2 * linux/mm/page_alloc.c
4 * Manages the free list, the system allocates free pages here.
5 * Note that kmalloc() lives in slab.c
7 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
8 * Swap reorganised 29.12.95, Stephen Tweedie
9 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
10 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
11 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
12 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000
13 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
14 * (lots of bits borrowed from Ingo Molnar & Andrew Morton)
17 #include <linux/stddef.h>
19 #include <linux/swap.h>
20 #include <linux/interrupt.h>
21 #include <linux/pagemap.h>
22 #include <linux/bootmem.h>
23 #include <linux/compiler.h>
24 #include <linux/kernel.h>
25 #include <linux/module.h>
26 #include <linux/suspend.h>
27 #include <linux/pagevec.h>
28 #include <linux/blkdev.h>
29 #include <linux/slab.h>
30 #include <linux/oom.h>
31 #include <linux/notifier.h>
32 #include <linux/topology.h>
33 #include <linux/sysctl.h>
34 #include <linux/cpu.h>
35 #include <linux/cpuset.h>
36 #include <linux/memory_hotplug.h>
37 #include <linux/nodemask.h>
38 #include <linux/vmalloc.h>
39 #include <linux/mempolicy.h>
40 #include <linux/stop_machine.h>
41 #include <linux/sort.h>
42 #include <linux/pfn.h>
43 #include <linux/backing-dev.h>
44 #include <linux/fault-inject.h>
45 #include <linux/page-isolation.h>
47 #include <asm/tlbflush.h>
48 #include <asm/div64.h>
52 * Array of node states.
54 nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
55 [N_POSSIBLE] = NODE_MASK_ALL,
56 [N_ONLINE] = { { [0] = 1UL } },
58 [N_NORMAL_MEMORY] = { { [0] = 1UL } },
60 [N_HIGH_MEMORY] = { { [0] = 1UL } },
62 [N_CPU] = { { [0] = 1UL } },
65 EXPORT_SYMBOL(node_states);
67 unsigned long totalram_pages __read_mostly;
68 unsigned long totalreserve_pages __read_mostly;
70 int percpu_pagelist_fraction;
72 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
73 int pageblock_order __read_mostly;
76 static void __free_pages_ok(struct page *page, unsigned int order);
79 * results with 256, 32 in the lowmem_reserve sysctl:
80 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
81 * 1G machine -> (16M dma, 784M normal, 224M high)
82 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
83 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
84 * HIGHMEM allocation will (224M+784M)/256 of ram reserved in ZONE_DMA
86 * TBD: should special case ZONE_DMA32 machines here - in those we normally
87 * don't need any ZONE_NORMAL reservation
89 int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = {
90 #ifdef CONFIG_ZONE_DMA
93 #ifdef CONFIG_ZONE_DMA32
102 EXPORT_SYMBOL(totalram_pages);
104 static char * const zone_names[MAX_NR_ZONES] = {
105 #ifdef CONFIG_ZONE_DMA
108 #ifdef CONFIG_ZONE_DMA32
112 #ifdef CONFIG_HIGHMEM
118 int min_free_kbytes = 1024;
120 unsigned long __meminitdata nr_kernel_pages;
121 unsigned long __meminitdata nr_all_pages;
122 static unsigned long __meminitdata dma_reserve;
124 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
126 * MAX_ACTIVE_REGIONS determines the maxmimum number of distinct
127 * ranges of memory (RAM) that may be registered with add_active_range().
128 * Ranges passed to add_active_range() will be merged if possible
129 * so the number of times add_active_range() can be called is
130 * related to the number of nodes and the number of holes
132 #ifdef CONFIG_MAX_ACTIVE_REGIONS
133 /* Allow an architecture to set MAX_ACTIVE_REGIONS to save memory */
134 #define MAX_ACTIVE_REGIONS CONFIG_MAX_ACTIVE_REGIONS
136 #if MAX_NUMNODES >= 32
137 /* If there can be many nodes, allow up to 50 holes per node */
138 #define MAX_ACTIVE_REGIONS (MAX_NUMNODES*50)
140 /* By default, allow up to 256 distinct regions */
141 #define MAX_ACTIVE_REGIONS 256
145 static struct node_active_region __meminitdata early_node_map[MAX_ACTIVE_REGIONS];
146 static int __meminitdata nr_nodemap_entries;
147 static unsigned long __meminitdata arch_zone_lowest_possible_pfn[MAX_NR_ZONES];
148 static unsigned long __meminitdata arch_zone_highest_possible_pfn[MAX_NR_ZONES];
149 #ifdef CONFIG_MEMORY_HOTPLUG_RESERVE
150 static unsigned long __meminitdata node_boundary_start_pfn[MAX_NUMNODES];
151 static unsigned long __meminitdata node_boundary_end_pfn[MAX_NUMNODES];
152 #endif /* CONFIG_MEMORY_HOTPLUG_RESERVE */
153 unsigned long __initdata required_kernelcore;
154 static unsigned long __initdata required_movablecore;
155 unsigned long __meminitdata zone_movable_pfn[MAX_NUMNODES];
157 /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
159 EXPORT_SYMBOL(movable_zone);
160 #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
163 int nr_node_ids __read_mostly = MAX_NUMNODES;
164 EXPORT_SYMBOL(nr_node_ids);
167 int page_group_by_mobility_disabled __read_mostly;
169 static void set_pageblock_migratetype(struct page *page, int migratetype)
171 set_pageblock_flags_group(page, (unsigned long)migratetype,
172 PB_migrate, PB_migrate_end);
175 #ifdef CONFIG_DEBUG_VM
176 static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
180 unsigned long pfn = page_to_pfn(page);
183 seq = zone_span_seqbegin(zone);
184 if (pfn >= zone->zone_start_pfn + zone->spanned_pages)
186 else if (pfn < zone->zone_start_pfn)
188 } while (zone_span_seqretry(zone, seq));
193 static int page_is_consistent(struct zone *zone, struct page *page)
195 if (!pfn_valid_within(page_to_pfn(page)))
197 if (zone != page_zone(page))
203 * Temporary debugging check for pages not lying within a given zone.
205 static int bad_range(struct zone *zone, struct page *page)
207 if (page_outside_zone_boundaries(zone, page))
209 if (!page_is_consistent(zone, page))
215 static inline int bad_range(struct zone *zone, struct page *page)
221 static void bad_page(struct page *page)
223 printk(KERN_EMERG "Bad page state in process '%s'\n"
224 KERN_EMERG "page:%p flags:0x%0*lx mapping:%p mapcount:%d count:%d\n"
225 KERN_EMERG "Trying to fix it up, but a reboot is needed\n"
226 KERN_EMERG "Backtrace:\n",
227 current->comm, page, (int)(2*sizeof(unsigned long)),
228 (unsigned long)page->flags, page->mapping,
229 page_mapcount(page), page_count(page));
231 page->flags &= ~(1 << PG_lru |
241 set_page_count(page, 0);
242 reset_page_mapcount(page);
243 page->mapping = NULL;
244 add_taint(TAINT_BAD_PAGE);
248 * Higher-order pages are called "compound pages". They are structured thusly:
250 * The first PAGE_SIZE page is called the "head page".
252 * The remaining PAGE_SIZE pages are called "tail pages".
254 * All pages have PG_compound set. All pages have their ->private pointing at
255 * the head page (even the head page has this).
257 * The first tail page's ->lru.next holds the address of the compound page's
258 * put_page() function. Its ->lru.prev holds the order of allocation.
259 * This usage means that zero-order pages may not be compound.
262 static void free_compound_page(struct page *page)
264 __free_pages_ok(page, compound_order(page));
267 static void prep_compound_page(struct page *page, unsigned long order)
270 int nr_pages = 1 << order;
272 set_compound_page_dtor(page, free_compound_page);
273 set_compound_order(page, order);
275 for (i = 1; i < nr_pages; i++) {
276 struct page *p = page + i;
279 p->first_page = page;
283 static void destroy_compound_page(struct page *page, unsigned long order)
286 int nr_pages = 1 << order;
288 if (unlikely(compound_order(page) != order))
291 if (unlikely(!PageHead(page)))
293 __ClearPageHead(page);
294 for (i = 1; i < nr_pages; i++) {
295 struct page *p = page + i;
297 if (unlikely(!PageTail(p) |
298 (p->first_page != page)))
304 static inline void prep_zero_page(struct page *page, int order, gfp_t gfp_flags)
308 VM_BUG_ON((gfp_flags & (__GFP_WAIT | __GFP_HIGHMEM)) == __GFP_HIGHMEM);
310 * clear_highpage() will use KM_USER0, so it's a bug to use __GFP_ZERO
311 * and __GFP_HIGHMEM from hard or soft interrupt context.
313 VM_BUG_ON((gfp_flags & __GFP_HIGHMEM) && in_interrupt());
314 for (i = 0; i < (1 << order); i++)
315 clear_highpage(page + i);
318 static inline void set_page_order(struct page *page, int order)
320 set_page_private(page, order);
321 __SetPageBuddy(page);
324 static inline void rmv_page_order(struct page *page)
326 __ClearPageBuddy(page);
327 set_page_private(page, 0);
331 * Locate the struct page for both the matching buddy in our
332 * pair (buddy1) and the combined O(n+1) page they form (page).
334 * 1) Any buddy B1 will have an order O twin B2 which satisfies
335 * the following equation:
337 * For example, if the starting buddy (buddy2) is #8 its order
339 * B2 = 8 ^ (1 << 1) = 8 ^ 2 = 10
341 * 2) Any buddy B will have an order O+1 parent P which
342 * satisfies the following equation:
345 * Assumption: *_mem_map is contiguous at least up to MAX_ORDER
347 static inline struct page *
348 __page_find_buddy(struct page *page, unsigned long page_idx, unsigned int order)
350 unsigned long buddy_idx = page_idx ^ (1 << order);
352 return page + (buddy_idx - page_idx);
355 static inline unsigned long
356 __find_combined_index(unsigned long page_idx, unsigned int order)
358 return (page_idx & ~(1 << order));
362 * This function checks whether a page is free && is the buddy
363 * we can do coalesce a page and its buddy if
364 * (a) the buddy is not in a hole &&
365 * (b) the buddy is in the buddy system &&
366 * (c) a page and its buddy have the same order &&
367 * (d) a page and its buddy are in the same zone.
369 * For recording whether a page is in the buddy system, we use PG_buddy.
370 * Setting, clearing, and testing PG_buddy is serialized by zone->lock.
372 * For recording page's order, we use page_private(page).
374 static inline int page_is_buddy(struct page *page, struct page *buddy,
377 if (!pfn_valid_within(page_to_pfn(buddy)))
380 if (page_zone_id(page) != page_zone_id(buddy))
383 if (PageBuddy(buddy) && page_order(buddy) == order) {
384 BUG_ON(page_count(buddy) != 0);
391 * Freeing function for a buddy system allocator.
393 * The concept of a buddy system is to maintain direct-mapped table
394 * (containing bit values) for memory blocks of various "orders".
395 * The bottom level table contains the map for the smallest allocatable
396 * units of memory (here, pages), and each level above it describes
397 * pairs of units from the levels below, hence, "buddies".
398 * At a high level, all that happens here is marking the table entry
399 * at the bottom level available, and propagating the changes upward
400 * as necessary, plus some accounting needed to play nicely with other
401 * parts of the VM system.
402 * At each level, we keep a list of pages, which are heads of continuous
403 * free pages of length of (1 << order) and marked with PG_buddy. Page's
404 * order is recorded in page_private(page) field.
405 * So when we are allocating or freeing one, we can derive the state of the
406 * other. That is, if we allocate a small block, and both were
407 * free, the remainder of the region must be split into blocks.
408 * If a block is freed, and its buddy is also free, then this
409 * triggers coalescing into a block of larger size.
414 static inline void __free_one_page(struct page *page,
415 struct zone *zone, unsigned int order)
417 unsigned long page_idx;
418 int order_size = 1 << order;
419 int migratetype = get_pageblock_migratetype(page);
421 if (unlikely(PageCompound(page)))
422 destroy_compound_page(page, order);
424 page_idx = page_to_pfn(page) & ((1 << MAX_ORDER) - 1);
426 VM_BUG_ON(page_idx & (order_size - 1));
427 VM_BUG_ON(bad_range(zone, page));
429 __mod_zone_page_state(zone, NR_FREE_PAGES, order_size);
430 while (order < MAX_ORDER-1) {
431 unsigned long combined_idx;
434 buddy = __page_find_buddy(page, page_idx, order);
435 if (!page_is_buddy(page, buddy, order))
436 break; /* Move the buddy up one level. */
438 list_del(&buddy->lru);
439 zone->free_area[order].nr_free--;
440 rmv_page_order(buddy);
441 combined_idx = __find_combined_index(page_idx, order);
442 page = page + (combined_idx - page_idx);
443 page_idx = combined_idx;
446 set_page_order(page, order);
448 &zone->free_area[order].free_list[migratetype]);
449 zone->free_area[order].nr_free++;
452 static inline int free_pages_check(struct page *page)
454 if (unlikely(page_mapcount(page) |
455 (page->mapping != NULL) |
456 (page_count(page) != 0) |
469 __ClearPageDirty(page);
471 * For now, we report if PG_reserved was found set, but do not
472 * clear it, and do not free the page. But we shall soon need
473 * to do more, for when the ZERO_PAGE count wraps negative.
475 return PageReserved(page);
479 * Frees a list of pages.
480 * Assumes all pages on list are in same zone, and of same order.
481 * count is the number of pages to free.
483 * If the zone was previously in an "all pages pinned" state then look to
484 * see if this freeing clears that state.
486 * And clear the zone's pages_scanned counter, to hold off the "all pages are
487 * pinned" detection logic.
489 static void free_pages_bulk(struct zone *zone, int count,
490 struct list_head *list, int order)
492 spin_lock(&zone->lock);
493 zone_clear_flag(zone, ZONE_ALL_UNRECLAIMABLE);
494 zone->pages_scanned = 0;
498 VM_BUG_ON(list_empty(list));
499 page = list_entry(list->prev, struct page, lru);
500 /* have to delete it as __free_one_page list manipulates */
501 list_del(&page->lru);
502 __free_one_page(page, zone, order);
504 spin_unlock(&zone->lock);
507 static void free_one_page(struct zone *zone, struct page *page, int order)
509 spin_lock(&zone->lock);
510 zone_clear_flag(zone, ZONE_ALL_UNRECLAIMABLE);
511 zone->pages_scanned = 0;
512 __free_one_page(page, zone, order);
513 spin_unlock(&zone->lock);
516 static void __free_pages_ok(struct page *page, unsigned int order)
522 for (i = 0 ; i < (1 << order) ; ++i)
523 reserved += free_pages_check(page + i);
527 if (!PageHighMem(page))
528 debug_check_no_locks_freed(page_address(page),PAGE_SIZE<<order);
529 arch_free_page(page, order);
530 kernel_map_pages(page, 1 << order, 0);
532 local_irq_save(flags);
533 __count_vm_events(PGFREE, 1 << order);
534 free_one_page(page_zone(page), page, order);
535 local_irq_restore(flags);
539 * permit the bootmem allocator to evade page validation on high-order frees
541 void fastcall __init __free_pages_bootmem(struct page *page, unsigned int order)
544 __ClearPageReserved(page);
545 set_page_count(page, 0);
546 set_page_refcounted(page);
552 for (loop = 0; loop < BITS_PER_LONG; loop++) {
553 struct page *p = &page[loop];
555 if (loop + 1 < BITS_PER_LONG)
557 __ClearPageReserved(p);
558 set_page_count(p, 0);
561 set_page_refcounted(page);
562 __free_pages(page, order);
568 * The order of subdivision here is critical for the IO subsystem.
569 * Please do not alter this order without good reasons and regression
570 * testing. Specifically, as large blocks of memory are subdivided,
571 * the order in which smaller blocks are delivered depends on the order
572 * they're subdivided in this function. This is the primary factor
573 * influencing the order in which pages are delivered to the IO
574 * subsystem according to empirical testing, and this is also justified
575 * by considering the behavior of a buddy system containing a single
576 * large block of memory acted on by a series of small allocations.
577 * This behavior is a critical factor in sglist merging's success.
581 static inline void expand(struct zone *zone, struct page *page,
582 int low, int high, struct free_area *area,
585 unsigned long size = 1 << high;
591 VM_BUG_ON(bad_range(zone, &page[size]));
592 list_add(&page[size].lru, &area->free_list[migratetype]);
594 set_page_order(&page[size], high);
599 * This page is about to be returned from the page allocator
601 static int prep_new_page(struct page *page, int order, gfp_t gfp_flags)
603 if (unlikely(page_mapcount(page) |
604 (page->mapping != NULL) |
605 (page_count(page) != 0) |
620 * For now, we report if PG_reserved was found set, but do not
621 * clear it, and do not allocate the page: as a safety net.
