1 // SPDX-License-Identifier: GPL-2.0-only
3 * linux/mm/page_alloc.c
5 * Manages the free list, the system allocates free pages here.
6 * Note that kmalloc() lives in slab.c
8 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
9 * Swap reorganised 29.12.95, Stephen Tweedie
10 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
11 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
12 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
13 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000
14 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
15 * (lots of bits borrowed from Ingo Molnar & Andrew Morton)
18 #include <linux/stddef.h>
20 #include <linux/highmem.h>
21 #include <linux/swap.h>
22 #include <linux/swapops.h>
23 #include <linux/interrupt.h>
24 #include <linux/pagemap.h>
25 #include <linux/jiffies.h>
26 #include <linux/memblock.h>
27 #include <linux/compiler.h>
28 #include <linux/kernel.h>
29 #include <linux/kasan.h>
30 #include <linux/kmsan.h>
31 #include <linux/module.h>
32 #include <linux/suspend.h>
33 #include <linux/pagevec.h>
34 #include <linux/blkdev.h>
35 #include <linux/slab.h>
36 #include <linux/ratelimit.h>
37 #include <linux/oom.h>
38 #include <linux/topology.h>
39 #include <linux/sysctl.h>
40 #include <linux/cpu.h>
41 #include <linux/cpuset.h>
42 #include <linux/memory_hotplug.h>
43 #include <linux/nodemask.h>
44 #include <linux/vmalloc.h>
45 #include <linux/vmstat.h>
46 #include <linux/mempolicy.h>
47 #include <linux/memremap.h>
48 #include <linux/stop_machine.h>
49 #include <linux/random.h>
50 #include <linux/sort.h>
51 #include <linux/pfn.h>
52 #include <linux/backing-dev.h>
53 #include <linux/fault-inject.h>
54 #include <linux/page-isolation.h>
55 #include <linux/debugobjects.h>
56 #include <linux/kmemleak.h>
57 #include <linux/compaction.h>
58 #include <trace/events/kmem.h>
59 #include <trace/events/oom.h>
60 #include <linux/prefetch.h>
61 #include <linux/mm_inline.h>
62 #include <linux/mmu_notifier.h>
63 #include <linux/migrate.h>
64 #include <linux/hugetlb.h>
65 #include <linux/sched/rt.h>
66 #include <linux/sched/mm.h>
67 #include <linux/page_owner.h>
68 #include <linux/page_table_check.h>
69 #include <linux/kthread.h>
70 #include <linux/memcontrol.h>
71 #include <linux/ftrace.h>
72 #include <linux/lockdep.h>
73 #include <linux/nmi.h>
74 #include <linux/psi.h>
75 #include <linux/padata.h>
76 #include <linux/khugepaged.h>
77 #include <linux/buffer_head.h>
78 #include <linux/delayacct.h>
79 #include <asm/sections.h>
80 #include <asm/tlbflush.h>
81 #include <asm/div64.h>
84 #include "page_reporting.h"
87 /* Free Page Internal flags: for internal, non-pcp variants of free_pages(). */
88 typedef int __bitwise fpi_t;
90 /* No special request */
91 #define FPI_NONE ((__force fpi_t)0)
94 * Skip free page reporting notification for the (possibly merged) page.
95 * This does not hinder free page reporting from grabbing the page,
96 * reporting it and marking it "reported" - it only skips notifying
97 * the free page reporting infrastructure about a newly freed page. For
98 * example, used when temporarily pulling a page from a freelist and
99 * putting it back unmodified.
101 #define FPI_SKIP_REPORT_NOTIFY ((__force fpi_t)BIT(0))
104 * Place the (possibly merged) page to the tail of the freelist. Will ignore
105 * page shuffling (relevant code - e.g., memory onlining - is expected to
106 * shuffle the whole zone).
108 * Note: No code should rely on this flag for correctness - it's purely
109 * to allow for optimizations when handing back either fresh pages
110 * (memory onlining) or untouched pages (page isolation, free page
113 #define FPI_TO_TAIL ((__force fpi_t)BIT(1))
116 * Don't poison memory with KASAN (only for the tag-based modes).
117 * During boot, all non-reserved memblock memory is exposed to page_alloc.
118 * Poisoning all that memory lengthens boot time, especially on systems with
119 * large amount of RAM. This flag is used to skip that poisoning.
120 * This is only done for the tag-based KASAN modes, as those are able to
121 * detect memory corruptions with the memory tags assigned by default.
122 * All memory allocated normally after boot gets poisoned as usual.
124 #define FPI_SKIP_KASAN_POISON ((__force fpi_t)BIT(2))
126 /* prevent >1 _updater_ of zone percpu pageset ->high and ->batch fields */
127 static DEFINE_MUTEX(pcp_batch_high_lock);
128 #define MIN_PERCPU_PAGELIST_HIGH_FRACTION (8)
130 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT_RT)
132 * On SMP, spin_trylock is sufficient protection.
133 * On PREEMPT_RT, spin_trylock is equivalent on both SMP and UP.
135 #define pcp_trylock_prepare(flags) do { } while (0)
136 #define pcp_trylock_finish(flag) do { } while (0)
139 /* UP spin_trylock always succeeds so disable IRQs to prevent re-entrancy. */
140 #define pcp_trylock_prepare(flags) local_irq_save(flags)
141 #define pcp_trylock_finish(flags) local_irq_restore(flags)
145 * Locking a pcp requires a PCP lookup followed by a spinlock. To avoid
146 * a migration causing the wrong PCP to be locked and remote memory being
147 * potentially allocated, pin the task to the CPU for the lookup+lock.
148 * preempt_disable is used on !RT because it is faster than migrate_disable.
149 * migrate_disable is used on RT because otherwise RT spinlock usage is
150 * interfered with and a high priority task cannot preempt the allocator.
152 #ifndef CONFIG_PREEMPT_RT
153 #define pcpu_task_pin() preempt_disable()
154 #define pcpu_task_unpin() preempt_enable()
156 #define pcpu_task_pin() migrate_disable()
157 #define pcpu_task_unpin() migrate_enable()
161 * Generic helper to lookup and a per-cpu variable with an embedded spinlock.
162 * Return value should be used with equivalent unlock helper.
164 #define pcpu_spin_lock(type, member, ptr) \
168 _ret = this_cpu_ptr(ptr); \
169 spin_lock(&_ret->member); \
173 #define pcpu_spin_trylock(type, member, ptr) \
177 _ret = this_cpu_ptr(ptr); \
178 if (!spin_trylock(&_ret->member)) { \
185 #define pcpu_spin_unlock(member, ptr) \
187 spin_unlock(&ptr->member); \
191 /* struct per_cpu_pages specific helpers. */
192 #define pcp_spin_lock(ptr) \
193 pcpu_spin_lock(struct per_cpu_pages, lock, ptr)
195 #define pcp_spin_trylock(ptr) \
196 pcpu_spin_trylock(struct per_cpu_pages, lock, ptr)
198 #define pcp_spin_unlock(ptr) \
199 pcpu_spin_unlock(lock, ptr)
201 #ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
202 DEFINE_PER_CPU(int, numa_node);
203 EXPORT_PER_CPU_SYMBOL(numa_node);
206 DEFINE_STATIC_KEY_TRUE(vm_numa_stat_key);
208 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
210 * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
211 * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
212 * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
213 * defined in <linux/topology.h>.
215 DEFINE_PER_CPU(int, _numa_mem_); /* Kernel "local memory" node */
216 EXPORT_PER_CPU_SYMBOL(_numa_mem_);
219 static DEFINE_MUTEX(pcpu_drain_mutex);
221 #ifdef CONFIG_GCC_PLUGIN_LATENT_ENTROPY
222 volatile unsigned long latent_entropy __latent_entropy;
223 EXPORT_SYMBOL(latent_entropy);
227 * Array of node states.
229 nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
230 [N_POSSIBLE] = NODE_MASK_ALL,
231 [N_ONLINE] = { { [0] = 1UL } },
233 [N_NORMAL_MEMORY] = { { [0] = 1UL } },
234 #ifdef CONFIG_HIGHMEM
235 [N_HIGH_MEMORY] = { { [0] = 1UL } },
237 [N_MEMORY] = { { [0] = 1UL } },
238 [N_CPU] = { { [0] = 1UL } },
241 EXPORT_SYMBOL(node_states);
243 atomic_long_t _totalram_pages __read_mostly;
244 EXPORT_SYMBOL(_totalram_pages);
245 unsigned long totalreserve_pages __read_mostly;
246 unsigned long totalcma_pages __read_mostly;
248 int percpu_pagelist_high_fraction;
249 gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
250 DEFINE_STATIC_KEY_MAYBE(CONFIG_INIT_ON_ALLOC_DEFAULT_ON, init_on_alloc);
251 EXPORT_SYMBOL(init_on_alloc);
253 DEFINE_STATIC_KEY_MAYBE(CONFIG_INIT_ON_FREE_DEFAULT_ON, init_on_free);
254 EXPORT_SYMBOL(init_on_free);
256 static bool _init_on_alloc_enabled_early __read_mostly
257 = IS_ENABLED(CONFIG_INIT_ON_ALLOC_DEFAULT_ON);
258 static int __init early_init_on_alloc(char *buf)
261 return kstrtobool(buf, &_init_on_alloc_enabled_early);
263 early_param("init_on_alloc", early_init_on_alloc);
265 static bool _init_on_free_enabled_early __read_mostly
266 = IS_ENABLED(CONFIG_INIT_ON_FREE_DEFAULT_ON);
267 static int __init early_init_on_free(char *buf)
269 return kstrtobool(buf, &_init_on_free_enabled_early);
271 early_param("init_on_free", early_init_on_free);
274 * A cached value of the page's pageblock's migratetype, used when the page is
275 * put on a pcplist. Used to avoid the pageblock migratetype lookup when
276 * freeing from pcplists in most cases, at the cost of possibly becoming stale.
277 * Also the migratetype set in the page does not necessarily match the pcplist
278 * index, e.g. page might have MIGRATE_CMA set but be on a pcplist with any
279 * other index - this ensures that it will be put on the correct CMA freelist.
281 static inline int get_pcppage_migratetype(struct page *page)
286 static inline void set_pcppage_migratetype(struct page *page, int migratetype)
288 page->index = migratetype;
291 #ifdef CONFIG_PM_SLEEP
293 * The following functions are used by the suspend/hibernate code to temporarily
294 * change gfp_allowed_mask in order to avoid using I/O during memory allocations
295 * while devices are suspended. To avoid races with the suspend/hibernate code,
296 * they should always be called with system_transition_mutex held
297 * (gfp_allowed_mask also should only be modified with system_transition_mutex
298 * held, unless the suspend/hibernate code is guaranteed not to run in parallel
299 * with that modification).
302 static gfp_t saved_gfp_mask;
304 void pm_restore_gfp_mask(void)
306 WARN_ON(!mutex_is_locked(&system_transition_mutex));
307 if (saved_gfp_mask) {
308 gfp_allowed_mask = saved_gfp_mask;
313 void pm_restrict_gfp_mask(void)
315 WARN_ON(!mutex_is_locked(&system_transition_mutex));
316 WARN_ON(saved_gfp_mask);
317 saved_gfp_mask = gfp_allowed_mask;
318 gfp_allowed_mask &= ~(__GFP_IO | __GFP_FS);
321 bool pm_suspended_storage(void)
323 if ((gfp_allowed_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS))
327 #endif /* CONFIG_PM_SLEEP */
329 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
330 unsigned int pageblock_order __read_mostly;
333 static void __free_pages_ok(struct page *page, unsigned int order,
337 * results with 256, 32 in the lowmem_reserve sysctl:
338 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
339 * 1G machine -> (16M dma, 784M normal, 224M high)
340 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
341 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
342 * HIGHMEM allocation will leave (224M+784M)/256 of ram reserved in ZONE_DMA
344 * TBD: should special case ZONE_DMA32 machines here - in those we normally
345 * don't need any ZONE_NORMAL reservation
347 int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES] = {
348 #ifdef CONFIG_ZONE_DMA
351 #ifdef CONFIG_ZONE_DMA32
355 #ifdef CONFIG_HIGHMEM
361 static char * const zone_names[MAX_NR_ZONES] = {
362 #ifdef CONFIG_ZONE_DMA
365 #ifdef CONFIG_ZONE_DMA32
369 #ifdef CONFIG_HIGHMEM
373 #ifdef CONFIG_ZONE_DEVICE
378 const char * const migratetype_names[MIGRATE_TYPES] = {
386 #ifdef CONFIG_MEMORY_ISOLATION
391 compound_page_dtor * const compound_page_dtors[NR_COMPOUND_DTORS] = {
392 [NULL_COMPOUND_DTOR] = NULL,
393 [COMPOUND_PAGE_DTOR] = free_compound_page,
394 #ifdef CONFIG_HUGETLB_PAGE
395 [HUGETLB_PAGE_DTOR] = free_huge_page,
397 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
398 [TRANSHUGE_PAGE_DTOR] = free_transhuge_page,
402 int min_free_kbytes = 1024;
403 int user_min_free_kbytes = -1;
404 int watermark_boost_factor __read_mostly = 15000;
405 int watermark_scale_factor = 10;
407 static unsigned long nr_kernel_pages __initdata;
408 static unsigned long nr_all_pages __initdata;
409 static unsigned long dma_reserve __initdata;
411 static unsigned long arch_zone_lowest_possible_pfn[MAX_NR_ZONES] __initdata;
412 static unsigned long arch_zone_highest_possible_pfn[MAX_NR_ZONES] __initdata;
413 static unsigned long required_kernelcore __initdata;
414 static unsigned long required_kernelcore_percent __initdata;
415 static unsigned long required_movablecore __initdata;
416 static unsigned long required_movablecore_percent __initdata;
417 static unsigned long zone_movable_pfn[MAX_NUMNODES] __initdata;
418 bool mirrored_kernelcore __initdata_memblock;
420 /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
422 EXPORT_SYMBOL(movable_zone);
425 unsigned int nr_node_ids __read_mostly = MAX_NUMNODES;
426 unsigned int nr_online_nodes __read_mostly = 1;
427 EXPORT_SYMBOL(nr_node_ids);
428 EXPORT_SYMBOL(nr_online_nodes);
431 int page_group_by_mobility_disabled __read_mostly;
433 bool deferred_struct_pages __meminitdata;
435 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
437 * During boot we initialize deferred pages on-demand, as needed, but once
438 * page_alloc_init_late() has finished, the deferred pages are all initialized,
439 * and we can permanently disable that path.
441 static DEFINE_STATIC_KEY_TRUE(deferred_pages);
443 static inline bool deferred_pages_enabled(void)
445 return static_branch_unlikely(&deferred_pages);
448 /* Returns true if the struct page for the pfn is initialised */
449 static inline bool __meminit early_page_initialised(unsigned long pfn)
451 int nid = early_pfn_to_nid(pfn);
453 if (node_online(nid) && pfn >= NODE_DATA(nid)->first_deferred_pfn)
460 * Returns true when the remaining initialisation should be deferred until
461 * later in the boot cycle when it can be parallelised.
463 static bool __meminit
464 defer_init(int nid, unsigned long pfn, unsigned long end_pfn)
466 static unsigned long prev_end_pfn, nr_initialised;
468 if (early_page_ext_enabled())
471 * prev_end_pfn static that contains the end of previous zone
472 * No need to protect because called very early in boot before smp_init.
474 if (prev_end_pfn != end_pfn) {
475 prev_end_pfn = end_pfn;
479 /* Always populate low zones for address-constrained allocations */
480 if (end_pfn < pgdat_end_pfn(NODE_DATA(nid)))
483 if (NODE_DATA(nid)->first_deferred_pfn != ULONG_MAX)
486 * We start only with one section of pages, more pages are added as
487 * needed until the rest of deferred pages are initialized.
490 if ((nr_initialised > PAGES_PER_SECTION) &&
491 (pfn & (PAGES_PER_SECTION - 1)) == 0) {
492 NODE_DATA(nid)->first_deferred_pfn = pfn;
498 static inline bool deferred_pages_enabled(void)
503 static inline bool early_page_initialised(unsigned long pfn)
508 static inline bool defer_init(int nid, unsigned long pfn, unsigned long end_pfn)
514 /* Return a pointer to the bitmap storing bits affecting a block of pages */
515 static inline unsigned long *get_pageblock_bitmap(const struct page *page,
518 #ifdef CONFIG_SPARSEMEM
519 return section_to_usemap(__pfn_to_section(pfn));
521 return page_zone(page)->pageblock_flags;
522 #endif /* CONFIG_SPARSEMEM */
525 static inline int pfn_to_bitidx(const struct page *page, unsigned long pfn)
527 #ifdef CONFIG_SPARSEMEM
528 pfn &= (PAGES_PER_SECTION-1);
530 pfn = pfn - pageblock_start_pfn(page_zone(page)->zone_start_pfn);
531 #endif /* CONFIG_SPARSEMEM */
532 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
535 static __always_inline
536 unsigned long __get_pfnblock_flags_mask(const struct page *page,
540 unsigned long *bitmap;
541 unsigned long bitidx, word_bitidx;
544 bitmap = get_pageblock_bitmap(page, pfn);
545 bitidx = pfn_to_bitidx(page, pfn);
546 word_bitidx = bitidx / BITS_PER_LONG;
547 bitidx &= (BITS_PER_LONG-1);
549 * This races, without locks, with set_pfnblock_flags_mask(). Ensure
550 * a consistent read of the memory array, so that results, even though
551 * racy, are not corrupted.
553 word = READ_ONCE(bitmap[word_bitidx]);
554 return (word >> bitidx) & mask;
558 * get_pfnblock_flags_mask - Return the requested group of flags for the pageblock_nr_pages block of pages
559 * @page: The page within the block of interest
560 * @pfn: The target page frame number
561 * @mask: mask of bits that the caller is interested in
563 * Return: pageblock_bits flags
565 unsigned long get_pfnblock_flags_mask(const struct page *page,
566 unsigned long pfn, unsigned long mask)
568 return __get_pfnblock_flags_mask(page, pfn, mask);
571 static __always_inline int get_pfnblock_migratetype(const struct page *page,
574 return __get_pfnblock_flags_mask(page, pfn, MIGRATETYPE_MASK);
578 * set_pfnblock_flags_mask - Set the requested group of flags for a pageblock_nr_pages block of pages
579 * @page: The page within the block of interest
580 * @flags: The flags to set
581 * @pfn: The target page frame number
582 * @mask: mask of bits that the caller is interested in
584 void set_pfnblock_flags_mask(struct page *page, unsigned long flags,
588 unsigned long *bitmap;
589 unsigned long bitidx, word_bitidx;
592 BUILD_BUG_ON(NR_PAGEBLOCK_BITS != 4);
593 BUILD_BUG_ON(MIGRATE_TYPES > (1 << PB_migratetype_bits));
595 bitmap = get_pageblock_bitmap(page, pfn);
596 bitidx = pfn_to_bitidx(page, pfn);
597 word_bitidx = bitidx / BITS_PER_LONG;
598 bitidx &= (BITS_PER_LONG-1);
600 VM_BUG_ON_PAGE(!zone_spans_pfn(page_zone(page), pfn), page);
605 word = READ_ONCE(bitmap[word_bitidx]);
607 } while (!try_cmpxchg(&bitmap[word_bitidx], &word, (word & ~mask) | flags));
610 void set_pageblock_migratetype(struct page *page, int migratetype)
612 if (unlikely(page_group_by_mobility_disabled &&
613 migratetype < MIGRATE_PCPTYPES))
614 migratetype = MIGRATE_UNMOVABLE;
616 set_pfnblock_flags_mask(page, (unsigned long)migratetype,
617 page_to_pfn(page), MIGRATETYPE_MASK);
620 #ifdef CONFIG_DEBUG_VM
621 static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
625 unsigned long pfn = page_to_pfn(page);
626 unsigned long sp, start_pfn;
629 seq = zone_span_seqbegin(zone);
630 start_pfn = zone->zone_start_pfn;
631 sp = zone->spanned_pages;
632 if (!zone_spans_pfn(zone, pfn))
634 } while (zone_span_seqretry(zone, seq));
637 pr_err("page 0x%lx outside node %d zone %s [ 0x%lx - 0x%lx ]\n",
638 pfn, zone_to_nid(zone), zone->name,
639 start_pfn, start_pfn + sp);
644 static int page_is_consistent(struct zone *zone, struct page *page)
646 if (zone != page_zone(page))
652 * Temporary debugging check for pages not lying within a given zone.
654 static int __maybe_unused bad_range(struct zone *zone, struct page *page)
656 if (page_outside_zone_boundaries(zone, page))
658 if (!page_is_consistent(zone, page))
664 static inline int __maybe_unused bad_range(struct zone *zone, struct page *page)
670 static void bad_page(struct page *page, const char *reason)
672 static unsigned long resume;
673 static unsigned long nr_shown;
674 static unsigned long nr_unshown;
677 * Allow a burst of 60 reports, then keep quiet for that minute;
678 * or allow a steady drip of one report per second.
680 if (nr_shown == 60) {
681 if (time_before(jiffies, resume)) {
687 "BUG: Bad page state: %lu messages suppressed\n",
694 resume = jiffies + 60 * HZ;
696 pr_alert("BUG: Bad page state in process %s pfn:%05lx\n",
697 current->comm, page_to_pfn(page));
698 dump_page(page, reason);
703 /* Leave bad fields for debug, except PageBuddy could make trouble */
704 page_mapcount_reset(page); /* remove PageBuddy */
705 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
708 static inline unsigned int order_to_pindex(int migratetype, int order)
712 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
713 if (order > PAGE_ALLOC_COSTLY_ORDER) {
714 VM_BUG_ON(order != pageblock_order);
715 return NR_LOWORDER_PCP_LISTS;
718 VM_BUG_ON(order > PAGE_ALLOC_COSTLY_ORDER);
721 return (MIGRATE_PCPTYPES * base) + migratetype;
724 static inline int pindex_to_order(unsigned int pindex)
726 int order = pindex / MIGRATE_PCPTYPES;
728 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
729 if (pindex == NR_LOWORDER_PCP_LISTS)
730 order = pageblock_order;
732 VM_BUG_ON(order > PAGE_ALLOC_COSTLY_ORDER);
738 static inline bool pcp_allowed_order(unsigned int order)
740 if (order <= PAGE_ALLOC_COSTLY_ORDER)
742 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
743 if (order == pageblock_order)
749 static inline void free_the_page(struct page *page, unsigned int order)
751 if (pcp_allowed_order(order)) /* Via pcp? */
752 free_unref_page(page, order);
754 __free_pages_ok(page, order, FPI_NONE);
758 * Higher-order pages are called "compound pages". They are structured thusly:
760 * The first PAGE_SIZE page is called the "head page" and have PG_head set.
762 * The remaining PAGE_SIZE pages are called "tail pages". PageTail() is encoded
763 * in bit 0 of page->compound_head. The rest of bits is pointer to head page.
765 * The first tail page's ->compound_dtor holds the offset in array of compound
766 * page destructors. See compound_page_dtors.
768 * The first tail page's ->compound_order holds the order of allocation.
769 * This usage means that zero-order pages may not be compound.
772 void free_compound_page(struct page *page)
774 mem_cgroup_uncharge(page_folio(page));
775 free_the_page(page, compound_order(page));
778 static void prep_compound_head(struct page *page, unsigned int order)
780 struct folio *folio = (struct folio *)page;
782 set_compound_page_dtor(page, COMPOUND_PAGE_DTOR);
783 set_compound_order(page, order);
784 atomic_set(&folio->_entire_mapcount, -1);
785 atomic_set(&folio->_nr_pages_mapped, 0);
786 atomic_set(&folio->_pincount, 0);
789 static void prep_compound_tail(struct page *head, int tail_idx)
791 struct page *p = head + tail_idx;
793 p->mapping = TAIL_MAPPING;
794 set_compound_head(p, head);
795 set_page_private(p, 0);
798 void prep_compound_page(struct page *page, unsigned int order)
801 int nr_pages = 1 << order;
804 for (i = 1; i < nr_pages; i++)
805 prep_compound_tail(page, i);
807 prep_compound_head(page, order);
810 void destroy_large_folio(struct folio *folio)
812 enum compound_dtor_id dtor = folio->_folio_dtor;
814 VM_BUG_ON_FOLIO(dtor >= NR_COMPOUND_DTORS, folio);
815 compound_page_dtors[dtor](&folio->page);
818 #ifdef CONFIG_DEBUG_PAGEALLOC
819 unsigned int _debug_guardpage_minorder;
821 bool _debug_pagealloc_enabled_early __read_mostly
822 = IS_ENABLED(CONFIG_DEBUG_PAGEALLOC_ENABLE_DEFAULT);
823 EXPORT_SYMBOL(_debug_pagealloc_enabled_early);
824 DEFINE_STATIC_KEY_FALSE(_debug_pagealloc_enabled);
825 EXPORT_SYMBOL(_debug_pagealloc_enabled);
827 DEFINE_STATIC_KEY_FALSE(_debug_guardpage_enabled);
829 static int __init early_debug_pagealloc(char *buf)
831 return kstrtobool(buf, &_debug_pagealloc_enabled_early);
833 early_param("debug_pagealloc", early_debug_pagealloc);
835 static int __init debug_guardpage_minorder_setup(char *buf)
839 if (kstrtoul(buf, 10, &res) < 0 || res > MAX_ORDER / 2) {
840 pr_err("Bad debug_guardpage_minorder value\n");
843 _debug_guardpage_minorder = res;
844 pr_info("Setting debug_guardpage_minorder to %lu\n", res);
847 early_param("debug_guardpage_minorder", debug_guardpage_minorder_setup);
849 static inline bool set_page_guard(struct zone *zone, struct page *page,
850 unsigned int order, int migratetype)
852 if (!debug_guardpage_enabled())
855 if (order >= debug_guardpage_minorder())
858 __SetPageGuard(page);
859 INIT_LIST_HEAD(&page->buddy_list);
860 set_page_private(page, order);
861 /* Guard pages are not available for any usage */
862 if (!is_migrate_isolate(migratetype))
863 __mod_zone_freepage_state(zone, -(1 << order), migratetype);
868 static inline void clear_page_guard(struct zone *zone, struct page *page,
869 unsigned int order, int migratetype)
871 if (!debug_guardpage_enabled())
874 __ClearPageGuard(page);
876 set_page_private(page, 0);
877 if (!is_migrate_isolate(migratetype))
878 __mod_zone_freepage_state(zone, (1 << order), migratetype);
881 static inline bool set_page_guard(struct zone *zone, struct page *page,
882 unsigned int order, int migratetype) { return false; }
883 static inline void clear_page_guard(struct zone *zone, struct page *page,
884 unsigned int order, int migratetype) {}
888 * Enable static keys related to various memory debugging and hardening options.
889 * Some override others, and depend on early params that are evaluated in the
890 * order of appearance. So we need to first gather the full picture of what was
891 * enabled, and then make decisions.
893 void __init init_mem_debugging_and_hardening(void)
895 bool page_poisoning_requested = false;
897 #ifdef CONFIG_PAGE_POISONING
899 * Page poisoning is debug page alloc for some arches. If
900 * either of those options are enabled, enable poisoning.
902 if (page_poisoning_enabled() ||
903 (!IS_ENABLED(CONFIG_ARCH_SUPPORTS_DEBUG_PAGEALLOC) &&
904 debug_pagealloc_enabled())) {
905 static_branch_enable(&_page_poisoning_enabled);
906 page_poisoning_requested = true;
910 if ((_init_on_alloc_enabled_early || _init_on_free_enabled_early) &&
911 page_poisoning_requested) {
912 pr_info("mem auto-init: CONFIG_PAGE_POISONING is on, "
913 "will take precedence over init_on_alloc and init_on_free\n");
914 _init_on_alloc_enabled_early = false;
915 _init_on_free_enabled_early = false;
918 if (_init_on_alloc_enabled_early)
919 static_branch_enable(&init_on_alloc);
921 static_branch_disable(&init_on_alloc);
923 if (_init_on_free_enabled_early)
924 static_branch_enable(&init_on_free);
926 static_branch_disable(&init_on_free);
928 if (IS_ENABLED(CONFIG_KMSAN) &&
929 (_init_on_alloc_enabled_early || _init_on_free_enabled_early))
930 pr_info("mem auto-init: please make sure init_on_alloc and init_on_free are disabled when running KMSAN\n");
932 #ifdef CONFIG_DEBUG_PAGEALLOC
933 if (!debug_pagealloc_enabled())
936 static_branch_enable(&_debug_pagealloc_enabled);
938 if (!debug_guardpage_minorder())
941 static_branch_enable(&_debug_guardpage_enabled);
945 static inline void set_buddy_order(struct page *page, unsigned int order)
947 set_page_private(page, order);
948 __SetPageBuddy(page);
951 #ifdef CONFIG_COMPACTION
952 static inline struct capture_control *task_capc(struct zone *zone)
954 struct capture_control *capc = current->capture_control;
956 return unlikely(capc) &&
957 !(current->flags & PF_KTHREAD) &&
959 capc->cc->zone == zone ? capc : NULL;
963 compaction_capture(struct capture_control *capc, struct page *page,
964 int order, int migratetype)
966 if (!capc || order != capc->cc->order)
969 /* Do not accidentally pollute CMA or isolated regions*/
970 if (is_migrate_cma(migratetype) ||
971 is_migrate_isolate(migratetype))
975 * Do not let lower order allocations pollute a movable pageblock.
976 * This might let an unmovable request use a reclaimable pageblock
977 * and vice-versa but no more than normal fallback logic which can
978 * have trouble finding a high-order free page.
980 if (order < pageblock_order && migratetype == MIGRATE_MOVABLE)
988 static inline struct capture_control *task_capc(struct zone *zone)
994 compaction_capture(struct capture_control *capc, struct page *page,
995 int order, int migratetype)
999 #endif /* CONFIG_COMPACTION */
1001 /* Used for pages not on another list */
1002 static inline void add_to_free_list(struct page *page, struct zone *zone,
1003 unsigned int order, int migratetype)
1005 struct free_area *area = &zone->free_area[order];
1007 list_add(&page->buddy_list, &area->free_list[migratetype]);
1011 /* Used for pages not on another list */
1012 static inline void add_to_free_list_tail(struct page *page, struct zone *zone,
1013 unsigned int order, int migratetype)
1015 struct free_area *area = &zone->free_area[order];
1017 list_add_tail(&page->buddy_list, &area->free_list[migratetype]);
1022 * Used for pages which are on another list. Move the pages to the tail
1023 * of the list - so the moved pages won't immediately be considered for
1024 * allocation again (e.g., optimization for memory onlining).
1026 static inline void move_to_free_list(struct page *page, struct zone *zone,
1027 unsigned int order, int migratetype)
1029 struct free_area *area = &zone->free_area[order];
1031 list_move_tail(&page->buddy_list, &area->free_list[migratetype]);
1034 static inline void del_page_from_free_list(struct page *page, struct zone *zone,
1037 /* clear reported state and update reported page count */
1038 if (page_reported(page))
1039 __ClearPageReported(page);
1041 list_del(&page->buddy_list);
1042 __ClearPageBuddy(page);
1043 set_page_private(page, 0);
1044 zone->free_area[order].nr_free--;
1048 * If this is not the largest possible page, check if the buddy
1049 * of the next-highest order is free. If it is, it's possible
1050 * that pages are being freed that will coalesce soon. In case,
1051 * that is happening, add the free page to the tail of the list
1052 * so it's less likely to be used soon and more likely to be merged
1053 * as a higher order page
1056 buddy_merge_likely(unsigned long pfn, unsigned long buddy_pfn,
1057 struct page *page, unsigned int order)
1059 unsigned long higher_page_pfn;
1060 struct page *higher_page;
1062 if (order >= MAX_ORDER - 2)
1065 higher_page_pfn = buddy_pfn & pfn;
1066 higher_page = page + (higher_page_pfn - pfn);
1068 return find_buddy_page_pfn(higher_page, higher_page_pfn, order + 1,
1073 * Freeing function for a buddy system allocator.
1075 * The concept of a buddy system is to maintain direct-mapped table
1076 * (containing bit values) for memory blocks of various "orders".
1077 * The bottom level table contains the map for the smallest allocatable
1078 * units of memory (here, pages), and each level above it describes
1079 * pairs of units from the levels below, hence, "buddies".
1080 * At a high level, all that happens here is marking the table entry
1081 * at the bottom level available, and propagating the changes upward
1082 * as necessary, plus some accounting needed to play nicely with other
1083 * parts of the VM system.
1084 * At each level, we keep a list of pages, which are heads of continuous
1085 * free pages of length of (1 << order) and marked with PageBuddy.
1086 * Page's order is recorded in page_private(page) field.
1087 * So when we are allocating or freeing one, we can derive the state of the
1088 * other. That is, if we allocate a small block, and both were
1089 * free, the remainder of the region must be split into blocks.
1090 * If a block is freed, and its buddy is also free, then this
1091 * triggers coalescing into a block of larger size.
1096 static inline void __free_one_page(struct page *page,
1098 struct zone *zone, unsigned int order,
1099 int migratetype, fpi_t fpi_flags)
1101 struct capture_control *capc = task_capc(zone);
1102 unsigned long buddy_pfn = 0;
1103 unsigned long combined_pfn;
1107 VM_BUG_ON(!zone_is_initialized(zone));
1108 VM_BUG_ON_PAGE(page->flags & PAGE_FLAGS_CHECK_AT_PREP, page);
1110 VM_BUG_ON(migratetype == -1);
1111 if (likely(!is_migrate_isolate(migratetype)))
1112 __mod_zone_freepage_state(zone, 1 << order, migratetype);
1114 VM_BUG_ON_PAGE(pfn & ((1 << order) - 1), page);
1115 VM_BUG_ON_PAGE(bad_range(zone, page), page);
1117 while (order < MAX_ORDER - 1) {
1118 if (compaction_capture(capc, page, order, migratetype)) {
1119 __mod_zone_freepage_state(zone, -(1 << order),
1124 buddy = find_buddy_page_pfn(page, pfn, order, &buddy_pfn);
1128 if (unlikely(order >= pageblock_order)) {
1130 * We want to prevent merge between freepages on pageblock
1131 * without fallbacks and normal pageblock. Without this,
1132 * pageblock isolation could cause incorrect freepage or CMA
1133 * accounting or HIGHATOMIC accounting.
1135 int buddy_mt = get_pageblock_migratetype(buddy);
1137 if (migratetype != buddy_mt
1138 && (!migratetype_is_mergeable(migratetype) ||
1139 !migratetype_is_mergeable(buddy_mt)))
1144 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page,
1145 * merge with it and move up one order.
1147 if (page_is_guard(buddy))
1148 clear_page_guard(zone, buddy, order, migratetype);
1150 del_page_from_free_list(buddy, zone, order);
1151 combined_pfn = buddy_pfn & pfn;
1152 page = page + (combined_pfn - pfn);
1158 set_buddy_order(page, order);
1160 if (fpi_flags & FPI_TO_TAIL)
1162 else if (is_shuffle_order(order))
1163 to_tail = shuffle_pick_tail();
1165 to_tail = buddy_merge_likely(pfn, buddy_pfn, page, order);
1168 add_to_free_list_tail(page, zone, order, migratetype);
1170 add_to_free_list(page, zone, order, migratetype);
1172 /* Notify page reporting subsystem of freed page */
1173 if (!(fpi_flags & FPI_SKIP_REPORT_NOTIFY))
1174 page_reporting_notify_free(order);
1178 * split_free_page() -- split a free page at split_pfn_offset
1179 * @free_page: the original free page
1180 * @order: the order of the page
1181 * @split_pfn_offset: split offset within the page
1183 * Return -ENOENT if the free page is changed, otherwise 0
1185 * It is used when the free page crosses two pageblocks with different migratetypes
1186 * at split_pfn_offset within the page. The split free page will be put into
1187 * separate migratetype lists afterwards. Otherwise, the function achieves
1190 int split_free_page(struct page *free_page,
1191 unsigned int order, unsigned long split_pfn_offset)
1193 struct zone *zone = page_zone(free_page);
1194 unsigned long free_page_pfn = page_to_pfn(free_page);
1196 unsigned long flags;
1197 int free_page_order;
1201 if (split_pfn_offset == 0)
1204 spin_lock_irqsave(&zone->lock, flags);
1206 if (!PageBuddy(free_page) || buddy_order(free_page) != order) {
1211 mt = get_pageblock_migratetype(free_page);
1212 if (likely(!is_migrate_isolate(mt)))
1213 __mod_zone_freepage_state(zone, -(1UL << order), mt);
1215 del_page_from_free_list(free_page, zone, order);
1216 for (pfn = free_page_pfn;
1217 pfn < free_page_pfn + (1UL << order);) {
1218 int mt = get_pfnblock_migratetype(pfn_to_page(pfn), pfn);
1220 free_page_order = min_t(unsigned int,
1221 pfn ? __ffs(pfn) : order,
1222 __fls(split_pfn_offset));
1223 __free_one_page(pfn_to_page(pfn), pfn, zone, free_page_order,
1225 pfn += 1UL << free_page_order;
1226 split_pfn_offset -= (1UL << free_page_order);
1227 /* we have done the first part, now switch to second part */
1228 if (split_pfn_offset == 0)
1229 split_pfn_offset = (1UL << order) - (pfn - free_page_pfn);
1232 spin_unlock_irqrestore(&zone->lock, flags);
1236 * A bad page could be due to a number of fields. Instead of multiple branches,
1237 * try and check multiple fields with one check. The caller must do a detailed
1238 * check if necessary.
