2 * linux/mm/page_alloc.c
4 * Manages the free list, the system allocates free pages here.
5 * Note that kmalloc() lives in slab.c
7 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
8 * Swap reorganised 29.12.95, Stephen Tweedie
9 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
10 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
11 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
12 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000
13 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
14 * (lots of bits borrowed from Ingo Molnar & Andrew Morton)
17 #include <linux/stddef.h>
19 #include <linux/swap.h>
20 #include <linux/interrupt.h>
21 #include <linux/pagemap.h>
22 #include <linux/jiffies.h>
23 #include <linux/bootmem.h>
24 #include <linux/memblock.h>
25 #include <linux/compiler.h>
26 #include <linux/kernel.h>
27 #include <linux/kasan.h>
28 #include <linux/module.h>
29 #include <linux/suspend.h>
30 #include <linux/pagevec.h>
31 #include <linux/blkdev.h>
32 #include <linux/slab.h>
33 #include <linux/ratelimit.h>
34 #include <linux/oom.h>
35 #include <linux/topology.h>
36 #include <linux/sysctl.h>
37 #include <linux/cpu.h>
38 #include <linux/cpuset.h>
39 #include <linux/memory_hotplug.h>
40 #include <linux/nodemask.h>
41 #include <linux/vmalloc.h>
42 #include <linux/vmstat.h>
43 #include <linux/mempolicy.h>
44 #include <linux/memremap.h>
45 #include <linux/stop_machine.h>
46 #include <linux/sort.h>
47 #include <linux/pfn.h>
48 #include <linux/backing-dev.h>
49 #include <linux/fault-inject.h>
50 #include <linux/page-isolation.h>
51 #include <linux/page_ext.h>
52 #include <linux/debugobjects.h>
53 #include <linux/kmemleak.h>
54 #include <linux/compaction.h>
55 #include <trace/events/kmem.h>
56 #include <trace/events/oom.h>
57 #include <linux/prefetch.h>
58 #include <linux/mm_inline.h>
59 #include <linux/migrate.h>
60 #include <linux/hugetlb.h>
61 #include <linux/sched/rt.h>
62 #include <linux/sched/mm.h>
63 #include <linux/page_owner.h>
64 #include <linux/kthread.h>
65 #include <linux/memcontrol.h>
66 #include <linux/ftrace.h>
67 #include <linux/lockdep.h>
68 #include <linux/nmi.h>
69 #include <linux/psi.h>
71 #include <asm/sections.h>
72 #include <asm/tlbflush.h>
73 #include <asm/div64.h>
76 /* prevent >1 _updater_ of zone percpu pageset ->high and ->batch fields */
77 static DEFINE_MUTEX(pcp_batch_high_lock);
78 #define MIN_PERCPU_PAGELIST_FRACTION (8)
80 #ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
81 DEFINE_PER_CPU(int, numa_node);
82 EXPORT_PER_CPU_SYMBOL(numa_node);
85 DEFINE_STATIC_KEY_TRUE(vm_numa_stat_key);
87 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
89 * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
90 * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
91 * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
92 * defined in <linux/topology.h>.
94 DEFINE_PER_CPU(int, _numa_mem_); /* Kernel "local memory" node */
95 EXPORT_PER_CPU_SYMBOL(_numa_mem_);
96 int _node_numa_mem_[MAX_NUMNODES];
99 /* work_structs for global per-cpu drains */
100 DEFINE_MUTEX(pcpu_drain_mutex);
101 DEFINE_PER_CPU(struct work_struct, pcpu_drain);
103 #ifdef CONFIG_GCC_PLUGIN_LATENT_ENTROPY
104 volatile unsigned long latent_entropy __latent_entropy;
105 EXPORT_SYMBOL(latent_entropy);
109 * Array of node states.
111 nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
112 [N_POSSIBLE] = NODE_MASK_ALL,
113 [N_ONLINE] = { { [0] = 1UL } },
115 [N_NORMAL_MEMORY] = { { [0] = 1UL } },
116 #ifdef CONFIG_HIGHMEM
117 [N_HIGH_MEMORY] = { { [0] = 1UL } },
119 [N_MEMORY] = { { [0] = 1UL } },
120 [N_CPU] = { { [0] = 1UL } },
123 EXPORT_SYMBOL(node_states);
125 /* Protect totalram_pages and zone->managed_pages */
126 static DEFINE_SPINLOCK(managed_page_count_lock);
128 unsigned long totalram_pages __read_mostly;
129 unsigned long totalreserve_pages __read_mostly;
130 unsigned long totalcma_pages __read_mostly;
132 int percpu_pagelist_fraction;
133 gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
136 * A cached value of the page's pageblock's migratetype, used when the page is
137 * put on a pcplist. Used to avoid the pageblock migratetype lookup when
138 * freeing from pcplists in most cases, at the cost of possibly becoming stale.
139 * Also the migratetype set in the page does not necessarily match the pcplist
140 * index, e.g. page might have MIGRATE_CMA set but be on a pcplist with any
141 * other index - this ensures that it will be put on the correct CMA freelist.
143 static inline int get_pcppage_migratetype(struct page *page)
148 static inline void set_pcppage_migratetype(struct page *page, int migratetype)
150 page->index = migratetype;
153 #ifdef CONFIG_PM_SLEEP
155 * The following functions are used by the suspend/hibernate code to temporarily
156 * change gfp_allowed_mask in order to avoid using I/O during memory allocations
157 * while devices are suspended. To avoid races with the suspend/hibernate code,
158 * they should always be called with system_transition_mutex held
159 * (gfp_allowed_mask also should only be modified with system_transition_mutex
160 * held, unless the suspend/hibernate code is guaranteed not to run in parallel
161 * with that modification).
164 static gfp_t saved_gfp_mask;
166 void pm_restore_gfp_mask(void)
168 WARN_ON(!mutex_is_locked(&system_transition_mutex));
169 if (saved_gfp_mask) {
170 gfp_allowed_mask = saved_gfp_mask;
175 void pm_restrict_gfp_mask(void)
177 WARN_ON(!mutex_is_locked(&system_transition_mutex));
178 WARN_ON(saved_gfp_mask);
179 saved_gfp_mask = gfp_allowed_mask;
180 gfp_allowed_mask &= ~(__GFP_IO | __GFP_FS);
183 bool pm_suspended_storage(void)
185 if ((gfp_allowed_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS))
189 #endif /* CONFIG_PM_SLEEP */
191 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
192 unsigned int pageblock_order __read_mostly;
195 static void __free_pages_ok(struct page *page, unsigned int order);
198 * results with 256, 32 in the lowmem_reserve sysctl:
199 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
200 * 1G machine -> (16M dma, 784M normal, 224M high)
201 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
202 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
203 * HIGHMEM allocation will leave (224M+784M)/256 of ram reserved in ZONE_DMA
205 * TBD: should special case ZONE_DMA32 machines here - in those we normally
206 * don't need any ZONE_NORMAL reservation
208 int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES] = {
209 #ifdef CONFIG_ZONE_DMA
212 #ifdef CONFIG_ZONE_DMA32
216 #ifdef CONFIG_HIGHMEM
222 EXPORT_SYMBOL(totalram_pages);
224 static char * const zone_names[MAX_NR_ZONES] = {
225 #ifdef CONFIG_ZONE_DMA
228 #ifdef CONFIG_ZONE_DMA32
232 #ifdef CONFIG_HIGHMEM
236 #ifdef CONFIG_ZONE_DEVICE
241 char * const migratetype_names[MIGRATE_TYPES] = {
249 #ifdef CONFIG_MEMORY_ISOLATION
254 compound_page_dtor * const compound_page_dtors[] = {
257 #ifdef CONFIG_HUGETLB_PAGE
260 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
265 int min_free_kbytes = 1024;
266 int user_min_free_kbytes = -1;
267 int watermark_scale_factor = 10;
269 static unsigned long nr_kernel_pages __meminitdata;
270 static unsigned long nr_all_pages __meminitdata;
271 static unsigned long dma_reserve __meminitdata;
273 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
274 static unsigned long arch_zone_lowest_possible_pfn[MAX_NR_ZONES] __meminitdata;
275 static unsigned long arch_zone_highest_possible_pfn[MAX_NR_ZONES] __meminitdata;
276 static unsigned long required_kernelcore __initdata;
277 static unsigned long required_kernelcore_percent __initdata;
278 static unsigned long required_movablecore __initdata;
279 static unsigned long required_movablecore_percent __initdata;
280 static unsigned long zone_movable_pfn[MAX_NUMNODES] __meminitdata;
281 static bool mirrored_kernelcore __meminitdata;
283 /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
285 EXPORT_SYMBOL(movable_zone);
286 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
289 int nr_node_ids __read_mostly = MAX_NUMNODES;
290 int nr_online_nodes __read_mostly = 1;
291 EXPORT_SYMBOL(nr_node_ids);
292 EXPORT_SYMBOL(nr_online_nodes);
295 int page_group_by_mobility_disabled __read_mostly;
297 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
298 /* Returns true if the struct page for the pfn is uninitialised */
299 static inline bool __meminit early_page_uninitialised(unsigned long pfn)
301 int nid = early_pfn_to_nid(pfn);
303 if (node_online(nid) && pfn >= NODE_DATA(nid)->first_deferred_pfn)
310 * Returns true when the remaining initialisation should be deferred until
311 * later in the boot cycle when it can be parallelised.
313 static bool __meminit
314 defer_init(int nid, unsigned long pfn, unsigned long end_pfn)
316 static unsigned long prev_end_pfn, nr_initialised;
319 * prev_end_pfn static that contains the end of previous zone
320 * No need to protect because called very early in boot before smp_init.
322 if (prev_end_pfn != end_pfn) {
323 prev_end_pfn = end_pfn;
327 /* Always populate low zones for address-constrained allocations */
328 if (end_pfn < pgdat_end_pfn(NODE_DATA(nid)))
331 if ((nr_initialised > NODE_DATA(nid)->static_init_pgcnt) &&
332 (pfn & (PAGES_PER_SECTION - 1)) == 0) {
333 NODE_DATA(nid)->first_deferred_pfn = pfn;
339 static inline bool early_page_uninitialised(unsigned long pfn)
344 static inline bool defer_init(int nid, unsigned long pfn, unsigned long end_pfn)
350 /* Return a pointer to the bitmap storing bits affecting a block of pages */
351 static inline unsigned long *get_pageblock_bitmap(struct page *page,
354 #ifdef CONFIG_SPARSEMEM
355 return __pfn_to_section(pfn)->pageblock_flags;
357 return page_zone(page)->pageblock_flags;
358 #endif /* CONFIG_SPARSEMEM */
361 static inline int pfn_to_bitidx(struct page *page, unsigned long pfn)
363 #ifdef CONFIG_SPARSEMEM
364 pfn &= (PAGES_PER_SECTION-1);
365 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
367 pfn = pfn - round_down(page_zone(page)->zone_start_pfn, pageblock_nr_pages);
368 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
369 #endif /* CONFIG_SPARSEMEM */
373 * get_pfnblock_flags_mask - Return the requested group of flags for the pageblock_nr_pages block of pages
374 * @page: The page within the block of interest
375 * @pfn: The target page frame number
376 * @end_bitidx: The last bit of interest to retrieve
377 * @mask: mask of bits that the caller is interested in
379 * Return: pageblock_bits flags
381 static __always_inline unsigned long __get_pfnblock_flags_mask(struct page *page,
383 unsigned long end_bitidx,
386 unsigned long *bitmap;
387 unsigned long bitidx, word_bitidx;
390 bitmap = get_pageblock_bitmap(page, pfn);
391 bitidx = pfn_to_bitidx(page, pfn);
392 word_bitidx = bitidx / BITS_PER_LONG;
393 bitidx &= (BITS_PER_LONG-1);
395 word = bitmap[word_bitidx];
396 bitidx += end_bitidx;
397 return (word >> (BITS_PER_LONG - bitidx - 1)) & mask;
400 unsigned long get_pfnblock_flags_mask(struct page *page, unsigned long pfn,
401 unsigned long end_bitidx,
404 return __get_pfnblock_flags_mask(page, pfn, end_bitidx, mask);
407 static __always_inline int get_pfnblock_migratetype(struct page *page, unsigned long pfn)
409 return __get_pfnblock_flags_mask(page, pfn, PB_migrate_end, MIGRATETYPE_MASK);
413 * set_pfnblock_flags_mask - Set the requested group of flags for a pageblock_nr_pages block of pages
414 * @page: The page within the block of interest
415 * @flags: The flags to set
416 * @pfn: The target page frame number
417 * @end_bitidx: The last bit of interest
418 * @mask: mask of bits that the caller is interested in
420 void set_pfnblock_flags_mask(struct page *page, unsigned long flags,
422 unsigned long end_bitidx,
425 unsigned long *bitmap;
426 unsigned long bitidx, word_bitidx;
427 unsigned long old_word, word;
429 BUILD_BUG_ON(NR_PAGEBLOCK_BITS != 4);
431 bitmap = get_pageblock_bitmap(page, pfn);
432 bitidx = pfn_to_bitidx(page, pfn);
433 word_bitidx = bitidx / BITS_PER_LONG;
434 bitidx &= (BITS_PER_LONG-1);
436 VM_BUG_ON_PAGE(!zone_spans_pfn(page_zone(page), pfn), page);
438 bitidx += end_bitidx;
439 mask <<= (BITS_PER_LONG - bitidx - 1);
440 flags <<= (BITS_PER_LONG - bitidx - 1);
442 word = READ_ONCE(bitmap[word_bitidx]);
444 old_word = cmpxchg(&bitmap[word_bitidx], word, (word & ~mask) | flags);
445 if (word == old_word)
451 void set_pageblock_migratetype(struct page *page, int migratetype)
453 if (unlikely(page_group_by_mobility_disabled &&
454 migratetype < MIGRATE_PCPTYPES))
455 migratetype = MIGRATE_UNMOVABLE;
457 set_pageblock_flags_group(page, (unsigned long)migratetype,
458 PB_migrate, PB_migrate_end);
461 #ifdef CONFIG_DEBUG_VM
462 static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
466 unsigned long pfn = page_to_pfn(page);
467 unsigned long sp, start_pfn;
470 seq = zone_span_seqbegin(zone);
471 start_pfn = zone->zone_start_pfn;
472 sp = zone->spanned_pages;
473 if (!zone_spans_pfn(zone, pfn))
475 } while (zone_span_seqretry(zone, seq));
478 pr_err("page 0x%lx outside node %d zone %s [ 0x%lx - 0x%lx ]\n",
479 pfn, zone_to_nid(zone), zone->name,
480 start_pfn, start_pfn + sp);
485 static int page_is_consistent(struct zone *zone, struct page *page)
487 if (!pfn_valid_within(page_to_pfn(page)))
489 if (zone != page_zone(page))
495 * Temporary debugging check for pages not lying within a given zone.
497 static int __maybe_unused bad_range(struct zone *zone, struct page *page)
499 if (page_outside_zone_boundaries(zone, page))
501 if (!page_is_consistent(zone, page))
507 static inline int __maybe_unused bad_range(struct zone *zone, struct page *page)
513 static void bad_page(struct page *page, const char *reason,
514 unsigned long bad_flags)
516 static unsigned long resume;
517 static unsigned long nr_shown;
518 static unsigned long nr_unshown;
521 * Allow a burst of 60 reports, then keep quiet for that minute;
522 * or allow a steady drip of one report per second.
524 if (nr_shown == 60) {
525 if (time_before(jiffies, resume)) {
531 "BUG: Bad page state: %lu messages suppressed\n",
538 resume = jiffies + 60 * HZ;
540 pr_alert("BUG: Bad page state in process %s pfn:%05lx\n",
541 current->comm, page_to_pfn(page));
542 __dump_page(page, reason);
543 bad_flags &= page->flags;
545 pr_alert("bad because of flags: %#lx(%pGp)\n",
546 bad_flags, &bad_flags);
547 dump_page_owner(page);
552 /* Leave bad fields for debug, except PageBuddy could make trouble */
553 page_mapcount_reset(page); /* remove PageBuddy */
554 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
558 * Higher-order pages are called "compound pages". They are structured thusly:
560 * The first PAGE_SIZE page is called the "head page" and have PG_head set.
562 * The remaining PAGE_SIZE pages are called "tail pages". PageTail() is encoded
563 * in bit 0 of page->compound_head. The rest of bits is pointer to head page.
565 * The first tail page's ->compound_dtor holds the offset in array of compound
566 * page destructors. See compound_page_dtors.
568 * The first tail page's ->compound_order holds the order of allocation.
569 * This usage means that zero-order pages may not be compound.
572 void free_compound_page(struct page *page)
574 __free_pages_ok(page, compound_order(page));
577 void prep_compound_page(struct page *page, unsigned int order)
580 int nr_pages = 1 << order;
582 set_compound_page_dtor(page, COMPOUND_PAGE_DTOR);
583 set_compound_order(page, order);
585 for (i = 1; i < nr_pages; i++) {
586 struct page *p = page + i;
587 set_page_count(p, 0);
588 p->mapping = TAIL_MAPPING;
589 set_compound_head(p, page);
591 atomic_set(compound_mapcount_ptr(page), -1);
594 #ifdef CONFIG_DEBUG_PAGEALLOC
595 unsigned int _debug_guardpage_minorder;
596 bool _debug_pagealloc_enabled __read_mostly
597 = IS_ENABLED(CONFIG_DEBUG_PAGEALLOC_ENABLE_DEFAULT);
598 EXPORT_SYMBOL(_debug_pagealloc_enabled);
599 bool _debug_guardpage_enabled __read_mostly;
601 static int __init early_debug_pagealloc(char *buf)
605 return kstrtobool(buf, &_debug_pagealloc_enabled);
607 early_param("debug_pagealloc", early_debug_pagealloc);
609 static bool need_debug_guardpage(void)
611 /* If we don't use debug_pagealloc, we don't need guard page */
612 if (!debug_pagealloc_enabled())
615 if (!debug_guardpage_minorder())
621 static void init_debug_guardpage(void)
623 if (!debug_pagealloc_enabled())
626 if (!debug_guardpage_minorder())
629 _debug_guardpage_enabled = true;
632 struct page_ext_operations debug_guardpage_ops = {
633 .need = need_debug_guardpage,
634 .init = init_debug_guardpage,
637 static int __init debug_guardpage_minorder_setup(char *buf)
641 if (kstrtoul(buf, 10, &res) < 0 || res > MAX_ORDER / 2) {
642 pr_err("Bad debug_guardpage_minorder value\n");
645 _debug_guardpage_minorder = res;
646 pr_info("Setting debug_guardpage_minorder to %lu\n", res);
649 early_param("debug_guardpage_minorder", debug_guardpage_minorder_setup);
651 static inline bool set_page_guard(struct zone *zone, struct page *page,
652 unsigned int order, int migratetype)
654 struct page_ext *page_ext;
656 if (!debug_guardpage_enabled())
659 if (order >= debug_guardpage_minorder())
662 page_ext = lookup_page_ext(page);
663 if (unlikely(!page_ext))
666 __set_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags);
668 INIT_LIST_HEAD(&page->lru);
669 set_page_private(page, order);
670 /* Guard pages are not available for any usage */
671 __mod_zone_freepage_state(zone, -(1 << order), migratetype);
676 static inline void clear_page_guard(struct zone *zone, struct page *page,
677 unsigned int order, int migratetype)
679 struct page_ext *page_ext;
681 if (!debug_guardpage_enabled())
684 page_ext = lookup_page_ext(page);
685 if (unlikely(!page_ext))
688 __clear_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags);
690 set_page_private(page, 0);
691 if (!is_migrate_isolate(migratetype))
692 __mod_zone_freepage_state(zone, (1 << order), migratetype);
695 struct page_ext_operations debug_guardpage_ops;
696 static inline bool set_page_guard(struct zone *zone, struct page *page,
697 unsigned int order, int migratetype) { return false; }
698 static inline void clear_page_guard(struct zone *zone, struct page *page,
699 unsigned int order, int migratetype) {}
702 static inline void set_page_order(struct page *page, unsigned int order)
704 set_page_private(page, order);
705 __SetPageBuddy(page);
708 static inline void rmv_page_order(struct page *page)
710 __ClearPageBuddy(page);
711 set_page_private(page, 0);
715 * This function checks whether a page is free && is the buddy
716 * we can coalesce a page and its buddy if
717 * (a) the buddy is not in a hole (check before calling!) &&
718 * (b) the buddy is in the buddy system &&
719 * (c) a page and its buddy have the same order &&
720 * (d) a page and its buddy are in the same zone.
722 * For recording whether a page is in the buddy system, we set PageBuddy.
723 * Setting, clearing, and testing PageBuddy is serialized by zone->lock.
725 * For recording page's order, we use page_private(page).
727 static inline int page_is_buddy(struct page *page, struct page *buddy,
730 if (page_is_guard(buddy) && page_order(buddy) == order) {
731 if (page_zone_id(page) != page_zone_id(buddy))
734 VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
739 if (PageBuddy(buddy) && page_order(buddy) == order) {
741 * zone check is done late to avoid uselessly
742 * calculating zone/node ids for pages that could
745 if (page_zone_id(page) != page_zone_id(buddy))
748 VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
756 * Freeing function for a buddy system allocator.
758 * The concept of a buddy system is to maintain direct-mapped table
759 * (containing bit values) for memory blocks of various "orders".
760 * The bottom level table contains the map for the smallest allocatable
761 * units of memory (here, pages), and each level above it describes
762 * pairs of units from the levels below, hence, "buddies".
763 * At a high level, all that happens here is marking the table entry
764 * at the bottom level available, and propagating the changes upward
765 * as necessary, plus some accounting needed to play nicely with other
766 * parts of the VM system.
767 * At each level, we keep a list of pages, which are heads of continuous
768 * free pages of length of (1 << order) and marked with PageBuddy.
769 * Page's order is recorded in page_private(page) field.
770 * So when we are allocating or freeing one, we can derive the state of the
771 * other. That is, if we allocate a small block, and both were
772 * free, the remainder of the region must be split into blocks.
773 * If a block is freed, and its buddy is also free, then this
774 * triggers coalescing into a block of larger size.
779 static inline void __free_one_page(struct page *page,
781 struct zone *zone, unsigned int order,
784 unsigned long combined_pfn;
785 unsigned long uninitialized_var(buddy_pfn);
787 unsigned int max_order;
789 max_order = min_t(unsigned int, MAX_ORDER, pageblock_order + 1);
791 VM_BUG_ON(!zone_is_initialized(zone));
792 VM_BUG_ON_PAGE(page->flags & PAGE_FLAGS_CHECK_AT_PREP, page);
794 VM_BUG_ON(migratetype == -1);
795 if (likely(!is_migrate_isolate(migratetype)))
796 __mod_zone_freepage_state(zone, 1 << order, migratetype);
798 VM_BUG_ON_PAGE(pfn & ((1 << order) - 1), page);
799 VM_BUG_ON_PAGE(bad_range(zone, page), page);
802 while (order < max_order - 1) {
803 buddy_pfn = __find_buddy_pfn(pfn, order);
804 buddy = page + (buddy_pfn - pfn);
806 if (!pfn_valid_within(buddy_pfn))
808 if (!page_is_buddy(page, buddy, order))
811 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page,
812 * merge with it and move up one order.
814 if (page_is_guard(buddy)) {
815 clear_page_guard(zone, buddy, order, migratetype);
817 list_del(&buddy->lru);
818 zone->free_area[order].nr_free--;
819 rmv_page_order(buddy);
821 combined_pfn = buddy_pfn & pfn;
822 page = page + (combined_pfn - pfn);
826 if (max_order < MAX_ORDER) {
827 /* If we are here, it means order is >= pageblock_order.
828 * We want to prevent merge between freepages on isolate
829 * pageblock and normal pageblock. Without this, pageblock
830 * isolation could cause incorrect freepage or CMA accounting.
832 * We don't want to hit this code for the more frequent
835 if (unlikely(has_isolate_pageblock(zone))) {
838 buddy_pfn = __find_buddy_pfn(pfn, order);
839 buddy = page + (buddy_pfn - pfn);
840 buddy_mt = get_pageblock_migratetype(buddy);
842 if (migratetype != buddy_mt
843 && (is_migrate_isolate(migratetype) ||
844 is_migrate_isolate(buddy_mt)))
848 goto continue_merging;
852 set_page_order(page, order);
855 * If this is not the largest possible page, check if the buddy
856 * of the next-highest order is free. If it is, it's possible
857 * that pages are being freed that will coalesce soon. In case,
858 * that is happening, add the free page to the tail of the list
859 * so it's less likely to be used soon and more likely to be merged
860 * as a higher order page
862 if ((order < MAX_ORDER-2) && pfn_valid_within(buddy_pfn)) {
863 struct page *higher_page, *higher_buddy;
864 combined_pfn = buddy_pfn & pfn;
865 higher_page = page + (combined_pfn - pfn);
866 buddy_pfn = __find_buddy_pfn(combined_pfn, order + 1);
867 higher_buddy = higher_page + (buddy_pfn - combined_pfn);
868 if (pfn_valid_within(buddy_pfn) &&
869 page_is_buddy(higher_page, higher_buddy, order + 1)) {
870 list_add_tail(&page->lru,
871 &zone->free_area[order].free_list[migratetype]);
876 list_add(&page->lru, &zone->free_area[order].free_list[migratetype]);
878 zone->free_area[order].nr_free++;
882 * A bad page could be due to a number of fields. Instead of multiple branches,
883 * try and check multiple fields with one check. The caller must do a detailed
884 * check if necessary.
886 static inline bool page_expected_state(struct page *page,
887 unsigned long check_flags)
889 if (unlikely(atomic_read(&page->_mapcount) != -1))
892 if (unlikely((unsigned long)page->mapping |
893 page_ref_count(page) |
895 (unsigned long)page->mem_cgroup |
897 (page->flags & check_flags)))
903 static void free_pages_check_bad(struct page *page)
905 const char *bad_reason;
906 unsigned long bad_flags;
911 if (unlikely(atomic_read(&page->_mapcount) != -1))
912 bad_reason = "nonzero mapcount";
913 if (unlikely(page->mapping != NULL))
914 bad_reason = "non-NULL mapping";
915 if (unlikely(page_ref_count(page) != 0))
916 bad_reason = "nonzero _refcount";
917 if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_FREE)) {
918 bad_reason = "PAGE_FLAGS_CHECK_AT_FREE flag(s) set";
919 bad_flags = PAGE_FLAGS_CHECK_AT_FREE;
922 if (unlikely(page->mem_cgroup))
923 bad_reason = "page still charged to cgroup";
925 bad_page(page, bad_reason, bad_flags);
928 static inline int free_pages_check(struct page *page)
930 if (likely(page_expected_state(page, PAGE_FLAGS_CHECK_AT_FREE)))
933 /* Something has gone sideways, find it */
934 free_pages_check_bad(page);
938 static int free_tail_pages_check(struct page *head_page, struct page *page)
943 * We rely page->lru.next never has bit 0 set, unless the page
944 * is PageTail(). Let's make sure that's true even for poisoned ->lru.
946 BUILD_BUG_ON((unsigned long)LIST_POISON1 & 1);
948 if (!IS_ENABLED(CONFIG_DEBUG_VM)) {
952 switch (page - head_page) {
954 /* the first tail page: ->mapping may be compound_mapcount() */
955 if (unlikely(compound_mapcount(page))) {
956 bad_page(page, "nonzero compound_mapcount", 0);
962 * the second tail page: ->mapping is
963 * deferred_list.next -- ignore value.
967 if (page->mapping != TAIL_MAPPING) {
968 bad_page(page, "corrupted mapping in tail page", 0);
973 if (unlikely(!PageTail(page))) {
974 bad_page(page, "PageTail not set", 0);
977 if (unlikely(compound_head(page) != head_page)) {
978 bad_page(page, "compound_head not consistent", 0);
983 page->mapping = NULL;
984 clear_compound_head(page);
988 static __always_inline bool free_pages_prepare(struct page *page,
989 unsigned int order, bool check_free)
993 VM_BUG_ON_PAGE(PageTail(page), page);
995 trace_mm_page_free(page, order);
998 * Check tail pages before head page information is cleared to
999 * avoid checking PageCompound for order-0 pages.
1001 if (unlikely(order)) {
1002 bool compound = PageCompound(page);
1005 VM_BUG_ON_PAGE(compound && compound_order(page) != order, page);
1008 ClearPageDoubleMap(page);
1009 for (i = 1; i < (1 << order); i++) {
1011 bad += free_tail_pages_check(page, page + i);
1012 if (unlikely(free_pages_check(page + i))) {
1016 (page + i)->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1019 if (PageMappingFlags(page))
1020 page->mapping = NULL;
1021 if (memcg_kmem_enabled() && PageKmemcg(page))
1022 memcg_kmem_uncharge(page, order);
1024 bad += free_pages_check(page);
1028 page_cpupid_reset_last(page);
1029 page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1030 reset_page_owner(page, order);
1032 if (!PageHighMem(page)) {
1033 debug_check_no_locks_freed(page_address(page),
1034 PAGE_SIZE << order);
1035 debug_check_no_obj_freed(page_address(page),
1036 PAGE_SIZE << order);
1038 arch_free_page(page, order);
1039 kernel_poison_pages(page, 1 << order, 0);
1040 kernel_map_pages(page, 1 << order, 0);
1041 kasan_free_pages(page, order);
1046 #ifdef CONFIG_DEBUG_VM
1047 static inline bool free_pcp_prepare(struct page *page)
1049 return free_pages_prepare(page, 0, true);
1052 static inline bool bulkfree_pcp_prepare(struct page *page)
1057 static bool free_pcp_prepare(struct page *page)
1059 return free_pages_prepare(page, 0, false);
1062 static bool bulkfree_pcp_prepare(struct page *page)
1064 return free_pages_check(page);
1066 #endif /* CONFIG_DEBUG_VM */
1068 static inline void prefetch_buddy(struct page *page)
1070 unsigned long pfn = page_to_pfn(page);
1071 unsigned long buddy_pfn = __find_buddy_pfn(pfn, 0);
1072 struct page *buddy = page + (buddy_pfn - pfn);
1078 * Frees a number of pages from the PCP lists
1079 * Assumes all pages on list are in same zone, and of same order.
