1 // SPDX-License-Identifier: GPL-2.0-only
3 * linux/mm/page_alloc.c
5 * Manages the free list, the system allocates free pages here.
6 * Note that kmalloc() lives in slab.c
8 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
9 * Swap reorganised 29.12.95, Stephen Tweedie
10 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
11 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
12 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
13 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000
14 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
15 * (lots of bits borrowed from Ingo Molnar & Andrew Morton)
18 #include <linux/stddef.h>
20 #include <linux/highmem.h>
21 #include <linux/swap.h>
22 #include <linux/interrupt.h>
23 #include <linux/pagemap.h>
24 #include <linux/jiffies.h>
25 #include <linux/memblock.h>
26 #include <linux/compiler.h>
27 #include <linux/kernel.h>
28 #include <linux/kasan.h>
29 #include <linux/module.h>
30 #include <linux/suspend.h>
31 #include <linux/pagevec.h>
32 #include <linux/blkdev.h>
33 #include <linux/slab.h>
34 #include <linux/ratelimit.h>
35 #include <linux/oom.h>
36 #include <linux/topology.h>
37 #include <linux/sysctl.h>
38 #include <linux/cpu.h>
39 #include <linux/cpuset.h>
40 #include <linux/memory_hotplug.h>
41 #include <linux/nodemask.h>
42 #include <linux/vmalloc.h>
43 #include <linux/vmstat.h>
44 #include <linux/mempolicy.h>
45 #include <linux/memremap.h>
46 #include <linux/stop_machine.h>
47 #include <linux/random.h>
48 #include <linux/sort.h>
49 #include <linux/pfn.h>
50 #include <linux/backing-dev.h>
51 #include <linux/fault-inject.h>
52 #include <linux/page-isolation.h>
53 #include <linux/debugobjects.h>
54 #include <linux/kmemleak.h>
55 #include <linux/compaction.h>
56 #include <trace/events/kmem.h>
57 #include <trace/events/oom.h>
58 #include <linux/prefetch.h>
59 #include <linux/mm_inline.h>
60 #include <linux/mmu_notifier.h>
61 #include <linux/migrate.h>
62 #include <linux/hugetlb.h>
63 #include <linux/sched/rt.h>
64 #include <linux/sched/mm.h>
65 #include <linux/page_owner.h>
66 #include <linux/kthread.h>
67 #include <linux/memcontrol.h>
68 #include <linux/ftrace.h>
69 #include <linux/lockdep.h>
70 #include <linux/nmi.h>
71 #include <linux/psi.h>
72 #include <linux/padata.h>
73 #include <linux/khugepaged.h>
74 #include <linux/buffer_head.h>
75 #include <asm/sections.h>
76 #include <asm/tlbflush.h>
77 #include <asm/div64.h>
80 #include "page_reporting.h"
82 /* Free Page Internal flags: for internal, non-pcp variants of free_pages(). */
83 typedef int __bitwise fpi_t;
85 /* No special request */
86 #define FPI_NONE ((__force fpi_t)0)
89 * Skip free page reporting notification for the (possibly merged) page.
90 * This does not hinder free page reporting from grabbing the page,
91 * reporting it and marking it "reported" - it only skips notifying
92 * the free page reporting infrastructure about a newly freed page. For
93 * example, used when temporarily pulling a page from a freelist and
94 * putting it back unmodified.
96 #define FPI_SKIP_REPORT_NOTIFY ((__force fpi_t)BIT(0))
99 * Place the (possibly merged) page to the tail of the freelist. Will ignore
100 * page shuffling (relevant code - e.g., memory onlining - is expected to
101 * shuffle the whole zone).
103 * Note: No code should rely on this flag for correctness - it's purely
104 * to allow for optimizations when handing back either fresh pages
105 * (memory onlining) or untouched pages (page isolation, free page
108 #define FPI_TO_TAIL ((__force fpi_t)BIT(1))
111 * Don't poison memory with KASAN (only for the tag-based modes).