1240 static inline bool page_expected_state(struct page *page,
1241 unsigned long check_flags)
1243 if (unlikely(atomic_read(&page->_mapcount) != -1))
1246 if (unlikely((unsigned long)page->mapping |
1247 page_ref_count(page) |
1251 (page->flags & check_flags)))
1257 static const char *page_bad_reason(struct page *page, unsigned long flags)
1259 const char *bad_reason = NULL;
1261 if (unlikely(atomic_read(&page->_mapcount) != -1))
1262 bad_reason = "nonzero mapcount";
1263 if (unlikely(page->mapping != NULL))
1264 bad_reason = "non-NULL mapping";
1265 if (unlikely(page_ref_count(page) != 0))
1266 bad_reason = "nonzero _refcount";
1267 if (unlikely(page->flags & flags)) {
1268 if (flags == PAGE_FLAGS_CHECK_AT_PREP)
1269 bad_reason = "PAGE_FLAGS_CHECK_AT_PREP flag(s) set";
1271 bad_reason = "PAGE_FLAGS_CHECK_AT_FREE flag(s) set";
1274 if (unlikely(page->memcg_data))
1275 bad_reason = "page still charged to cgroup";
1280 static void free_page_is_bad_report(struct page *page)
1283 page_bad_reason(page, PAGE_FLAGS_CHECK_AT_FREE));
1286 static inline bool free_page_is_bad(struct page *page)
1288 if (likely(page_expected_state(page, PAGE_FLAGS_CHECK_AT_FREE)))
1291 /* Something has gone sideways, find it */
1292 free_page_is_bad_report(page);
1296 static int free_tail_pages_check(struct page *head_page, struct page *page)
1298 struct folio *folio = (struct folio *)head_page;
1302 * We rely page->lru.next never has bit 0 set, unless the page
1303 * is PageTail(). Let's make sure that's true even for poisoned ->lru.
1305 BUILD_BUG_ON((unsigned long)LIST_POISON1 & 1);
1307 if (!IS_ENABLED(CONFIG_DEBUG_VM)) {
1311 switch (page - head_page) {
1313 /* the first tail page: these may be in place of ->mapping */
1314 if (unlikely(folio_entire_mapcount(folio))) {
1315 bad_page(page, "nonzero entire_mapcount");
1318 if (unlikely(atomic_read(&folio->_nr_pages_mapped))) {
1319 bad_page(page, "nonzero nr_pages_mapped");
1322 if (unlikely(atomic_read(&folio->_pincount))) {
1323 bad_page(page, "nonzero pincount");
1329 * the second tail page: ->mapping is
1330 * deferred_list.next -- ignore value.
1334 if (page->mapping != TAIL_MAPPING) {
1335 bad_page(page, "corrupted mapping in tail page");
1340 if (unlikely(!PageTail(page))) {
1341 bad_page(page, "PageTail not set");
1344 if (unlikely(compound_head(page) != head_page)) {
1345 bad_page(page, "compound_head not consistent");
1350 page->mapping = NULL;
1351 clear_compound_head(page);
1356 * Skip KASAN memory poisoning when either:
1358 * 1. Deferred memory initialization has not yet completed,
1359 * see the explanation below.
1360 * 2. Skipping poisoning is requested via FPI_SKIP_KASAN_POISON,
1361 * see the comment next to it.
1362 * 3. Skipping poisoning is requested via __GFP_SKIP_KASAN_POISON,
1363 * see the comment next to it.
1364 * 4. The allocation is excluded from being checked due to sampling,
1365 * see the call to kasan_unpoison_pages.
1367 * Poisoning pages during deferred memory init will greatly lengthen the
1368 * process and cause problem in large memory systems as the deferred pages
1369 * initialization is done with interrupt disabled.
1371 * Assuming that there will be no reference to those newly initialized
1372 * pages before they are ever allocated, this should have no effect on
1373 * KASAN memory tracking as the poison will be properly inserted at page
1374 * allocation time. The only corner case is when pages are allocated by
1375 * on-demand allocation and then freed again before the deferred pages
1376 * initialization is done, but this is not likely to happen.
1378 static inline bool should_skip_kasan_poison(struct page *page, fpi_t fpi_flags)
1380 return deferred_pages_enabled() ||
1381 (!IS_ENABLED(CONFIG_KASAN_GENERIC) &&
1382 (fpi_flags & FPI_SKIP_KASAN_POISON)) ||
1383 PageSkipKASanPoison(page);
1386 static void kernel_init_pages(struct page *page, int numpages)
1390 /* s390's use of memset() could override KASAN redzones. */
1391 kasan_disable_current();
1392 for (i = 0; i < numpages; i++)
1393 clear_highpage_kasan_tagged(page + i);
1394 kasan_enable_current();
1397 static __always_inline bool free_pages_prepare(struct page *page,
1398 unsigned int order, bool check_free, fpi_t fpi_flags)
1401 bool skip_kasan_poison = should_skip_kasan_poison(page, fpi_flags);
1402 bool init = want_init_on_free();
1404 VM_BUG_ON_PAGE(PageTail(page), page);
1406 trace_mm_page_free(page, order);
1407 kmsan_free_page(page, order);
1409 if (unlikely(PageHWPoison(page)) && !order) {
1411 * Do not let hwpoison pages hit pcplists/buddy
1412 * Untie memcg state and reset page's owner
1414 if (memcg_kmem_online() && PageMemcgKmem(page))
1415 __memcg_kmem_uncharge_page(page, order);
1416 reset_page_owner(page, order);
1417 page_table_check_free(page, order);
1422 * Check tail pages before head page information is cleared to
1423 * avoid checking PageCompound for order-0 pages.
1425 if (unlikely(order)) {
1426 bool compound = PageCompound(page);
1429 VM_BUG_ON_PAGE(compound && compound_order(page) != order, page);
1432 ClearPageHasHWPoisoned(page);
1433 for (i = 1; i < (1 << order); i++) {
1435 bad += free_tail_pages_check(page, page + i);
1436 if (unlikely(free_page_is_bad(page + i))) {
1440 (page + i)->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1443 if (PageMappingFlags(page))
1444 page->mapping = NULL;
1445 if (memcg_kmem_online() && PageMemcgKmem(page))
1446 __memcg_kmem_uncharge_page(page, order);
1447 if (check_free && free_page_is_bad(page))
1452 page_cpupid_reset_last(page);
1453 page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1454 reset_page_owner(page, order);
1455 page_table_check_free(page, order);
1457 if (!PageHighMem(page)) {
1458 debug_check_no_locks_freed(page_address(page),
1459 PAGE_SIZE << order);
1460 debug_check_no_obj_freed(page_address(page),
1461 PAGE_SIZE << order);
1464 kernel_poison_pages(page, 1 << order);
1467 * As memory initialization might be integrated into KASAN,
1468 * KASAN poisoning and memory initialization code must be
1469 * kept together to avoid discrepancies in behavior.
1471 * With hardware tag-based KASAN, memory tags must be set before the
1472 * page becomes unavailable via debug_pagealloc or arch_free_page.
1474 if (!skip_kasan_poison) {
1475 kasan_poison_pages(page, order, init);
1477 /* Memory is already initialized if KASAN did it internally. */
1478 if (kasan_has_integrated_init())
1482 kernel_init_pages(page, 1 << order);
1485 * arch_free_page() can make the page's contents inaccessible. s390
1486 * does this. So nothing which can access the page's contents should
1487 * happen after this.
1489 arch_free_page(page, order);
1491 debug_pagealloc_unmap_pages(page, 1 << order);
1496 #ifdef CONFIG_DEBUG_VM
1498 * With DEBUG_VM enabled, order-0 pages are checked immediately when being freed
1499 * to pcp lists. With debug_pagealloc also enabled, they are also rechecked when
1500 * moved from pcp lists to free lists.
1502 static bool free_pcp_prepare(struct page *page, unsigned int order)
1504 return free_pages_prepare(page, order, true, FPI_NONE);
1507 /* return true if this page has an inappropriate state */
1508 static bool bulkfree_pcp_prepare(struct page *page)
1510 if (debug_pagealloc_enabled_static())
1511 return free_page_is_bad(page);
1517 * With DEBUG_VM disabled, order-0 pages being freed are checked only when
1518 * moving from pcp lists to free list in order to reduce overhead. With
1519 * debug_pagealloc enabled, they are checked also immediately when being freed
1522 static bool free_pcp_prepare(struct page *page, unsigned int order)
1524 if (debug_pagealloc_enabled_static())
1525 return free_pages_prepare(page, order, true, FPI_NONE);
1527 return free_pages_prepare(page, order, false, FPI_NONE);
1530 static bool bulkfree_pcp_prepare(struct page *page)
1532 return free_page_is_bad(page);
1534 #endif /* CONFIG_DEBUG_VM */
1537 * Frees a number of pages from the PCP lists
1538 * Assumes all pages on list are in same zone.
1539 * count is the number of pages to free.
1541 static void free_pcppages_bulk(struct zone *zone, int count,
1542 struct per_cpu_pages *pcp,
1545 unsigned long flags;
1547 int max_pindex = NR_PCP_LISTS - 1;
1549 bool isolated_pageblocks;
1553 * Ensure proper count is passed which otherwise would stuck in the
1554 * below while (list_empty(list)) loop.
1556 count = min(pcp->count, count);
1558 /* Ensure requested pindex is drained first. */
1559 pindex = pindex - 1;
1561 spin_lock_irqsave(&zone->lock, flags);
1562 isolated_pageblocks = has_isolate_pageblock(zone);
1565 struct list_head *list;
1568 /* Remove pages from lists in a round-robin fashion. */
1570 if (++pindex > max_pindex)
1571 pindex = min_pindex;
1572 list = &pcp->lists[pindex];
1573 if (!list_empty(list))
1576 if (pindex == max_pindex)
1578 if (pindex == min_pindex)
1582 order = pindex_to_order(pindex);
1583 nr_pages = 1 << order;
1587 page = list_last_entry(list, struct page, pcp_list);
1588 mt = get_pcppage_migratetype(page);
1590 /* must delete to avoid corrupting pcp list */
1591 list_del(&page->pcp_list);
1593 pcp->count -= nr_pages;
1595 if (bulkfree_pcp_prepare(page))
1598 /* MIGRATE_ISOLATE page should not go to pcplists */
1599 VM_BUG_ON_PAGE(is_migrate_isolate(mt), page);
1600 /* Pageblock could have been isolated meanwhile */
1601 if (unlikely(isolated_pageblocks))
1602 mt = get_pageblock_migratetype(page);
1604 __free_one_page(page, page_to_pfn(page), zone, order, mt, FPI_NONE);
1605 trace_mm_page_pcpu_drain(page, order, mt);
1606 } while (count > 0 && !list_empty(list));
1609 spin_unlock_irqrestore(&zone->lock, flags);
1612 static void free_one_page(struct zone *zone,
1613 struct page *page, unsigned long pfn,
1615 int migratetype, fpi_t fpi_flags)
1617 unsigned long flags;
1619 spin_lock_irqsave(&zone->lock, flags);
1620 if (unlikely(has_isolate_pageblock(zone) ||
1621 is_migrate_isolate(migratetype))) {
1622 migratetype = get_pfnblock_migratetype(page, pfn);
1624 __free_one_page(page, pfn, zone, order, migratetype, fpi_flags);
1625 spin_unlock_irqrestore(&zone->lock, flags);
1628 static void __meminit __init_single_page(struct page *page, unsigned long pfn,
1629 unsigned long zone, int nid)
1631 mm_zero_struct_page(page);
1632 set_page_links(page, zone, nid, pfn);
1633 init_page_count(page);
1634 page_mapcount_reset(page);
1635 page_cpupid_reset_last(page);
1636 page_kasan_tag_reset(page);
1638 INIT_LIST_HEAD(&page->lru);
1639 #ifdef WANT_PAGE_VIRTUAL
1640 /* The shift won't overflow because ZONE_NORMAL is below 4G. */
1641 if (!is_highmem_idx(zone))
1642 set_page_address(page, __va(pfn << PAGE_SHIFT));
1646 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1647 static void __meminit init_reserved_page(unsigned long pfn)
1652 if (early_page_initialised(pfn))
1655 nid = early_pfn_to_nid(pfn);
1656 pgdat = NODE_DATA(nid);
1658 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1659 struct zone *zone = &pgdat->node_zones[zid];
1661 if (zone_spans_pfn(zone, pfn))
1664 __init_single_page(pfn_to_page(pfn), pfn, zid, nid);
1667 static inline void init_reserved_page(unsigned long pfn)
1670 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
1673 * Initialised pages do not have PageReserved set. This function is
1674 * called for each range allocated by the bootmem allocator and
1675 * marks the pages PageReserved. The remaining valid pages are later
1676 * sent to the buddy page allocator.
1678 void __meminit reserve_bootmem_region(phys_addr_t start, phys_addr_t end)
1680 unsigned long start_pfn = PFN_DOWN(start);
1681 unsigned long end_pfn = PFN_UP(end);
1683 for (; start_pfn < end_pfn; start_pfn++) {
1684 if (pfn_valid(start_pfn)) {
1685 struct page *page = pfn_to_page(start_pfn);
1687 init_reserved_page(start_pfn);
1689 /* Avoid false-positive PageTail() */
1690 INIT_LIST_HEAD(&page->lru);
1693 * no need for atomic set_bit because the struct
1694 * page is not visible yet so nobody should
1697 __SetPageReserved(page);
1702 static void __free_pages_ok(struct page *page, unsigned int order,
1705 unsigned long flags;
1707 unsigned long pfn = page_to_pfn(page);
1708 struct zone *zone = page_zone(page);
1710 if (!free_pages_prepare(page, order, true, fpi_flags))
1714 * Calling get_pfnblock_migratetype() without spin_lock_irqsave() here
1715 * is used to avoid calling get_pfnblock_migratetype() under the lock.
1716 * This will reduce the lock holding time.
1718 migratetype = get_pfnblock_migratetype(page, pfn);
1720 spin_lock_irqsave(&zone->lock, flags);
1721 if (unlikely(has_isolate_pageblock(zone) ||
1722 is_migrate_isolate(migratetype))) {
1723 migratetype = get_pfnblock_migratetype(page, pfn);
1725 __free_one_page(page, pfn, zone, order, migratetype, fpi_flags);
1726 spin_unlock_irqrestore(&zone->lock, flags);
1728 __count_vm_events(PGFREE, 1 << order);
1731 void __free_pages_core(struct page *page, unsigned int order)
1733 unsigned int nr_pages = 1 << order;
1734 struct page *p = page;
1738 * When initializing the memmap, __init_single_page() sets the refcount
1739 * of all pages to 1 ("allocated"/"not free"). We have to set the
1740 * refcount of all involved pages to 0.
1743 for (loop = 0; loop < (nr_pages - 1); loop++, p++) {
1745 __ClearPageReserved(p);
1746 set_page_count(p, 0);
1748 __ClearPageReserved(p);
1749 set_page_count(p, 0);
1751 atomic_long_add(nr_pages, &page_zone(page)->managed_pages);
1754 * Bypass PCP and place fresh pages right to the tail, primarily
1755 * relevant for memory onlining.
1757 __free_pages_ok(page, order, FPI_TO_TAIL | FPI_SKIP_KASAN_POISON);
1763 * During memory init memblocks map pfns to nids. The search is expensive and
1764 * this caches recent lookups. The implementation of __early_pfn_to_nid
1765 * treats start/end as pfns.
1767 struct mminit_pfnnid_cache {
1768 unsigned long last_start;
1769 unsigned long last_end;
1773 static struct mminit_pfnnid_cache early_pfnnid_cache __meminitdata;
1776 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
1778 static int __meminit __early_pfn_to_nid(unsigned long pfn,
1779 struct mminit_pfnnid_cache *state)
1781 unsigned long start_pfn, end_pfn;
1784 if (state->last_start <= pfn && pfn < state->last_end)
1785 return state->last_nid;
1787 nid = memblock_search_pfn_nid(pfn, &start_pfn, &end_pfn);
1788 if (nid != NUMA_NO_NODE) {
1789 state->last_start = start_pfn;
1790 state->last_end = end_pfn;
1791 state->last_nid = nid;
1797 int __meminit early_pfn_to_nid(unsigned long pfn)
1799 static DEFINE_SPINLOCK(early_pfn_lock);
1802 spin_lock(&early_pfn_lock);
1803 nid = __early_pfn_to_nid(pfn, &early_pfnnid_cache);
1805 nid = first_online_node;
1806 spin_unlock(&early_pfn_lock);
1810 #endif /* CONFIG_NUMA */
1812 void __init memblock_free_pages(struct page *page, unsigned long pfn,
1815 if (!early_page_initialised(pfn))
1817 if (!kmsan_memblock_free_pages(page, order)) {
1818 /* KMSAN will take care of these pages. */
1821 __free_pages_core(page, order);
1825 * Check that the whole (or subset of) a pageblock given by the interval of
1826 * [start_pfn, end_pfn) is valid and within the same zone, before scanning it
1827 * with the migration of free compaction scanner.
1829 * Return struct page pointer of start_pfn, or NULL if checks were not passed.
1831 * It's possible on some configurations to have a setup like node0 node1 node0
1832 * i.e. it's possible that all pages within a zones range of pages do not
1833 * belong to a single zone. We assume that a border between node0 and node1
1834 * can occur within a single pageblock, but not a node0 node1 node0
1835 * interleaving within a single pageblock. It is therefore sufficient to check
1836 * the first and last page of a pageblock and avoid checking each individual
1837 * page in a pageblock.
1839 struct page *__pageblock_pfn_to_page(unsigned long start_pfn,
1840 unsigned long end_pfn, struct zone *zone)
1842 struct page *start_page;
1843 struct page *end_page;
1845 /* end_pfn is one past the range we are checking */
1848 if (!pfn_valid(start_pfn) || !pfn_valid(end_pfn))
1851 start_page = pfn_to_online_page(start_pfn);
1855 if (page_zone(start_page) != zone)
1858 end_page = pfn_to_page(end_pfn);
1860 /* This gives a shorter code than deriving page_zone(end_page) */
1861 if (page_zone_id(start_page) != page_zone_id(end_page))
1867 void set_zone_contiguous(struct zone *zone)
1869 unsigned long block_start_pfn = zone->zone_start_pfn;
1870 unsigned long block_end_pfn;
1872 block_end_pfn = pageblock_end_pfn(block_start_pfn);
1873 for (; block_start_pfn < zone_end_pfn(zone);
1874 block_start_pfn = block_end_pfn,
1875 block_end_pfn += pageblock_nr_pages) {
1877 block_end_pfn = min(block_end_pfn, zone_end_pfn(zone));
1879 if (!__pageblock_pfn_to_page(block_start_pfn,
1880 block_end_pfn, zone))
1885 /* We confirm that there is no hole */
1886 zone->contiguous = true;
1889 void clear_zone_contiguous(struct zone *zone)
1891 zone->contiguous = false;
1894 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1895 static void __init deferred_free_range(unsigned long pfn,
1896 unsigned long nr_pages)
1904 page = pfn_to_page(pfn);
1906 /* Free a large naturally-aligned chunk if possible */
1907 if (nr_pages == pageblock_nr_pages && pageblock_aligned(pfn)) {
1908 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
1909 __free_pages_core(page, pageblock_order);
1913 for (i = 0; i < nr_pages; i++, page++, pfn++) {
1914 if (pageblock_aligned(pfn))
1915 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
1916 __free_pages_core(page, 0);
1920 /* Completion tracking for deferred_init_memmap() threads */
1921 static atomic_t pgdat_init_n_undone __initdata;
1922 static __initdata DECLARE_COMPLETION(pgdat_init_all_done_comp);
1924 static inline void __init pgdat_init_report_one_done(void)
1926 if (atomic_dec_and_test(&pgdat_init_n_undone))
1927 complete(&pgdat_init_all_done_comp);
1931 * Returns true if page needs to be initialized or freed to buddy allocator.
1933 * We check if a current large page is valid by only checking the validity
1936 static inline bool __init deferred_pfn_valid(unsigned long pfn)
1938 if (pageblock_aligned(pfn) && !pfn_valid(pfn))
1944 * Free pages to buddy allocator. Try to free aligned pages in
1945 * pageblock_nr_pages sizes.
1947 static void __init deferred_free_pages(unsigned long pfn,
1948 unsigned long end_pfn)
1950 unsigned long nr_free = 0;
1952 for (; pfn < end_pfn; pfn++) {
1953 if (!deferred_pfn_valid(pfn)) {
1954 deferred_free_range(pfn - nr_free, nr_free);
1956 } else if (pageblock_aligned(pfn)) {
1957 deferred_free_range(pfn - nr_free, nr_free);
1963 /* Free the last block of pages to allocator */
1964 deferred_free_range(pfn - nr_free, nr_free);
1968 * Initialize struct pages. We minimize pfn page lookups and scheduler checks
1969 * by performing it only once every pageblock_nr_pages.
1970 * Return number of pages initialized.
1972 static unsigned long __init deferred_init_pages(struct zone *zone,
1974 unsigned long end_pfn)
1976 int nid = zone_to_nid(zone);
1977 unsigned long nr_pages = 0;
1978 int zid = zone_idx(zone);
1979 struct page *page = NULL;
1981 for (; pfn < end_pfn; pfn++) {
1982 if (!deferred_pfn_valid(pfn)) {
1985 } else if (!page || pageblock_aligned(pfn)) {
1986 page = pfn_to_page(pfn);
1990 __init_single_page(page, pfn, zid, nid);
1997 * This function is meant to pre-load the iterator for the zone init.
1998 * Specifically it walks through the ranges until we are caught up to the
1999 * first_init_pfn value and exits there. If we never encounter the value we
2000 * return false indicating there are no valid ranges left.
2003 deferred_init_mem_pfn_range_in_zone(u64 *i, struct zone *zone,
2004 unsigned long *spfn, unsigned long *epfn,
2005 unsigned long first_init_pfn)
2010 * Start out by walking through the ranges in this zone that have
2011 * already been initialized. We don't need to do anything with them
2012 * so we just need to flush them out of the system.
2014 for_each_free_mem_pfn_range_in_zone(j, zone, spfn, epfn) {
2015 if (*epfn <= first_init_pfn)
2017 if (*spfn < first_init_pfn)
2018 *spfn = first_init_pfn;
2027 * Initialize and free pages. We do it in two loops: first we initialize
2028 * struct page, then free to buddy allocator, because while we are
2029 * freeing pages we can access pages that are ahead (computing buddy
2030 * page in __free_one_page()).
2032 * In order to try and keep some memory in the cache we have the loop
2033 * broken along max page order boundaries. This way we will not cause
2034 * any issues with the buddy page computation.
2036 static unsigned long __init
2037 deferred_init_maxorder(u64 *i, struct zone *zone, unsigned long *start_pfn,
2038 unsigned long *end_pfn)
2040 unsigned long mo_pfn = ALIGN(*start_pfn + 1, MAX_ORDER_NR_PAGES);
2041 unsigned long spfn = *start_pfn, epfn = *end_pfn;
2042 unsigned long nr_pages = 0;
2045 /* First we loop through and initialize the page values */
2046 for_each_free_mem_pfn_range_in_zone_from(j, zone, start_pfn, end_pfn) {
2049 if (mo_pfn <= *start_pfn)
2052 t = min(mo_pfn, *end_pfn);
2053 nr_pages += deferred_init_pages(zone, *start_pfn, t);
2055 if (mo_pfn < *end_pfn) {
2056 *start_pfn = mo_pfn;
2061 /* Reset values and now loop through freeing pages as needed */
2064 for_each_free_mem_pfn_range_in_zone_from(j, zone, &spfn, &epfn) {
2070 t = min(mo_pfn, epfn);
2071 deferred_free_pages(spfn, t);
2081 deferred_init_memmap_chunk(unsigned long start_pfn, unsigned long end_pfn,
2084 unsigned long spfn, epfn;
2085 struct zone *zone = arg;
2088 deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn, start_pfn);
2091 * Initialize and free pages in MAX_ORDER sized increments so that we
2092 * can avoid introducing any issues with the buddy allocator.
2094 while (spfn < end_pfn) {
2095 deferred_init_maxorder(&i, zone, &spfn, &epfn);
2100 /* An arch may override for more concurrency. */
2102 deferred_page_init_max_threads(const struct cpumask *node_cpumask)
2107 /* Initialise remaining memory on a node */
2108 static int __init deferred_init_memmap(void *data)
2110 pg_data_t *pgdat = data;
2111 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
2112 unsigned long spfn = 0, epfn = 0;
2113 unsigned long first_init_pfn, flags;
2114 unsigned long start = jiffies;
2116 int zid, max_threads;
2119 /* Bind memory initialisation thread to a local node if possible */
2120 if (!cpumask_empty(cpumask))
2121 set_cpus_allowed_ptr(current, cpumask);
2123 pgdat_resize_lock(pgdat, &flags);
2124 first_init_pfn = pgdat->first_deferred_pfn;
2125 if (first_init_pfn == ULONG_MAX) {
2126 pgdat_resize_unlock(pgdat, &flags);
2127 pgdat_init_report_one_done();
2131 /* Sanity check boundaries */
2132 BUG_ON(pgdat->first_deferred_pfn < pgdat->node_start_pfn);
2133 BUG_ON(pgdat->first_deferred_pfn > pgdat_end_pfn(pgdat));
2134 pgdat->first_deferred_pfn = ULONG_MAX;
2137 * Once we unlock here, the zone cannot be grown anymore, thus if an
2138 * interrupt thread must allocate this early in boot, zone must be
2139 * pre-grown prior to start of deferred page initialization.
2141 pgdat_resize_unlock(pgdat, &flags);
2143 /* Only the highest zone is deferred so find it */
2144 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
2145 zone = pgdat->node_zones + zid;
2146 if (first_init_pfn < zone_end_pfn(zone))
2150 /* If the zone is empty somebody else may have cleared out the zone */
2151 if (!deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn,
2155 max_threads = deferred_page_init_max_threads(cpumask);
2157 while (spfn < epfn) {
2158 unsigned long epfn_align = ALIGN(epfn, PAGES_PER_SECTION);
2159 struct padata_mt_job job = {
2160 .thread_fn = deferred_init_memmap_chunk,
2163 .size = epfn_align - spfn,
2164 .align = PAGES_PER_SECTION,
2165 .min_chunk = PAGES_PER_SECTION,
2166 .max_threads = max_threads,
2169 padata_do_multithreaded(&job);
2170 deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn,
2174 /* Sanity check that the next zone really is unpopulated */
2175 WARN_ON(++zid < MAX_NR_ZONES && populated_zone(++zone));
2177 pr_info("node %d deferred pages initialised in %ums\n",
2178 pgdat->node_id, jiffies_to_msecs(jiffies - start));
2180 pgdat_init_report_one_done();
2185 * If this zone has deferred pages, try to grow it by initializing enough
2186 * deferred pages to satisfy the allocation specified by order, rounded up to
2187 * the nearest PAGES_PER_SECTION boundary. So we're adding memory in increments
2188 * of SECTION_SIZE bytes by initializing struct pages in increments of
2189 * PAGES_PER_SECTION * sizeof(struct page) bytes.
2191 * Return true when zone was grown, otherwise return false. We return true even
2192 * when we grow less than requested, to let the caller decide if there are
2193 * enough pages to satisfy the allocation.
2195 * Note: We use noinline because this function is needed only during boot, and
2196 * it is called from a __ref function _deferred_grow_zone. This way we are
2197 * making sure that it is not inlined into permanent text section.
2199 static noinline bool __init
2200 deferred_grow_zone(struct zone *zone, unsigned int order)
2202 unsigned long nr_pages_needed = ALIGN(1 << order, PAGES_PER_SECTION);
2203 pg_data_t *pgdat = zone->zone_pgdat;
2204 unsigned long first_deferred_pfn = pgdat->first_deferred_pfn;
2205 unsigned long spfn, epfn, flags;
2206 unsigned long nr_pages = 0;
2209 /* Only the last zone may have deferred pages */
2210 if (zone_end_pfn(zone) != pgdat_end_pfn(pgdat))
2213 pgdat_resize_lock(pgdat, &flags);
2216 * If someone grew this zone while we were waiting for spinlock, return
2217 * true, as there might be enough pages already.
2219 if (first_deferred_pfn != pgdat->first_deferred_pfn) {
2220 pgdat_resize_unlock(pgdat, &flags);
2224 /* If the zone is empty somebody else may have cleared out the zone */
2225 if (!deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn,
2226 first_deferred_pfn)) {
2227 pgdat->first_deferred_pfn = ULONG_MAX;
2228 pgdat_resize_unlock(pgdat, &flags);
2229 /* Retry only once. */
2230 return first_deferred_pfn != ULONG_MAX;
2234 * Initialize and free pages in MAX_ORDER sized increments so
2235 * that we can avoid introducing any issues with the buddy
2238 while (spfn < epfn) {
2239 /* update our first deferred PFN for this section */
2240 first_deferred_pfn = spfn;
2242 nr_pages += deferred_init_maxorder(&i, zone, &spfn, &epfn);
2243 touch_nmi_watchdog();
2245 /* We should only stop along section boundaries */
2246 if ((first_deferred_pfn ^ spfn) < PAGES_PER_SECTION)
2249 /* If our quota has been met we can stop here */
2250 if (nr_pages >= nr_pages_needed)
2254 pgdat->first_deferred_pfn = spfn;
2255 pgdat_resize_unlock(pgdat, &flags);
2257 return nr_pages > 0;
2261 * deferred_grow_zone() is __init, but it is called from
2262 * get_page_from_freelist() during early boot until deferred_pages permanently
2263 * disables this call. This is why we have refdata wrapper to avoid warning,
2264 * and to ensure that the function body gets unloaded.
2267 _deferred_grow_zone(struct zone *zone, unsigned int order)
2269 return deferred_grow_zone(zone, order);
2272 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
2274 void __init page_alloc_init_late(void)
2279 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
2281 /* There will be num_node_state(N_MEMORY) threads */
2282 atomic_set(&pgdat_init_n_undone, num_node_state(N_MEMORY));
2283 for_each_node_state(nid, N_MEMORY) {
2284 kthread_run(deferred_init_memmap, NODE_DATA(nid), "pgdatinit%d", nid);
2287 /* Block until all are initialised */
2288 wait_for_completion(&pgdat_init_all_done_comp);
2291 * We initialized the rest of the deferred pages. Permanently disable
2292 * on-demand struct page initialization.
2294 static_branch_disable(&deferred_pages);
2296 /* Reinit limits that are based on free pages after the kernel is up */
2297 files_maxfiles_init();
2302 /* Discard memblock private memory */
2305 for_each_node_state(nid, N_MEMORY)
2306 shuffle_free_memory(NODE_DATA(nid));
2308 for_each_populated_zone(zone)
2309 set_zone_contiguous(zone);
2313 /* Free whole pageblock and set its migration type to MIGRATE_CMA. */
2314 void __init init_cma_reserved_pageblock(struct page *page)
2316 unsigned i = pageblock_nr_pages;
2317 struct page *p = page;
2320 __ClearPageReserved(p);
2321 set_page_count(p, 0);
2324 set_pageblock_migratetype(page, MIGRATE_CMA);
2325 set_page_refcounted(page);
2326 __free_pages(page, pageblock_order);
2328 adjust_managed_page_count(page, pageblock_nr_pages);
2329 page_zone(page)->cma_pages += pageblock_nr_pages;
2334 * The order of subdivision here is critical for the IO subsystem.
2335 * Please do not alter this order without good reasons and regression
2336 * testing. Specifically, as large blocks of memory are subdivided,
2337 * the order in which smaller blocks are delivered depends on the order
2338 * they're subdivided in this function. This is the primary factor
2339 * influencing the order in which pages are delivered to the IO
2340 * subsystem according to empirical testing, and this is also justified
2341 * by considering the behavior of a buddy system containing a single
2342 * large block of memory acted on by a series of small allocations.
2343 * This behavior is a critical factor in sglist merging's success.
2347 static inline void expand(struct zone *zone, struct page *page,
2348 int low, int high, int migratetype)
2350 unsigned long size = 1 << high;
2352 while (high > low) {
2355 VM_BUG_ON_PAGE(bad_range(zone, &page[size]), &page[size]);
2358 * Mark as guard pages (or page), that will allow to
2359 * merge back to allocator when buddy will be freed.
2360 * Corresponding page table entries will not be touched,
2361 * pages will stay not present in virtual address space
2363 if (set_page_guard(zone, &page[size], high, migratetype))
2366 add_to_free_list(&page[size], zone, high, migratetype);
2367 set_buddy_order(&page[size], high);
2371 static void check_new_page_bad(struct page *page)
2373 if (unlikely(page->flags & __PG_HWPOISON)) {
2374 /* Don't complain about hwpoisoned pages */
2375 page_mapcount_reset(page); /* remove PageBuddy */
2380 page_bad_reason(page, PAGE_FLAGS_CHECK_AT_PREP));
2384 * This page is about to be returned from the page allocator
2386 static inline int check_new_page(struct page *page)
2388 if (likely(page_expected_state(page,
2389 PAGE_FLAGS_CHECK_AT_PREP|__PG_HWPOISON)))
2392 check_new_page_bad(page);
2396 static bool check_new_pages(struct page *page, unsigned int order)
2399 for (i = 0; i < (1 << order); i++) {
2400 struct page *p = page + i;
2402 if (unlikely(check_new_page(p)))
2409 #ifdef CONFIG_DEBUG_VM
2411 * With DEBUG_VM enabled, order-0 pages are checked for expected state when
2412 * being allocated from pcp lists. With debug_pagealloc also enabled, they are
2413 * also checked when pcp lists are refilled from the free lists.
2415 static inline bool check_pcp_refill(struct page *page, unsigned int order)
2417 if (debug_pagealloc_enabled_static())
2418 return check_new_pages(page, order);
2423 static inline bool check_new_pcp(struct page *page, unsigned int order)
2425 return check_new_pages(page, order);
2429 * With DEBUG_VM disabled, free order-0 pages are checked for expected state
2430 * when pcp lists are being refilled from the free lists. With debug_pagealloc
2431 * enabled, they are also checked when being allocated from the pcp lists.
2433 static inline bool check_pcp_refill(struct page *page, unsigned int order)
2435 return check_new_pages(page, order);
2437 static inline bool check_new_pcp(struct page *page, unsigned int order)
2439 if (debug_pagealloc_enabled_static())
2440 return check_new_pages(page, order);
2444 #endif /* CONFIG_DEBUG_VM */
2446 static inline bool should_skip_kasan_unpoison(gfp_t flags)
2448 /* Don't skip if a software KASAN mode is enabled. */
2449 if (IS_ENABLED(CONFIG_KASAN_GENERIC) ||
2450 IS_ENABLED(CONFIG_KASAN_SW_TAGS))
2453 /* Skip, if hardware tag-based KASAN is not enabled. */
2454 if (!kasan_hw_tags_enabled())
2458 * With hardware tag-based KASAN enabled, skip if this has been
2459 * requested via __GFP_SKIP_KASAN_UNPOISON.
