to page allocator as MIGRATE_ISOLATE.
9331 * When this is done, we take the pages in range from page
9332 * allocator removing them from the buddy system. This way
9333 * page allocator will never consider using them.
9335 * This lets us mark the pageblocks back as
9336 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the
9337 * aligned range but not in the unaligned, original range are
9338 * put back to page allocator so that buddy can use them.
9341 ret = start_isolate_page_range(start, end, migratetype, 0, gfp_mask);
9345 drain_all_pages(cc.zone);
9348 * In case of -EBUSY, we'd like to know which page causes problem.
9349 * So, just fall through. test_pages_isolated() has a tracepoint
9350 * which will report the busy page.
9352 * It is possible that busy pages could become available before
9353 * the call to test_pages_isolated, and the range will actually be
9354 * allocated. So, if we fall through be sure to clear ret so that
9355 * -EBUSY is not accidentally used or returned to caller.
9357 ret = __alloc_contig_migrate_range(&cc, start, end);
9358 if (ret && ret != -EBUSY)
9363 * Pages from [start, end) are within a pageblock_nr_pages
9364 * aligned blocks that are marked as MIGRATE_ISOLATE. What's
9365 * more, all pages in [start, end) are free in page allocator.
9366 * What we are going to do is to allocate all pages from
9367 * [start, end) (that is remove them from page allocator).
9369 * The only problem is that pages at the beginning and at the
9370 * end of interesting range may be not aligned with pages that
9371 * page allocator holds, ie. they can be part of higher order
9372 * pages. Because of this, we reserve the bigger range and
9373 * once this is done free the pages we are not interested in.
9375 * We don't have to hold zone->lock here because the pages are
9376 * isolated thus they won't get removed from buddy.
9380 outer_start = start;
9381 while (!PageBuddy(pfn_to_page(outer_start))) {
9382 if (++order >= MAX_ORDER) {
9383 outer_start = start;
9386 outer_start &= ~0UL << order;
9389 if (outer_start != start) {
9390 order = buddy_order(pfn_to_page(outer_start));
9393 * outer_start page could be small order buddy page and
9394 * it doesn't include start page. Adjust outer_start
9395 * in this case to report failed page properly
9396 * on tracepoint in test_pages_isolated()
9398 if (outer_start + (1UL << order) <= start)
9399 outer_start = start;
9402 /* Make sure the range is really isolated. */
9403 if (test_pages_isolated(outer_start, end, 0)) {
9408 /* Grab isolated pages from freelists. */
9409 outer_end = isolate_freepages_range(&cc, outer_start, end);
9415 /* Free head and tail (if any) */
9416 if (start != outer_start)
9417 free_contig_range(outer_start, start - outer_start);
9418 if (end != outer_end)
9419 free_contig_range(end, outer_end - end);
9422 undo_isolate_page_range(start, end, migratetype);
9425 EXPORT_SYMBOL(alloc_contig_range);
9427 static int __alloc_contig_pages(unsigned long start_pfn,
9428 unsigned long nr_pages, gfp_t gfp_mask)
9430 unsigned long end_pfn = start_pfn + nr_pages;
9432 return alloc_contig_range(start_pfn, end_pfn, MIGRATE_MOVABLE,
9436 static bool pfn_range_valid_contig(struct zone *z, unsigned long start_pfn,
9437 unsigned long nr_pages)
9439 unsigned long i, end_pfn = start_pfn + nr_pages;
9442 for (i = start_pfn; i < end_pfn; i++) {
9443 page = pfn_to_online_page(i);
9447 if (page_zone(page) != z)
9450 if (PageReserved(page))
9456 static bool zone_spans_last_pfn(const struct zone *zone,
9457 unsigned long start_pfn, unsigned long nr_pages)
9459 unsigned long last_pfn = start_pfn + nr_pages - 1;
9461 return zone_spans_pfn(zone, last_pfn);
9465 * alloc_contig_pages() -- tries to find and allocate contiguous range of pages
9466 * @nr_pages: Number of contiguous pages to allocate
9467 * @gfp_mask: GFP mask to limit search and used during compaction
9469 * @nodemask: Mask for other possible nodes
9471 * This routine is a wrapper around alloc_contig_range(). It scans over zones
9472 * on an applicable zonelist to find a contiguous pfn range which can then be
9473 * tried for allocation with alloc_contig_range(). This routine is intended
9474 * for allocation requests which can not be fulfilled with the buddy allocator.