1080 * count is the number of pages to free.
1082 * If the zone was previously in an "all pages pinned" state then look to
1083 * see if this freeing clears that state.
1085 * And clear the zone's pages_scanned counter, to hold off the "all pages are
1086 * pinned" detection logic.
1088 static void free_pcppages_bulk(struct zone *zone, int count,
1089 struct per_cpu_pages *pcp)
1091 int migratetype = 0;
1093 int prefetch_nr = 0;
1094 bool isolated_pageblocks;
1095 struct page *page, *tmp;
1099 struct list_head *list;
1102 * Remove pages from lists in a round-robin fashion. A
1103 * batch_free count is maintained that is incremented when an
1104 * empty list is encountered. This is so more pages are freed
1105 * off fuller lists instead of spinning excessively around empty
1110 if (++migratetype == MIGRATE_PCPTYPES)
1112 list = &pcp->lists[migratetype];
1113 } while (list_empty(list));
1115 /* This is the only non-empty list. Free them all. */
1116 if (batch_free == MIGRATE_PCPTYPES)
1120 page = list_last_entry(list, struct page, lru);
1121 /* must delete to avoid corrupting pcp list */
1122 list_del(&page->lru);
1125 if (bulkfree_pcp_prepare(page))
1128 list_add_tail(&page->lru, &head);
1131 * We are going to put the page back to the global
1132 * pool, prefetch its buddy to speed up later access
1133 * under zone->lock. It is believed the overhead of
1134 * an additional test and calculating buddy_pfn here
1135 * can be offset by reduced memory latency later. To
1136 * avoid excessive prefetching due to large count, only
1137 * prefetch buddy for the first pcp->batch nr of pages.
1139 if (prefetch_nr++ < pcp->batch)
1140 prefetch_buddy(page);
1141 } while (--count && --batch_free && !list_empty(list));
1144 spin_lock(&zone->lock);
1145 isolated_pageblocks = has_isolate_pageblock(zone);
1148 * Use safe version since after __free_one_page(),
1149 * page->lru.next will not point to original list.
1151 list_for_each_entry_safe(page, tmp, &head, lru) {
1152 int mt = get_pcppage_migratetype(page);
1153 /* MIGRATE_ISOLATE page should not go to pcplists */
1154 VM_BUG_ON_PAGE(is_migrate_isolate(mt), page);
1155 /* Pageblock could have been isolated meanwhile */
1156 if (unlikely(isolated_pageblocks))
1157 mt = get_pageblock_migratetype(page);
1159 __free_one_page(page, page_to_pfn(page), zone, 0, mt);
1160 trace_mm_page_pcpu_drain(page, 0, mt);
1162 spin_unlock(&zone->lock);
1165 static void free_one_page(struct zone *zone,
1166 struct page *page, unsigned long pfn,
1170 spin_lock(&zone->lock);
1171 if (unlikely(has_isolate_pageblock(zone) ||
1172 is_migrate_isolate(migratetype))) {
1173 migratetype = get_pfnblock_migratetype(page, pfn);
1175 __free_one_page(page, pfn, zone, order, migratetype);
1176 spin_unlock(&zone->lock);
1179 static void __meminit __init_single_page(struct page *page, unsigned long pfn,
1180 unsigned long zone, int nid)
1182 mm_zero_struct_page(page);
1183 set_page_links(page, zone, nid, pfn);
1184 init_page_count(page);
1185 page_mapcount_reset(page);
1186 page_cpupid_reset_last(page);
1188 INIT_LIST_HEAD(&page->lru);
1189 #ifdef WANT_PAGE_VIRTUAL
1190 /* The shift won't overflow because ZONE_NORMAL is below 4G. */
1191 if (!is_highmem_idx(zone))
1192 set_page_address(page, __va(pfn << PAGE_SHIFT));
1196 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1197 static void __meminit init_reserved_page(unsigned long pfn)
1202 if (!early_page_uninitialised(pfn))
1205 nid = early_pfn_to_nid(pfn);
1206 pgdat = NODE_DATA(nid);
1208 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1209 struct zone *zone = &pgdat->node_zones[zid];
1211 if (pfn >= zone->zone_start_pfn && pfn < zone_end_pfn(zone))
1214 __init_single_page(pfn_to_page(pfn), pfn, zid, nid);
1217 static inline void init_reserved_page(unsigned long pfn)
1220 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
1223 * Initialised pages do not have PageReserved set. This function is
1224 * called for each range allocated by the bootmem allocator and
1225 * marks the pages PageReserved. The remaining valid pages are later
1226 * sent to the buddy page allocator.
1228 void __meminit reserve_bootmem_region(phys_addr_t start, phys_addr_t end)
1230 unsigned long start_pfn = PFN_DOWN(start);
1231 unsigned long end_pfn = PFN_UP(end);
1233 for (; start_pfn < end_pfn; start_pfn++) {
1234 if (pfn_valid(start_pfn)) {
1235 struct page *page = pfn_to_page(start_pfn);
1237 init_reserved_page(start_pfn);
1239 /* Avoid false-positive PageTail() */
1240 INIT_LIST_HEAD(&page->lru);
1243 * no need for atomic set_bit because the struct
1244 * page is not visible yet so nobody should
1247 __SetPageReserved(page);
1252 static void __free_pages_ok(struct page *page, unsigned int order)
1254 unsigned long flags;
1256 unsigned long pfn = page_to_pfn(page);
1258 if (!free_pages_prepare(page, order, true))
1261 migratetype = get_pfnblock_migratetype(page, pfn);
1262 local_irq_save(flags);
1263 __count_vm_events(PGFREE, 1 << order);
1264 free_one_page(page_zone(page), page, pfn, order, migratetype);
1265 local_irq_restore(flags);
1268 static void __init __free_pages_boot_core(struct page *page, unsigned int order)
1270 unsigned int nr_pages = 1 << order;
1271 struct page *p = page;
1275 for (loop = 0; loop < (nr_pages - 1); loop++, p++) {
1277 __ClearPageReserved(p);
1278 set_page_count(p, 0);
1280 __ClearPageReserved(p);
1281 set_page_count(p, 0);
1283 page_zone(page)->managed_pages += nr_pages;
1284 set_page_refcounted(page);
1285 __free_pages(page, order);
1288 #if defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID) || \
1289 defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP)
1291 static struct mminit_pfnnid_cache early_pfnnid_cache __meminitdata;
1293 int __meminit early_pfn_to_nid(unsigned long pfn)
1295 static DEFINE_SPINLOCK(early_pfn_lock);
1298 spin_lock(&early_pfn_lock);
1299 nid = __early_pfn_to_nid(pfn, &early_pfnnid_cache);
1301 nid = first_online_node;
1302 spin_unlock(&early_pfn_lock);
1308 #ifdef CONFIG_NODES_SPAN_OTHER_NODES
1309 static inline bool __meminit __maybe_unused
1310 meminit_pfn_in_nid(unsigned long pfn, int node,
1311 struct mminit_pfnnid_cache *state)
1315 nid = __early_pfn_to_nid(pfn, state);
1316 if (nid >= 0 && nid != node)
1321 /* Only safe to use early in boot when initialisation is single-threaded */
1322 static inline bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
1324 return meminit_pfn_in_nid(pfn, node, &early_pfnnid_cache);
1329 static inline bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
1333 static inline bool __meminit __maybe_unused
1334 meminit_pfn_in_nid(unsigned long pfn, int node,
1335 struct mminit_pfnnid_cache *state)
1342 void __init __free_pages_bootmem(struct page *page, unsigned long pfn,
1345 if (early_page_uninitialised(pfn))
1347 return __free_pages_boot_core(page, order);
1351 * Check that the whole (or subset of) a pageblock given by the interval of
1352 * [start_pfn, end_pfn) is valid and within the same zone, before scanning it
1353 * with the migration of free compaction scanner. The scanners then need to
1354 * use only pfn_valid_within() check for arches that allow holes within
1357 * Return struct page pointer of start_pfn, or NULL if checks were not passed.
1359 * It's possible on some configurations to have a setup like node0 node1 node0
1360 * i.e. it's possible that all pages within a zones range of pages do not
1361 * belong to a single zone. We assume that a border between node0 and node1
1362 * can occur within a single pageblock, but not a node0 node1 node0
1363 * interleaving within a single pageblock. It is therefore sufficient to check
1364 * the first and last page of a pageblock and avoid checking each individual
1365 * page in a pageblock.
1367 struct page *__pageblock_pfn_to_page(unsigned long start_pfn,
1368 unsigned long end_pfn, struct zone *zone)
1370 struct page *start_page;
1371 struct page *end_page;
1373 /* end_pfn is one past the range we are checking */
1376 if (!pfn_valid(start_pfn) || !pfn_valid(end_pfn))
1379 start_page = pfn_to_online_page(start_pfn);
1383 if (page_zone(start_page) != zone)
1386 end_page = pfn_to_page(end_pfn);
1388 /* This gives a shorter code than deriving page_zone(end_page) */
1389 if (page_zone_id(start_page) != page_zone_id(end_page))
1395 void set_zone_contiguous(struct zone *zone)
1397 unsigned long block_start_pfn = zone->zone_start_pfn;
1398 unsigned long block_end_pfn;
1400 block_end_pfn = ALIGN(block_start_pfn + 1, pageblock_nr_pages);
1401 for (; block_start_pfn < zone_end_pfn(zone);
1402 block_start_pfn = block_end_pfn,
1403 block_end_pfn += pageblock_nr_pages) {
1405 block_end_pfn = min(block_end_pfn, zone_end_pfn(zone));
1407 if (!__pageblock_pfn_to_page(block_start_pfn,
1408 block_end_pfn, zone))
1412 /* We confirm that there is no hole */
1413 zone->contiguous = true;
1416 void clear_zone_contiguous(struct zone *zone)
1418 zone->contiguous = false;
1421 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1422 static void __init deferred_free_range(unsigned long pfn,
1423 unsigned long nr_pages)
1431 page = pfn_to_page(pfn);
1433 /* Free a large naturally-aligned chunk if possible */
1434 if (nr_pages == pageblock_nr_pages &&
1435 (pfn & (pageblock_nr_pages - 1)) == 0) {
1436 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
1437 __free_pages_boot_core(page, pageblock_order);
1441 for (i = 0; i < nr_pages; i++, page++, pfn++) {
1442 if ((pfn & (pageblock_nr_pages - 1)) == 0)
1443 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
1444 __free_pages_boot_core(page, 0);
1448 /* Completion tracking for deferred_init_memmap() threads */
1449 static atomic_t pgdat_init_n_undone __initdata;
1450 static __initdata DECLARE_COMPLETION(pgdat_init_all_done_comp);
1452 static inline void __init pgdat_init_report_one_done(void)
1454 if (atomic_dec_and_test(&pgdat_init_n_undone))
1455 complete(&pgdat_init_all_done_comp);
1459 * Returns true if page needs to be initialized or freed to buddy allocator.
1461 * First we check if pfn is valid on architectures where it is possible to have
1462 * holes within pageblock_nr_pages. On systems where it is not possible, this
1463 * function is optimized out.
1465 * Then, we check if a current large page is valid by only checking the validity
1468 * Finally, meminit_pfn_in_nid is checked on systems where pfns can interleave
1469 * within a node: a pfn is between start and end of a node, but does not belong
1470 * to this memory node.
1472 static inline bool __init
1473 deferred_pfn_valid(int nid, unsigned long pfn,
1474 struct mminit_pfnnid_cache *nid_init_state)
1476 if (!pfn_valid_within(pfn))
1478 if (!(pfn & (pageblock_nr_pages - 1)) && !pfn_valid(pfn))
1480 if (!meminit_pfn_in_nid(pfn, nid, nid_init_state))
1486 * Free pages to buddy allocator. Try to free aligned pages in
1487 * pageblock_nr_pages sizes.
1489 static void __init deferred_free_pages(int nid, int zid, unsigned long pfn,
1490 unsigned long end_pfn)
1492 struct mminit_pfnnid_cache nid_init_state = { };
1493 unsigned long nr_pgmask = pageblock_nr_pages - 1;
1494 unsigned long nr_free = 0;
1496 for (; pfn < end_pfn; pfn++) {
1497 if (!deferred_pfn_valid(nid, pfn, &nid_init_state)) {
1498 deferred_free_range(pfn - nr_free, nr_free);
1500 } else if (!(pfn & nr_pgmask)) {
1501 deferred_free_range(pfn - nr_free, nr_free);
1503 touch_nmi_watchdog();
1508 /* Free the last block of pages to allocator */
1509 deferred_free_range(pfn - nr_free, nr_free);
1513 * Initialize struct pages. We minimize pfn page lookups and scheduler checks
1514 * by performing it only once every pageblock_nr_pages.
1515 * Return number of pages initialized.
1517 static unsigned long __init deferred_init_pages(int nid, int zid,
1519 unsigned long end_pfn)
1521 struct mminit_pfnnid_cache nid_init_state = { };
1522 unsigned long nr_pgmask = pageblock_nr_pages - 1;
1523 unsigned long nr_pages = 0;
1524 struct page *page = NULL;
1526 for (; pfn < end_pfn; pfn++) {
1527 if (!deferred_pfn_valid(nid, pfn, &nid_init_state)) {
1530 } else if (!page || !(pfn & nr_pgmask)) {
1531 page = pfn_to_page(pfn);
1532 touch_nmi_watchdog();
1536 __init_single_page(page, pfn, zid, nid);
1542 /* Initialise remaining memory on a node */
1543 static int __init deferred_init_memmap(void *data)
1545 pg_data_t *pgdat = data;
1546 int nid = pgdat->node_id;
1547 unsigned long start = jiffies;
1548 unsigned long nr_pages = 0;
1549 unsigned long spfn, epfn, first_init_pfn, flags;
1550 phys_addr_t spa, epa;
1553 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
1556 /* Bind memory initialisation thread to a local node if possible */
1557 if (!cpumask_empty(cpumask))
1558 set_cpus_allowed_ptr(current, cpumask);
1560 pgdat_resize_lock(pgdat, &flags);
1561 first_init_pfn = pgdat->first_deferred_pfn;
1562 if (first_init_pfn == ULONG_MAX) {
1563 pgdat_resize_unlock(pgdat, &flags);
1564 pgdat_init_report_one_done();
1568 /* Sanity check boundaries */
1569 BUG_ON(pgdat->first_deferred_pfn < pgdat->node_start_pfn);
1570 BUG_ON(pgdat->first_deferred_pfn > pgdat_end_pfn(pgdat));
1571 pgdat->first_deferred_pfn = ULONG_MAX;
1573 /* Only the highest zone is deferred so find it */
1574 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1575 zone = pgdat->node_zones + zid;
1576 if (first_init_pfn < zone_end_pfn(zone))
1579 first_init_pfn = max(zone->zone_start_pfn, first_init_pfn);
1582 * Initialize and free pages. We do it in two loops: first we initialize
1583 * struct page, than free to buddy allocator, because while we are
1584 * freeing pages we can access pages that are ahead (computing buddy
1585 * page in __free_one_page()).
1587 for_each_free_mem_range(i, nid, MEMBLOCK_NONE, &spa, &epa, NULL) {
1588 spfn = max_t(unsigned long, first_init_pfn, PFN_UP(spa));
1589 epfn = min_t(unsigned long, zone_end_pfn(zone), PFN_DOWN(epa));
1590 nr_pages += deferred_init_pages(nid, zid, spfn, epfn);
1592 for_each_free_mem_range(i, nid, MEMBLOCK_NONE, &spa, &epa, NULL) {
1593 spfn = max_t(unsigned long, first_init_pfn, PFN_UP(spa));
1594 epfn = min_t(unsigned long, zone_end_pfn(zone), PFN_DOWN(epa));
1595 deferred_free_pages(nid, zid, spfn, epfn);
1597 pgdat_resize_unlock(pgdat, &flags);
1599 /* Sanity check that the next zone really is unpopulated */
1600 WARN_ON(++zid < MAX_NR_ZONES && populated_zone(++zone));
1602 pr_info("node %d initialised, %lu pages in %ums\n", nid, nr_pages,
1603 jiffies_to_msecs(jiffies - start));
1605 pgdat_init_report_one_done();
1610 * During boot we initialize deferred pages on-demand, as needed, but once
1611 * page_alloc_init_late() has finished, the deferred pages are all initialized,
1612 * and we can permanently disable that path.
1614 static DEFINE_STATIC_KEY_TRUE(deferred_pages);
1617 * If this zone has deferred pages, try to grow it by initializing enough
1618 * deferred pages to satisfy the allocation specified by order, rounded up to
1619 * the nearest PAGES_PER_SECTION boundary. So we're adding memory in increments
1620 * of SECTION_SIZE bytes by initializing struct pages in increments of
1621 * PAGES_PER_SECTION * sizeof(struct page) bytes.
1623 * Return true when zone was grown, otherwise return false. We return true even
1624 * when we grow less than requested, to let the caller decide if there are
1625 * enough pages to satisfy the allocation.
1627 * Note: We use noinline because this function is needed only during boot, and
1628 * it is called from a __ref function _deferred_grow_zone. This way we are
1629 * making sure that it is not inlined into permanent text section.
1631 static noinline bool __init
1632 deferred_grow_zone(struct zone *zone, unsigned int order)
1634 int zid = zone_idx(zone);
1635 int nid = zone_to_nid(zone);
1636 pg_data_t *pgdat = NODE_DATA(nid);
1637 unsigned long nr_pages_needed = ALIGN(1 << order, PAGES_PER_SECTION);
1638 unsigned long nr_pages = 0;
1639 unsigned long first_init_pfn, spfn, epfn, t, flags;
1640 unsigned long first_deferred_pfn = pgdat->first_deferred_pfn;
1641 phys_addr_t spa, epa;
1644 /* Only the last zone may have deferred pages */
1645 if (zone_end_pfn(zone) != pgdat_end_pfn(pgdat))
1648 pgdat_resize_lock(pgdat, &flags);
1651 * If deferred pages have been initialized while we were waiting for
1652 * the lock, return true, as the zone was grown. The caller will retry
1653 * this zone. We won't return to this function since the caller also
1654 * has this static branch.
1656 if (!static_branch_unlikely(&deferred_pages)) {
1657 pgdat_resize_unlock(pgdat, &flags);
1662 * If someone grew this zone while we were waiting for spinlock, return
1663 * true, as there might be enough pages already.
1665 if (first_deferred_pfn != pgdat->first_deferred_pfn) {
1666 pgdat_resize_unlock(pgdat, &flags);
1670 first_init_pfn = max(zone->zone_start_pfn, first_deferred_pfn);
1672 if (first_init_pfn >= pgdat_end_pfn(pgdat)) {
1673 pgdat_resize_unlock(pgdat, &flags);
1677 for_each_free_mem_range(i, nid, MEMBLOCK_NONE, &spa, &epa, NULL) {
1678 spfn = max_t(unsigned long, first_init_pfn, PFN_UP(spa));
1679 epfn = min_t(unsigned long, zone_end_pfn(zone), PFN_DOWN(epa));
1681 while (spfn < epfn && nr_pages < nr_pages_needed) {
1682 t = ALIGN(spfn + PAGES_PER_SECTION, PAGES_PER_SECTION);
1683 first_deferred_pfn = min(t, epfn);
1684 nr_pages += deferred_init_pages(nid, zid, spfn,
1685 first_deferred_pfn);
1686 spfn = first_deferred_pfn;
1689 if (nr_pages >= nr_pages_needed)
1693 for_each_free_mem_range(i, nid, MEMBLOCK_NONE, &spa, &epa, NULL) {
1694 spfn = max_t(unsigned long, first_init_pfn, PFN_UP(spa));
1695 epfn = min_t(unsigned long, first_deferred_pfn, PFN_DOWN(epa));
1696 deferred_free_pages(nid, zid, spfn, epfn);
1698 if (first_deferred_pfn == epfn)
1701 pgdat->first_deferred_pfn = first_deferred_pfn;
1702 pgdat_resize_unlock(pgdat, &flags);
1704 return nr_pages > 0;
1708 * deferred_grow_zone() is __init, but it is called from
1709 * get_page_from_freelist() during early boot until deferred_pages permanently
1710 * disables this call. This is why we have refdata wrapper to avoid warning,
1711 * and to ensure that the function body gets unloaded.
1714 _deferred_grow_zone(struct zone *zone, unsigned int order)
1716 return deferred_grow_zone(zone, order);
1719 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
1721 void __init page_alloc_init_late(void)
1725 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1728 /* There will be num_node_state(N_MEMORY) threads */
1729 atomic_set(&pgdat_init_n_undone, num_node_state(N_MEMORY));
1730 for_each_node_state(nid, N_MEMORY) {
1731 kthread_run(deferred_init_memmap, NODE_DATA(nid), "pgdatinit%d", nid);
1734 /* Block until all are initialised */
1735 wait_for_completion(&pgdat_init_all_done_comp);
1738 * We initialized the rest of the deferred pages. Permanently disable
1739 * on-demand struct page initialization.
1741 static_branch_disable(&deferred_pages);
1743 /* Reinit limits that are based on free pages after the kernel is up */
1744 files_maxfiles_init();
1746 #ifdef CONFIG_ARCH_DISCARD_MEMBLOCK
1747 /* Discard memblock private memory */
1751 for_each_populated_zone(zone)
1752 set_zone_contiguous(zone);
1756 /* Free whole pageblock and set its migration type to MIGRATE_CMA. */
1757 void __init init_cma_reserved_pageblock(struct page *page)
1759 unsigned i = pageblock_nr_pages;
1760 struct page *p = page;
1763 __ClearPageReserved(p);
1764 set_page_count(p, 0);
1767 set_pageblock_migratetype(page, MIGRATE_CMA);
1769 if (pageblock_order >= MAX_ORDER) {
1770 i = pageblock_nr_pages;
1773 set_page_refcounted(p);
1774 __free_pages(p, MAX_ORDER - 1);
1775 p += MAX_ORDER_NR_PAGES;
1776 } while (i -= MAX_ORDER_NR_PAGES);
1778 set_page_refcounted(page);
1779 __free_pages(page, pageblock_order);
1782 adjust_managed_page_count(page, pageblock_nr_pages);
1787 * The order of subdivision here is critical for the IO subsystem.
1788 * Please do not alter this order without good reasons and regression
1789 * testing. Specifically, as large blocks of memory are subdivided,
1790 * the order in which smaller blocks are delivered depends on the order
1791 * they're subdivided in this function. This is the primary factor
1792 * influencing the order in which pages are delivered to the IO
1793 * subsystem according to empirical testing, and this is also justified
1794 * by considering the behavior of a buddy system containing a single
1795 * large block of memory acted on by a series of small allocations.
1796 * This behavior is a critical factor in sglist merging's success.
1800 static inline void expand(struct zone *zone, struct page *page,
1801 int low, int high, struct free_area *area,
1804 unsigned long size = 1 << high;
1806 while (high > low) {
1810 VM_BUG_ON_PAGE(bad_range(zone, &page[size]), &page[size]);
1813 * Mark as guard pages (or page), that will allow to
1814 * merge back to allocator when buddy will be freed.
1815 * Corresponding page table entries will not be touched,
1816 * pages will stay not present in virtual address space
1818 if (set_page_guard(zone, &page[size], high, migratetype))
1821 list_add(&page[size].lru, &area->free_list[migratetype]);
1823 set_page_order(&page[size], high);
1827 static void check_new_page_bad(struct page *page)
1829 const char *bad_reason = NULL;
1830 unsigned long bad_flags = 0;
1832 if (unlikely(atomic_read(&page->_mapcount) != -1))
1833 bad_reason = "nonzero mapcount";
1834 if (unlikely(page->mapping != NULL))
1835 bad_reason = "non-NULL mapping";
1836 if (unlikely(page_ref_count(page) != 0))
1837 bad_reason = "nonzero _count";
1838 if (unlikely(page->flags & __PG_HWPOISON)) {
1839 bad_reason = "HWPoisoned (hardware-corrupted)";
1840 bad_flags = __PG_HWPOISON;
1841 /* Don't complain about hwpoisoned pages */
1842 page_mapcount_reset(page); /* remove PageBuddy */
1845 if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_PREP)) {
1846 bad_reason = "PAGE_FLAGS_CHECK_AT_PREP flag set";
1847 bad_flags = PAGE_FLAGS_CHECK_AT_PREP;
1850 if (unlikely(page->mem_cgroup))
1851 bad_reason = "page still charged to cgroup";
1853 bad_page(page, bad_reason, bad_flags);
1857 * This page is about to be returned from the page allocator
1859 static inline int check_new_page(struct page *page)
1861 if (likely(page_expected_state(page,
1862 PAGE_FLAGS_CHECK_AT_PREP|__PG_HWPOISON)))
1865 check_new_page_bad(page);
1869 static inline bool free_pages_prezeroed(void)
1871 return IS_ENABLED(CONFIG_PAGE_POISONING_ZERO) &&
1872 page_poisoning_enabled();
1875 #ifdef CONFIG_DEBUG_VM
1876 static bool check_pcp_refill(struct page *page)
1881 static bool check_new_pcp(struct page *page)
1883 return check_new_page(page);
1886 static bool check_pcp_refill(struct page *page)
1888 return check_new_page(page);
1890 static bool check_new_pcp(struct page *page)
1894 #endif /* CONFIG_DEBUG_VM */
1896 static bool check_new_pages(struct page *page, unsigned int order)
1899 for (i = 0; i < (1 << order); i++) {
1900 struct page *p = page + i;
1902 if (unlikely(check_new_page(p)))
1909 inline void post_alloc_hook(struct page *page, unsigned int order,
1912 set_page_private(page, 0);
1913 set_page_refcounted(page);
1915 arch_alloc_page(page, order);
1916 kernel_map_pages(page, 1 << order, 1);
1917 kernel_poison_pages(page, 1 << order, 1);
1918 kasan_alloc_pages(page, order);
1919 set_page_owner(page, order, gfp_flags);
1922 static void prep_new_page(struct page *page, unsigned int order, gfp_t gfp_flags,
1923 unsigned int alloc_flags)
1927 post_alloc_hook(page, order, gfp_flags);
1929 if (!free_pages_prezeroed() && (gfp_flags & __GFP_ZERO))
1930 for (i = 0; i < (1 << order); i++)
1931 clear_highpage(page + i);
1933 if (order && (gfp_flags & __GFP_COMP))
1934 prep_compound_page(page, order);
1937 * page is set pfmemalloc when ALLOC_NO_WATERMARKS was necessary to
1938 * allocate the page. The expectation is that the caller is taking
1939 * steps that will free more memory. The caller should avoid the page
1940 * being used for !PFMEMALLOC purposes.
1942 if (alloc_flags & ALLOC_NO_WATERMARKS)
1943 set_page_pfmemalloc(page);
1945 clear_page_pfmemalloc(page);
1949 * Go through the free lists for the given migratetype and remove
1950 * the smallest available page from the freelists
1952 static __always_inline
1953 struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
1956 unsigned int current_order;
1957 struct free_area *area;
1960 /* Find a page of the appropriate size in the preferred list */
1961 for (current_order = order; current_order < MAX_ORDER; ++current_order) {
1962 area = &(zone->free_area[current_order]);
1963 page = list_first_entry_or_null(&area->free_list[migratetype],
1967 list_del(&page->lru);
1968 rmv_page_order(page);
1970 expand(zone, page, order, current_order, area, migratetype);
1971 set_pcppage_migratetype(page, migratetype);
1980 * This array describes the order lists are fallen back to when
1981 * the free lists for the desirable migrate type are depleted
1983 static int fallbacks[MIGRATE_TYPES][4] = {
1984 [MIGRATE_UNMOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE, MIGRATE_TYPES },
1985 [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE, MIGRATE_TYPES },
1986 [MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_TYPES },
1988 [MIGRATE_CMA] = { MIGRATE_TYPES }, /* Never used */
1990 #ifdef CONFIG_MEMORY_ISOLATION
1991 [MIGRATE_ISOLATE] = { MIGRATE_TYPES }, /* Never used */
1996 static __always_inline struct page *__rmqueue_cma_fallback(struct zone *zone,
1999 return __rmqueue_smallest(zone, order, MIGRATE_CMA);
2002 static inline struct page *__rmqueue_cma_fallback(struct zone *zone,
2003 unsigned int order) { return NULL; }
2007 * Move the free pages in a range to the free lists of the requested type.
2008 * Note that start_page and end_pages are not aligned on a pageblock
2009 * boundary. If alignment is required, use move_freepages_block()
2011 static int move_freepages(struct zone *zone,
2012 struct page *start_page, struct page *end_page,
2013 int migratetype, int *num_movable)
2017 int pages_moved = 0;
2019 #ifndef CONFIG_HOLES_IN_ZONE
2021 * page_zone is not safe to call in this context when
2022 * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant
2023 * anyway as we check zone boundaries in move_freepages_block().
2024 * Remove at a later date when no bug reports exist related to
2025 * grouping pages by mobility
2027 VM_BUG_ON(pfn_valid(page_to_pfn(start_page)) &&
2028 pfn_valid(page_to_pfn(end_page)) &&
2029 page_zone(start_page) != page_zone(end_page));
2031 for (page = start_page; page <= end_page;) {
2032 if (!pfn_valid_within(page_to_pfn(page))) {
2037 /* Make sure we are not inadvertently changing nodes */
2038 VM_BUG_ON_PAGE(page_to_nid(page) != zone_to_nid(zone), page);
2040 if (!PageBuddy(page)) {
2042 * We assume that pages that could be isolated for
2043 * migration are movable. But we don't actually try
2044 * isolating, as that would be expensive.