623 if (PageReserved(page))
626 page->flags &= ~(1 << PG_uptodate | 1 << PG_error | 1 << PG_readahead |
627 1 << PG_referenced | 1 << PG_arch_1 |
628 1 << PG_owner_priv_1 | 1 << PG_mappedtodisk);
629 set_page_private(page, 0);
630 set_page_refcounted(page);
632 arch_alloc_page(page, order);
633 kernel_map_pages(page, 1 << order, 1);
635 if (gfp_flags & __GFP_ZERO)
636 prep_zero_page(page, order, gfp_flags);
638 if (order && (gfp_flags & __GFP_COMP))
639 prep_compound_page(page, order);
645 * Go through the free lists for the given migratetype and remove
646 * the smallest available page from the freelists
648 static struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
651 unsigned int current_order;
652 struct free_area * area;
655 /* Find a page of the appropriate size in the preferred list */
656 for (current_order = order; current_order < MAX_ORDER; ++current_order) {
657 area = &(zone->free_area[current_order]);
658 if (list_empty(&area->free_list[migratetype]))
661 page = list_entry(area->free_list[migratetype].next,
663 list_del(&page->lru);
664 rmv_page_order(page);
666 __mod_zone_page_state(zone, NR_FREE_PAGES, - (1UL << order));
667 expand(zone, page, order, current_order, area, migratetype);
676 * This array describes the order lists are fallen back to when
677 * the free lists for the desirable migrate type are depleted
679 static int fallbacks[MIGRATE_TYPES][MIGRATE_TYPES-1] = {
680 [MIGRATE_UNMOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE, MIGRATE_RESERVE },
681 [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE, MIGRATE_RESERVE },
682 [MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_RESERVE },
683 [MIGRATE_RESERVE] = { MIGRATE_RESERVE, MIGRATE_RESERVE, MIGRATE_RESERVE }, /* Never used */
687 * Move the free pages in a range to the free lists of the requested type.
688 * Note that start_page and end_pages are not aligned on a pageblock
689 * boundary. If alignment is required, use move_freepages_block()
691 int move_freepages(struct zone *zone,
692 struct page *start_page, struct page *end_page,
699 #ifndef CONFIG_HOLES_IN_ZONE
701 * page_zone is not safe to call in this context when
702 * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant
703 * anyway as we check zone boundaries in move_freepages_block().
704 * Remove at a later date when no bug reports exist related to
705 * grouping pages by mobility
707 BUG_ON(page_zone(start_page) != page_zone(end_page));
710 for (page = start_page; page <= end_page;) {
711 if (!pfn_valid_within(page_to_pfn(page))) {
716 if (!PageBuddy(page)) {
721 order = page_order(page);
722 list_del(&page->lru);
724 &zone->free_area[order].free_list[migratetype]);
726 pages_moved += 1 << order;
732 int move_freepages_block(struct zone *zone, struct page *page, int migratetype)
734 unsigned long start_pfn, end_pfn;
735 struct page *start_page, *end_page;
737 start_pfn = page_to_pfn(page);
738 start_pfn = start_pfn & ~(pageblock_nr_pages-1);
739 start_page = pfn_to_page(start_pfn);
740 end_page = start_page + pageblock_nr_pages - 1;
741 end_pfn = start_pfn + pageblock_nr_pages - 1;
743 /* Do not cross zone boundaries */
744 if (start_pfn < zone->zone_start_pfn)
746 if (end_pfn >= zone->zone_start_pfn + zone->spanned_pages)
749 return move_freepages(zone, start_page, end_page, migratetype);
752 /* Return the page with the lowest PFN in the list */
753 static struct page *min_page(struct list_head *list)
755 unsigned long min_pfn = -1UL;
756 struct page *min_page = NULL, *page;;
758 list_for_each_entry(page, list, lru) {
759 unsigned long pfn = page_to_pfn(page);
769 /* Remove an element from the buddy allocator from the fallback list */
770 static struct page *__rmqueue_fallback(struct zone *zone, int order,
771 int start_migratetype)
773 struct free_area * area;
778 /* Find the largest possible block of pages in the other list */
779 for (current_order = MAX_ORDER-1; current_order >= order;
781 for (i = 0; i < MIGRATE_TYPES - 1; i++) {
782 migratetype = fallbacks[start_migratetype][i];
784 /* MIGRATE_RESERVE handled later if necessary */
785 if (migratetype == MIGRATE_RESERVE)
788 area = &(zone->free_area[current_order]);
789 if (list_empty(&area->free_list[migratetype]))
792 /* Bias kernel allocations towards low pfns */
793 page = list_entry(area->free_list[migratetype].next,
795 if (unlikely(start_migratetype != MIGRATE_MOVABLE))
796 page = min_page(&area->free_list[migratetype]);
800 * If breaking a large block of pages, move all free
801 * pages to the preferred allocation list. If falling
802 * back for a reclaimable kernel allocation, be more
803 * agressive about taking ownership of free pages
805 if (unlikely(current_order >= (pageblock_order >> 1)) ||
806 start_migratetype == MIGRATE_RECLAIMABLE) {
808 pages = move_freepages_block(zone, page,
811 /* Claim the whole block if over half of it is free */
812 if (pages >= (1 << (pageblock_order-1)))
813 set_pageblock_migratetype(page,
816 migratetype = start_migratetype;
819 /* Remove the page from the freelists */
820 list_del(&page->lru);
821 rmv_page_order(page);
822 __mod_zone_page_state(zone, NR_FREE_PAGES,
825 if (current_order == pageblock_order)
826 set_pageblock_migratetype(page,
829 expand(zone, page, order, current_order, area, migratetype);
834 /* Use MIGRATE_RESERVE rather than fail an allocation */
835 return __rmqueue_smallest(zone, order, MIGRATE_RESERVE);
839 * Do the hard work of removing an element from the buddy allocator.
840 * Call me with the zone->lock already held.
842 static struct page *__rmqueue(struct zone *zone, unsigned int order,
847 page = __rmqueue_smallest(zone, order, migratetype);
850 page = __rmqueue_fallback(zone, order, migratetype);
856 * Obtain a specified number of elements from the buddy allocator, all under
857 * a single hold of the lock, for efficiency. Add them to the supplied list.
858 * Returns the number of new pages which were placed at *list.
860 static int rmqueue_bulk(struct zone *zone, unsigned int order,
861 unsigned long count, struct list_head *list,
866 spin_lock(&zone->lock);
867 for (i = 0; i < count; ++i) {
868 struct page *page = __rmqueue(zone, order, migratetype);
869 if (unlikely(page == NULL))
871 list_add(&page->lru, list);
872 set_page_private(page, migratetype);
874 spin_unlock(&zone->lock);
880 * Called from the vmstat counter updater to drain pagesets of this
881 * currently executing processor on remote nodes after they have
884 * Note that this function must be called with the thread pinned to
885 * a single processor.
887 void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
892 local_irq_save(flags);
893 if (pcp->count >= pcp->batch)
894 to_drain = pcp->batch;
896 to_drain = pcp->count;
897 free_pages_bulk(zone, to_drain, &pcp->list, 0);
898 pcp->count -= to_drain;
899 local_irq_restore(flags);
903 static void __drain_pages(unsigned int cpu)
909 for_each_zone(zone) {
910 struct per_cpu_pageset *pset;
912 if (!populated_zone(zone))
915 pset = zone_pcp(zone, cpu);
916 for (i = 0; i < ARRAY_SIZE(pset->pcp); i++) {
917 struct per_cpu_pages *pcp;
920 local_irq_save(flags);
921 free_pages_bulk(zone, pcp->count, &pcp->list, 0);
923 local_irq_restore(flags);
928 #ifdef CONFIG_HIBERNATION
930 void mark_free_pages(struct zone *zone)
932 unsigned long pfn, max_zone_pfn;
935 struct list_head *curr;
937 if (!zone->spanned_pages)
940 spin_lock_irqsave(&zone->lock, flags);
942 max_zone_pfn = zone->zone_start_pfn + zone->spanned_pages;
943 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
944 if (pfn_valid(pfn)) {
945 struct page *page = pfn_to_page(pfn);
947 if (!swsusp_page_is_forbidden(page))
948 swsusp_unset_page_free(page);
951 for_each_migratetype_order(order, t) {
952 list_for_each(curr, &zone->free_area[order].free_list[t]) {
955 pfn = page_to_pfn(list_entry(curr, struct page, lru));
956 for (i = 0; i < (1UL << order); i++)
957 swsusp_set_page_free(pfn_to_page(pfn + i));
960 spin_unlock_irqrestore(&zone->lock, flags);
962 #endif /* CONFIG_PM */
965 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
967 void drain_local_pages(void)
971 local_irq_save(flags);
972 __drain_pages(smp_processor_id());
973 local_irq_restore(flags);
976 void smp_drain_local_pages(void *arg)
982 * Spill all the per-cpu pages from all CPUs back into the buddy allocator
984 void drain_all_local_pages(void)
988 local_irq_save(flags);
989 __drain_pages(smp_processor_id());
990 local_irq_restore(flags);
992 smp_call_function(smp_drain_local_pages, NULL, 0, 1);
996 * Free a 0-order page
998 static void fastcall free_hot_cold_page(struct page *page, int cold)
1000 struct zone *zone = page_zone(page);
1001 struct per_cpu_pages *pcp;
1002 unsigned long flags;
1005 page->mapping = NULL;
1006 if (free_pages_check(page))
1009 if (!PageHighMem(page))
1010 debug_check_no_locks_freed(page_address(page), PAGE_SIZE);
1011 arch_free_page(page, 0);
1012 kernel_map_pages(page, 1, 0);
1014 pcp = &zone_pcp(zone, get_cpu())->pcp[cold];
1015 local_irq_save(flags);
1016 __count_vm_event(PGFREE);
1017 list_add(&page->lru, &pcp->list);
1018 set_page_private(page, get_pageblock_migratetype(page));
1020 if (pcp->count >= pcp->high) {
1021 free_pages_bulk(zone, pcp->batch, &pcp->list, 0);
1022 pcp->count -= pcp->batch;
1024 local_irq_restore(flags);
1028 void fastcall free_hot_page(struct page *page)
1030 free_hot_cold_page(page, 0);
1033 void fastcall free_cold_page(struct page *page)
1035 free_hot_cold_page(page, 1);
1039 * split_page takes a non-compound higher-order page, and splits it into
1040 * n (1<<order) sub-pages: page[0..n]
1041 * Each sub-page must be freed individually.
1043 * Note: this is probably too low level an operation for use in drivers.
1044 * Please consult with lkml before using this in your driver.
1046 void split_page(struct page *page, unsigned int order)
1050 VM_BUG_ON(PageCompound(page));
1051 VM_BUG_ON(!page_count(page));
1052 for (i = 1; i < (1 << order); i++)
1053 set_page_refcounted(page + i);
1057 * Really, prep_compound_page() should be called from __rmqueue_bulk(). But
1058 * we cheat by calling it from here, in the order > 0 path. Saves a branch
1061 static struct page *buffered_rmqueue(struct zonelist *zonelist,
1062 struct zone *zone, int order, gfp_t gfp_flags)
1064 unsigned long flags;
1066 int cold = !!(gfp_flags & __GFP_COLD);
1068 int migratetype = allocflags_to_migratetype(gfp_flags);
1072 if (likely(order == 0)) {
1073 struct per_cpu_pages *pcp;
1075 pcp = &zone_pcp(zone, cpu)->pcp[cold];
1076 local_irq_save(flags);
1078 pcp->count = rmqueue_bulk(zone, 0,
1079 pcp->batch, &pcp->list, migratetype);
1080 if (unlikely(!pcp->count))
1084 /* Find a page of the appropriate migrate type */
1085 list_for_each_entry(page, &pcp->list, lru)
1086 if (page_private(page) == migratetype)
1089 /* Allocate more to the pcp list if necessary */
1090 if (unlikely(&page->lru == &pcp->list)) {
1091 pcp->count += rmqueue_bulk(zone, 0,
1092 pcp->batch, &pcp->list, migratetype);
1093 page = list_entry(pcp->list.next, struct page, lru);
1096 list_del(&page->lru);
1099 spin_lock_irqsave(&zone->lock, flags);
1100 page = __rmqueue(zone, order, migratetype);
1101 spin_unlock(&zone->lock);
1106 __count_zone_vm_events(PGALLOC, zone, 1 << order);
1107 zone_statistics(zonelist, zone);
1108 local_irq_restore(flags);
1111 VM_BUG_ON(bad_range(zone, page));
1112 if (prep_new_page(page, order, gfp_flags))
1117 local_irq_restore(flags);
1122 #define ALLOC_NO_WATERMARKS 0x01 /* don't check watermarks at all */
1123 #define ALLOC_WMARK_MIN 0x02 /* use pages_min watermark */
1124 #define ALLOC_WMARK_LOW 0x04 /* use pages_low watermark */
1125 #define ALLOC_WMARK_HIGH 0x08 /* use pages_high watermark */
1126 #define ALLOC_HARDER 0x10 /* try to alloc harder */
1127 #define ALLOC_HIGH 0x20 /* __GFP_HIGH set */
1128 #define ALLOC_CPUSET 0x40 /* check for correct cpuset */
1130 #ifdef CONFIG_FAIL_PAGE_ALLOC
1132 static struct fail_page_alloc_attr {
1133 struct fault_attr attr;
1135 u32 ignore_gfp_highmem;
1136 u32 ignore_gfp_wait;
1139 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
1141 struct dentry *ignore_gfp_highmem_file;
1142 struct dentry *ignore_gfp_wait_file;
1143 struct dentry *min_order_file;
1145 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
1147 } fail_page_alloc = {
1148 .attr = FAULT_ATTR_INITIALIZER,
1149 .ignore_gfp_wait = 1,
1150 .ignore_gfp_highmem = 1,
1154 static int __init setup_fail_page_alloc(char *str)
1156 return setup_fault_attr(&fail_page_alloc.attr, str);
1158 __setup("fail_page_alloc=", setup_fail_page_alloc);
1160 static int should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
1162 if (order < fail_page_alloc.min_order)
1164 if (gfp_mask & __GFP_NOFAIL)
1166 if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
1168 if (fail_page_alloc.ignore_gfp_wait && (gfp_mask & __GFP_WAIT))
1171 return should_fail(&fail_page_alloc.attr, 1 << order);
1174 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
1176 static int __init fail_page_alloc_debugfs(void)
1178 mode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
1182 err = init_fault_attr_dentries(&fail_page_alloc.attr,
1186 dir = fail_page_alloc.attr.dentries.dir;
1188 fail_page_alloc.ignore_gfp_wait_file =
1189 debugfs_create_bool("ignore-gfp-wait", mode, dir,
1190 &fail_page_alloc.ignore_gfp_wait);
1192 fail_page_alloc.ignore_gfp_highmem_file =
1193 debugfs_create_bool("ignore-gfp-highmem", mode, dir,
1194 &fail_page_alloc.ignore_gfp_highmem);
1195 fail_page_alloc.min_order_file =
1196 debugfs_create_u32("min-order", mode, dir,
1197 &fail_page_alloc.min_order);
1199 if (!fail_page_alloc.ignore_gfp_wait_file ||
1200 !fail_page_alloc.ignore_gfp_highmem_file ||
1201 !fail_page_alloc.min_order_file) {
1203 debugfs_remove(fail_page_alloc.ignore_gfp_wait_file);
1204 debugfs_remove(fail_page_alloc.ignore_gfp_highmem_file);
1205 debugfs_remove(fail_page_alloc.min_order_file);
1206 cleanup_fault_attr_dentries(&fail_page_alloc.attr);
1212 late_initcall(fail_page_alloc_debugfs);
1214 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
1216 #else /* CONFIG_FAIL_PAGE_ALLOC */
1218 static inline int should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
1223 #endif /* CONFIG_FAIL_PAGE_ALLOC */
1226 * Return 1 if free pages are above 'mark'. This takes into account the order
1227 * of the allocation.