9476 * The allocated memory is always aligned to a page boundary. If nr_pages is a
9477 * power of two, then allocated range is also guaranteed to be aligned to same
9478 * nr_pages (e.g. 1GB request would be aligned to 1GB).
9480 * Allocated pages can be freed with free_contig_range() or by manually calling
9481 * __free_page() on each allocated page.
9483 * Return: pointer to contiguous pages on success, or NULL if not successful.
9485 struct page *alloc_contig_pages(unsigned long nr_pages, gfp_t gfp_mask,
9486 int nid, nodemask_t *nodemask)
9488 unsigned long ret, pfn, flags;
9489 struct zonelist *zonelist;
9493 zonelist = node_zonelist(nid, gfp_mask);
9494 for_each_zone_zonelist_nodemask(zone, z, zonelist,
9495 gfp_zone(gfp_mask), nodemask) {
9496 spin_lock_irqsave(&zone->lock, flags);
9498 pfn = ALIGN(zone->zone_start_pfn, nr_pages);
9499 while (zone_spans_last_pfn(zone, pfn, nr_pages)) {
9500 if (pfn_range_valid_contig(zone, pfn, nr_pages)) {
9502 * We release the zone lock here because
9503 * alloc_contig_range() will also lock the zone
9504 * at some point. If there's an allocation
9505 * spinning on this lock, it may win the race
9506 * and cause alloc_contig_range() to fail...
9508 spin_unlock_irqrestore(&zone->lock, flags);
9509 ret = __alloc_contig_pages(pfn, nr_pages,
9512 return pfn_to_page(pfn);
9513 spin_lock_irqsave(&zone->lock, flags);
9517 spin_unlock_irqrestore(&zone->lock, flags);
9521 #endif /* CONFIG_CONTIG_ALLOC */
9523 void free_contig_range(unsigned long pfn, unsigned long nr_pages)
9525 unsigned long count = 0;
9527 for (; nr_pages--; pfn++) {
9528 struct page *page = pfn_to_page(pfn);
9530 count += page_count(page) != 1;
9533 WARN(count != 0, "%lu pages are still in use!\n", count);
9535 EXPORT_SYMBOL(free_contig_range);
9538 * Effectively disable pcplists for the zone by setting the high limit to 0
9539 * and draining all cpus. A concurrent page freeing on another CPU that's about
9540 * to put the page on pcplist will either finish before the drain and the page
9541 * will be drained, or observe the new high limit and skip the pcplist.
9543 * Must be paired with a call to zone_pcp_enable().
9545 void zone_pcp_disable(struct zone *zone)
9547 mutex_lock(&pcp_batch_high_lock);
9548 __zone_set_pageset_high_and_batch(zone, 0, 1);
9549 __drain_all_pages(zone, true);
9552 void zone_pcp_enable(struct zone *zone)
9554 __zone_set_pageset_high_and_batch(zone, zone->pageset_high, zone->pageset_batch);
9555 mutex_unlock(&pcp_batch_high_lock);
9558 void zone_pcp_reset(struct zone *zone)
9561 struct per_cpu_zonestat *pzstats;
9563 if (zone->per_cpu_pageset != &boot_pageset) {
9564 for_each_online_cpu(cpu) {
9565 pzstats = per_cpu_ptr(zone->per_cpu_zonestats, cpu);
9566 drain_zonestat(zone, pzstats);
9568 free_percpu(zone->per_cpu_pageset);
9569 zone->per_cpu_pageset = &boot_pageset;
9570 if (zone->per_cpu_zonestats != &boot_zonestats) {
9571 free_percpu(zone->per_cpu_zonestats);
9572 zone->per_cpu_zonestats = &boot_zonestats;
9577 #ifdef CONFIG_MEMORY_HOTREMOVE
9579 * All pages in the range must be in a single zone, must not contain holes,
9580 * must span full sections, and must be isolated before calling this function.
9582 void __offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
9584 unsigned long pfn = start_pfn;
9588 unsigned long flags;
9590 offline_mem_sections(pfn, end_pfn);
9591 zone = page_zone(pfn_to_page(pfn));
9592 spin_lock_irqsave(&zone->lock, flags);
9593 while (pfn < end_pfn) {
9594 page = pfn_to_page(pfn);
9596 * The HWPoisoned page may be not in buddy system, and
9597 * page_count() is not 0.