2047 (PageLRU(page) || __PageMovable(page)))
2054 order = page_order(page);
2055 list_move(&page->lru,
2056 &zone->free_area[order].free_list[migratetype]);
2058 pages_moved += 1 << order;
2064 int move_freepages_block(struct zone *zone, struct page *page,
2065 int migratetype, int *num_movable)
2067 unsigned long start_pfn, end_pfn;
2068 struct page *start_page, *end_page;
2073 start_pfn = page_to_pfn(page);
2074 start_pfn = start_pfn & ~(pageblock_nr_pages-1);
2075 start_page = pfn_to_page(start_pfn);
2076 end_page = start_page + pageblock_nr_pages - 1;
2077 end_pfn = start_pfn + pageblock_nr_pages - 1;
2079 /* Do not cross zone boundaries */
2080 if (!zone_spans_pfn(zone, start_pfn))
2082 if (!zone_spans_pfn(zone, end_pfn))
2085 return move_freepages(zone, start_page, end_page, migratetype,
2089 static void change_pageblock_range(struct page *pageblock_page,
2090 int start_order, int migratetype)
2092 int nr_pageblocks = 1 << (start_order - pageblock_order);
2094 while (nr_pageblocks--) {
2095 set_pageblock_migratetype(pageblock_page, migratetype);
2096 pageblock_page += pageblock_nr_pages;
2101 * When we are falling back to another migratetype during allocation, try to
2102 * steal extra free pages from the same pageblocks to satisfy further
2103 * allocations, instead of polluting multiple pageblocks.
2105 * If we are stealing a relatively large buddy page, it is likely there will
2106 * be more free pages in the pageblock, so try to steal them all. For
2107 * reclaimable and unmovable allocations, we steal regardless of page size,
2108 * as fragmentation caused by those allocations polluting movable pageblocks
2109 * is worse than movable allocations stealing from unmovable and reclaimable
2112 static bool can_steal_fallback(unsigned int order, int start_mt)
2115 * Leaving this order check is intended, although there is
2116 * relaxed order check in next check. The reason is that
2117 * we can actually steal whole pageblock if this condition met,
2118 * but, below check doesn't guarantee it and that is just heuristic
2119 * so could be changed anytime.
2121 if (order >= pageblock_order)
2124 if (order >= pageblock_order / 2 ||
2125 start_mt == MIGRATE_RECLAIMABLE ||
2126 start_mt == MIGRATE_UNMOVABLE ||
2127 page_group_by_mobility_disabled)
2134 * This function implements actual steal behaviour. If order is large enough,
2135 * we can steal whole pageblock. If not, we first move freepages in this
2136 * pageblock to our migratetype and determine how many already-allocated pages
2137 * are there in the pageblock with a compatible migratetype. If at least half
2138 * of pages are free or compatible, we can change migratetype of the pageblock
2139 * itself, so pages freed in the future will be put on the correct free list.
2141 static void steal_suitable_fallback(struct zone *zone, struct page *page,
2142 int start_type, bool whole_block)
2144 unsigned int current_order = page_order(page);
2145 struct free_area *area;
2146 int free_pages, movable_pages, alike_pages;
2149 old_block_type = get_pageblock_migratetype(page);
2152 * This can happen due to races and we want to prevent broken
2153 * highatomic accounting.
2155 if (is_migrate_highatomic(old_block_type))
2158 /* Take ownership for orders >= pageblock_order */
2159 if (current_order >= pageblock_order) {
2160 change_pageblock_range(page, current_order, start_type);
2164 /* We are not allowed to try stealing from the whole block */
2168 free_pages = move_freepages_block(zone, page, start_type,
2171 * Determine how many pages are compatible with our allocation.
2172 * For movable allocation, it's the number of movable pages which
2173 * we just obtained. For other types it's a bit more tricky.
2175 if (start_type == MIGRATE_MOVABLE) {
2176 alike_pages = movable_pages;
2179 * If we are falling back a RECLAIMABLE or UNMOVABLE allocation
2180 * to MOVABLE pageblock, consider all non-movable pages as
2181 * compatible. If it's UNMOVABLE falling back to RECLAIMABLE or
2182 * vice versa, be conservative since we can't distinguish the
2183 * exact migratetype of non-movable pages.
2185 if (old_block_type == MIGRATE_MOVABLE)
2186 alike_pages = pageblock_nr_pages
2187 - (free_pages + movable_pages);
2192 /* moving whole block can fail due to zone boundary conditions */
2197 * If a sufficient number of pages in the block are either free or of
2198 * comparable migratability as our allocation, claim the whole block.
2200 if (free_pages + alike_pages >= (1 << (pageblock_order-1)) ||
2201 page_group_by_mobility_disabled)
2202 set_pageblock_migratetype(page, start_type);
2207 area = &zone->free_area[current_order];
2208 list_move(&page->lru, &area->free_list[start_type]);
2212 * Check whether there is a suitable fallback freepage with requested order.
2213 * If only_stealable is true, this function returns fallback_mt only if
2214 * we can steal other freepages all together. This would help to reduce
2215 * fragmentation due to mixed migratetype pages in one pageblock.
2217 int find_suitable_fallback(struct free_area *area, unsigned int order,
2218 int migratetype, bool only_stealable, bool *can_steal)
2223 if (area->nr_free == 0)
2228 fallback_mt = fallbacks[migratetype][i];
2229 if (fallback_mt == MIGRATE_TYPES)
2232 if (list_empty(&area->free_list[fallback_mt]))
2235 if (can_steal_fallback(order, migratetype))
2238 if (!only_stealable)
2249 * Reserve a pageblock for exclusive use of high-order atomic allocations if
2250 * there are no empty page blocks that contain a page with a suitable order
2252 static void reserve_highatomic_pageblock(struct page *page, struct zone *zone,
2253 unsigned int alloc_order)
2256 unsigned long max_managed, flags;
2259 * Limit the number reserved to 1 pageblock or roughly 1% of a zone.
2260 * Check is race-prone but harmless.
2262 max_managed = (zone->managed_pages / 100) + pageblock_nr_pages;
2263 if (zone->nr_reserved_highatomic >= max_managed)
2266 spin_lock_irqsave(&zone->lock, flags);
2268 /* Recheck the nr_reserved_highatomic limit under the lock */
2269 if (zone->nr_reserved_highatomic >= max_managed)
2273 mt = get_pageblock_migratetype(page);
2274 if (!is_migrate_highatomic(mt) && !is_migrate_isolate(mt)
2275 && !is_migrate_cma(mt)) {
2276 zone->nr_reserved_highatomic += pageblock_nr_pages;
2277 set_pageblock_migratetype(page, MIGRATE_HIGHATOMIC);
2278 move_freepages_block(zone, page, MIGRATE_HIGHATOMIC, NULL);
2282 spin_unlock_irqrestore(&zone->lock, flags);
2286 * Used when an allocation is about to fail under memory pressure. This
2287 * potentially hurts the reliability of high-order allocations when under
2288 * intense memory pressure but failed atomic allocations should be easier
2289 * to recover from than an OOM.
2291 * If @force is true, try to unreserve a pageblock even though highatomic
2292 * pageblock is exhausted.
2294 static bool unreserve_highatomic_pageblock(const struct alloc_context *ac,
2297 struct zonelist *zonelist = ac->zonelist;
2298 unsigned long flags;
2305 for_each_zone_zonelist_nodemask(zone, z, zonelist, ac->high_zoneidx,
2308 * Preserve at least one pageblock unless memory pressure
2311 if (!force && zone->nr_reserved_highatomic <=
2315 spin_lock_irqsave(&zone->lock, flags);
2316 for (order = 0; order < MAX_ORDER; order++) {
2317 struct free_area *area = &(zone->free_area[order]);
2319 page = list_first_entry_or_null(
2320 &area->free_list[MIGRATE_HIGHATOMIC],
2326 * In page freeing path, migratetype change is racy so
2327 * we can counter several free pages in a pageblock
2328 * in this loop althoug we changed the pageblock type
2329 * from highatomic to ac->migratetype. So we should
2330 * adjust the count once.
2332 if (is_migrate_highatomic_page(page)) {
2334 * It should never happen but changes to
2335 * locking could inadvertently allow a per-cpu
2336 * drain to add pages to MIGRATE_HIGHATOMIC
2337 * while unreserving so be safe and watch for
2340 zone->nr_reserved_highatomic -= min(
2342 zone->nr_reserved_highatomic);
2346 * Convert to ac->migratetype and avoid the normal
2347 * pageblock stealing heuristics. Minimally, the caller
2348 * is doing the work and needs the pages. More
2349 * importantly, if the block was always converted to
2350 * MIGRATE_UNMOVABLE or another type then the number
2351 * of pageblocks that cannot be completely freed
2354 set_pageblock_migratetype(page, ac->migratetype);
2355 ret = move_freepages_block(zone, page, ac->migratetype,
2358 spin_unlock_irqrestore(&zone->lock, flags);
2362 spin_unlock_irqrestore(&zone->lock, flags);
2369 * Try finding a free buddy page on the fallback list and put it on the free
2370 * list of requested migratetype, possibly along with other pages from the same
2371 * block, depending on fragmentation avoidance heuristics. Returns true if
2372 * fallback was found so that __rmqueue_smallest() can grab it.
2374 * The use of signed ints for order and current_order is a deliberate
2375 * deviation from the rest of this file, to make the for loop
2376 * condition simpler.
2378 static __always_inline bool
2379 __rmqueue_fallback(struct zone *zone, int order, int start_migratetype)
2381 struct free_area *area;
2388 * Find the largest available free page in the other list. This roughly
2389 * approximates finding the pageblock with the most free pages, which
2390 * would be too costly to do exactly.
2392 for (current_order = MAX_ORDER - 1; current_order >= order;
2394 area = &(zone->free_area[current_order]);
2395 fallback_mt = find_suitable_fallback(area, current_order,
2396 start_migratetype, false, &can_steal);
2397 if (fallback_mt == -1)
2401 * We cannot steal all free pages from the pageblock and the
2402 * requested migratetype is movable. In that case it's better to
2403 * steal and split the smallest available page instead of the
2404 * largest available page, because even if the next movable
2405 * allocation falls back into a different pageblock than this
2406 * one, it won't cause permanent fragmentation.
2408 if (!can_steal && start_migratetype == MIGRATE_MOVABLE
2409 && current_order > order)
2418 for (current_order = order; current_order < MAX_ORDER;
2420 area = &(zone->free_area[current_order]);
2421 fallback_mt = find_suitable_fallback(area, current_order,
2422 start_migratetype, false, &can_steal);
2423 if (fallback_mt != -1)
2428 * This should not happen - we already found a suitable fallback
2429 * when looking for the largest page.
2431 VM_BUG_ON(current_order == MAX_ORDER);
2434 page = list_first_entry(&area->free_list[fallback_mt],
2437 steal_suitable_fallback(zone, page, start_migratetype, can_steal);
2439 trace_mm_page_alloc_extfrag(page, order, current_order,
2440 start_migratetype, fallback_mt);
2447 * Do the hard work of removing an element from the buddy allocator.
2448 * Call me with the zone->lock already held.
2450 static __always_inline struct page *
2451 __rmqueue(struct zone *zone, unsigned int order, int migratetype)
2456 page = __rmqueue_smallest(zone, order, migratetype);
2457 if (unlikely(!page)) {
2458 if (migratetype == MIGRATE_MOVABLE)
2459 page = __rmqueue_cma_fallback(zone, order);
2461 if (!page && __rmqueue_fallback(zone, order, migratetype))
2465 trace_mm_page_alloc_zone_locked(page, order, migratetype);
2470 * Obtain a specified number of elements from the buddy allocator, all under
2471 * a single hold of the lock, for efficiency. Add them to the supplied list.
2472 * Returns the number of new pages which were placed at *list.
2474 static int rmqueue_bulk(struct zone *zone, unsigned int order,
2475 unsigned long count, struct list_head *list,
2480 spin_lock(&zone->lock);
2481 for (i = 0; i < count; ++i) {
2482 struct page *page = __rmqueue(zone, order, migratetype);
2483 if (unlikely(page == NULL))
2486 if (unlikely(check_pcp_refill(page)))
2490 * Split buddy pages returned by expand() are received here in
2491 * physical page order. The page is added to the tail of
2492 * caller's list. From the callers perspective, the linked list
2493 * is ordered by page number under some conditions. This is
2494 * useful for IO devices that can forward direction from the
2495 * head, thus also in the physical page order. This is useful
2496 * for IO devices that can merge IO requests if the physical
2497 * pages are ordered properly.
2499 list_add_tail(&page->lru, list);
2501 if (is_migrate_cma(get_pcppage_migratetype(page)))
2502 __mod_zone_page_state(zone, NR_FREE_CMA_PAGES,
2507 * i pages were removed from the buddy list even if some leak due
2508 * to check_pcp_refill failing so adjust NR_FREE_PAGES based
2509 * on i. Do not confuse with 'alloced' which is the number of
2510 * pages added to the pcp list.
2512 __mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order));
2513 spin_unlock(&zone->lock);
2519 * Called from the vmstat counter updater to drain pagesets of this
2520 * currently executing processor on remote nodes after they have
2523 * Note that this function must be called with the thread pinned to
2524 * a single processor.
2526 void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
2528 unsigned long flags;
2529 int to_drain, batch;
2531 local_irq_save(flags);
2532 batch = READ_ONCE(pcp->batch);
2533 to_drain = min(pcp->count, batch);
2535 free_pcppages_bulk(zone, to_drain, pcp);
2536 local_irq_restore(flags);
2541 * Drain pcplists of the indicated processor and zone.
2543 * The processor must either be the current processor and the
2544 * thread pinned to the current processor or a processor that
2547 static void drain_pages_zone(unsigned int cpu, struct zone *zone)
2549 unsigned long flags;
2550 struct per_cpu_pageset *pset;
2551 struct per_cpu_pages *pcp;
2553 local_irq_save(flags);
2554 pset = per_cpu_ptr(zone->pageset, cpu);
2558 free_pcppages_bulk(zone, pcp->count, pcp);
2559 local_irq_restore(flags);
2563 * Drain pcplists of all zones on the indicated processor.
2565 * The processor must either be the current processor and the
2566 * thread pinned to the current processor or a processor that
2569 static void drain_pages(unsigned int cpu)
2573 for_each_populated_zone(zone) {
2574 drain_pages_zone(cpu, zone);
2579 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
2581 * The CPU has to be pinned. When zone parameter is non-NULL, spill just
2582 * the single zone's pages.
2584 void drain_local_pages(struct zone *zone)
2586 int cpu = smp_processor_id();
2589 drain_pages_zone(cpu, zone);
2594 static void drain_local_pages_wq(struct work_struct *work)
2597 * drain_all_pages doesn't use proper cpu hotplug protection so
2598 * we can race with cpu offline when the WQ can move this from
2599 * a cpu pinned worker to an unbound one. We can operate on a different
2600 * cpu which is allright but we also have to make sure to not move to
2604 drain_local_pages(NULL);
2609 * Spill all the per-cpu pages from all CPUs back into the buddy allocator.
2611 * When zone parameter is non-NULL, spill just the single zone's pages.
2613 * Note that this can be extremely slow as the draining happens in a workqueue.
2615 void drain_all_pages(struct zone *zone)
2620 * Allocate in the BSS so we wont require allocation in
2621 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y
2623 static cpumask_t cpus_with_pcps;
2626 * Make sure nobody triggers this path before mm_percpu_wq is fully
2629 if (WARN_ON_ONCE(!mm_percpu_wq))
2633 * Do not drain if one is already in progress unless it's specific to
2634 * a zone. Such callers are primarily CMA and memory hotplug and need
2635 * the drain to be complete when the call returns.
2637 if (unlikely(!mutex_trylock(&pcpu_drain_mutex))) {
2640 mutex_lock(&pcpu_drain_mutex);
2644 * We don't care about racing with CPU hotplug event
2645 * as offline notification will cause the notified
2646 * cpu to drain that CPU pcps and on_each_cpu_mask
2647 * disables preemption as part of its processing
2649 for_each_online_cpu(cpu) {
2650 struct per_cpu_pageset *pcp;
2652 bool has_pcps = false;
2655 pcp = per_cpu_ptr(zone->pageset, cpu);
2659 for_each_populated_zone(z) {
2660 pcp = per_cpu_ptr(z->pageset, cpu);
2661 if (pcp->pcp.count) {
2669 cpumask_set_cpu(cpu, &cpus_with_pcps);
2671 cpumask_clear_cpu(cpu, &cpus_with_pcps);
2674 for_each_cpu(cpu, &cpus_with_pcps) {
2675 struct work_struct *work = per_cpu_ptr(&pcpu_drain, cpu);
2676 INIT_WORK(work, drain_local_pages_wq);
2677 queue_work_on(cpu, mm_percpu_wq, work);
2679 for_each_cpu(cpu, &cpus_with_pcps)
2680 flush_work(per_cpu_ptr(&pcpu_drain, cpu));
2682 mutex_unlock(&pcpu_drain_mutex);
2685 #ifdef CONFIG_HIBERNATION
2688 * Touch the watchdog for every WD_PAGE_COUNT pages.
2690 #define WD_PAGE_COUNT (128*1024)
2692 void mark_free_pages(struct zone *zone)
2694 unsigned long pfn, max_zone_pfn, page_count = WD_PAGE_COUNT;
2695 unsigned long flags;
2696 unsigned int order, t;
2699 if (zone_is_empty(zone))
2702 spin_lock_irqsave(&zone->lock, flags);
2704 max_zone_pfn = zone_end_pfn(zone);
2705 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
2706 if (pfn_valid(pfn)) {
2707 page = pfn_to_page(pfn);
2709 if (!--page_count) {
2710 touch_nmi_watchdog();
2711 page_count = WD_PAGE_COUNT;
2714 if (page_zone(page) != zone)
2717 if (!swsusp_page_is_forbidden(page))
2718 swsusp_unset_page_free(page);
2721 for_each_migratetype_order(order, t) {
2722 list_for_each_entry(page,
2723 &zone->free_area[order].free_list[t], lru) {
2726 pfn = page_to_pfn(page);
2727 for (i = 0; i < (1UL << order); i++) {
2728 if (!--page_count) {
2729 touch_nmi_watchdog();
2730 page_count = WD_PAGE_COUNT;
2732 swsusp_set_page_free(pfn_to_page(pfn + i));
2736 spin_unlock_irqrestore(&zone->lock, flags);
2738 #endif /* CONFIG_PM */
2740 static bool free_unref_page_prepare(struct page *page, unsigned long pfn)
2744 if (!free_pcp_prepare(page))
2747 migratetype = get_pfnblock_migratetype(page, pfn);
2748 set_pcppage_migratetype(page, migratetype);
2752 static void free_unref_page_commit(struct page *page, unsigned long pfn)
2754 struct zone *zone = page_zone(page);
2755 struct per_cpu_pages *pcp;
2758 migratetype = get_pcppage_migratetype(page);
2759 __count_vm_event(PGFREE);
2762 * We only track unmovable, reclaimable and movable on pcp lists.
2763 * Free ISOLATE pages back to the allocator because they are being
2764 * offlined but treat HIGHATOMIC as movable pages so we can get those
2765 * areas back if necessary. Otherwise, we may have to free
2766 * excessively into the page allocator
2768 if (migratetype >= MIGRATE_PCPTYPES) {
2769 if (unlikely(is_migrate_isolate(migratetype))) {
2770 free_one_page(zone, page, pfn, 0, migratetype);
2773 migratetype = MIGRATE_MOVABLE;
2776 pcp = &this_cpu_ptr(zone->pageset)->pcp;
2777 list_add(&page->lru, &pcp->lists[migratetype]);
2779 if (pcp->count >= pcp->high) {
2780 unsigned long batch = READ_ONCE(pcp->batch);
2781 free_pcppages_bulk(zone, batch, pcp);
2786 * Free a 0-order page
2788 void free_unref_page(struct page *page)
2790 unsigned long flags;
2791 unsigned long pfn = page_to_pfn(page);
2793 if (!free_unref_page_prepare(page, pfn))
2796 local_irq_save(flags);
2797 free_unref_page_commit(page, pfn);
2798 local_irq_restore(flags);
2802 * Free a list of 0-order pages
2804 void free_unref_page_list(struct list_head *list)
2806 struct page *page, *next;
2807 unsigned long flags, pfn;
2808 int batch_count = 0;
2810 /* Prepare pages for freeing */
2811 list_for_each_entry_safe(page, next, list, lru) {
2812 pfn = page_to_pfn(page);
2813 if (!free_unref_page_prepare(page, pfn))
2814 list_del(&page->lru);
2815 set_page_private(page, pfn);
2818 local_irq_save(flags);
2819 list_for_each_entry_safe(page, next, list, lru) {
2820 unsigned long pfn = page_private(page);
2822 set_page_private(page, 0);
2823 trace_mm_page_free_batched(page);
2824 free_unref_page_commit(page, pfn);
2827 * Guard against excessive IRQ disabled times when we get
2828 * a large list of pages to free.
2830 if (++batch_count == SWAP_CLUSTER_MAX) {
2831 local_irq_restore(flags);
2833 local_irq_save(flags);
2836 local_irq_restore(flags);
2840 * split_page takes a non-compound higher-order page, and splits it into
2841 * n (1<<order) sub-pages: page[0..n]
2842 * Each sub-page must be freed individually.
2844 * Note: this is probably too low level an operation for use in drivers.
2845 * Please consult with lkml before using this in your driver.
2847 void split_page(struct page *page, unsigned int order)
2851 VM_BUG_ON_PAGE(PageCompound(page), page);
2852 VM_BUG_ON_PAGE(!page_count(page), page);
2854 for (i = 1; i < (1 << order); i++)
2855 set_page_refcounted(page + i);
2856 split_page_owner(page, order);
2858 EXPORT_SYMBOL_GPL(split_page);
2860 int __isolate_free_page(struct page *page, unsigned int order)
2862 unsigned long watermark;
2866 BUG_ON(!PageBuddy(page));
2868 zone = page_zone(page);
2869 mt = get_pageblock_migratetype(page);
2871 if (!is_migrate_isolate(mt)) {
2873 * Obey watermarks as if the page was being allocated. We can
2874 * emulate a high-order watermark check with a raised order-0
2875 * watermark, because we already know our high-order page
2878 watermark = min_wmark_pages(zone) + (1UL << order);
2879 if (!zone_watermark_ok(zone, 0, watermark, 0, ALLOC_CMA))
2882 __mod_zone_freepage_state(zone, -(1UL << order), mt);
2885 /* Remove page from free list */
2886 list_del(&page->lru);
2887 zone->free_area[order].nr_free--;
2888 rmv_page_order(page);
2891 * Set the pageblock if the isolated page is at least half of a
2894 if (order >= pageblock_order - 1) {
2895 struct page *endpage = page + (1 << order) - 1;
2896 for (; page < endpage; page += pageblock_nr_pages) {
2897 int mt = get_pageblock_migratetype(page);
2898 if (!is_migrate_isolate(mt) && !is_migrate_cma(mt)
2899 && !is_migrate_highatomic(mt))
2900 set_pageblock_migratetype(page,
2906 return 1UL << order;
2910 * Update NUMA hit/miss statistics
2912 * Must be called with interrupts disabled.
2914 static inline void zone_statistics(struct zone *preferred_zone, struct zone *z)
2917 enum numa_stat_item local_stat = NUMA_LOCAL;
2919 /* skip numa counters update if numa stats is disabled */
2920 if (!static_branch_likely(&vm_numa_stat_key))
2923 if (zone_to_nid(z) != numa_node_id())
2924 local_stat = NUMA_OTHER;
2926 if (zone_to_nid(z) == zone_to_nid(preferred_zone))
2927 __inc_numa_state(z, NUMA_HIT);
2929 __inc_numa_state(z, NUMA_MISS);
2930 __inc_numa_state(preferred_zone, NUMA_FOREIGN);
2932 __inc_numa_state(z, local_stat);
2936 /* Remove page from the per-cpu list, caller must protect the list */
2937 static struct page *__rmqueue_pcplist(struct zone *zone, int migratetype,
2938 struct per_cpu_pages *pcp,
2939 struct list_head *list)
2944 if (list_empty(list)) {
2945 pcp->count += rmqueue_bulk(zone, 0,
2948 if (unlikely(list_empty(list)))
2952 page = list_first_entry(list, struct page, lru);
2953 list_del(&page->lru);
2955 } while (check_new_pcp(page));
2960 /* Lock and remove page from the per-cpu list */
2961 static struct page *rmqueue_pcplist(struct zone *preferred_zone,
2962 struct zone *zone, unsigned int order,
2963 gfp_t gfp_flags, int migratetype)
2965 struct per_cpu_pages *pcp;
2966 struct list_head *list;
2968 unsigned long flags;
2970 local_irq_save(flags);
2971 pcp = &this_cpu_ptr(zone->pageset)->pcp;
2972 list = &pcp->lists[migratetype];
2973 page = __rmqueue_pcplist(zone, migratetype, pcp, list);
2975 __count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order);
2976 zone_statistics(preferred_zone, zone);
2978 local_irq_restore(flags);
2983 * Allocate a page from the given zone. Use pcplists for order-0 allocations.
2986 struct page *rmqueue(struct zone *preferred_zone,
2987 struct zone *zone, unsigned int order,
2988 gfp_t gfp_flags, unsigned int alloc_flags,
2991 unsigned long flags;
2994 if (likely(order == 0)) {
2995 page = rmqueue_pcplist(preferred_zone, zone, order,
2996 gfp_flags, migratetype);
3001 * We most definitely don't want callers attempting to
3002 * allocate greater than order-1 page units with __GFP_NOFAIL.
3004 WARN_ON_ONCE((gfp_flags & __GFP_NOFAIL) && (order > 1));
3005 spin_lock_irqsave(&zone->lock, flags);
3009 if (alloc_flags & ALLOC_HARDER) {
3010 page = __rmqueue_smallest(zone, order, MIGRATE_HIGHATOMIC);
3012 trace_mm_page_alloc_zone_locked(page, order, migratetype);
3015 page = __rmqueue(zone, order, migratetype);
3016 } while (page && check_new_pages(page, order));
3017 spin_unlock(&zone->lock);
3020 __mod_zone_freepage_state(zone, -(1 << order),
3021 get_pcppage_migratetype(page));
3023 __count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order);
3024 zone_statistics(preferred_zone, zone);
3025 local_irq_restore(flags);
3028 VM_BUG_ON_PAGE(page && bad_range(zone, page), page);
3032 local_irq_restore(flags);
3036 #ifdef CONFIG_FAIL_PAGE_ALLOC
3039 struct fault_attr attr;
3041 bool ignore_gfp_highmem;
3042 bool ignore_gfp_reclaim;
3044 } fail_page_alloc = {
3045 .attr = FAULT_ATTR_INITIALIZER,
3046 .ignore_gfp_reclaim = true,
3047 .ignore_gfp_highmem = true,
3051 static int __init setup_fail_page_alloc(char *str)
3053 return setup_fault_attr(&fail_page_alloc.attr, str);
3055 __setup("fail_page_alloc=", setup_fail_page_alloc);
3057 static bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
3059 if (order < fail_page_alloc.min_order)
3061 if (gfp_mask & __GFP_NOFAIL)
3063 if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
3065 if (fail_page_alloc.ignore_gfp_reclaim &&
3066 (gfp_mask & __GFP_DIRECT_RECLAIM))
3069 return should_fail(&fail_page_alloc.attr, 1 << order);
3072 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
3074 static int __init fail_page_alloc_debugfs(void)
3076 umode_t mode = S_IFREG | 0600;
3079 dir = fault_create_debugfs_attr("fail_page_alloc", NULL,
3080 &fail_page_alloc.attr);
3082 return PTR_ERR(dir);
3084 if (!debugfs_create_bool("ignore-gfp-wait", mode, dir,
3085 &fail_page_alloc.ignore_gfp_reclaim))
3087 if (!debugfs_create_bool("ignore-gfp-highmem", mode, dir,
3088 &fail_page_alloc.ignore_gfp_highmem))
3090 if (!debugfs_create_u32("min-order", mode, dir,
3091 &fail_page_alloc.min_order))
3096 debugfs_remove_recursive(dir);
3101 late_initcall(fail_page_alloc_debugfs);
3103 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
3105 #else /* CONFIG_FAIL_PAGE_ALLOC */
3107 static inline bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
3112 #endif /* CONFIG_FAIL_PAGE_ALLOC */
3115 * Return true if free base pages are above 'mark'. For high-order checks it
3116 * will return true of the order-0 watermark is reached and there is at least
3117 * one free page of a suitable size. Checking now avoids taking the zone lock
3118 * to check in the allocation paths if no pages are free.
3120 bool __zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
3121 int classzone_idx, unsigned int alloc_flags,
3126 const bool alloc_harder = (alloc_flags & (ALLOC_HARDER|ALLOC_OOM));
3128 /* free_pages may go negative - that's OK */
3129 free_pages -= (1 << order) - 1;
3131 if (alloc_flags & ALLOC_HIGH)
3135 * If the caller does not have rights to ALLOC_HARDER then subtract
3136 * the high-atomic reserves. This will over-estimate the size of the
3137 * atomic reserve but it avoids a search.
3139 if (likely(!alloc_harder)) {
3140 free_pages -= z->nr_reserved_highatomic;
3143 * OOM victims can try even harder than normal ALLOC_HARDER
3144 * users on the grounds that it's definitely going to be in
3145 * the exit path shortly and free memory. Any allocation it
3146 * makes during the free path will be small and short-lived.