2461 return flags & __GFP_SKIP_KASAN_UNPOISON;
2464 static inline bool should_skip_init(gfp_t flags)
2466 /* Don't skip, if hardware tag-based KASAN is not enabled. */
2467 if (!kasan_hw_tags_enabled())
2470 /* For hardware tag-based KASAN, skip if requested. */
2471 return (flags & __GFP_SKIP_ZERO);
2474 inline void post_alloc_hook(struct page *page, unsigned int order,
2477 bool init = !want_init_on_free() && want_init_on_alloc(gfp_flags) &&
2478 !should_skip_init(gfp_flags);
2479 bool zero_tags = init && (gfp_flags & __GFP_ZEROTAGS);
2480 bool reset_tags = true;
2483 set_page_private(page, 0);
2484 set_page_refcounted(page);
2486 arch_alloc_page(page, order);
2487 debug_pagealloc_map_pages(page, 1 << order);
2490 * Page unpoisoning must happen before memory initialization.
2491 * Otherwise, the poison pattern will be overwritten for __GFP_ZERO
2492 * allocations and the page unpoisoning code will complain.
2494 kernel_unpoison_pages(page, 1 << order);
2497 * As memory initialization might be integrated into KASAN,
2498 * KASAN unpoisoning and memory initializion code must be
2499 * kept together to avoid discrepancies in behavior.
2503 * If memory tags should be zeroed
2504 * (which happens only when memory should be initialized as well).
2507 /* Initialize both memory and memory tags. */
2508 for (i = 0; i != 1 << order; ++i)
2509 tag_clear_highpage(page + i);
2511 /* Take note that memory was initialized by the loop above. */
2514 if (!should_skip_kasan_unpoison(gfp_flags)) {
2515 /* Try unpoisoning (or setting tags) and initializing memory. */
2516 if (kasan_unpoison_pages(page, order, init)) {
2517 /* Take note that memory was initialized by KASAN. */
2518 if (kasan_has_integrated_init())
2520 /* Take note that memory tags were set by KASAN. */
2524 * KASAN decided to exclude this allocation from being
2525 * (un)poisoned due to sampling. Make KASAN skip
2526 * poisoning when the allocation is freed.
2528 SetPageSkipKASanPoison(page);
2532 * If memory tags have not been set by KASAN, reset the page tags to
2533 * ensure page_address() dereferencing does not fault.
2536 for (i = 0; i != 1 << order; ++i)
2537 page_kasan_tag_reset(page + i);
2539 /* If memory is still not initialized, initialize it now. */
2541 kernel_init_pages(page, 1 << order);
2542 /* Propagate __GFP_SKIP_KASAN_POISON to page flags. */
2543 if (kasan_hw_tags_enabled() && (gfp_flags & __GFP_SKIP_KASAN_POISON))
2544 SetPageSkipKASanPoison(page);
2546 set_page_owner(page, order, gfp_flags);
2547 page_table_check_alloc(page, order);
2550 static void prep_new_page(struct page *page, unsigned int order, gfp_t gfp_flags,
2551 unsigned int alloc_flags)
2553 post_alloc_hook(page, order, gfp_flags);
2555 if (order && (gfp_flags & __GFP_COMP))
2556 prep_compound_page(page, order);
2559 * page is set pfmemalloc when ALLOC_NO_WATERMARKS was necessary to
2560 * allocate the page. The expectation is that the caller is taking
2561 * steps that will free more memory. The caller should avoid the page
2562 * being used for !PFMEMALLOC purposes.
2564 if (alloc_flags & ALLOC_NO_WATERMARKS)
2565 set_page_pfmemalloc(page);
2567 clear_page_pfmemalloc(page);
2571 * Go through the free lists for the given migratetype and remove
2572 * the smallest available page from the freelists
2574 static __always_inline
2575 struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
2578 unsigned int current_order;
2579 struct free_area *area;
2582 /* Find a page of the appropriate size in the preferred list */
2583 for (current_order = order; current_order < MAX_ORDER; ++current_order) {
2584 area = &(zone->free_area[current_order]);
2585 page = get_page_from_free_area(area, migratetype);
2588 del_page_from_free_list(page, zone, current_order);
2589 expand(zone, page, order, current_order, migratetype);
2590 set_pcppage_migratetype(page, migratetype);
2591 trace_mm_page_alloc_zone_locked(page, order, migratetype,
2592 pcp_allowed_order(order) &&
2593 migratetype < MIGRATE_PCPTYPES);
2602 * This array describes the order lists are fallen back to when
2603 * the free lists for the desirable migrate type are depleted
2605 * The other migratetypes do not have fallbacks.
2607 static int fallbacks[MIGRATE_TYPES][MIGRATE_PCPTYPES - 1] = {
2608 [MIGRATE_UNMOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE },
2609 [MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE },
2610 [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE },
2614 static __always_inline struct page *__rmqueue_cma_fallback(struct zone *zone,
2617 return __rmqueue_smallest(zone, order, MIGRATE_CMA);
2620 static inline struct page *__rmqueue_cma_fallback(struct zone *zone,
2621 unsigned int order) { return NULL; }
2625 * Move the free pages in a range to the freelist tail of the requested type.
2626 * Note that start_page and end_pages are not aligned on a pageblock
2627 * boundary. If alignment is required, use move_freepages_block()
2629 static int move_freepages(struct zone *zone,
2630 unsigned long start_pfn, unsigned long end_pfn,
2631 int migratetype, int *num_movable)
2636 int pages_moved = 0;
2638 for (pfn = start_pfn; pfn <= end_pfn;) {
2639 page = pfn_to_page(pfn);
2640 if (!PageBuddy(page)) {
2642 * We assume that pages that could be isolated for
2643 * migration are movable. But we don't actually try
2644 * isolating, as that would be expensive.
2647 (PageLRU(page) || __PageMovable(page)))
2653 /* Make sure we are not inadvertently changing nodes */
2654 VM_BUG_ON_PAGE(page_to_nid(page) != zone_to_nid(zone), page);
2655 VM_BUG_ON_PAGE(page_zone(page) != zone, page);
2657 order = buddy_order(page);
2658 move_to_free_list(page, zone, order, migratetype);
2660 pages_moved += 1 << order;
2666 int move_freepages_block(struct zone *zone, struct page *page,
2667 int migratetype, int *num_movable)
2669 unsigned long start_pfn, end_pfn, pfn;
2674 pfn = page_to_pfn(page);
2675 start_pfn = pageblock_start_pfn(pfn);
2676 end_pfn = pageblock_end_pfn(pfn) - 1;
2678 /* Do not cross zone boundaries */
2679 if (!zone_spans_pfn(zone, start_pfn))
2681 if (!zone_spans_pfn(zone, end_pfn))
2684 return move_freepages(zone, start_pfn, end_pfn, migratetype,
2688 static void change_pageblock_range(struct page *pageblock_page,
2689 int start_order, int migratetype)
2691 int nr_pageblocks = 1 << (start_order - pageblock_order);
2693 while (nr_pageblocks--) {
2694 set_pageblock_migratetype(pageblock_page, migratetype);
2695 pageblock_page += pageblock_nr_pages;
2700 * When we are falling back to another migratetype during allocation, try to
2701 * steal extra free pages from the same pageblocks to satisfy further
2702 * allocations, instead of polluting multiple pageblocks.
2704 * If we are stealing a relatively large buddy page, it is likely there will
2705 * be more free pages in the pageblock, so try to steal them all. For
2706 * reclaimable and unmovable allocations, we steal regardless of page size,
2707 * as fragmentation caused by those allocations polluting movable pageblocks
2708 * is worse than movable allocations stealing from unmovable and reclaimable
2711 static bool can_steal_fallback(unsigned int order, int start_mt)
2714 * Leaving this order check is intended, although there is
2715 * relaxed order check in next check. The reason is that
2716 * we can actually steal whole pageblock if this condition met,
2717 * but, below check doesn't guarantee it and that is just heuristic
2718 * so could be changed anytime.
2720 if (order >= pageblock_order)
2723 if (order >= pageblock_order / 2 ||
2724 start_mt == MIGRATE_RECLAIMABLE ||
2725 start_mt == MIGRATE_UNMOVABLE ||
2726 page_group_by_mobility_disabled)
2732 static inline bool boost_watermark(struct zone *zone)
2734 unsigned long max_boost;
2736 if (!watermark_boost_factor)
2739 * Don't bother in zones that are unlikely to produce results.
2740 * On small machines, including kdump capture kernels running
2741 * in a small area, boosting the watermark can cause an out of
2742 * memory situation immediately.
2744 if ((pageblock_nr_pages * 4) > zone_managed_pages(zone))
2747 max_boost = mult_frac(zone->_watermark[WMARK_HIGH],
2748 watermark_boost_factor, 10000);
2751 * high watermark may be uninitialised if fragmentation occurs
2752 * very early in boot so do not boost. We do not fall
2753 * through and boost by pageblock_nr_pages as failing
2754 * allocations that early means that reclaim is not going
2755 * to help and it may even be impossible to reclaim the
2756 * boosted watermark resulting in a hang.
2761 max_boost = max(pageblock_nr_pages, max_boost);
2763 zone->watermark_boost = min(zone->watermark_boost + pageblock_nr_pages,
2770 * This function implements actual steal behaviour. If order is large enough,
2771 * we can steal whole pageblock. If not, we first move freepages in this
2772 * pageblock to our migratetype and determine how many already-allocated pages
2773 * are there in the pageblock with a compatible migratetype. If at least half
2774 * of pages are free or compatible, we can change migratetype of the pageblock
2775 * itself, so pages freed in the future will be put on the correct free list.
2777 static void steal_suitable_fallback(struct zone *zone, struct page *page,
2778 unsigned int alloc_flags, int start_type, bool whole_block)
2780 unsigned int current_order = buddy_order(page);
2781 int free_pages, movable_pages, alike_pages;
2784 old_block_type = get_pageblock_migratetype(page);
2787 * This can happen due to races and we want to prevent broken
2788 * highatomic accounting.
2790 if (is_migrate_highatomic(old_block_type))
2793 /* Take ownership for orders >= pageblock_order */
2794 if (current_order >= pageblock_order) {
2795 change_pageblock_range(page, current_order, start_type);
2800 * Boost watermarks to increase reclaim pressure to reduce the
2801 * likelihood of future fallbacks. Wake kswapd now as the node
2802 * may be balanced overall and kswapd will not wake naturally.
2804 if (boost_watermark(zone) && (alloc_flags & ALLOC_KSWAPD))
2805 set_bit(ZONE_BOOSTED_WATERMARK, &zone->flags);
2807 /* We are not allowed to try stealing from the whole block */
2811 free_pages = move_freepages_block(zone, page, start_type,
2814 * Determine how many pages are compatible with our allocation.
2815 * For movable allocation, it's the number of movable pages which
2816 * we just obtained. For other types it's a bit more tricky.
2818 if (start_type == MIGRATE_MOVABLE) {
2819 alike_pages = movable_pages;
2822 * If we are falling back a RECLAIMABLE or UNMOVABLE allocation
2823 * to MOVABLE pageblock, consider all non-movable pages as
2824 * compatible. If it's UNMOVABLE falling back to RECLAIMABLE or
2825 * vice versa, be conservative since we can't distinguish the
2826 * exact migratetype of non-movable pages.
2828 if (old_block_type == MIGRATE_MOVABLE)
2829 alike_pages = pageblock_nr_pages
2830 - (free_pages + movable_pages);
2835 /* moving whole block can fail due to zone boundary conditions */
2840 * If a sufficient number of pages in the block are either free or of
2841 * comparable migratability as our allocation, claim the whole block.
2843 if (free_pages + alike_pages >= (1 << (pageblock_order-1)) ||
2844 page_group_by_mobility_disabled)
2845 set_pageblock_migratetype(page, start_type);
2850 move_to_free_list(page, zone, current_order, start_type);
2854 * Check whether there is a suitable fallback freepage with requested order.
2855 * If only_stealable is true, this function returns fallback_mt only if
2856 * we can steal other freepages all together. This would help to reduce
2857 * fragmentation due to mixed migratetype pages in one pageblock.
2859 int find_suitable_fallback(struct free_area *area, unsigned int order,
2860 int migratetype, bool only_stealable, bool *can_steal)
2865 if (area->nr_free == 0)
2869 for (i = 0; i < MIGRATE_PCPTYPES - 1 ; i++) {
2870 fallback_mt = fallbacks[migratetype][i];
2871 if (free_area_empty(area, fallback_mt))
2874 if (can_steal_fallback(order, migratetype))
2877 if (!only_stealable)
2888 * Reserve a pageblock for exclusive use of high-order atomic allocations if
2889 * there are no empty page blocks that contain a page with a suitable order
2891 static void reserve_highatomic_pageblock(struct page *page, struct zone *zone,
2892 unsigned int alloc_order)
2895 unsigned long max_managed, flags;
2898 * Limit the number reserved to 1 pageblock or roughly 1% of a zone.
2899 * Check is race-prone but harmless.
2901 max_managed = (zone_managed_pages(zone) / 100) + pageblock_nr_pages;
2902 if (zone->nr_reserved_highatomic >= max_managed)
2905 spin_lock_irqsave(&zone->lock, flags);
2907 /* Recheck the nr_reserved_highatomic limit under the lock */
2908 if (zone->nr_reserved_highatomic >= max_managed)
2912 mt = get_pageblock_migratetype(page);
2913 /* Only reserve normal pageblocks (i.e., they can merge with others) */
2914 if (migratetype_is_mergeable(mt)) {
2915 zone->nr_reserved_highatomic += pageblock_nr_pages;
2916 set_pageblock_migratetype(page, MIGRATE_HIGHATOMIC);
2917 move_freepages_block(zone, page, MIGRATE_HIGHATOMIC, NULL);
2921 spin_unlock_irqrestore(&zone->lock, flags);
2925 * Used when an allocation is about to fail under memory pressure. This
2926 * potentially hurts the reliability of high-order allocations when under
2927 * intense memory pressure but failed atomic allocations should be easier
2928 * to recover from than an OOM.
2930 * If @force is true, try to unreserve a pageblock even though highatomic
2931 * pageblock is exhausted.
2933 static bool unreserve_highatomic_pageblock(const struct alloc_context *ac,
2936 struct zonelist *zonelist = ac->zonelist;
2937 unsigned long flags;
2944 for_each_zone_zonelist_nodemask(zone, z, zonelist, ac->highest_zoneidx,
2947 * Preserve at least one pageblock unless memory pressure
2950 if (!force && zone->nr_reserved_highatomic <=
2954 spin_lock_irqsave(&zone->lock, flags);
2955 for (order = 0; order < MAX_ORDER; order++) {
2956 struct free_area *area = &(zone->free_area[order]);
2958 page = get_page_from_free_area(area, MIGRATE_HIGHATOMIC);
2963 * In page freeing path, migratetype change is racy so
2964 * we can counter several free pages in a pageblock
2965 * in this loop although we changed the pageblock type
2966 * from highatomic to ac->migratetype. So we should
2967 * adjust the count once.
2969 if (is_migrate_highatomic_page(page)) {
2971 * It should never happen but changes to
2972 * locking could inadvertently allow a per-cpu
2973 * drain to add pages to MIGRATE_HIGHATOMIC
2974 * while unreserving so be safe and watch for
2977 zone->nr_reserved_highatomic -= min(
2979 zone->nr_reserved_highatomic);
2983 * Convert to ac->migratetype and avoid the normal
2984 * pageblock stealing heuristics. Minimally, the caller
2985 * is doing the work and needs the pages. More
2986 * importantly, if the block was always converted to
2987 * MIGRATE_UNMOVABLE or another type then the number
2988 * of pageblocks that cannot be completely freed
2991 set_pageblock_migratetype(page, ac->migratetype);
2992 ret = move_freepages_block(zone, page, ac->migratetype,
2995 spin_unlock_irqrestore(&zone->lock, flags);
2999 spin_unlock_irqrestore(&zone->lock, flags);
3006 * Try finding a free buddy page on the fallback list and put it on the free
3007 * list of requested migratetype, possibly along with other pages from the same
3008 * block, depending on fragmentation avoidance heuristics. Returns true if
3009 * fallback was found so that __rmqueue_smallest() can grab it.
3011 * The use of signed ints for order and current_order is a deliberate
3012 * deviation from the rest of this file, to make the for loop
3013 * condition simpler.
3015 static __always_inline bool
3016 __rmqueue_fallback(struct zone *zone, int order, int start_migratetype,
3017 unsigned int alloc_flags)
3019 struct free_area *area;
3021 int min_order = order;
3027 * Do not steal pages from freelists belonging to other pageblocks
3028 * i.e. orders < pageblock_order. If there are no local zones free,
3029 * the zonelists will be reiterated without ALLOC_NOFRAGMENT.
3031 if (order < pageblock_order && alloc_flags & ALLOC_NOFRAGMENT)
3032 min_order = pageblock_order;
3035 * Find the largest available free page in the other list. This roughly
3036 * approximates finding the pageblock with the most free pages, which
3037 * would be too costly to do exactly.
3039 for (current_order = MAX_ORDER - 1; current_order >= min_order;
3041 area = &(zone->free_area[current_order]);
3042 fallback_mt = find_suitable_fallback(area, current_order,
3043 start_migratetype, false, &can_steal);
3044 if (fallback_mt == -1)
3048 * We cannot steal all free pages from the pageblock and the
3049 * requested migratetype is movable. In that case it's better to
3050 * steal and split the smallest available page instead of the
3051 * largest available page, because even if the next movable
3052 * allocation falls back into a different pageblock than this
3053 * one, it won't cause permanent fragmentation.
3055 if (!can_steal && start_migratetype == MIGRATE_MOVABLE
3056 && current_order > order)
3065 for (current_order = order; current_order < MAX_ORDER;
3067 area = &(zone->free_area[current_order]);
3068 fallback_mt = find_suitable_fallback(area, current_order,
3069 start_migratetype, false, &can_steal);
3070 if (fallback_mt != -1)
3075 * This should not happen - we already found a suitable fallback
3076 * when looking for the largest page.
3078 VM_BUG_ON(current_order == MAX_ORDER);
3081 page = get_page_from_free_area(area, fallback_mt);
3083 steal_suitable_fallback(zone, page, alloc_flags, start_migratetype,
3086 trace_mm_page_alloc_extfrag(page, order, current_order,
3087 start_migratetype, fallback_mt);
3094 * Do the hard work of removing an element from the buddy allocator.
3095 * Call me with the zone->lock already held.
3097 static __always_inline struct page *
3098 __rmqueue(struct zone *zone, unsigned int order, int migratetype,
3099 unsigned int alloc_flags)
3103 if (IS_ENABLED(CONFIG_CMA)) {
3105 * Balance movable allocations between regular and CMA areas by
3106 * allocating from CMA when over half of the zone's free memory
3107 * is in the CMA area.
3109 if (alloc_flags & ALLOC_CMA &&
3110 zone_page_state(zone, NR_FREE_CMA_PAGES) >
3111 zone_page_state(zone, NR_FREE_PAGES) / 2) {
3112 page = __rmqueue_cma_fallback(zone, order);
3118 page = __rmqueue_smallest(zone, order, migratetype);
3119 if (unlikely(!page)) {
3120 if (alloc_flags & ALLOC_CMA)
3121 page = __rmqueue_cma_fallback(zone, order);
3123 if (!page && __rmqueue_fallback(zone, order, migratetype,
3131 * Obtain a specified number of elements from the buddy allocator, all under
3132 * a single hold of the lock, for efficiency. Add them to the supplied list.
3133 * Returns the number of new pages which were placed at *list.
3135 static int rmqueue_bulk(struct zone *zone, unsigned int order,
3136 unsigned long count, struct list_head *list,
3137 int migratetype, unsigned int alloc_flags)
3139 unsigned long flags;
3140 int i, allocated = 0;
3142 spin_lock_irqsave(&zone->lock, flags);
3143 for (i = 0; i < count; ++i) {
3144 struct page *page = __rmqueue(zone, order, migratetype,
3146 if (unlikely(page == NULL))
3149 if (unlikely(check_pcp_refill(page, order)))
3153 * Split buddy pages returned by expand() are received here in
3154 * physical page order. The page is added to the tail of
3155 * caller's list. From the callers perspective, the linked list
3156 * is ordered by page number under some conditions. This is
3157 * useful for IO devices that can forward direction from the
3158 * head, thus also in the physical page order. This is useful
3159 * for IO devices that can merge IO requests if the physical
3160 * pages are ordered properly.
3162 list_add_tail(&page->pcp_list, list);
3164 if (is_migrate_cma(get_pcppage_migratetype(page)))
3165 __mod_zone_page_state(zone, NR_FREE_CMA_PAGES,
3170 * i pages were removed from the buddy list even if some leak due
3171 * to check_pcp_refill failing so adjust NR_FREE_PAGES based
3172 * on i. Do not confuse with 'allocated' which is the number of
3173 * pages added to the pcp list.
3175 __mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order));
3176 spin_unlock_irqrestore(&zone->lock, flags);
3182 * Called from the vmstat counter updater to drain pagesets of this
3183 * currently executing processor on remote nodes after they have
3186 void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
3188 int to_drain, batch;
3190 batch = READ_ONCE(pcp->batch);
3191 to_drain = min(pcp->count, batch);
3193 spin_lock(&pcp->lock);
3194 free_pcppages_bulk(zone, to_drain, pcp, 0);
3195 spin_unlock(&pcp->lock);
3201 * Drain pcplists of the indicated processor and zone.
3203 static void drain_pages_zone(unsigned int cpu, struct zone *zone)
3205 struct per_cpu_pages *pcp;
3207 pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu);
3209 spin_lock(&pcp->lock);
3210 free_pcppages_bulk(zone, pcp->count, pcp, 0);
3211 spin_unlock(&pcp->lock);
3216 * Drain pcplists of all zones on the indicated processor.
3218 static void drain_pages(unsigned int cpu)
3222 for_each_populated_zone(zone) {
3223 drain_pages_zone(cpu, zone);
3228 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
3230 void drain_local_pages(struct zone *zone)
3232 int cpu = smp_processor_id();
3235 drain_pages_zone(cpu, zone);
3241 * The implementation of drain_all_pages(), exposing an extra parameter to
3242 * drain on all cpus.
3244 * drain_all_pages() is optimized to only execute on cpus where pcplists are
3245 * not empty. The check for non-emptiness can however race with a free to
3246 * pcplist that has not yet increased the pcp->count from 0 to 1. Callers
3247 * that need the guarantee that every CPU has drained can disable the
3248 * optimizing racy check.
3250 static void __drain_all_pages(struct zone *zone, bool force_all_cpus)
3255 * Allocate in the BSS so we won't require allocation in
3256 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y
3258 static cpumask_t cpus_with_pcps;
3261 * Do not drain if one is already in progress unless it's specific to
3262 * a zone. Such callers are primarily CMA and memory hotplug and need
3263 * the drain to be complete when the call returns.
3265 if (unlikely(!mutex_trylock(&pcpu_drain_mutex))) {
3268 mutex_lock(&pcpu_drain_mutex);
3272 * We don't care about racing with CPU hotplug event
3273 * as offline notification will cause the notified
3274 * cpu to drain that CPU pcps and on_each_cpu_mask
3275 * disables preemption as part of its processing
3277 for_each_online_cpu(cpu) {
3278 struct per_cpu_pages *pcp;
3280 bool has_pcps = false;
3282 if (force_all_cpus) {
3284 * The pcp.count check is racy, some callers need a
3285 * guarantee that no cpu is missed.
3289 pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu);
3293 for_each_populated_zone(z) {
3294 pcp = per_cpu_ptr(z->per_cpu_pageset, cpu);
3303 cpumask_set_cpu(cpu, &cpus_with_pcps);
3305 cpumask_clear_cpu(cpu, &cpus_with_pcps);
3308 for_each_cpu(cpu, &cpus_with_pcps) {
3310 drain_pages_zone(cpu, zone);
3315 mutex_unlock(&pcpu_drain_mutex);
3319 * Spill all the per-cpu pages from all CPUs back into the buddy allocator.
3321 * When zone parameter is non-NULL, spill just the single zone's pages.
3323 void drain_all_pages(struct zone *zone)
3325 __drain_all_pages(zone, false);
3328 #ifdef CONFIG_HIBERNATION
3331 * Touch the watchdog for every WD_PAGE_COUNT pages.
3333 #define WD_PAGE_COUNT (128*1024)
3335 void mark_free_pages(struct zone *zone)
3337 unsigned long pfn, max_zone_pfn, page_count = WD_PAGE_COUNT;
3338 unsigned long flags;
3339 unsigned int order, t;
3342 if (zone_is_empty(zone))
3345 spin_lock_irqsave(&zone->lock, flags);
3347 max_zone_pfn = zone_end_pfn(zone);
3348 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
3349 if (pfn_valid(pfn)) {
3350 page = pfn_to_page(pfn);
3352 if (!--page_count) {
3353 touch_nmi_watchdog();
3354 page_count = WD_PAGE_COUNT;
3357 if (page_zone(page) != zone)
3360 if (!swsusp_page_is_forbidden(page))
3361 swsusp_unset_page_free(page);
3364 for_each_migratetype_order(order, t) {
3365 list_for_each_entry(page,
3366 &zone->free_area[order].free_list[t], buddy_list) {
3369 pfn = page_to_pfn(page);
3370 for (i = 0; i < (1UL << order); i++) {
3371 if (!--page_count) {
3372 touch_nmi_watchdog();
3373 page_count = WD_PAGE_COUNT;
3375 swsusp_set_page_free(pfn_to_page(pfn + i));
3379 spin_unlock_irqrestore(&zone->lock, flags);
3381 #endif /* CONFIG_PM */
3383 static bool free_unref_page_prepare(struct page *page, unsigned long pfn,
3388 if (!free_pcp_prepare(page, order))
3391 migratetype = get_pfnblock_migratetype(page, pfn);
3392 set_pcppage_migratetype(page, migratetype);
3396 static int nr_pcp_free(struct per_cpu_pages *pcp, int high, int batch,
3399 int min_nr_free, max_nr_free;
3401 /* Free everything if batch freeing high-order pages. */
3402 if (unlikely(free_high))
3405 /* Check for PCP disabled or boot pageset */
3406 if (unlikely(high < batch))
3409 /* Leave at least pcp->batch pages on the list */
3410 min_nr_free = batch;
3411 max_nr_free = high - batch;
3414 * Double the number of pages freed each time there is subsequent
3415 * freeing of pages without any allocation.
3417 batch <<= pcp->free_factor;
3418 if (batch < max_nr_free)
3420 batch = clamp(batch, min_nr_free, max_nr_free);
3425 static int nr_pcp_high(struct per_cpu_pages *pcp, struct zone *zone,
3428 int high = READ_ONCE(pcp->high);
3430 if (unlikely(!high || free_high))
3433 if (!test_bit(ZONE_RECLAIM_ACTIVE, &zone->flags))
3437 * If reclaim is active, limit the number of pages that can be
3438 * stored on pcp lists
3440 return min(READ_ONCE(pcp->batch) << 2, high);
3443 static void free_unref_page_commit(struct zone *zone, struct per_cpu_pages *pcp,
3444 struct page *page, int migratetype,
3451 __count_vm_events(PGFREE, 1 << order);
3452 pindex = order_to_pindex(migratetype, order);
3453 list_add(&page->pcp_list, &pcp->lists[pindex]);
3454 pcp->count += 1 << order;
3457 * As high-order pages other than THP's stored on PCP can contribute
3458 * to fragmentation, limit the number stored when PCP is heavily
3459 * freeing without allocation. The remainder after bulk freeing
3460 * stops will be drained from vmstat refresh context.
3462 free_high = (pcp->free_factor && order && order <= PAGE_ALLOC_COSTLY_ORDER);
3464 high = nr_pcp_high(pcp, zone, free_high);
3465 if (pcp->count >= high) {
3466 int batch = READ_ONCE(pcp->batch);
3468 free_pcppages_bulk(zone, nr_pcp_free(pcp, high, batch, free_high), pcp, pindex);
3475 void free_unref_page(struct page *page, unsigned int order)
3477 unsigned long __maybe_unused UP_flags;
3478 struct per_cpu_pages *pcp;
3480 unsigned long pfn = page_to_pfn(page);
3483 if (!free_unref_page_prepare(page, pfn, order))
3487 * We only track unmovable, reclaimable and movable on pcp lists.
3488 * Place ISOLATE pages on the isolated list because they are being
3489 * offlined but treat HIGHATOMIC as movable pages so we can get those
3490 * areas back if necessary. Otherwise, we may have to free
3491 * excessively into the page allocator
3493 migratetype = get_pcppage_migratetype(page);
3494 if (unlikely(migratetype >= MIGRATE_PCPTYPES)) {
3495 if (unlikely(is_migrate_isolate(migratetype))) {
3496 free_one_page(page_zone(page), page, pfn, order, migratetype, FPI_NONE);
3499 migratetype = MIGRATE_MOVABLE;
3502 zone = page_zone(page);
3503 pcp_trylock_prepare(UP_flags);
3504 pcp = pcp_spin_trylock(zone->per_cpu_pageset);
3506 free_unref_page_commit(zone, pcp, page, migratetype, order);
3507 pcp_spin_unlock(pcp);
3509 free_one_page(zone, page, pfn, order, migratetype, FPI_NONE);
3511 pcp_trylock_finish(UP_flags);
3515 * Free a list of 0-order pages
3517 void free_unref_page_list(struct list_head *list)
3519 unsigned long __maybe_unused UP_flags;
3520 struct page *page, *next;
3521 struct per_cpu_pages *pcp = NULL;
3522 struct zone *locked_zone = NULL;
3523 int batch_count = 0;
3526 /* Prepare pages for freeing */
3527 list_for_each_entry_safe(page, next, list, lru) {
3528 unsigned long pfn = page_to_pfn(page);
3529 if (!free_unref_page_prepare(page, pfn, 0)) {
3530 list_del(&page->lru);
3535 * Free isolated pages directly to the allocator, see
3536 * comment in free_unref_page.
3538 migratetype = get_pcppage_migratetype(page);
3539 if (unlikely(is_migrate_isolate(migratetype))) {
3540 list_del(&page->lru);
3541 free_one_page(page_zone(page), page, pfn, 0, migratetype, FPI_NONE);
3546 list_for_each_entry_safe(page, next, list, lru) {
3547 struct zone *zone = page_zone(page);
3549 list_del(&page->lru);
3550 migratetype = get_pcppage_migratetype(page);
3553 * Either different zone requiring a different pcp lock or
3554 * excessive lock hold times when freeing a large list of
3557 if (zone != locked_zone || batch_count == SWAP_CLUSTER_MAX) {
3559 pcp_spin_unlock(pcp);
3560 pcp_trylock_finish(UP_flags);
3566 * trylock is necessary as pages may be getting freed
3567 * from IRQ or SoftIRQ context after an IO completion.
3569 pcp_trylock_prepare(UP_flags);
3570 pcp = pcp_spin_trylock(zone->per_cpu_pageset);
3571 if (unlikely(!pcp)) {
3572 pcp_trylock_finish(UP_flags);
3573 free_one_page(zone, page, page_to_pfn(page),
3574 0, migratetype, FPI_NONE);
3582 * Non-isolated types over MIGRATE_PCPTYPES get added
3583 * to the MIGRATE_MOVABLE pcp list.
3585 if (unlikely(migratetype >= MIGRATE_PCPTYPES))
3586 migratetype = MIGRATE_MOVABLE;
3588 trace_mm_page_free_batched(page);
3589 free_unref_page_commit(zone, pcp, page, migratetype, 0);
3594 pcp_spin_unlock(pcp);
3595 pcp_trylock_finish(UP_flags);
3600 * split_page takes a non-compound higher-order page, and splits it into
3601 * n (1<<order) sub-pages: page[0..n]
3602 * Each sub-page must be freed individually.
3604 * Note: this is probably too low level an operation for use in drivers.
3605 * Please consult with lkml before using this in your driver.
3607 void split_page(struct page *page, unsigned int order)
3611 VM_BUG_ON_PAGE(PageCompound(page), page);
3612 VM_BUG_ON_PAGE(!page_count(page), page);
3614 for (i = 1; i < (1 << order); i++)
3615 set_page_refcounted(page + i);
3616 split_page_owner(page, 1 << order);
3617 split_page_memcg(page, 1 << order);
3619 EXPORT_SYMBOL_GPL(split_page);
3621 int __isolate_free_page(struct page *page, unsigned int order)
3623 struct zone *zone = page_zone(page);
3624 int mt = get_pageblock_migratetype(page);
3626 if (!is_migrate_isolate(mt)) {
3627 unsigned long watermark;
3629 * Obey watermarks as if the page was being allocated. We can
3630 * emulate a high-order watermark check with a raised order-0
3631 * watermark, because we already know our high-order page
3634 watermark = zone->_watermark[WMARK_MIN] + (1UL << order);
3635 if (!zone_watermark_ok(zone, 0, watermark, 0, ALLOC_CMA))
3638 __mod_zone_freepage_state(zone, -(1UL << order), mt);
3641 del_page_from_free_list(page, zone, order);
3644 * Set the pageblock if the isolated page is at least half of a
3647 if (order >= pageblock_order - 1) {
3648 struct page *endpage = page + (1 << order) - 1;
3649 for (; page < endpage; page += pageblock_nr_pages) {
3650 int mt = get_pageblock_migratetype(page);
3652 * Only change normal pageblocks (i.e., they can merge
3655 if (migratetype_is_mergeable(mt))
3656 set_pageblock_migratetype(page,
3661 return 1UL << order;
3665 * __putback_isolated_page - Return a now-isolated page back where we got it
3666 * @page: Page that was isolated
3667 * @order: Order of the isolated page
3668 * @mt: The page's pageblock's migratetype
3670 * This function is meant to return a page pulled from the free lists via
3671 * __isolate_free_page back to the free lists they were pulled from.
3673 void __putback_isolated_page(struct page *page, unsigned int order, int mt)
3675 struct zone *zone = page_zone(page);
3677 /* zone lock should be held when this function is called */
3678 lockdep_assert_held(&zone->lock);
3680 /* Return isolated page to tail of freelist. */
3681 __free_one_page(page, page_to_pfn(page), zone, order, mt,
3682 FPI_SKIP_REPORT_NOTIFY | FPI_TO_TAIL);
3686 * Update NUMA hit/miss statistics
3688 static inline void zone_statistics(struct zone *preferred_zone, struct zone *z,
3692 enum numa_stat_item local_stat = NUMA_LOCAL;
3694 /* skip numa counters update if numa stats is disabled */
3695 if (!static_branch_likely(&vm_numa_stat_key))
3698 if (zone_to_nid(z) != numa_node_id())
3699 local_stat = NUMA_OTHER;
3701 if (zone_to_nid(z) == zone_to_nid(preferred_zone))
3702 __count_numa_events(z, NUMA_HIT, nr_account);
3704 __count_numa_events(z, NUMA_MISS, nr_account);
3705 __count_numa_events(preferred_zone, NUMA_FOREIGN, nr_account);
3707 __count_numa_events(z, local_stat, nr_account);
3711 static __always_inline
3712 struct page *rmqueue_buddy(struct zone *preferred_zone, struct zone *zone,
3713 unsigned int order, unsigned int alloc_flags,
3717 unsigned long flags;
3721 spin_lock_irqsave(&zone->lock, flags);
3723 * order-0 request can reach here when the pcplist is skipped
3724 * due to non-CMA allocation context. HIGHATOMIC area is
3725 * reserved for high-order atomic allocation, so order-0
3726 * request should skip it.
3728 if (alloc_flags & ALLOC_HIGHATOMIC)
3729 page = __rmqueue_smallest(zone, order, MIGRATE_HIGHATOMIC);
3731 page = __rmqueue(zone, order, migratetype, alloc_flags);
3734 * If the allocation fails, allow OOM handling access
3735 * to HIGHATOMIC reserves as failing now is worse than
3736 * failing a high-order atomic allocation in the
3739 if (!page && (alloc_flags & ALLOC_OOM))
3740 page = __rmqueue_smallest(zone, order, MIGRATE_HIGHATOMIC);
3743 spin_unlock_irqrestore(&zone->lock, flags);
3747 __mod_zone_freepage_state(zone, -(1 << order),
3748 get_pcppage_migratetype(page));
3749 spin_unlock_irqrestore(&zone->lock, flags);
3750 } while (check_new_pages(page, order));
3752 __count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order);
3753 zone_statistics(preferred_zone, zone, 1);
3758 /* Remove page from the per-cpu list, caller must protect the list */
3760 struct page *__rmqueue_pcplist(struct zone *zone, unsigned int order,
3762 unsigned int alloc_flags,
3763 struct per_cpu_pages *pcp,
3764 struct list_head *list)
3769 if (list_empty(list)) {
3770 int batch = READ_ONCE(pcp->batch);
3774 * Scale batch relative to order if batch implies
3775 * free pages can be stored on the PCP. Batch can
3776 * be 1 for small zones or for boot pagesets which
3777 * should never store free pages as the pages may
3778 * belong to arbitrary zones.