1229 int zone_watermark_ok(struct zone *z, int order, unsigned long mark,
1230 int classzone_idx, int alloc_flags)
1232 /* free_pages my go negative - that's OK */
1234 long free_pages = zone_page_state(z, NR_FREE_PAGES) - (1 << order) + 1;
1237 if (alloc_flags & ALLOC_HIGH)
1239 if (alloc_flags & ALLOC_HARDER)
1242 if (free_pages <= min + z->lowmem_reserve[classzone_idx])
1244 for (o = 0; o < order; o++) {
1245 /* At the next order, this order's pages become unavailable */
1246 free_pages -= z->free_area[o].nr_free << o;
1248 /* Require fewer higher order pages to be free */
1251 if (free_pages <= min)
1259 * zlc_setup - Setup for "zonelist cache". Uses cached zone data to
1260 * skip over zones that are not allowed by the cpuset, or that have
1261 * been recently (in last second) found to be nearly full. See further
1262 * comments in mmzone.h. Reduces cache footprint of zonelist scans
1263 * that have to skip over alot of full or unallowed zones.
1265 * If the zonelist cache is present in the passed in zonelist, then
1266 * returns a pointer to the allowed node mask (either the current
1267 * tasks mems_allowed, or node_states[N_HIGH_MEMORY].)
1269 * If the zonelist cache is not available for this zonelist, does
1270 * nothing and returns NULL.
1272 * If the fullzones BITMAP in the zonelist cache is stale (more than
1273 * a second since last zap'd) then we zap it out (clear its bits.)
1275 * We hold off even calling zlc_setup, until after we've checked the
1276 * first zone in the zonelist, on the theory that most allocations will
1277 * be satisfied from that first zone, so best to examine that zone as
1278 * quickly as we can.
1280 static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
1282 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1283 nodemask_t *allowednodes; /* zonelist_cache approximation */
1285 zlc = zonelist->zlcache_ptr;
1289 if (jiffies - zlc->last_full_zap > 1 * HZ) {
1290 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
1291 zlc->last_full_zap = jiffies;
1294 allowednodes = !in_interrupt() && (alloc_flags & ALLOC_CPUSET) ?
1295 &cpuset_current_mems_allowed :
1296 &node_states[N_HIGH_MEMORY];
1297 return allowednodes;
1301 * Given 'z' scanning a zonelist, run a couple of quick checks to see
1302 * if it is worth looking at further for free memory:
1303 * 1) Check that the zone isn't thought to be full (doesn't have its
1304 * bit set in the zonelist_cache fullzones BITMAP).
1305 * 2) Check that the zones node (obtained from the zonelist_cache
1306 * z_to_n[] mapping) is allowed in the passed in allowednodes mask.
1307 * Return true (non-zero) if zone is worth looking at further, or
1308 * else return false (zero) if it is not.
1310 * This check -ignores- the distinction between various watermarks,
1311 * such as GFP_HIGH, GFP_ATOMIC, PF_MEMALLOC, ... If a zone is
1312 * found to be full for any variation of these watermarks, it will
1313 * be considered full for up to one second by all requests, unless
1314 * we are so low on memory on all allowed nodes that we are forced
1315 * into the second scan of the zonelist.
1317 * In the second scan we ignore this zonelist cache and exactly
1318 * apply the watermarks to all zones, even it is slower to do so.
1319 * We are low on memory in the second scan, and should leave no stone
1320 * unturned looking for a free page.
1322 static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zone **z,
1323 nodemask_t *allowednodes)
1325 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1326 int i; /* index of *z in zonelist zones */
1327 int n; /* node that zone *z is on */
1329 zlc = zonelist->zlcache_ptr;
1333 i = z - zonelist->zones;
1336 /* This zone is worth trying if it is allowed but not full */
1337 return node_isset(n, *allowednodes) && !test_bit(i, zlc->fullzones);
1341 * Given 'z' scanning a zonelist, set the corresponding bit in
1342 * zlc->fullzones, so that subsequent attempts to allocate a page
1343 * from that zone don't waste time re-examining it.
1345 static void zlc_mark_zone_full(struct zonelist *zonelist, struct zone **z)
1347 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1348 int i; /* index of *z in zonelist zones */
1350 zlc = zonelist->zlcache_ptr;
1354 i = z - zonelist->zones;
1356 set_bit(i, zlc->fullzones);
1359 #else /* CONFIG_NUMA */
1361 static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
1366 static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zone **z,
1367 nodemask_t *allowednodes)
1372 static void zlc_mark_zone_full(struct zonelist *zonelist, struct zone **z)
1375 #endif /* CONFIG_NUMA */
1378 * get_page_from_freelist goes through the zonelist trying to allocate
1381 static struct page *
1382 get_page_from_freelist(gfp_t gfp_mask, unsigned int order,
1383 struct zonelist *zonelist, int alloc_flags)
1386 struct page *page = NULL;
1387 int classzone_idx = zone_idx(zonelist->zones[0]);
1389 nodemask_t *allowednodes = NULL;/* zonelist_cache approximation */
1390 int zlc_active = 0; /* set if using zonelist_cache */
1391 int did_zlc_setup = 0; /* just call zlc_setup() one time */
1392 enum zone_type highest_zoneidx = -1; /* Gets set for policy zonelists */
1396 * Scan zonelist, looking for a zone with enough free.
1397 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
1399 z = zonelist->zones;
1403 * In NUMA, this could be a policy zonelist which contains
1404 * zones that may not be allowed by the current gfp_mask.
1405 * Check the zone is allowed by the current flags
1407 if (unlikely(alloc_should_filter_zonelist(zonelist))) {
1408 if (highest_zoneidx == -1)
1409 highest_zoneidx = gfp_zone(gfp_mask);
1410 if (zone_idx(*z) > highest_zoneidx)
1414 if (NUMA_BUILD && zlc_active &&
1415 !zlc_zone_worth_trying(zonelist, z, allowednodes))
1418 if ((alloc_flags & ALLOC_CPUSET) &&
1419 !cpuset_zone_allowed_softwall(zone, gfp_mask))
1422 if (!(alloc_flags & ALLOC_NO_WATERMARKS)) {
1424 if (alloc_flags & ALLOC_WMARK_MIN)
1425 mark = zone->pages_min;
1426 else if (alloc_flags & ALLOC_WMARK_LOW)
1427 mark = zone->pages_low;
1429 mark = zone->pages_high;
1430 if (!zone_watermark_ok(zone, order, mark,
1431 classzone_idx, alloc_flags)) {
1432 if (!zone_reclaim_mode ||
1433 !zone_reclaim(zone, gfp_mask, order))
1434 goto this_zone_full;
1438 page = buffered_rmqueue(zonelist, zone, order, gfp_mask);
1443 zlc_mark_zone_full(zonelist, z);
1445 if (NUMA_BUILD && !did_zlc_setup) {
1446 /* we do zlc_setup after the first zone is tried */
1447 allowednodes = zlc_setup(zonelist, alloc_flags);
1451 } while (*(++z) != NULL);
1453 if (unlikely(NUMA_BUILD && page == NULL && zlc_active)) {
1454 /* Disable zlc cache for second zonelist scan */
1462 * This is the 'heart' of the zoned buddy allocator.
1464 struct page * fastcall
1465 __alloc_pages(gfp_t gfp_mask, unsigned int order,
1466 struct zonelist *zonelist)
1468 const gfp_t wait = gfp_mask & __GFP_WAIT;
1471 struct reclaim_state reclaim_state;
1472 struct task_struct *p = current;
1475 int did_some_progress;
1477 might_sleep_if(wait);
1479 if (should_fail_alloc_page(gfp_mask, order))
1483 z = zonelist->zones; /* the list of zones suitable for gfp_mask */
1485 if (unlikely(*z == NULL)) {
1487 * Happens if we have an empty zonelist as a result of
1488 * GFP_THISNODE being used on a memoryless node
1493 page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, order,
1494 zonelist, ALLOC_WMARK_LOW|ALLOC_CPUSET);
1499 * GFP_THISNODE (meaning __GFP_THISNODE, __GFP_NORETRY and
1500 * __GFP_NOWARN set) should not cause reclaim since the subsystem
1501 * (f.e. slab) using GFP_THISNODE may choose to trigger reclaim
1502 * using a larger set of nodes after it has established that the
1503 * allowed per node queues are empty and that nodes are
1506 if (NUMA_BUILD && (gfp_mask & GFP_THISNODE) == GFP_THISNODE)
1509 for (z = zonelist->zones; *z; z++)
1510 wakeup_kswapd(*z, order);
1513 * OK, we're below the kswapd watermark and have kicked background
1514 * reclaim. Now things get more complex, so set up alloc_flags according
1515 * to how we want to proceed.
1517 * The caller may dip into page reserves a bit more if the caller
1518 * cannot run direct reclaim, or if the caller has realtime scheduling
1519 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will
1520 * set both ALLOC_HARDER (!wait) and ALLOC_HIGH (__GFP_HIGH).
1522 alloc_flags = ALLOC_WMARK_MIN;
1523 if ((unlikely(rt_task(p)) && !in_interrupt()) || !wait)
1524 alloc_flags |= ALLOC_HARDER;
1525 if (gfp_mask & __GFP_HIGH)
1526 alloc_flags |= ALLOC_HIGH;
1528 alloc_flags |= ALLOC_CPUSET;
1531 * Go through the zonelist again. Let __GFP_HIGH and allocations
1532 * coming from realtime tasks go deeper into reserves.
1534 * This is the last chance, in general, before the goto nopage.
1535 * Ignore cpuset if GFP_ATOMIC (!wait) rather than fail alloc.
1536 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
1538 page = get_page_from_freelist(gfp_mask, order, zonelist, alloc_flags);
1542 /* This allocation should allow future memory freeing. */
1545 if (((p->flags & PF_MEMALLOC) || unlikely(test_thread_flag(TIF_MEMDIE)))
1546 && !in_interrupt()) {
1547 if (!(gfp_mask & __GFP_NOMEMALLOC)) {
1549 /* go through the zonelist yet again, ignoring mins */
1550 page = get_page_from_freelist(gfp_mask, order,
1551 zonelist, ALLOC_NO_WATERMARKS);
1554 if (gfp_mask & __GFP_NOFAIL) {
1555 congestion_wait(WRITE, HZ/50);
1562 /* Atomic allocations - we can't balance anything */
1568 /* We now go into synchronous reclaim */
1569 cpuset_memory_pressure_bump();
1570 p->flags |= PF_MEMALLOC;
1571 reclaim_state.reclaimed_slab = 0;
1572 p->reclaim_state = &reclaim_state;
1574 did_some_progress = try_to_free_pages(zonelist->zones, order, gfp_mask);
1576 p->reclaim_state = NULL;
1577 p->flags &= ~PF_MEMALLOC;
1582 drain_all_local_pages();
1584 if (likely(did_some_progress)) {
1585 page = get_page_from_freelist(gfp_mask, order,
1586 zonelist, alloc_flags);
1589 } else if ((gfp_mask & __GFP_FS) && !(gfp_mask & __GFP_NORETRY)) {
1590 if (!try_set_zone_oom(zonelist)) {
1591 schedule_timeout_uninterruptible(1);
1596 * Go through the zonelist yet one more time, keep
1597 * very high watermark here, this is only to catch
1598 * a parallel oom killing, we must fail if we're still
1599 * under heavy pressure.
1601 page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, order,
1602 zonelist, ALLOC_WMARK_HIGH|ALLOC_CPUSET);
1604 clear_zonelist_oom(zonelist);
1608 /* The OOM killer will not help higher order allocs so fail */
1609 if (order > PAGE_ALLOC_COSTLY_ORDER) {
1610 clear_zonelist_oom(zonelist);
1614 out_of_memory(zonelist, gfp_mask, order);
1615 clear_zonelist_oom(zonelist);
1620 * Don't let big-order allocations loop unless the caller explicitly
1621 * requests that. Wait for some write requests to complete then retry.
1623 * In this implementation, __GFP_REPEAT means __GFP_NOFAIL for order
1624 * <= 3, but that may not be true in other implementations.
1627 if (!(gfp_mask & __GFP_NORETRY)) {
1628 if ((order <= PAGE_ALLOC_COSTLY_ORDER) ||
1629 (gfp_mask & __GFP_REPEAT))
1631 if (gfp_mask & __GFP_NOFAIL)
1635 congestion_wait(WRITE, HZ/50);
1640 if (!(gfp_mask & __GFP_NOWARN) && printk_ratelimit()) {
1641 printk(KERN_WARNING "%s: page allocation failure."
1642 " order:%d, mode:0x%x\n",
1643 p->comm, order, gfp_mask);
1651 EXPORT_SYMBOL(__alloc_pages);
1654 * Common helper functions.
1656 fastcall unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
1659 page = alloc_pages(gfp_mask, order);
1662 return (unsigned long) page_address(page);
1665 EXPORT_SYMBOL(__get_free_pages);
1667 fastcall unsigned long get_zeroed_page(gfp_t gfp_mask)
1672 * get_zeroed_page() returns a 32-bit address, which cannot represent
1675 VM_BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0);
1677 page = alloc_pages(gfp_mask | __GFP_ZERO, 0);
1679 return (unsigned long) page_address(page);
1683 EXPORT_SYMBOL(get_zeroed_page);
1685 void __pagevec_free(struct pagevec *pvec)
1687 int i = pagevec_count(pvec);
1690 free_hot_cold_page(pvec->pages[i], pvec->cold);
1693 fastcall void __free_pages(struct page *page, unsigned int order)
1695 if (put_page_testzero(page)) {
1697 free_hot_page(page);
1699 __free_pages_ok(page, order);
1703 EXPORT_SYMBOL(__free_pages);
1705 fastcall void free_pages(unsigned long addr, unsigned int order)
1708 VM_BUG_ON(!virt_addr_valid((void *)addr));
1709 __free_pages(virt_to_page((void *)addr), order);
1713 EXPORT_SYMBOL(free_pages);
1715 static unsigned int nr_free_zone_pages(int offset)
1717 /* Just pick one node, since fallback list is circular */
1718 pg_data_t *pgdat = NODE_DATA(numa_node_id());
1719 unsigned int sum = 0;
1721 struct zonelist *zonelist = pgdat->node_zonelists + offset;
1722 struct zone **zonep = zonelist->zones;
1725 for (zone = *zonep++; zone; zone = *zonep++) {
1726 unsigned long size = zone->present_pages;
1727 unsigned long high = zone->pages_high;
1736 * Amount of free RAM allocatable within ZONE_DMA and ZONE_NORMAL
1738 unsigned int nr_free_buffer_pages(void)
1740 return nr_free_zone_pages(gfp_zone(GFP_USER));
1742 EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
1745 * Amount of free RAM allocatable within all zones
1747 unsigned int nr_free_pagecache_pages(void)
1749 return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
1752 static inline void show_node(struct zone *zone)
1755 printk("Node %d ", zone_to_nid(zone));
1758 void si_meminfo(struct sysinfo *val)
1760 val->totalram = totalram_pages;
1762 val->freeram = global_page_state(NR_FREE_PAGES);
1763 val->bufferram = nr_blockdev_pages();
1764 val->totalhigh = totalhigh_pages;
1765 val->freehigh = nr_free_highpages();
1766 val->mem_unit = PAGE_SIZE;
1769 EXPORT_SYMBOL(si_meminfo);
1772 void si_meminfo_node(struct sysinfo *val, int nid)
1774 pg_data_t *pgdat = NODE_DATA(nid);
1776 val->totalram = pgdat->node_present_pages;
1777 val->freeram = node_page_state(nid, NR_FREE_PAGES);
1778 #ifdef CONFIG_HIGHMEM
1779 val->totalhigh = pgdat->node_zones[ZONE_HIGHMEM].present_pages;
1780 val->freehigh = zone_page_state(&pgdat->node_zones[ZONE_HIGHMEM],
1786 val->mem_unit = PAGE_SIZE;
1790 #define K(x) ((x) << (PAGE_SHIFT-10))
1793 * Show free area list (used inside shift_scroll-lock stuff)
1794 * We also calculate the percentage fragmentation. We do this by counting the
1795 * memory on each free list with the exception of the first item on the list.