3148 if (alloc_flags & ALLOC_OOM)
3156 /* If allocation can't use CMA areas don't use free CMA pages */
3157 if (!(alloc_flags & ALLOC_CMA))
3158 free_pages -= zone_page_state(z, NR_FREE_CMA_PAGES);
3162 * Check watermarks for an order-0 allocation request. If these
3163 * are not met, then a high-order request also cannot go ahead
3164 * even if a suitable page happened to be free.
3166 if (free_pages <= min + z->lowmem_reserve[classzone_idx])
3169 /* If this is an order-0 request then the watermark is fine */
3173 /* For a high-order request, check at least one suitable page is free */
3174 for (o = order; o < MAX_ORDER; o++) {
3175 struct free_area *area = &z->free_area[o];
3181 for (mt = 0; mt < MIGRATE_PCPTYPES; mt++) {
3182 if (!list_empty(&area->free_list[mt]))
3187 if ((alloc_flags & ALLOC_CMA) &&
3188 !list_empty(&area->free_list[MIGRATE_CMA])) {
3193 !list_empty(&area->free_list[MIGRATE_HIGHATOMIC]))
3199 bool zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
3200 int classzone_idx, unsigned int alloc_flags)
3202 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
3203 zone_page_state(z, NR_FREE_PAGES));
3206 static inline bool zone_watermark_fast(struct zone *z, unsigned int order,
3207 unsigned long mark, int classzone_idx, unsigned int alloc_flags)
3209 long free_pages = zone_page_state(z, NR_FREE_PAGES);
3213 /* If allocation can't use CMA areas don't use free CMA pages */
3214 if (!(alloc_flags & ALLOC_CMA))
3215 cma_pages = zone_page_state(z, NR_FREE_CMA_PAGES);
3219 * Fast check for order-0 only. If this fails then the reserves
3220 * need to be calculated. There is a corner case where the check
3221 * passes but only the high-order atomic reserve are free. If
3222 * the caller is !atomic then it'll uselessly search the free
3223 * list. That corner case is then slower but it is harmless.
3225 if (!order && (free_pages - cma_pages) > mark + z->lowmem_reserve[classzone_idx])
3228 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
3232 bool zone_watermark_ok_safe(struct zone *z, unsigned int order,
3233 unsigned long mark, int classzone_idx)
3235 long free_pages = zone_page_state(z, NR_FREE_PAGES);
3237 if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark)
3238 free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES);
3240 return __zone_watermark_ok(z, order, mark, classzone_idx, 0,
3245 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
3247 return node_distance(zone_to_nid(local_zone), zone_to_nid(zone)) <=
3250 #else /* CONFIG_NUMA */
3251 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
3255 #endif /* CONFIG_NUMA */
3258 * get_page_from_freelist goes through the zonelist trying to allocate
3261 static struct page *
3262 get_page_from_freelist(gfp_t gfp_mask, unsigned int order, int alloc_flags,
3263 const struct alloc_context *ac)
3265 struct zoneref *z = ac->preferred_zoneref;
3267 struct pglist_data *last_pgdat_dirty_limit = NULL;
3270 * Scan zonelist, looking for a zone with enough free.
3271 * See also __cpuset_node_allowed() comment in kernel/cpuset.c.
3273 for_next_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
3278 if (cpusets_enabled() &&
3279 (alloc_flags & ALLOC_CPUSET) &&
3280 !__cpuset_zone_allowed(zone, gfp_mask))
3283 * When allocating a page cache page for writing, we
3284 * want to get it from a node that is within its dirty
3285 * limit, such that no single node holds more than its
3286 * proportional share of globally allowed dirty pages.
3287 * The dirty limits take into account the node's
3288 * lowmem reserves and high watermark so that kswapd
3289 * should be able to balance it without having to
3290 * write pages from its LRU list.
3292 * XXX: For now, allow allocations to potentially
3293 * exceed the per-node dirty limit in the slowpath
3294 * (spread_dirty_pages unset) before going into reclaim,
3295 * which is important when on a NUMA setup the allowed
3296 * nodes are together not big enough to reach the
3297 * global limit. The proper fix for these situations
3298 * will require awareness of nodes in the
3299 * dirty-throttling and the flusher threads.
3301 if (ac->spread_dirty_pages) {
3302 if (last_pgdat_dirty_limit == zone->zone_pgdat)
3305 if (!node_dirty_ok(zone->zone_pgdat)) {
3306 last_pgdat_dirty_limit = zone->zone_pgdat;
3311 mark = zone->watermark[alloc_flags & ALLOC_WMARK_MASK];
3312 if (!zone_watermark_fast(zone, order, mark,
3313 ac_classzone_idx(ac), alloc_flags)) {
3316 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
3318 * Watermark failed for this zone, but see if we can
3319 * grow this zone if it contains deferred pages.
3321 if (static_branch_unlikely(&deferred_pages)) {
3322 if (_deferred_grow_zone(zone, order))
3326 /* Checked here to keep the fast path fast */
3327 BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
3328 if (alloc_flags & ALLOC_NO_WATERMARKS)
3331 if (node_reclaim_mode == 0 ||
3332 !zone_allows_reclaim(ac->preferred_zoneref->zone, zone))
3335 ret = node_reclaim(zone->zone_pgdat, gfp_mask, order);
3337 case NODE_RECLAIM_NOSCAN:
3340 case NODE_RECLAIM_FULL:
3341 /* scanned but unreclaimable */
3344 /* did we reclaim enough */
3345 if (zone_watermark_ok(zone, order, mark,
3346 ac_classzone_idx(ac), alloc_flags))
3354 page = rmqueue(ac->preferred_zoneref->zone, zone, order,
3355 gfp_mask, alloc_flags, ac->migratetype);
3357 prep_new_page(page, order, gfp_mask, alloc_flags);
3360 * If this is a high-order atomic allocation then check
3361 * if the pageblock should be reserved for the future
3363 if (unlikely(order && (alloc_flags & ALLOC_HARDER)))
3364 reserve_highatomic_pageblock(page, zone, order);
3368 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
3369 /* Try again if zone has deferred pages */
3370 if (static_branch_unlikely(&deferred_pages)) {
3371 if (_deferred_grow_zone(zone, order))
3381 static void warn_alloc_show_mem(gfp_t gfp_mask, nodemask_t *nodemask)
3383 unsigned int filter = SHOW_MEM_FILTER_NODES;
3384 static DEFINE_RATELIMIT_STATE(show_mem_rs, HZ, 1);
3386 if (!__ratelimit(&show_mem_rs))
3390 * This documents exceptions given to allocations in certain
3391 * contexts that are allowed to allocate outside current's set
3394 if (!(gfp_mask & __GFP_NOMEMALLOC))
3395 if (tsk_is_oom_victim(current) ||
3396 (current->flags & (PF_MEMALLOC | PF_EXITING)))
3397 filter &= ~SHOW_MEM_FILTER_NODES;
3398 if (in_interrupt() || !(gfp_mask & __GFP_DIRECT_RECLAIM))
3399 filter &= ~SHOW_MEM_FILTER_NODES;
3401 show_mem(filter, nodemask);
3404 void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...)
3406 struct va_format vaf;
3408 static DEFINE_RATELIMIT_STATE(nopage_rs, DEFAULT_RATELIMIT_INTERVAL,
3409 DEFAULT_RATELIMIT_BURST);
3411 if ((gfp_mask & __GFP_NOWARN) || !__ratelimit(&nopage_rs))
3414 va_start(args, fmt);
3417 pr_warn("%s: %pV, mode:%#x(%pGg), nodemask=%*pbl\n",
3418 current->comm, &vaf, gfp_mask, &gfp_mask,
3419 nodemask_pr_args(nodemask));
3422 cpuset_print_current_mems_allowed();
3425 warn_alloc_show_mem(gfp_mask, nodemask);
3428 static inline struct page *
3429 __alloc_pages_cpuset_fallback(gfp_t gfp_mask, unsigned int order,
3430 unsigned int alloc_flags,
3431 const struct alloc_context *ac)
3435 page = get_page_from_freelist(gfp_mask, order,
3436 alloc_flags|ALLOC_CPUSET, ac);
3438 * fallback to ignore cpuset restriction if our nodes
3442 page = get_page_from_freelist(gfp_mask, order,
3448 static inline struct page *
3449 __alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
3450 const struct alloc_context *ac, unsigned long *did_some_progress)
3452 struct oom_control oc = {
3453 .zonelist = ac->zonelist,
3454 .nodemask = ac->nodemask,
3456 .gfp_mask = gfp_mask,
3461 *did_some_progress = 0;
3464 * Acquire the oom lock. If that fails, somebody else is
3465 * making progress for us.
3467 if (!mutex_trylock(&oom_lock)) {
3468 *did_some_progress = 1;
3469 schedule_timeout_uninterruptible(1);
3474 * Go through the zonelist yet one more time, keep very high watermark
3475 * here, this is only to catch a parallel oom killing, we must fail if
3476 * we're still under heavy pressure. But make sure that this reclaim
3477 * attempt shall not depend on __GFP_DIRECT_RECLAIM && !__GFP_NORETRY
3478 * allocation which will never fail due to oom_lock already held.
3480 page = get_page_from_freelist((gfp_mask | __GFP_HARDWALL) &
3481 ~__GFP_DIRECT_RECLAIM, order,
3482 ALLOC_WMARK_HIGH|ALLOC_CPUSET, ac);
3486 /* Coredumps can quickly deplete all memory reserves */
3487 if (current->flags & PF_DUMPCORE)
3489 /* The OOM killer will not help higher order allocs */
3490 if (order > PAGE_ALLOC_COSTLY_ORDER)
3493 * We have already exhausted all our reclaim opportunities without any
3494 * success so it is time to admit defeat. We will skip the OOM killer
3495 * because it is very likely that the caller has a more reasonable
3496 * fallback than shooting a random task.
3498 if (gfp_mask & __GFP_RETRY_MAYFAIL)
3500 /* The OOM killer does not needlessly kill tasks for lowmem */
3501 if (ac->high_zoneidx < ZONE_NORMAL)
3503 if (pm_suspended_storage())
3506 * XXX: GFP_NOFS allocations should rather fail than rely on
3507 * other request to make a forward progress.
3508 * We are in an unfortunate situation where out_of_memory cannot
3509 * do much for this context but let's try it to at least get
3510 * access to memory reserved if the current task is killed (see
3511 * out_of_memory). Once filesystems are ready to handle allocation
3512 * failures more gracefully we should just bail out here.
3515 /* The OOM killer may not free memory on a specific node */
3516 if (gfp_mask & __GFP_THISNODE)
3519 /* Exhausted what can be done so it's blame time */
3520 if (out_of_memory(&oc) || WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL)) {
3521 *did_some_progress = 1;
3524 * Help non-failing allocations by giving them access to memory
3527 if (gfp_mask & __GFP_NOFAIL)
3528 page = __alloc_pages_cpuset_fallback(gfp_mask, order,
3529 ALLOC_NO_WATERMARKS, ac);
3532 mutex_unlock(&oom_lock);
3537 * Maximum number of compaction retries wit a progress before OOM
3538 * killer is consider as the only way to move forward.
3540 #define MAX_COMPACT_RETRIES 16
3542 #ifdef CONFIG_COMPACTION
3543 /* Try memory compaction for high-order allocations before reclaim */
3544 static struct page *
3545 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
3546 unsigned int alloc_flags, const struct alloc_context *ac,
3547 enum compact_priority prio, enum compact_result *compact_result)
3550 unsigned long pflags;
3551 unsigned int noreclaim_flag;
3556 psi_memstall_enter(&pflags);
3557 noreclaim_flag = memalloc_noreclaim_save();
3559 *compact_result = try_to_compact_pages(gfp_mask, order, alloc_flags, ac,
3562 memalloc_noreclaim_restore(noreclaim_flag);
3563 psi_memstall_leave(&pflags);
3565 if (*compact_result <= COMPACT_INACTIVE)
3569 * At least in one zone compaction wasn't deferred or skipped, so let's
3570 * count a compaction stall
3572 count_vm_event(COMPACTSTALL);
3574 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
3577 struct zone *zone = page_zone(page);
3579 zone->compact_blockskip_flush = false;
3580 compaction_defer_reset(zone, order, true);
3581 count_vm_event(COMPACTSUCCESS);
3586 * It's bad if compaction run occurs and fails. The most likely reason
3587 * is that pages exist, but not enough to satisfy watermarks.
3589 count_vm_event(COMPACTFAIL);
3597 should_compact_retry(struct alloc_context *ac, int order, int alloc_flags,
3598 enum compact_result compact_result,
3599 enum compact_priority *compact_priority,
3600 int *compaction_retries)
3602 int max_retries = MAX_COMPACT_RETRIES;
3605 int retries = *compaction_retries;
3606 enum compact_priority priority = *compact_priority;
3611 if (compaction_made_progress(compact_result))
3612 (*compaction_retries)++;
3615 * compaction considers all the zone as desperately out of memory
3616 * so it doesn't really make much sense to retry except when the
3617 * failure could be caused by insufficient priority
3619 if (compaction_failed(compact_result))
3620 goto check_priority;
3623 * make sure the compaction wasn't deferred or didn't bail out early
3624 * due to locks contention before we declare that we should give up.
3625 * But do not retry if the given zonelist is not suitable for
3628 if (compaction_withdrawn(compact_result)) {
3629 ret = compaction_zonelist_suitable(ac, order, alloc_flags);
3634 * !costly requests are much more important than __GFP_RETRY_MAYFAIL
3635 * costly ones because they are de facto nofail and invoke OOM
3636 * killer to move on while costly can fail and users are ready
3637 * to cope with that. 1/4 retries is rather arbitrary but we
3638 * would need much more detailed feedback from compaction to
3639 * make a better decision.
3641 if (order > PAGE_ALLOC_COSTLY_ORDER)
3643 if (*compaction_retries <= max_retries) {
3649 * Make sure there are attempts at the highest priority if we exhausted
3650 * all retries or failed at the lower priorities.
3653 min_priority = (order > PAGE_ALLOC_COSTLY_ORDER) ?
3654 MIN_COMPACT_COSTLY_PRIORITY : MIN_COMPACT_PRIORITY;
3656 if (*compact_priority > min_priority) {
3657 (*compact_priority)--;
3658 *compaction_retries = 0;
3662 trace_compact_retry(order, priority, compact_result, retries, max_retries, ret);
3666 static inline struct page *
3667 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
3668 unsigned int alloc_flags, const struct alloc_context *ac,
3669 enum compact_priority prio, enum compact_result *compact_result)
3671 *compact_result = COMPACT_SKIPPED;
3676 should_compact_retry(struct alloc_context *ac, unsigned int order, int alloc_flags,
3677 enum compact_result compact_result,
3678 enum compact_priority *compact_priority,
3679 int *compaction_retries)
3684 if (!order || order > PAGE_ALLOC_COSTLY_ORDER)
3688 * There are setups with compaction disabled which would prefer to loop
3689 * inside the allocator rather than hit the oom killer prematurely.
3690 * Let's give them a good hope and keep retrying while the order-0
3691 * watermarks are OK.
3693 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
3695 if (zone_watermark_ok(zone, 0, min_wmark_pages(zone),
3696 ac_classzone_idx(ac), alloc_flags))
3701 #endif /* CONFIG_COMPACTION */
3703 #ifdef CONFIG_LOCKDEP
3704 static struct lockdep_map __fs_reclaim_map =
3705 STATIC_LOCKDEP_MAP_INIT("fs_reclaim", &__fs_reclaim_map);
3707 static bool __need_fs_reclaim(gfp_t gfp_mask)
3709 gfp_mask = current_gfp_context(gfp_mask);
3711 /* no reclaim without waiting on it */
3712 if (!(gfp_mask & __GFP_DIRECT_RECLAIM))
3715 /* this guy won't enter reclaim */
3716 if (current->flags & PF_MEMALLOC)
3719 /* We're only interested __GFP_FS allocations for now */
3720 if (!(gfp_mask & __GFP_FS))
3723 if (gfp_mask & __GFP_NOLOCKDEP)
3729 void __fs_reclaim_acquire(void)
3731 lock_map_acquire(&__fs_reclaim_map);
3734 void __fs_reclaim_release(void)
3736 lock_map_release(&__fs_reclaim_map);
3739 void fs_reclaim_acquire(gfp_t gfp_mask)
3741 if (__need_fs_reclaim(gfp_mask))
3742 __fs_reclaim_acquire();
3744 EXPORT_SYMBOL_GPL(fs_reclaim_acquire);
3746 void fs_reclaim_release(gfp_t gfp_mask)
3748 if (__need_fs_reclaim(gfp_mask))
3749 __fs_reclaim_release();
3751 EXPORT_SYMBOL_GPL(fs_reclaim_release);
3754 /* Perform direct synchronous page reclaim */
3756 __perform_reclaim(gfp_t gfp_mask, unsigned int order,
3757 const struct alloc_context *ac)
3759 struct reclaim_state reclaim_state;
3761 unsigned int noreclaim_flag;
3762 unsigned long pflags;
3766 /* We now go into synchronous reclaim */
3767 cpuset_memory_pressure_bump();
3768 psi_memstall_enter(&pflags);
3769 fs_reclaim_acquire(gfp_mask);
3770 noreclaim_flag = memalloc_noreclaim_save();
3771 reclaim_state.reclaimed_slab = 0;
3772 current->reclaim_state = &reclaim_state;
3774 progress = try_to_free_pages(ac->zonelist, order, gfp_mask,
3777 current->reclaim_state = NULL;
3778 memalloc_noreclaim_restore(noreclaim_flag);
3779 fs_reclaim_release(gfp_mask);
3780 psi_memstall_leave(&pflags);
3787 /* The really slow allocator path where we enter direct reclaim */
3788 static inline struct page *
3789 __alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
3790 unsigned int alloc_flags, const struct alloc_context *ac,
3791 unsigned long *did_some_progress)
3793 struct page *page = NULL;
3794 bool drained = false;
3796 *did_some_progress = __perform_reclaim(gfp_mask, order, ac);
3797 if (unlikely(!(*did_some_progress)))
3801 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
3804 * If an allocation failed after direct reclaim, it could be because
3805 * pages are pinned on the per-cpu lists or in high alloc reserves.
3806 * Shrink them them and try again
3808 if (!page && !drained) {
3809 unreserve_highatomic_pageblock(ac, false);
3810 drain_all_pages(NULL);
3818 static void wake_all_kswapds(unsigned int order, gfp_t gfp_mask,
3819 const struct alloc_context *ac)
3823 pg_data_t *last_pgdat = NULL;
3824 enum zone_type high_zoneidx = ac->high_zoneidx;
3826 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, high_zoneidx,
3828 if (last_pgdat != zone->zone_pgdat)
3829 wakeup_kswapd(zone, gfp_mask, order, high_zoneidx);
3830 last_pgdat = zone->zone_pgdat;
3834 static inline unsigned int
3835 gfp_to_alloc_flags(gfp_t gfp_mask)
3837 unsigned int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
3839 /* __GFP_HIGH is assumed to be the same as ALLOC_HIGH to save a branch. */
3840 BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_HIGH);
3843 * The caller may dip into page reserves a bit more if the caller
3844 * cannot run direct reclaim, or if the caller has realtime scheduling
3845 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will
3846 * set both ALLOC_HARDER (__GFP_ATOMIC) and ALLOC_HIGH (__GFP_HIGH).
3848 alloc_flags |= (__force int) (gfp_mask & __GFP_HIGH);
3850 if (gfp_mask & __GFP_ATOMIC) {
3852 * Not worth trying to allocate harder for __GFP_NOMEMALLOC even
3853 * if it can't schedule.
3855 if (!(gfp_mask & __GFP_NOMEMALLOC))
3856 alloc_flags |= ALLOC_HARDER;
3858 * Ignore cpuset mems for GFP_ATOMIC rather than fail, see the
3859 * comment for __cpuset_node_allowed().
3861 alloc_flags &= ~ALLOC_CPUSET;
3862 } else if (unlikely(rt_task(current)) && !in_interrupt())
3863 alloc_flags |= ALLOC_HARDER;
3866 if (gfpflags_to_migratetype(gfp_mask) == MIGRATE_MOVABLE)
3867 alloc_flags |= ALLOC_CMA;
3872 static bool oom_reserves_allowed(struct task_struct *tsk)
3874 if (!tsk_is_oom_victim(tsk))
3878 * !MMU doesn't have oom reaper so give access to memory reserves
3879 * only to the thread with TIF_MEMDIE set
3881 if (!IS_ENABLED(CONFIG_MMU) && !test_thread_flag(TIF_MEMDIE))
3888 * Distinguish requests which really need access to full memory
3889 * reserves from oom victims which can live with a portion of it
3891 static inline int __gfp_pfmemalloc_flags(gfp_t gfp_mask)
3893 if (unlikely(gfp_mask & __GFP_NOMEMALLOC))
3895 if (gfp_mask & __GFP_MEMALLOC)
3896 return ALLOC_NO_WATERMARKS;
3897 if (in_serving_softirq() && (current->flags & PF_MEMALLOC))
3898 return ALLOC_NO_WATERMARKS;
3899 if (!in_interrupt()) {
3900 if (current->flags & PF_MEMALLOC)
3901 return ALLOC_NO_WATERMARKS;
3902 else if (oom_reserves_allowed(current))
3909 bool gfp_pfmemalloc_allowed(gfp_t gfp_mask)
3911 return !!__gfp_pfmemalloc_flags(gfp_mask);
3915 * Checks whether it makes sense to retry the reclaim to make a forward progress
3916 * for the given allocation request.
3918 * We give up when we either have tried MAX_RECLAIM_RETRIES in a row
3919 * without success, or when we couldn't even meet the watermark if we
3920 * reclaimed all remaining pages on the LRU lists.
3922 * Returns true if a retry is viable or false to enter the oom path.
3925 should_reclaim_retry(gfp_t gfp_mask, unsigned order,
3926 struct alloc_context *ac, int alloc_flags,
3927 bool did_some_progress, int *no_progress_loops)
3934 * Costly allocations might have made a progress but this doesn't mean
3935 * their order will become available due to high fragmentation so
3936 * always increment the no progress counter for them
3938 if (did_some_progress && order <= PAGE_ALLOC_COSTLY_ORDER)
3939 *no_progress_loops = 0;
3941 (*no_progress_loops)++;
3944 * Make sure we converge to OOM if we cannot make any progress
3945 * several times in the row.
3947 if (*no_progress_loops > MAX_RECLAIM_RETRIES) {
3948 /* Before OOM, exhaust highatomic_reserve */
3949 return unreserve_highatomic_pageblock(ac, true);
3953 * Keep reclaiming pages while there is a chance this will lead
3954 * somewhere. If none of the target zones can satisfy our allocation
3955 * request even if all reclaimable pages are considered then we are
3956 * screwed and have to go OOM.
3958 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
3960 unsigned long available;
3961 unsigned long reclaimable;
3962 unsigned long min_wmark = min_wmark_pages(zone);
3965 available = reclaimable = zone_reclaimable_pages(zone);
3966 available += zone_page_state_snapshot(zone, NR_FREE_PAGES);
3969 * Would the allocation succeed if we reclaimed all
3970 * reclaimable pages?
3972 wmark = __zone_watermark_ok(zone, order, min_wmark,
3973 ac_classzone_idx(ac), alloc_flags, available);
3974 trace_reclaim_retry_zone(z, order, reclaimable,
3975 available, min_wmark, *no_progress_loops, wmark);
3978 * If we didn't make any progress and have a lot of
3979 * dirty + writeback pages then we should wait for
3980 * an IO to complete to slow down the reclaim and
3981 * prevent from pre mature OOM
3983 if (!did_some_progress) {
3984 unsigned long write_pending;
3986 write_pending = zone_page_state_snapshot(zone,
3987 NR_ZONE_WRITE_PENDING);
3989 if (2 * write_pending > reclaimable) {
3990 congestion_wait(BLK_RW_ASYNC, HZ/10);
4002 * Memory allocation/reclaim might be called from a WQ context and the
4003 * current implementation of the WQ concurrency control doesn't
4004 * recognize that a particular WQ is congested if the worker thread is
4005 * looping without ever sleeping. Therefore we have to do a short sleep
4006 * here rather than calling cond_resched().
4008 if (current->flags & PF_WQ_WORKER)
4009 schedule_timeout_uninterruptible(1);
4016 check_retry_cpuset(int cpuset_mems_cookie, struct alloc_context *ac)
4019 * It's possible that cpuset's mems_allowed and the nodemask from
4020 * mempolicy don't intersect. This should be normally dealt with by
4021 * policy_nodemask(), but it's possible to race with cpuset update in
4022 * such a way the check therein was true, and then it became false
4023 * before we got our cpuset_mems_cookie here.
4024 * This assumes that for all allocations, ac->nodemask can come only
4025 * from MPOL_BIND mempolicy (whose documented semantics is to be ignored
4026 * when it does not intersect with the cpuset restrictions) or the
4027 * caller can deal with a violated nodemask.
4029 if (cpusets_enabled() && ac->nodemask &&
4030 !cpuset_nodemask_valid_mems_allowed(ac->nodemask)) {
4031 ac->nodemask = NULL;
4036 * When updating a task's mems_allowed or mempolicy nodemask, it is
4037 * possible to race with parallel threads in such a way that our
4038 * allocation can fail while the mask is being updated. If we are about
4039 * to fail, check if the cpuset changed during allocation and if so,
4042 if (read_mems_allowed_retry(cpuset_mems_cookie))
4048 static inline struct page *
4049 __alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
4050 struct alloc_context *ac)
4052 bool can_direct_reclaim = gfp_mask & __GFP_DIRECT_RECLAIM;
4053 const bool costly_order = order > PAGE_ALLOC_COSTLY_ORDER;
4054 struct page *page = NULL;
4055 unsigned int alloc_flags;
4056 unsigned long did_some_progress;
4057 enum compact_priority compact_priority;
4058 enum compact_result compact_result;
4059 int compaction_retries;
4060 int no_progress_loops;
4061 unsigned int cpuset_mems_cookie;
4065 * In the slowpath, we sanity check order to avoid ever trying to
4066 * reclaim >= MAX_ORDER areas which will never succeed. Callers may
4067 * be using allocators in order of preference for an area that is
4070 if (order >= MAX_ORDER) {
4071 WARN_ON_ONCE(!(gfp_mask & __GFP_NOWARN));
4076 * We also sanity check to catch abuse of atomic reserves being used by
4077 * callers that are not in atomic context.
4079 if (WARN_ON_ONCE((gfp_mask & (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)) ==
4080 (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)))
4081 gfp_mask &= ~__GFP_ATOMIC;
4084 compaction_retries = 0;
4085 no_progress_loops = 0;
4086 compact_priority = DEF_COMPACT_PRIORITY;
4087 cpuset_mems_cookie = read_mems_allowed_begin();
4090 * The fast path uses conservative alloc_flags to succeed only until
4091 * kswapd needs to be woken up, and to avoid the cost of setting up
4092 * alloc_flags precisely. So we do that now.
4094 alloc_flags = gfp_to_alloc_flags(gfp_mask);
4097 * We need to recalculate the starting point for the zonelist iterator
4098 * because we might have used different nodemask in the fast path, or
4099 * there was a cpuset modification and we are retrying - otherwise we
4100 * could end up iterating over non-eligible zones endlessly.
4102 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
4103 ac->high_zoneidx, ac->nodemask);
4104 if (!ac->preferred_zoneref->zone)
4107 if (gfp_mask & __GFP_KSWAPD_RECLAIM)
4108 wake_all_kswapds(order, gfp_mask, ac);
4111 * The adjusted alloc_flags might result in immediate success, so try
4114 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
4119 * For costly allocations, try direct compaction first, as it's likely
4120 * that we have enough base pages and don't need to reclaim. For non-
4121 * movable high-order allocations, do that as well, as compaction will
4122 * try prevent permanent fragmentation by migrating from blocks of the
4124 * Don't try this for allocations that are allowed to ignore
4125 * watermarks, as the ALLOC_NO_WATERMARKS attempt didn't yet happen.
4127 if (can_direct_reclaim &&
4129 (order > 0 && ac->migratetype != MIGRATE_MOVABLE))
4130 && !gfp_pfmemalloc_allowed(gfp_mask)) {
4131 page = __alloc_pages_direct_compact(gfp_mask, order,
4133 INIT_COMPACT_PRIORITY,
4139 * Checks for costly allocations with __GFP_NORETRY, which
4140 * includes THP page fault allocations
4142 if (costly_order && (gfp_mask & __GFP_NORETRY)) {
4144 * If compaction is deferred for high-order allocations,
4145 * it is because sync compaction recently failed. If
4146 * this is the case and the caller requested a THP
4147 * allocation, we do not want to heavily disrupt the
4148 * system, so we fail the allocation instead of entering
4151 if (compact_result == COMPACT_DEFERRED)
4155 * Looks like reclaim/compaction is worth trying, but
4156 * sync compaction could be very expensive, so keep
4157 * using async compaction.