3781 batch = max(batch >> order, 2);
3782 alloced = rmqueue_bulk(zone, order,
3784 migratetype, alloc_flags);
3786 pcp->count += alloced << order;
3787 if (unlikely(list_empty(list)))
3791 page = list_first_entry(list, struct page, pcp_list);
3792 list_del(&page->pcp_list);
3793 pcp->count -= 1 << order;
3794 } while (check_new_pcp(page, order));
3799 /* Lock and remove page from the per-cpu list */
3800 static struct page *rmqueue_pcplist(struct zone *preferred_zone,
3801 struct zone *zone, unsigned int order,
3802 int migratetype, unsigned int alloc_flags)
3804 struct per_cpu_pages *pcp;
3805 struct list_head *list;
3807 unsigned long __maybe_unused UP_flags;
3809 /* spin_trylock may fail due to a parallel drain or IRQ reentrancy. */
3810 pcp_trylock_prepare(UP_flags);
3811 pcp = pcp_spin_trylock(zone->per_cpu_pageset);
3813 pcp_trylock_finish(UP_flags);
3818 * On allocation, reduce the number of pages that are batch freed.
3819 * See nr_pcp_free() where free_factor is increased for subsequent
3822 pcp->free_factor >>= 1;
3823 list = &pcp->lists[order_to_pindex(migratetype, order)];
3824 page = __rmqueue_pcplist(zone, order, migratetype, alloc_flags, pcp, list);
3825 pcp_spin_unlock(pcp);
3826 pcp_trylock_finish(UP_flags);
3828 __count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order);
3829 zone_statistics(preferred_zone, zone, 1);
3835 * Allocate a page from the given zone.
3836 * Use pcplists for THP or "cheap" high-order allocations.
3840 * Do not instrument rmqueue() with KMSAN. This function may call
3841 * __msan_poison_alloca() through a call to set_pfnblock_flags_mask().
3842 * If __msan_poison_alloca() attempts to allocate pages for the stack depot, it
3843 * may call rmqueue() again, which will result in a deadlock.
3845 __no_sanitize_memory
3847 struct page *rmqueue(struct zone *preferred_zone,
3848 struct zone *zone, unsigned int order,
3849 gfp_t gfp_flags, unsigned int alloc_flags,
3855 * We most definitely don't want callers attempting to
3856 * allocate greater than order-1 page units with __GFP_NOFAIL.
3858 WARN_ON_ONCE((gfp_flags & __GFP_NOFAIL) && (order > 1));
3860 if (likely(pcp_allowed_order(order))) {
3862 * MIGRATE_MOVABLE pcplist could have the pages on CMA area and
3863 * we need to skip it when CMA area isn't allowed.
3865 if (!IS_ENABLED(CONFIG_CMA) || alloc_flags & ALLOC_CMA ||
3866 migratetype != MIGRATE_MOVABLE) {
3867 page = rmqueue_pcplist(preferred_zone, zone, order,
3868 migratetype, alloc_flags);
3874 page = rmqueue_buddy(preferred_zone, zone, order, alloc_flags,
3878 /* Separate test+clear to avoid unnecessary atomics */
3879 if (unlikely(test_bit(ZONE_BOOSTED_WATERMARK, &zone->flags))) {
3880 clear_bit(ZONE_BOOSTED_WATERMARK, &zone->flags);
3881 wakeup_kswapd(zone, 0, 0, zone_idx(zone));
3884 VM_BUG_ON_PAGE(page && bad_range(zone, page), page);
3888 #ifdef CONFIG_FAIL_PAGE_ALLOC
3891 struct fault_attr attr;
3893 bool ignore_gfp_highmem;
3894 bool ignore_gfp_reclaim;
3896 } fail_page_alloc = {
3897 .attr = FAULT_ATTR_INITIALIZER,
3898 .ignore_gfp_reclaim = true,
3899 .ignore_gfp_highmem = true,
3903 static int __init setup_fail_page_alloc(char *str)
3905 return setup_fault_attr(&fail_page_alloc.attr, str);
3907 __setup("fail_page_alloc=", setup_fail_page_alloc);
3909 static bool __should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
3913 if (order < fail_page_alloc.min_order)
3915 if (gfp_mask & __GFP_NOFAIL)
3917 if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
3919 if (fail_page_alloc.ignore_gfp_reclaim &&
3920 (gfp_mask & __GFP_DIRECT_RECLAIM))
3923 /* See comment in __should_failslab() */
3924 if (gfp_mask & __GFP_NOWARN)
3925 flags |= FAULT_NOWARN;
3927 return should_fail_ex(&fail_page_alloc.attr, 1 << order, flags);
3930 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
3932 static int __init fail_page_alloc_debugfs(void)
3934 umode_t mode = S_IFREG | 0600;
3937 dir = fault_create_debugfs_attr("fail_page_alloc", NULL,
3938 &fail_page_alloc.attr);
3940 debugfs_create_bool("ignore-gfp-wait", mode, dir,
3941 &fail_page_alloc.ignore_gfp_reclaim);
3942 debugfs_create_bool("ignore-gfp-highmem", mode, dir,
3943 &fail_page_alloc.ignore_gfp_highmem);
3944 debugfs_create_u32("min-order", mode, dir, &fail_page_alloc.min_order);
3949 late_initcall(fail_page_alloc_debugfs);
3951 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
3953 #else /* CONFIG_FAIL_PAGE_ALLOC */
3955 static inline bool __should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
3960 #endif /* CONFIG_FAIL_PAGE_ALLOC */
3962 noinline bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
3964 return __should_fail_alloc_page(gfp_mask, order);
3966 ALLOW_ERROR_INJECTION(should_fail_alloc_page, TRUE);
3968 static inline long __zone_watermark_unusable_free(struct zone *z,
3969 unsigned int order, unsigned int alloc_flags)
3971 long unusable_free = (1 << order) - 1;
3974 * If the caller does not have rights to reserves below the min
3975 * watermark then subtract the high-atomic reserves. This will
3976 * over-estimate the size of the atomic reserve but it avoids a search.
3978 if (likely(!(alloc_flags & ALLOC_RESERVES)))
3979 unusable_free += z->nr_reserved_highatomic;
3982 /* If allocation can't use CMA areas don't use free CMA pages */
3983 if (!(alloc_flags & ALLOC_CMA))
3984 unusable_free += zone_page_state(z, NR_FREE_CMA_PAGES);
3987 return unusable_free;
3991 * Return true if free base pages are above 'mark'. For high-order checks it
3992 * will return true of the order-0 watermark is reached and there is at least
3993 * one free page of a suitable size. Checking now avoids taking the zone lock
3994 * to check in the allocation paths if no pages are free.
3996 bool __zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
3997 int highest_zoneidx, unsigned int alloc_flags,
4003 /* free_pages may go negative - that's OK */
4004 free_pages -= __zone_watermark_unusable_free(z, order, alloc_flags);
4006 if (unlikely(alloc_flags & ALLOC_RESERVES)) {
4008 * __GFP_HIGH allows access to 50% of the min reserve as well
4011 if (alloc_flags & ALLOC_MIN_RESERVE) {
4015 * Non-blocking allocations (e.g. GFP_ATOMIC) can
4016 * access more reserves than just __GFP_HIGH. Other
4017 * non-blocking allocations requests such as GFP_NOWAIT
4018 * or (GFP_KERNEL & ~__GFP_DIRECT_RECLAIM) do not get
4019 * access to the min reserve.
4021 if (alloc_flags & ALLOC_NON_BLOCK)
4026 * OOM victims can try even harder than the normal reserve
4027 * users on the grounds that it's definitely going to be in
4028 * the exit path shortly and free memory. Any allocation it
4029 * makes during the free path will be small and short-lived.
4031 if (alloc_flags & ALLOC_OOM)
4036 * Check watermarks for an order-0 allocation request. If these
4037 * are not met, then a high-order request also cannot go ahead
4038 * even if a suitable page happened to be free.
4040 if (free_pages <= min + z->lowmem_reserve[highest_zoneidx])
4043 /* If this is an order-0 request then the watermark is fine */
4047 /* For a high-order request, check at least one suitable page is free */
4048 for (o = order; o < MAX_ORDER; o++) {
4049 struct free_area *area = &z->free_area[o];
4055 for (mt = 0; mt < MIGRATE_PCPTYPES; mt++) {
4056 if (!free_area_empty(area, mt))
4061 if ((alloc_flags & ALLOC_CMA) &&
4062 !free_area_empty(area, MIGRATE_CMA)) {
4066 if ((alloc_flags & (ALLOC_HIGHATOMIC|ALLOC_OOM)) &&
4067 !free_area_empty(area, MIGRATE_HIGHATOMIC)) {
4074 bool zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
4075 int highest_zoneidx, unsigned int alloc_flags)
4077 return __zone_watermark_ok(z, order, mark, highest_zoneidx, alloc_flags,
4078 zone_page_state(z, NR_FREE_PAGES));
4081 static inline bool zone_watermark_fast(struct zone *z, unsigned int order,
4082 unsigned long mark, int highest_zoneidx,
4083 unsigned int alloc_flags, gfp_t gfp_mask)
4087 free_pages = zone_page_state(z, NR_FREE_PAGES);
4090 * Fast check for order-0 only. If this fails then the reserves
4091 * need to be calculated.
4097 usable_free = free_pages;
4098 reserved = __zone_watermark_unusable_free(z, 0, alloc_flags);
4100 /* reserved may over estimate high-atomic reserves. */
4101 usable_free -= min(usable_free, reserved);
4102 if (usable_free > mark + z->lowmem_reserve[highest_zoneidx])
4106 if (__zone_watermark_ok(z, order, mark, highest_zoneidx, alloc_flags,
4111 * Ignore watermark boosting for __GFP_HIGH order-0 allocations
4112 * when checking the min watermark. The min watermark is the
4113 * point where boosting is ignored so that kswapd is woken up
4114 * when below the low watermark.
4116 if (unlikely(!order && (alloc_flags & ALLOC_MIN_RESERVE) && z->watermark_boost
4117 && ((alloc_flags & ALLOC_WMARK_MASK) == WMARK_MIN))) {
4118 mark = z->_watermark[WMARK_MIN];
4119 return __zone_watermark_ok(z, order, mark, highest_zoneidx,
4120 alloc_flags, free_pages);
4126 bool zone_watermark_ok_safe(struct zone *z, unsigned int order,
4127 unsigned long mark, int highest_zoneidx)
4129 long free_pages = zone_page_state(z, NR_FREE_PAGES);
4131 if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark)
4132 free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES);
4134 return __zone_watermark_ok(z, order, mark, highest_zoneidx, 0,
4139 int __read_mostly node_reclaim_distance = RECLAIM_DISTANCE;
4141 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
4143 return node_distance(zone_to_nid(local_zone), zone_to_nid(zone)) <=
4144 node_reclaim_distance;
4146 #else /* CONFIG_NUMA */
4147 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
4151 #endif /* CONFIG_NUMA */
4154 * The restriction on ZONE_DMA32 as being a suitable zone to use to avoid
4155 * fragmentation is subtle. If the preferred zone was HIGHMEM then
4156 * premature use of a lower zone may cause lowmem pressure problems that
4157 * are worse than fragmentation. If the next zone is ZONE_DMA then it is
4158 * probably too small. It only makes sense to spread allocations to avoid
4159 * fragmentation between the Normal and DMA32 zones.
4161 static inline unsigned int
4162 alloc_flags_nofragment(struct zone *zone, gfp_t gfp_mask)
4164 unsigned int alloc_flags;
4167 * __GFP_KSWAPD_RECLAIM is assumed to be the same as ALLOC_KSWAPD
4170 alloc_flags = (__force int) (gfp_mask & __GFP_KSWAPD_RECLAIM);
4172 #ifdef CONFIG_ZONE_DMA32
4176 if (zone_idx(zone) != ZONE_NORMAL)
4180 * If ZONE_DMA32 exists, assume it is the one after ZONE_NORMAL and
4181 * the pointer is within zone->zone_pgdat->node_zones[]. Also assume
4182 * on UMA that if Normal is populated then so is DMA32.
4184 BUILD_BUG_ON(ZONE_NORMAL - ZONE_DMA32 != 1);
4185 if (nr_online_nodes > 1 && !populated_zone(--zone))
4188 alloc_flags |= ALLOC_NOFRAGMENT;
4189 #endif /* CONFIG_ZONE_DMA32 */
4193 /* Must be called after current_gfp_context() which can change gfp_mask */
4194 static inline unsigned int gfp_to_alloc_flags_cma(gfp_t gfp_mask,
4195 unsigned int alloc_flags)
4198 if (gfp_migratetype(gfp_mask) == MIGRATE_MOVABLE)
4199 alloc_flags |= ALLOC_CMA;
4205 * get_page_from_freelist goes through the zonelist trying to allocate
4208 static struct page *
4209 get_page_from_freelist(gfp_t gfp_mask, unsigned int order, int alloc_flags,
4210 const struct alloc_context *ac)
4214 struct pglist_data *last_pgdat = NULL;
4215 bool last_pgdat_dirty_ok = false;
4220 * Scan zonelist, looking for a zone with enough free.
4221 * See also __cpuset_node_allowed() comment in kernel/cgroup/cpuset.c.
4223 no_fallback = alloc_flags & ALLOC_NOFRAGMENT;
4224 z = ac->preferred_zoneref;
4225 for_next_zone_zonelist_nodemask(zone, z, ac->highest_zoneidx,
4230 if (cpusets_enabled() &&
4231 (alloc_flags & ALLOC_CPUSET) &&
4232 !__cpuset_zone_allowed(zone, gfp_mask))
4235 * When allocating a page cache page for writing, we
4236 * want to get it from a node that is within its dirty
4237 * limit, such that no single node holds more than its
4238 * proportional share of globally allowed dirty pages.
4239 * The dirty limits take into account the node's
4240 * lowmem reserves and high watermark so that kswapd
4241 * should be able to balance it without having to
4242 * write pages from its LRU list.
4244 * XXX: For now, allow allocations to potentially
4245 * exceed the per-node dirty limit in the slowpath
4246 * (spread_dirty_pages unset) before going into reclaim,
4247 * which is important when on a NUMA setup the allowed
4248 * nodes are together not big enough to reach the
4249 * global limit. The proper fix for these situations
4250 * will require awareness of nodes in the
4251 * dirty-throttling and the flusher threads.
4253 if (ac->spread_dirty_pages) {
4254 if (last_pgdat != zone->zone_pgdat) {
4255 last_pgdat = zone->zone_pgdat;
4256 last_pgdat_dirty_ok = node_dirty_ok(zone->zone_pgdat);
4259 if (!last_pgdat_dirty_ok)
4263 if (no_fallback && nr_online_nodes > 1 &&
4264 zone != ac->preferred_zoneref->zone) {
4268 * If moving to a remote node, retry but allow
4269 * fragmenting fallbacks. Locality is more important
4270 * than fragmentation avoidance.
4272 local_nid = zone_to_nid(ac->preferred_zoneref->zone);
4273 if (zone_to_nid(zone) != local_nid) {
4274 alloc_flags &= ~ALLOC_NOFRAGMENT;
4279 mark = wmark_pages(zone, alloc_flags & ALLOC_WMARK_MASK);
4280 if (!zone_watermark_fast(zone, order, mark,
4281 ac->highest_zoneidx, alloc_flags,
4285 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
4287 * Watermark failed for this zone, but see if we can
4288 * grow this zone if it contains deferred pages.
4290 if (deferred_pages_enabled()) {
4291 if (_deferred_grow_zone(zone, order))
4295 /* Checked here to keep the fast path fast */
4296 BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
4297 if (alloc_flags & ALLOC_NO_WATERMARKS)
4300 if (!node_reclaim_enabled() ||
4301 !zone_allows_reclaim(ac->preferred_zoneref->zone, zone))
4304 ret = node_reclaim(zone->zone_pgdat, gfp_mask, order);
4306 case NODE_RECLAIM_NOSCAN:
4309 case NODE_RECLAIM_FULL:
4310 /* scanned but unreclaimable */
4313 /* did we reclaim enough */
4314 if (zone_watermark_ok(zone, order, mark,
4315 ac->highest_zoneidx, alloc_flags))
4323 page = rmqueue(ac->preferred_zoneref->zone, zone, order,
4324 gfp_mask, alloc_flags, ac->migratetype);
4326 prep_new_page(page, order, gfp_mask, alloc_flags);
4329 * If this is a high-order atomic allocation then check
4330 * if the pageblock should be reserved for the future
4332 if (unlikely(alloc_flags & ALLOC_HIGHATOMIC))
4333 reserve_highatomic_pageblock(page, zone, order);
4337 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
4338 /* Try again if zone has deferred pages */
4339 if (deferred_pages_enabled()) {
4340 if (_deferred_grow_zone(zone, order))
4348 * It's possible on a UMA machine to get through all zones that are
4349 * fragmented. If avoiding fragmentation, reset and try again.
4352 alloc_flags &= ~ALLOC_NOFRAGMENT;
4359 static void warn_alloc_show_mem(gfp_t gfp_mask, nodemask_t *nodemask)
4361 unsigned int filter = SHOW_MEM_FILTER_NODES;
4364 * This documents exceptions given to allocations in certain
4365 * contexts that are allowed to allocate outside current's set
4368 if (!(gfp_mask & __GFP_NOMEMALLOC))
4369 if (tsk_is_oom_victim(current) ||
4370 (current->flags & (PF_MEMALLOC | PF_EXITING)))
4371 filter &= ~SHOW_MEM_FILTER_NODES;
4372 if (!in_task() || !(gfp_mask & __GFP_DIRECT_RECLAIM))
4373 filter &= ~SHOW_MEM_FILTER_NODES;
4375 __show_mem(filter, nodemask, gfp_zone(gfp_mask));
4378 void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...)
4380 struct va_format vaf;
4382 static DEFINE_RATELIMIT_STATE(nopage_rs, 10*HZ, 1);
4384 if ((gfp_mask & __GFP_NOWARN) ||
4385 !__ratelimit(&nopage_rs) ||
4386 ((gfp_mask & __GFP_DMA) && !has_managed_dma()))
4389 va_start(args, fmt);
4392 pr_warn("%s: %pV, mode:%#x(%pGg), nodemask=%*pbl",
4393 current->comm, &vaf, gfp_mask, &gfp_mask,
4394 nodemask_pr_args(nodemask));
4397 cpuset_print_current_mems_allowed();
4400 warn_alloc_show_mem(gfp_mask, nodemask);
4403 static inline struct page *
4404 __alloc_pages_cpuset_fallback(gfp_t gfp_mask, unsigned int order,
4405 unsigned int alloc_flags,
4406 const struct alloc_context *ac)
4410 page = get_page_from_freelist(gfp_mask, order,
4411 alloc_flags|ALLOC_CPUSET, ac);
4413 * fallback to ignore cpuset restriction if our nodes
4417 page = get_page_from_freelist(gfp_mask, order,
4423 static inline struct page *
4424 __alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
4425 const struct alloc_context *ac, unsigned long *did_some_progress)
4427 struct oom_control oc = {
4428 .zonelist = ac->zonelist,
4429 .nodemask = ac->nodemask,
4431 .gfp_mask = gfp_mask,
4436 *did_some_progress = 0;
4439 * Acquire the oom lock. If that fails, somebody else is
4440 * making progress for us.
4442 if (!mutex_trylock(&oom_lock)) {
4443 *did_some_progress = 1;
4444 schedule_timeout_uninterruptible(1);
4449 * Go through the zonelist yet one more time, keep very high watermark
4450 * here, this is only to catch a parallel oom killing, we must fail if
4451 * we're still under heavy pressure. But make sure that this reclaim
4452 * attempt shall not depend on __GFP_DIRECT_RECLAIM && !__GFP_NORETRY
4453 * allocation which will never fail due to oom_lock already held.
4455 page = get_page_from_freelist((gfp_mask | __GFP_HARDWALL) &
4456 ~__GFP_DIRECT_RECLAIM, order,
4457 ALLOC_WMARK_HIGH|ALLOC_CPUSET, ac);
4461 /* Coredumps can quickly deplete all memory reserves */
4462 if (current->flags & PF_DUMPCORE)
4464 /* The OOM killer will not help higher order allocs */
4465 if (order > PAGE_ALLOC_COSTLY_ORDER)
4468 * We have already exhausted all our reclaim opportunities without any
4469 * success so it is time to admit defeat. We will skip the OOM killer
4470 * because it is very likely that the caller has a more reasonable
4471 * fallback than shooting a random task.
4473 * The OOM killer may not free memory on a specific node.
4475 if (gfp_mask & (__GFP_RETRY_MAYFAIL | __GFP_THISNODE))
4477 /* The OOM killer does not needlessly kill tasks for lowmem */
4478 if (ac->highest_zoneidx < ZONE_NORMAL)
4480 if (pm_suspended_storage())
4483 * XXX: GFP_NOFS allocations should rather fail than rely on
4484 * other request to make a forward progress.
4485 * We are in an unfortunate situation where out_of_memory cannot
4486 * do much for this context but let's try it to at least get
4487 * access to memory reserved if the current task is killed (see
4488 * out_of_memory). Once filesystems are ready to handle allocation
4489 * failures more gracefully we should just bail out here.
4492 /* Exhausted what can be done so it's blame time */
4493 if (out_of_memory(&oc) ||
4494 WARN_ON_ONCE_GFP(gfp_mask & __GFP_NOFAIL, gfp_mask)) {
4495 *did_some_progress = 1;
4498 * Help non-failing allocations by giving them access to memory
4501 if (gfp_mask & __GFP_NOFAIL)
4502 page = __alloc_pages_cpuset_fallback(gfp_mask, order,
4503 ALLOC_NO_WATERMARKS, ac);
4506 mutex_unlock(&oom_lock);
4511 * Maximum number of compaction retries with a progress before OOM
4512 * killer is consider as the only way to move forward.
4514 #define MAX_COMPACT_RETRIES 16
4516 #ifdef CONFIG_COMPACTION
4517 /* Try memory compaction for high-order allocations before reclaim */
4518 static struct page *
4519 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
4520 unsigned int alloc_flags, const struct alloc_context *ac,
4521 enum compact_priority prio, enum compact_result *compact_result)
4523 struct page *page = NULL;
4524 unsigned long pflags;
4525 unsigned int noreclaim_flag;
4530 psi_memstall_enter(&pflags);
4531 delayacct_compact_start();
4532 noreclaim_flag = memalloc_noreclaim_save();
4534 *compact_result = try_to_compact_pages(gfp_mask, order, alloc_flags, ac,
4537 memalloc_noreclaim_restore(noreclaim_flag);
4538 psi_memstall_leave(&pflags);
4539 delayacct_compact_end();
4541 if (*compact_result == COMPACT_SKIPPED)
4544 * At least in one zone compaction wasn't deferred or skipped, so let's
4545 * count a compaction stall
4547 count_vm_event(COMPACTSTALL);
4549 /* Prep a captured page if available */
4551 prep_new_page(page, order, gfp_mask, alloc_flags);
4553 /* Try get a page from the freelist if available */
4555 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
4558 struct zone *zone = page_zone(page);
4560 zone->compact_blockskip_flush = false;
4561 compaction_defer_reset(zone, order, true);
4562 count_vm_event(COMPACTSUCCESS);
4567 * It's bad if compaction run occurs and fails. The most likely reason
4568 * is that pages exist, but not enough to satisfy watermarks.
4570 count_vm_event(COMPACTFAIL);
4578 should_compact_retry(struct alloc_context *ac, int order, int alloc_flags,
4579 enum compact_result compact_result,
4580 enum compact_priority *compact_priority,
4581 int *compaction_retries)
4583 int max_retries = MAX_COMPACT_RETRIES;
4586 int retries = *compaction_retries;
4587 enum compact_priority priority = *compact_priority;
4592 if (fatal_signal_pending(current))
4595 if (compaction_made_progress(compact_result))
4596 (*compaction_retries)++;
4599 * compaction considers all the zone as desperately out of memory
4600 * so it doesn't really make much sense to retry except when the
4601 * failure could be caused by insufficient priority
4603 if (compaction_failed(compact_result))
4604 goto check_priority;
4607 * compaction was skipped because there are not enough order-0 pages
4608 * to work with, so we retry only if it looks like reclaim can help.
4610 if (compaction_needs_reclaim(compact_result)) {
4611 ret = compaction_zonelist_suitable(ac, order, alloc_flags);
4616 * make sure the compaction wasn't deferred or didn't bail out early
4617 * due to locks contention before we declare that we should give up.
4618 * But the next retry should use a higher priority if allowed, so
4619 * we don't just keep bailing out endlessly.
4621 if (compaction_withdrawn(compact_result)) {
4622 goto check_priority;
4626 * !costly requests are much more important than __GFP_RETRY_MAYFAIL
4627 * costly ones because they are de facto nofail and invoke OOM
4628 * killer to move on while costly can fail and users are ready
4629 * to cope with that. 1/4 retries is rather arbitrary but we
4630 * would need much more detailed feedback from compaction to
4631 * make a better decision.
4633 if (order > PAGE_ALLOC_COSTLY_ORDER)
4635 if (*compaction_retries <= max_retries) {
4641 * Make sure there are attempts at the highest priority if we exhausted
4642 * all retries or failed at the lower priorities.
4645 min_priority = (order > PAGE_ALLOC_COSTLY_ORDER) ?
4646 MIN_COMPACT_COSTLY_PRIORITY : MIN_COMPACT_PRIORITY;
4648 if (*compact_priority > min_priority) {
4649 (*compact_priority)--;
4650 *compaction_retries = 0;
4654 trace_compact_retry(order, priority, compact_result, retries, max_retries, ret);
4658 static inline struct page *
4659 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
4660 unsigned int alloc_flags, const struct alloc_context *ac,
4661 enum compact_priority prio, enum compact_result *compact_result)
4663 *compact_result = COMPACT_SKIPPED;
4668 should_compact_retry(struct alloc_context *ac, unsigned int order, int alloc_flags,
4669 enum compact_result compact_result,
4670 enum compact_priority *compact_priority,
4671 int *compaction_retries)
4676 if (!order || order > PAGE_ALLOC_COSTLY_ORDER)
4680 * There are setups with compaction disabled which would prefer to loop
4681 * inside the allocator rather than hit the oom killer prematurely.
4682 * Let's give them a good hope and keep retrying while the order-0
4683 * watermarks are OK.
4685 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
4686 ac->highest_zoneidx, ac->nodemask) {
4687 if (zone_watermark_ok(zone, 0, min_wmark_pages(zone),
4688 ac->highest_zoneidx, alloc_flags))
4693 #endif /* CONFIG_COMPACTION */
4695 #ifdef CONFIG_LOCKDEP
4696 static struct lockdep_map __fs_reclaim_map =
4697 STATIC_LOCKDEP_MAP_INIT("fs_reclaim", &__fs_reclaim_map);
4699 static bool __need_reclaim(gfp_t gfp_mask)
4701 /* no reclaim without waiting on it */
4702 if (!(gfp_mask & __GFP_DIRECT_RECLAIM))
4705 /* this guy won't enter reclaim */
4706 if (current->flags & PF_MEMALLOC)
4709 if (gfp_mask & __GFP_NOLOCKDEP)
4715 void __fs_reclaim_acquire(unsigned long ip)
4717 lock_acquire_exclusive(&__fs_reclaim_map, 0, 0, NULL, ip);
4720 void __fs_reclaim_release(unsigned long ip)
4722 lock_release(&__fs_reclaim_map, ip);
4725 void fs_reclaim_acquire(gfp_t gfp_mask)
4727 gfp_mask = current_gfp_context(gfp_mask);
4729 if (__need_reclaim(gfp_mask)) {
4730 if (gfp_mask & __GFP_FS)
4731 __fs_reclaim_acquire(_RET_IP_);
4733 #ifdef CONFIG_MMU_NOTIFIER
4734 lock_map_acquire(&__mmu_notifier_invalidate_range_start_map);
4735 lock_map_release(&__mmu_notifier_invalidate_range_start_map);
4740 EXPORT_SYMBOL_GPL(fs_reclaim_acquire);
4742 void fs_reclaim_release(gfp_t gfp_mask)
4744 gfp_mask = current_gfp_context(gfp_mask);
4746 if (__need_reclaim(gfp_mask)) {
4747 if (gfp_mask & __GFP_FS)
4748 __fs_reclaim_release(_RET_IP_);
4751 EXPORT_SYMBOL_GPL(fs_reclaim_release);
4755 * Zonelists may change due to hotplug during allocation. Detect when zonelists
4756 * have been rebuilt so allocation retries. Reader side does not lock and
4757 * retries the allocation if zonelist changes. Writer side is protected by the
4758 * embedded spin_lock.
4760 static DEFINE_SEQLOCK(zonelist_update_seq);
4762 static unsigned int zonelist_iter_begin(void)
4764 if (IS_ENABLED(CONFIG_MEMORY_HOTREMOVE))
4765 return read_seqbegin(&zonelist_update_seq);
4770 static unsigned int check_retry_zonelist(unsigned int seq)
4772 if (IS_ENABLED(CONFIG_MEMORY_HOTREMOVE))
4773 return read_seqretry(&zonelist_update_seq, seq);
4778 /* Perform direct synchronous page reclaim */
4779 static unsigned long
4780 __perform_reclaim(gfp_t gfp_mask, unsigned int order,
4781 const struct alloc_context *ac)
4783 unsigned int noreclaim_flag;
4784 unsigned long progress;
4788 /* We now go into synchronous reclaim */
4789 cpuset_memory_pressure_bump();
4790 fs_reclaim_acquire(gfp_mask);
4791 noreclaim_flag = memalloc_noreclaim_save();
4793 progress = try_to_free_pages(ac->zonelist, order, gfp_mask,
4796 memalloc_noreclaim_restore(noreclaim_flag);
4797 fs_reclaim_release(gfp_mask);
4804 /* The really slow allocator path where we enter direct reclaim */
4805 static inline struct page *
4806 __alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
4807 unsigned int alloc_flags, const struct alloc_context *ac,
4808 unsigned long *did_some_progress)
4810 struct page *page = NULL;
4811 unsigned long pflags;
4812 bool drained = false;
4814 psi_memstall_enter(&pflags);
4815 *did_some_progress = __perform_reclaim(gfp_mask, order, ac);
4816 if (unlikely(!(*did_some_progress)))
4820 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
4823 * If an allocation failed after direct reclaim, it could be because
4824 * pages are pinned on the per-cpu lists or in high alloc reserves.
4825 * Shrink them and try again
4827 if (!page && !drained) {
4828 unreserve_highatomic_pageblock(ac, false);
4829 drain_all_pages(NULL);
4834 psi_memstall_leave(&pflags);
4839 static void wake_all_kswapds(unsigned int order, gfp_t gfp_mask,
4840 const struct alloc_context *ac)
4844 pg_data_t *last_pgdat = NULL;
4845 enum zone_type highest_zoneidx = ac->highest_zoneidx;
4847 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, highest_zoneidx,
4849 if (!managed_zone(zone))
4851 if (last_pgdat != zone->zone_pgdat) {
4852 wakeup_kswapd(zone, gfp_mask, order, highest_zoneidx);
4853 last_pgdat = zone->zone_pgdat;
4858 static inline unsigned int
4859 gfp_to_alloc_flags(gfp_t gfp_mask, unsigned int order)
4861 unsigned int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
4864 * __GFP_HIGH is assumed to be the same as ALLOC_MIN_RESERVE
4865 * and __GFP_KSWAPD_RECLAIM is assumed to be the same as ALLOC_KSWAPD
4866 * to save two branches.
4868 BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_MIN_RESERVE);
4869 BUILD_BUG_ON(__GFP_KSWAPD_RECLAIM != (__force gfp_t) ALLOC_KSWAPD);
4872 * The caller may dip into page reserves a bit more if the caller
4873 * cannot run direct reclaim, or if the caller has realtime scheduling
4874 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will
4875 * set both ALLOC_NON_BLOCK and ALLOC_MIN_RESERVE(__GFP_HIGH).
4877 alloc_flags |= (__force int)
4878 (gfp_mask & (__GFP_HIGH | __GFP_KSWAPD_RECLAIM));
4880 if (!(gfp_mask & __GFP_DIRECT_RECLAIM)) {
4882 * Not worth trying to allocate harder for __GFP_NOMEMALLOC even
4883 * if it can't schedule.
4885 if (!(gfp_mask & __GFP_NOMEMALLOC)) {
4886 alloc_flags |= ALLOC_NON_BLOCK;
4889 alloc_flags |= ALLOC_HIGHATOMIC;
4893 * Ignore cpuset mems for non-blocking __GFP_HIGH (probably
4894 * GFP_ATOMIC) rather than fail, see the comment for
4895 * __cpuset_node_allowed().
4897 if (alloc_flags & ALLOC_MIN_RESERVE)
4898 alloc_flags &= ~ALLOC_CPUSET;
4899 } else if (unlikely(rt_task(current)) && in_task())
4900 alloc_flags |= ALLOC_MIN_RESERVE;
4902 alloc_flags = gfp_to_alloc_flags_cma(gfp_mask, alloc_flags);
4907 static bool oom_reserves_allowed(struct task_struct *tsk)
4909 if (!tsk_is_oom_victim(tsk))
4913 * !MMU doesn't have oom reaper so give access to memory reserves
4914 * only to the thread with TIF_MEMDIE set
4916 if (!IS_ENABLED(CONFIG_MMU) && !test_thread_flag(TIF_MEMDIE))
4923 * Distinguish requests which really need access to full memory
4924 * reserves from oom victims which can live with a portion of it
4926 static inline int __gfp_pfmemalloc_flags(gfp_t gfp_mask)
4928 if (unlikely(gfp_mask & __GFP_NOMEMALLOC))
4930 if (gfp_mask & __GFP_MEMALLOC)
4931 return ALLOC_NO_WATERMARKS;
4932 if (in_serving_softirq() && (current->flags & PF_MEMALLOC))
4933 return ALLOC_NO_WATERMARKS;
4934 if (!in_interrupt()) {
4935 if (current->flags & PF_MEMALLOC)
4936 return ALLOC_NO_WATERMARKS;
4937 else if (oom_reserves_allowed(current))
4944 bool gfp_pfmemalloc_allowed(gfp_t gfp_mask)
4946 return !!__gfp_pfmemalloc_flags(gfp_mask);
4950 * Checks whether it makes sense to retry the reclaim to make a forward progress
4951 * for the given allocation request.
4953 * We give up when we either have tried MAX_RECLAIM_RETRIES in a row
4954 * without success, or when we couldn't even meet the watermark if we
4955 * reclaimed all remaining pages on the LRU lists.
4957 * Returns true if a retry is viable or false to enter the oom path.
4960 should_reclaim_retry(gfp_t gfp_mask, unsigned order,
4961 struct alloc_context *ac, int alloc_flags,
4962 bool did_some_progress, int *no_progress_loops)
4969 * Costly allocations might have made a progress but this doesn't mean
4970 * their order will become available due to high fragmentation so
4971 * always increment the no progress counter for them
4973 if (did_some_progress && order <= PAGE_ALLOC_COSTLY_ORDER)
4974 *no_progress_loops = 0;
4976 (*no_progress_loops)++;
4979 * Make sure we converge to OOM if we cannot make any progress
4980 * several times in the row.
4982 if (*no_progress_loops > MAX_RECLAIM_RETRIES) {
4983 /* Before OOM, exhaust highatomic_reserve */
4984 return unreserve_highatomic_pageblock(ac, true);
4988 * Keep reclaiming pages while there is a chance this will lead
4989 * somewhere. If none of the target zones can satisfy our allocation
4990 * request even if all reclaimable pages are considered then we are
4991 * screwed and have to go OOM.
4993 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
4994 ac->highest_zoneidx, ac->nodemask) {
4995 unsigned long available;
4996 unsigned long reclaimable;
4997 unsigned long min_wmark = min_wmark_pages(zone);
5000 available = reclaimable = zone_reclaimable_pages(zone);
5001 available += zone_page_state_snapshot(zone, NR_FREE_PAGES);
5004 * Would the allocation succeed if we reclaimed all
5005 * reclaimable pages?