1797 void show_free_areas(void)
1802 for_each_zone(zone) {
1803 if (!populated_zone(zone))
1807 printk("%s per-cpu:\n", zone->name);
1809 for_each_online_cpu(cpu) {
1810 struct per_cpu_pageset *pageset;
1812 pageset = zone_pcp(zone, cpu);
1814 printk("CPU %4d: Hot: hi:%5d, btch:%4d usd:%4d "
1815 "Cold: hi:%5d, btch:%4d usd:%4d\n",
1816 cpu, pageset->pcp[0].high,
1817 pageset->pcp[0].batch, pageset->pcp[0].count,
1818 pageset->pcp[1].high, pageset->pcp[1].batch,
1819 pageset->pcp[1].count);
1823 printk("Active:%lu inactive:%lu dirty:%lu writeback:%lu unstable:%lu\n"
1824 " free:%lu slab:%lu mapped:%lu pagetables:%lu bounce:%lu\n",
1825 global_page_state(NR_ACTIVE),
1826 global_page_state(NR_INACTIVE),
1827 global_page_state(NR_FILE_DIRTY),
1828 global_page_state(NR_WRITEBACK),
1829 global_page_state(NR_UNSTABLE_NFS),
1830 global_page_state(NR_FREE_PAGES),
1831 global_page_state(NR_SLAB_RECLAIMABLE) +
1832 global_page_state(NR_SLAB_UNRECLAIMABLE),
1833 global_page_state(NR_FILE_MAPPED),
1834 global_page_state(NR_PAGETABLE),
1835 global_page_state(NR_BOUNCE));
1837 for_each_zone(zone) {
1840 if (!populated_zone(zone))
1852 " pages_scanned:%lu"
1853 " all_unreclaimable? %s"
1856 K(zone_page_state(zone, NR_FREE_PAGES)),
1859 K(zone->pages_high),
1860 K(zone_page_state(zone, NR_ACTIVE)),
1861 K(zone_page_state(zone, NR_INACTIVE)),
1862 K(zone->present_pages),
1863 zone->pages_scanned,
1864 (zone_is_all_unreclaimable(zone) ? "yes" : "no")
1866 printk("lowmem_reserve[]:");
1867 for (i = 0; i < MAX_NR_ZONES; i++)
1868 printk(" %lu", zone->lowmem_reserve[i]);
1872 for_each_zone(zone) {
1873 unsigned long nr[MAX_ORDER], flags, order, total = 0;
1875 if (!populated_zone(zone))
1879 printk("%s: ", zone->name);
1881 spin_lock_irqsave(&zone->lock, flags);
1882 for (order = 0; order < MAX_ORDER; order++) {
1883 nr[order] = zone->free_area[order].nr_free;
1884 total += nr[order] << order;
1886 spin_unlock_irqrestore(&zone->lock, flags);
1887 for (order = 0; order < MAX_ORDER; order++)
1888 printk("%lu*%lukB ", nr[order], K(1UL) << order);
1889 printk("= %lukB\n", K(total));
1892 show_swap_cache_info();
1896 * Builds allocation fallback zone lists.
1898 * Add all populated zones of a node to the zonelist.
1900 static int build_zonelists_node(pg_data_t *pgdat, struct zonelist *zonelist,
1901 int nr_zones, enum zone_type zone_type)
1905 BUG_ON(zone_type >= MAX_NR_ZONES);
1910 zone = pgdat->node_zones + zone_type;
1911 if (populated_zone(zone)) {
1912 zonelist->zones[nr_zones++] = zone;
1913 check_highest_zone(zone_type);
1916 } while (zone_type);
1923 * 0 = automatic detection of better ordering.
1924 * 1 = order by ([node] distance, -zonetype)
1925 * 2 = order by (-zonetype, [node] distance)
1927 * If not NUMA, ZONELIST_ORDER_ZONE and ZONELIST_ORDER_NODE will create
1928 * the same zonelist. So only NUMA can configure this param.
1930 #define ZONELIST_ORDER_DEFAULT 0
1931 #define ZONELIST_ORDER_NODE 1
1932 #define ZONELIST_ORDER_ZONE 2
1934 /* zonelist order in the kernel.
1935 * set_zonelist_order() will set this to NODE or ZONE.
1937 static int current_zonelist_order = ZONELIST_ORDER_DEFAULT;
1938 static char zonelist_order_name[3][8] = {"Default", "Node", "Zone"};
1942 /* The value user specified ....changed by config */
1943 static int user_zonelist_order = ZONELIST_ORDER_DEFAULT;
1944 /* string for sysctl */
1945 #define NUMA_ZONELIST_ORDER_LEN 16
1946 char numa_zonelist_order[16] = "default";
1949 * interface for configure zonelist ordering.
1950 * command line option "numa_zonelist_order"
1951 * = "[dD]efault - default, automatic configuration.
1952 * = "[nN]ode - order by node locality, then by zone within node
1953 * = "[zZ]one - order by zone, then by locality within zone
1956 static int __parse_numa_zonelist_order(char *s)
1958 if (*s == 'd' || *s == 'D') {
1959 user_zonelist_order = ZONELIST_ORDER_DEFAULT;
1960 } else if (*s == 'n' || *s == 'N') {
1961 user_zonelist_order = ZONELIST_ORDER_NODE;
1962 } else if (*s == 'z' || *s == 'Z') {
1963 user_zonelist_order = ZONELIST_ORDER_ZONE;
1966 "Ignoring invalid numa_zonelist_order value: "
1973 static __init int setup_numa_zonelist_order(char *s)
1976 return __parse_numa_zonelist_order(s);
1979 early_param("numa_zonelist_order", setup_numa_zonelist_order);
1982 * sysctl handler for numa_zonelist_order
1984 int numa_zonelist_order_handler(ctl_table *table, int write,
1985 struct file *file, void __user *buffer, size_t *length,
1988 char saved_string[NUMA_ZONELIST_ORDER_LEN];
1992 strncpy(saved_string, (char*)table->data,
1993 NUMA_ZONELIST_ORDER_LEN);
1994 ret = proc_dostring(table, write, file, buffer, length, ppos);
1998 int oldval = user_zonelist_order;
1999 if (__parse_numa_zonelist_order((char*)table->data)) {
2001 * bogus value. restore saved string
2003 strncpy((char*)table->data, saved_string,
2004 NUMA_ZONELIST_ORDER_LEN);
2005 user_zonelist_order = oldval;
2006 } else if (oldval != user_zonelist_order)
2007 build_all_zonelists();
2013 #define MAX_NODE_LOAD (num_online_nodes())
2014 static int node_load[MAX_NUMNODES];
2017 * find_next_best_node - find the next node that should appear in a given node's fallback list
2018 * @node: node whose fallback list we're appending
2019 * @used_node_mask: nodemask_t of already used nodes
2021 * We use a number of factors to determine which is the next node that should
2022 * appear on a given node's fallback list. The node should not have appeared
2023 * already in @node's fallback list, and it should be the next closest node
2024 * according to the distance array (which contains arbitrary distance values
2025 * from each node to each node in the system), and should also prefer nodes
2026 * with no CPUs, since presumably they'll have very little allocation pressure
2027 * on them otherwise.
2028 * It returns -1 if no node is found.
2030 static int find_next_best_node(int node, nodemask_t *used_node_mask)
2033 int min_val = INT_MAX;
2036 /* Use the local node if we haven't already */
2037 if (!node_isset(node, *used_node_mask)) {
2038 node_set(node, *used_node_mask);
2042 for_each_node_state(n, N_HIGH_MEMORY) {
2045 /* Don't want a node to appear more than once */
2046 if (node_isset(n, *used_node_mask))
2049 /* Use the distance array to find the distance */
2050 val = node_distance(node, n);
2052 /* Penalize nodes under us ("prefer the next node") */
2055 /* Give preference to headless and unused nodes */
2056 tmp = node_to_cpumask(n);
2057 if (!cpus_empty(tmp))
2058 val += PENALTY_FOR_NODE_WITH_CPUS;
2060 /* Slight preference for less loaded node */
2061 val *= (MAX_NODE_LOAD*MAX_NUMNODES);
2062 val += node_load[n];
2064 if (val < min_val) {
2071 node_set(best_node, *used_node_mask);
2078 * Build zonelists ordered by node and zones within node.
2079 * This results in maximum locality--normal zone overflows into local
2080 * DMA zone, if any--but risks exhausting DMA zone.
2082 static void build_zonelists_in_node_order(pg_data_t *pgdat, int node)
2086 struct zonelist *zonelist;
2088 for (i = 0; i < MAX_NR_ZONES; i++) {
2089 zonelist = pgdat->node_zonelists + i;
2090 for (j = 0; zonelist->zones[j] != NULL; j++)
2092 j = build_zonelists_node(NODE_DATA(node), zonelist, j, i);
2093 zonelist->zones[j] = NULL;
2098 * Build gfp_thisnode zonelists
2100 static void build_thisnode_zonelists(pg_data_t *pgdat)
2104 struct zonelist *zonelist;
2106 for (i = 0; i < MAX_NR_ZONES; i++) {
2107 zonelist = pgdat->node_zonelists + MAX_NR_ZONES + i;
2108 j = build_zonelists_node(pgdat, zonelist, 0, i);
2109 zonelist->zones[j] = NULL;
2114 * Build zonelists ordered by zone and nodes within zones.
2115 * This results in conserving DMA zone[s] until all Normal memory is
2116 * exhausted, but results in overflowing to remote node while memory
2117 * may still exist in local DMA zone.
2119 static int node_order[MAX_NUMNODES];
2121 static void build_zonelists_in_zone_order(pg_data_t *pgdat, int nr_nodes)
2125 int zone_type; /* needs to be signed */
2127 struct zonelist *zonelist;
2129 for (i = 0; i < MAX_NR_ZONES; i++) {
2130 zonelist = pgdat->node_zonelists + i;
2132 for (zone_type = i; zone_type >= 0; zone_type--) {
2133 for (j = 0; j < nr_nodes; j++) {
2134 node = node_order[j];
2135 z = &NODE_DATA(node)->node_zones[zone_type];
2136 if (populated_zone(z)) {
2137 zonelist->zones[pos++] = z;
2138 check_highest_zone(zone_type);
2142 zonelist->zones[pos] = NULL;
2146 static int default_zonelist_order(void)
2149 unsigned long low_kmem_size,total_size;
2153 * ZONE_DMA and ZONE_DMA32 can be very small area in the sytem.
2154 * If they are really small and used heavily, the system can fall
2155 * into OOM very easily.
2156 * This function detect ZONE_DMA/DMA32 size and confgigures zone order.
2158 /* Is there ZONE_NORMAL ? (ex. ppc has only DMA zone..) */
2161 for_each_online_node(nid) {
2162 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
2163 z = &NODE_DATA(nid)->node_zones[zone_type];
2164 if (populated_zone(z)) {
2165 if (zone_type < ZONE_NORMAL)
2166 low_kmem_size += z->present_pages;
2167 total_size += z->present_pages;
2171 if (!low_kmem_size || /* there are no DMA area. */
2172 low_kmem_size > total_size/2) /* DMA/DMA32 is big. */
2173 return ZONELIST_ORDER_NODE;
2175 * look into each node's config.
2176 * If there is a node whose DMA/DMA32 memory is very big area on
2177 * local memory, NODE_ORDER may be suitable.
2179 average_size = total_size /
2180 (nodes_weight(node_states[N_HIGH_MEMORY]) + 1);
2181 for_each_online_node(nid) {
2184 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
2185 z = &NODE_DATA(nid)->node_zones[zone_type];
2186 if (populated_zone(z)) {
2187 if (zone_type < ZONE_NORMAL)
2188 low_kmem_size += z->present_pages;
2189 total_size += z->present_pages;
2192 if (low_kmem_size &&
2193 total_size > average_size && /* ignore small node */
2194 low_kmem_size > total_size * 70/100)
2195 return ZONELIST_ORDER_NODE;
2197 return ZONELIST_ORDER_ZONE;
2200 static void set_zonelist_order(void)
2202 if (user_zonelist_order == ZONELIST_ORDER_DEFAULT)
2203 current_zonelist_order = default_zonelist_order();
2205 current_zonelist_order = user_zonelist_order;
2208 static void build_zonelists(pg_data_t *pgdat)
2212 nodemask_t used_mask;
2213 int local_node, prev_node;
2214 struct zonelist *zonelist;
2215 int order = current_zonelist_order;
2217 /* initialize zonelists */
2218 for (i = 0; i < MAX_ZONELISTS; i++) {
2219 zonelist = pgdat->node_zonelists + i;
2220 zonelist->zones[0] = NULL;
2223 /* NUMA-aware ordering of nodes */
2224 local_node = pgdat->node_id;
2225 load = num_online_nodes();
2226 prev_node = local_node;
2227 nodes_clear(used_mask);
2229 memset(node_load, 0, sizeof(node_load));
2230 memset(node_order, 0, sizeof(node_order));
2233 while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
2234 int distance = node_distance(local_node, node);
2237 * If another node is sufficiently far away then it is better
2238 * to reclaim pages in a zone before going off node.
2240 if (distance > RECLAIM_DISTANCE)
2241 zone_reclaim_mode = 1;
2244 * We don't want to pressure a particular node.
2245 * So adding penalty to the first node in same
2246 * distance group to make it round-robin.
2248 if (distance != node_distance(local_node, prev_node))
2249 node_load[node] = load;
2253 if (order == ZONELIST_ORDER_NODE)
2254 build_zonelists_in_node_order(pgdat, node);
2256 node_order[j++] = node; /* remember order */
2259 if (order == ZONELIST_ORDER_ZONE) {
2260 /* calculate node order -- i.e., DMA last! */
2261 build_zonelists_in_zone_order(pgdat, j);
2264 build_thisnode_zonelists(pgdat);
2267 /* Construct the zonelist performance cache - see further mmzone.h */
2268 static void build_zonelist_cache(pg_data_t *pgdat)
2272 for (i = 0; i < MAX_NR_ZONES; i++) {
2273 struct zonelist *zonelist;
2274 struct zonelist_cache *zlc;
2277 zonelist = pgdat->node_zonelists + i;
2278 zonelist->zlcache_ptr = zlc = &zonelist->zlcache;
2279 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
2280 for (z = zonelist->zones; *z; z++)
2281 zlc->z_to_n[z - zonelist->zones] = zone_to_nid(*z);
2286 #else /* CONFIG_NUMA */
2288 static void set_zonelist_order(void)
2290 current_zonelist_order = ZONELIST_ORDER_ZONE;
2293 static void build_zonelists(pg_data_t *pgdat)
2295 int node, local_node;
2298 local_node = pgdat->node_id;
2299 for (i = 0; i < MAX_NR_ZONES; i++) {
2300 struct zonelist *zonelist;
2302 zonelist = pgdat->node_zonelists + i;
2304 j = build_zonelists_node(pgdat, zonelist, 0, i);
2306 * Now we build the zonelist so that it contains the zones
2307 * of all the other nodes.
2308 * We don't want to pressure a particular node, so when
2309 * building the zones for node N, we make sure that the
2310 * zones coming right after the local ones are those from
2311 * node N+1 (modulo N)
2313 for (node = local_node + 1; node < MAX_NUMNODES; node++) {
2314 if (!node_online(node))
2316 j = build_zonelists_node(NODE_DATA(node), zonelist, j, i);
2318 for (node = 0; node < local_node; node++) {
2319 if (!node_online(node))
2321 j = build_zonelists_node(NODE_DATA(node), zonelist, j, i);
2324 zonelist->zones[j] = NULL;
2328 /* non-NUMA variant of zonelist performance cache - just NULL zlcache_ptr */
2329 static void build_zonelist_cache(pg_data_t *pgdat)
2333 for (i = 0; i < MAX_NR_ZONES; i++)
2334 pgdat->node_zonelists[i].zlcache_ptr = NULL;
2337 #endif /* CONFIG_NUMA */
2339 /* return values int ....just for stop_machine_run() */
2340 static int __build_all_zonelists(void *dummy)
2344 for_each_online_node(nid) {
2345 pg_data_t *pgdat = NODE_DATA(nid);
2347 build_zonelists(pgdat);
2348 build_zonelist_cache(pgdat);
2353 void build_all_zonelists(void)
2355 set_zonelist_order();
2357 if (system_state == SYSTEM_BOOTING) {
2358 __build_all_zonelists(NULL);
2359 cpuset_init_current_mems_allowed();
2361 /* we have to stop all cpus to guaranntee there is no user
2363 stop_machine_run(__build_all_zonelists, NULL, NR_CPUS);
2364 /* cpuset refresh routine should be here */
2366 vm_total_pages = nr_free_pagecache_pages();
2368 * Disable grouping by mobility if the number of pages in the
2369 * system is too low to allow the mechanism to work. It would be
2370 * more accurate, but expensive to check per-zone. This check is
2371 * made on memory-hotadd so a system can start with mobility
2372 * disabled and enable it later
2374 if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
2375 page_group_by_mobility_disabled = 1;
2377 page_group_by_mobility_disabled = 0;
2379 printk("Built %i zonelists in %s order, mobility grouping %s. "
2380 "Total pages: %ld\n",
2382 zonelist_order_name[current_zonelist_order],
2383 page_group_by_mobility_disabled ? "off" : "on",
2386 printk("Policy zone: %s\n", zone_names[policy_zone]);
2391 * Helper functions to size the waitqueue hash table.