4159 compact_priority = INIT_COMPACT_PRIORITY;
4164 /* Ensure kswapd doesn't accidentally go to sleep as long as we loop */
4165 if (gfp_mask & __GFP_KSWAPD_RECLAIM)
4166 wake_all_kswapds(order, gfp_mask, ac);
4168 reserve_flags = __gfp_pfmemalloc_flags(gfp_mask);
4170 alloc_flags = reserve_flags;
4173 * Reset the nodemask and zonelist iterators if memory policies can be
4174 * ignored. These allocations are high priority and system rather than
4177 if (!(alloc_flags & ALLOC_CPUSET) || reserve_flags) {
4178 ac->nodemask = NULL;
4179 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
4180 ac->high_zoneidx, ac->nodemask);
4183 /* Attempt with potentially adjusted zonelist and alloc_flags */
4184 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
4188 /* Caller is not willing to reclaim, we can't balance anything */
4189 if (!can_direct_reclaim)
4192 /* Avoid recursion of direct reclaim */
4193 if (current->flags & PF_MEMALLOC)
4196 /* Try direct reclaim and then allocating */
4197 page = __alloc_pages_direct_reclaim(gfp_mask, order, alloc_flags, ac,
4198 &did_some_progress);
4202 /* Try direct compaction and then allocating */
4203 page = __alloc_pages_direct_compact(gfp_mask, order, alloc_flags, ac,
4204 compact_priority, &compact_result);
4208 /* Do not loop if specifically requested */
4209 if (gfp_mask & __GFP_NORETRY)
4213 * Do not retry costly high order allocations unless they are
4214 * __GFP_RETRY_MAYFAIL
4216 if (costly_order && !(gfp_mask & __GFP_RETRY_MAYFAIL))
4219 if (should_reclaim_retry(gfp_mask, order, ac, alloc_flags,
4220 did_some_progress > 0, &no_progress_loops))
4224 * It doesn't make any sense to retry for the compaction if the order-0
4225 * reclaim is not able to make any progress because the current
4226 * implementation of the compaction depends on the sufficient amount
4227 * of free memory (see __compaction_suitable)
4229 if (did_some_progress > 0 &&
4230 should_compact_retry(ac, order, alloc_flags,
4231 compact_result, &compact_priority,
4232 &compaction_retries))
4236 /* Deal with possible cpuset update races before we start OOM killing */
4237 if (check_retry_cpuset(cpuset_mems_cookie, ac))
4240 /* Reclaim has failed us, start killing things */
4241 page = __alloc_pages_may_oom(gfp_mask, order, ac, &did_some_progress);
4245 /* Avoid allocations with no watermarks from looping endlessly */
4246 if (tsk_is_oom_victim(current) &&
4247 (alloc_flags == ALLOC_OOM ||
4248 (gfp_mask & __GFP_NOMEMALLOC)))
4251 /* Retry as long as the OOM killer is making progress */
4252 if (did_some_progress) {
4253 no_progress_loops = 0;
4258 /* Deal with possible cpuset update races before we fail */
4259 if (check_retry_cpuset(cpuset_mems_cookie, ac))
4263 * Make sure that __GFP_NOFAIL request doesn't leak out and make sure
4266 if (gfp_mask & __GFP_NOFAIL) {
4268 * All existing users of the __GFP_NOFAIL are blockable, so warn
4269 * of any new users that actually require GFP_NOWAIT
4271 if (WARN_ON_ONCE(!can_direct_reclaim))
4275 * PF_MEMALLOC request from this context is rather bizarre
4276 * because we cannot reclaim anything and only can loop waiting
4277 * for somebody to do a work for us
4279 WARN_ON_ONCE(current->flags & PF_MEMALLOC);
4282 * non failing costly orders are a hard requirement which we
4283 * are not prepared for much so let's warn about these users
4284 * so that we can identify them and convert them to something
4287 WARN_ON_ONCE(order > PAGE_ALLOC_COSTLY_ORDER);
4290 * Help non-failing allocations by giving them access to memory
4291 * reserves but do not use ALLOC_NO_WATERMARKS because this
4292 * could deplete whole memory reserves which would just make
4293 * the situation worse
4295 page = __alloc_pages_cpuset_fallback(gfp_mask, order, ALLOC_HARDER, ac);
4303 warn_alloc(gfp_mask, ac->nodemask,
4304 "page allocation failure: order:%u", order);
4309 static inline bool prepare_alloc_pages(gfp_t gfp_mask, unsigned int order,
4310 int preferred_nid, nodemask_t *nodemask,
4311 struct alloc_context *ac, gfp_t *alloc_mask,
4312 unsigned int *alloc_flags)
4314 ac->high_zoneidx = gfp_zone(gfp_mask);
4315 ac->zonelist = node_zonelist(preferred_nid, gfp_mask);
4316 ac->nodemask = nodemask;
4317 ac->migratetype = gfpflags_to_migratetype(gfp_mask);
4319 if (cpusets_enabled()) {
4320 *alloc_mask |= __GFP_HARDWALL;
4322 ac->nodemask = &cpuset_current_mems_allowed;
4324 *alloc_flags |= ALLOC_CPUSET;
4327 fs_reclaim_acquire(gfp_mask);
4328 fs_reclaim_release(gfp_mask);
4330 might_sleep_if(gfp_mask & __GFP_DIRECT_RECLAIM);
4332 if (should_fail_alloc_page(gfp_mask, order))
4335 if (IS_ENABLED(CONFIG_CMA) && ac->migratetype == MIGRATE_MOVABLE)
4336 *alloc_flags |= ALLOC_CMA;
4341 /* Determine whether to spread dirty pages and what the first usable zone */
4342 static inline void finalise_ac(gfp_t gfp_mask, struct alloc_context *ac)
4344 /* Dirty zone balancing only done in the fast path */
4345 ac->spread_dirty_pages = (gfp_mask & __GFP_WRITE);
4348 * The preferred zone is used for statistics but crucially it is
4349 * also used as the starting point for the zonelist iterator. It
4350 * may get reset for allocations that ignore memory policies.
4352 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
4353 ac->high_zoneidx, ac->nodemask);
4357 * This is the 'heart' of the zoned buddy allocator.
4360 __alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order, int preferred_nid,
4361 nodemask_t *nodemask)
4364 unsigned int alloc_flags = ALLOC_WMARK_LOW;
4365 gfp_t alloc_mask; /* The gfp_t that was actually used for allocation */
4366 struct alloc_context ac = { };
4368 gfp_mask &= gfp_allowed_mask;
4369 alloc_mask = gfp_mask;
4370 if (!prepare_alloc_pages(gfp_mask, order, preferred_nid, nodemask, &ac, &alloc_mask, &alloc_flags))
4373 finalise_ac(gfp_mask, &ac);
4375 /* First allocation attempt */
4376 page = get_page_from_freelist(alloc_mask, order, alloc_flags, &ac);
4381 * Apply scoped allocation constraints. This is mainly about GFP_NOFS
4382 * resp. GFP_NOIO which has to be inherited for all allocation requests
4383 * from a particular context which has been marked by
4384 * memalloc_no{fs,io}_{save,restore}.
4386 alloc_mask = current_gfp_context(gfp_mask);
4387 ac.spread_dirty_pages = false;
4390 * Restore the original nodemask if it was potentially replaced with
4391 * &cpuset_current_mems_allowed to optimize the fast-path attempt.
4393 if (unlikely(ac.nodemask != nodemask))
4394 ac.nodemask = nodemask;
4396 page = __alloc_pages_slowpath(alloc_mask, order, &ac);
4399 if (memcg_kmem_enabled() && (gfp_mask & __GFP_ACCOUNT) && page &&
4400 unlikely(memcg_kmem_charge(page, gfp_mask, order) != 0)) {
4401 __free_pages(page, order);
4405 trace_mm_page_alloc(page, order, alloc_mask, ac.migratetype);
4409 EXPORT_SYMBOL(__alloc_pages_nodemask);
4412 * Common helper functions. Never use with __GFP_HIGHMEM because the returned
4413 * address cannot represent highmem pages. Use alloc_pages and then kmap if
4414 * you need to access high mem.
4416 unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
4420 page = alloc_pages(gfp_mask & ~__GFP_HIGHMEM, order);
4423 return (unsigned long) page_address(page);
4425 EXPORT_SYMBOL(__get_free_pages);
4427 unsigned long get_zeroed_page(gfp_t gfp_mask)
4429 return __get_free_pages(gfp_mask | __GFP_ZERO, 0);
4431 EXPORT_SYMBOL(get_zeroed_page);
4433 void __free_pages(struct page *page, unsigned int order)
4435 if (put_page_testzero(page)) {
4437 free_unref_page(page);
4439 __free_pages_ok(page, order);
4443 EXPORT_SYMBOL(__free_pages);
4445 void free_pages(unsigned long addr, unsigned int order)
4448 VM_BUG_ON(!virt_addr_valid((void *)addr));
4449 __free_pages(virt_to_page((void *)addr), order);
4453 EXPORT_SYMBOL(free_pages);
4457 * An arbitrary-length arbitrary-offset area of memory which resides
4458 * within a 0 or higher order page. Multiple fragments within that page
4459 * are individually refcounted, in the page's reference counter.
4461 * The page_frag functions below provide a simple allocation framework for
4462 * page fragments. This is used by the network stack and network device
4463 * drivers to provide a backing region of memory for use as either an
4464 * sk_buff->head, or to be used in the "frags" portion of skb_shared_info.
4466 static struct page *__page_frag_cache_refill(struct page_frag_cache *nc,
4469 struct page *page = NULL;
4470 gfp_t gfp = gfp_mask;
4472 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
4473 gfp_mask |= __GFP_COMP | __GFP_NOWARN | __GFP_NORETRY |
4475 page = alloc_pages_node(NUMA_NO_NODE, gfp_mask,
4476 PAGE_FRAG_CACHE_MAX_ORDER);
4477 nc->size = page ? PAGE_FRAG_CACHE_MAX_SIZE : PAGE_SIZE;
4479 if (unlikely(!page))
4480 page = alloc_pages_node(NUMA_NO_NODE, gfp, 0);
4482 nc->va = page ? page_address(page) : NULL;
4487 void __page_frag_cache_drain(struct page *page, unsigned int count)
4489 VM_BUG_ON_PAGE(page_ref_count(page) == 0, page);
4491 if (page_ref_sub_and_test(page, count)) {
4492 unsigned int order = compound_order(page);
4495 free_unref_page(page);
4497 __free_pages_ok(page, order);
4500 EXPORT_SYMBOL(__page_frag_cache_drain);
4502 void *page_frag_alloc(struct page_frag_cache *nc,
4503 unsigned int fragsz, gfp_t gfp_mask)
4505 unsigned int size = PAGE_SIZE;
4509 if (unlikely(!nc->va)) {
4511 page = __page_frag_cache_refill(nc, gfp_mask);
4515 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
4516 /* if size can vary use size else just use PAGE_SIZE */
4519 /* Even if we own the page, we do not use atomic_set().
4520 * This would break get_page_unless_zero() users.
4522 page_ref_add(page, size - 1);
4524 /* reset page count bias and offset to start of new frag */
4525 nc->pfmemalloc = page_is_pfmemalloc(page);
4526 nc->pagecnt_bias = size;
4530 offset = nc->offset - fragsz;
4531 if (unlikely(offset < 0)) {
4532 page = virt_to_page(nc->va);
4534 if (!page_ref_sub_and_test(page, nc->pagecnt_bias))
4537 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
4538 /* if size can vary use size else just use PAGE_SIZE */
4541 /* OK, page count is 0, we can safely set it */
4542 set_page_count(page, size);
4544 /* reset page count bias and offset to start of new frag */
4545 nc->pagecnt_bias = size;
4546 offset = size - fragsz;
4550 nc->offset = offset;
4552 return nc->va + offset;
4554 EXPORT_SYMBOL(page_frag_alloc);
4557 * Frees a page fragment allocated out of either a compound or order 0 page.
4559 void page_frag_free(void *addr)
4561 struct page *page = virt_to_head_page(addr);
4563 if (unlikely(put_page_testzero(page)))
4564 __free_pages_ok(page, compound_order(page));
4566 EXPORT_SYMBOL(page_frag_free);
4568 static void *make_alloc_exact(unsigned long addr, unsigned int order,
4572 unsigned long alloc_end = addr + (PAGE_SIZE << order);
4573 unsigned long used = addr + PAGE_ALIGN(size);
4575 split_page(virt_to_page((void *)addr), order);
4576 while (used < alloc_end) {
4581 return (void *)addr;
4585 * alloc_pages_exact - allocate an exact number physically-contiguous pages.
4586 * @size: the number of bytes to allocate
4587 * @gfp_mask: GFP flags for the allocation
4589 * This function is similar to alloc_pages(), except that it allocates the
4590 * minimum number of pages to satisfy the request. alloc_pages() can only
4591 * allocate memory in power-of-two pages.
4593 * This function is also limited by MAX_ORDER.
4595 * Memory allocated by this function must be released by free_pages_exact().
4597 void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
4599 unsigned int order = get_order(size);
4602 addr = __get_free_pages(gfp_mask, order);
4603 return make_alloc_exact(addr, order, size);
4605 EXPORT_SYMBOL(alloc_pages_exact);
4608 * alloc_pages_exact_nid - allocate an exact number of physically-contiguous
4610 * @nid: the preferred node ID where memory should be allocated
4611 * @size: the number of bytes to allocate
4612 * @gfp_mask: GFP flags for the allocation
4614 * Like alloc_pages_exact(), but try to allocate on node nid first before falling
4617 void * __meminit alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask)
4619 unsigned int order = get_order(size);
4620 struct page *p = alloc_pages_node(nid, gfp_mask, order);
4623 return make_alloc_exact((unsigned long)page_address(p), order, size);
4627 * free_pages_exact - release memory allocated via alloc_pages_exact()
4628 * @virt: the value returned by alloc_pages_exact.
4629 * @size: size of allocation, same value as passed to alloc_pages_exact().
4631 * Release the memory allocated by a previous call to alloc_pages_exact.
4633 void free_pages_exact(void *virt, size_t size)
4635 unsigned long addr = (unsigned long)virt;
4636 unsigned long end = addr + PAGE_ALIGN(size);
4638 while (addr < end) {
4643 EXPORT_SYMBOL(free_pages_exact);
4646 * nr_free_zone_pages - count number of pages beyond high watermark
4647 * @offset: The zone index of the highest zone
4649 * nr_free_zone_pages() counts the number of counts pages which are beyond the
4650 * high watermark within all zones at or below a given zone index. For each
4651 * zone, the number of pages is calculated as:
4653 * nr_free_zone_pages = managed_pages - high_pages
4655 static unsigned long nr_free_zone_pages(int offset)
4660 /* Just pick one node, since fallback list is circular */
4661 unsigned long sum = 0;
4663 struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
4665 for_each_zone_zonelist(zone, z, zonelist, offset) {
4666 unsigned long size = zone->managed_pages;
4667 unsigned long high = high_wmark_pages(zone);
4676 * nr_free_buffer_pages - count number of pages beyond high watermark
4678 * nr_free_buffer_pages() counts the number of pages which are beyond the high
4679 * watermark within ZONE_DMA and ZONE_NORMAL.
4681 unsigned long nr_free_buffer_pages(void)
4683 return nr_free_zone_pages(gfp_zone(GFP_USER));
4685 EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
4688 * nr_free_pagecache_pages - count number of pages beyond high watermark
4690 * nr_free_pagecache_pages() counts the number of pages which are beyond the
4691 * high watermark within all zones.
4693 unsigned long nr_free_pagecache_pages(void)
4695 return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
4698 static inline void show_node(struct zone *zone)
4700 if (IS_ENABLED(CONFIG_NUMA))
4701 printk("Node %d ", zone_to_nid(zone));
4704 long si_mem_available(void)
4707 unsigned long pagecache;
4708 unsigned long wmark_low = 0;
4709 unsigned long pages[NR_LRU_LISTS];
4710 unsigned long reclaimable;
4714 for (lru = LRU_BASE; lru < NR_LRU_LISTS; lru++)
4715 pages[lru] = global_node_page_state(NR_LRU_BASE + lru);
4718 wmark_low += zone->watermark[WMARK_LOW];
4721 * Estimate the amount of memory available for userspace allocations,
4722 * without causing swapping.
4724 available = global_zone_page_state(NR_FREE_PAGES) - totalreserve_pages;
4727 * Not all the page cache can be freed, otherwise the system will
4728 * start swapping. Assume at least half of the page cache, or the
4729 * low watermark worth of cache, needs to stay.
4731 pagecache = pages[LRU_ACTIVE_FILE] + pages[LRU_INACTIVE_FILE];
4732 pagecache -= min(pagecache / 2, wmark_low);
4733 available += pagecache;
4736 * Part of the reclaimable slab and other kernel memory consists of
4737 * items that are in use, and cannot be freed. Cap this estimate at the
4740 reclaimable = global_node_page_state(NR_SLAB_RECLAIMABLE) +
4741 global_node_page_state(NR_KERNEL_MISC_RECLAIMABLE);
4742 available += reclaimable - min(reclaimable / 2, wmark_low);
4748 EXPORT_SYMBOL_GPL(si_mem_available);
4750 void si_meminfo(struct sysinfo *val)
4752 val->totalram = totalram_pages;
4753 val->sharedram = global_node_page_state(NR_SHMEM);
4754 val->freeram = global_zone_page_state(NR_FREE_PAGES);
4755 val->bufferram = nr_blockdev_pages();
4756 val->totalhigh = totalhigh_pages;
4757 val->freehigh = nr_free_highpages();
4758 val->mem_unit = PAGE_SIZE;
4761 EXPORT_SYMBOL(si_meminfo);
4764 void si_meminfo_node(struct sysinfo *val, int nid)
4766 int zone_type; /* needs to be signed */
4767 unsigned long managed_pages = 0;
4768 unsigned long managed_highpages = 0;
4769 unsigned long free_highpages = 0;
4770 pg_data_t *pgdat = NODE_DATA(nid);
4772 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++)
4773 managed_pages += pgdat->node_zones[zone_type].managed_pages;
4774 val->totalram = managed_pages;
4775 val->sharedram = node_page_state(pgdat, NR_SHMEM);
4776 val->freeram = sum_zone_node_page_state(nid, NR_FREE_PAGES);
4777 #ifdef CONFIG_HIGHMEM
4778 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
4779 struct zone *zone = &pgdat->node_zones[zone_type];
4781 if (is_highmem(zone)) {
4782 managed_highpages += zone->managed_pages;
4783 free_highpages += zone_page_state(zone, NR_FREE_PAGES);
4786 val->totalhigh = managed_highpages;
4787 val->freehigh = free_highpages;
4789 val->totalhigh = managed_highpages;
4790 val->freehigh = free_highpages;
4792 val->mem_unit = PAGE_SIZE;
4797 * Determine whether the node should be displayed or not, depending on whether
4798 * SHOW_MEM_FILTER_NODES was passed to show_free_areas().
4800 static bool show_mem_node_skip(unsigned int flags, int nid, nodemask_t *nodemask)
4802 if (!(flags & SHOW_MEM_FILTER_NODES))
4806 * no node mask - aka implicit memory numa policy. Do not bother with
4807 * the synchronization - read_mems_allowed_begin - because we do not
4808 * have to be precise here.
4811 nodemask = &cpuset_current_mems_allowed;
4813 return !node_isset(nid, *nodemask);
4816 #define K(x) ((x) << (PAGE_SHIFT-10))
4818 static void show_migration_types(unsigned char type)
4820 static const char types[MIGRATE_TYPES] = {
4821 [MIGRATE_UNMOVABLE] = 'U',
4822 [MIGRATE_MOVABLE] = 'M',
4823 [MIGRATE_RECLAIMABLE] = 'E',
4824 [MIGRATE_HIGHATOMIC] = 'H',
4826 [MIGRATE_CMA] = 'C',
4828 #ifdef CONFIG_MEMORY_ISOLATION
4829 [MIGRATE_ISOLATE] = 'I',
4832 char tmp[MIGRATE_TYPES + 1];
4836 for (i = 0; i < MIGRATE_TYPES; i++) {
4837 if (type & (1 << i))
4842 printk(KERN_CONT "(%s) ", tmp);
4846 * Show free area list (used inside shift_scroll-lock stuff)
4847 * We also calculate the percentage fragmentation. We do this by counting the
4848 * memory on each free list with the exception of the first item on the list.
4851 * SHOW_MEM_FILTER_NODES: suppress nodes that are not allowed by current's
4854 void show_free_areas(unsigned int filter, nodemask_t *nodemask)
4856 unsigned long free_pcp = 0;
4861 for_each_populated_zone(zone) {
4862 if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
4865 for_each_online_cpu(cpu)
4866 free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count;
4869 printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n"
4870 " active_file:%lu inactive_file:%lu isolated_file:%lu\n"
4871 " unevictable:%lu dirty:%lu writeback:%lu unstable:%lu\n"
4872 " slab_reclaimable:%lu slab_unreclaimable:%lu\n"
4873 " mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n"
4874 " free:%lu free_pcp:%lu free_cma:%lu\n",
4875 global_node_page_state(NR_ACTIVE_ANON),
4876 global_node_page_state(NR_INACTIVE_ANON),
4877 global_node_page_state(NR_ISOLATED_ANON),
4878 global_node_page_state(NR_ACTIVE_FILE),
4879 global_node_page_state(NR_INACTIVE_FILE),
4880 global_node_page_state(NR_ISOLATED_FILE),
4881 global_node_page_state(NR_UNEVICTABLE),
4882 global_node_page_state(NR_FILE_DIRTY),
4883 global_node_page_state(NR_WRITEBACK),
4884 global_node_page_state(NR_UNSTABLE_NFS),
4885 global_node_page_state(NR_SLAB_RECLAIMABLE),
4886 global_node_page_state(NR_SLAB_UNRECLAIMABLE),
4887 global_node_page_state(NR_FILE_MAPPED),
4888 global_node_page_state(NR_SHMEM),
4889 global_zone_page_state(NR_PAGETABLE),
4890 global_zone_page_state(NR_BOUNCE),
4891 global_zone_page_state(NR_FREE_PAGES),
4893 global_zone_page_state(NR_FREE_CMA_PAGES));
4895 for_each_online_pgdat(pgdat) {
4896 if (show_mem_node_skip(filter, pgdat->node_id, nodemask))
4900 " active_anon:%lukB"
4901 " inactive_anon:%lukB"
4902 " active_file:%lukB"
4903 " inactive_file:%lukB"
4904 " unevictable:%lukB"
4905 " isolated(anon):%lukB"
4906 " isolated(file):%lukB"
4911 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
4913 " shmem_pmdmapped: %lukB"
4916 " writeback_tmp:%lukB"
4918 " all_unreclaimable? %s"
4921 K(node_page_state(pgdat, NR_ACTIVE_ANON)),
4922 K(node_page_state(pgdat, NR_INACTIVE_ANON)),
4923 K(node_page_state(pgdat, NR_ACTIVE_FILE)),
4924 K(node_page_state(pgdat, NR_INACTIVE_FILE)),
4925 K(node_page_state(pgdat, NR_UNEVICTABLE)),
4926 K(node_page_state(pgdat, NR_ISOLATED_ANON)),
4927 K(node_page_state(pgdat, NR_ISOLATED_FILE)),
4928 K(node_page_state(pgdat, NR_FILE_MAPPED)),
4929 K(node_page_state(pgdat, NR_FILE_DIRTY)),
4930 K(node_page_state(pgdat, NR_WRITEBACK)),
4931 K(node_page_state(pgdat, NR_SHMEM)),
4932 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
4933 K(node_page_state(pgdat, NR_SHMEM_THPS) * HPAGE_PMD_NR),
4934 K(node_page_state(pgdat, NR_SHMEM_PMDMAPPED)
4936 K(node_page_state(pgdat, NR_ANON_THPS) * HPAGE_PMD_NR),
4938 K(node_page_state(pgdat, NR_WRITEBACK_TEMP)),
4939 K(node_page_state(pgdat, NR_UNSTABLE_NFS)),
4940 pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES ?
4944 for_each_populated_zone(zone) {
4947 if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
4951 for_each_online_cpu(cpu)
4952 free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count;
4961 " active_anon:%lukB"
4962 " inactive_anon:%lukB"
4963 " active_file:%lukB"
4964 " inactive_file:%lukB"
4965 " unevictable:%lukB"
4966 " writepending:%lukB"
4970 " kernel_stack:%lukB"
4978 K(zone_page_state(zone, NR_FREE_PAGES)),
4979 K(min_wmark_pages(zone)),
4980 K(low_wmark_pages(zone)),
4981 K(high_wmark_pages(zone)),
4982 K(zone_page_state(zone, NR_ZONE_ACTIVE_ANON)),
4983 K(zone_page_state(zone, NR_ZONE_INACTIVE_ANON)),
4984 K(zone_page_state(zone, NR_ZONE_ACTIVE_FILE)),
4985 K(zone_page_state(zone, NR_ZONE_INACTIVE_FILE)),
4986 K(zone_page_state(zone, NR_ZONE_UNEVICTABLE)),
4987 K(zone_page_state(zone, NR_ZONE_WRITE_PENDING)),
4988 K(zone->present_pages),
4989 K(zone->managed_pages),
4990 K(zone_page_state(zone, NR_MLOCK)),
4991 zone_page_state(zone, NR_KERNEL_STACK_KB),
4992 K(zone_page_state(zone, NR_PAGETABLE)),
4993 K(zone_page_state(zone, NR_BOUNCE)),
4995 K(this_cpu_read(zone->pageset->pcp.count)),
4996 K(zone_page_state(zone, NR_FREE_CMA_PAGES)));
4997 printk("lowmem_reserve[]:");
4998 for (i = 0; i < MAX_NR_ZONES; i++)
4999 printk(KERN_CONT " %ld", zone->lowmem_reserve[i]);
5000 printk(KERN_CONT "\n");
5003 for_each_populated_zone(zone) {
5005 unsigned long nr[MAX_ORDER], flags, total = 0;
5006 unsigned char types[MAX_ORDER];
5008 if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
5011 printk(KERN_CONT "%s: ", zone->name);
5013 spin_lock_irqsave(&zone->lock, flags);
5014 for (order = 0; order < MAX_ORDER; order++) {
5015 struct free_area *area = &zone->free_area[order];
5018 nr[order] = area->nr_free;
5019 total += nr[order] << order;
5022 for (type = 0; type < MIGRATE_TYPES; type++) {
5023 if (!list_empty(&area->free_list[type]))
5024 types[order] |= 1 << type;
5027 spin_unlock_irqrestore(&zone->lock, flags);
5028 for (order = 0; order < MAX_ORDER; order++) {
5029 printk(KERN_CONT "%lu*%lukB ",
5030 nr[order], K(1UL) << order);
5032 show_migration_types(types[order]);
5034 printk(KERN_CONT "= %lukB\n", K(total));
5037 hugetlb_show_meminfo();
5039 printk("%ld total pagecache pages\n", global_node_page_state(NR_FILE_PAGES));
5041 show_swap_cache_info();
5044 static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
5046 zoneref->zone = zone;
5047 zoneref->zone_idx = zone_idx(zone);
5051 * Builds allocation fallback zone lists.
5053 * Add all populated zones of a node to the zonelist.
5055 static int build_zonerefs_node(pg_data_t *pgdat, struct zoneref *zonerefs)
5058 enum zone_type zone_type = MAX_NR_ZONES;
5063 zone = pgdat->node_zones + zone_type;
5064 if (managed_zone(zone)) {
5065 zoneref_set_zone(zone, &zonerefs[nr_zones++]);
5066 check_highest_zone(zone_type);
5068 } while (zone_type);
5075 static int __parse_numa_zonelist_order(char *s)
5078 * We used to support different zonlists modes but they turned
5079 * out to be just not useful. Let's keep the warning in place
5080 * if somebody still use the cmd line parameter so that we do
5081 * not fail it silently
5083 if (!(*s == 'd' || *s == 'D' || *s == 'n' || *s == 'N')) {
5084 pr_warn("Ignoring unsupported numa_zonelist_order value: %s\n", s);
5090 static __init int setup_numa_zonelist_order(char *s)
5095 return __parse_numa_zonelist_order(s);
5097 early_param("numa_zonelist_order", setup_numa_zonelist_order);
5099 char numa_zonelist_order[] = "Node";
5102 * sysctl handler for numa_zonelist_order
5104 int numa_zonelist_order_handler(struct ctl_table *table, int write,
5105 void __user *buffer, size_t *length,
5112 return proc_dostring(table, write, buffer, length, ppos);
5113 str = memdup_user_nul(buffer, 16);
5115 return PTR_ERR(str);
5117 ret = __parse_numa_zonelist_order(str);
5123 #define MAX_NODE_LOAD (nr_online_nodes)
5124 static int node_load[MAX_NUMNODES];
5127 * find_next_best_node - find the next node that should appear in a given node's fallback list
5128 * @node: node whose fallback list we're appending
5129 * @used_node_mask: nodemask_t of already used nodes
5131 * We use a number of factors to determine which is the next node that should
5132 * appear on a given node's fallback list. The node should not have appeared
5133 * already in @node's fallback list, and it should be the next closest node
5134 * according to the distance array (which contains arbitrary distance values
5135 * from each node to each node in the system), and should also prefer nodes
5136 * with no CPUs, since presumably they'll have very little allocation pressure
5137 * on them otherwise.
5138 * It returns -1 if no node is found.
5140 static int find_next_best_node(int node, nodemask_t *used_node_mask)
5143 int min_val = INT_MAX;
5144 int best_node = NUMA_NO_NODE;
5145 const struct cpumask *tmp = cpumask_of_node(0);
5147 /* Use the local node if we haven't already */
5148 if (!node_isset(node, *used_node_mask)) {
5149 node_set(node, *used_node_mask);
5153 for_each_node_state(n, N_MEMORY) {
5155 /* Don't want a node to appear more than once */
5156 if (node_isset(n, *used_node_mask))
5159 /* Use the distance array to find the distance */
5160 val = node_distance(node, n);
5162 /* Penalize nodes under us ("prefer the next node") */
5165 /* Give preference to headless and unused nodes */
5166 tmp = cpumask_of_node(n);
5167 if (!cpumask_empty(tmp))
5168 val += PENALTY_FOR_NODE_WITH_CPUS;
5170 /* Slight preference for less loaded node */
5171 val *= (MAX_NODE_LOAD*MAX_NUMNODES);
5172 val += node_load[n];
5174 if (val < min_val) {
5181 node_set(best_node, *used_node_mask);
5188 * Build zonelists ordered by node and zones within node.