5007 wmark = __zone_watermark_ok(zone, order, min_wmark,
5008 ac->highest_zoneidx, alloc_flags, available);
5009 trace_reclaim_retry_zone(z, order, reclaimable,
5010 available, min_wmark, *no_progress_loops, wmark);
5018 * Memory allocation/reclaim might be called from a WQ context and the
5019 * current implementation of the WQ concurrency control doesn't
5020 * recognize that a particular WQ is congested if the worker thread is
5021 * looping without ever sleeping. Therefore we have to do a short sleep
5022 * here rather than calling cond_resched().
5024 if (current->flags & PF_WQ_WORKER)
5025 schedule_timeout_uninterruptible(1);
5032 check_retry_cpuset(int cpuset_mems_cookie, struct alloc_context *ac)
5035 * It's possible that cpuset's mems_allowed and the nodemask from
5036 * mempolicy don't intersect. This should be normally dealt with by
5037 * policy_nodemask(), but it's possible to race with cpuset update in
5038 * such a way the check therein was true, and then it became false
5039 * before we got our cpuset_mems_cookie here.
5040 * This assumes that for all allocations, ac->nodemask can come only
5041 * from MPOL_BIND mempolicy (whose documented semantics is to be ignored
5042 * when it does not intersect with the cpuset restrictions) or the
5043 * caller can deal with a violated nodemask.
5045 if (cpusets_enabled() && ac->nodemask &&
5046 !cpuset_nodemask_valid_mems_allowed(ac->nodemask)) {
5047 ac->nodemask = NULL;
5052 * When updating a task's mems_allowed or mempolicy nodemask, it is
5053 * possible to race with parallel threads in such a way that our
5054 * allocation can fail while the mask is being updated. If we are about
5055 * to fail, check if the cpuset changed during allocation and if so,
5058 if (read_mems_allowed_retry(cpuset_mems_cookie))
5064 static inline struct page *
5065 __alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
5066 struct alloc_context *ac)
5068 bool can_direct_reclaim = gfp_mask & __GFP_DIRECT_RECLAIM;
5069 const bool costly_order = order > PAGE_ALLOC_COSTLY_ORDER;
5070 struct page *page = NULL;
5071 unsigned int alloc_flags;
5072 unsigned long did_some_progress;
5073 enum compact_priority compact_priority;
5074 enum compact_result compact_result;
5075 int compaction_retries;
5076 int no_progress_loops;
5077 unsigned int cpuset_mems_cookie;
5078 unsigned int zonelist_iter_cookie;
5082 compaction_retries = 0;
5083 no_progress_loops = 0;
5084 compact_priority = DEF_COMPACT_PRIORITY;
5085 cpuset_mems_cookie = read_mems_allowed_begin();
5086 zonelist_iter_cookie = zonelist_iter_begin();
5089 * The fast path uses conservative alloc_flags to succeed only until
5090 * kswapd needs to be woken up, and to avoid the cost of setting up
5091 * alloc_flags precisely. So we do that now.
5093 alloc_flags = gfp_to_alloc_flags(gfp_mask, order);
5096 * We need to recalculate the starting point for the zonelist iterator
5097 * because we might have used different nodemask in the fast path, or
5098 * there was a cpuset modification and we are retrying - otherwise we
5099 * could end up iterating over non-eligible zones endlessly.
5101 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
5102 ac->highest_zoneidx, ac->nodemask);
5103 if (!ac->preferred_zoneref->zone)
5107 * Check for insane configurations where the cpuset doesn't contain
5108 * any suitable zone to satisfy the request - e.g. non-movable
5109 * GFP_HIGHUSER allocations from MOVABLE nodes only.
5111 if (cpusets_insane_config() && (gfp_mask & __GFP_HARDWALL)) {
5112 struct zoneref *z = first_zones_zonelist(ac->zonelist,
5113 ac->highest_zoneidx,
5114 &cpuset_current_mems_allowed);
5119 if (alloc_flags & ALLOC_KSWAPD)
5120 wake_all_kswapds(order, gfp_mask, ac);
5123 * The adjusted alloc_flags might result in immediate success, so try
5126 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
5131 * For costly allocations, try direct compaction first, as it's likely
5132 * that we have enough base pages and don't need to reclaim. For non-
5133 * movable high-order allocations, do that as well, as compaction will
5134 * try prevent permanent fragmentation by migrating from blocks of the
5136 * Don't try this for allocations that are allowed to ignore
5137 * watermarks, as the ALLOC_NO_WATERMARKS attempt didn't yet happen.
5139 if (can_direct_reclaim &&
5141 (order > 0 && ac->migratetype != MIGRATE_MOVABLE))
5142 && !gfp_pfmemalloc_allowed(gfp_mask)) {
5143 page = __alloc_pages_direct_compact(gfp_mask, order,
5145 INIT_COMPACT_PRIORITY,
5151 * Checks for costly allocations with __GFP_NORETRY, which
5152 * includes some THP page fault allocations
5154 if (costly_order && (gfp_mask & __GFP_NORETRY)) {
5156 * If allocating entire pageblock(s) and compaction
5157 * failed because all zones are below low watermarks
5158 * or is prohibited because it recently failed at this
5159 * order, fail immediately unless the allocator has
5160 * requested compaction and reclaim retry.
5163 * - potentially very expensive because zones are far
5164 * below their low watermarks or this is part of very
5165 * bursty high order allocations,
5166 * - not guaranteed to help because isolate_freepages()
5167 * may not iterate over freed pages as part of its
5169 * - unlikely to make entire pageblocks free on its
5172 if (compact_result == COMPACT_SKIPPED ||
5173 compact_result == COMPACT_DEFERRED)
5177 * Looks like reclaim/compaction is worth trying, but
5178 * sync compaction could be very expensive, so keep
5179 * using async compaction.
5181 compact_priority = INIT_COMPACT_PRIORITY;
5186 /* Ensure kswapd doesn't accidentally go to sleep as long as we loop */
5187 if (alloc_flags & ALLOC_KSWAPD)
5188 wake_all_kswapds(order, gfp_mask, ac);
5190 reserve_flags = __gfp_pfmemalloc_flags(gfp_mask);
5192 alloc_flags = gfp_to_alloc_flags_cma(gfp_mask, reserve_flags) |
5193 (alloc_flags & ALLOC_KSWAPD);
5196 * Reset the nodemask and zonelist iterators if memory policies can be
5197 * ignored. These allocations are high priority and system rather than
5200 if (!(alloc_flags & ALLOC_CPUSET) || reserve_flags) {
5201 ac->nodemask = NULL;
5202 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
5203 ac->highest_zoneidx, ac->nodemask);
5206 /* Attempt with potentially adjusted zonelist and alloc_flags */
5207 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
5211 /* Caller is not willing to reclaim, we can't balance anything */
5212 if (!can_direct_reclaim)
5215 /* Avoid recursion of direct reclaim */
5216 if (current->flags & PF_MEMALLOC)
5219 /* Try direct reclaim and then allocating */
5220 page = __alloc_pages_direct_reclaim(gfp_mask, order, alloc_flags, ac,
5221 &did_some_progress);
5225 /* Try direct compaction and then allocating */
5226 page = __alloc_pages_direct_compact(gfp_mask, order, alloc_flags, ac,
5227 compact_priority, &compact_result);
5231 /* Do not loop if specifically requested */
5232 if (gfp_mask & __GFP_NORETRY)
5236 * Do not retry costly high order allocations unless they are
5237 * __GFP_RETRY_MAYFAIL
5239 if (costly_order && !(gfp_mask & __GFP_RETRY_MAYFAIL))
5242 if (should_reclaim_retry(gfp_mask, order, ac, alloc_flags,
5243 did_some_progress > 0, &no_progress_loops))
5247 * It doesn't make any sense to retry for the compaction if the order-0
5248 * reclaim is not able to make any progress because the current
5249 * implementation of the compaction depends on the sufficient amount
5250 * of free memory (see __compaction_suitable)
5252 if (did_some_progress > 0 &&
5253 should_compact_retry(ac, order, alloc_flags,
5254 compact_result, &compact_priority,
5255 &compaction_retries))
5260 * Deal with possible cpuset update races or zonelist updates to avoid
5261 * a unnecessary OOM kill.
5263 if (check_retry_cpuset(cpuset_mems_cookie, ac) ||
5264 check_retry_zonelist(zonelist_iter_cookie))
5267 /* Reclaim has failed us, start killing things */
5268 page = __alloc_pages_may_oom(gfp_mask, order, ac, &did_some_progress);
5272 /* Avoid allocations with no watermarks from looping endlessly */
5273 if (tsk_is_oom_victim(current) &&
5274 (alloc_flags & ALLOC_OOM ||
5275 (gfp_mask & __GFP_NOMEMALLOC)))
5278 /* Retry as long as the OOM killer is making progress */
5279 if (did_some_progress) {
5280 no_progress_loops = 0;
5286 * Deal with possible cpuset update races or zonelist updates to avoid
5287 * a unnecessary OOM kill.
5289 if (check_retry_cpuset(cpuset_mems_cookie, ac) ||
5290 check_retry_zonelist(zonelist_iter_cookie))
5294 * Make sure that __GFP_NOFAIL request doesn't leak out and make sure
5297 if (gfp_mask & __GFP_NOFAIL) {
5299 * All existing users of the __GFP_NOFAIL are blockable, so warn
5300 * of any new users that actually require GFP_NOWAIT
5302 if (WARN_ON_ONCE_GFP(!can_direct_reclaim, gfp_mask))
5306 * PF_MEMALLOC request from this context is rather bizarre
5307 * because we cannot reclaim anything and only can loop waiting
5308 * for somebody to do a work for us
5310 WARN_ON_ONCE_GFP(current->flags & PF_MEMALLOC, gfp_mask);
5313 * non failing costly orders are a hard requirement which we
5314 * are not prepared for much so let's warn about these users
5315 * so that we can identify them and convert them to something
5318 WARN_ON_ONCE_GFP(costly_order, gfp_mask);
5321 * Help non-failing allocations by giving some access to memory
5322 * reserves normally used for high priority non-blocking
5323 * allocations but do not use ALLOC_NO_WATERMARKS because this
5324 * could deplete whole memory reserves which would just make
5325 * the situation worse.
5327 page = __alloc_pages_cpuset_fallback(gfp_mask, order, ALLOC_MIN_RESERVE, ac);
5335 warn_alloc(gfp_mask, ac->nodemask,
5336 "page allocation failure: order:%u", order);
5341 static inline bool prepare_alloc_pages(gfp_t gfp_mask, unsigned int order,
5342 int preferred_nid, nodemask_t *nodemask,
5343 struct alloc_context *ac, gfp_t *alloc_gfp,
5344 unsigned int *alloc_flags)
5346 ac->highest_zoneidx = gfp_zone(gfp_mask);
5347 ac->zonelist = node_zonelist(preferred_nid, gfp_mask);
5348 ac->nodemask = nodemask;
5349 ac->migratetype = gfp_migratetype(gfp_mask);
5351 if (cpusets_enabled()) {
5352 *alloc_gfp |= __GFP_HARDWALL;
5354 * When we are in the interrupt context, it is irrelevant
5355 * to the current task context. It means that any node ok.
5357 if (in_task() && !ac->nodemask)
5358 ac->nodemask = &cpuset_current_mems_allowed;
5360 *alloc_flags |= ALLOC_CPUSET;
5363 might_alloc(gfp_mask);
5365 if (should_fail_alloc_page(gfp_mask, order))
5368 *alloc_flags = gfp_to_alloc_flags_cma(gfp_mask, *alloc_flags);
5370 /* Dirty zone balancing only done in the fast path */
5371 ac->spread_dirty_pages = (gfp_mask & __GFP_WRITE);
5374 * The preferred zone is used for statistics but crucially it is
5375 * also used as the starting point for the zonelist iterator. It
5376 * may get reset for allocations that ignore memory policies.
5378 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
5379 ac->highest_zoneidx, ac->nodemask);
5385 * __alloc_pages_bulk - Allocate a number of order-0 pages to a list or array
5386 * @gfp: GFP flags for the allocation
5387 * @preferred_nid: The preferred NUMA node ID to allocate from
5388 * @nodemask: Set of nodes to allocate from, may be NULL
5389 * @nr_pages: The number of pages desired on the list or array
5390 * @page_list: Optional list to store the allocated pages
5391 * @page_array: Optional array to store the pages
5393 * This is a batched version of the page allocator that attempts to
5394 * allocate nr_pages quickly. Pages are added to page_list if page_list
5395 * is not NULL, otherwise it is assumed that the page_array is valid.
5397 * For lists, nr_pages is the number of pages that should be allocated.
5399 * For arrays, only NULL elements are populated with pages and nr_pages
5400 * is the maximum number of pages that will be stored in the array.
5402 * Returns the number of pages on the list or array.
5404 unsigned long __alloc_pages_bulk(gfp_t gfp, int preferred_nid,
5405 nodemask_t *nodemask, int nr_pages,
5406 struct list_head *page_list,
5407 struct page **page_array)
5410 unsigned long __maybe_unused UP_flags;
5413 struct per_cpu_pages *pcp;
5414 struct list_head *pcp_list;
5415 struct alloc_context ac;
5417 unsigned int alloc_flags = ALLOC_WMARK_LOW;
5418 int nr_populated = 0, nr_account = 0;
5421 * Skip populated array elements to determine if any pages need
5422 * to be allocated before disabling IRQs.
5424 while (page_array && nr_populated < nr_pages && page_array[nr_populated])
5427 /* No pages requested? */
5428 if (unlikely(nr_pages <= 0))
5431 /* Already populated array? */
5432 if (unlikely(page_array && nr_pages - nr_populated == 0))
5435 /* Bulk allocator does not support memcg accounting. */
5436 if (memcg_kmem_online() && (gfp & __GFP_ACCOUNT))
5439 /* Use the single page allocator for one page. */
5440 if (nr_pages - nr_populated == 1)
5443 #ifdef CONFIG_PAGE_OWNER
5445 * PAGE_OWNER may recurse into the allocator to allocate space to
5446 * save the stack with pagesets.lock held. Releasing/reacquiring
5447 * removes much of the performance benefit of bulk allocation so
5448 * force the caller to allocate one page at a time as it'll have
5449 * similar performance to added complexity to the bulk allocator.
5451 if (static_branch_unlikely(&page_owner_inited))
5455 /* May set ALLOC_NOFRAGMENT, fragmentation will return 1 page. */
5456 gfp &= gfp_allowed_mask;
5458 if (!prepare_alloc_pages(gfp, 0, preferred_nid, nodemask, &ac, &alloc_gfp, &alloc_flags))
5462 /* Find an allowed local zone that meets the low watermark. */
5463 for_each_zone_zonelist_nodemask(zone, z, ac.zonelist, ac.highest_zoneidx, ac.nodemask) {
5466 if (cpusets_enabled() && (alloc_flags & ALLOC_CPUSET) &&
5467 !__cpuset_zone_allowed(zone, gfp)) {
5471 if (nr_online_nodes > 1 && zone != ac.preferred_zoneref->zone &&
5472 zone_to_nid(zone) != zone_to_nid(ac.preferred_zoneref->zone)) {
5476 mark = wmark_pages(zone, alloc_flags & ALLOC_WMARK_MASK) + nr_pages;
5477 if (zone_watermark_fast(zone, 0, mark,
5478 zonelist_zone_idx(ac.preferred_zoneref),
5479 alloc_flags, gfp)) {
5485 * If there are no allowed local zones that meets the watermarks then
5486 * try to allocate a single page and reclaim if necessary.
5488 if (unlikely(!zone))
5491 /* spin_trylock may fail due to a parallel drain or IRQ reentrancy. */
5492 pcp_trylock_prepare(UP_flags);
5493 pcp = pcp_spin_trylock(zone->per_cpu_pageset);
5497 /* Attempt the batch allocation */
5498 pcp_list = &pcp->lists[order_to_pindex(ac.migratetype, 0)];
5499 while (nr_populated < nr_pages) {
5501 /* Skip existing pages */
5502 if (page_array && page_array[nr_populated]) {
5507 page = __rmqueue_pcplist(zone, 0, ac.migratetype, alloc_flags,
5509 if (unlikely(!page)) {
5510 /* Try and allocate at least one page */
5512 pcp_spin_unlock(pcp);
5519 prep_new_page(page, 0, gfp, 0);
5521 list_add(&page->lru, page_list);
5523 page_array[nr_populated] = page;
5527 pcp_spin_unlock(pcp);
5528 pcp_trylock_finish(UP_flags);
5530 __count_zid_vm_events(PGALLOC, zone_idx(zone), nr_account);
5531 zone_statistics(ac.preferred_zoneref->zone, zone, nr_account);
5534 return nr_populated;
5537 pcp_trylock_finish(UP_flags);
5540 page = __alloc_pages(gfp, 0, preferred_nid, nodemask);
5543 list_add(&page->lru, page_list);
5545 page_array[nr_populated] = page;
5551 EXPORT_SYMBOL_GPL(__alloc_pages_bulk);
5554 * This is the 'heart' of the zoned buddy allocator.
5556 struct page *__alloc_pages(gfp_t gfp, unsigned int order, int preferred_nid,
5557 nodemask_t *nodemask)
5560 unsigned int alloc_flags = ALLOC_WMARK_LOW;
5561 gfp_t alloc_gfp; /* The gfp_t that was actually used for allocation */
5562 struct alloc_context ac = { };
5565 * There are several places where we assume that the order value is sane
5566 * so bail out early if the request is out of bound.
5568 if (WARN_ON_ONCE_GFP(order >= MAX_ORDER, gfp))
5571 gfp &= gfp_allowed_mask;
5573 * Apply scoped allocation constraints. This is mainly about GFP_NOFS
5574 * resp. GFP_NOIO which has to be inherited for all allocation requests
5575 * from a particular context which has been marked by
5576 * memalloc_no{fs,io}_{save,restore}. And PF_MEMALLOC_PIN which ensures
5577 * movable zones are not used during allocation.
5579 gfp = current_gfp_context(gfp);
5581 if (!prepare_alloc_pages(gfp, order, preferred_nid, nodemask, &ac,
5582 &alloc_gfp, &alloc_flags))
5586 * Forbid the first pass from falling back to types that fragment
5587 * memory until all local zones are considered.
5589 alloc_flags |= alloc_flags_nofragment(ac.preferred_zoneref->zone, gfp);
5591 /* First allocation attempt */
5592 page = get_page_from_freelist(alloc_gfp, order, alloc_flags, &ac);
5597 ac.spread_dirty_pages = false;
5600 * Restore the original nodemask if it was potentially replaced with
5601 * &cpuset_current_mems_allowed to optimize the fast-path attempt.
5603 ac.nodemask = nodemask;
5605 page = __alloc_pages_slowpath(alloc_gfp, order, &ac);
5608 if (memcg_kmem_online() && (gfp & __GFP_ACCOUNT) && page &&
5609 unlikely(__memcg_kmem_charge_page(page, gfp, order) != 0)) {
5610 __free_pages(page, order);
5614 trace_mm_page_alloc(page, order, alloc_gfp, ac.migratetype);
5615 kmsan_alloc_page(page, order, alloc_gfp);
5619 EXPORT_SYMBOL(__alloc_pages);
5621 struct folio *__folio_alloc(gfp_t gfp, unsigned int order, int preferred_nid,
5622 nodemask_t *nodemask)
5624 struct page *page = __alloc_pages(gfp | __GFP_COMP, order,
5625 preferred_nid, nodemask);
5627 if (page && order > 1)
5628 prep_transhuge_page(page);
5629 return (struct folio *)page;
5631 EXPORT_SYMBOL(__folio_alloc);
5634 * Common helper functions. Never use with __GFP_HIGHMEM because the returned
5635 * address cannot represent highmem pages. Use alloc_pages and then kmap if
5636 * you need to access high mem.
5638 unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
5642 page = alloc_pages(gfp_mask & ~__GFP_HIGHMEM, order);
5645 return (unsigned long) page_address(page);
5647 EXPORT_SYMBOL(__get_free_pages);
5649 unsigned long get_zeroed_page(gfp_t gfp_mask)
5651 return __get_free_pages(gfp_mask | __GFP_ZERO, 0);
5653 EXPORT_SYMBOL(get_zeroed_page);
5656 * __free_pages - Free pages allocated with alloc_pages().
5657 * @page: The page pointer returned from alloc_pages().
5658 * @order: The order of the allocation.
5660 * This function can free multi-page allocations that are not compound
5661 * pages. It does not check that the @order passed in matches that of
5662 * the allocation, so it is easy to leak memory. Freeing more memory
5663 * than was allocated will probably emit a warning.
5665 * If the last reference to this page is speculative, it will be released
5666 * by put_page() which only frees the first page of a non-compound
5667 * allocation. To prevent the remaining pages from being leaked, we free
5668 * the subsequent pages here. If you want to use the page's reference
5669 * count to decide when to free the allocation, you should allocate a
5670 * compound page, and use put_page() instead of __free_pages().
5672 * Context: May be called in interrupt context or while holding a normal
5673 * spinlock, but not in NMI context or while holding a raw spinlock.
5675 void __free_pages(struct page *page, unsigned int order)
5677 /* get PageHead before we drop reference */
5678 int head = PageHead(page);
5680 if (put_page_testzero(page))
5681 free_the_page(page, order);
5684 free_the_page(page + (1 << order), order);
5686 EXPORT_SYMBOL(__free_pages);
5688 void free_pages(unsigned long addr, unsigned int order)
5691 VM_BUG_ON(!virt_addr_valid((void *)addr));
5692 __free_pages(virt_to_page((void *)addr), order);
5696 EXPORT_SYMBOL(free_pages);
5700 * An arbitrary-length arbitrary-offset area of memory which resides
5701 * within a 0 or higher order page. Multiple fragments within that page
5702 * are individually refcounted, in the page's reference counter.
5704 * The page_frag functions below provide a simple allocation framework for
5705 * page fragments. This is used by the network stack and network device
5706 * drivers to provide a backing region of memory for use as either an
5707 * sk_buff->head, or to be used in the "frags" portion of skb_shared_info.
5709 static struct page *__page_frag_cache_refill(struct page_frag_cache *nc,
5712 struct page *page = NULL;
5713 gfp_t gfp = gfp_mask;
5715 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
5716 gfp_mask |= __GFP_COMP | __GFP_NOWARN | __GFP_NORETRY |
5718 page = alloc_pages_node(NUMA_NO_NODE, gfp_mask,
5719 PAGE_FRAG_CACHE_MAX_ORDER);
5720 nc->size = page ? PAGE_FRAG_CACHE_MAX_SIZE : PAGE_SIZE;
5722 if (unlikely(!page))
5723 page = alloc_pages_node(NUMA_NO_NODE, gfp, 0);
5725 nc->va = page ? page_address(page) : NULL;
5730 void __page_frag_cache_drain(struct page *page, unsigned int count)
5732 VM_BUG_ON_PAGE(page_ref_count(page) == 0, page);
5734 if (page_ref_sub_and_test(page, count))
5735 free_the_page(page, compound_order(page));
5737 EXPORT_SYMBOL(__page_frag_cache_drain);
5739 void *page_frag_alloc_align(struct page_frag_cache *nc,
5740 unsigned int fragsz, gfp_t gfp_mask,
5741 unsigned int align_mask)
5743 unsigned int size = PAGE_SIZE;
5747 if (unlikely(!nc->va)) {
5749 page = __page_frag_cache_refill(nc, gfp_mask);
5753 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
5754 /* if size can vary use size else just use PAGE_SIZE */
5757 /* Even if we own the page, we do not use atomic_set().
5758 * This would break get_page_unless_zero() users.
5760 page_ref_add(page, PAGE_FRAG_CACHE_MAX_SIZE);
5762 /* reset page count bias and offset to start of new frag */
5763 nc->pfmemalloc = page_is_pfmemalloc(page);
5764 nc->pagecnt_bias = PAGE_FRAG_CACHE_MAX_SIZE + 1;
5768 offset = nc->offset - fragsz;
5769 if (unlikely(offset < 0)) {
5770 page = virt_to_page(nc->va);
5772 if (!page_ref_sub_and_test(page, nc->pagecnt_bias))
5775 if (unlikely(nc->pfmemalloc)) {
5776 free_the_page(page, compound_order(page));
5780 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
5781 /* if size can vary use size else just use PAGE_SIZE */
5784 /* OK, page count is 0, we can safely set it */
5785 set_page_count(page, PAGE_FRAG_CACHE_MAX_SIZE + 1);
5787 /* reset page count bias and offset to start of new frag */
5788 nc->pagecnt_bias = PAGE_FRAG_CACHE_MAX_SIZE + 1;
5789 offset = size - fragsz;
5790 if (unlikely(offset < 0)) {
5792 * The caller is trying to allocate a fragment
5793 * with fragsz > PAGE_SIZE but the cache isn't big
5794 * enough to satisfy the request, this may
5795 * happen in low memory conditions.
5796 * We don't release the cache page because
5797 * it could make memory pressure worse
5798 * so we simply return NULL here.
5805 offset &= align_mask;
5806 nc->offset = offset;
5808 return nc->va + offset;
5810 EXPORT_SYMBOL(page_frag_alloc_align);
5813 * Frees a page fragment allocated out of either a compound or order 0 page.
5815 void page_frag_free(void *addr)
5817 struct page *page = virt_to_head_page(addr);
5819 if (unlikely(put_page_testzero(page)))
5820 free_the_page(page, compound_order(page));
5822 EXPORT_SYMBOL(page_frag_free);
5824 static void *make_alloc_exact(unsigned long addr, unsigned int order,
5828 unsigned long nr = DIV_ROUND_UP(size, PAGE_SIZE);
5829 struct page *page = virt_to_page((void *)addr);
5830 struct page *last = page + nr;
5832 split_page_owner(page, 1 << order);
5833 split_page_memcg(page, 1 << order);
5834 while (page < --last)
5835 set_page_refcounted(last);
5837 last = page + (1UL << order);
5838 for (page += nr; page < last; page++)
5839 __free_pages_ok(page, 0, FPI_TO_TAIL);
5841 return (void *)addr;
5845 * alloc_pages_exact - allocate an exact number physically-contiguous pages.
5846 * @size: the number of bytes to allocate
5847 * @gfp_mask: GFP flags for the allocation, must not contain __GFP_COMP
5849 * This function is similar to alloc_pages(), except that it allocates the
5850 * minimum number of pages to satisfy the request. alloc_pages() can only
5851 * allocate memory in power-of-two pages.
5853 * This function is also limited by MAX_ORDER.
5855 * Memory allocated by this function must be released by free_pages_exact().
5857 * Return: pointer to the allocated area or %NULL in case of error.
5859 void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
5861 unsigned int order = get_order(size);
5864 if (WARN_ON_ONCE(gfp_mask & (__GFP_COMP | __GFP_HIGHMEM)))
5865 gfp_mask &= ~(__GFP_COMP | __GFP_HIGHMEM);
5867 addr = __get_free_pages(gfp_mask, order);
5868 return make_alloc_exact(addr, order, size);
5870 EXPORT_SYMBOL(alloc_pages_exact);
5873 * alloc_pages_exact_nid - allocate an exact number of physically-contiguous
5875 * @nid: the preferred node ID where memory should be allocated
5876 * @size: the number of bytes to allocate
5877 * @gfp_mask: GFP flags for the allocation, must not contain __GFP_COMP
5879 * Like alloc_pages_exact(), but try to allocate on node nid first before falling
5882 * Return: pointer to the allocated area or %NULL in case of error.
5884 void * __meminit alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask)
5886 unsigned int order = get_order(size);
5889 if (WARN_ON_ONCE(gfp_mask & (__GFP_COMP | __GFP_HIGHMEM)))
5890 gfp_mask &= ~(__GFP_COMP | __GFP_HIGHMEM);
5892 p = alloc_pages_node(nid, gfp_mask, order);
5895 return make_alloc_exact((unsigned long)page_address(p), order, size);
5899 * free_pages_exact - release memory allocated via alloc_pages_exact()
5900 * @virt: the value returned by alloc_pages_exact.
5901 * @size: size of allocation, same value as passed to alloc_pages_exact().
5903 * Release the memory allocated by a previous call to alloc_pages_exact.
5905 void free_pages_exact(void *virt, size_t size)
5907 unsigned long addr = (unsigned long)virt;
5908 unsigned long end = addr + PAGE_ALIGN(size);
5910 while (addr < end) {
5915 EXPORT_SYMBOL(free_pages_exact);
5918 * nr_free_zone_pages - count number of pages beyond high watermark
5919 * @offset: The zone index of the highest zone
5921 * nr_free_zone_pages() counts the number of pages which are beyond the
5922 * high watermark within all zones at or below a given zone index. For each
5923 * zone, the number of pages is calculated as:
5925 * nr_free_zone_pages = managed_pages - high_pages
5927 * Return: number of pages beyond high watermark.
5929 static unsigned long nr_free_zone_pages(int offset)
5934 /* Just pick one node, since fallback list is circular */
5935 unsigned long sum = 0;
5937 struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
5939 for_each_zone_zonelist(zone, z, zonelist, offset) {
5940 unsigned long size = zone_managed_pages(zone);
5941 unsigned long high = high_wmark_pages(zone);
5950 * nr_free_buffer_pages - count number of pages beyond high watermark
5952 * nr_free_buffer_pages() counts the number of pages which are beyond the high
5953 * watermark within ZONE_DMA and ZONE_NORMAL.
5955 * Return: number of pages beyond high watermark within ZONE_DMA and
5958 unsigned long nr_free_buffer_pages(void)
5960 return nr_free_zone_pages(gfp_zone(GFP_USER));
5962 EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
5964 static inline void show_node(struct zone *zone)
5966 if (IS_ENABLED(CONFIG_NUMA))
5967 printk("Node %d ", zone_to_nid(zone));
5970 long si_mem_available(void)
5973 unsigned long pagecache;
5974 unsigned long wmark_low = 0;
5975 unsigned long pages[NR_LRU_LISTS];
5976 unsigned long reclaimable;
5980 for (lru = LRU_BASE; lru < NR_LRU_LISTS; lru++)
5981 pages[lru] = global_node_page_state(NR_LRU_BASE + lru);
5984 wmark_low += low_wmark_pages(zone);
5987 * Estimate the amount of memory available for userspace allocations,
5988 * without causing swapping or OOM.
5990 available = global_zone_page_state(NR_FREE_PAGES) - totalreserve_pages;
5993 * Not all the page cache can be freed, otherwise the system will
5994 * start swapping or thrashing. Assume at least half of the page
5995 * cache, or the low watermark worth of cache, needs to stay.
5997 pagecache = pages[LRU_ACTIVE_FILE] + pages[LRU_INACTIVE_FILE];
5998 pagecache -= min(pagecache / 2, wmark_low);
5999 available += pagecache;
6002 * Part of the reclaimable slab and other kernel memory consists of
6003 * items that are in use, and cannot be freed. Cap this estimate at the
6006 reclaimable = global_node_page_state_pages(NR_SLAB_RECLAIMABLE_B) +
6007 global_node_page_state(NR_KERNEL_MISC_RECLAIMABLE);
6008 available += reclaimable - min(reclaimable / 2, wmark_low);
6014 EXPORT_SYMBOL_GPL(si_mem_available);
6016 void si_meminfo(struct sysinfo *val)
6018 val->totalram = totalram_pages();
6019 val->sharedram = global_node_page_state(NR_SHMEM);
6020 val->freeram = global_zone_page_state(NR_FREE_PAGES);
6021 val->bufferram = nr_blockdev_pages();
6022 val->totalhigh = totalhigh_pages();
6023 val->freehigh = nr_free_highpages();
6024 val->mem_unit = PAGE_SIZE;
6027 EXPORT_SYMBOL(si_meminfo);
6030 void si_meminfo_node(struct sysinfo *val, int nid)
6032 int zone_type; /* needs to be signed */
6033 unsigned long managed_pages = 0;
6034 unsigned long managed_highpages = 0;
6035 unsigned long free_highpages = 0;
6036 pg_data_t *pgdat = NODE_DATA(nid);
6038 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++)
6039 managed_pages += zone_managed_pages(&pgdat->node_zones[zone_type]);
6040 val->totalram = managed_pages;
6041 val->sharedram = node_page_state(pgdat, NR_SHMEM);
6042 val->freeram = sum_zone_node_page_state(nid, NR_FREE_PAGES);
6043 #ifdef CONFIG_HIGHMEM
6044 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
6045 struct zone *zone = &pgdat->node_zones[zone_type];
6047 if (is_highmem(zone)) {
6048 managed_highpages += zone_managed_pages(zone);
6049 free_highpages += zone_page_state(zone, NR_FREE_PAGES);
6052 val->totalhigh = managed_highpages;
6053 val->freehigh = free_highpages;
6055 val->totalhigh = managed_highpages;
6056 val->freehigh = free_highpages;
6058 val->mem_unit = PAGE_SIZE;
6063 * Determine whether the node should be displayed or not, depending on whether
6064 * SHOW_MEM_FILTER_NODES was passed to show_free_areas().
6066 static bool show_mem_node_skip(unsigned int flags, int nid, nodemask_t *nodemask)
6068 if (!(flags & SHOW_MEM_FILTER_NODES))
6072 * no node mask - aka implicit memory numa policy. Do not bother with
6073 * the synchronization - read_mems_allowed_begin - because we do not
6074 * have to be precise here.
6077 nodemask = &cpuset_current_mems_allowed;
6079 return !node_isset(nid, *nodemask);
6082 #define K(x) ((x) << (PAGE_SHIFT-10))
6084 static void show_migration_types(unsigned char type)
6086 static const char types[MIGRATE_TYPES] = {
6087 [MIGRATE_UNMOVABLE] = 'U',
6088 [MIGRATE_MOVABLE] = 'M',
6089 [MIGRATE_RECLAIMABLE] = 'E',
6090 [MIGRATE_HIGHATOMIC] = 'H',
6092 [MIGRATE_CMA] = 'C',
6094 #ifdef CONFIG_MEMORY_ISOLATION
6095 [MIGRATE_ISOLATE] = 'I',
6098 char tmp[MIGRATE_TYPES + 1];
6102 for (i = 0; i < MIGRATE_TYPES; i++) {
6103 if (type & (1 << i))
6108 printk(KERN_CONT "(%s) ", tmp);
6111 static bool node_has_managed_zones(pg_data_t *pgdat, int max_zone_idx)
6114 for (zone_idx = 0; zone_idx <= max_zone_idx; zone_idx++)
6115 if (zone_managed_pages(pgdat->node_zones + zone_idx))
6121 * Show free area list (used inside shift_scroll-lock stuff)
6122 * We also calculate the percentage fragmentation. We do this by counting the
6123 * memory on each free list with the exception of the first item on the list.