9599 if (unlikely(!PageBuddy(page) && PageHWPoison(page))) {
9604 * At this point all remaining PageOffline() pages have a
9605 * reference count of 0 and can simply be skipped.
9607 if (PageOffline(page)) {
9608 BUG_ON(page_count(page));
9609 BUG_ON(PageBuddy(page));
9614 BUG_ON(page_count(page));
9615 BUG_ON(!PageBuddy(page));
9616 order = buddy_order(page);
9617 del_page_from_free_list(page, zone, order);
9618 pfn += (1 << order);
9620 spin_unlock_irqrestore(&zone->lock, flags);
9625 * This function returns a stable result only if called under zone lock.
9627 bool is_free_buddy_page(struct page *page)
9629 unsigned long pfn = page_to_pfn(page);
9632 for (order = 0; order < MAX_ORDER; order++) {
9633 struct page *page_head = page - (pfn & ((1 << order) - 1));
9635 if (PageBuddy(page_head) &&
9636 buddy_order_unsafe(page_head) >= order)
9640 return order < MAX_ORDER;
9642 EXPORT_SYMBOL(is_free_buddy_page);
9644 #ifdef CONFIG_MEMORY_FAILURE
9646 * Break down a higher-order page in sub-pages, and keep our target out of
9649 static void break_down_buddy_pages(struct zone *zone, struct page *page,
9650 struct page *target, int low, int high,
9653 unsigned long size = 1 << high;
9654 struct page *current_buddy, *next_page;
9656 while (high > low) {
9660 if (target >= &page[size]) {
9661 next_page = page + size;
9662 current_buddy = page;
9665 current_buddy = page + size;
9668 if (set_page_guard(zone, current_buddy, high, migratetype))
9671 if (current_buddy != target) {
9672 add_to_free_list(current_buddy, zone, high, migratetype);
9673 set_buddy_order(current_buddy, high);
9680 * Take a page that will be marked as poisoned off the buddy allocator.
9682 bool take_page_off_buddy(struct page *page)
9684 struct zone *zone = page_zone(page);
9685 unsigned long pfn = page_to_pfn(page);
9686 unsigned long flags;
9690 spin_lock_irqsave(&zone->lock, flags);
9691 for (order = 0; order < MAX_ORDER; order++) {
9692 struct page *page_head = page - (pfn & ((1 << order) - 1));
9693 int page_order = buddy_order(page_head);
9695 if (PageBuddy(page_head) && page_order >= order) {
9696 unsigned long pfn_head = page_to_pfn(page_head);
9697 int migratetype = get_pfnblock_migratetype(page_head,
9700 del_page_from_free_list(page_head, zone, page_order);
9701 break_down_buddy_pages(zone, page_head, page, 0,
9702 page_order, migratetype);
9703 SetPageHWPoisonTakenOff(page);
9704 if (!is_migrate_isolate(migratetype))
9705 __mod_zone_freepage_state(zone, -1, migratetype);
9709 if (page_count(page_head) > 0)
9712 spin_unlock_irqrestore(&zone->lock, flags);
9717 * Cancel takeoff done by take_page_off_buddy().
9719 bool put_page_back_buddy(struct page *page)
9721 struct zone *zone = page_zone(page);
9722 unsigned long pfn = page_to_pfn(page);
9723 unsigned long flags;
9724 int migratetype = get_pfnblock_migratetype(page, pfn);
9727 spin_lock_irqsave(&zone->lock, flags);
9728 if (put_page_testzero(page)) {
9729 ClearPageHWPoisonTakenOff(page);
9730 __free_one_page(page, pfn, zone, 0, migratetype, FPI_NONE);
9731 if (TestClearPageHWPoison(page)) {
9735 spin_unlock_irqrestore(&zone->lock, flags);
9741 #ifdef CONFIG_ZONE_DMA
9742 bool has_managed_dma(void)
9744 struct pglist_data *pgdat;
9746 for_each_online_pgdat(pgdat) {
9747 struct zone *zone = &pgdat->node_zones[ZONE_DMA];
9749 if (managed_zone(zone))
9754 #endif /* CONFIG_ZONE_DMA */