5189 * This results in maximum locality--normal zone overflows into local
5190 * DMA zone, if any--but risks exhausting DMA zone.
5192 static void build_zonelists_in_node_order(pg_data_t *pgdat, int *node_order,
5195 struct zoneref *zonerefs;
5198 zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs;
5200 for (i = 0; i < nr_nodes; i++) {
5203 pg_data_t *node = NODE_DATA(node_order[i]);
5205 nr_zones = build_zonerefs_node(node, zonerefs);
5206 zonerefs += nr_zones;
5208 zonerefs->zone = NULL;
5209 zonerefs->zone_idx = 0;
5213 * Build gfp_thisnode zonelists
5215 static void build_thisnode_zonelists(pg_data_t *pgdat)
5217 struct zoneref *zonerefs;
5220 zonerefs = pgdat->node_zonelists[ZONELIST_NOFALLBACK]._zonerefs;
5221 nr_zones = build_zonerefs_node(pgdat, zonerefs);
5222 zonerefs += nr_zones;
5223 zonerefs->zone = NULL;
5224 zonerefs->zone_idx = 0;
5228 * Build zonelists ordered by zone and nodes within zones.
5229 * This results in conserving DMA zone[s] until all Normal memory is
5230 * exhausted, but results in overflowing to remote node while memory
5231 * may still exist in local DMA zone.
5234 static void build_zonelists(pg_data_t *pgdat)
5236 static int node_order[MAX_NUMNODES];
5237 int node, load, nr_nodes = 0;
5238 nodemask_t used_mask;
5239 int local_node, prev_node;
5241 /* NUMA-aware ordering of nodes */
5242 local_node = pgdat->node_id;
5243 load = nr_online_nodes;
5244 prev_node = local_node;
5245 nodes_clear(used_mask);
5247 memset(node_order, 0, sizeof(node_order));
5248 while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
5250 * We don't want to pressure a particular node.
5251 * So adding penalty to the first node in same
5252 * distance group to make it round-robin.
5254 if (node_distance(local_node, node) !=
5255 node_distance(local_node, prev_node))
5256 node_load[node] = load;
5258 node_order[nr_nodes++] = node;
5263 build_zonelists_in_node_order(pgdat, node_order, nr_nodes);
5264 build_thisnode_zonelists(pgdat);
5267 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
5269 * Return node id of node used for "local" allocations.
5270 * I.e., first node id of first zone in arg node's generic zonelist.
5271 * Used for initializing percpu 'numa_mem', which is used primarily
5272 * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
5274 int local_memory_node(int node)
5278 z = first_zones_zonelist(node_zonelist(node, GFP_KERNEL),
5279 gfp_zone(GFP_KERNEL),
5281 return zone_to_nid(z->zone);
5285 static void setup_min_unmapped_ratio(void);
5286 static void setup_min_slab_ratio(void);
5287 #else /* CONFIG_NUMA */
5289 static void build_zonelists(pg_data_t *pgdat)
5291 int node, local_node;
5292 struct zoneref *zonerefs;
5295 local_node = pgdat->node_id;
5297 zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs;
5298 nr_zones = build_zonerefs_node(pgdat, zonerefs);
5299 zonerefs += nr_zones;
5302 * Now we build the zonelist so that it contains the zones
5303 * of all the other nodes.
5304 * We don't want to pressure a particular node, so when
5305 * building the zones for node N, we make sure that the
5306 * zones coming right after the local ones are those from
5307 * node N+1 (modulo N)
5309 for (node = local_node + 1; node < MAX_NUMNODES; node++) {
5310 if (!node_online(node))
5312 nr_zones = build_zonerefs_node(NODE_DATA(node), zonerefs);
5313 zonerefs += nr_zones;
5315 for (node = 0; node < local_node; node++) {
5316 if (!node_online(node))
5318 nr_zones = build_zonerefs_node(NODE_DATA(node), zonerefs);
5319 zonerefs += nr_zones;
5322 zonerefs->zone = NULL;
5323 zonerefs->zone_idx = 0;
5326 #endif /* CONFIG_NUMA */
5329 * Boot pageset table. One per cpu which is going to be used for all
5330 * zones and all nodes. The parameters will be set in such a way
5331 * that an item put on a list will immediately be handed over to
5332 * the buddy list. This is safe since pageset manipulation is done
5333 * with interrupts disabled.
5335 * The boot_pagesets must be kept even after bootup is complete for
5336 * unused processors and/or zones. They do play a role for bootstrapping
5337 * hotplugged processors.
5339 * zoneinfo_show() and maybe other functions do
5340 * not check if the processor is online before following the pageset pointer.
5341 * Other parts of the kernel may not check if the zone is available.
5343 static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch);
5344 static DEFINE_PER_CPU(struct per_cpu_pageset, boot_pageset);
5345 static DEFINE_PER_CPU(struct per_cpu_nodestat, boot_nodestats);
5347 static void __build_all_zonelists(void *data)
5350 int __maybe_unused cpu;
5351 pg_data_t *self = data;
5352 static DEFINE_SPINLOCK(lock);
5357 memset(node_load, 0, sizeof(node_load));
5361 * This node is hotadded and no memory is yet present. So just
5362 * building zonelists is fine - no need to touch other nodes.
5364 if (self && !node_online(self->node_id)) {
5365 build_zonelists(self);
5367 for_each_online_node(nid) {
5368 pg_data_t *pgdat = NODE_DATA(nid);
5370 build_zonelists(pgdat);
5373 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
5375 * We now know the "local memory node" for each node--
5376 * i.e., the node of the first zone in the generic zonelist.
5377 * Set up numa_mem percpu variable for on-line cpus. During
5378 * boot, only the boot cpu should be on-line; we'll init the
5379 * secondary cpus' numa_mem as they come on-line. During
5380 * node/memory hotplug, we'll fixup all on-line cpus.
5382 for_each_online_cpu(cpu)
5383 set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu)));
5390 static noinline void __init
5391 build_all_zonelists_init(void)
5395 __build_all_zonelists(NULL);
5398 * Initialize the boot_pagesets that are going to be used
5399 * for bootstrapping processors. The real pagesets for
5400 * each zone will be allocated later when the per cpu
5401 * allocator is available.
5403 * boot_pagesets are used also for bootstrapping offline
5404 * cpus if the system is already booted because the pagesets
5405 * are needed to initialize allocators on a specific cpu too.
5406 * F.e. the percpu allocator needs the page allocator which
5407 * needs the percpu allocator in order to allocate its pagesets
5408 * (a chicken-egg dilemma).
5410 for_each_possible_cpu(cpu)
5411 setup_pageset(&per_cpu(boot_pageset, cpu), 0);
5413 mminit_verify_zonelist();
5414 cpuset_init_current_mems_allowed();
5418 * unless system_state == SYSTEM_BOOTING.
5420 * __ref due to call of __init annotated helper build_all_zonelists_init
5421 * [protected by SYSTEM_BOOTING].
5423 void __ref build_all_zonelists(pg_data_t *pgdat)
5425 if (system_state == SYSTEM_BOOTING) {
5426 build_all_zonelists_init();
5428 __build_all_zonelists(pgdat);
5429 /* cpuset refresh routine should be here */
5431 vm_total_pages = nr_free_pagecache_pages();
5433 * Disable grouping by mobility if the number of pages in the
5434 * system is too low to allow the mechanism to work. It would be
5435 * more accurate, but expensive to check per-zone. This check is
5436 * made on memory-hotadd so a system can start with mobility
5437 * disabled and enable it later
5439 if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
5440 page_group_by_mobility_disabled = 1;
5442 page_group_by_mobility_disabled = 0;
5444 pr_info("Built %i zonelists, mobility grouping %s. Total pages: %ld\n",
5446 page_group_by_mobility_disabled ? "off" : "on",
5449 pr_info("Policy zone: %s\n", zone_names[policy_zone]);
5453 /* If zone is ZONE_MOVABLE but memory is mirrored, it is an overlapped init */
5454 static bool __meminit
5455 overlap_memmap_init(unsigned long zone, unsigned long *pfn)
5457 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
5458 static struct memblock_region *r;
5460 if (mirrored_kernelcore && zone == ZONE_MOVABLE) {
5461 if (!r || *pfn >= memblock_region_memory_end_pfn(r)) {
5462 for_each_memblock(memory, r) {
5463 if (*pfn < memblock_region_memory_end_pfn(r))
5467 if (*pfn >= memblock_region_memory_base_pfn(r) &&
5468 memblock_is_mirror(r)) {
5469 *pfn = memblock_region_memory_end_pfn(r);
5478 * Initially all pages are reserved - free ones are freed
5479 * up by free_all_bootmem() once the early boot process is
5480 * done. Non-atomic initialization, single-pass.
5482 void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
5483 unsigned long start_pfn, enum memmap_context context,
5484 struct vmem_altmap *altmap)
5486 unsigned long pfn, end_pfn = start_pfn + size;
5489 if (highest_memmap_pfn < end_pfn - 1)
5490 highest_memmap_pfn = end_pfn - 1;
5492 #ifdef CONFIG_ZONE_DEVICE
5494 * Honor reservation requested by the driver for this ZONE_DEVICE
5495 * memory. We limit the total number of pages to initialize to just
5496 * those that might contain the memory mapping. We will defer the
5497 * ZONE_DEVICE page initialization until after we have released
5500 if (zone == ZONE_DEVICE) {
5504 if (start_pfn == altmap->base_pfn)
5505 start_pfn += altmap->reserve;
5506 end_pfn = altmap->base_pfn + vmem_altmap_offset(altmap);
5510 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
5512 * There can be holes in boot-time mem_map[]s handed to this
5513 * function. They do not exist on hotplugged memory.
5515 if (context == MEMMAP_EARLY) {
5516 if (!early_pfn_valid(pfn))
5518 if (!early_pfn_in_nid(pfn, nid))
5520 if (overlap_memmap_init(zone, &pfn))
5522 if (defer_init(nid, pfn, end_pfn))
5526 page = pfn_to_page(pfn);
5527 __init_single_page(page, pfn, zone, nid);
5528 if (context == MEMMAP_HOTPLUG)
5529 __SetPageReserved(page);
5532 * Mark the block movable so that blocks are reserved for
5533 * movable at startup. This will force kernel allocations
5534 * to reserve their blocks rather than leaking throughout
5535 * the address space during boot when many long-lived
5536 * kernel allocations are made.
5538 * bitmap is created for zone's valid pfn range. but memmap
5539 * can be created for invalid pages (for alignment)
5540 * check here not to call set_pageblock_migratetype() against
5543 if (!(pfn & (pageblock_nr_pages - 1))) {
5544 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
5550 #ifdef CONFIG_ZONE_DEVICE
5551 void __ref memmap_init_zone_device(struct zone *zone,
5552 unsigned long start_pfn,
5554 struct dev_pagemap *pgmap)
5556 unsigned long pfn, end_pfn = start_pfn + size;
5557 struct pglist_data *pgdat = zone->zone_pgdat;
5558 unsigned long zone_idx = zone_idx(zone);
5559 unsigned long start = jiffies;
5560 int nid = pgdat->node_id;
5562 if (WARN_ON_ONCE(!pgmap || !is_dev_zone(zone)))
5566 * The call to memmap_init_zone should have already taken care
5567 * of the pages reserved for the memmap, so we can just jump to
5568 * the end of that region and start processing the device pages.
5570 if (pgmap->altmap_valid) {
5571 struct vmem_altmap *altmap = &pgmap->altmap;
5573 start_pfn = altmap->base_pfn + vmem_altmap_offset(altmap);
5574 size = end_pfn - start_pfn;
5577 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
5578 struct page *page = pfn_to_page(pfn);
5580 __init_single_page(page, pfn, zone_idx, nid);
5583 * Mark page reserved as it will need to wait for onlining
5584 * phase for it to be fully associated with a zone.
5586 * We can use the non-atomic __set_bit operation for setting
5587 * the flag as we are still initializing the pages.
5589 __SetPageReserved(page);
5592 * ZONE_DEVICE pages union ->lru with a ->pgmap back
5593 * pointer and hmm_data. It is a bug if a ZONE_DEVICE
5594 * page is ever freed or placed on a driver-private list.
5596 page->pgmap = pgmap;
5600 * Mark the block movable so that blocks are reserved for
5601 * movable at startup. This will force kernel allocations
5602 * to reserve their blocks rather than leaking throughout
5603 * the address space during boot when many long-lived
5604 * kernel allocations are made.
5606 * bitmap is created for zone's valid pfn range. but memmap
5607 * can be created for invalid pages (for alignment)
5608 * check here not to call set_pageblock_migratetype() against
5611 * Please note that MEMMAP_HOTPLUG path doesn't clear memmap
5612 * because this is done early in sparse_add_one_section
5614 if (!(pfn & (pageblock_nr_pages - 1))) {
5615 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
5620 pr_info("%s initialised, %lu pages in %ums\n", dev_name(pgmap->dev),
5621 size, jiffies_to_msecs(jiffies - start));
5625 static void __meminit zone_init_free_lists(struct zone *zone)
5627 unsigned int order, t;
5628 for_each_migratetype_order(order, t) {
5629 INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
5630 zone->free_area[order].nr_free = 0;
5634 void __meminit __weak memmap_init(unsigned long size, int nid,
5635 unsigned long zone, unsigned long start_pfn)
5637 memmap_init_zone(size, nid, zone, start_pfn, MEMMAP_EARLY, NULL);
5640 static int zone_batchsize(struct zone *zone)
5646 * The per-cpu-pages pools are set to around 1000th of the
5649 batch = zone->managed_pages / 1024;
5650 /* But no more than a meg. */
5651 if (batch * PAGE_SIZE > 1024 * 1024)
5652 batch = (1024 * 1024) / PAGE_SIZE;
5653 batch /= 4; /* We effectively *= 4 below */
5658 * Clamp the batch to a 2^n - 1 value. Having a power
5659 * of 2 value was found to be more likely to have
5660 * suboptimal cache aliasing properties in some cases.
5662 * For example if 2 tasks are alternately allocating
5663 * batches of pages, one task can end up with a lot
5664 * of pages of one half of the possible page colors
5665 * and the other with pages of the other colors.
5667 batch = rounddown_pow_of_two(batch + batch/2) - 1;
5672 /* The deferral and batching of frees should be suppressed under NOMMU
5675 * The problem is that NOMMU needs to be able to allocate large chunks
5676 * of contiguous memory as there's no hardware page translation to
5677 * assemble apparent contiguous memory from discontiguous pages.
5679 * Queueing large contiguous runs of pages for batching, however,
5680 * causes the pages to actually be freed in smaller chunks. As there
5681 * can be a significant delay between the individual batches being
5682 * recycled, this leads to the once large chunks of space being
5683 * fragmented and becoming unavailable for high-order allocations.
5690 * pcp->high and pcp->batch values are related and dependent on one another:
5691 * ->batch must never be higher then ->high.
5692 * The following function updates them in a safe manner without read side
5695 * Any new users of pcp->batch and pcp->high should ensure they can cope with
5696 * those fields changing asynchronously (acording the the above rule).
5698 * mutex_is_locked(&pcp_batch_high_lock) required when calling this function
5699 * outside of boot time (or some other assurance that no concurrent updaters
5702 static void pageset_update(struct per_cpu_pages *pcp, unsigned long high,
5703 unsigned long batch)
5705 /* start with a fail safe value for batch */
5709 /* Update high, then batch, in order */
5716 /* a companion to pageset_set_high() */
5717 static void pageset_set_batch(struct per_cpu_pageset *p, unsigned long batch)
5719 pageset_update(&p->pcp, 6 * batch, max(1UL, 1 * batch));
5722 static void pageset_init(struct per_cpu_pageset *p)
5724 struct per_cpu_pages *pcp;
5727 memset(p, 0, sizeof(*p));
5731 for (migratetype = 0; migratetype < MIGRATE_PCPTYPES; migratetype++)
5732 INIT_LIST_HEAD(&pcp->lists[migratetype]);
5735 static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
5738 pageset_set_batch(p, batch);
5742 * pageset_set_high() sets the high water mark for hot per_cpu_pagelist
5743 * to the value high for the pageset p.
5745 static void pageset_set_high(struct per_cpu_pageset *p,
5748 unsigned long batch = max(1UL, high / 4);
5749 if ((high / 4) > (PAGE_SHIFT * 8))
5750 batch = PAGE_SHIFT * 8;
5752 pageset_update(&p->pcp, high, batch);
5755 static void pageset_set_high_and_batch(struct zone *zone,
5756 struct per_cpu_pageset *pcp)
5758 if (percpu_pagelist_fraction)
5759 pageset_set_high(pcp,
5760 (zone->managed_pages /
5761 percpu_pagelist_fraction));
5763 pageset_set_batch(pcp, zone_batchsize(zone));
5766 static void __meminit zone_pageset_init(struct zone *zone, int cpu)
5768 struct per_cpu_pageset *pcp = per_cpu_ptr(zone->pageset, cpu);
5771 pageset_set_high_and_batch(zone, pcp);
5774 void __meminit setup_zone_pageset(struct zone *zone)
5777 zone->pageset = alloc_percpu(struct per_cpu_pageset);
5778 for_each_possible_cpu(cpu)
5779 zone_pageset_init(zone, cpu);
5783 * Allocate per cpu pagesets and initialize them.
5784 * Before this call only boot pagesets were available.
5786 void __init setup_per_cpu_pageset(void)
5788 struct pglist_data *pgdat;
5791 for_each_populated_zone(zone)
5792 setup_zone_pageset(zone);
5794 for_each_online_pgdat(pgdat)
5795 pgdat->per_cpu_nodestats =
5796 alloc_percpu(struct per_cpu_nodestat);
5799 static __meminit void zone_pcp_init(struct zone *zone)
5802 * per cpu subsystem is not up at this point. The following code
5803 * relies on the ability of the linker to provide the
5804 * offset of a (static) per cpu variable into the per cpu area.
5806 zone->pageset = &boot_pageset;
5808 if (populated_zone(zone))
5809 printk(KERN_DEBUG " %s zone: %lu pages, LIFO batch:%u\n",
5810 zone->name, zone->present_pages,
5811 zone_batchsize(zone));
5814 void __meminit init_currently_empty_zone(struct zone *zone,
5815 unsigned long zone_start_pfn,
5818 struct pglist_data *pgdat = zone->zone_pgdat;
5820 pgdat->nr_zones = zone_idx(zone) + 1;
5822 zone->zone_start_pfn = zone_start_pfn;
5824 mminit_dprintk(MMINIT_TRACE, "memmap_init",
5825 "Initialising map node %d zone %lu pfns %lu -> %lu\n",
5827 (unsigned long)zone_idx(zone),
5828 zone_start_pfn, (zone_start_pfn + size));
5830 zone_init_free_lists(zone);
5831 zone->initialized = 1;
5834 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
5835 #ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
5838 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
5840 int __meminit __early_pfn_to_nid(unsigned long pfn,
5841 struct mminit_pfnnid_cache *state)
5843 unsigned long start_pfn, end_pfn;
5846 if (state->last_start <= pfn && pfn < state->last_end)
5847 return state->last_nid;
5849 nid = memblock_search_pfn_nid(pfn, &start_pfn, &end_pfn);
5851 state->last_start = start_pfn;
5852 state->last_end = end_pfn;
5853 state->last_nid = nid;
5858 #endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
5861 * free_bootmem_with_active_regions - Call memblock_free_early_nid for each active range
5862 * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
5863 * @max_low_pfn: The highest PFN that will be passed to memblock_free_early_nid
5865 * If an architecture guarantees that all ranges registered contain no holes
5866 * and may be freed, this this function may be used instead of calling
5867 * memblock_free_early_nid() manually.
5869 void __init free_bootmem_with_active_regions(int nid, unsigned long max_low_pfn)
5871 unsigned long start_pfn, end_pfn;
5874 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid) {
5875 start_pfn = min(start_pfn, max_low_pfn);
5876 end_pfn = min(end_pfn, max_low_pfn);
5878 if (start_pfn < end_pfn)
5879 memblock_free_early_nid(PFN_PHYS(start_pfn),
5880 (end_pfn - start_pfn) << PAGE_SHIFT,
5886 * sparse_memory_present_with_active_regions - Call memory_present for each active range
5887 * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
5889 * If an architecture guarantees that all ranges registered contain no holes and may
5890 * be freed, this function may be used instead of calling memory_present() manually.
5892 void __init sparse_memory_present_with_active_regions(int nid)
5894 unsigned long start_pfn, end_pfn;
5897 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid)
5898 memory_present(this_nid, start_pfn, end_pfn);
5902 * get_pfn_range_for_nid - Return the start and end page frames for a node
5903 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
5904 * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
5905 * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
5907 * It returns the start and end page frame of a node based on information
5908 * provided by memblock_set_node(). If called for a node
5909 * with no available memory, a warning is printed and the start and end
5912 void __meminit get_pfn_range_for_nid(unsigned int nid,
5913 unsigned long *start_pfn, unsigned long *end_pfn)
5915 unsigned long this_start_pfn, this_end_pfn;
5921 for_each_mem_pfn_range(i, nid, &this_start_pfn, &this_end_pfn, NULL) {
5922 *start_pfn = min(*start_pfn, this_start_pfn);
5923 *end_pfn = max(*end_pfn, this_end_pfn);
5926 if (*start_pfn == -1UL)
5931 * This finds a zone that can be used for ZONE_MOVABLE pages. The
5932 * assumption is made that zones within a node are ordered in monotonic
5933 * increasing memory addresses so that the "highest" populated zone is used
5935 static void __init find_usable_zone_for_movable(void)
5938 for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
5939 if (zone_index == ZONE_MOVABLE)
5942 if (arch_zone_highest_possible_pfn[zone_index] >
5943 arch_zone_lowest_possible_pfn[zone_index])
5947 VM_BUG_ON(zone_index == -1);
5948 movable_zone = zone_index;
5952 * The zone ranges provided by the architecture do not include ZONE_MOVABLE
5953 * because it is sized independent of architecture. Unlike the other zones,
5954 * the starting point for ZONE_MOVABLE is not fixed. It may be different
5955 * in each node depending on the size of each node and how evenly kernelcore
5956 * is distributed. This helper function adjusts the zone ranges
5957 * provided by the architecture for a given node by using the end of the
5958 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
5959 * zones within a node are in order of monotonic increases memory addresses
5961 static void __meminit adjust_zone_range_for_zone_movable(int nid,
5962 unsigned long zone_type,
5963 unsigned long node_start_pfn,
5964 unsigned long node_end_pfn,
5965 unsigned long *zone_start_pfn,
5966 unsigned long *zone_end_pfn)
5968 /* Only adjust if ZONE_MOVABLE is on this node */
5969 if (zone_movable_pfn[nid]) {
5970 /* Size ZONE_MOVABLE */
5971 if (zone_type == ZONE_MOVABLE) {
5972 *zone_start_pfn = zone_movable_pfn[nid];
5973 *zone_end_pfn = min(node_end_pfn,
5974 arch_zone_highest_possible_pfn[movable_zone]);
5976 /* Adjust for ZONE_MOVABLE starting within this range */
5977 } else if (!mirrored_kernelcore &&
5978 *zone_start_pfn < zone_movable_pfn[nid] &&
5979 *zone_end_pfn > zone_movable_pfn[nid]) {
5980 *zone_end_pfn = zone_movable_pfn[nid];
5982 /* Check if this whole range is within ZONE_MOVABLE */
5983 } else if (*zone_start_pfn >= zone_movable_pfn[nid])
5984 *zone_start_pfn = *zone_end_pfn;
5989 * Return the number of pages a zone spans in a node, including holes
5990 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
5992 static unsigned long __meminit zone_spanned_pages_in_node(int nid,
5993 unsigned long zone_type,
5994 unsigned long node_start_pfn,
5995 unsigned long node_end_pfn,
5996 unsigned long *zone_start_pfn,
5997 unsigned long *zone_end_pfn,
5998 unsigned long *ignored)
6000 /* When hotadd a new node from cpu_up(), the node should be empty */
6001 if (!node_start_pfn && !node_end_pfn)
6004 /* Get the start and end of the zone */
6005 *zone_start_pfn = arch_zone_lowest_possible_pfn[zone_type];
6006 *zone_end_pfn = arch_zone_highest_possible_pfn[zone_type];
6007 adjust_zone_range_for_zone_movable(nid, zone_type,
6008 node_start_pfn, node_end_pfn,
6009 zone_start_pfn, zone_end_pfn);
6011 /* Check that this node has pages within the zone's required range */
6012 if (*zone_end_pfn < node_start_pfn || *zone_start_pfn > node_end_pfn)
6015 /* Move the zone boundaries inside the node if necessary */
6016 *zone_end_pfn = min(*zone_end_pfn, node_end_pfn);
6017 *zone_start_pfn = max(*zone_start_pfn, node_start_pfn);
6019 /* Return the spanned pages */
6020 return *zone_end_pfn - *zone_start_pfn;
6024 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
6025 * then all holes in the requested range will be accounted for.
6027 unsigned long __meminit __absent_pages_in_range(int nid,
6028 unsigned long range_start_pfn,
6029 unsigned long range_end_pfn)
6031 unsigned long nr_absent = range_end_pfn - range_start_pfn;
6032 unsigned long start_pfn, end_pfn;
6035 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
6036 start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn);
6037 end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn);
6038 nr_absent -= end_pfn - start_pfn;
6044 * absent_pages_in_range - Return number of page frames in holes within a range
6045 * @start_pfn: The start PFN to start searching for holes
6046 * @end_pfn: The end PFN to stop searching for holes
6048 * It returns the number of pages frames in memory holes within a range.
6050 unsigned long __init absent_pages_in_range(unsigned long start_pfn,
6051 unsigned long end_pfn)
6053 return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
6056 /* Return the number of page frames in holes in a zone on a node */
6057 static unsigned long __meminit zone_absent_pages_in_node(int nid,
6058 unsigned long zone_type,
6059 unsigned long node_start_pfn,
6060 unsigned long node_end_pfn,
6061 unsigned long *ignored)
6063 unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
6064 unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
6065 unsigned long zone_start_pfn, zone_end_pfn;
6066 unsigned long nr_absent;
6068 /* When hotadd a new node from cpu_up(), the node should be empty */
6069 if (!node_start_pfn && !node_end_pfn)
6072 zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
6073 zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
6075 adjust_zone_range_for_zone_movable(nid, zone_type,
6076 node_start_pfn, node_end_pfn,
6077 &zone_start_pfn, &zone_end_pfn);
6078 nr_absent = __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
6081 * ZONE_MOVABLE handling.
6082 * Treat pages to be ZONE_MOVABLE in ZONE_NORMAL as absent pages
6085 if (mirrored_kernelcore && zone_movable_pfn[nid]) {
6086 unsigned long start_pfn, end_pfn;
6087 struct memblock_region *r;
6089 for_each_memblock(memory, r) {
6090 start_pfn = clamp(memblock_region_memory_base_pfn(r),
6091 zone_start_pfn, zone_end_pfn);
6092 end_pfn = clamp(memblock_region_memory_end_pfn(r),
6093 zone_start_pfn, zone_end_pfn);
6095 if (zone_type == ZONE_MOVABLE &&
6096 memblock_is_mirror(r))
6097 nr_absent += end_pfn - start_pfn;
6099 if (zone_type == ZONE_NORMAL &&
6100 !memblock_is_mirror(r))
6101 nr_absent += end_pfn - start_pfn;
6108 #else /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
6109 static inline unsigned long __meminit zone_spanned_pages_in_node(int nid,
6110 unsigned long zone_type,
6111 unsigned long node_start_pfn,
6112 unsigned long node_end_pfn,
6113 unsigned long *zone_start_pfn,
6114 unsigned long *zone_end_pfn,
6115 unsigned long *zones_size)
6119 *zone_start_pfn = node_start_pfn;
6120 for (zone = 0; zone < zone_type; zone++)
6121 *zone_start_pfn += zones_size[zone];
6123 *zone_end_pfn = *zone_start_pfn + zones_size[zone_type];
6125 return zones_size[zone_type];
6128 static inline unsigned long __meminit zone_absent_pages_in_node(int nid,
6129 unsigned long zone_type,
6130 unsigned long node_start_pfn,
6131 unsigned long node_end_pfn,
6132 unsigned long *zholes_size)
6137 return zholes_size[zone_type];
6140 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
6142 static void __meminit calculate_node_totalpages(struct pglist_data *pgdat,
6143 unsigned long node_start_pfn,
6144 unsigned long node_end_pfn,
6145 unsigned long *zones_size,
6146 unsigned long *zholes_size)
6148 unsigned long realtotalpages = 0, totalpages = 0;
6151 for (i = 0; i < MAX_NR_ZONES; i++) {
6152 struct zone *zone = pgdat->node_zones + i;
6153 unsigned long zone_start_pfn, zone_end_pfn;
6154 unsigned long size, real_size;
6156 size = zone_spanned_pages_in_node(pgdat->node_id, i,
6162 real_size = size - zone_absent_pages_in_node(pgdat->node_id, i,
6163 node_start_pfn, node_end_pfn,
6166 zone->zone_start_pfn = zone_start_pfn;
6168 zone->zone_start_pfn = 0;
6169 zone->spanned_pages = size;
6170 zone->present_pages = real_size;
6173 realtotalpages += real_size;
6176 pgdat->node_spanned_pages = totalpages;
6177 pgdat->node_present_pages = realtotalpages;
6178 printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id,
6182 #ifndef CONFIG_SPARSEMEM
6184 * Calculate the size of the zone->blockflags rounded to an unsigned long
6185 * Start by making sure zonesize is a multiple of pageblock_order by rounding
6186 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
6187 * round what is now in bits to nearest long in bits, then return it in
6190 static unsigned long __init usemap_size(unsigned long zone_start_pfn, unsigned long zonesize)
6192 unsigned long usemapsize;
6194 zonesize += zone_start_pfn & (pageblock_nr_pages-1);
6195 usemapsize = roundup(zonesize, pageblock_nr_pages);
6196 usemapsize = usemapsize >> pageblock_order;
6197 usemapsize *= NR_PAGEBLOCK_BITS;
6198 usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));
6200 return usemapsize / 8;
6203 static void __ref setup_usemap(struct pglist_data *pgdat,
6205 unsigned long zone_start_pfn,
6206 unsigned long zonesize)
6208 unsigned long usemapsize = usemap_size(zone_start_pfn, zonesize);
6209 zone->pageblock_flags = NULL;
6211 zone->pageblock_flags =
6212 memblock_virt_alloc_node_nopanic(usemapsize,
6216 static inline void setup_usemap(struct pglist_data *pgdat, struct zone *zone,
6217 unsigned long zone_start_pfn, unsigned long zonesize) {}
6218 #endif /* CONFIG_SPARSEMEM */
6220 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
6222 /* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
6223 void __init set_pageblock_order(void)
6227 /* Check that pageblock_nr_pages has not already been setup */
6228 if (pageblock_order)
6231 if (HPAGE_SHIFT > PAGE_SHIFT)
6232 order = HUGETLB_PAGE_ORDER;
6234 order = MAX_ORDER - 1;
6237 * Assume the largest contiguous order of interest is a huge page.