6126 * SHOW_MEM_FILTER_NODES: suppress nodes that are not allowed by current's
6129 void __show_free_areas(unsigned int filter, nodemask_t *nodemask, int max_zone_idx)
6131 unsigned long free_pcp = 0;
6136 for_each_populated_zone(zone) {
6137 if (zone_idx(zone) > max_zone_idx)
6139 if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
6142 for_each_online_cpu(cpu)
6143 free_pcp += per_cpu_ptr(zone->per_cpu_pageset, cpu)->count;
6146 printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n"
6147 " active_file:%lu inactive_file:%lu isolated_file:%lu\n"
6148 " unevictable:%lu dirty:%lu writeback:%lu\n"
6149 " slab_reclaimable:%lu slab_unreclaimable:%lu\n"
6150 " mapped:%lu shmem:%lu pagetables:%lu\n"
6151 " sec_pagetables:%lu bounce:%lu\n"
6152 " kernel_misc_reclaimable:%lu\n"
6153 " free:%lu free_pcp:%lu free_cma:%lu\n",
6154 global_node_page_state(NR_ACTIVE_ANON),
6155 global_node_page_state(NR_INACTIVE_ANON),
6156 global_node_page_state(NR_ISOLATED_ANON),
6157 global_node_page_state(NR_ACTIVE_FILE),
6158 global_node_page_state(NR_INACTIVE_FILE),
6159 global_node_page_state(NR_ISOLATED_FILE),
6160 global_node_page_state(NR_UNEVICTABLE),
6161 global_node_page_state(NR_FILE_DIRTY),
6162 global_node_page_state(NR_WRITEBACK),
6163 global_node_page_state_pages(NR_SLAB_RECLAIMABLE_B),
6164 global_node_page_state_pages(NR_SLAB_UNRECLAIMABLE_B),
6165 global_node_page_state(NR_FILE_MAPPED),
6166 global_node_page_state(NR_SHMEM),
6167 global_node_page_state(NR_PAGETABLE),
6168 global_node_page_state(NR_SECONDARY_PAGETABLE),
6169 global_zone_page_state(NR_BOUNCE),
6170 global_node_page_state(NR_KERNEL_MISC_RECLAIMABLE),
6171 global_zone_page_state(NR_FREE_PAGES),
6173 global_zone_page_state(NR_FREE_CMA_PAGES));
6175 for_each_online_pgdat(pgdat) {
6176 if (show_mem_node_skip(filter, pgdat->node_id, nodemask))
6178 if (!node_has_managed_zones(pgdat, max_zone_idx))
6182 " active_anon:%lukB"
6183 " inactive_anon:%lukB"
6184 " active_file:%lukB"
6185 " inactive_file:%lukB"
6186 " unevictable:%lukB"
6187 " isolated(anon):%lukB"
6188 " isolated(file):%lukB"
6193 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
6195 " shmem_pmdmapped: %lukB"
6198 " writeback_tmp:%lukB"
6199 " kernel_stack:%lukB"
6200 #ifdef CONFIG_SHADOW_CALL_STACK
6201 " shadow_call_stack:%lukB"
6204 " sec_pagetables:%lukB"
6205 " all_unreclaimable? %s"
6208 K(node_page_state(pgdat, NR_ACTIVE_ANON)),
6209 K(node_page_state(pgdat, NR_INACTIVE_ANON)),
6210 K(node_page_state(pgdat, NR_ACTIVE_FILE)),
6211 K(node_page_state(pgdat, NR_INACTIVE_FILE)),
6212 K(node_page_state(pgdat, NR_UNEVICTABLE)),
6213 K(node_page_state(pgdat, NR_ISOLATED_ANON)),
6214 K(node_page_state(pgdat, NR_ISOLATED_FILE)),
6215 K(node_page_state(pgdat, NR_FILE_MAPPED)),
6216 K(node_page_state(pgdat, NR_FILE_DIRTY)),
6217 K(node_page_state(pgdat, NR_WRITEBACK)),
6218 K(node_page_state(pgdat, NR_SHMEM)),
6219 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
6220 K(node_page_state(pgdat, NR_SHMEM_THPS)),
6221 K(node_page_state(pgdat, NR_SHMEM_PMDMAPPED)),
6222 K(node_page_state(pgdat, NR_ANON_THPS)),
6224 K(node_page_state(pgdat, NR_WRITEBACK_TEMP)),
6225 node_page_state(pgdat, NR_KERNEL_STACK_KB),
6226 #ifdef CONFIG_SHADOW_CALL_STACK
6227 node_page_state(pgdat, NR_KERNEL_SCS_KB),
6229 K(node_page_state(pgdat, NR_PAGETABLE)),
6230 K(node_page_state(pgdat, NR_SECONDARY_PAGETABLE)),
6231 pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES ?
6235 for_each_populated_zone(zone) {
6238 if (zone_idx(zone) > max_zone_idx)
6240 if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
6244 for_each_online_cpu(cpu)
6245 free_pcp += per_cpu_ptr(zone->per_cpu_pageset, cpu)->count;
6255 " reserved_highatomic:%luKB"
6256 " active_anon:%lukB"
6257 " inactive_anon:%lukB"
6258 " active_file:%lukB"
6259 " inactive_file:%lukB"
6260 " unevictable:%lukB"
6261 " writepending:%lukB"
6271 K(zone_page_state(zone, NR_FREE_PAGES)),
6272 K(zone->watermark_boost),
6273 K(min_wmark_pages(zone)),
6274 K(low_wmark_pages(zone)),
6275 K(high_wmark_pages(zone)),
6276 K(zone->nr_reserved_highatomic),
6277 K(zone_page_state(zone, NR_ZONE_ACTIVE_ANON)),
6278 K(zone_page_state(zone, NR_ZONE_INACTIVE_ANON)),
6279 K(zone_page_state(zone, NR_ZONE_ACTIVE_FILE)),
6280 K(zone_page_state(zone, NR_ZONE_INACTIVE_FILE)),
6281 K(zone_page_state(zone, NR_ZONE_UNEVICTABLE)),
6282 K(zone_page_state(zone, NR_ZONE_WRITE_PENDING)),
6283 K(zone->present_pages),
6284 K(zone_managed_pages(zone)),
6285 K(zone_page_state(zone, NR_MLOCK)),
6286 K(zone_page_state(zone, NR_BOUNCE)),
6288 K(this_cpu_read(zone->per_cpu_pageset->count)),
6289 K(zone_page_state(zone, NR_FREE_CMA_PAGES)));
6290 printk("lowmem_reserve[]:");
6291 for (i = 0; i < MAX_NR_ZONES; i++)
6292 printk(KERN_CONT " %ld", zone->lowmem_reserve[i]);
6293 printk(KERN_CONT "\n");
6296 for_each_populated_zone(zone) {
6298 unsigned long nr[MAX_ORDER], flags, total = 0;
6299 unsigned char types[MAX_ORDER];
6301 if (zone_idx(zone) > max_zone_idx)
6303 if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
6306 printk(KERN_CONT "%s: ", zone->name);
6308 spin_lock_irqsave(&zone->lock, flags);
6309 for (order = 0; order < MAX_ORDER; order++) {
6310 struct free_area *area = &zone->free_area[order];
6313 nr[order] = area->nr_free;
6314 total += nr[order] << order;
6317 for (type = 0; type < MIGRATE_TYPES; type++) {
6318 if (!free_area_empty(area, type))
6319 types[order] |= 1 << type;
6322 spin_unlock_irqrestore(&zone->lock, flags);
6323 for (order = 0; order < MAX_ORDER; order++) {
6324 printk(KERN_CONT "%lu*%lukB ",
6325 nr[order], K(1UL) << order);
6327 show_migration_types(types[order]);
6329 printk(KERN_CONT "= %lukB\n", K(total));
6332 for_each_online_node(nid) {
6333 if (show_mem_node_skip(filter, nid, nodemask))
6335 hugetlb_show_meminfo_node(nid);
6338 printk("%ld total pagecache pages\n", global_node_page_state(NR_FILE_PAGES));
6340 show_swap_cache_info();
6343 static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
6345 zoneref->zone = zone;
6346 zoneref->zone_idx = zone_idx(zone);
6350 * Builds allocation fallback zone lists.
6352 * Add all populated zones of a node to the zonelist.
6354 static int build_zonerefs_node(pg_data_t *pgdat, struct zoneref *zonerefs)
6357 enum zone_type zone_type = MAX_NR_ZONES;
6362 zone = pgdat->node_zones + zone_type;
6363 if (populated_zone(zone)) {
6364 zoneref_set_zone(zone, &zonerefs[nr_zones++]);
6365 check_highest_zone(zone_type);
6367 } while (zone_type);
6374 static int __parse_numa_zonelist_order(char *s)
6377 * We used to support different zonelists modes but they turned
6378 * out to be just not useful. Let's keep the warning in place
6379 * if somebody still use the cmd line parameter so that we do
6380 * not fail it silently
6382 if (!(*s == 'd' || *s == 'D' || *s == 'n' || *s == 'N')) {
6383 pr_warn("Ignoring unsupported numa_zonelist_order value: %s\n", s);
6389 char numa_zonelist_order[] = "Node";
6392 * sysctl handler for numa_zonelist_order
6394 int numa_zonelist_order_handler(struct ctl_table *table, int write,
6395 void *buffer, size_t *length, loff_t *ppos)
6398 return __parse_numa_zonelist_order(buffer);
6399 return proc_dostring(table, write, buffer, length, ppos);
6403 static int node_load[MAX_NUMNODES];
6406 * find_next_best_node - find the next node that should appear in a given node's fallback list
6407 * @node: node whose fallback list we're appending
6408 * @used_node_mask: nodemask_t of already used nodes
6410 * We use a number of factors to determine which is the next node that should
6411 * appear on a given node's fallback list. The node should not have appeared
6412 * already in @node's fallback list, and it should be the next closest node
6413 * according to the distance array (which contains arbitrary distance values
6414 * from each node to each node in the system), and should also prefer nodes
6415 * with no CPUs, since presumably they'll have very little allocation pressure
6416 * on them otherwise.
6418 * Return: node id of the found node or %NUMA_NO_NODE if no node is found.
6420 int find_next_best_node(int node, nodemask_t *used_node_mask)
6423 int min_val = INT_MAX;
6424 int best_node = NUMA_NO_NODE;
6426 /* Use the local node if we haven't already */
6427 if (!node_isset(node, *used_node_mask)) {
6428 node_set(node, *used_node_mask);
6432 for_each_node_state(n, N_MEMORY) {
6434 /* Don't want a node to appear more than once */
6435 if (node_isset(n, *used_node_mask))
6438 /* Use the distance array to find the distance */
6439 val = node_distance(node, n);
6441 /* Penalize nodes under us ("prefer the next node") */
6444 /* Give preference to headless and unused nodes */
6445 if (!cpumask_empty(cpumask_of_node(n)))
6446 val += PENALTY_FOR_NODE_WITH_CPUS;
6448 /* Slight preference for less loaded node */
6449 val *= MAX_NUMNODES;
6450 val += node_load[n];
6452 if (val < min_val) {
6459 node_set(best_node, *used_node_mask);
6466 * Build zonelists ordered by node and zones within node.
6467 * This results in maximum locality--normal zone overflows into local
6468 * DMA zone, if any--but risks exhausting DMA zone.
6470 static void build_zonelists_in_node_order(pg_data_t *pgdat, int *node_order,
6473 struct zoneref *zonerefs;
6476 zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs;
6478 for (i = 0; i < nr_nodes; i++) {
6481 pg_data_t *node = NODE_DATA(node_order[i]);
6483 nr_zones = build_zonerefs_node(node, zonerefs);
6484 zonerefs += nr_zones;
6486 zonerefs->zone = NULL;
6487 zonerefs->zone_idx = 0;
6491 * Build gfp_thisnode zonelists
6493 static void build_thisnode_zonelists(pg_data_t *pgdat)
6495 struct zoneref *zonerefs;
6498 zonerefs = pgdat->node_zonelists[ZONELIST_NOFALLBACK]._zonerefs;
6499 nr_zones = build_zonerefs_node(pgdat, zonerefs);
6500 zonerefs += nr_zones;
6501 zonerefs->zone = NULL;
6502 zonerefs->zone_idx = 0;
6506 * Build zonelists ordered by zone and nodes within zones.
6507 * This results in conserving DMA zone[s] until all Normal memory is
6508 * exhausted, but results in overflowing to remote node while memory
6509 * may still exist in local DMA zone.
6512 static void build_zonelists(pg_data_t *pgdat)
6514 static int node_order[MAX_NUMNODES];
6515 int node, nr_nodes = 0;
6516 nodemask_t used_mask = NODE_MASK_NONE;
6517 int local_node, prev_node;
6519 /* NUMA-aware ordering of nodes */
6520 local_node = pgdat->node_id;
6521 prev_node = local_node;
6523 memset(node_order, 0, sizeof(node_order));
6524 while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
6526 * We don't want to pressure a particular node.
6527 * So adding penalty to the first node in same
6528 * distance group to make it round-robin.
6530 if (node_distance(local_node, node) !=
6531 node_distance(local_node, prev_node))
6532 node_load[node] += 1;
6534 node_order[nr_nodes++] = node;
6538 build_zonelists_in_node_order(pgdat, node_order, nr_nodes);
6539 build_thisnode_zonelists(pgdat);
6540 pr_info("Fallback order for Node %d: ", local_node);
6541 for (node = 0; node < nr_nodes; node++)
6542 pr_cont("%d ", node_order[node]);
6546 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
6548 * Return node id of node used for "local" allocations.
6549 * I.e., first node id of first zone in arg node's generic zonelist.
6550 * Used for initializing percpu 'numa_mem', which is used primarily
6551 * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
6553 int local_memory_node(int node)
6557 z = first_zones_zonelist(node_zonelist(node, GFP_KERNEL),
6558 gfp_zone(GFP_KERNEL),
6560 return zone_to_nid(z->zone);
6564 static void setup_min_unmapped_ratio(void);
6565 static void setup_min_slab_ratio(void);
6566 #else /* CONFIG_NUMA */
6568 static void build_zonelists(pg_data_t *pgdat)
6570 int node, local_node;
6571 struct zoneref *zonerefs;
6574 local_node = pgdat->node_id;
6576 zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs;
6577 nr_zones = build_zonerefs_node(pgdat, zonerefs);
6578 zonerefs += nr_zones;
6581 * Now we build the zonelist so that it contains the zones
6582 * of all the other nodes.
6583 * We don't want to pressure a particular node, so when
6584 * building the zones for node N, we make sure that the
6585 * zones coming right after the local ones are those from
6586 * node N+1 (modulo N)
6588 for (node = local_node + 1; node < MAX_NUMNODES; node++) {
6589 if (!node_online(node))
6591 nr_zones = build_zonerefs_node(NODE_DATA(node), zonerefs);
6592 zonerefs += nr_zones;
6594 for (node = 0; node < local_node; node++) {
6595 if (!node_online(node))
6597 nr_zones = build_zonerefs_node(NODE_DATA(node), zonerefs);
6598 zonerefs += nr_zones;
6601 zonerefs->zone = NULL;
6602 zonerefs->zone_idx = 0;
6605 #endif /* CONFIG_NUMA */
6608 * Boot pageset table. One per cpu which is going to be used for all
6609 * zones and all nodes. The parameters will be set in such a way
6610 * that an item put on a list will immediately be handed over to
6611 * the buddy list. This is safe since pageset manipulation is done
6612 * with interrupts disabled.
6614 * The boot_pagesets must be kept even after bootup is complete for
6615 * unused processors and/or zones. They do play a role for bootstrapping
6616 * hotplugged processors.
6618 * zoneinfo_show() and maybe other functions do
6619 * not check if the processor is online before following the pageset pointer.
6620 * Other parts of the kernel may not check if the zone is available.
6622 static void per_cpu_pages_init(struct per_cpu_pages *pcp, struct per_cpu_zonestat *pzstats);
6623 /* These effectively disable the pcplists in the boot pageset completely */
6624 #define BOOT_PAGESET_HIGH 0
6625 #define BOOT_PAGESET_BATCH 1
6626 static DEFINE_PER_CPU(struct per_cpu_pages, boot_pageset);
6627 static DEFINE_PER_CPU(struct per_cpu_zonestat, boot_zonestats);
6628 static DEFINE_PER_CPU(struct per_cpu_nodestat, boot_nodestats);
6630 static void __build_all_zonelists(void *data)
6633 int __maybe_unused cpu;
6634 pg_data_t *self = data;
6636 write_seqlock(&zonelist_update_seq);
6639 memset(node_load, 0, sizeof(node_load));
6643 * This node is hotadded and no memory is yet present. So just
6644 * building zonelists is fine - no need to touch other nodes.
6646 if (self && !node_online(self->node_id)) {
6647 build_zonelists(self);
6650 * All possible nodes have pgdat preallocated
6653 for_each_node(nid) {
6654 pg_data_t *pgdat = NODE_DATA(nid);
6656 build_zonelists(pgdat);
6659 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
6661 * We now know the "local memory node" for each node--
6662 * i.e., the node of the first zone in the generic zonelist.
6663 * Set up numa_mem percpu variable for on-line cpus. During
6664 * boot, only the boot cpu should be on-line; we'll init the
6665 * secondary cpus' numa_mem as they come on-line. During
6666 * node/memory hotplug, we'll fixup all on-line cpus.
6668 for_each_online_cpu(cpu)
6669 set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu)));
6673 write_sequnlock(&zonelist_update_seq);
6676 static noinline void __init
6677 build_all_zonelists_init(void)
6681 __build_all_zonelists(NULL);
6684 * Initialize the boot_pagesets that are going to be used
6685 * for bootstrapping processors. The real pagesets for
6686 * each zone will be allocated later when the per cpu
6687 * allocator is available.
6689 * boot_pagesets are used also for bootstrapping offline
6690 * cpus if the system is already booted because the pagesets
6691 * are needed to initialize allocators on a specific cpu too.
6692 * F.e. the percpu allocator needs the page allocator which
6693 * needs the percpu allocator in order to allocate its pagesets
6694 * (a chicken-egg dilemma).
6696 for_each_possible_cpu(cpu)
6697 per_cpu_pages_init(&per_cpu(boot_pageset, cpu), &per_cpu(boot_zonestats, cpu));
6699 mminit_verify_zonelist();
6700 cpuset_init_current_mems_allowed();
6704 * unless system_state == SYSTEM_BOOTING.
6706 * __ref due to call of __init annotated helper build_all_zonelists_init
6707 * [protected by SYSTEM_BOOTING].
6709 void __ref build_all_zonelists(pg_data_t *pgdat)
6711 unsigned long vm_total_pages;
6713 if (system_state == SYSTEM_BOOTING) {
6714 build_all_zonelists_init();
6716 __build_all_zonelists(pgdat);
6717 /* cpuset refresh routine should be here */
6719 /* Get the number of free pages beyond high watermark in all zones. */
6720 vm_total_pages = nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
6722 * Disable grouping by mobility if the number of pages in the
6723 * system is too low to allow the mechanism to work. It would be
6724 * more accurate, but expensive to check per-zone. This check is
6725 * made on memory-hotadd so a system can start with mobility
6726 * disabled and enable it later
6728 if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
6729 page_group_by_mobility_disabled = 1;
6731 page_group_by_mobility_disabled = 0;
6733 pr_info("Built %u zonelists, mobility grouping %s. Total pages: %ld\n",
6735 page_group_by_mobility_disabled ? "off" : "on",
6738 pr_info("Policy zone: %s\n", zone_names[policy_zone]);
6742 /* If zone is ZONE_MOVABLE but memory is mirrored, it is an overlapped init */
6743 static bool __meminit
6744 overlap_memmap_init(unsigned long zone, unsigned long *pfn)
6746 static struct memblock_region *r;
6748 if (mirrored_kernelcore && zone == ZONE_MOVABLE) {
6749 if (!r || *pfn >= memblock_region_memory_end_pfn(r)) {
6750 for_each_mem_region(r) {
6751 if (*pfn < memblock_region_memory_end_pfn(r))
6755 if (*pfn >= memblock_region_memory_base_pfn(r) &&
6756 memblock_is_mirror(r)) {
6757 *pfn = memblock_region_memory_end_pfn(r);
6765 * Initially all pages are reserved - free ones are freed
6766 * up by memblock_free_all() once the early boot process is
6767 * done. Non-atomic initialization, single-pass.
6769 * All aligned pageblocks are initialized to the specified migratetype
6770 * (usually MIGRATE_MOVABLE). Besides setting the migratetype, no related
6771 * zone stats (e.g., nr_isolate_pageblock) are touched.
6773 void __meminit memmap_init_range(unsigned long size, int nid, unsigned long zone,
6774 unsigned long start_pfn, unsigned long zone_end_pfn,
6775 enum meminit_context context,
6776 struct vmem_altmap *altmap, int migratetype)
6778 unsigned long pfn, end_pfn = start_pfn + size;
6781 if (highest_memmap_pfn < end_pfn - 1)
6782 highest_memmap_pfn = end_pfn - 1;
6784 #ifdef CONFIG_ZONE_DEVICE
6786 * Honor reservation requested by the driver for this ZONE_DEVICE
6787 * memory. We limit the total number of pages to initialize to just
6788 * those that might contain the memory mapping. We will defer the
6789 * ZONE_DEVICE page initialization until after we have released
6792 if (zone == ZONE_DEVICE) {
6796 if (start_pfn == altmap->base_pfn)
6797 start_pfn += altmap->reserve;
6798 end_pfn = altmap->base_pfn + vmem_altmap_offset(altmap);
6802 for (pfn = start_pfn; pfn < end_pfn; ) {
6804 * There can be holes in boot-time mem_map[]s handed to this
6805 * function. They do not exist on hotplugged memory.
6807 if (context == MEMINIT_EARLY) {
6808 if (overlap_memmap_init(zone, &pfn))
6810 if (defer_init(nid, pfn, zone_end_pfn)) {
6811 deferred_struct_pages = true;
6816 page = pfn_to_page(pfn);
6817 __init_single_page(page, pfn, zone, nid);
6818 if (context == MEMINIT_HOTPLUG)
6819 __SetPageReserved(page);
6822 * Usually, we want to mark the pageblock MIGRATE_MOVABLE,
6823 * such that unmovable allocations won't be scattered all
6824 * over the place during system boot.
6826 if (pageblock_aligned(pfn)) {
6827 set_pageblock_migratetype(page, migratetype);
6834 #ifdef CONFIG_ZONE_DEVICE
6835 static void __ref __init_zone_device_page(struct page *page, unsigned long pfn,
6836 unsigned long zone_idx, int nid,
6837 struct dev_pagemap *pgmap)
6840 __init_single_page(page, pfn, zone_idx, nid);
6843 * Mark page reserved as it will need to wait for onlining
6844 * phase for it to be fully associated with a zone.
6846 * We can use the non-atomic __set_bit operation for setting
6847 * the flag as we are still initializing the pages.
6849 __SetPageReserved(page);
6852 * ZONE_DEVICE pages union ->lru with a ->pgmap back pointer
6853 * and zone_device_data. It is a bug if a ZONE_DEVICE page is
6854 * ever freed or placed on a driver-private list.
6856 page->pgmap = pgmap;
6857 page->zone_device_data = NULL;
6860 * Mark the block movable so that blocks are reserved for
6861 * movable at startup. This will force kernel allocations
6862 * to reserve their blocks rather than leaking throughout
6863 * the address space during boot when many long-lived
6864 * kernel allocations are made.
6866 * Please note that MEMINIT_HOTPLUG path doesn't clear memmap
6867 * because this is done early in section_activate()
6869 if (pageblock_aligned(pfn)) {
6870 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
6875 * ZONE_DEVICE pages are released directly to the driver page allocator
6876 * which will set the page count to 1 when allocating the page.
6878 if (pgmap->type == MEMORY_DEVICE_PRIVATE ||
6879 pgmap->type == MEMORY_DEVICE_COHERENT)
6880 set_page_count(page, 0);
6884 * With compound page geometry and when struct pages are stored in ram most
6885 * tail pages are reused. Consequently, the amount of unique struct pages to
6886 * initialize is a lot smaller that the total amount of struct pages being
6887 * mapped. This is a paired / mild layering violation with explicit knowledge
6888 * of how the sparse_vmemmap internals handle compound pages in the lack
6889 * of an altmap. See vmemmap_populate_compound_pages().
6891 static inline unsigned long compound_nr_pages(struct vmem_altmap *altmap,
6892 unsigned long nr_pages)
6894 return is_power_of_2(sizeof(struct page)) &&
6895 !altmap ? 2 * (PAGE_SIZE / sizeof(struct page)) : nr_pages;
6898 static void __ref memmap_init_compound(struct page *head,
6899 unsigned long head_pfn,
6900 unsigned long zone_idx, int nid,
6901 struct dev_pagemap *pgmap,
6902 unsigned long nr_pages)
6904 unsigned long pfn, end_pfn = head_pfn + nr_pages;
6905 unsigned int order = pgmap->vmemmap_shift;
6907 __SetPageHead(head);
6908 for (pfn = head_pfn + 1; pfn < end_pfn; pfn++) {
6909 struct page *page = pfn_to_page(pfn);
6911 __init_zone_device_page(page, pfn, zone_idx, nid, pgmap);
6912 prep_compound_tail(head, pfn - head_pfn);
6913 set_page_count(page, 0);
6916 * The first tail page stores important compound page info.
6917 * Call prep_compound_head() after the first tail page has
6918 * been initialized, to not have the data overwritten.
6920 if (pfn == head_pfn + 1)
6921 prep_compound_head(head, order);
6925 void __ref memmap_init_zone_device(struct zone *zone,
6926 unsigned long start_pfn,
6927 unsigned long nr_pages,
6928 struct dev_pagemap *pgmap)
6930 unsigned long pfn, end_pfn = start_pfn + nr_pages;
6931 struct pglist_data *pgdat = zone->zone_pgdat;
6932 struct vmem_altmap *altmap = pgmap_altmap(pgmap);
6933 unsigned int pfns_per_compound = pgmap_vmemmap_nr(pgmap);
6934 unsigned long zone_idx = zone_idx(zone);
6935 unsigned long start = jiffies;
6936 int nid = pgdat->node_id;
6938 if (WARN_ON_ONCE(!pgmap || zone_idx != ZONE_DEVICE))
6942 * The call to memmap_init should have already taken care
6943 * of the pages reserved for the memmap, so we can just jump to
6944 * the end of that region and start processing the device pages.
6947 start_pfn = altmap->base_pfn + vmem_altmap_offset(altmap);
6948 nr_pages = end_pfn - start_pfn;
6951 for (pfn = start_pfn; pfn < end_pfn; pfn += pfns_per_compound) {
6952 struct page *page = pfn_to_page(pfn);
6954 __init_zone_device_page(page, pfn, zone_idx, nid, pgmap);
6956 if (pfns_per_compound == 1)
6959 memmap_init_compound(page, pfn, zone_idx, nid, pgmap,
6960 compound_nr_pages(altmap, pfns_per_compound));
6963 pr_info("%s initialised %lu pages in %ums\n", __func__,
6964 nr_pages, jiffies_to_msecs(jiffies - start));
6968 static void __meminit zone_init_free_lists(struct zone *zone)
6970 unsigned int order, t;
6971 for_each_migratetype_order(order, t) {
6972 INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
6973 zone->free_area[order].nr_free = 0;
6978 * Only struct pages that correspond to ranges defined by memblock.memory
6979 * are zeroed and initialized by going through __init_single_page() during
6980 * memmap_init_zone_range().
6982 * But, there could be struct pages that correspond to holes in
6983 * memblock.memory. This can happen because of the following reasons:
6984 * - physical memory bank size is not necessarily the exact multiple of the
6985 * arbitrary section size
6986 * - early reserved memory may not be listed in memblock.memory
6987 * - memory layouts defined with memmap= kernel parameter may not align
6988 * nicely with memmap sections
6990 * Explicitly initialize those struct pages so that:
6991 * - PG_Reserved is set
6992 * - zone and node links point to zone and node that span the page if the
6993 * hole is in the middle of a zone
6994 * - zone and node links point to adjacent zone/node if the hole falls on
6995 * the zone boundary; the pages in such holes will be prepended to the
6996 * zone/node above the hole except for the trailing pages in the last
6997 * section that will be appended to the zone/node below.
6999 static void __init init_unavailable_range(unsigned long spfn,
7006 for (pfn = spfn; pfn < epfn; pfn++) {
7007 if (!pfn_valid(pageblock_start_pfn(pfn))) {
7008 pfn = pageblock_end_pfn(pfn) - 1;
7011 __init_single_page(pfn_to_page(pfn), pfn, zone, node);
7012 __SetPageReserved(pfn_to_page(pfn));
7017 pr_info("On node %d, zone %s: %lld pages in unavailable ranges",
7018 node, zone_names[zone], pgcnt);
7021 static void __init memmap_init_zone_range(struct zone *zone,
7022 unsigned long start_pfn,
7023 unsigned long end_pfn,
7024 unsigned long *hole_pfn)
7026 unsigned long zone_start_pfn = zone->zone_start_pfn;
7027 unsigned long zone_end_pfn = zone_start_pfn + zone->spanned_pages;
7028 int nid = zone_to_nid(zone), zone_id = zone_idx(zone);
7030 start_pfn = clamp(start_pfn, zone_start_pfn, zone_end_pfn);
7031 end_pfn = clamp(end_pfn, zone_start_pfn, zone_end_pfn);
7033 if (start_pfn >= end_pfn)
7036 memmap_init_range(end_pfn - start_pfn, nid, zone_id, start_pfn,
7037 zone_end_pfn, MEMINIT_EARLY, NULL, MIGRATE_MOVABLE);
7039 if (*hole_pfn < start_pfn)
7040 init_unavailable_range(*hole_pfn, start_pfn, zone_id, nid);
7042 *hole_pfn = end_pfn;
7045 static void __init memmap_init(void)
7047 unsigned long start_pfn, end_pfn;
7048 unsigned long hole_pfn = 0;
7049 int i, j, zone_id = 0, nid;
7051 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
7052 struct pglist_data *node = NODE_DATA(nid);
7054 for (j = 0; j < MAX_NR_ZONES; j++) {
7055 struct zone *zone = node->node_zones + j;
7057 if (!populated_zone(zone))
7060 memmap_init_zone_range(zone, start_pfn, end_pfn,
7066 #ifdef CONFIG_SPARSEMEM
7068 * Initialize the memory map for hole in the range [memory_end,
7070 * Append the pages in this hole to the highest zone in the last
7072 * The call to init_unavailable_range() is outside the ifdef to
7073 * silence the compiler warining about zone_id set but not used;
7074 * for FLATMEM it is a nop anyway
7076 end_pfn = round_up(end_pfn, PAGES_PER_SECTION);
7077 if (hole_pfn < end_pfn)
7079 init_unavailable_range(hole_pfn, end_pfn, zone_id, nid);
7082 void __init *memmap_alloc(phys_addr_t size, phys_addr_t align,
7083 phys_addr_t min_addr, int nid, bool exact_nid)
7088 ptr = memblock_alloc_exact_nid_raw(size, align, min_addr,
7089 MEMBLOCK_ALLOC_ACCESSIBLE,
7092 ptr = memblock_alloc_try_nid_raw(size, align, min_addr,
7093 MEMBLOCK_ALLOC_ACCESSIBLE,
7096 if (ptr && size > 0)
7097 page_init_poison(ptr, size);
7102 static int zone_batchsize(struct zone *zone)
7108 * The number of pages to batch allocate is either ~0.1%
7109 * of the zone or 1MB, whichever is smaller. The batch
7110 * size is striking a balance between allocation latency
7111 * and zone lock contention.
7113 batch = min(zone_managed_pages(zone) >> 10, SZ_1M / PAGE_SIZE);
7114 batch /= 4; /* We effectively *= 4 below */
7119 * Clamp the batch to a 2^n - 1 value. Having a power
7120 * of 2 value was found to be more likely to have
7121 * suboptimal cache aliasing properties in some cases.
7123 * For example if 2 tasks are alternately allocating
7124 * batches of pages, one task can end up with a lot
7125 * of pages of one half of the possible page colors
7126 * and the other with pages of the other colors.
7128 batch = rounddown_pow_of_two(batch + batch/2) - 1;
7133 /* The deferral and batching of frees should be suppressed under NOMMU
7136 * The problem is that NOMMU needs to be able to allocate large chunks
7137 * of contiguous memory as there's no hardware page translation to
7138 * assemble apparent contiguous memory from discontiguous pages.
7140 * Queueing large contiguous runs of pages for batching, however,
7141 * causes the pages to actually be freed in smaller chunks. As there
7142 * can be a significant delay between the individual batches being
7143 * recycled, this leads to the once large chunks of space being
7144 * fragmented and becoming unavailable for high-order allocations.
7150 static int zone_highsize(struct zone *zone, int batch, int cpu_online)
7155 unsigned long total_pages;
7157 if (!percpu_pagelist_high_fraction) {
7159 * By default, the high value of the pcp is based on the zone
7160 * low watermark so that if they are full then background
7161 * reclaim will not be started prematurely.
7163 total_pages = low_wmark_pages(zone);
7166 * If percpu_pagelist_high_fraction is configured, the high
7167 * value is based on a fraction of the managed pages in the
7170 total_pages = zone_managed_pages(zone) / percpu_pagelist_high_fraction;
7174 * Split the high value across all online CPUs local to the zone. Note
7175 * that early in boot that CPUs may not be online yet and that during
7176 * CPU hotplug that the cpumask is not yet updated when a CPU is being
7177 * onlined. For memory nodes that have no CPUs, split pcp->high across
7178 * all online CPUs to mitigate the risk that reclaim is triggered
7179 * prematurely due to pages stored on pcp lists.
7181 nr_split_cpus = cpumask_weight(cpumask_of_node(zone_to_nid(zone))) + cpu_online;
7183 nr_split_cpus = num_online_cpus();
7184 high = total_pages / nr_split_cpus;
7187 * Ensure high is at least batch*4. The multiple is based on the
7188 * historical relationship between high and batch.
7190 high = max(high, batch << 2);
7199 * pcp->high and pcp->batch values are related and generally batch is lower
7200 * than high. They are also related to pcp->count such that count is lower
7201 * than high, and as soon as it reaches high, the pcplist is flushed.
7203 * However, guaranteeing these relations at all times would require e.g. write
7204 * barriers here but also careful usage of read barriers at the read side, and
7205 * thus be prone to error and bad for performance. Thus the update only prevents
7206 * store tearing. Any new users of pcp->batch and pcp->high should ensure they
7207 * can cope with those fields changing asynchronously, and fully trust only the
7208 * pcp->count field on the local CPU with interrupts disabled.
7210 * mutex_is_locked(&pcp_batch_high_lock) required when calling this function
7211 * outside of boot time (or some other assurance that no concurrent updaters
7214 static void pageset_update(struct per_cpu_pages *pcp, unsigned long high,
7215 unsigned long batch)
7217 WRITE_ONCE(pcp->batch, batch);
7218 WRITE_ONCE(pcp->high, high);
7221 static void per_cpu_pages_init(struct per_cpu_pages *pcp, struct per_cpu_zonestat *pzstats)
7225 memset(pcp, 0, sizeof(*pcp));
7226 memset(pzstats, 0, sizeof(*pzstats));
7228 spin_lock_init(&pcp->lock);
7229 for (pindex = 0; pindex < NR_PCP_LISTS; pindex++)
7230 INIT_LIST_HEAD(&pcp->lists[pindex]);
7233 * Set batch and high values safe for a boot pageset. A true percpu
7234 * pageset's initialization will update them subsequently. Here we don't
7235 * need to be as careful as pageset_update() as nobody can access the
7238 pcp->high = BOOT_PAGESET_HIGH;
7239 pcp->batch = BOOT_PAGESET_BATCH;
7240 pcp->free_factor = 0;
7243 static void __zone_set_pageset_high_and_batch(struct zone *zone, unsigned long high,
7244 unsigned long batch)
7246 struct per_cpu_pages *pcp;
7249 for_each_possible_cpu(cpu) {
7250 pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu);
7251 pageset_update(pcp, high, batch);
7256 * Calculate and set new high and batch values for all per-cpu pagesets of a
7257 * zone based on the zone's size.
7259 static void zone_set_pageset_high_and_batch(struct zone *zone, int cpu_online)
7261 int new_high, new_batch;
7263 new_batch = max(1, zone_batchsize(zone));
7264 new_high = zone_highsize(zone, new_batch, cpu_online);
7266 if (zone->pageset_high == new_high &&
7267 zone->pageset_batch == new_batch)
7270 zone->pageset_high = new_high;
7271 zone->pageset_batch = new_batch;
7273 __zone_set_pageset_high_and_batch(zone, new_high, new_batch);
7276 void __meminit setup_zone_pageset(struct zone *zone)
7280 /* Size may be 0 on !SMP && !NUMA */
7281 if (sizeof(struct per_cpu_zonestat) > 0)
7282 zone->per_cpu_zonestats = alloc_percpu(struct per_cpu_zonestat);
7284 zone->per_cpu_pageset = alloc_percpu(struct per_cpu_pages);
7285 for_each_possible_cpu(cpu) {
7286 struct per_cpu_pages *pcp;
7287 struct per_cpu_zonestat *pzstats;
7289 pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu);
7290 pzstats = per_cpu_ptr(zone->per_cpu_zonestats, cpu);
7291 per_cpu_pages_init(pcp, pzstats);
7294 zone_set_pageset_high_and_batch(zone, 0);
7298 * The zone indicated has a new number of managed_pages; batch sizes and percpu
7299 * page high values need to be recalculated.
7301 static void zone_pcp_update(struct zone *zone, int cpu_online)
7303 mutex_lock(&pcp_batch_high_lock);
7304 zone_set_pageset_high_and_batch(zone, cpu_online);
7305 mutex_unlock(&pcp_batch_high_lock);
7309 * Allocate per cpu pagesets and initialize them.
7310 * Before this call only boot pagesets were available.
7312 void __init setup_per_cpu_pageset(void)
7314 struct pglist_data *pgdat;
7316 int __maybe_unused cpu;
7318 for_each_populated_zone(zone)
7319 setup_zone_pageset(zone);
7323 * Unpopulated zones continue using the boot pagesets.