2392 * Essentially these want to choose hash table sizes sufficiently
2393 * large so that collisions trying to wait on pages are rare.
2394 * But in fact, the number of active page waitqueues on typical
2395 * systems is ridiculously low, less than 200. So this is even
2396 * conservative, even though it seems large.
2398 * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to
2399 * waitqueues, i.e. the size of the waitq table given the number of pages.
2401 #define PAGES_PER_WAITQUEUE 256
2403 #ifndef CONFIG_MEMORY_HOTPLUG
2404 static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
2406 unsigned long size = 1;
2408 pages /= PAGES_PER_WAITQUEUE;
2410 while (size < pages)
2414 * Once we have dozens or even hundreds of threads sleeping
2415 * on IO we've got bigger problems than wait queue collision.
2416 * Limit the size of the wait table to a reasonable size.
2418 size = min(size, 4096UL);
2420 return max(size, 4UL);
2424 * A zone's size might be changed by hot-add, so it is not possible to determine
2425 * a suitable size for its wait_table. So we use the maximum size now.
2427 * The max wait table size = 4096 x sizeof(wait_queue_head_t). ie:
2429 * i386 (preemption config) : 4096 x 16 = 64Kbyte.
2430 * ia64, x86-64 (no preemption): 4096 x 20 = 80Kbyte.
2431 * ia64, x86-64 (preemption) : 4096 x 24 = 96Kbyte.
2433 * The maximum entries are prepared when a zone's memory is (512K + 256) pages
2434 * or more by the traditional way. (See above). It equals:
2436 * i386, x86-64, powerpc(4K page size) : = ( 2G + 1M)byte.
2437 * ia64(16K page size) : = ( 8G + 4M)byte.
2438 * powerpc (64K page size) : = (32G +16M)byte.
2440 static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
2447 * This is an integer logarithm so that shifts can be used later
2448 * to extract the more random high bits from the multiplicative
2449 * hash function before the remainder is taken.
2451 static inline unsigned long wait_table_bits(unsigned long size)
2456 #define LONG_ALIGN(x) (((x)+(sizeof(long))-1)&~((sizeof(long))-1))
2459 * Mark a number of pageblocks as MIGRATE_RESERVE. The number
2460 * of blocks reserved is based on zone->pages_min. The memory within the
2461 * reserve will tend to store contiguous free pages. Setting min_free_kbytes
2462 * higher will lead to a bigger reserve which will get freed as contiguous
2463 * blocks as reclaim kicks in
2465 static void setup_zone_migrate_reserve(struct zone *zone)
2467 unsigned long start_pfn, pfn, end_pfn;
2469 unsigned long reserve, block_migratetype;
2471 /* Get the start pfn, end pfn and the number of blocks to reserve */
2472 start_pfn = zone->zone_start_pfn;
2473 end_pfn = start_pfn + zone->spanned_pages;
2474 reserve = roundup(zone->pages_min, pageblock_nr_pages) >>
2477 for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) {
2478 if (!pfn_valid(pfn))
2480 page = pfn_to_page(pfn);
2482 /* Blocks with reserved pages will never free, skip them. */
2483 if (PageReserved(page))
2486 block_migratetype = get_pageblock_migratetype(page);
2488 /* If this block is reserved, account for it */
2489 if (reserve > 0 && block_migratetype == MIGRATE_RESERVE) {
2494 /* Suitable for reserving if this block is movable */
2495 if (reserve > 0 && block_migratetype == MIGRATE_MOVABLE) {
2496 set_pageblock_migratetype(page, MIGRATE_RESERVE);
2497 move_freepages_block(zone, page, MIGRATE_RESERVE);
2503 * If the reserve is met and this is a previous reserved block,
2506 if (block_migratetype == MIGRATE_RESERVE) {
2507 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
2508 move_freepages_block(zone, page, MIGRATE_MOVABLE);
2514 * Initially all pages are reserved - free ones are freed
2515 * up by free_all_bootmem() once the early boot process is
2516 * done. Non-atomic initialization, single-pass.
2518 void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
2519 unsigned long start_pfn, enum memmap_context context)
2522 unsigned long end_pfn = start_pfn + size;
2525 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
2527 * There can be holes in boot-time mem_map[]s
2528 * handed to this function. They do not
2529 * exist on hotplugged memory.
2531 if (context == MEMMAP_EARLY) {
2532 if (!early_pfn_valid(pfn))
2534 if (!early_pfn_in_nid(pfn, nid))
2537 page = pfn_to_page(pfn);
2538 set_page_links(page, zone, nid, pfn);
2539 init_page_count(page);
2540 reset_page_mapcount(page);
2541 SetPageReserved(page);
2544 * Mark the block movable so that blocks are reserved for
2545 * movable at startup. This will force kernel allocations
2546 * to reserve their blocks rather than leaking throughout
2547 * the address space during boot when many long-lived
2548 * kernel allocations are made. Later some blocks near
2549 * the start are marked MIGRATE_RESERVE by
2550 * setup_zone_migrate_reserve()
2552 if ((pfn & (pageblock_nr_pages-1)))
2553 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
2555 INIT_LIST_HEAD(&page->lru);
2556 #ifdef WANT_PAGE_VIRTUAL
2557 /* The shift won't overflow because ZONE_NORMAL is below 4G. */
2558 if (!is_highmem_idx(zone))
2559 set_page_address(page, __va(pfn << PAGE_SHIFT));
2564 static void __meminit zone_init_free_lists(struct pglist_data *pgdat,
2565 struct zone *zone, unsigned long size)
2568 for_each_migratetype_order(order, t) {
2569 INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
2570 zone->free_area[order].nr_free = 0;
2574 #ifndef __HAVE_ARCH_MEMMAP_INIT
2575 #define memmap_init(size, nid, zone, start_pfn) \
2576 memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY)
2579 static int __devinit zone_batchsize(struct zone *zone)
2584 * The per-cpu-pages pools are set to around 1000th of the
2585 * size of the zone. But no more than 1/2 of a meg.
2587 * OK, so we don't know how big the cache is. So guess.
2589 batch = zone->present_pages / 1024;
2590 if (batch * PAGE_SIZE > 512 * 1024)
2591 batch = (512 * 1024) / PAGE_SIZE;
2592 batch /= 4; /* We effectively *= 4 below */
2597 * Clamp the batch to a 2^n - 1 value. Having a power
2598 * of 2 value was found to be more likely to have
2599 * suboptimal cache aliasing properties in some cases.
2601 * For example if 2 tasks are alternately allocating
2602 * batches of pages, one task can end up with a lot
2603 * of pages of one half of the possible page colors
2604 * and the other with pages of the other colors.
2606 batch = (1 << (fls(batch + batch/2)-1)) - 1;
2611 inline void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
2613 struct per_cpu_pages *pcp;
2615 memset(p, 0, sizeof(*p));
2617 pcp = &p->pcp[0]; /* hot */
2619 pcp->high = 6 * batch;
2620 pcp->batch = max(1UL, 1 * batch);
2621 INIT_LIST_HEAD(&pcp->list);
2623 pcp = &p->pcp[1]; /* cold*/
2625 pcp->high = 2 * batch;
2626 pcp->batch = max(1UL, batch/2);
2627 INIT_LIST_HEAD(&pcp->list);
2631 * setup_pagelist_highmark() sets the high water mark for hot per_cpu_pagelist
2632 * to the value high for the pageset p.
2635 static void setup_pagelist_highmark(struct per_cpu_pageset *p,
2638 struct per_cpu_pages *pcp;
2640 pcp = &p->pcp[0]; /* hot list */
2642 pcp->batch = max(1UL, high/4);
2643 if ((high/4) > (PAGE_SHIFT * 8))
2644 pcp->batch = PAGE_SHIFT * 8;
2650 * Boot pageset table. One per cpu which is going to be used for all
2651 * zones and all nodes. The parameters will be set in such a way
2652 * that an item put on a list will immediately be handed over to
2653 * the buddy list. This is safe since pageset manipulation is done
2654 * with interrupts disabled.
2656 * Some NUMA counter updates may also be caught by the boot pagesets.
2658 * The boot_pagesets must be kept even after bootup is complete for
2659 * unused processors and/or zones. They do play a role for bootstrapping
2660 * hotplugged processors.
2662 * zoneinfo_show() and maybe other functions do
2663 * not check if the processor is online before following the pageset pointer.
2664 * Other parts of the kernel may not check if the zone is available.
2666 static struct per_cpu_pageset boot_pageset[NR_CPUS];
2669 * Dynamically allocate memory for the
2670 * per cpu pageset array in struct zone.
2672 static int __cpuinit process_zones(int cpu)
2674 struct zone *zone, *dzone;
2675 int node = cpu_to_node(cpu);
2677 node_set_state(node, N_CPU); /* this node has a cpu */
2679 for_each_zone(zone) {
2681 if (!populated_zone(zone))
2684 zone_pcp(zone, cpu) = kmalloc_node(sizeof(struct per_cpu_pageset),
2686 if (!zone_pcp(zone, cpu))
2689 setup_pageset(zone_pcp(zone, cpu), zone_batchsize(zone));
2691 if (percpu_pagelist_fraction)
2692 setup_pagelist_highmark(zone_pcp(zone, cpu),
2693 (zone->present_pages / percpu_pagelist_fraction));
2698 for_each_zone(dzone) {
2699 if (!populated_zone(dzone))
2703 kfree(zone_pcp(dzone, cpu));
2704 zone_pcp(dzone, cpu) = NULL;
2709 static inline void free_zone_pagesets(int cpu)
2713 for_each_zone(zone) {
2714 struct per_cpu_pageset *pset = zone_pcp(zone, cpu);
2716 /* Free per_cpu_pageset if it is slab allocated */
2717 if (pset != &boot_pageset[cpu])
2719 zone_pcp(zone, cpu) = NULL;
2723 static int __cpuinit pageset_cpuup_callback(struct notifier_block *nfb,
2724 unsigned long action,
2727 int cpu = (long)hcpu;
2728 int ret = NOTIFY_OK;
2731 case CPU_UP_PREPARE:
2732 case CPU_UP_PREPARE_FROZEN:
2733 if (process_zones(cpu))
2736 case CPU_UP_CANCELED:
2737 case CPU_UP_CANCELED_FROZEN:
2739 case CPU_DEAD_FROZEN:
2740 free_zone_pagesets(cpu);
2748 static struct notifier_block __cpuinitdata pageset_notifier =
2749 { &pageset_cpuup_callback, NULL, 0 };
2751 void __init setup_per_cpu_pageset(void)
2755 /* Initialize per_cpu_pageset for cpu 0.
2756 * A cpuup callback will do this for every cpu
2757 * as it comes online
2759 err = process_zones(smp_processor_id());
2761 register_cpu_notifier(&pageset_notifier);
2766 static noinline __init_refok
2767 int zone_wait_table_init(struct zone *zone, unsigned long zone_size_pages)
2770 struct pglist_data *pgdat = zone->zone_pgdat;
2774 * The per-page waitqueue mechanism uses hashed waitqueues
2777 zone->wait_table_hash_nr_entries =
2778 wait_table_hash_nr_entries(zone_size_pages);
2779 zone->wait_table_bits =
2780 wait_table_bits(zone->wait_table_hash_nr_entries);
2781 alloc_size = zone->wait_table_hash_nr_entries
2782 * sizeof(wait_queue_head_t);
2784 if (system_state == SYSTEM_BOOTING) {
2785 zone->wait_table = (wait_queue_head_t *)
2786 alloc_bootmem_node(pgdat, alloc_size);
2789 * This case means that a zone whose size was 0 gets new memory
2790 * via memory hot-add.
2791 * But it may be the case that a new node was hot-added. In
2792 * this case vmalloc() will not be able to use this new node's
2793 * memory - this wait_table must be initialized to use this new
2794 * node itself as well.
2795 * To use this new node's memory, further consideration will be
2798 zone->wait_table = vmalloc(alloc_size);
2800 if (!zone->wait_table)
2803 for(i = 0; i < zone->wait_table_hash_nr_entries; ++i)
2804 init_waitqueue_head(zone->wait_table + i);
2809 static __meminit void zone_pcp_init(struct zone *zone)
2812 unsigned long batch = zone_batchsize(zone);
2814 for (cpu = 0; cpu < NR_CPUS; cpu++) {
2816 /* Early boot. Slab allocator not functional yet */
2817 zone_pcp(zone, cpu) = &boot_pageset[cpu];
2818 setup_pageset(&boot_pageset[cpu],0);
2820 setup_pageset(zone_pcp(zone,cpu), batch);
2823 if (zone->present_pages)
2824 printk(KERN_DEBUG " %s zone: %lu pages, LIFO batch:%lu\n",
2825 zone->name, zone->present_pages, batch);
2828 __meminit int init_currently_empty_zone(struct zone *zone,
2829 unsigned long zone_start_pfn,
2831 enum memmap_context context)
2833 struct pglist_data *pgdat = zone->zone_pgdat;
2835 ret = zone_wait_table_init(zone, size);
2838 pgdat->nr_zones = zone_idx(zone) + 1;
2840 zone->zone_start_pfn = zone_start_pfn;
2842 memmap_init(size, pgdat->node_id, zone_idx(zone), zone_start_pfn);
2844 zone_init_free_lists(pgdat, zone, zone->spanned_pages);
2849 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
2851 * Basic iterator support. Return the first range of PFNs for a node
2852 * Note: nid == MAX_NUMNODES returns first region regardless of node
2854 static int __meminit first_active_region_index_in_nid(int nid)
2858 for (i = 0; i < nr_nodemap_entries; i++)
2859 if (nid == MAX_NUMNODES || early_node_map[i].nid == nid)
2866 * Basic iterator support. Return the next active range of PFNs for a node
2867 * Note: nid == MAX_NUMNODES returns next region regardles of node
2869 static int __meminit next_active_region_index_in_nid(int index, int nid)
2871 for (index = index + 1; index < nr_nodemap_entries; index++)
2872 if (nid == MAX_NUMNODES || early_node_map[index].nid == nid)
2878 #ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
2880 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
2881 * Architectures may implement their own version but if add_active_range()
2882 * was used and there are no special requirements, this is a convenient
2885 int __meminit early_pfn_to_nid(unsigned long pfn)
2889 for (i = 0; i < nr_nodemap_entries; i++) {
2890 unsigned long start_pfn = early_node_map[i].start_pfn;
2891 unsigned long end_pfn = early_node_map[i].end_pfn;
2893 if (start_pfn <= pfn && pfn < end_pfn)
2894 return early_node_map[i].nid;
2899 #endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
2901 /* Basic iterator support to walk early_node_map[] */
2902 #define for_each_active_range_index_in_nid(i, nid) \
2903 for (i = first_active_region_index_in_nid(nid); i != -1; \
2904 i = next_active_region_index_in_nid(i, nid))
2907 * free_bootmem_with_active_regions - Call free_bootmem_node for each active range
2908 * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
2909 * @max_low_pfn: The highest PFN that will be passed to free_bootmem_node
2911 * If an architecture guarantees that all ranges registered with
2912 * add_active_ranges() contain no holes and may be freed, this
2913 * this function may be used instead of calling free_bootmem() manually.
2915 void __init free_bootmem_with_active_regions(int nid,
2916 unsigned long max_low_pfn)
2920 for_each_active_range_index_in_nid(i, nid) {
2921 unsigned long size_pages = 0;
2922 unsigned long end_pfn = early_node_map[i].end_pfn;
2924 if (early_node_map[i].start_pfn >= max_low_pfn)
2927 if (end_pfn > max_low_pfn)
2928 end_pfn = max_low_pfn;
2930 size_pages = end_pfn - early_node_map[i].start_pfn;
2931 free_bootmem_node(NODE_DATA(early_node_map[i].nid),
2932 PFN_PHYS(early_node_map[i].start_pfn),
2933 size_pages << PAGE_SHIFT);
2938 * sparse_memory_present_with_active_regions - Call memory_present for each active range
2939 * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
2941 * If an architecture guarantees that all ranges registered with
2942 * add_active_ranges() contain no holes and may be freed, this
2943 * function may be used instead of calling memory_present() manually.