6238 * This value may be variable depending on boot parameters on IA64 and
6241 pageblock_order = order;
6243 #else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
6246 * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
6247 * is unused as pageblock_order is set at compile-time. See
6248 * include/linux/pageblock-flags.h for the values of pageblock_order based on
6251 void __init set_pageblock_order(void)
6255 #endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
6257 static unsigned long __init calc_memmap_size(unsigned long spanned_pages,
6258 unsigned long present_pages)
6260 unsigned long pages = spanned_pages;
6263 * Provide a more accurate estimation if there are holes within
6264 * the zone and SPARSEMEM is in use. If there are holes within the
6265 * zone, each populated memory region may cost us one or two extra
6266 * memmap pages due to alignment because memmap pages for each
6267 * populated regions may not be naturally aligned on page boundary.
6268 * So the (present_pages >> 4) heuristic is a tradeoff for that.
6270 if (spanned_pages > present_pages + (present_pages >> 4) &&
6271 IS_ENABLED(CONFIG_SPARSEMEM))
6272 pages = present_pages;
6274 return PAGE_ALIGN(pages * sizeof(struct page)) >> PAGE_SHIFT;
6277 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
6278 static void pgdat_init_split_queue(struct pglist_data *pgdat)
6280 spin_lock_init(&pgdat->split_queue_lock);
6281 INIT_LIST_HEAD(&pgdat->split_queue);
6282 pgdat->split_queue_len = 0;
6285 static void pgdat_init_split_queue(struct pglist_data *pgdat) {}
6288 #ifdef CONFIG_COMPACTION
6289 static void pgdat_init_kcompactd(struct pglist_data *pgdat)
6291 init_waitqueue_head(&pgdat->kcompactd_wait);
6294 static void pgdat_init_kcompactd(struct pglist_data *pgdat) {}
6297 static void __meminit pgdat_init_internals(struct pglist_data *pgdat)
6299 pgdat_resize_init(pgdat);
6301 pgdat_init_split_queue(pgdat);
6302 pgdat_init_kcompactd(pgdat);
6304 init_waitqueue_head(&pgdat->kswapd_wait);
6305 init_waitqueue_head(&pgdat->pfmemalloc_wait);
6307 pgdat_page_ext_init(pgdat);
6308 spin_lock_init(&pgdat->lru_lock);
6309 lruvec_init(node_lruvec(pgdat));
6312 static void __meminit zone_init_internals(struct zone *zone, enum zone_type idx, int nid,
6313 unsigned long remaining_pages)
6315 zone->managed_pages = remaining_pages;
6316 zone_set_nid(zone, nid);
6317 zone->name = zone_names[idx];
6318 zone->zone_pgdat = NODE_DATA(nid);
6319 spin_lock_init(&zone->lock);
6320 zone_seqlock_init(zone);
6321 zone_pcp_init(zone);
6325 * Set up the zone data structures
6326 * - init pgdat internals
6327 * - init all zones belonging to this node
6329 * NOTE: this function is only called during memory hotplug
6331 #ifdef CONFIG_MEMORY_HOTPLUG
6332 void __ref free_area_init_core_hotplug(int nid)
6335 pg_data_t *pgdat = NODE_DATA(nid);
6337 pgdat_init_internals(pgdat);
6338 for (z = 0; z < MAX_NR_ZONES; z++)
6339 zone_init_internals(&pgdat->node_zones[z], z, nid, 0);
6344 * Set up the zone data structures:
6345 * - mark all pages reserved
6346 * - mark all memory queues empty
6347 * - clear the memory bitmaps
6349 * NOTE: pgdat should get zeroed by caller.
6350 * NOTE: this function is only called during early init.
6352 static void __init free_area_init_core(struct pglist_data *pgdat)
6355 int nid = pgdat->node_id;
6357 pgdat_init_internals(pgdat);
6358 pgdat->per_cpu_nodestats = &boot_nodestats;
6360 for (j = 0; j < MAX_NR_ZONES; j++) {
6361 struct zone *zone = pgdat->node_zones + j;
6362 unsigned long size, freesize, memmap_pages;
6363 unsigned long zone_start_pfn = zone->zone_start_pfn;
6365 size = zone->spanned_pages;
6366 freesize = zone->present_pages;
6369 * Adjust freesize so that it accounts for how much memory
6370 * is used by this zone for memmap. This affects the watermark
6371 * and per-cpu initialisations
6373 memmap_pages = calc_memmap_size(size, freesize);
6374 if (!is_highmem_idx(j)) {
6375 if (freesize >= memmap_pages) {
6376 freesize -= memmap_pages;
6379 " %s zone: %lu pages used for memmap\n",
6380 zone_names[j], memmap_pages);
6382 pr_warn(" %s zone: %lu pages exceeds freesize %lu\n",
6383 zone_names[j], memmap_pages, freesize);
6386 /* Account for reserved pages */
6387 if (j == 0 && freesize > dma_reserve) {
6388 freesize -= dma_reserve;
6389 printk(KERN_DEBUG " %s zone: %lu pages reserved\n",
6390 zone_names[0], dma_reserve);
6393 if (!is_highmem_idx(j))
6394 nr_kernel_pages += freesize;
6395 /* Charge for highmem memmap if there are enough kernel pages */
6396 else if (nr_kernel_pages > memmap_pages * 2)
6397 nr_kernel_pages -= memmap_pages;
6398 nr_all_pages += freesize;
6401 * Set an approximate value for lowmem here, it will be adjusted
6402 * when the bootmem allocator frees pages into the buddy system.
6403 * And all highmem pages will be managed by the buddy system.
6405 zone_init_internals(zone, j, nid, freesize);
6410 set_pageblock_order();
6411 setup_usemap(pgdat, zone, zone_start_pfn, size);
6412 init_currently_empty_zone(zone, zone_start_pfn, size);
6413 memmap_init(size, nid, j, zone_start_pfn);
6417 #ifdef CONFIG_FLAT_NODE_MEM_MAP
6418 static void __ref alloc_node_mem_map(struct pglist_data *pgdat)
6420 unsigned long __maybe_unused start = 0;
6421 unsigned long __maybe_unused offset = 0;
6423 /* Skip empty nodes */
6424 if (!pgdat->node_spanned_pages)
6427 start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
6428 offset = pgdat->node_start_pfn - start;
6429 /* ia64 gets its own node_mem_map, before this, without bootmem */
6430 if (!pgdat->node_mem_map) {
6431 unsigned long size, end;
6435 * The zone's endpoints aren't required to be MAX_ORDER
6436 * aligned but the node_mem_map endpoints must be in order
6437 * for the buddy allocator to function correctly.
6439 end = pgdat_end_pfn(pgdat);
6440 end = ALIGN(end, MAX_ORDER_NR_PAGES);
6441 size = (end - start) * sizeof(struct page);
6442 map = memblock_virt_alloc_node_nopanic(size, pgdat->node_id);
6443 pgdat->node_mem_map = map + offset;
6445 pr_debug("%s: node %d, pgdat %08lx, node_mem_map %08lx\n",
6446 __func__, pgdat->node_id, (unsigned long)pgdat,
6447 (unsigned long)pgdat->node_mem_map);
6448 #ifndef CONFIG_NEED_MULTIPLE_NODES
6450 * With no DISCONTIG, the global mem_map is just set as node 0's
6452 if (pgdat == NODE_DATA(0)) {
6453 mem_map = NODE_DATA(0)->node_mem_map;
6454 #if defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP) || defined(CONFIG_FLATMEM)
6455 if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
6457 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
6462 static void __ref alloc_node_mem_map(struct pglist_data *pgdat) { }
6463 #endif /* CONFIG_FLAT_NODE_MEM_MAP */
6465 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
6466 static inline void pgdat_set_deferred_range(pg_data_t *pgdat)
6469 * We start only with one section of pages, more pages are added as
6470 * needed until the rest of deferred pages are initialized.
6472 pgdat->static_init_pgcnt = min_t(unsigned long, PAGES_PER_SECTION,
6473 pgdat->node_spanned_pages);
6474 pgdat->first_deferred_pfn = ULONG_MAX;
6477 static inline void pgdat_set_deferred_range(pg_data_t *pgdat) {}
6480 void __init free_area_init_node(int nid, unsigned long *zones_size,
6481 unsigned long node_start_pfn,
6482 unsigned long *zholes_size)
6484 pg_data_t *pgdat = NODE_DATA(nid);
6485 unsigned long start_pfn = 0;
6486 unsigned long end_pfn = 0;
6488 /* pg_data_t should be reset to zero when it's allocated */
6489 WARN_ON(pgdat->nr_zones || pgdat->kswapd_classzone_idx);
6491 pgdat->node_id = nid;
6492 pgdat->node_start_pfn = node_start_pfn;
6493 pgdat->per_cpu_nodestats = NULL;
6494 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
6495 get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
6496 pr_info("Initmem setup node %d [mem %#018Lx-%#018Lx]\n", nid,
6497 (u64)start_pfn << PAGE_SHIFT,
6498 end_pfn ? ((u64)end_pfn << PAGE_SHIFT) - 1 : 0);
6500 start_pfn = node_start_pfn;
6502 calculate_node_totalpages(pgdat, start_pfn, end_pfn,
6503 zones_size, zholes_size);
6505 alloc_node_mem_map(pgdat);
6506 pgdat_set_deferred_range(pgdat);
6508 free_area_init_core(pgdat);
6511 #if defined(CONFIG_HAVE_MEMBLOCK) && !defined(CONFIG_FLAT_NODE_MEM_MAP)
6514 * Zero all valid struct pages in range [spfn, epfn), return number of struct
6517 static u64 zero_pfn_range(unsigned long spfn, unsigned long epfn)
6522 for (pfn = spfn; pfn < epfn; pfn++) {
6523 if (!pfn_valid(ALIGN_DOWN(pfn, pageblock_nr_pages))) {
6524 pfn = ALIGN_DOWN(pfn, pageblock_nr_pages)
6525 + pageblock_nr_pages - 1;
6528 mm_zero_struct_page(pfn_to_page(pfn));
6536 * Only struct pages that are backed by physical memory are zeroed and
6537 * initialized by going through __init_single_page(). But, there are some
6538 * struct pages which are reserved in memblock allocator and their fields
6539 * may be accessed (for example page_to_pfn() on some configuration accesses
6540 * flags). We must explicitly zero those struct pages.
6542 * This function also addresses a similar issue where struct pages are left
6543 * uninitialized because the physical address range is not covered by
6544 * memblock.memory or memblock.reserved. That could happen when memblock
6545 * layout is manually configured via memmap=.
6547 void __init zero_resv_unavail(void)
6549 phys_addr_t start, end;
6551 phys_addr_t next = 0;
6554 * Loop through unavailable ranges not covered by memblock.memory.
6557 for_each_mem_range(i, &memblock.memory, NULL,
6558 NUMA_NO_NODE, MEMBLOCK_NONE, &start, &end, NULL) {
6560 pgcnt += zero_pfn_range(PFN_DOWN(next), PFN_UP(start));
6563 pgcnt += zero_pfn_range(PFN_DOWN(next), max_pfn);
6566 * Struct pages that do not have backing memory. This could be because
6567 * firmware is using some of this memory, or for some other reasons.
6570 pr_info("Zeroed struct page in unavailable ranges: %lld pages", pgcnt);
6572 #endif /* CONFIG_HAVE_MEMBLOCK && !CONFIG_FLAT_NODE_MEM_MAP */
6574 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
6576 #if MAX_NUMNODES > 1
6578 * Figure out the number of possible node ids.
6580 void __init setup_nr_node_ids(void)
6582 unsigned int highest;
6584 highest = find_last_bit(node_possible_map.bits, MAX_NUMNODES);
6585 nr_node_ids = highest + 1;
6590 * node_map_pfn_alignment - determine the maximum internode alignment
6592 * This function should be called after node map is populated and sorted.
6593 * It calculates the maximum power of two alignment which can distinguish
6596 * For example, if all nodes are 1GiB and aligned to 1GiB, the return value
6597 * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)). If the
6598 * nodes are shifted by 256MiB, 256MiB. Note that if only the last node is
6599 * shifted, 1GiB is enough and this function will indicate so.
6601 * This is used to test whether pfn -> nid mapping of the chosen memory
6602 * model has fine enough granularity to avoid incorrect mapping for the
6603 * populated node map.
6605 * Returns the determined alignment in pfn's. 0 if there is no alignment
6606 * requirement (single node).
6608 unsigned long __init node_map_pfn_alignment(void)
6610 unsigned long accl_mask = 0, last_end = 0;
6611 unsigned long start, end, mask;
6615 for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid) {
6616 if (!start || last_nid < 0 || last_nid == nid) {
6623 * Start with a mask granular enough to pin-point to the
6624 * start pfn and tick off bits one-by-one until it becomes
6625 * too coarse to separate the current node from the last.
6627 mask = ~((1 << __ffs(start)) - 1);
6628 while (mask && last_end <= (start & (mask << 1)))
6631 /* accumulate all internode masks */
6635 /* convert mask to number of pages */
6636 return ~accl_mask + 1;
6639 /* Find the lowest pfn for a node */
6640 static unsigned long __init find_min_pfn_for_node(int nid)
6642 unsigned long min_pfn = ULONG_MAX;
6643 unsigned long start_pfn;
6646 for_each_mem_pfn_range(i, nid, &start_pfn, NULL, NULL)
6647 min_pfn = min(min_pfn, start_pfn);
6649 if (min_pfn == ULONG_MAX) {
6650 pr_warn("Could not find start_pfn for node %d\n", nid);
6658 * find_min_pfn_with_active_regions - Find the minimum PFN registered
6660 * It returns the minimum PFN based on information provided via
6661 * memblock_set_node().
6663 unsigned long __init find_min_pfn_with_active_regions(void)
6665 return find_min_pfn_for_node(MAX_NUMNODES);
6669 * early_calculate_totalpages()
6670 * Sum pages in active regions for movable zone.
6671 * Populate N_MEMORY for calculating usable_nodes.
6673 static unsigned long __init early_calculate_totalpages(void)
6675 unsigned long totalpages = 0;
6676 unsigned long start_pfn, end_pfn;
6679 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
6680 unsigned long pages = end_pfn - start_pfn;
6682 totalpages += pages;
6684 node_set_state(nid, N_MEMORY);
6690 * Find the PFN the Movable zone begins in each node. Kernel memory
6691 * is spread evenly between nodes as long as the nodes have enough
6692 * memory. When they don't, some nodes will have more kernelcore than
6695 static void __init find_zone_movable_pfns_for_nodes(void)
6698 unsigned long usable_startpfn;
6699 unsigned long kernelcore_node, kernelcore_remaining;
6700 /* save the state before borrow the nodemask */
6701 nodemask_t saved_node_state = node_states[N_MEMORY];
6702 unsigned long totalpages = early_calculate_totalpages();
6703 int usable_nodes = nodes_weight(node_states[N_MEMORY]);
6704 struct memblock_region *r;
6706 /* Need to find movable_zone earlier when movable_node is specified. */
6707 find_usable_zone_for_movable();
6710 * If movable_node is specified, ignore kernelcore and movablecore
6713 if (movable_node_is_enabled()) {
6714 for_each_memblock(memory, r) {
6715 if (!memblock_is_hotpluggable(r))
6720 usable_startpfn = PFN_DOWN(r->base);
6721 zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
6722 min(usable_startpfn, zone_movable_pfn[nid]) :
6730 * If kernelcore=mirror is specified, ignore movablecore option
6732 if (mirrored_kernelcore) {
6733 bool mem_below_4gb_not_mirrored = false;
6735 for_each_memblock(memory, r) {
6736 if (memblock_is_mirror(r))
6741 usable_startpfn = memblock_region_memory_base_pfn(r);
6743 if (usable_startpfn < 0x100000) {
6744 mem_below_4gb_not_mirrored = true;
6748 zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
6749 min(usable_startpfn, zone_movable_pfn[nid]) :
6753 if (mem_below_4gb_not_mirrored)
6754 pr_warn("This configuration results in unmirrored kernel memory.");
6760 * If kernelcore=nn% or movablecore=nn% was specified, calculate the
6761 * amount of necessary memory.
6763 if (required_kernelcore_percent)
6764 required_kernelcore = (totalpages * 100 * required_kernelcore_percent) /
6766 if (required_movablecore_percent)
6767 required_movablecore = (totalpages * 100 * required_movablecore_percent) /
6771 * If movablecore= was specified, calculate what size of
6772 * kernelcore that corresponds so that memory usable for
6773 * any allocation type is evenly spread. If both kernelcore
6774 * and movablecore are specified, then the value of kernelcore
6775 * will be used for required_kernelcore if it's greater than
6776 * what movablecore would have allowed.
6778 if (required_movablecore) {
6779 unsigned long corepages;
6782 * Round-up so that ZONE_MOVABLE is at least as large as what
6783 * was requested by the user
6785 required_movablecore =
6786 roundup(required_movablecore, MAX_ORDER_NR_PAGES);
6787 required_movablecore = min(totalpages, required_movablecore);
6788 corepages = totalpages - required_movablecore;
6790 required_kernelcore = max(required_kernelcore, corepages);
6794 * If kernelcore was not specified or kernelcore size is larger
6795 * than totalpages, there is no ZONE_MOVABLE.
6797 if (!required_kernelcore || required_kernelcore >= totalpages)
6800 /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
6801 usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
6804 /* Spread kernelcore memory as evenly as possible throughout nodes */
6805 kernelcore_node = required_kernelcore / usable_nodes;
6806 for_each_node_state(nid, N_MEMORY) {
6807 unsigned long start_pfn, end_pfn;
6810 * Recalculate kernelcore_node if the division per node
6811 * now exceeds what is necessary to satisfy the requested
6812 * amount of memory for the kernel
6814 if (required_kernelcore < kernelcore_node)
6815 kernelcore_node = required_kernelcore / usable_nodes;
6818 * As the map is walked, we track how much memory is usable
6819 * by the kernel using kernelcore_remaining. When it is
6820 * 0, the rest of the node is usable by ZONE_MOVABLE
6822 kernelcore_remaining = kernelcore_node;
6824 /* Go through each range of PFNs within this node */
6825 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
6826 unsigned long size_pages;
6828 start_pfn = max(start_pfn, zone_movable_pfn[nid]);
6829 if (start_pfn >= end_pfn)
6832 /* Account for what is only usable for kernelcore */
6833 if (start_pfn < usable_startpfn) {
6834 unsigned long kernel_pages;
6835 kernel_pages = min(end_pfn, usable_startpfn)
6838 kernelcore_remaining -= min(kernel_pages,
6839 kernelcore_remaining);
6840 required_kernelcore -= min(kernel_pages,
6841 required_kernelcore);
6843 /* Continue if range is now fully accounted */
6844 if (end_pfn <= usable_startpfn) {
6847 * Push zone_movable_pfn to the end so
6848 * that if we have to rebalance
6849 * kernelcore across nodes, we will
6850 * not double account here
6852 zone_movable_pfn[nid] = end_pfn;
6855 start_pfn = usable_startpfn;
6859 * The usable PFN range for ZONE_MOVABLE is from
6860 * start_pfn->end_pfn. Calculate size_pages as the
6861 * number of pages used as kernelcore
6863 size_pages = end_pfn - start_pfn;
6864 if (size_pages > kernelcore_remaining)
6865 size_pages = kernelcore_remaining;
6866 zone_movable_pfn[nid] = start_pfn + size_pages;
6869 * Some kernelcore has been met, update counts and
6870 * break if the kernelcore for this node has been
6873 required_kernelcore -= min(required_kernelcore,
6875 kernelcore_remaining -= size_pages;
6876 if (!kernelcore_remaining)
6882 * If there is still required_kernelcore, we do another pass with one
6883 * less node in the count. This will push zone_movable_pfn[nid] further
6884 * along on the nodes that still have memory until kernelcore is
6888 if (usable_nodes && required_kernelcore > usable_nodes)
6892 /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
6893 for (nid = 0; nid < MAX_NUMNODES; nid++)
6894 zone_movable_pfn[nid] =
6895 roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
6898 /* restore the node_state */
6899 node_states[N_MEMORY] = saved_node_state;
6902 /* Any regular or high memory on that node ? */
6903 static void check_for_memory(pg_data_t *pgdat, int nid)
6905 enum zone_type zone_type;
6907 for (zone_type = 0; zone_type <= ZONE_MOVABLE - 1; zone_type++) {
6908 struct zone *zone = &pgdat->node_zones[zone_type];
6909 if (populated_zone(zone)) {
6910 if (IS_ENABLED(CONFIG_HIGHMEM))
6911 node_set_state(nid, N_HIGH_MEMORY);
6912 if (zone_type <= ZONE_NORMAL)
6913 node_set_state(nid, N_NORMAL_MEMORY);
6920 * free_area_init_nodes - Initialise all pg_data_t and zone data
6921 * @max_zone_pfn: an array of max PFNs for each zone
6923 * This will call free_area_init_node() for each active node in the system.
6924 * Using the page ranges provided by memblock_set_node(), the size of each
6925 * zone in each node and their holes is calculated. If the maximum PFN
6926 * between two adjacent zones match, it is assumed that the zone is empty.
6927 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
6928 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
6929 * starts where the previous one ended. For example, ZONE_DMA32 starts
6930 * at arch_max_dma_pfn.
6932 void __init free_area_init_nodes(unsigned long *max_zone_pfn)
6934 unsigned long start_pfn, end_pfn;
6937 /* Record where the zone boundaries are */
6938 memset(arch_zone_lowest_possible_pfn, 0,
6939 sizeof(arch_zone_lowest_possible_pfn));
6940 memset(arch_zone_highest_possible_pfn, 0,
6941 sizeof(arch_zone_highest_possible_pfn));
6943 start_pfn = find_min_pfn_with_active_regions();
6945 for (i = 0; i < MAX_NR_ZONES; i++) {
6946 if (i == ZONE_MOVABLE)
6949 end_pfn = max(max_zone_pfn[i], start_pfn);
6950 arch_zone_lowest_possible_pfn[i] = start_pfn;
6951 arch_zone_highest_possible_pfn[i] = end_pfn;
6953 start_pfn = end_pfn;
6956 /* Find the PFNs that ZONE_MOVABLE begins at in each node */
6957 memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
6958 find_zone_movable_pfns_for_nodes();
6960 /* Print out the zone ranges */
6961 pr_info("Zone ranges:\n");
6962 for (i = 0; i < MAX_NR_ZONES; i++) {
6963 if (i == ZONE_MOVABLE)
6965 pr_info(" %-8s ", zone_names[i]);
6966 if (arch_zone_lowest_possible_pfn[i] ==
6967 arch_zone_highest_possible_pfn[i])
6970 pr_cont("[mem %#018Lx-%#018Lx]\n",
6971 (u64)arch_zone_lowest_possible_pfn[i]
6973 ((u64)arch_zone_highest_possible_pfn[i]
6974 << PAGE_SHIFT) - 1);
6977 /* Print out the PFNs ZONE_MOVABLE begins at in each node */
6978 pr_info("Movable zone start for each node\n");
6979 for (i = 0; i < MAX_NUMNODES; i++) {
6980 if (zone_movable_pfn[i])
6981 pr_info(" Node %d: %#018Lx\n", i,
6982 (u64)zone_movable_pfn[i] << PAGE_SHIFT);
6985 /* Print out the early node map */
6986 pr_info("Early memory node ranges\n");
6987 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid)
6988 pr_info(" node %3d: [mem %#018Lx-%#018Lx]\n", nid,
6989 (u64)start_pfn << PAGE_SHIFT,
6990 ((u64)end_pfn << PAGE_SHIFT) - 1);
6992 /* Initialise every node */
6993 mminit_verify_pageflags_layout();
6994 setup_nr_node_ids();
6995 zero_resv_unavail();
6996 for_each_online_node(nid) {
6997 pg_data_t *pgdat = NODE_DATA(nid);
6998 free_area_init_node(nid, NULL,
6999 find_min_pfn_for_node(nid), NULL);
7001 /* Any memory on that node */
7002 if (pgdat->node_present_pages)
7003 node_set_state(nid, N_MEMORY);
7004 check_for_memory(pgdat, nid);
7008 static int __init cmdline_parse_core(char *p, unsigned long *core,
7009 unsigned long *percent)
7011 unsigned long long coremem;
7017 /* Value may be a percentage of total memory, otherwise bytes */
7018 coremem = simple_strtoull(p, &endptr, 0);
7019 if (*endptr == '%') {
7020 /* Paranoid check for percent values greater than 100 */
7021 WARN_ON(coremem > 100);
7025 coremem = memparse(p, &p);
7026 /* Paranoid check that UL is enough for the coremem value */
7027 WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
7029 *core = coremem >> PAGE_SHIFT;
7036 * kernelcore=size sets the amount of memory for use for allocations that
7037 * cannot be reclaimed or migrated.
7039 static int __init cmdline_parse_kernelcore(char *p)
7041 /* parse kernelcore=mirror */
7042 if (parse_option_str(p, "mirror")) {
7043 mirrored_kernelcore = true;
7047 return cmdline_parse_core(p, &required_kernelcore,
7048 &required_kernelcore_percent);
7052 * movablecore=size sets the amount of memory for use for allocations that
7053 * can be reclaimed or migrated.
7055 static int __init cmdline_parse_movablecore(char *p)
7057 return cmdline_parse_core(p, &required_movablecore,
7058 &required_movablecore_percent);
7061 early_param("kernelcore", cmdline_parse_kernelcore);
7062 early_param("movablecore", cmdline_parse_movablecore);
7064 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
7066 void adjust_managed_page_count(struct page *page, long count)
7068 spin_lock(&managed_page_count_lock);
7069 page_zone(page)->managed_pages += count;
7070 totalram_pages += count;
7071 #ifdef CONFIG_HIGHMEM
7072 if (PageHighMem(page))
7073 totalhigh_pages += count;
7075 spin_unlock(&managed_page_count_lock);
7077 EXPORT_SYMBOL(adjust_managed_page_count);
7079 unsigned long free_reserved_area(void *start, void *end, int poison, char *s)
7082 unsigned long pages = 0;
7084 start = (void *)PAGE_ALIGN((unsigned long)start);
7085 end = (void *)((unsigned long)end & PAGE_MASK);
7086 for (pos = start; pos < end; pos += PAGE_SIZE, pages++) {
7087 struct page *page = virt_to_page(pos);
7088 void *direct_map_addr;
7091 * 'direct_map_addr' might be different from 'pos'
7092 * because some architectures' virt_to_page()
7093 * work with aliases. Getting the direct map
7094 * address ensures that we get a _writeable_
7095 * alias for the memset().
7097 direct_map_addr = page_address(page);
7098 if ((unsigned int)poison <= 0xFF)
7099 memset(direct_map_addr, poison, PAGE_SIZE);
7101 free_reserved_page(page);
7105 pr_info("Freeing %s memory: %ldK\n",
7106 s, pages << (PAGE_SHIFT - 10));
7110 EXPORT_SYMBOL(free_reserved_area);
7112 #ifdef CONFIG_HIGHMEM
7113 void free_highmem_page(struct page *page)
7115 __free_reserved_page(page);
7117 page_zone(page)->managed_pages++;
7123 void __init mem_init_print_info(const char *str)
7125 unsigned long physpages, codesize, datasize, rosize, bss_size;
7126 unsigned long init_code_size, init_data_size;
7128 physpages = get_num_physpages();
7129 codesize = _etext - _stext;
7130 datasize = _edata - _sdata;
7131 rosize = __end_rodata - __start_rodata;
7132 bss_size = __bss_stop - __bss_start;
7133 init_data_size = __init_end - __init_begin;
7134 init_code_size = _einittext - _sinittext;
7137 * Detect special cases and adjust section sizes accordingly:
7138 * 1) .init.* may be embedded into .data sections
7139 * 2) .init.text.* may be out of [__init_begin, __init_end],
7140 * please refer to arch/tile/kernel/vmlinux.lds.S.
7141 * 3) .rodata.* may be embedded into .text or .data sections.