7324 * The numa stats for these pagesets need to be reset.
7325 * Otherwise, they will end up skewing the stats of
7326 * the nodes these zones are associated with.
7328 for_each_possible_cpu(cpu) {
7329 struct per_cpu_zonestat *pzstats = &per_cpu(boot_zonestats, cpu);
7330 memset(pzstats->vm_numa_event, 0,
7331 sizeof(pzstats->vm_numa_event));
7335 for_each_online_pgdat(pgdat)
7336 pgdat->per_cpu_nodestats =
7337 alloc_percpu(struct per_cpu_nodestat);
7340 static __meminit void zone_pcp_init(struct zone *zone)
7343 * per cpu subsystem is not up at this point. The following code
7344 * relies on the ability of the linker to provide the
7345 * offset of a (static) per cpu variable into the per cpu area.
7347 zone->per_cpu_pageset = &boot_pageset;
7348 zone->per_cpu_zonestats = &boot_zonestats;
7349 zone->pageset_high = BOOT_PAGESET_HIGH;
7350 zone->pageset_batch = BOOT_PAGESET_BATCH;
7352 if (populated_zone(zone))
7353 pr_debug(" %s zone: %lu pages, LIFO batch:%u\n", zone->name,
7354 zone->present_pages, zone_batchsize(zone));
7357 void __meminit init_currently_empty_zone(struct zone *zone,
7358 unsigned long zone_start_pfn,
7361 struct pglist_data *pgdat = zone->zone_pgdat;
7362 int zone_idx = zone_idx(zone) + 1;
7364 if (zone_idx > pgdat->nr_zones)
7365 pgdat->nr_zones = zone_idx;
7367 zone->zone_start_pfn = zone_start_pfn;
7369 mminit_dprintk(MMINIT_TRACE, "memmap_init",
7370 "Initialising map node %d zone %lu pfns %lu -> %lu\n",
7372 (unsigned long)zone_idx(zone),
7373 zone_start_pfn, (zone_start_pfn + size));
7375 zone_init_free_lists(zone);
7376 zone->initialized = 1;
7380 * get_pfn_range_for_nid - Return the start and end page frames for a node
7381 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
7382 * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
7383 * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
7385 * It returns the start and end page frame of a node based on information
7386 * provided by memblock_set_node(). If called for a node
7387 * with no available memory, a warning is printed and the start and end
7390 void __init get_pfn_range_for_nid(unsigned int nid,
7391 unsigned long *start_pfn, unsigned long *end_pfn)
7393 unsigned long this_start_pfn, this_end_pfn;
7399 for_each_mem_pfn_range(i, nid, &this_start_pfn, &this_end_pfn, NULL) {
7400 *start_pfn = min(*start_pfn, this_start_pfn);
7401 *end_pfn = max(*end_pfn, this_end_pfn);
7404 if (*start_pfn == -1UL)
7409 * This finds a zone that can be used for ZONE_MOVABLE pages. The
7410 * assumption is made that zones within a node are ordered in monotonic
7411 * increasing memory addresses so that the "highest" populated zone is used
7413 static void __init find_usable_zone_for_movable(void)
7416 for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
7417 if (zone_index == ZONE_MOVABLE)
7420 if (arch_zone_highest_possible_pfn[zone_index] >
7421 arch_zone_lowest_possible_pfn[zone_index])
7425 VM_BUG_ON(zone_index == -1);
7426 movable_zone = zone_index;
7430 * The zone ranges provided by the architecture do not include ZONE_MOVABLE
7431 * because it is sized independent of architecture. Unlike the other zones,
7432 * the starting point for ZONE_MOVABLE is not fixed. It may be different
7433 * in each node depending on the size of each node and how evenly kernelcore
7434 * is distributed. This helper function adjusts the zone ranges
7435 * provided by the architecture for a given node by using the end of the
7436 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
7437 * zones within a node are in order of monotonic increases memory addresses
7439 static void __init adjust_zone_range_for_zone_movable(int nid,
7440 unsigned long zone_type,
7441 unsigned long node_start_pfn,
7442 unsigned long node_end_pfn,
7443 unsigned long *zone_start_pfn,
7444 unsigned long *zone_end_pfn)
7446 /* Only adjust if ZONE_MOVABLE is on this node */
7447 if (zone_movable_pfn[nid]) {
7448 /* Size ZONE_MOVABLE */
7449 if (zone_type == ZONE_MOVABLE) {
7450 *zone_start_pfn = zone_movable_pfn[nid];
7451 *zone_end_pfn = min(node_end_pfn,
7452 arch_zone_highest_possible_pfn[movable_zone]);
7454 /* Adjust for ZONE_MOVABLE starting within this range */
7455 } else if (!mirrored_kernelcore &&
7456 *zone_start_pfn < zone_movable_pfn[nid] &&
7457 *zone_end_pfn > zone_movable_pfn[nid]) {
7458 *zone_end_pfn = zone_movable_pfn[nid];
7460 /* Check if this whole range is within ZONE_MOVABLE */
7461 } else if (*zone_start_pfn >= zone_movable_pfn[nid])
7462 *zone_start_pfn = *zone_end_pfn;
7467 * Return the number of pages a zone spans in a node, including holes
7468 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
7470 static unsigned long __init zone_spanned_pages_in_node(int nid,
7471 unsigned long zone_type,
7472 unsigned long node_start_pfn,
7473 unsigned long node_end_pfn,
7474 unsigned long *zone_start_pfn,
7475 unsigned long *zone_end_pfn)
7477 unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
7478 unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
7479 /* When hotadd a new node from cpu_up(), the node should be empty */
7480 if (!node_start_pfn && !node_end_pfn)
7483 /* Get the start and end of the zone */
7484 *zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
7485 *zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
7486 adjust_zone_range_for_zone_movable(nid, zone_type,
7487 node_start_pfn, node_end_pfn,
7488 zone_start_pfn, zone_end_pfn);
7490 /* Check that this node has pages within the zone's required range */
7491 if (*zone_end_pfn < node_start_pfn || *zone_start_pfn > node_end_pfn)
7494 /* Move the zone boundaries inside the node if necessary */
7495 *zone_end_pfn = min(*zone_end_pfn, node_end_pfn);
7496 *zone_start_pfn = max(*zone_start_pfn, node_start_pfn);
7498 /* Return the spanned pages */
7499 return *zone_end_pfn - *zone_start_pfn;
7503 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
7504 * then all holes in the requested range will be accounted for.
7506 unsigned long __init __absent_pages_in_range(int nid,
7507 unsigned long range_start_pfn,
7508 unsigned long range_end_pfn)
7510 unsigned long nr_absent = range_end_pfn - range_start_pfn;
7511 unsigned long start_pfn, end_pfn;
7514 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
7515 start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn);
7516 end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn);
7517 nr_absent -= end_pfn - start_pfn;
7523 * absent_pages_in_range - Return number of page frames in holes within a range
7524 * @start_pfn: The start PFN to start searching for holes
7525 * @end_pfn: The end PFN to stop searching for holes
7527 * Return: the number of pages frames in memory holes within a range.
7529 unsigned long __init absent_pages_in_range(unsigned long start_pfn,
7530 unsigned long end_pfn)
7532 return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
7535 /* Return the number of page frames in holes in a zone on a node */
7536 static unsigned long __init zone_absent_pages_in_node(int nid,
7537 unsigned long zone_type,
7538 unsigned long node_start_pfn,
7539 unsigned long node_end_pfn)
7541 unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
7542 unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
7543 unsigned long zone_start_pfn, zone_end_pfn;
7544 unsigned long nr_absent;
7546 /* When hotadd a new node from cpu_up(), the node should be empty */
7547 if (!node_start_pfn && !node_end_pfn)
7550 zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
7551 zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
7553 adjust_zone_range_for_zone_movable(nid, zone_type,
7554 node_start_pfn, node_end_pfn,
7555 &zone_start_pfn, &zone_end_pfn);
7556 nr_absent = __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
7559 * ZONE_MOVABLE handling.
7560 * Treat pages to be ZONE_MOVABLE in ZONE_NORMAL as absent pages
7563 if (mirrored_kernelcore && zone_movable_pfn[nid]) {
7564 unsigned long start_pfn, end_pfn;
7565 struct memblock_region *r;
7567 for_each_mem_region(r) {
7568 start_pfn = clamp(memblock_region_memory_base_pfn(r),
7569 zone_start_pfn, zone_end_pfn);
7570 end_pfn = clamp(memblock_region_memory_end_pfn(r),
7571 zone_start_pfn, zone_end_pfn);
7573 if (zone_type == ZONE_MOVABLE &&
7574 memblock_is_mirror(r))
7575 nr_absent += end_pfn - start_pfn;
7577 if (zone_type == ZONE_NORMAL &&
7578 !memblock_is_mirror(r))
7579 nr_absent += end_pfn - start_pfn;
7586 static void __init calculate_node_totalpages(struct pglist_data *pgdat,
7587 unsigned long node_start_pfn,
7588 unsigned long node_end_pfn)
7590 unsigned long realtotalpages = 0, totalpages = 0;
7593 for (i = 0; i < MAX_NR_ZONES; i++) {
7594 struct zone *zone = pgdat->node_zones + i;
7595 unsigned long zone_start_pfn, zone_end_pfn;
7596 unsigned long spanned, absent;
7597 unsigned long size, real_size;
7599 spanned = zone_spanned_pages_in_node(pgdat->node_id, i,
7604 absent = zone_absent_pages_in_node(pgdat->node_id, i,
7609 real_size = size - absent;
7612 zone->zone_start_pfn = zone_start_pfn;
7614 zone->zone_start_pfn = 0;
7615 zone->spanned_pages = size;
7616 zone->present_pages = real_size;
7617 #if defined(CONFIG_MEMORY_HOTPLUG)
7618 zone->present_early_pages = real_size;
7622 realtotalpages += real_size;
7625 pgdat->node_spanned_pages = totalpages;
7626 pgdat->node_present_pages = realtotalpages;
7627 pr_debug("On node %d totalpages: %lu\n", pgdat->node_id, realtotalpages);
7630 #ifndef CONFIG_SPARSEMEM
7632 * Calculate the size of the zone->blockflags rounded to an unsigned long
7633 * Start by making sure zonesize is a multiple of pageblock_order by rounding
7634 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
7635 * round what is now in bits to nearest long in bits, then return it in
7638 static unsigned long __init usemap_size(unsigned long zone_start_pfn, unsigned long zonesize)
7640 unsigned long usemapsize;
7642 zonesize += zone_start_pfn & (pageblock_nr_pages-1);
7643 usemapsize = roundup(zonesize, pageblock_nr_pages);
7644 usemapsize = usemapsize >> pageblock_order;
7645 usemapsize *= NR_PAGEBLOCK_BITS;
7646 usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));
7648 return usemapsize / 8;
7651 static void __ref setup_usemap(struct zone *zone)
7653 unsigned long usemapsize = usemap_size(zone->zone_start_pfn,
7654 zone->spanned_pages);
7655 zone->pageblock_flags = NULL;
7657 zone->pageblock_flags =
7658 memblock_alloc_node(usemapsize, SMP_CACHE_BYTES,
7660 if (!zone->pageblock_flags)
7661 panic("Failed to allocate %ld bytes for zone %s pageblock flags on node %d\n",
7662 usemapsize, zone->name, zone_to_nid(zone));
7666 static inline void setup_usemap(struct zone *zone) {}
7667 #endif /* CONFIG_SPARSEMEM */
7669 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
7671 /* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
7672 void __init set_pageblock_order(void)
7674 unsigned int order = MAX_ORDER - 1;
7676 /* Check that pageblock_nr_pages has not already been setup */
7677 if (pageblock_order)
7680 /* Don't let pageblocks exceed the maximum allocation granularity. */
7681 if (HPAGE_SHIFT > PAGE_SHIFT && HUGETLB_PAGE_ORDER < order)
7682 order = HUGETLB_PAGE_ORDER;
7685 * Assume the largest contiguous order of interest is a huge page.
7686 * This value may be variable depending on boot parameters on IA64 and
7689 pageblock_order = order;
7691 #else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
7694 * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
7695 * is unused as pageblock_order is set at compile-time. See
7696 * include/linux/pageblock-flags.h for the values of pageblock_order based on
7699 void __init set_pageblock_order(void)
7703 #endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
7705 static unsigned long __init calc_memmap_size(unsigned long spanned_pages,
7706 unsigned long present_pages)
7708 unsigned long pages = spanned_pages;
7711 * Provide a more accurate estimation if there are holes within
7712 * the zone and SPARSEMEM is in use. If there are holes within the
7713 * zone, each populated memory region may cost us one or two extra
7714 * memmap pages due to alignment because memmap pages for each
7715 * populated regions may not be naturally aligned on page boundary.
7716 * So the (present_pages >> 4) heuristic is a tradeoff for that.
7718 if (spanned_pages > present_pages + (present_pages >> 4) &&
7719 IS_ENABLED(CONFIG_SPARSEMEM))
7720 pages = present_pages;
7722 return PAGE_ALIGN(pages * sizeof(struct page)) >> PAGE_SHIFT;
7725 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
7726 static void pgdat_init_split_queue(struct pglist_data *pgdat)
7728 struct deferred_split *ds_queue = &pgdat->deferred_split_queue;
7730 spin_lock_init(&ds_queue->split_queue_lock);
7731 INIT_LIST_HEAD(&ds_queue->split_queue);
7732 ds_queue->split_queue_len = 0;
7735 static void pgdat_init_split_queue(struct pglist_data *pgdat) {}
7738 #ifdef CONFIG_COMPACTION
7739 static void pgdat_init_kcompactd(struct pglist_data *pgdat)
7741 init_waitqueue_head(&pgdat->kcompactd_wait);
7744 static void pgdat_init_kcompactd(struct pglist_data *pgdat) {}
7747 static void __meminit pgdat_init_internals(struct pglist_data *pgdat)
7751 pgdat_resize_init(pgdat);
7752 pgdat_kswapd_lock_init(pgdat);
7754 pgdat_init_split_queue(pgdat);
7755 pgdat_init_kcompactd(pgdat);
7757 init_waitqueue_head(&pgdat->kswapd_wait);
7758 init_waitqueue_head(&pgdat->pfmemalloc_wait);
7760 for (i = 0; i < NR_VMSCAN_THROTTLE; i++)
7761 init_waitqueue_head(&pgdat->reclaim_wait[i]);
7763 pgdat_page_ext_init(pgdat);
7764 lruvec_init(&pgdat->__lruvec);
7767 static void __meminit zone_init_internals(struct zone *zone, enum zone_type idx, int nid,
7768 unsigned long remaining_pages)
7770 atomic_long_set(&zone->managed_pages, remaining_pages);
7771 zone_set_nid(zone, nid);
7772 zone->name = zone_names[idx];
7773 zone->zone_pgdat = NODE_DATA(nid);
7774 spin_lock_init(&zone->lock);
7775 zone_seqlock_init(zone);
7776 zone_pcp_init(zone);
7780 * Set up the zone data structures
7781 * - init pgdat internals
7782 * - init all zones belonging to this node
7784 * NOTE: this function is only called during memory hotplug
7786 #ifdef CONFIG_MEMORY_HOTPLUG
7787 void __ref free_area_init_core_hotplug(struct pglist_data *pgdat)
7789 int nid = pgdat->node_id;
7793 pgdat_init_internals(pgdat);
7795 if (pgdat->per_cpu_nodestats == &boot_nodestats)
7796 pgdat->per_cpu_nodestats = alloc_percpu(struct per_cpu_nodestat);
7799 * Reset the nr_zones, order and highest_zoneidx before reuse.
7800 * Note that kswapd will init kswapd_highest_zoneidx properly
7801 * when it starts in the near future.
7803 pgdat->nr_zones = 0;
7804 pgdat->kswapd_order = 0;
7805 pgdat->kswapd_highest_zoneidx = 0;
7806 pgdat->node_start_pfn = 0;
7807 for_each_online_cpu(cpu) {
7808 struct per_cpu_nodestat *p;
7810 p = per_cpu_ptr(pgdat->per_cpu_nodestats, cpu);
7811 memset(p, 0, sizeof(*p));
7814 for (z = 0; z < MAX_NR_ZONES; z++)
7815 zone_init_internals(&pgdat->node_zones[z], z, nid, 0);
7820 * Set up the zone data structures:
7821 * - mark all pages reserved
7822 * - mark all memory queues empty
7823 * - clear the memory bitmaps
7825 * NOTE: pgdat should get zeroed by caller.
7826 * NOTE: this function is only called during early init.
7828 static void __init free_area_init_core(struct pglist_data *pgdat)
7831 int nid = pgdat->node_id;
7833 pgdat_init_internals(pgdat);
7834 pgdat->per_cpu_nodestats = &boot_nodestats;
7836 for (j = 0; j < MAX_NR_ZONES; j++) {
7837 struct zone *zone = pgdat->node_zones + j;
7838 unsigned long size, freesize, memmap_pages;
7840 size = zone->spanned_pages;
7841 freesize = zone->present_pages;
7844 * Adjust freesize so that it accounts for how much memory
7845 * is used by this zone for memmap. This affects the watermark
7846 * and per-cpu initialisations
7848 memmap_pages = calc_memmap_size(size, freesize);
7849 if (!is_highmem_idx(j)) {
7850 if (freesize >= memmap_pages) {
7851 freesize -= memmap_pages;
7853 pr_debug(" %s zone: %lu pages used for memmap\n",
7854 zone_names[j], memmap_pages);
7856 pr_warn(" %s zone: %lu memmap pages exceeds freesize %lu\n",
7857 zone_names[j], memmap_pages, freesize);
7860 /* Account for reserved pages */
7861 if (j == 0 && freesize > dma_reserve) {
7862 freesize -= dma_reserve;
7863 pr_debug(" %s zone: %lu pages reserved\n", zone_names[0], dma_reserve);
7866 if (!is_highmem_idx(j))
7867 nr_kernel_pages += freesize;
7868 /* Charge for highmem memmap if there are enough kernel pages */
7869 else if (nr_kernel_pages > memmap_pages * 2)
7870 nr_kernel_pages -= memmap_pages;
7871 nr_all_pages += freesize;
7874 * Set an approximate value for lowmem here, it will be adjusted
7875 * when the bootmem allocator frees pages into the buddy system.
7876 * And all highmem pages will be managed by the buddy system.
7878 zone_init_internals(zone, j, nid, freesize);
7883 set_pageblock_order();
7885 init_currently_empty_zone(zone, zone->zone_start_pfn, size);
7889 #ifdef CONFIG_FLATMEM
7890 static void __init alloc_node_mem_map(struct pglist_data *pgdat)
7892 unsigned long __maybe_unused start = 0;
7893 unsigned long __maybe_unused offset = 0;
7895 /* Skip empty nodes */
7896 if (!pgdat->node_spanned_pages)
7899 start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
7900 offset = pgdat->node_start_pfn - start;
7901 /* ia64 gets its own node_mem_map, before this, without bootmem */
7902 if (!pgdat->node_mem_map) {
7903 unsigned long size, end;
7907 * The zone's endpoints aren't required to be MAX_ORDER
7908 * aligned but the node_mem_map endpoints must be in order
7909 * for the buddy allocator to function correctly.
7911 end = pgdat_end_pfn(pgdat);
7912 end = ALIGN(end, MAX_ORDER_NR_PAGES);
7913 size = (end - start) * sizeof(struct page);
7914 map = memmap_alloc(size, SMP_CACHE_BYTES, MEMBLOCK_LOW_LIMIT,
7915 pgdat->node_id, false);
7917 panic("Failed to allocate %ld bytes for node %d memory map\n",
7918 size, pgdat->node_id);
7919 pgdat->node_mem_map = map + offset;
7921 pr_debug("%s: node %d, pgdat %08lx, node_mem_map %08lx\n",
7922 __func__, pgdat->node_id, (unsigned long)pgdat,
7923 (unsigned long)pgdat->node_mem_map);
7926 * With no DISCONTIG, the global mem_map is just set as node 0's
7928 if (pgdat == NODE_DATA(0)) {
7929 mem_map = NODE_DATA(0)->node_mem_map;
7930 if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
7936 static inline void alloc_node_mem_map(struct pglist_data *pgdat) { }
7937 #endif /* CONFIG_FLATMEM */
7939 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
7940 static inline void pgdat_set_deferred_range(pg_data_t *pgdat)
7942 pgdat->first_deferred_pfn = ULONG_MAX;
7945 static inline void pgdat_set_deferred_range(pg_data_t *pgdat) {}
7948 static void __init free_area_init_node(int nid)
7950 pg_data_t *pgdat = NODE_DATA(nid);
7951 unsigned long start_pfn = 0;
7952 unsigned long end_pfn = 0;
7954 /* pg_data_t should be reset to zero when it's allocated */
7955 WARN_ON(pgdat->nr_zones || pgdat->kswapd_highest_zoneidx);
7957 get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
7959 pgdat->node_id = nid;
7960 pgdat->node_start_pfn = start_pfn;
7961 pgdat->per_cpu_nodestats = NULL;
7963 if (start_pfn != end_pfn) {
7964 pr_info("Initmem setup node %d [mem %#018Lx-%#018Lx]\n", nid,
7965 (u64)start_pfn << PAGE_SHIFT,
7966 end_pfn ? ((u64)end_pfn << PAGE_SHIFT) - 1 : 0);
7968 pr_info("Initmem setup node %d as memoryless\n", nid);
7971 calculate_node_totalpages(pgdat, start_pfn, end_pfn);
7973 alloc_node_mem_map(pgdat);
7974 pgdat_set_deferred_range(pgdat);
7976 free_area_init_core(pgdat);
7977 lru_gen_init_pgdat(pgdat);
7980 static void __init free_area_init_memoryless_node(int nid)
7982 free_area_init_node(nid);
7985 #if MAX_NUMNODES > 1
7987 * Figure out the number of possible node ids.
7989 void __init setup_nr_node_ids(void)
7991 unsigned int highest;
7993 highest = find_last_bit(node_possible_map.bits, MAX_NUMNODES);
7994 nr_node_ids = highest + 1;
7999 * node_map_pfn_alignment - determine the maximum internode alignment
8001 * This function should be called after node map is populated and sorted.
8002 * It calculates the maximum power of two alignment which can distinguish
8005 * For example, if all nodes are 1GiB and aligned to 1GiB, the return value
8006 * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)). If the
8007 * nodes are shifted by 256MiB, 256MiB. Note that if only the last node is
8008 * shifted, 1GiB is enough and this function will indicate so.
8010 * This is used to test whether pfn -> nid mapping of the chosen memory
8011 * model has fine enough granularity to avoid incorrect mapping for the
8012 * populated node map.
8014 * Return: the determined alignment in pfn's. 0 if there is no alignment
8015 * requirement (single node).
8017 unsigned long __init node_map_pfn_alignment(void)
8019 unsigned long accl_mask = 0, last_end = 0;
8020 unsigned long start, end, mask;
8021 int last_nid = NUMA_NO_NODE;
8024 for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid) {
8025 if (!start || last_nid < 0 || last_nid == nid) {
8032 * Start with a mask granular enough to pin-point to the
8033 * start pfn and tick off bits one-by-one until it becomes
8034 * too coarse to separate the current node from the last.
8036 mask = ~((1 << __ffs(start)) - 1);
8037 while (mask && last_end <= (start & (mask << 1)))
8040 /* accumulate all internode masks */
8044 /* convert mask to number of pages */
8045 return ~accl_mask + 1;
8049 * early_calculate_totalpages()
8050 * Sum pages in active regions for movable zone.
8051 * Populate N_MEMORY for calculating usable_nodes.
8053 static unsigned long __init early_calculate_totalpages(void)
8055 unsigned long totalpages = 0;
8056 unsigned long start_pfn, end_pfn;
8059 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
8060 unsigned long pages = end_pfn - start_pfn;
8062 totalpages += pages;
8064 node_set_state(nid, N_MEMORY);
8070 * Find the PFN the Movable zone begins in each node. Kernel memory
8071 * is spread evenly between nodes as long as the nodes have enough
8072 * memory. When they don't, some nodes will have more kernelcore than
8075 static void __init find_zone_movable_pfns_for_nodes(void)
8078 unsigned long usable_startpfn;
8079 unsigned long kernelcore_node, kernelcore_remaining;
8080 /* save the state before borrow the nodemask */
8081 nodemask_t saved_node_state = node_states[N_MEMORY];
8082 unsigned long totalpages = early_calculate_totalpages();
8083 int usable_nodes = nodes_weight(node_states[N_MEMORY]);
8084 struct memblock_region *r;
8086 /* Need to find movable_zone earlier when movable_node is specified. */
8087 find_usable_zone_for_movable();
8090 * If movable_node is specified, ignore kernelcore and movablecore
8093 if (movable_node_is_enabled()) {
8094 for_each_mem_region(r) {
8095 if (!memblock_is_hotpluggable(r))
8098 nid = memblock_get_region_node(r);
8100 usable_startpfn = PFN_DOWN(r->base);
8101 zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
8102 min(usable_startpfn, zone_movable_pfn[nid]) :
8110 * If kernelcore=mirror is specified, ignore movablecore option
8112 if (mirrored_kernelcore) {
8113 bool mem_below_4gb_not_mirrored = false;
8115 for_each_mem_region(r) {
8116 if (memblock_is_mirror(r))
8119 nid = memblock_get_region_node(r);
8121 usable_startpfn = memblock_region_memory_base_pfn(r);
8123 if (usable_startpfn < PHYS_PFN(SZ_4G)) {
8124 mem_below_4gb_not_mirrored = true;
8128 zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
8129 min(usable_startpfn, zone_movable_pfn[nid]) :
8133 if (mem_below_4gb_not_mirrored)
8134 pr_warn("This configuration results in unmirrored kernel memory.\n");
8140 * If kernelcore=nn% or movablecore=nn% was specified, calculate the
8141 * amount of necessary memory.
8143 if (required_kernelcore_percent)
8144 required_kernelcore = (totalpages * 100 * required_kernelcore_percent) /
8146 if (required_movablecore_percent)
8147 required_movablecore = (totalpages * 100 * required_movablecore_percent) /
8151 * If movablecore= was specified, calculate what size of
8152 * kernelcore that corresponds so that memory usable for
8153 * any allocation type is evenly spread. If both kernelcore
8154 * and movablecore are specified, then the value of kernelcore
8155 * will be used for required_kernelcore if it's greater than
8156 * what movablecore would have allowed.
8158 if (required_movablecore) {
8159 unsigned long corepages;
8162 * Round-up so that ZONE_MOVABLE is at least as large as what
8163 * was requested by the user
8165 required_movablecore =
8166 roundup(required_movablecore, MAX_ORDER_NR_PAGES);
8167 required_movablecore = min(totalpages, required_movablecore);
8168 corepages = totalpages - required_movablecore;
8170 required_kernelcore = max(required_kernelcore, corepages);
8174 * If kernelcore was not specified or kernelcore size is larger
8175 * than totalpages, there is no ZONE_MOVABLE.
8177 if (!required_kernelcore || required_kernelcore >= totalpages)
8180 /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
8181 usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
8184 /* Spread kernelcore memory as evenly as possible throughout nodes */
8185 kernelcore_node = required_kernelcore / usable_nodes;
8186 for_each_node_state(nid, N_MEMORY) {
8187 unsigned long start_pfn, end_pfn;
8190 * Recalculate kernelcore_node if the division per node
8191 * now exceeds what is necessary to satisfy the requested
8192 * amount of memory for the kernel
8194 if (required_kernelcore < kernelcore_node)
8195 kernelcore_node = required_kernelcore / usable_nodes;
8198 * As the map is walked, we track how much memory is usable
8199 * by the kernel using kernelcore_remaining. When it is
8200 * 0, the rest of the node is usable by ZONE_MOVABLE
8202 kernelcore_remaining = kernelcore_node;
8204 /* Go through each range of PFNs within this node */
8205 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
8206 unsigned long size_pages;
8208 start_pfn = max(start_pfn, zone_movable_pfn[nid]);
8209 if (start_pfn >= end_pfn)
8212 /* Account for what is only usable for kernelcore */
8213 if (start_pfn < usable_startpfn) {
8214 unsigned long kernel_pages;
8215 kernel_pages = min(end_pfn, usable_startpfn)
8218 kernelcore_remaining -= min(kernel_pages,
8219 kernelcore_remaining);
8220 required_kernelcore -= min(kernel_pages,
8221 required_kernelcore);
8223 /* Continue if range is now fully accounted */
8224 if (end_pfn <= usable_startpfn) {
8227 * Push zone_movable_pfn to the end so
8228 * that if we have to rebalance
8229 * kernelcore across nodes, we will
8230 * not double account here
8232 zone_movable_pfn[nid] = end_pfn;
8235 start_pfn = usable_startpfn;
8239 * The usable PFN range for ZONE_MOVABLE is from
8240 * start_pfn->end_pfn. Calculate size_pages as the
8241 * number of pages used as kernelcore
8243 size_pages = end_pfn - start_pfn;
8244 if (size_pages > kernelcore_remaining)
8245 size_pages = kernelcore_remaining;
8246 zone_movable_pfn[nid] = start_pfn + size_pages;
8249 * Some kernelcore has been met, update counts and
8250 * break if the kernelcore for this node has been
8253 required_kernelcore -= min(required_kernelcore,
8255 kernelcore_remaining -= size_pages;
8256 if (!kernelcore_remaining)
8262 * If there is still required_kernelcore, we do another pass with one
8263 * less node in the count. This will push zone_movable_pfn[nid] further
8264 * along on the nodes that still have memory until kernelcore is
8268 if (usable_nodes && required_kernelcore > usable_nodes)
8272 /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
8273 for (nid = 0; nid < MAX_NUMNODES; nid++) {
8274 unsigned long start_pfn, end_pfn;
8276 zone_movable_pfn[nid] =
8277 roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
8279 get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
8280 if (zone_movable_pfn[nid] >= end_pfn)
8281 zone_movable_pfn[nid] = 0;
8285 /* restore the node_state */
8286 node_states[N_MEMORY] = saved_node_state;
8289 /* Any regular or high memory on that node ? */
8290 static void check_for_memory(pg_data_t *pgdat, int nid)
8292 enum zone_type zone_type;
8294 for (zone_type = 0; zone_type <= ZONE_MOVABLE - 1; zone_type++) {
8295 struct zone *zone = &pgdat->node_zones[zone_type];
8296 if (populated_zone(zone)) {
8297 if (IS_ENABLED(CONFIG_HIGHMEM))
8298 node_set_state(nid, N_HIGH_MEMORY);
8299 if (zone_type <= ZONE_NORMAL)
8300 node_set_state(nid, N_NORMAL_MEMORY);
8307 * Some architectures, e.g. ARC may have ZONE_HIGHMEM below ZONE_NORMAL. For
8308 * such cases we allow max_zone_pfn sorted in the descending order
8310 bool __weak arch_has_descending_max_zone_pfns(void)
8316 * free_area_init - Initialise all pg_data_t and zone data
8317 * @max_zone_pfn: an array of max PFNs for each zone
8319 * This will call free_area_init_node() for each active node in the system.
8320 * Using the page ranges provided by memblock_set_node(), the size of each
8321 * zone in each node and their holes is calculated. If the maximum PFN
8322 * between two adjacent zones match, it is assumed that the zone is empty.
8323 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
8324 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
8325 * starts where the previous one ended. For example, ZONE_DMA32 starts
8326 * at arch_max_dma_pfn.
8328 void __init free_area_init(unsigned long *max_zone_pfn)
8330 unsigned long start_pfn, end_pfn;
8334 /* Record where the zone boundaries are */
8335 memset(arch_zone_lowest_possible_pfn, 0,
8336 sizeof(arch_zone_lowest_possible_pfn));
8337 memset(arch_zone_highest_possible_pfn, 0,
8338 sizeof(arch_zone_highest_possible_pfn));
8340 start_pfn = PHYS_PFN(memblock_start_of_DRAM());
8341 descending = arch_has_descending_max_zone_pfns();
8343 for (i = 0; i < MAX_NR_ZONES; i++) {
8345 zone = MAX_NR_ZONES - i - 1;
8349 if (zone == ZONE_MOVABLE)
8352 end_pfn = max(max_zone_pfn[zone], start_pfn);
8353 arch_zone_lowest_possible_pfn[zone] = start_pfn;
8354 arch_zone_highest_possible_pfn[zone] = end_pfn;
8356 start_pfn = end_pfn;
8359 /* Find the PFNs that ZONE_MOVABLE begins at in each node */
8360 memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
8361 find_zone_movable_pfns_for_nodes();
8363 /* Print out the zone ranges */
8364 pr_info("Zone ranges:\n");
8365 for (i = 0; i < MAX_NR_ZONES; i++) {
8366 if (i == ZONE_MOVABLE)
8368 pr_info(" %-8s ", zone_names[i]);
8369 if (arch_zone_lowest_possible_pfn[i] ==
8370 arch_zone_highest_possible_pfn[i])
8373 pr_cont("[mem %#018Lx-%#018Lx]\n",
8374 (u64)arch_zone_lowest_possible_pfn[i]
8376 ((u64)arch_zone_highest_possible_pfn[i]
8377 << PAGE_SHIFT) - 1);
8380 /* Print out the PFNs ZONE_MOVABLE begins at in each node */
8381 pr_info("Movable zone start for each node\n");
8382 for (i = 0; i < MAX_NUMNODES; i++) {
8383 if (zone_movable_pfn[i])
8384 pr_info(" Node %d: %#018Lx\n", i,
8385 (u64)zone_movable_pfn[i] << PAGE_SHIFT);
8389 * Print out the early node map, and initialize the
8390 * subsection-map relative to active online memory ranges to
8391 * enable future "sub-section" extensions of the memory map.
8393 pr_info("Early memory node ranges\n");
8394 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
8395 pr_info(" node %3d: [mem %#018Lx-%#018Lx]\n", nid,
8396 (u64)start_pfn << PAGE_SHIFT,
8397 ((u64)end_pfn << PAGE_SHIFT) - 1);
8398 subsection_map_init(start_pfn, end_pfn - start_pfn);
8401 /* Initialise every node */
8402 mminit_verify_pageflags_layout();
8403 setup_nr_node_ids();
8404 for_each_node(nid) {
8407 if (!node_online(nid)) {
8408 pr_info("Initializing node %d as memoryless\n", nid);
8410 /* Allocator not initialized yet */
8411 pgdat = arch_alloc_nodedata(nid);
8413 panic("Cannot allocate %zuB for node %d.\n",
8414 sizeof(*pgdat), nid);
8415 arch_refresh_nodedata(nid, pgdat);
8416 free_area_init_memoryless_node(nid);
8419 * We do not want to confuse userspace by sysfs
8420 * files/directories for node without any memory
8421 * attached to it, so this node is not marked as
8422 * N_MEMORY and not marked online so that no sysfs
8423 * hierarchy will be created via register_one_node for
8424 * it. The pgdat will get fully initialized by
8425 * hotadd_init_pgdat() when memory is hotplugged into
8431 pgdat = NODE_DATA(nid);
8432 free_area_init_node(nid);
8434 /* Any memory on that node */
8435 if (pgdat->node_present_pages)
8436 node_set_state(nid, N_MEMORY);
8437 check_for_memory(pgdat, nid);
8443 static int __init cmdline_parse_core(char *p, unsigned long *core,
8444 unsigned long *percent)
8446 unsigned long long coremem;
8452 /* Value may be a percentage of total memory, otherwise bytes */
8453 coremem = simple_strtoull(p, &endptr, 0);
8454 if (*endptr == '%') {
8455 /* Paranoid check for percent values greater than 100 */
8456 WARN_ON(coremem > 100);
8460 coremem = memparse(p, &p);
8461 /* Paranoid check that UL is enough for the coremem value */
8462 WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
8464 *core = coremem >> PAGE_SHIFT;
8471 * kernelcore=size sets the amount of memory for use for allocations that
8472 * cannot be reclaimed or migrated.
8474 static int __init cmdline_parse_kernelcore(char *p)
8476 /* parse kernelcore=mirror */
8477 if (parse_option_str(p, "mirror")) {
8478 mirrored_kernelcore = true;
8482 return cmdline_parse_core(p, &required_kernelcore,
8483 &required_kernelcore_percent);
8487 * movablecore=size sets the amount of memory for use for allocations that
8488 * can be reclaimed or migrated.