2945 void __init sparse_memory_present_with_active_regions(int nid)
2949 for_each_active_range_index_in_nid(i, nid)
2950 memory_present(early_node_map[i].nid,
2951 early_node_map[i].start_pfn,
2952 early_node_map[i].end_pfn);
2956 * push_node_boundaries - Push node boundaries to at least the requested boundary
2957 * @nid: The nid of the node to push the boundary for
2958 * @start_pfn: The start pfn of the node
2959 * @end_pfn: The end pfn of the node
2961 * In reserve-based hot-add, mem_map is allocated that is unused until hotadd
2962 * time. Specifically, on x86_64, SRAT will report ranges that can potentially
2963 * be hotplugged even though no physical memory exists. This function allows
2964 * an arch to push out the node boundaries so mem_map is allocated that can
2967 #ifdef CONFIG_MEMORY_HOTPLUG_RESERVE
2968 void __init push_node_boundaries(unsigned int nid,
2969 unsigned long start_pfn, unsigned long end_pfn)
2971 printk(KERN_DEBUG "Entering push_node_boundaries(%u, %lu, %lu)\n",
2972 nid, start_pfn, end_pfn);
2974 /* Initialise the boundary for this node if necessary */
2975 if (node_boundary_end_pfn[nid] == 0)
2976 node_boundary_start_pfn[nid] = -1UL;
2978 /* Update the boundaries */
2979 if (node_boundary_start_pfn[nid] > start_pfn)
2980 node_boundary_start_pfn[nid] = start_pfn;
2981 if (node_boundary_end_pfn[nid] < end_pfn)
2982 node_boundary_end_pfn[nid] = end_pfn;
2985 /* If necessary, push the node boundary out for reserve hotadd */
2986 static void __meminit account_node_boundary(unsigned int nid,
2987 unsigned long *start_pfn, unsigned long *end_pfn)
2989 printk(KERN_DEBUG "Entering account_node_boundary(%u, %lu, %lu)\n",
2990 nid, *start_pfn, *end_pfn);
2992 /* Return if boundary information has not been provided */
2993 if (node_boundary_end_pfn[nid] == 0)
2996 /* Check the boundaries and update if necessary */
2997 if (node_boundary_start_pfn[nid] < *start_pfn)
2998 *start_pfn = node_boundary_start_pfn[nid];
2999 if (node_boundary_end_pfn[nid] > *end_pfn)
3000 *end_pfn = node_boundary_end_pfn[nid];
3003 void __init push_node_boundaries(unsigned int nid,
3004 unsigned long start_pfn, unsigned long end_pfn) {}
3006 static void __meminit account_node_boundary(unsigned int nid,
3007 unsigned long *start_pfn, unsigned long *end_pfn) {}
3012 * get_pfn_range_for_nid - Return the start and end page frames for a node
3013 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
3014 * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
3015 * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
3017 * It returns the start and end page frame of a node based on information
3018 * provided by an arch calling add_active_range(). If called for a node
3019 * with no available memory, a warning is printed and the start and end
3022 void __meminit get_pfn_range_for_nid(unsigned int nid,
3023 unsigned long *start_pfn, unsigned long *end_pfn)
3029 for_each_active_range_index_in_nid(i, nid) {
3030 *start_pfn = min(*start_pfn, early_node_map[i].start_pfn);
3031 *end_pfn = max(*end_pfn, early_node_map[i].end_pfn);
3034 if (*start_pfn == -1UL)
3037 /* Push the node boundaries out if requested */
3038 account_node_boundary(nid, start_pfn, end_pfn);
3042 * This finds a zone that can be used for ZONE_MOVABLE pages. The
3043 * assumption is made that zones within a node are ordered in monotonic
3044 * increasing memory addresses so that the "highest" populated zone is used
3046 void __init find_usable_zone_for_movable(void)
3049 for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
3050 if (zone_index == ZONE_MOVABLE)
3053 if (arch_zone_highest_possible_pfn[zone_index] >
3054 arch_zone_lowest_possible_pfn[zone_index])
3058 VM_BUG_ON(zone_index == -1);
3059 movable_zone = zone_index;
3063 * The zone ranges provided by the architecture do not include ZONE_MOVABLE
3064 * because it is sized independant of architecture. Unlike the other zones,
3065 * the starting point for ZONE_MOVABLE is not fixed. It may be different
3066 * in each node depending on the size of each node and how evenly kernelcore
3067 * is distributed. This helper function adjusts the zone ranges
3068 * provided by the architecture for a given node by using the end of the
3069 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
3070 * zones within a node are in order of monotonic increases memory addresses
3072 void __meminit adjust_zone_range_for_zone_movable(int nid,
3073 unsigned long zone_type,
3074 unsigned long node_start_pfn,
3075 unsigned long node_end_pfn,
3076 unsigned long *zone_start_pfn,
3077 unsigned long *zone_end_pfn)
3079 /* Only adjust if ZONE_MOVABLE is on this node */
3080 if (zone_movable_pfn[nid]) {
3081 /* Size ZONE_MOVABLE */
3082 if (zone_type == ZONE_MOVABLE) {
3083 *zone_start_pfn = zone_movable_pfn[nid];
3084 *zone_end_pfn = min(node_end_pfn,
3085 arch_zone_highest_possible_pfn[movable_zone]);
3087 /* Adjust for ZONE_MOVABLE starting within this range */
3088 } else if (*zone_start_pfn < zone_movable_pfn[nid] &&
3089 *zone_end_pfn > zone_movable_pfn[nid]) {
3090 *zone_end_pfn = zone_movable_pfn[nid];
3092 /* Check if this whole range is within ZONE_MOVABLE */
3093 } else if (*zone_start_pfn >= zone_movable_pfn[nid])
3094 *zone_start_pfn = *zone_end_pfn;
3099 * Return the number of pages a zone spans in a node, including holes
3100 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
3102 static unsigned long __meminit zone_spanned_pages_in_node(int nid,
3103 unsigned long zone_type,
3104 unsigned long *ignored)
3106 unsigned long node_start_pfn, node_end_pfn;
3107 unsigned long zone_start_pfn, zone_end_pfn;
3109 /* Get the start and end of the node and zone */
3110 get_pfn_range_for_nid(nid, &node_start_pfn, &node_end_pfn);
3111 zone_start_pfn = arch_zone_lowest_possible_pfn[zone_type];
3112 zone_end_pfn = arch_zone_highest_possible_pfn[zone_type];
3113 adjust_zone_range_for_zone_movable(nid, zone_type,
3114 node_start_pfn, node_end_pfn,
3115 &zone_start_pfn, &zone_end_pfn);
3117 /* Check that this node has pages within the zone's required range */
3118 if (zone_end_pfn < node_start_pfn || zone_start_pfn > node_end_pfn)
3121 /* Move the zone boundaries inside the node if necessary */
3122 zone_end_pfn = min(zone_end_pfn, node_end_pfn);
3123 zone_start_pfn = max(zone_start_pfn, node_start_pfn);
3125 /* Return the spanned pages */
3126 return zone_end_pfn - zone_start_pfn;
3130 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
3131 * then all holes in the requested range will be accounted for.
3133 unsigned long __meminit __absent_pages_in_range(int nid,
3134 unsigned long range_start_pfn,
3135 unsigned long range_end_pfn)
3138 unsigned long prev_end_pfn = 0, hole_pages = 0;
3139 unsigned long start_pfn;
3141 /* Find the end_pfn of the first active range of pfns in the node */
3142 i = first_active_region_index_in_nid(nid);
3146 prev_end_pfn = min(early_node_map[i].start_pfn, range_end_pfn);
3148 /* Account for ranges before physical memory on this node */
3149 if (early_node_map[i].start_pfn > range_start_pfn)
3150 hole_pages = prev_end_pfn - range_start_pfn;
3152 /* Find all holes for the zone within the node */
3153 for (; i != -1; i = next_active_region_index_in_nid(i, nid)) {
3155 /* No need to continue if prev_end_pfn is outside the zone */
3156 if (prev_end_pfn >= range_end_pfn)
3159 /* Make sure the end of the zone is not within the hole */
3160 start_pfn = min(early_node_map[i].start_pfn, range_end_pfn);
3161 prev_end_pfn = max(prev_end_pfn, range_start_pfn);
3163 /* Update the hole size cound and move on */
3164 if (start_pfn > range_start_pfn) {
3165 BUG_ON(prev_end_pfn > start_pfn);
3166 hole_pages += start_pfn - prev_end_pfn;
3168 prev_end_pfn = early_node_map[i].end_pfn;
3171 /* Account for ranges past physical memory on this node */
3172 if (range_end_pfn > prev_end_pfn)
3173 hole_pages += range_end_pfn -
3174 max(range_start_pfn, prev_end_pfn);
3180 * absent_pages_in_range - Return number of page frames in holes within a range
3181 * @start_pfn: The start PFN to start searching for holes
3182 * @end_pfn: The end PFN to stop searching for holes
3184 * It returns the number of pages frames in memory holes within a range.
3186 unsigned long __init absent_pages_in_range(unsigned long start_pfn,
3187 unsigned long end_pfn)
3189 return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
3192 /* Return the number of page frames in holes in a zone on a node */
3193 static unsigned long __meminit zone_absent_pages_in_node(int nid,
3194 unsigned long zone_type,
3195 unsigned long *ignored)
3197 unsigned long node_start_pfn, node_end_pfn;
3198 unsigned long zone_start_pfn, zone_end_pfn;
3200 get_pfn_range_for_nid(nid, &node_start_pfn, &node_end_pfn);
3201 zone_start_pfn = max(arch_zone_lowest_possible_pfn[zone_type],
3203 zone_end_pfn = min(arch_zone_highest_possible_pfn[zone_type],
3206 adjust_zone_range_for_zone_movable(nid, zone_type,
3207 node_start_pfn, node_end_pfn,
3208 &zone_start_pfn, &zone_end_pfn);
3209 return __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
3213 static inline unsigned long __meminit zone_spanned_pages_in_node(int nid,
3214 unsigned long zone_type,
3215 unsigned long *zones_size)
3217 return zones_size[zone_type];
3220 static inline unsigned long __meminit zone_absent_pages_in_node(int nid,
3221 unsigned long zone_type,
3222 unsigned long *zholes_size)
3227 return zholes_size[zone_type];
3232 static void __meminit calculate_node_totalpages(struct pglist_data *pgdat,
3233 unsigned long *zones_size, unsigned long *zholes_size)
3235 unsigned long realtotalpages, totalpages = 0;
3238 for (i = 0; i < MAX_NR_ZONES; i++)
3239 totalpages += zone_spanned_pages_in_node(pgdat->node_id, i,
3241 pgdat->node_spanned_pages = totalpages;
3243 realtotalpages = totalpages;
3244 for (i = 0; i < MAX_NR_ZONES; i++)
3246 zone_absent_pages_in_node(pgdat->node_id, i,
3248 pgdat->node_present_pages = realtotalpages;
3249 printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id,
3253 #ifndef CONFIG_SPARSEMEM
3255 * Calculate the size of the zone->blockflags rounded to an unsigned long
3256 * Start by making sure zonesize is a multiple of pageblock_order by rounding
3257 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
3258 * round what is now in bits to nearest long in bits, then return it in
3261 static unsigned long __init usemap_size(unsigned long zonesize)
3263 unsigned long usemapsize;
3265 usemapsize = roundup(zonesize, pageblock_nr_pages);
3266 usemapsize = usemapsize >> pageblock_order;
3267 usemapsize *= NR_PAGEBLOCK_BITS;
3268 usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));
3270 return usemapsize / 8;
3273 static void __init setup_usemap(struct pglist_data *pgdat,
3274 struct zone *zone, unsigned long zonesize)
3276 unsigned long usemapsize = usemap_size(zonesize);
3277 zone->pageblock_flags = NULL;
3279 zone->pageblock_flags = alloc_bootmem_node(pgdat, usemapsize);
3280 memset(zone->pageblock_flags, 0, usemapsize);
3284 static void inline setup_usemap(struct pglist_data *pgdat,
3285 struct zone *zone, unsigned long zonesize) {}
3286 #endif /* CONFIG_SPARSEMEM */
3288 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
3289 /* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
3290 static inline void __init set_pageblock_order(unsigned int order)
3292 /* Check that pageblock_nr_pages has not already been setup */
3293 if (pageblock_order)
3297 * Assume the largest contiguous order of interest is a huge page.
3298 * This value may be variable depending on boot parameters on IA64
3300 pageblock_order = order;
3302 #else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
3304 /* Defined this way to avoid accidently referencing HUGETLB_PAGE_ORDER */
3305 #define set_pageblock_order(x) do {} while (0)
3307 #endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
3310 * Set up the zone data structures:
3311 * - mark all pages reserved
3312 * - mark all memory queues empty
3313 * - clear the memory bitmaps
3315 static void __meminit free_area_init_core(struct pglist_data *pgdat,
3316 unsigned long *zones_size, unsigned long *zholes_size)
3319 int nid = pgdat->node_id;
3320 unsigned long zone_start_pfn = pgdat->node_start_pfn;
3323 pgdat_resize_init(pgdat);
3324 pgdat->nr_zones = 0;
3325 init_waitqueue_head(&pgdat->kswapd_wait);
3326 pgdat->kswapd_max_order = 0;
3328 for (j = 0; j < MAX_NR_ZONES; j++) {
3329 struct zone *zone = pgdat->node_zones + j;
3330 unsigned long size, realsize, memmap_pages;
3332 size = zone_spanned_pages_in_node(nid, j, zones_size);
3333 realsize = size - zone_absent_pages_in_node(nid, j,
3337 * Adjust realsize so that it accounts for how much memory
3338 * is used by this zone for memmap. This affects the watermark
3339 * and per-cpu initialisations
3341 memmap_pages = (size * sizeof(struct page)) >> PAGE_SHIFT;
3342 if (realsize >= memmap_pages) {
3343 realsize -= memmap_pages;
3345 " %s zone: %lu pages used for memmap\n",
3346 zone_names[j], memmap_pages);
3349 " %s zone: %lu pages exceeds realsize %lu\n",
3350 zone_names[j], memmap_pages, realsize);
3352 /* Account for reserved pages */
3353 if (j == 0 && realsize > dma_reserve) {
3354 realsize -= dma_reserve;
3355 printk(KERN_DEBUG " %s zone: %lu pages reserved\n",
3356 zone_names[0], dma_reserve);
3359 if (!is_highmem_idx(j))
3360 nr_kernel_pages += realsize;
3361 nr_all_pages += realsize;
3363 zone->spanned_pages = size;
3364 zone->present_pages = realsize;
3367 zone->min_unmapped_pages = (realsize*sysctl_min_unmapped_ratio)
3369 zone->min_slab_pages = (realsize * sysctl_min_slab_ratio) / 100;
3371 zone->name = zone_names[j];
3372 spin_lock_init(&zone->lock);
3373 spin_lock_init(&zone->lru_lock);
3374 zone_seqlock_init(zone);
3375 zone->zone_pgdat = pgdat;
3377 zone->prev_priority = DEF_PRIORITY;
3379 zone_pcp_init(zone);
3380 INIT_LIST_HEAD(&zone->active_list);
3381 INIT_LIST_HEAD(&zone->inactive_list);
3382 zone->nr_scan_active = 0;
3383 zone->nr_scan_inactive = 0;
3384 zap_zone_vm_stats(zone);
3389 set_pageblock_order(HUGETLB_PAGE_ORDER);
3390 setup_usemap(pgdat, zone, size);
3391 ret = init_currently_empty_zone(zone, zone_start_pfn,
3392 size, MEMMAP_EARLY);
3394 zone_start_pfn += size;
3398 static void __init_refok alloc_node_mem_map(struct pglist_data *pgdat)
3400 /* Skip empty nodes */
3401 if (!pgdat->node_spanned_pages)
3404 #ifdef CONFIG_FLAT_NODE_MEM_MAP
3405 /* ia64 gets its own node_mem_map, before this, without bootmem */
3406 if (!pgdat->node_mem_map) {
3407 unsigned long size, start, end;
3411 * The zone's endpoints aren't required to be MAX_ORDER
3412 * aligned but the node_mem_map endpoints must be in order
3413 * for the buddy allocator to function correctly.