7143 #define adj_init_size(start, end, size, pos, adj) \
7145 if (start <= pos && pos < end && size > adj) \
7149 adj_init_size(__init_begin, __init_end, init_data_size,
7150 _sinittext, init_code_size);
7151 adj_init_size(_stext, _etext, codesize, _sinittext, init_code_size);
7152 adj_init_size(_sdata, _edata, datasize, __init_begin, init_data_size);
7153 adj_init_size(_stext, _etext, codesize, __start_rodata, rosize);
7154 adj_init_size(_sdata, _edata, datasize, __start_rodata, rosize);
7156 #undef adj_init_size
7158 pr_info("Memory: %luK/%luK available (%luK kernel code, %luK rwdata, %luK rodata, %luK init, %luK bss, %luK reserved, %luK cma-reserved"
7159 #ifdef CONFIG_HIGHMEM
7163 nr_free_pages() << (PAGE_SHIFT - 10),
7164 physpages << (PAGE_SHIFT - 10),
7165 codesize >> 10, datasize >> 10, rosize >> 10,
7166 (init_data_size + init_code_size) >> 10, bss_size >> 10,
7167 (physpages - totalram_pages - totalcma_pages) << (PAGE_SHIFT - 10),
7168 totalcma_pages << (PAGE_SHIFT - 10),
7169 #ifdef CONFIG_HIGHMEM
7170 totalhigh_pages << (PAGE_SHIFT - 10),
7172 str ? ", " : "", str ? str : "");
7176 * set_dma_reserve - set the specified number of pages reserved in the first zone
7177 * @new_dma_reserve: The number of pages to mark reserved
7179 * The per-cpu batchsize and zone watermarks are determined by managed_pages.
7180 * In the DMA zone, a significant percentage may be consumed by kernel image
7181 * and other unfreeable allocations which can skew the watermarks badly. This
7182 * function may optionally be used to account for unfreeable pages in the
7183 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
7184 * smaller per-cpu batchsize.
7186 void __init set_dma_reserve(unsigned long new_dma_reserve)
7188 dma_reserve = new_dma_reserve;
7191 void __init free_area_init(unsigned long *zones_size)
7193 zero_resv_unavail();
7194 free_area_init_node(0, zones_size,
7195 __pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
7198 static int page_alloc_cpu_dead(unsigned int cpu)
7201 lru_add_drain_cpu(cpu);
7205 * Spill the event counters of the dead processor
7206 * into the current processors event counters.
7207 * This artificially elevates the count of the current
7210 vm_events_fold_cpu(cpu);
7213 * Zero the differential counters of the dead processor
7214 * so that the vm statistics are consistent.
7216 * This is only okay since the processor is dead and cannot
7217 * race with what we are doing.
7219 cpu_vm_stats_fold(cpu);
7223 void __init page_alloc_init(void)
7227 ret = cpuhp_setup_state_nocalls(CPUHP_PAGE_ALLOC_DEAD,
7228 "mm/page_alloc:dead", NULL,
7229 page_alloc_cpu_dead);
7234 * calculate_totalreserve_pages - called when sysctl_lowmem_reserve_ratio
7235 * or min_free_kbytes changes.
7237 static void calculate_totalreserve_pages(void)
7239 struct pglist_data *pgdat;
7240 unsigned long reserve_pages = 0;
7241 enum zone_type i, j;
7243 for_each_online_pgdat(pgdat) {
7245 pgdat->totalreserve_pages = 0;
7247 for (i = 0; i < MAX_NR_ZONES; i++) {
7248 struct zone *zone = pgdat->node_zones + i;
7251 /* Find valid and maximum lowmem_reserve in the zone */
7252 for (j = i; j < MAX_NR_ZONES; j++) {
7253 if (zone->lowmem_reserve[j] > max)
7254 max = zone->lowmem_reserve[j];
7257 /* we treat the high watermark as reserved pages. */
7258 max += high_wmark_pages(zone);
7260 if (max > zone->managed_pages)
7261 max = zone->managed_pages;
7263 pgdat->totalreserve_pages += max;
7265 reserve_pages += max;
7268 totalreserve_pages = reserve_pages;
7272 * setup_per_zone_lowmem_reserve - called whenever
7273 * sysctl_lowmem_reserve_ratio changes. Ensures that each zone
7274 * has a correct pages reserved value, so an adequate number of
7275 * pages are left in the zone after a successful __alloc_pages().
7277 static void setup_per_zone_lowmem_reserve(void)
7279 struct pglist_data *pgdat;
7280 enum zone_type j, idx;
7282 for_each_online_pgdat(pgdat) {
7283 for (j = 0; j < MAX_NR_ZONES; j++) {
7284 struct zone *zone = pgdat->node_zones + j;
7285 unsigned long managed_pages = zone->managed_pages;
7287 zone->lowmem_reserve[j] = 0;
7291 struct zone *lower_zone;
7294 lower_zone = pgdat->node_zones + idx;
7296 if (sysctl_lowmem_reserve_ratio[idx] < 1) {
7297 sysctl_lowmem_reserve_ratio[idx] = 0;
7298 lower_zone->lowmem_reserve[j] = 0;
7300 lower_zone->lowmem_reserve[j] =
7301 managed_pages / sysctl_lowmem_reserve_ratio[idx];
7303 managed_pages += lower_zone->managed_pages;
7308 /* update totalreserve_pages */
7309 calculate_totalreserve_pages();
7312 static void __setup_per_zone_wmarks(void)
7314 unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
7315 unsigned long lowmem_pages = 0;
7317 unsigned long flags;
7319 /* Calculate total number of !ZONE_HIGHMEM pages */
7320 for_each_zone(zone) {
7321 if (!is_highmem(zone))
7322 lowmem_pages += zone->managed_pages;
7325 for_each_zone(zone) {
7328 spin_lock_irqsave(&zone->lock, flags);
7329 tmp = (u64)pages_min * zone->managed_pages;
7330 do_div(tmp, lowmem_pages);
7331 if (is_highmem(zone)) {
7333 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
7334 * need highmem pages, so cap pages_min to a small
7337 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
7338 * deltas control asynch page reclaim, and so should
7339 * not be capped for highmem.
7341 unsigned long min_pages;
7343 min_pages = zone->managed_pages / 1024;
7344 min_pages = clamp(min_pages, SWAP_CLUSTER_MAX, 128UL);
7345 zone->watermark[WMARK_MIN] = min_pages;
7348 * If it's a lowmem zone, reserve a number of pages
7349 * proportionate to the zone's size.
7351 zone->watermark[WMARK_MIN] = tmp;
7355 * Set the kswapd watermarks distance according to the
7356 * scale factor in proportion to available memory, but
7357 * ensure a minimum size on small systems.
7359 tmp = max_t(u64, tmp >> 2,
7360 mult_frac(zone->managed_pages,
7361 watermark_scale_factor, 10000));
7363 zone->watermark[WMARK_LOW] = min_wmark_pages(zone) + tmp;
7364 zone->watermark[WMARK_HIGH] = min_wmark_pages(zone) + tmp * 2;
7366 spin_unlock_irqrestore(&zone->lock, flags);
7369 /* update totalreserve_pages */
7370 calculate_totalreserve_pages();
7374 * setup_per_zone_wmarks - called when min_free_kbytes changes
7375 * or when memory is hot-{added|removed}
7377 * Ensures that the watermark[min,low,high] values for each zone are set
7378 * correctly with respect to min_free_kbytes.
7380 void setup_per_zone_wmarks(void)
7382 static DEFINE_SPINLOCK(lock);
7385 __setup_per_zone_wmarks();
7390 * Initialise min_free_kbytes.
7392 * For small machines we want it small (128k min). For large machines
7393 * we want it large (64MB max). But it is not linear, because network
7394 * bandwidth does not increase linearly with machine size. We use
7396 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
7397 * min_free_kbytes = sqrt(lowmem_kbytes * 16)
7413 int __meminit init_per_zone_wmark_min(void)
7415 unsigned long lowmem_kbytes;
7416 int new_min_free_kbytes;
7418 lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
7419 new_min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
7421 if (new_min_free_kbytes > user_min_free_kbytes) {
7422 min_free_kbytes = new_min_free_kbytes;
7423 if (min_free_kbytes < 128)
7424 min_free_kbytes = 128;
7425 if (min_free_kbytes > 65536)
7426 min_free_kbytes = 65536;
7428 pr_warn("min_free_kbytes is not updated to %d because user defined value %d is preferred\n",
7429 new_min_free_kbytes, user_min_free_kbytes);
7431 setup_per_zone_wmarks();
7432 refresh_zone_stat_thresholds();
7433 setup_per_zone_lowmem_reserve();
7436 setup_min_unmapped_ratio();
7437 setup_min_slab_ratio();
7442 core_initcall(init_per_zone_wmark_min)
7445 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
7446 * that we can call two helper functions whenever min_free_kbytes
7449 int min_free_kbytes_sysctl_handler(struct ctl_table *table, int write,
7450 void __user *buffer, size_t *length, loff_t *ppos)
7454 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
7459 user_min_free_kbytes = min_free_kbytes;
7460 setup_per_zone_wmarks();
7465 int watermark_scale_factor_sysctl_handler(struct ctl_table *table, int write,
7466 void __user *buffer, size_t *length, loff_t *ppos)
7470 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
7475 setup_per_zone_wmarks();
7481 static void setup_min_unmapped_ratio(void)
7486 for_each_online_pgdat(pgdat)
7487 pgdat->min_unmapped_pages = 0;
7490 zone->zone_pgdat->min_unmapped_pages += (zone->managed_pages *
7491 sysctl_min_unmapped_ratio) / 100;
7495 int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *table, int write,
7496 void __user *buffer, size_t *length, loff_t *ppos)
7500 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
7504 setup_min_unmapped_ratio();
7509 static void setup_min_slab_ratio(void)
7514 for_each_online_pgdat(pgdat)
7515 pgdat->min_slab_pages = 0;
7518 zone->zone_pgdat->min_slab_pages += (zone->managed_pages *
7519 sysctl_min_slab_ratio) / 100;
7522 int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *table, int write,
7523 void __user *buffer, size_t *length, loff_t *ppos)
7527 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
7531 setup_min_slab_ratio();
7538 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
7539 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
7540 * whenever sysctl_lowmem_reserve_ratio changes.
7542 * The reserve ratio obviously has absolutely no relation with the
7543 * minimum watermarks. The lowmem reserve ratio can only make sense
7544 * if in function of the boot time zone sizes.
7546 int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *table, int write,
7547 void __user *buffer, size_t *length, loff_t *ppos)
7549 proc_dointvec_minmax(table, write, buffer, length, ppos);
7550 setup_per_zone_lowmem_reserve();
7555 * percpu_pagelist_fraction - changes the pcp->high for each zone on each
7556 * cpu. It is the fraction of total pages in each zone that a hot per cpu
7557 * pagelist can have before it gets flushed back to buddy allocator.
7559 int percpu_pagelist_fraction_sysctl_handler(struct ctl_table *table, int write,
7560 void __user *buffer, size_t *length, loff_t *ppos)
7563 int old_percpu_pagelist_fraction;
7566 mutex_lock(&pcp_batch_high_lock);
7567 old_percpu_pagelist_fraction = percpu_pagelist_fraction;
7569 ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
7570 if (!write || ret < 0)
7573 /* Sanity checking to avoid pcp imbalance */
7574 if (percpu_pagelist_fraction &&
7575 percpu_pagelist_fraction < MIN_PERCPU_PAGELIST_FRACTION) {
7576 percpu_pagelist_fraction = old_percpu_pagelist_fraction;
7582 if (percpu_pagelist_fraction == old_percpu_pagelist_fraction)
7585 for_each_populated_zone(zone) {
7588 for_each_possible_cpu(cpu)
7589 pageset_set_high_and_batch(zone,
7590 per_cpu_ptr(zone->pageset, cpu));
7593 mutex_unlock(&pcp_batch_high_lock);
7598 int hashdist = HASHDIST_DEFAULT;
7600 static int __init set_hashdist(char *str)
7604 hashdist = simple_strtoul(str, &str, 0);
7607 __setup("hashdist=", set_hashdist);
7610 #ifndef __HAVE_ARCH_RESERVED_KERNEL_PAGES
7612 * Returns the number of pages that arch has reserved but
7613 * is not known to alloc_large_system_hash().
7615 static unsigned long __init arch_reserved_kernel_pages(void)
7622 * Adaptive scale is meant to reduce sizes of hash tables on large memory
7623 * machines. As memory size is increased the scale is also increased but at
7624 * slower pace. Starting from ADAPT_SCALE_BASE (64G), every time memory
7625 * quadruples the scale is increased by one, which means the size of hash table
7626 * only doubles, instead of quadrupling as well.
7627 * Because 32-bit systems cannot have large physical memory, where this scaling
7628 * makes sense, it is disabled on such platforms.
7630 #if __BITS_PER_LONG > 32
7631 #define ADAPT_SCALE_BASE (64ul << 30)
7632 #define ADAPT_SCALE_SHIFT 2
7633 #define ADAPT_SCALE_NPAGES (ADAPT_SCALE_BASE >> PAGE_SHIFT)
7637 * allocate a large system hash table from bootmem
7638 * - it is assumed that the hash table must contain an exact power-of-2
7639 * quantity of entries
7640 * - limit is the number of hash buckets, not the total allocation size
7642 void *__init alloc_large_system_hash(const char *tablename,
7643 unsigned long bucketsize,
7644 unsigned long numentries,
7647 unsigned int *_hash_shift,
7648 unsigned int *_hash_mask,
7649 unsigned long low_limit,
7650 unsigned long high_limit)
7652 unsigned long long max = high_limit;
7653 unsigned long log2qty, size;
7657 /* allow the kernel cmdline to have a say */
7659 /* round applicable memory size up to nearest megabyte */
7660 numentries = nr_kernel_pages;
7661 numentries -= arch_reserved_kernel_pages();
7663 /* It isn't necessary when PAGE_SIZE >= 1MB */
7664 if (PAGE_SHIFT < 20)
7665 numentries = round_up(numentries, (1<<20)/PAGE_SIZE);
7667 #if __BITS_PER_LONG > 32
7669 unsigned long adapt;
7671 for (adapt = ADAPT_SCALE_NPAGES; adapt < numentries;
7672 adapt <<= ADAPT_SCALE_SHIFT)
7677 /* limit to 1 bucket per 2^scale bytes of low memory */
7678 if (scale > PAGE_SHIFT)
7679 numentries >>= (scale - PAGE_SHIFT);
7681 numentries <<= (PAGE_SHIFT - scale);
7683 /* Make sure we've got at least a 0-order allocation.. */
7684 if (unlikely(flags & HASH_SMALL)) {
7685 /* Makes no sense without HASH_EARLY */
7686 WARN_ON(!(flags & HASH_EARLY));
7687 if (!(numentries >> *_hash_shift)) {
7688 numentries = 1UL << *_hash_shift;
7689 BUG_ON(!numentries);
7691 } else if (unlikely((numentries * bucketsize) < PAGE_SIZE))
7692 numentries = PAGE_SIZE / bucketsize;
7694 numentries = roundup_pow_of_two(numentries);
7696 /* limit allocation size to 1/16 total memory by default */
7698 max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
7699 do_div(max, bucketsize);
7701 max = min(max, 0x80000000ULL);
7703 if (numentries < low_limit)
7704 numentries = low_limit;
7705 if (numentries > max)
7708 log2qty = ilog2(numentries);
7710 gfp_flags = (flags & HASH_ZERO) ? GFP_ATOMIC | __GFP_ZERO : GFP_ATOMIC;
7712 size = bucketsize << log2qty;
7713 if (flags & HASH_EARLY) {
7714 if (flags & HASH_ZERO)
7715 table = memblock_virt_alloc_nopanic(size, 0);
7717 table = memblock_virt_alloc_raw(size, 0);
7718 } else if (hashdist) {
7719 table = __vmalloc(size, gfp_flags, PAGE_KERNEL);
7722 * If bucketsize is not a power-of-two, we may free
7723 * some pages at the end of hash table which
7724 * alloc_pages_exact() automatically does
7726 if (get_order(size) < MAX_ORDER) {
7727 table = alloc_pages_exact(size, gfp_flags);
7728 kmemleak_alloc(table, size, 1, gfp_flags);
7731 } while (!table && size > PAGE_SIZE && --log2qty);
7734 panic("Failed to allocate %s hash table\n", tablename);
7736 pr_info("%s hash table entries: %ld (order: %d, %lu bytes)\n",
7737 tablename, 1UL << log2qty, ilog2(size) - PAGE_SHIFT, size);
7740 *_hash_shift = log2qty;
7742 *_hash_mask = (1 << log2qty) - 1;
7748 * This function checks whether pageblock includes unmovable pages or not.
7749 * If @count is not zero, it is okay to include less @count unmovable pages
7751 * PageLRU check without isolation or lru_lock could race so that
7752 * MIGRATE_MOVABLE block might include unmovable pages. And __PageMovable
7753 * check without lock_page also may miss some movable non-lru pages at
7754 * race condition. So you can't expect this function should be exact.
7756 bool has_unmovable_pages(struct zone *zone, struct page *page, int count,
7758 bool skip_hwpoisoned_pages)
7760 unsigned long pfn, iter, found;
7763 * TODO we could make this much more efficient by not checking every
7764 * page in the range if we know all of them are in MOVABLE_ZONE and
7765 * that the movable zone guarantees that pages are migratable but
7766 * the later is not the case right now unfortunatelly. E.g. movablecore
7767 * can still lead to having bootmem allocations in zone_movable.
7771 * CMA allocations (alloc_contig_range) really need to mark isolate
7772 * CMA pageblocks even when they are not movable in fact so consider
7773 * them movable here.
7775 if (is_migrate_cma(migratetype) &&
7776 is_migrate_cma(get_pageblock_migratetype(page)))
7779 pfn = page_to_pfn(page);
7780 for (found = 0, iter = 0; iter < pageblock_nr_pages; iter++) {
7781 unsigned long check = pfn + iter;
7783 if (!pfn_valid_within(check))
7786 page = pfn_to_page(check);
7788 if (PageReserved(page))
7792 * Hugepages are not in LRU lists, but they're movable.
7793 * We need not scan over tail pages bacause we don't
7794 * handle each tail page individually in migration.
7796 if (PageHuge(page)) {
7798 if (!hugepage_migration_supported(page_hstate(page)))
7801 iter = round_up(iter + 1, 1<<compound_order(page)) - 1;
7806 * We can't use page_count without pin a page
7807 * because another CPU can free compound page.
7808 * This check already skips compound tails of THP
7809 * because their page->_refcount is zero at all time.
7811 if (!page_ref_count(page)) {
7812 if (PageBuddy(page))
7813 iter += (1 << page_order(page)) - 1;
7818 * The HWPoisoned page may be not in buddy system, and
7819 * page_count() is not 0.
7821 if (skip_hwpoisoned_pages && PageHWPoison(page))
7824 if (__PageMovable(page))
7830 * If there are RECLAIMABLE pages, we need to check
7831 * it. But now, memory offline itself doesn't call
7832 * shrink_node_slabs() and it still to be fixed.
7835 * If the page is not RAM, page_count()should be 0.
7836 * we don't need more check. This is an _used_ not-movable page.
7838 * The problematic thing here is PG_reserved pages. PG_reserved
7839 * is set to both of a memory hole page and a _used_ kernel
7847 WARN_ON_ONCE(zone_idx(zone) == ZONE_MOVABLE);
7851 #if (defined(CONFIG_MEMORY_ISOLATION) && defined(CONFIG_COMPACTION)) || defined(CONFIG_CMA)
7853 static unsigned long pfn_max_align_down(unsigned long pfn)
7855 return pfn & ~(max_t(unsigned long, MAX_ORDER_NR_PAGES,
7856 pageblock_nr_pages) - 1);
7859 static unsigned long pfn_max_align_up(unsigned long pfn)
7861 return ALIGN(pfn, max_t(unsigned long, MAX_ORDER_NR_PAGES,
7862 pageblock_nr_pages));
7865 /* [start, end) must belong to a single zone. */
7866 static int __alloc_contig_migrate_range(struct compact_control *cc,
7867 unsigned long start, unsigned long end)
7869 /* This function is based on compact_zone() from compaction.c. */
7870 unsigned long nr_reclaimed;
7871 unsigned long pfn = start;
7872 unsigned int tries = 0;
7877 while (pfn < end || !list_empty(&cc->migratepages)) {
7878 if (fatal_signal_pending(current)) {
7883 if (list_empty(&cc->migratepages)) {
7884 cc->nr_migratepages = 0;
7885 pfn = isolate_migratepages_range(cc, pfn, end);
7891 } else if (++tries == 5) {
7892 ret = ret < 0 ? ret : -EBUSY;
7896 nr_reclaimed = reclaim_clean_pages_from_list(cc->zone,
7898 cc->nr_migratepages -= nr_reclaimed;
7900 ret = migrate_pages(&cc->migratepages, alloc_migrate_target,
7901 NULL, 0, cc->mode, MR_CONTIG_RANGE);
7904 putback_movable_pages(&cc->migratepages);
7911 * alloc_contig_range() -- tries to allocate given range of pages
7912 * @start: start PFN to allocate
7913 * @end: one-past-the-last PFN to allocate
7914 * @migratetype: migratetype of the underlaying pageblocks (either
7915 * #MIGRATE_MOVABLE or #MIGRATE_CMA). All pageblocks
7916 * in range must have the same migratetype and it must
7917 * be either of the two.
7918 * @gfp_mask: GFP mask to use during compaction
7920 * The PFN range does not have to be pageblock or MAX_ORDER_NR_PAGES
7921 * aligned. The PFN range must belong to a single zone.
7923 * The first thing this routine does is attempt to MIGRATE_ISOLATE all
7924 * pageblocks in the range. Once isolated, the pageblocks should not
7925 * be modified by others.
7927 * Returns zero on success or negative error code. On success all
7928 * pages which PFN is in [start, end) are allocated for the caller and
7929 * need to be freed with free_contig_range().
7931 int alloc_contig_range(unsigned long start, unsigned long end,
7932 unsigned migratetype, gfp_t gfp_mask)
7934 unsigned long outer_start, outer_end;
7938 struct compact_control cc = {
7939 .nr_migratepages = 0,
7941 .zone = page_zone(pfn_to_page(start)),
7942 .mode = MIGRATE_SYNC,
7943 .ignore_skip_hint = true,
7944 .no_set_skip_hint = true,
7945 .gfp_mask = current_gfp_context(gfp_mask),
7947 INIT_LIST_HEAD(&cc.migratepages);
7950 * What we do here is we mark all pageblocks in range as
7951 * MIGRATE_ISOLATE. Because pageblock and max order pages may
7952 * have different sizes, and due to the way page allocator
7953 * work, we align the range to biggest of the two pages so
7954 * that page allocator won't try to merge buddies from
7955 * different pageblocks and change MIGRATE_ISOLATE to some
7956 * other migration type.
7958 * Once the pageblocks are marked as MIGRATE_ISOLATE, we
7959 * migrate the pages from an unaligned range (ie. pages that
7960 * we are interested in). This will put all the pages in
7961 * range back to page allocator as MIGRATE_ISOLATE.
7963 * When this is done, we take the pages in range from page
7964 * allocator removing them from the buddy system. This way
7965 * page allocator will never consider using them.
7967 * This lets us mark the pageblocks back as
7968 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the
7969 * aligned range but not in the unaligned, original range are
7970 * put back to page allocator so that buddy can use them.
7973 ret = start_isolate_page_range(pfn_max_align_down(start),
7974 pfn_max_align_up(end), migratetype,
7980 * In case of -EBUSY, we'd like to know which page causes problem.
7981 * So, just fall through. test_pages_isolated() has a tracepoint
7982 * which will report the busy page.
7984 * It is possible that busy pages could become available before
7985 * the call to test_pages_isolated, and the range will actually be
7986 * allocated. So, if we fall through be sure to clear ret so that
7987 * -EBUSY is not accidentally used or returned to caller.
7989 ret = __alloc_contig_migrate_range(&cc, start, end);
7990 if (ret && ret != -EBUSY)
7995 * Pages from [start, end) are within a MAX_ORDER_NR_PAGES
7996 * aligned blocks that are marked as MIGRATE_ISOLATE. What's
7997 * more, all pages in [start, end) are free in page allocator.
7998 * What we are going to do is to allocate all pages from
7999 * [start, end) (that is remove them from page allocator).
8001 * The only problem is that pages at the beginning and at the
8002 * end of interesting range may be not aligned with pages that
8003 * page allocator holds, ie. they can be part of higher order
8004 * pages. Because of this, we reserve the bigger range and
8005 * once this is done free the pages we are not interested in.
8007 * We don't have to hold zone->lock here because the pages are
8008 * isolated thus they won't get removed from buddy.
8011 lru_add_drain_all();
8012 drain_all_pages(cc.zone);
8015 outer_start = start;
8016 while (!PageBuddy(pfn_to_page(outer_start))) {
8017 if (++order >= MAX_ORDER) {
8018 outer_start = start;
8021 outer_start &= ~0UL << order;
8024 if (outer_start != start) {
8025 order = page_order(pfn_to_page(outer_start));
8028 * outer_start page could be small order buddy page and
8029 * it doesn't include start page. Adjust outer_start
8030 * in this case to report failed page properly
8031 * on tracepoint in test_pages_isolated()
8033 if (outer_start + (1UL << order) <= start)
8034 outer_start = start;
8037 /* Make sure the range is really isolated. */
8038 if (test_pages_isolated(outer_start, end, false)) {
8039 pr_info_ratelimited("%s: [%lx, %lx) PFNs busy\n",
8040 __func__, outer_start, end);
8045 /* Grab isolated pages from freelists. */
8046 outer_end = isolate_freepages_range(&cc, outer_start, end);
8052 /* Free head and tail (if any) */
8053 if (start != outer_start)
8054 free_contig_range(outer_start, start - outer_start);
8055 if (end != outer_end)
8056 free_contig_range(end, outer_end - end);
8059 undo_isolate_page_range(pfn_max_align_down(start),
8060 pfn_max_align_up(end), migratetype);
8064 void free_contig_range(unsigned long pfn, unsigned nr_pages)
8066 unsigned int count = 0;
8068 for (; nr_pages--; pfn++) {
8069 struct page *page = pfn_to_page(pfn);
8071 count += page_count(page) != 1;
8074 WARN(count != 0, "%d pages are still in use!\n", count);
8078 #ifdef CONFIG_MEMORY_HOTPLUG
8080 * The zone indicated has a new number of managed_pages; batch sizes and percpu
8081 * page high values need to be recalulated.
8083 void __meminit zone_pcp_update(struct zone *zone)
8086 mutex_lock(&pcp_batch_high_lock);
8087 for_each_possible_cpu(cpu)
8088 pageset_set_high_and_batch(zone,
8089 per_cpu_ptr(zone->pageset, cpu));
8090 mutex_unlock(&pcp_batch_high_lock);
8094 void zone_pcp_reset(struct zone *zone)
8096 unsigned long flags;
8098 struct per_cpu_pageset *pset;
8100 /* avoid races with drain_pages() */
8101 local_irq_save(flags);
8102 if (zone->pageset != &boot_pageset) {
8103 for_each_online_cpu(cpu) {
8104 pset = per_cpu_ptr(zone->pageset, cpu);
8105 drain_zonestat(zone, pset);
8107 free_percpu(zone->pageset);
8108 zone->pageset = &boot_pageset;
8110 local_irq_restore(flags);
8113 #ifdef CONFIG_MEMORY_HOTREMOVE
8115 * All pages in the range must be in a single zone and isolated
8116 * before calling this.
8119 __offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
8123 unsigned int order, i;
8125 unsigned long flags;
8126 /* find the first valid pfn */
8127 for (pfn = start_pfn; pfn < end_pfn; pfn++)
8132 offline_mem_sections(pfn, end_pfn);
8133 zone = page_zone(pfn_to_page(pfn));
8134 spin_lock_irqsave(&zone->lock, flags);
8136 while (pfn < end_pfn) {
8137 if (!pfn_valid(pfn)) {
8141 page = pfn_to_page(pfn);
8143 * The HWPoisoned page may be not in buddy system, and
8144 * page_count() is not 0.
8146 if (unlikely(!PageBuddy(page) && PageHWPoison(page))) {
8148 SetPageReserved(page);
8152 BUG_ON(page_count(page));
8153 BUG_ON(!PageBuddy(page));
8154 order = page_order(page);
8155 #ifdef CONFIG_DEBUG_VM
8156 pr_info("remove from free list %lx %d %lx\n",
8157 pfn, 1 << order, end_pfn);
8159 list_del(&page->lru);
8160 rmv_page_order(page);
8161 zone->free_area[order].nr_free--;
8162 for (i = 0; i < (1 << order); i++)
8163 SetPageReserved((page+i));
8164 pfn += (1 << order);
8166 spin_unlock_irqrestore(&zone->lock, flags);
8170 bool is_free_buddy_page(struct page *page)
8172 struct zone *zone = page_zone(page);
8173 unsigned long pfn = page_to_pfn(page);
8174 unsigned long flags;
8177 spin_lock_irqsave(&zone->lock, flags);
8178 for (order = 0; order < MAX_ORDER; order++) {
8179 struct page *page_head = page - (pfn & ((1 << order) - 1));
8181 if (PageBuddy(page_head) && page_order(page_head) >= order)
8184 spin_unlock_irqrestore(&zone->lock, flags);
8186 return order < MAX_ORDER;
8189 #ifdef CONFIG_MEMORY_FAILURE
8191 * Set PG_hwpoison flag if a given page is confirmed to be a free page. This
8192 * test is performed under the zone lock to prevent a race against page
8195 bool set_hwpoison_free_buddy_page(struct page *page)
8197 struct zone *zone = page_zone(page);
8198 unsigned long pfn = page_to_pfn(page);
8199 unsigned long flags;
8201 bool hwpoisoned = false;
8203 spin_lock_irqsave(&zone->lock, flags);
8204 for (order = 0; order < MAX_ORDER; order++) {
8205 struct page *page_head = page - (pfn & ((1 << order) - 1));
8207 if (PageBuddy(page_head) && page_order(page_head) >= order) {
8208 if (!TestSetPageHWPoison(page))
8213 spin_unlock_irqrestore(&zone->lock, flags);