8490 static int __init cmdline_parse_movablecore(char *p)
8492 return cmdline_parse_core(p, &required_movablecore,
8493 &required_movablecore_percent);
8496 early_param("kernelcore", cmdline_parse_kernelcore);
8497 early_param("movablecore", cmdline_parse_movablecore);
8499 void adjust_managed_page_count(struct page *page, long count)
8501 atomic_long_add(count, &page_zone(page)->managed_pages);
8502 totalram_pages_add(count);
8503 #ifdef CONFIG_HIGHMEM
8504 if (PageHighMem(page))
8505 totalhigh_pages_add(count);
8508 EXPORT_SYMBOL(adjust_managed_page_count);
8510 unsigned long free_reserved_area(void *start, void *end, int poison, const char *s)
8513 unsigned long pages = 0;
8515 start = (void *)PAGE_ALIGN((unsigned long)start);
8516 end = (void *)((unsigned long)end & PAGE_MASK);
8517 for (pos = start; pos < end; pos += PAGE_SIZE, pages++) {
8518 struct page *page = virt_to_page(pos);
8519 void *direct_map_addr;
8522 * 'direct_map_addr' might be different from 'pos'
8523 * because some architectures' virt_to_page()
8524 * work with aliases. Getting the direct map
8525 * address ensures that we get a _writeable_
8526 * alias for the memset().
8528 direct_map_addr = page_address(page);
8530 * Perform a kasan-unchecked memset() since this memory
8531 * has not been initialized.
8533 direct_map_addr = kasan_reset_tag(direct_map_addr);
8534 if ((unsigned int)poison <= 0xFF)
8535 memset(direct_map_addr, poison, PAGE_SIZE);
8537 free_reserved_page(page);
8541 pr_info("Freeing %s memory: %ldK\n", s, K(pages));
8546 void __init mem_init_print_info(void)
8548 unsigned long physpages, codesize, datasize, rosize, bss_size;
8549 unsigned long init_code_size, init_data_size;
8551 physpages = get_num_physpages();
8552 codesize = _etext - _stext;
8553 datasize = _edata - _sdata;
8554 rosize = __end_rodata - __start_rodata;
8555 bss_size = __bss_stop - __bss_start;
8556 init_data_size = __init_end - __init_begin;
8557 init_code_size = _einittext - _sinittext;
8560 * Detect special cases and adjust section sizes accordingly:
8561 * 1) .init.* may be embedded into .data sections
8562 * 2) .init.text.* may be out of [__init_begin, __init_end],
8563 * please refer to arch/tile/kernel/vmlinux.lds.S.
8564 * 3) .rodata.* may be embedded into .text or .data sections.
8566 #define adj_init_size(start, end, size, pos, adj) \
8568 if (&start[0] <= &pos[0] && &pos[0] < &end[0] && size > adj) \
8572 adj_init_size(__init_begin, __init_end, init_data_size,
8573 _sinittext, init_code_size);
8574 adj_init_size(_stext, _etext, codesize, _sinittext, init_code_size);
8575 adj_init_size(_sdata, _edata, datasize, __init_begin, init_data_size);
8576 adj_init_size(_stext, _etext, codesize, __start_rodata, rosize);
8577 adj_init_size(_sdata, _edata, datasize, __start_rodata, rosize);
8579 #undef adj_init_size
8581 pr_info("Memory: %luK/%luK available (%luK kernel code, %luK rwdata, %luK rodata, %luK init, %luK bss, %luK reserved, %luK cma-reserved"
8582 #ifdef CONFIG_HIGHMEM
8586 K(nr_free_pages()), K(physpages),
8587 codesize / SZ_1K, datasize / SZ_1K, rosize / SZ_1K,
8588 (init_data_size + init_code_size) / SZ_1K, bss_size / SZ_1K,
8589 K(physpages - totalram_pages() - totalcma_pages),
8591 #ifdef CONFIG_HIGHMEM
8592 , K(totalhigh_pages())
8598 * set_dma_reserve - set the specified number of pages reserved in the first zone
8599 * @new_dma_reserve: The number of pages to mark reserved
8601 * The per-cpu batchsize and zone watermarks are determined by managed_pages.
8602 * In the DMA zone, a significant percentage may be consumed by kernel image
8603 * and other unfreeable allocations which can skew the watermarks badly. This
8604 * function may optionally be used to account for unfreeable pages in the
8605 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
8606 * smaller per-cpu batchsize.
8608 void __init set_dma_reserve(unsigned long new_dma_reserve)
8610 dma_reserve = new_dma_reserve;
8613 static int page_alloc_cpu_dead(unsigned int cpu)
8617 lru_add_drain_cpu(cpu);
8618 mlock_drain_remote(cpu);
8622 * Spill the event counters of the dead processor
8623 * into the current processors event counters.
8624 * This artificially elevates the count of the current
8627 vm_events_fold_cpu(cpu);
8630 * Zero the differential counters of the dead processor
8631 * so that the vm statistics are consistent.
8633 * This is only okay since the processor is dead and cannot
8634 * race with what we are doing.
8636 cpu_vm_stats_fold(cpu);
8638 for_each_populated_zone(zone)
8639 zone_pcp_update(zone, 0);
8644 static int page_alloc_cpu_online(unsigned int cpu)
8648 for_each_populated_zone(zone)
8649 zone_pcp_update(zone, 1);
8654 int hashdist = HASHDIST_DEFAULT;
8656 static int __init set_hashdist(char *str)
8660 hashdist = simple_strtoul(str, &str, 0);
8663 __setup("hashdist=", set_hashdist);
8666 void __init page_alloc_init(void)
8671 if (num_node_state(N_MEMORY) == 1)
8675 ret = cpuhp_setup_state_nocalls(CPUHP_PAGE_ALLOC,
8676 "mm/page_alloc:pcp",
8677 page_alloc_cpu_online,
8678 page_alloc_cpu_dead);
8683 * calculate_totalreserve_pages - called when sysctl_lowmem_reserve_ratio
8684 * or min_free_kbytes changes.
8686 static void calculate_totalreserve_pages(void)
8688 struct pglist_data *pgdat;
8689 unsigned long reserve_pages = 0;
8690 enum zone_type i, j;
8692 for_each_online_pgdat(pgdat) {
8694 pgdat->totalreserve_pages = 0;
8696 for (i = 0; i < MAX_NR_ZONES; i++) {
8697 struct zone *zone = pgdat->node_zones + i;
8699 unsigned long managed_pages = zone_managed_pages(zone);
8701 /* Find valid and maximum lowmem_reserve in the zone */
8702 for (j = i; j < MAX_NR_ZONES; j++) {
8703 if (zone->lowmem_reserve[j] > max)
8704 max = zone->lowmem_reserve[j];
8707 /* we treat the high watermark as reserved pages. */
8708 max += high_wmark_pages(zone);
8710 if (max > managed_pages)
8711 max = managed_pages;
8713 pgdat->totalreserve_pages += max;
8715 reserve_pages += max;
8718 totalreserve_pages = reserve_pages;
8722 * setup_per_zone_lowmem_reserve - called whenever
8723 * sysctl_lowmem_reserve_ratio changes. Ensures that each zone
8724 * has a correct pages reserved value, so an adequate number of
8725 * pages are left in the zone after a successful __alloc_pages().
8727 static void setup_per_zone_lowmem_reserve(void)
8729 struct pglist_data *pgdat;
8730 enum zone_type i, j;
8732 for_each_online_pgdat(pgdat) {
8733 for (i = 0; i < MAX_NR_ZONES - 1; i++) {
8734 struct zone *zone = &pgdat->node_zones[i];
8735 int ratio = sysctl_lowmem_reserve_ratio[i];
8736 bool clear = !ratio || !zone_managed_pages(zone);
8737 unsigned long managed_pages = 0;
8739 for (j = i + 1; j < MAX_NR_ZONES; j++) {
8740 struct zone *upper_zone = &pgdat->node_zones[j];
8742 managed_pages += zone_managed_pages(upper_zone);
8745 zone->lowmem_reserve[j] = 0;
8747 zone->lowmem_reserve[j] = managed_pages / ratio;
8752 /* update totalreserve_pages */
8753 calculate_totalreserve_pages();
8756 static void __setup_per_zone_wmarks(void)
8758 unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
8759 unsigned long lowmem_pages = 0;
8761 unsigned long flags;
8763 /* Calculate total number of !ZONE_HIGHMEM pages */
8764 for_each_zone(zone) {
8765 if (!is_highmem(zone))
8766 lowmem_pages += zone_managed_pages(zone);
8769 for_each_zone(zone) {
8772 spin_lock_irqsave(&zone->lock, flags);
8773 tmp = (u64)pages_min * zone_managed_pages(zone);
8774 do_div(tmp, lowmem_pages);
8775 if (is_highmem(zone)) {
8777 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
8778 * need highmem pages, so cap pages_min to a small
8781 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
8782 * deltas control async page reclaim, and so should
8783 * not be capped for highmem.
8785 unsigned long min_pages;
8787 min_pages = zone_managed_pages(zone) / 1024;
8788 min_pages = clamp(min_pages, SWAP_CLUSTER_MAX, 128UL);
8789 zone->_watermark[WMARK_MIN] = min_pages;
8792 * If it's a lowmem zone, reserve a number of pages
8793 * proportionate to the zone's size.
8795 zone->_watermark[WMARK_MIN] = tmp;
8799 * Set the kswapd watermarks distance according to the
8800 * scale factor in proportion to available memory, but
8801 * ensure a minimum size on small systems.
8803 tmp = max_t(u64, tmp >> 2,
8804 mult_frac(zone_managed_pages(zone),
8805 watermark_scale_factor, 10000));
8807 zone->watermark_boost = 0;
8808 zone->_watermark[WMARK_LOW] = min_wmark_pages(zone) + tmp;
8809 zone->_watermark[WMARK_HIGH] = low_wmark_pages(zone) + tmp;
8810 zone->_watermark[WMARK_PROMO] = high_wmark_pages(zone) + tmp;
8812 spin_unlock_irqrestore(&zone->lock, flags);
8815 /* update totalreserve_pages */
8816 calculate_totalreserve_pages();
8820 * setup_per_zone_wmarks - called when min_free_kbytes changes
8821 * or when memory is hot-{added|removed}
8823 * Ensures that the watermark[min,low,high] values for each zone are set
8824 * correctly with respect to min_free_kbytes.
8826 void setup_per_zone_wmarks(void)
8829 static DEFINE_SPINLOCK(lock);
8832 __setup_per_zone_wmarks();
8836 * The watermark size have changed so update the pcpu batch
8837 * and high limits or the limits may be inappropriate.
8840 zone_pcp_update(zone, 0);
8844 * Initialise min_free_kbytes.
8846 * For small machines we want it small (128k min). For large machines
8847 * we want it large (256MB max). But it is not linear, because network
8848 * bandwidth does not increase linearly with machine size. We use
8850 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
8851 * min_free_kbytes = sqrt(lowmem_kbytes * 16)
8867 void calculate_min_free_kbytes(void)
8869 unsigned long lowmem_kbytes;
8870 int new_min_free_kbytes;
8872 lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
8873 new_min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
8875 if (new_min_free_kbytes > user_min_free_kbytes)
8876 min_free_kbytes = clamp(new_min_free_kbytes, 128, 262144);
8878 pr_warn("min_free_kbytes is not updated to %d because user defined value %d is preferred\n",
8879 new_min_free_kbytes, user_min_free_kbytes);
8883 int __meminit init_per_zone_wmark_min(void)
8885 calculate_min_free_kbytes();
8886 setup_per_zone_wmarks();
8887 refresh_zone_stat_thresholds();
8888 setup_per_zone_lowmem_reserve();
8891 setup_min_unmapped_ratio();
8892 setup_min_slab_ratio();
8895 khugepaged_min_free_kbytes_update();
8899 postcore_initcall(init_per_zone_wmark_min)
8902 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
8903 * that we can call two helper functions whenever min_free_kbytes
8906 int min_free_kbytes_sysctl_handler(struct ctl_table *table, int write,
8907 void *buffer, size_t *length, loff_t *ppos)
8911 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
8916 user_min_free_kbytes = min_free_kbytes;
8917 setup_per_zone_wmarks();
8922 int watermark_scale_factor_sysctl_handler(struct ctl_table *table, int write,
8923 void *buffer, size_t *length, loff_t *ppos)
8927 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
8932 setup_per_zone_wmarks();
8938 static void setup_min_unmapped_ratio(void)
8943 for_each_online_pgdat(pgdat)
8944 pgdat->min_unmapped_pages = 0;
8947 zone->zone_pgdat->min_unmapped_pages += (zone_managed_pages(zone) *
8948 sysctl_min_unmapped_ratio) / 100;
8952 int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *table, int write,
8953 void *buffer, size_t *length, loff_t *ppos)
8957 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
8961 setup_min_unmapped_ratio();
8966 static void setup_min_slab_ratio(void)
8971 for_each_online_pgdat(pgdat)
8972 pgdat->min_slab_pages = 0;
8975 zone->zone_pgdat->min_slab_pages += (zone_managed_pages(zone) *
8976 sysctl_min_slab_ratio) / 100;
8979 int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *table, int write,
8980 void *buffer, size_t *length, loff_t *ppos)
8984 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
8988 setup_min_slab_ratio();
8995 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
8996 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
8997 * whenever sysctl_lowmem_reserve_ratio changes.
8999 * The reserve ratio obviously has absolutely no relation with the
9000 * minimum watermarks. The lowmem reserve ratio can only make sense
9001 * if in function of the boot time zone sizes.
9003 int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *table, int write,
9004 void *buffer, size_t *length, loff_t *ppos)
9008 proc_dointvec_minmax(table, write, buffer, length, ppos);
9010 for (i = 0; i < MAX_NR_ZONES; i++) {
9011 if (sysctl_lowmem_reserve_ratio[i] < 1)
9012 sysctl_lowmem_reserve_ratio[i] = 0;
9015 setup_per_zone_lowmem_reserve();
9020 * percpu_pagelist_high_fraction - changes the pcp->high for each zone on each
9021 * cpu. It is the fraction of total pages in each zone that a hot per cpu
9022 * pagelist can have before it gets flushed back to buddy allocator.
9024 int percpu_pagelist_high_fraction_sysctl_handler(struct ctl_table *table,
9025 int write, void *buffer, size_t *length, loff_t *ppos)
9028 int old_percpu_pagelist_high_fraction;
9031 mutex_lock(&pcp_batch_high_lock);
9032 old_percpu_pagelist_high_fraction = percpu_pagelist_high_fraction;
9034 ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
9035 if (!write || ret < 0)
9038 /* Sanity checking to avoid pcp imbalance */
9039 if (percpu_pagelist_high_fraction &&
9040 percpu_pagelist_high_fraction < MIN_PERCPU_PAGELIST_HIGH_FRACTION) {
9041 percpu_pagelist_high_fraction = old_percpu_pagelist_high_fraction;
9047 if (percpu_pagelist_high_fraction == old_percpu_pagelist_high_fraction)
9050 for_each_populated_zone(zone)
9051 zone_set_pageset_high_and_batch(zone, 0);
9053 mutex_unlock(&pcp_batch_high_lock);
9057 #ifndef __HAVE_ARCH_RESERVED_KERNEL_PAGES
9059 * Returns the number of pages that arch has reserved but
9060 * is not known to alloc_large_system_hash().
9062 static unsigned long __init arch_reserved_kernel_pages(void)
9069 * Adaptive scale is meant to reduce sizes of hash tables on large memory
9070 * machines. As memory size is increased the scale is also increased but at
9071 * slower pace. Starting from ADAPT_SCALE_BASE (64G), every time memory
9072 * quadruples the scale is increased by one, which means the size of hash table
9073 * only doubles, instead of quadrupling as well.
9074 * Because 32-bit systems cannot have large physical memory, where this scaling
9075 * makes sense, it is disabled on such platforms.
9077 #if __BITS_PER_LONG > 32
9078 #define ADAPT_SCALE_BASE (64ul << 30)
9079 #define ADAPT_SCALE_SHIFT 2
9080 #define ADAPT_SCALE_NPAGES (ADAPT_SCALE_BASE >> PAGE_SHIFT)
9084 * allocate a large system hash table from bootmem
9085 * - it is assumed that the hash table must contain an exact power-of-2
9086 * quantity of entries
9087 * - limit is the number of hash buckets, not the total allocation size
9089 void *__init alloc_large_system_hash(const char *tablename,
9090 unsigned long bucketsize,
9091 unsigned long numentries,
9094 unsigned int *_hash_shift,
9095 unsigned int *_hash_mask,
9096 unsigned long low_limit,
9097 unsigned long high_limit)
9099 unsigned long long max = high_limit;
9100 unsigned long log2qty, size;
9106 /* allow the kernel cmdline to have a say */
9108 /* round applicable memory size up to nearest megabyte */
9109 numentries = nr_kernel_pages;
9110 numentries -= arch_reserved_kernel_pages();
9112 /* It isn't necessary when PAGE_SIZE >= 1MB */
9113 if (PAGE_SIZE < SZ_1M)
9114 numentries = round_up(numentries, SZ_1M / PAGE_SIZE);
9116 #if __BITS_PER_LONG > 32
9118 unsigned long adapt;
9120 for (adapt = ADAPT_SCALE_NPAGES; adapt < numentries;
9121 adapt <<= ADAPT_SCALE_SHIFT)
9126 /* limit to 1 bucket per 2^scale bytes of low memory */
9127 if (scale > PAGE_SHIFT)
9128 numentries >>= (scale - PAGE_SHIFT);
9130 numentries <<= (PAGE_SHIFT - scale);
9132 /* Make sure we've got at least a 0-order allocation.. */
9133 if (unlikely(flags & HASH_SMALL)) {
9134 /* Makes no sense without HASH_EARLY */
9135 WARN_ON(!(flags & HASH_EARLY));
9136 if (!(numentries >> *_hash_shift)) {
9137 numentries = 1UL << *_hash_shift;
9138 BUG_ON(!numentries);
9140 } else if (unlikely((numentries * bucketsize) < PAGE_SIZE))
9141 numentries = PAGE_SIZE / bucketsize;
9143 numentries = roundup_pow_of_two(numentries);
9145 /* limit allocation size to 1/16 total memory by default */
9147 max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
9148 do_div(max, bucketsize);
9150 max = min(max, 0x80000000ULL);
9152 if (numentries < low_limit)
9153 numentries = low_limit;
9154 if (numentries > max)
9157 log2qty = ilog2(numentries);
9159 gfp_flags = (flags & HASH_ZERO) ? GFP_ATOMIC | __GFP_ZERO : GFP_ATOMIC;
9162 size = bucketsize << log2qty;
9163 if (flags & HASH_EARLY) {
9164 if (flags & HASH_ZERO)
9165 table = memblock_alloc(size, SMP_CACHE_BYTES);
9167 table = memblock_alloc_raw(size,
9169 } else if (get_order(size) >= MAX_ORDER || hashdist) {
9170 table = vmalloc_huge(size, gfp_flags);
9173 huge = is_vm_area_hugepages(table);
9176 * If bucketsize is not a power-of-two, we may free
9177 * some pages at the end of hash table which
9178 * alloc_pages_exact() automatically does
9180 table = alloc_pages_exact(size, gfp_flags);
9181 kmemleak_alloc(table, size, 1, gfp_flags);
9183 } while (!table && size > PAGE_SIZE && --log2qty);
9186 panic("Failed to allocate %s hash table\n", tablename);
9188 pr_info("%s hash table entries: %ld (order: %d, %lu bytes, %s)\n",
9189 tablename, 1UL << log2qty, ilog2(size) - PAGE_SHIFT, size,
9190 virt ? (huge ? "vmalloc hugepage" : "vmalloc") : "linear");
9193 *_hash_shift = log2qty;
9195 *_hash_mask = (1 << log2qty) - 1;
9200 #ifdef CONFIG_CONTIG_ALLOC
9201 #if defined(CONFIG_DYNAMIC_DEBUG) || \
9202 (defined(CONFIG_DYNAMIC_DEBUG_CORE) && defined(DYNAMIC_DEBUG_MODULE))
9203 /* Usage: See admin-guide/dynamic-debug-howto.rst */
9204 static void alloc_contig_dump_pages(struct list_head *page_list)
9206 DEFINE_DYNAMIC_DEBUG_METADATA(descriptor, "migrate failure");
9208 if (DYNAMIC_DEBUG_BRANCH(descriptor)) {
9212 list_for_each_entry(page, page_list, lru)
9213 dump_page(page, "migration failure");
9217 static inline void alloc_contig_dump_pages(struct list_head *page_list)
9222 /* [start, end) must belong to a single zone. */
9223 int __alloc_contig_migrate_range(struct compact_control *cc,
9224 unsigned long start, unsigned long end)
9226 /* This function is based on compact_zone() from compaction.c. */
9227 unsigned int nr_reclaimed;
9228 unsigned long pfn = start;
9229 unsigned int tries = 0;
9231 struct migration_target_control mtc = {
9232 .nid = zone_to_nid(cc->zone),
9233 .gfp_mask = GFP_USER | __GFP_MOVABLE | __GFP_RETRY_MAYFAIL,
9236 lru_cache_disable();
9238 while (pfn < end || !list_empty(&cc->migratepages)) {
9239 if (fatal_signal_pending(current)) {
9244 if (list_empty(&cc->migratepages)) {
9245 cc->nr_migratepages = 0;
9246 ret = isolate_migratepages_range(cc, pfn, end);
9247 if (ret && ret != -EAGAIN)
9249 pfn = cc->migrate_pfn;
9251 } else if (++tries == 5) {
9256 nr_reclaimed = reclaim_clean_pages_from_list(cc->zone,
9258 cc->nr_migratepages -= nr_reclaimed;
9260 ret = migrate_pages(&cc->migratepages, alloc_migration_target,
9261 NULL, (unsigned long)&mtc, cc->mode, MR_CONTIG_RANGE, NULL);
9264 * On -ENOMEM, migrate_pages() bails out right away. It is pointless
9265 * to retry again over this error, so do the same here.
9273 if (!(cc->gfp_mask & __GFP_NOWARN) && ret == -EBUSY)
9274 alloc_contig_dump_pages(&cc->migratepages);
9275 putback_movable_pages(&cc->migratepages);
9282 * alloc_contig_range() -- tries to allocate given range of pages
9283 * @start: start PFN to allocate
9284 * @end: one-past-the-last PFN to allocate
9285 * @migratetype: migratetype of the underlying pageblocks (either
9286 * #MIGRATE_MOVABLE or #MIGRATE_CMA). All pageblocks
9287 * in range must have the same migratetype and it must
9288 * be either of the two.
9289 * @gfp_mask: GFP mask to use during compaction
9291 * The PFN range does not have to be pageblock aligned. The PFN range must
9292 * belong to a single zone.
9294 * The first thing this routine does is attempt to MIGRATE_ISOLATE all
9295 * pageblocks in the range. Once isolated, the pageblocks should not
9296 * be modified by others.
9298 * Return: zero on success or negative error code. On success all
9299 * pages which PFN is in [start, end) are allocated for the caller and
9300 * need to be freed with free_contig_range().
9302 int alloc_contig_range(unsigned long start, unsigned long end,
9303 unsigned migratetype, gfp_t gfp_mask)
9305 unsigned long outer_start, outer_end;
9309 struct compact_control cc = {
9310 .nr_migratepages = 0,
9312 .zone = page_zone(pfn_to_page(start)),
9313 .mode = MIGRATE_SYNC,
9314 .ignore_skip_hint = true,
9315 .no_set_skip_hint = true,
9316 .gfp_mask = current_gfp_context(gfp_mask),
9317 .alloc_contig = true,
9319 INIT_LIST_HEAD(&cc.migratepages);
9322 * What we do here is we mark all pageblocks in range as
9323 * MIGRATE_ISOLATE. Because pageblock and max order pages may
9324 * have different sizes, and due to the way page allocator
9325 * work, start_isolate_page_range() has special handlings for this.
9327 * Once the pageblocks are marked as MIGRATE_ISOLATE, we
9328 * migrate the pages from an unaligned range (ie. pages that
9329 * we are interested in). This will put all the pages in
9330 * range back to page allocator as MIGRATE_ISOLATE.
9332 * When this is done, we take the pages in range from page
9333 * allocator removing them from the buddy system. This way
9334 * page allocator will never consider using them.
9336 * This lets us mark the pageblocks back as
9337 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the
9338 * aligned range but not in the unaligned, original range are
9339 * put back to page allocator so that buddy can use them.
9342 ret = start_isolate_page_range(start, end, migratetype, 0, gfp_mask);
9346 drain_all_pages(cc.zone);
9349 * In case of -EBUSY, we'd like to know which page causes problem.
9350 * So, just fall through. test_pages_isolated() has a tracepoint
9351 * which will report the busy page.
9353 * It is possible that busy pages could become available before
9354 * the call to test_pages_isolated, and the range will actually be
9355 * allocated. So, if we fall through be sure to clear ret so that
9356 * -EBUSY is not accidentally used or returned to caller.
9358 ret = __alloc_contig_migrate_range(&cc, start, end);
9359 if (ret && ret != -EBUSY)
9364 * Pages from [start, end) are within a pageblock_nr_pages
9365 * aligned blocks that are marked as MIGRATE_ISOLATE. What's
9366 * more, all pages in [start, end) are free in page allocator.
9367 * What we are going to do is to allocate all pages from
9368 * [start, end) (that is remove them from page allocator).
9370 * The only problem is that pages at the beginning and at the
9371 * end of interesting range may be not aligned with pages that
9372 * page allocator holds, ie. they can be part of higher order
9373 * pages. Because of this, we reserve the bigger range and
9374 * once this is done free the pages we are not interested in.
9376 * We don't have to hold zone->lock here because the pages are
9377 * isolated thus they won't get removed from buddy.
9381 outer_start = start;
9382 while (!PageBuddy(pfn_to_page(outer_start))) {
9383 if (++order >= MAX_ORDER) {
9384 outer_start = start;
9387 outer_start &= ~0UL << order;
9390 if (outer_start != start) {
9391 order = buddy_order(pfn_to_page(outer_start));
9394 * outer_start page could be small order buddy page and
9395 * it doesn't include start page. Adjust outer_start
9396 * in this case to report failed page properly
9397 * on tracepoint in test_pages_isolated()
9399 if (outer_start + (1UL << order) <= start)
9400 outer_start = start;
9403 /* Make sure the range is really isolated. */
9404 if (test_pages_isolated(outer_start, end, 0)) {
9409 /* Grab isolated pages from freelists. */
9410 outer_end = isolate_freepages_range(&cc, outer_start, end);
9416 /* Free head and tail (if any) */
9417 if (start != outer_start)
9418 free_contig_range(outer_start, start - outer_start);
9419 if (end != outer_end)
9420 free_contig_range(end, outer_end - end);
9423 undo_isolate_page_range(start, end, migratetype);
9426 EXPORT_SYMBOL(alloc_contig_range);
9428 static int __alloc_contig_pages(unsigned long start_pfn,
9429 unsigned long nr_pages, gfp_t gfp_mask)
9431 unsigned long end_pfn = start_pfn + nr_pages;
9433 return alloc_contig_range(start_pfn, end_pfn, MIGRATE_MOVABLE,
9437 static bool pfn_range_valid_contig(struct zone *z, unsigned long start_pfn,
9438 unsigned long nr_pages)
9440 unsigned long i, end_pfn = start_pfn + nr_pages;
9443 for (i = start_pfn; i < end_pfn; i++) {
9444 page = pfn_to_online_page(i);
9448 if (page_zone(page) != z)
9451 if (PageReserved(page))
9457 static bool zone_spans_last_pfn(const struct zone *zone,
9458 unsigned long start_pfn, unsigned long nr_pages)
9460 unsigned long last_pfn = start_pfn + nr_pages - 1;
9462 return zone_spans_pfn(zone, last_pfn);
9466 * alloc_contig_pages() -- tries to find and allocate contiguous range of pages
9467 * @nr_pages: Number of contiguous pages to allocate
9468 * @gfp_mask: GFP mask to limit search and used during compaction
9470 * @nodemask: Mask for other possible nodes
9472 * This routine is a wrapper around alloc_contig_range(). It scans over zones
9473 * on an applicable zonelist to find a contiguous pfn range which can then be
9474 * tried for allocation with alloc_contig_range(). This routine is intended
9475 * for allocation requests which can not be fulfilled with the buddy allocator.
9477 * The allocated memory is always aligned to a page boundary. If nr_pages is a
9478 * power of two, then allocated range is also guaranteed to be aligned to same
9479 * nr_pages (e.g. 1GB request would be aligned to 1GB).
9481 * Allocated pages can be freed with free_contig_range() or by manually calling
9482 * __free_page() on each allocated page.
9484 * Return: pointer to contiguous pages on success, or NULL if not successful.
9486 struct page *alloc_contig_pages(unsigned long nr_pages, gfp_t gfp_mask,
9487 int nid, nodemask_t *nodemask)
9489 unsigned long ret, pfn, flags;
9490 struct zonelist *zonelist;
9494 zonelist = node_zonelist(nid, gfp_mask);
9495 for_each_zone_zonelist_nodemask(zone, z, zonelist,
9496 gfp_zone(gfp_mask), nodemask) {
9497 spin_lock_irqsave(&zone->lock, flags);
9499 pfn = ALIGN(zone->zone_start_pfn, nr_pages);
9500 while (zone_spans_last_pfn(zone, pfn, nr_pages)) {
9501 if (pfn_range_valid_contig(zone, pfn, nr_pages)) {
9503 * We release the zone lock here because
9504 * alloc_contig_range() will also lock the zone
9505 * at some point. If there's an allocation
9506 * spinning on this lock, it may win the race
9507 * and cause alloc_contig_range() to fail...
9509 spin_unlock_irqrestore(&zone->lock, flags);
9510 ret = __alloc_contig_pages(pfn, nr_pages,
9513 return pfn_to_page(pfn);
9514 spin_lock_irqsave(&zone->lock, flags);
9518 spin_unlock_irqrestore(&zone->lock, flags);
9522 #endif /* CONFIG_CONTIG_ALLOC */
9524 void free_contig_range(unsigned long pfn, unsigned long nr_pages)
9526 unsigned long count = 0;
9528 for (; nr_pages--; pfn++) {
9529 struct page *page = pfn_to_page(pfn);
9531 count += page_count(page) != 1;
9534 WARN(count != 0, "%lu pages are still in use!\n", count);
9536 EXPORT_SYMBOL(free_contig_range);
9539 * Effectively disable pcplists for the zone by setting the high limit to 0
9540 * and draining all cpus. A concurrent page freeing on another CPU that's about
9541 * to put the page on pcplist will either finish before the drain and the page
9542 * will be drained, or observe the new high limit and skip the pcplist.
9544 * Must be paired with a call to zone_pcp_enable().
9546 void zone_pcp_disable(struct zone *zone)
9548 mutex_lock(&pcp_batch_high_lock);
9549 __zone_set_pageset_high_and_batch(zone, 0, 1);
9550 __drain_all_pages(zone, true);
9553 void zone_pcp_enable(struct zone *zone)
9555 __zone_set_pageset_high_and_batch(zone, zone->pageset_high, zone->pageset_batch);
9556 mutex_unlock(&pcp_batch_high_lock);
9559 void zone_pcp_reset(struct zone *zone)
9562 struct per_cpu_zonestat *pzstats;
9564 if (zone->per_cpu_pageset != &boot_pageset) {
9565 for_each_online_cpu(cpu) {
9566 pzstats = per_cpu_ptr(zone->per_cpu_zonestats, cpu);
9567 drain_zonestat(zone, pzstats);
9569 free_percpu(zone->per_cpu_pageset);
9570 zone->per_cpu_pageset = &boot_pageset;
9571 if (zone->per_cpu_zonestats != &boot_zonestats) {
9572 free_percpu(zone->per_cpu_zonestats);
9573 zone->per_cpu_zonestats = &boot_zonestats;
9578 #ifdef CONFIG_MEMORY_HOTREMOVE
9580 * All pages in the range must be in a single zone, must not contain holes,
9581 * must span full sections, and must be isolated before calling this function.
9583 void __offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
9585 unsigned long pfn = start_pfn;
9589 unsigned long flags;
9591 offline_mem_sections(pfn, end_pfn);
9592 zone = page_zone(pfn_to_page(pfn));
9593 spin_lock_irqsave(&zone->lock, flags);
9594 while (pfn < end_pfn) {
9595 page = pfn_to_page(pfn);
9597 * The HWPoisoned page may be not in buddy system, and
9598 * page_count() is not 0.
9600 if (unlikely(!PageBuddy(page) && PageHWPoison(page))) {
9605 * At this point all remaining PageOffline() pages have a
9606 * reference count of 0 and can simply be skipped.
9608 if (PageOffline(page)) {
9609 BUG_ON(page_count(page));
9610 BUG_ON(PageBuddy(page));
9615 BUG_ON(page_count(page));
9616 BUG_ON(!PageBuddy(page));
9617 order = buddy_order(page);
9618 del_page_from_free_list(page, zone, order);
9619 pfn += (1 << order);
9621 spin_unlock_irqrestore(&zone->lock, flags);
9626 * This function returns a stable result only if called under zone lock.
9628 bool is_free_buddy_page(struct page *page)
9630 unsigned long pfn = page_to_pfn(page);
9633 for (order = 0; order < MAX_ORDER; order++) {
9634 struct page *page_head = page - (pfn & ((1 << order) - 1));
9636 if (PageBuddy(page_head) &&
9637 buddy_order_unsafe(page_head) >= order)
9641 return order < MAX_ORDER;
9643 EXPORT_SYMBOL(is_free_buddy_page);
9645 #ifdef CONFIG_MEMORY_FAILURE
9647 * Break down a higher-order page in sub-pages, and keep our target out of
9650 static void break_down_buddy_pages(struct zone *zone, struct page *page,
9651 struct page *target, int low, int high,
9654 unsigned long size = 1 << high;
9655 struct page *current_buddy, *next_page;
9657 while (high > low) {
9661 if (target >= &page[size]) {
9662 next_page = page + size;
9663 current_buddy = page;
9666 current_buddy = page + size;
9669 if (set_page_guard(zone, current_buddy, high, migratetype))
9672 if (current_buddy != target) {
9673 add_to_free_list(current_buddy, zone, high, migratetype);
9674 set_buddy_order(current_buddy, high);
9681 * Take a page that will be marked as poisoned off the buddy allocator.
9683 bool take_page_off_buddy(struct page *page)
9685 struct zone *zone = page_zone(page);
9686 unsigned long pfn = page_to_pfn(page);
9687 unsigned long flags;
9691 spin_lock_irqsave(&zone->lock, flags);
9692 for (order = 0; order < MAX_ORDER; order++) {
9693 struct page *page_head = page - (pfn & ((1 << order) - 1));
9694 int page_order = buddy_order(page_head);
9696 if (PageBuddy(page_head) && page_order >= order) {
9697 unsigned long pfn_head = page_to_pfn(page_head);
9698 int migratetype = get_pfnblock_migratetype(page_head,
9701 del_page_from_free_list(page_head, zone, page_order);
9702 break_down_buddy_pages(zone, page_head, page, 0,
9703 page_order, migratetype);
9704 SetPageHWPoisonTakenOff(page);
9705 if (!is_migrate_isolate(migratetype))
9706 __mod_zone_freepage_state(zone, -1, migratetype);
9710 if (page_count(page_head) > 0)
9713 spin_unlock_irqrestore(&zone->lock, flags);
9718 * Cancel takeoff done by take_page_off_buddy().
9720 bool put_page_back_buddy(struct page *page)
9722 struct zone *zone = page_zone(page);
9723 unsigned long pfn = page_to_pfn(page);
9724 unsigned long flags;
9725 int migratetype = get_pfnblock_migratetype(page, pfn);
9728 spin_lock_irqsave(&zone->lock, flags);
9729 if (put_page_testzero(page)) {
9730 ClearPageHWPoisonTakenOff(page);
9731 __free_one_page(page, pfn, zone, 0, migratetype, FPI_NONE);
9732 if (TestClearPageHWPoison(page)) {
9736 spin_unlock_irqrestore(&zone->lock, flags);
9742 #ifdef CONFIG_ZONE_DMA
9743 bool has_managed_dma(void)
9745 struct pglist_data *pgdat;
9747 for_each_online_pgdat(pgdat) {
9748 struct zone *zone = &pgdat->node_zones[ZONE_DMA];
9750 if (managed_zone(zone))
9755 #endif /* CONFIG_ZONE_DMA */