3415 start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
3416 end = pgdat->node_start_pfn + pgdat->node_spanned_pages;
3417 end = ALIGN(end, MAX_ORDER_NR_PAGES);
3418 size = (end - start) * sizeof(struct page);
3419 map = alloc_remap(pgdat->node_id, size);
3421 map = alloc_bootmem_node(pgdat, size);
3422 pgdat->node_mem_map = map + (pgdat->node_start_pfn - start);
3424 #ifndef CONFIG_NEED_MULTIPLE_NODES
3426 * With no DISCONTIG, the global mem_map is just set as node 0's
3428 if (pgdat == NODE_DATA(0)) {
3429 mem_map = NODE_DATA(0)->node_mem_map;
3430 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
3431 if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
3432 mem_map -= pgdat->node_start_pfn;
3433 #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
3436 #endif /* CONFIG_FLAT_NODE_MEM_MAP */
3439 void __meminit free_area_init_node(int nid, struct pglist_data *pgdat,
3440 unsigned long *zones_size, unsigned long node_start_pfn,
3441 unsigned long *zholes_size)
3443 pgdat->node_id = nid;
3444 pgdat->node_start_pfn = node_start_pfn;
3445 calculate_node_totalpages(pgdat, zones_size, zholes_size);
3447 alloc_node_mem_map(pgdat);
3449 free_area_init_core(pgdat, zones_size, zholes_size);
3452 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
3454 #if MAX_NUMNODES > 1
3456 * Figure out the number of possible node ids.
3458 static void __init setup_nr_node_ids(void)
3461 unsigned int highest = 0;
3463 for_each_node_mask(node, node_possible_map)
3465 nr_node_ids = highest + 1;
3468 static inline void setup_nr_node_ids(void)
3474 * add_active_range - Register a range of PFNs backed by physical memory
3475 * @nid: The node ID the range resides on
3476 * @start_pfn: The start PFN of the available physical memory
3477 * @end_pfn: The end PFN of the available physical memory
3479 * These ranges are stored in an early_node_map[] and later used by
3480 * free_area_init_nodes() to calculate zone sizes and holes. If the
3481 * range spans a memory hole, it is up to the architecture to ensure
3482 * the memory is not freed by the bootmem allocator. If possible
3483 * the range being registered will be merged with existing ranges.
3485 void __init add_active_range(unsigned int nid, unsigned long start_pfn,
3486 unsigned long end_pfn)
3490 printk(KERN_DEBUG "Entering add_active_range(%d, %lu, %lu) "
3491 "%d entries of %d used\n",
3492 nid, start_pfn, end_pfn,
3493 nr_nodemap_entries, MAX_ACTIVE_REGIONS);
3495 /* Merge with existing active regions if possible */
3496 for (i = 0; i < nr_nodemap_entries; i++) {
3497 if (early_node_map[i].nid != nid)
3500 /* Skip if an existing region covers this new one */
3501 if (start_pfn >= early_node_map[i].start_pfn &&
3502 end_pfn <= early_node_map[i].end_pfn)
3505 /* Merge forward if suitable */
3506 if (start_pfn <= early_node_map[i].end_pfn &&
3507 end_pfn > early_node_map[i].end_pfn) {
3508 early_node_map[i].end_pfn = end_pfn;
3512 /* Merge backward if suitable */
3513 if (start_pfn < early_node_map[i].end_pfn &&
3514 end_pfn >= early_node_map[i].start_pfn) {
3515 early_node_map[i].start_pfn = start_pfn;
3520 /* Check that early_node_map is large enough */
3521 if (i >= MAX_ACTIVE_REGIONS) {
3522 printk(KERN_CRIT "More than %d memory regions, truncating\n",
3523 MAX_ACTIVE_REGIONS);
3527 early_node_map[i].nid = nid;
3528 early_node_map[i].start_pfn = start_pfn;
3529 early_node_map[i].end_pfn = end_pfn;
3530 nr_nodemap_entries = i + 1;
3534 * shrink_active_range - Shrink an existing registered range of PFNs
3535 * @nid: The node id the range is on that should be shrunk
3536 * @old_end_pfn: The old end PFN of the range
3537 * @new_end_pfn: The new PFN of the range
3539 * i386 with NUMA use alloc_remap() to store a node_mem_map on a local node.
3540 * The map is kept at the end physical page range that has already been
3541 * registered with add_active_range(). This function allows an arch to shrink
3542 * an existing registered range.
3544 void __init shrink_active_range(unsigned int nid, unsigned long old_end_pfn,
3545 unsigned long new_end_pfn)
3549 /* Find the old active region end and shrink */
3550 for_each_active_range_index_in_nid(i, nid)
3551 if (early_node_map[i].end_pfn == old_end_pfn) {
3552 early_node_map[i].end_pfn = new_end_pfn;
3558 * remove_all_active_ranges - Remove all currently registered regions
3560 * During discovery, it may be found that a table like SRAT is invalid
3561 * and an alternative discovery method must be used. This function removes
3562 * all currently registered regions.
3564 void __init remove_all_active_ranges(void)
3566 memset(early_node_map, 0, sizeof(early_node_map));
3567 nr_nodemap_entries = 0;
3568 #ifdef CONFIG_MEMORY_HOTPLUG_RESERVE
3569 memset(node_boundary_start_pfn, 0, sizeof(node_boundary_start_pfn));
3570 memset(node_boundary_end_pfn, 0, sizeof(node_boundary_end_pfn));
3571 #endif /* CONFIG_MEMORY_HOTPLUG_RESERVE */
3574 /* Compare two active node_active_regions */
3575 static int __init cmp_node_active_region(const void *a, const void *b)
3577 struct node_active_region *arange = (struct node_active_region *)a;
3578 struct node_active_region *brange = (struct node_active_region *)b;
3580 /* Done this way to avoid overflows */
3581 if (arange->start_pfn > brange->start_pfn)
3583 if (arange->start_pfn < brange->start_pfn)
3589 /* sort the node_map by start_pfn */
3590 static void __init sort_node_map(void)
3592 sort(early_node_map, (size_t)nr_nodemap_entries,
3593 sizeof(struct node_active_region),
3594 cmp_node_active_region, NULL);
3597 /* Find the lowest pfn for a node */
3598 unsigned long __init find_min_pfn_for_node(unsigned long nid)
3601 unsigned long min_pfn = ULONG_MAX;
3603 /* Assuming a sorted map, the first range found has the starting pfn */
3604 for_each_active_range_index_in_nid(i, nid)
3605 min_pfn = min(min_pfn, early_node_map[i].start_pfn);
3607 if (min_pfn == ULONG_MAX) {
3609 "Could not find start_pfn for node %lu\n", nid);
3617 * find_min_pfn_with_active_regions - Find the minimum PFN registered
3619 * It returns the minimum PFN based on information provided via
3620 * add_active_range().
3622 unsigned long __init find_min_pfn_with_active_regions(void)
3624 return find_min_pfn_for_node(MAX_NUMNODES);
3628 * find_max_pfn_with_active_regions - Find the maximum PFN registered
3630 * It returns the maximum PFN based on information provided via
3631 * add_active_range().
3633 unsigned long __init find_max_pfn_with_active_regions(void)
3636 unsigned long max_pfn = 0;
3638 for (i = 0; i < nr_nodemap_entries; i++)
3639 max_pfn = max(max_pfn, early_node_map[i].end_pfn);
3645 * early_calculate_totalpages()
3646 * Sum pages in active regions for movable zone.
3647 * Populate N_HIGH_MEMORY for calculating usable_nodes.
3649 static unsigned long __init early_calculate_totalpages(void)
3652 unsigned long totalpages = 0;
3654 for (i = 0; i < nr_nodemap_entries; i++) {
3655 unsigned long pages = early_node_map[i].end_pfn -
3656 early_node_map[i].start_pfn;
3657 totalpages += pages;
3659 node_set_state(early_node_map[i].nid, N_HIGH_MEMORY);
3665 * Find the PFN the Movable zone begins in each node. Kernel memory
3666 * is spread evenly between nodes as long as the nodes have enough
3667 * memory. When they don't, some nodes will have more kernelcore than
3670 void __init find_zone_movable_pfns_for_nodes(unsigned long *movable_pfn)
3673 unsigned long usable_startpfn;
3674 unsigned long kernelcore_node, kernelcore_remaining;
3675 unsigned long totalpages = early_calculate_totalpages();
3676 int usable_nodes = nodes_weight(node_states[N_HIGH_MEMORY]);
3679 * If movablecore was specified, calculate what size of
3680 * kernelcore that corresponds so that memory usable for
3681 * any allocation type is evenly spread. If both kernelcore
3682 * and movablecore are specified, then the value of kernelcore
3683 * will be used for required_kernelcore if it's greater than
3684 * what movablecore would have allowed.
3686 if (required_movablecore) {
3687 unsigned long corepages;
3690 * Round-up so that ZONE_MOVABLE is at least as large as what
3691 * was requested by the user
3693 required_movablecore =
3694 roundup(required_movablecore, MAX_ORDER_NR_PAGES);
3695 corepages = totalpages - required_movablecore;
3697 required_kernelcore = max(required_kernelcore, corepages);
3700 /* If kernelcore was not specified, there is no ZONE_MOVABLE */
3701 if (!required_kernelcore)
3704 /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
3705 find_usable_zone_for_movable();
3706 usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
3709 /* Spread kernelcore memory as evenly as possible throughout nodes */
3710 kernelcore_node = required_kernelcore / usable_nodes;
3711 for_each_node_state(nid, N_HIGH_MEMORY) {
3713 * Recalculate kernelcore_node if the division per node
3714 * now exceeds what is necessary to satisfy the requested
3715 * amount of memory for the kernel
3717 if (required_kernelcore < kernelcore_node)
3718 kernelcore_node = required_kernelcore / usable_nodes;
3721 * As the map is walked, we track how much memory is usable
3722 * by the kernel using kernelcore_remaining. When it is
3723 * 0, the rest of the node is usable by ZONE_MOVABLE
3725 kernelcore_remaining = kernelcore_node;
3727 /* Go through each range of PFNs within this node */
3728 for_each_active_range_index_in_nid(i, nid) {
3729 unsigned long start_pfn, end_pfn;
3730 unsigned long size_pages;
3732 start_pfn = max(early_node_map[i].start_pfn,
3733 zone_movable_pfn[nid]);
3734 end_pfn = early_node_map[i].end_pfn;
3735 if (start_pfn >= end_pfn)
3738 /* Account for what is only usable for kernelcore */
3739 if (start_pfn < usable_startpfn) {
3740 unsigned long kernel_pages;
3741 kernel_pages = min(end_pfn, usable_startpfn)
3744 kernelcore_remaining -= min(kernel_pages,
3745 kernelcore_remaining);
3746 required_kernelcore -= min(kernel_pages,
3747 required_kernelcore);
3749 /* Continue if range is now fully accounted */
3750 if (end_pfn <= usable_startpfn) {
3753 * Push zone_movable_pfn to the end so
3754 * that if we have to rebalance
3755 * kernelcore across nodes, we will
3756 * not double account here
3758 zone_movable_pfn[nid] = end_pfn;
3761 start_pfn = usable_startpfn;
3765 * The usable PFN range for ZONE_MOVABLE is from
3766 * start_pfn->end_pfn. Calculate size_pages as the
3767 * number of pages used as kernelcore
3769 size_pages = end_pfn - start_pfn;
3770 if (size_pages > kernelcore_remaining)
3771 size_pages = kernelcore_remaining;
3772 zone_movable_pfn[nid] = start_pfn + size_pages;
3775 * Some kernelcore has been met, update counts and
3776 * break if the kernelcore for this node has been
3779 required_kernelcore -= min(required_kernelcore,
3781 kernelcore_remaining -= size_pages;
3782 if (!kernelcore_remaining)
3788 * If there is still required_kernelcore, we do another pass with one
3789 * less node in the count. This will push zone_movable_pfn[nid] further
3790 * along on the nodes that still have memory until kernelcore is
3794 if (usable_nodes && required_kernelcore > usable_nodes)
3797 /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
3798 for (nid = 0; nid < MAX_NUMNODES; nid++)
3799 zone_movable_pfn[nid] =
3800 roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
3803 /* Any regular memory on that node ? */
3804 static void check_for_regular_memory(pg_data_t *pgdat)
3806 #ifdef CONFIG_HIGHMEM
3807 enum zone_type zone_type;
3809 for (zone_type = 0; zone_type <= ZONE_NORMAL; zone_type++) {
3810 struct zone *zone = &pgdat->node_zones[zone_type];
3811 if (zone->present_pages)
3812 node_set_state(zone_to_nid(zone), N_NORMAL_MEMORY);
3818 * free_area_init_nodes - Initialise all pg_data_t and zone data
3819 * @max_zone_pfn: an array of max PFNs for each zone
3821 * This will call free_area_init_node() for each active node in the system.
3822 * Using the page ranges provided by add_active_range(), the size of each
3823 * zone in each node and their holes is calculated. If the maximum PFN
3824 * between two adjacent zones match, it is assumed that the zone is empty.
3825 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
3826 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
3827 * starts where the previous one ended. For example, ZONE_DMA32 starts
3828 * at arch_max_dma_pfn.
3830 void __init free_area_init_nodes(unsigned long *max_zone_pfn)
3835 /* Sort early_node_map as initialisation assumes it is sorted */
3838 /* Record where the zone boundaries are */
3839 memset(arch_zone_lowest_possible_pfn, 0,
3840 sizeof(arch_zone_lowest_possible_pfn));
3841 memset(arch_zone_highest_possible_pfn, 0,
3842 sizeof(arch_zone_highest_possible_pfn));
3843 arch_zone_lowest_possible_pfn[0] = find_min_pfn_with_active_regions();
3844 arch_zone_highest_possible_pfn[0] = max_zone_pfn[0];
3845 for (i = 1; i < MAX_NR_ZONES; i++) {
3846 if (i == ZONE_MOVABLE)
3848 arch_zone_lowest_possible_pfn[i] =
3849 arch_zone_highest_possible_pfn[i-1];
3850 arch_zone_highest_possible_pfn[i] =
3851 max(max_zone_pfn[i], arch_zone_lowest_possible_pfn[i]);
3853 arch_zone_lowest_possible_pfn[ZONE_MOVABLE] = 0;
3854 arch_zone_highest_possible_pfn[ZONE_MOVABLE] = 0;
3856 /* Find the PFNs that ZONE_MOVABLE begins at in each node */
3857 memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
3858 find_zone_movable_pfns_for_nodes(zone_movable_pfn);
3860 /* Print out the zone ranges */
3861 printk("Zone PFN ranges:\n");
3862 for (i = 0; i < MAX_NR_ZONES; i++) {
3863 if (i == ZONE_MOVABLE)
3865 printk(" %-8s %8lu -> %8lu\n",
3867 arch_zone_lowest_possible_pfn[i],
3868 arch_zone_highest_possible_pfn[i]);
3871 /* Print out the PFNs ZONE_MOVABLE begins at in each node */
3872 printk("Movable zone start PFN for each node\n");
3873 for (i = 0; i < MAX_NUMNODES; i++) {
3874 if (zone_movable_pfn[i])
3875 printk(" Node %d: %lu\n", i, zone_movable_pfn[i]);
3878 /* Print out the early_node_map[] */
3879 printk("early_node_map[%d] active PFN ranges\n", nr_nodemap_entries);
3880 for (i = 0; i < nr_nodemap_entries; i++)
3881 printk(" %3d: %8lu -> %8lu\n", early_node_map[i].nid,
3882 early_node_map[i].start_pfn,
3883 early_node_map[i].end_pfn);
3885 /* Initialise every node */
3886 setup_nr_node_ids();
3887 for_each_online_node(nid) {
3888 pg_data_t *pgdat = NODE_DATA(nid);
3889 free_area_init_node(nid, pgdat, NULL,
3890 find_min_pfn_for_node(nid), NULL);
3892 /* Any memory on that node */
3893 if (pgdat->node_present_pages)
3894 node_set_state(nid, N_HIGH_MEMORY);
3895 check_for_regular_memory(pgdat);
3899 static int __init cmdline_parse_core(char *p, unsigned long *core)
3901 unsigned long long coremem;
3905 coremem = memparse(p, &p);
3906 *core = coremem >> PAGE_SHIFT;
3908 /* Paranoid check that UL is enough for the coremem value */
3909 WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
3915 * kernelcore=size sets the amount of memory for use for allocations that
3916 * cannot be reclaimed or migrated.
3918 static int __init cmdline_parse_kernelcore(char *p)
3920 return cmdline_parse_core(p, &required_kernelcore);
3924 * movablecore=size sets the amount of memory for use for allocations that
3925 * can be reclaimed or migrated.
3927 static int __init cmdline_parse_movablecore(char *p)
3929 return cmdline_parse_core(p, &required_movablecore);
3932 early_param("kernelcore", cmdline_parse_kernelcore);
3933 early_param("movablecore", cmdline_parse_movablecore);
3935 #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
3938 * set_dma_reserve - set the specified number of pages reserved in the first zone
3939 * @new_dma_reserve: The number of pages to mark reserved
3941 * The per-cpu batchsize and zone watermarks are determined by present_pages.
3942 * In the DMA zone, a significant percentage may be consumed by kernel image
3943 * and other unfreeable allocations which can skew the watermarks badly. This
3944 * function may optionally be used to account for unfreeable pages in the
3945 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
3946 * smaller per-cpu batchsize.
3948 void __init set_dma_reserve(unsigned long new_dma_reserve)
3950 dma_reserve = new_dma_reserve;
3953 #ifndef CONFIG_NEED_MULTIPLE_NODES
3954 static bootmem_data_t contig_bootmem_data;
3955 struct pglist_data contig_page_data = { .bdata = &contig_bootmem_data };
3957 EXPORT_SYMBOL(contig_page_data);
3960 void __init free_area_init(unsigned long *zones_size)
3962 free_area_init_node(0, NODE_DATA(0), zones_size,
3963 __pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
3966 static int page_alloc_cpu_notify(struct notifier_block *self,
3967 unsigned long action, void *hcpu)
3969 int cpu = (unsigned long)hcpu;
3971 if (action == CPU_DEAD || action == CPU_DEAD_FROZEN) {
3972 local_irq_disable();
3974 vm_events_fold_cpu(cpu);
3976 refresh_cpu_vm_stats(cpu);
3981 void __init page_alloc_init(void)
3983 hotcpu_notifier(page_alloc_cpu_notify, 0);
3987 * calculate_totalreserve_pages - called when sysctl_lower_zone_reserve_ratio
3988 * or min_free_kbytes changes.
3990 static void calculate_totalreserve_pages(void)
3992 struct pglist_data *pgdat;
3993 unsigned long reserve_pages = 0;
3994 enum zone_type i, j;
3996 for_each_online_pgdat(pgdat) {
3997 for (i = 0; i < MAX_NR_ZONES; i++) {
3998 struct zone *zone = pgdat->node_zones + i;
3999 unsigned long max = 0;
4001 /* Find valid and maximum lowmem_reserve in the zone */
4002 for (j = i; j < MAX_NR_ZONES; j++) {
4003 if (zone->lowmem_reserve[j] > max)
4004 max = zone->lowmem_reserve[j];
4007 /* we treat pages_high as reserved pages. */
4008 max += zone->pages_high;
4010 if (max > zone->present_pages)
4011 max = zone->present_pages;
4012 reserve_pages += max;
4015 totalreserve_pages = reserve_pages;
4019 * setup_per_zone_lowmem_reserve - called whenever
4020 * sysctl_lower_zone_reserve_ratio changes. Ensures that each zone
4021 * has a correct pages reserved value, so an adequate number of
4022 * pages are left in the zone after a successful __alloc_pages().
4024 static void setup_per_zone_lowmem_reserve(void)
4026 struct pglist_data *pgdat;
4027 enum zone_type j, idx;
4029 for_each_online_pgdat(pgdat) {
4030 for (j = 0; j < MAX_NR_ZONES; j++) {
4031 struct zone *zone = pgdat->node_zones + j;
4032 unsigned long present_pages = zone->present_pages;
4034 zone->lowmem_reserve[j] = 0;
4038 struct zone *lower_zone;
4042 if (sysctl_lowmem_reserve_ratio[idx] < 1)
4043 sysctl_lowmem_reserve_ratio[idx] = 1;
4045 lower_zone = pgdat->node_zones + idx;
4046 lower_zone->lowmem_reserve[j] = present_pages /
4047 sysctl_lowmem_reserve_ratio[idx];
4048 present_pages += lower_zone->present_pages;
4053 /* update totalreserve_pages */
4054 calculate_totalreserve_pages();
4058 * setup_per_zone_pages_min - called when min_free_kbytes changes.
4060 * Ensures that the pages_{min,low,high} values for each zone are set correctly
4061 * with respect to min_free_kbytes.
4063 void setup_per_zone_pages_min(void)
4065 unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
4066 unsigned long lowmem_pages = 0;
4068 unsigned long flags;
4070 /* Calculate total number of !ZONE_HIGHMEM pages */
4071 for_each_zone(zone) {
4072 if (!is_highmem(zone))
4073 lowmem_pages += zone->present_pages;
4076 for_each_zone(zone) {
4079 spin_lock_irqsave(&zone->lru_lock, flags);
4080 tmp = (u64)pages_min * zone->present_pages;
4081 do_div(tmp, lowmem_pages);
4082 if (is_highmem(zone)) {
4084 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
4085 * need highmem pages, so cap pages_min to a small
4088 * The (pages_high-pages_low) and (pages_low-pages_min)
4089 * deltas controls asynch page reclaim, and so should
4090 * not be capped for highmem.
4094 min_pages = zone->present_pages / 1024;
4095 if (min_pages < SWAP_CLUSTER_MAX)
4096 min_pages = SWAP_CLUSTER_MAX;
4097 if (min_pages > 128)
4099 zone->pages_min = min_pages;
4102 * If it's a lowmem zone, reserve a number of pages
4103 * proportionate to the zone's size.
4105 zone->pages_min = tmp;
4108 zone->pages_low = zone->pages_min + (tmp >> 2);
4109 zone->pages_high = zone->pages_min + (tmp >> 1);
4110 setup_zone_migrate_reserve(zone);
4111 spin_unlock_irqrestore(&zone->lru_lock, flags);
4114 /* update totalreserve_pages */
4115 calculate_totalreserve_pages();
4119 * Initialise min_free_kbytes.
4121 * For small machines we want it small (128k min). For large machines
4122 * we want it large (64MB max). But it is not linear, because network
4123 * bandwidth does not increase linearly with machine size. We use
4125 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
4126 * min_free_kbytes = sqrt(lowmem_kbytes * 16)
4142 static int __init init_per_zone_pages_min(void)
4144 unsigned long lowmem_kbytes;
4146 lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
4148 min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
4149 if (min_free_kbytes < 128)
4150 min_free_kbytes = 128;
4151 if (min_free_kbytes > 65536)
4152 min_free_kbytes = 65536;
4153 setup_per_zone_pages_min();
4154 setup_per_zone_lowmem_reserve();
4157 module_init(init_per_zone_pages_min)
4160 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
4161 * that we can call two helper functions whenever min_free_kbytes
4164 int min_free_kbytes_sysctl_handler(ctl_table *table, int write,
4165 struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
4167 proc_dointvec(table, write, file, buffer, length, ppos);
4169 setup_per_zone_pages_min();
4174 int sysctl_min_unmapped_ratio_sysctl_handler(ctl_table *table, int write,
4175 struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
4180 rc = proc_dointvec_minmax(table, write, file, buffer, length, ppos);
4185 zone->min_unmapped_pages = (zone->present_pages *
4186 sysctl_min_unmapped_ratio) / 100;
4190 int sysctl_min_slab_ratio_sysctl_handler(ctl_table *table, int write,
4191 struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
4196 rc = proc_dointvec_minmax(table, write, file, buffer, length, ppos);
4201 zone->min_slab_pages = (zone->present_pages *
4202 sysctl_min_slab_ratio) / 100;
4208 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
4209 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
4210 * whenever sysctl_lowmem_reserve_ratio changes.
4212 * The reserve ratio obviously has absolutely no relation with the
4213 * pages_min watermarks. The lowmem reserve ratio can only make sense
4214 * if in function of the boot time zone sizes.
4216 int lowmem_reserve_ratio_sysctl_handler(ctl_table *table, int write,
4217 struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
4219 proc_dointvec_minmax(table, write, file, buffer, length, ppos);
4220 setup_per_zone_lowmem_reserve();
4225 * percpu_pagelist_fraction - changes the pcp->high for each zone on each
4226 * cpu. It is the fraction of total pages in each zone that a hot per cpu pagelist
4227 * can have before it gets flushed back to buddy allocator.
4230 int percpu_pagelist_fraction_sysctl_handler(ctl_table *table, int write,
4231 struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
4237 ret = proc_dointvec_minmax(table, write, file, buffer, length, ppos);
4238 if (!write || (ret == -EINVAL))
4240 for_each_zone(zone) {
4241 for_each_online_cpu(cpu) {
4243 high = zone->present_pages / percpu_pagelist_fraction;
4244 setup_pagelist_highmark(zone_pcp(zone, cpu), high);
4250 int hashdist = HASHDIST_DEFAULT;
4253 static int __init set_hashdist(char *str)
4257 hashdist = simple_strtoul(str, &str, 0);
4260 __setup("hashdist=", set_hashdist);
4264 * allocate a large system hash table from bootmem
4265 * - it is assumed that the hash table must contain an exact power-of-2
4266 * quantity of entries
4267 * - limit is the number of hash buckets, not the total allocation size
4269 void *__init alloc_large_system_hash(const char *tablename,
4270 unsigned long bucketsize,
4271 unsigned long numentries,
4274 unsigned int *_hash_shift,
4275 unsigned int *_hash_mask,
4276 unsigned long limit)
4278 unsigned long long max = limit;
4279 unsigned long log2qty, size;
4282 /* allow the kernel cmdline to have a say */
4284 /* round applicable memory size up to nearest megabyte */
4285 numentries = nr_kernel_pages;
4286 numentries += (1UL << (20 - PAGE_SHIFT)) - 1;
4287 numentries >>= 20 - PAGE_SHIFT;
4288 numentries <<= 20 - PAGE_SHIFT;
4290 /* limit to 1 bucket per 2^scale bytes of low memory */
4291 if (scale > PAGE_SHIFT)
4292 numentries >>= (scale - PAGE_SHIFT);
4294 numentries <<= (PAGE_SHIFT - scale);
4296 /* Make sure we've got at least a 0-order allocation.. */
4297 if (unlikely((numentries * bucketsize) < PAGE_SIZE))
4298 numentries = PAGE_SIZE / bucketsize;
4300 numentries = roundup_pow_of_two(numentries);
4302 /* limit allocation size to 1/16 total memory by default */
4304 max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
4305 do_div(max, bucketsize);
4308 if (numentries > max)
4311 log2qty = ilog2(numentries);
4314 size = bucketsize << log2qty;
4315 if (flags & HASH_EARLY)
4316 table = alloc_bootmem(size);
4318 table = __vmalloc(size, GFP_ATOMIC, PAGE_KERNEL);
4320 unsigned long order;
4321 for (order = 0; ((1UL << order) << PAGE_SHIFT) < size; order++)
4323 table = (void*) __get_free_pages(GFP_ATOMIC, order);
4325 * If bucketsize is not a power-of-two, we may free
4326 * some pages at the end of hash table.
4329 unsigned long alloc_end = (unsigned long)table +
4330 (PAGE_SIZE << order);
4331 unsigned long used = (unsigned long)table +
4333 split_page(virt_to_page(table), order);
4334 while (used < alloc_end) {
4340 } while (!table && size > PAGE_SIZE && --log2qty);
4343 panic("Failed to allocate %s hash table\n", tablename);
4345 printk(KERN_INFO "%s hash table entries: %d (order: %d, %lu bytes)\n",
4348 ilog2(size) - PAGE_SHIFT,
4352 *_hash_shift = log2qty;
4354 *_hash_mask = (1 << log2qty) - 1;
4359 #ifdef CONFIG_OUT_OF_LINE_PFN_TO_PAGE
4360 struct page *pfn_to_page(unsigned long pfn)
4362 return __pfn_to_page(pfn);
4364 unsigned long page_to_pfn(struct page *page)
4366 return __page_to_pfn(page);
4368 EXPORT_SYMBOL(pfn_to_page);
4369 EXPORT_SYMBOL(page_to_pfn);
4370 #endif /* CONFIG_OUT_OF_LINE_PFN_TO_PAGE */
4372 /* Return a pointer to the bitmap storing bits affecting a block of pages */
4373 static inline unsigned long *get_pageblock_bitmap(struct zone *zone,
4376 #ifdef CONFIG_SPARSEMEM
4377 return __pfn_to_section(pfn)->pageblock_flags;
4379 return zone->pageblock_flags;
4380 #endif /* CONFIG_SPARSEMEM */
4383 static inline int pfn_to_bitidx(struct zone *zone, unsigned long pfn)
4385 #ifdef CONFIG_SPARSEMEM
4386 pfn &= (PAGES_PER_SECTION-1);
4387 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
4389 pfn = pfn - zone->zone_start_pfn;
4390 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
4391 #endif /* CONFIG_SPARSEMEM */
4395 * get_pageblock_flags_group - Return the requested group of flags for the pageblock_nr_pages block of pages
4396 * @page: The page within the block of interest
4397 * @start_bitidx: The first bit of interest to retrieve
4398 * @end_bitidx: The last bit of interest
4399 * returns pageblock_bits flags
4401 unsigned long get_pageblock_flags_group(struct page *page,
4402 int start_bitidx, int end_bitidx)
4405 unsigned long *bitmap;
4406 unsigned long pfn, bitidx;
4407 unsigned long flags = 0;
4408 unsigned long value = 1;
4410 zone = page_zone(page);
4411 pfn = page_to_pfn(page);
4412 bitmap = get_pageblock_bitmap(zone, pfn);
4413 bitidx = pfn_to_bitidx(zone, pfn);
4415 for (; start_bitidx <= end_bitidx; start_bitidx++, value <<= 1)
4416 if (test_bit(bitidx + start_bitidx, bitmap))
4423 * set_pageblock_flags_group - Set the requested group of flags for a pageblock_nr_pages block of pages
4424 * @page: The page within the block of interest
4425 * @start_bitidx: The first bit of interest
4426 * @end_bitidx: The last bit of interest
4427 * @flags: The flags to set
4429 void set_pageblock_flags_group(struct page *page, unsigned long flags,
4430 int start_bitidx, int end_bitidx)
4433 unsigned long *bitmap;
4434 unsigned long pfn, bitidx;
4435 unsigned long value = 1;
4437 zone = page_zone(page);
4438 pfn = page_to_pfn(page);
4439 bitmap = get_pageblock_bitmap(zone, pfn);
4440 bitidx = pfn_to_bitidx(zone, pfn);
4442 for (; start_bitidx <= end_bitidx; start_bitidx++, value <<= 1)
4444 __set_bit(bitidx + start_bitidx, bitmap);
4446 __clear_bit(bitidx + start_bitidx, bitmap);
4450 * This is designed as sub function...plz see page_isolation.c also.
4451 * set/clear page block's type to be ISOLATE.
4452 * page allocater never alloc memory from ISOLATE block.
4455 int set_migratetype_isolate(struct page *page)
4458 unsigned long flags;
4461 zone = page_zone(page);
4462 spin_lock_irqsave(&zone->lock, flags);
4464 * In future, more migrate types will be able to be isolation target.
4466 if (get_pageblock_migratetype(page) != MIGRATE_MOVABLE)
4468 set_pageblock_migratetype(page, MIGRATE_ISOLATE);
4469 move_freepages_block(zone, page, MIGRATE_ISOLATE);
4472 spin_unlock_irqrestore(&zone->lock, flags);
4474 drain_all_local_pages();
4478 void unset_migratetype_isolate(struct page *page)
4481 unsigned long flags;
4482 zone = page_zone(page);
4483 spin_lock_irqsave(&zone->lock, flags);
4484 if (get_pageblock_migratetype(page) != MIGRATE_ISOLATE)
4486 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
4487 move_freepages_block(zone, page, MIGRATE_MOVABLE);
4489 spin_unlock_irqrestore(&zone->lock, flags);
4492 #ifdef CONFIG_MEMORY_HOTREMOVE
4494 * All pages in the range must be isolated before calling this.
4497 __offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
4503 unsigned long flags;
4504 /* find the first valid pfn */
4505 for (pfn = start_pfn; pfn < end_pfn; pfn++)
4510 zone = page_zone(pfn_to_page(pfn));
4511 spin_lock_irqsave(&zone->lock, flags);
4513 while (pfn < end_pfn) {
4514 if (!pfn_valid(pfn)) {
4518 page = pfn_to_page(pfn);
4519 BUG_ON(page_count(page));
4520 BUG_ON(!PageBuddy(page));
4521 order = page_order(page);
4522 #ifdef CONFIG_DEBUG_VM
4523 printk(KERN_INFO "remove from free list %lx %d %lx\n",
4524 pfn, 1 << order, end_pfn);
4526 list_del(&page->lru);
4527 rmv_page_order(page);
4528 zone->free_area[order].nr_free--;
4529 __mod_zone_page_state(zone, NR_FREE_PAGES,
4531 for (i = 0; i < (1 << order); i++)
4532 SetPageReserved((page+i));
4533 pfn += (1 << order);
4535 spin_unlock_irqrestore(&zone->lock, flags);