112 * During boot, all non-reserved memblock memory is exposed to page_alloc.
113 * Poisoning all that memory lengthens boot time, especially on systems with
114 * large amount of RAM. This flag is used to skip that poisoning.
115 * This is only done for the tag-based KASAN modes, as those are able to
116 * detect memory corruptions with the memory tags assigned by default.
117 * All memory allocated normally after boot gets poisoned as usual.
119 #define FPI_SKIP_KASAN_POISON ((__force fpi_t)BIT(2))
121 /* prevent >1 _updater_ of zone percpu pageset ->high and ->batch fields */
122 static DEFINE_MUTEX(pcp_batch_high_lock);
123 #define MIN_PERCPU_PAGELIST_HIGH_FRACTION (8)
128 static DEFINE_PER_CPU(struct pagesets, pagesets) = {
129 .lock = INIT_LOCAL_LOCK(lock),
132 #ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
133 DEFINE_PER_CPU(int, numa_node);
134 EXPORT_PER_CPU_SYMBOL(numa_node);
137 DEFINE_STATIC_KEY_TRUE(vm_numa_stat_key);
139 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
141 * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
142 * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
143 * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
144 * defined in <linux/topology.h>.
146 DEFINE_PER_CPU(int, _numa_mem_); /* Kernel "local memory" node */
147 EXPORT_PER_CPU_SYMBOL(_numa_mem_);
150 /* work_structs for global per-cpu drains */
153 struct work_struct work;
155 static DEFINE_MUTEX(pcpu_drain_mutex);
156 static DEFINE_PER_CPU(struct pcpu_drain, pcpu_drain);
158 #ifdef CONFIG_GCC_PLUGIN_LATENT_ENTROPY
159 volatile unsigned long latent_entropy __latent_entropy;
160 EXPORT_SYMBOL(latent_entropy);
164 * Array of node states.
166 nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
167 [N_POSSIBLE] = NODE_MASK_ALL,
168 [N_ONLINE] = { { [0] = 1UL } },
170 [N_NORMAL_MEMORY] = { { [0] = 1UL } },
171 #ifdef CONFIG_HIGHMEM
172 [N_HIGH_MEMORY] = { { [0] = 1UL } },
174 [N_MEMORY] = { { [0] = 1UL } },
175 [N_CPU] = { { [0] = 1UL } },
178 EXPORT_SYMBOL(node_states);
180 atomic_long_t _totalram_pages __read_mostly;
181 EXPORT_SYMBOL(_totalram_pages);
182 unsigned long totalreserve_pages __read_mostly;
183 unsigned long totalcma_pages __read_mostly;
185 int percpu_pagelist_high_fraction;
186 gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
187 DEFINE_STATIC_KEY_MAYBE(CONFIG_INIT_ON_ALLOC_DEFAULT_ON, init_on_alloc);
188 EXPORT_SYMBOL(init_on_alloc);
190 DEFINE_STATIC_KEY_MAYBE(CONFIG_INIT_ON_FREE_DEFAULT_ON, init_on_free);
191 EXPORT_SYMBOL(init_on_free);
193 static bool _init_on_alloc_enabled_early __read_mostly
194 = IS_ENABLED(CONFIG_INIT_ON_ALLOC_DEFAULT_ON);
195 static int __init early_init_on_alloc(char *buf)
198 return kstrtobool(buf, &_init_on_alloc_enabled_early);
200 early_param("init_on_alloc", early_init_on_alloc);
202 static bool _init_on_free_enabled_early __read_mostly
203 = IS_ENABLED(CONFIG_INIT_ON_FREE_DEFAULT_ON);
204 static int __init early_init_on_free(char *buf)
206 return kstrtobool(buf, &_init_on_free_enabled_early);
208 early_param("init_on_free", early_init_on_free);
211 * A cached value of the page's pageblock's migratetype, used when the page is
212 * put on a pcplist. Used to avoid the pageblock migratetype lookup when
213 * freeing from pcplists in most cases, at the cost of possibly becoming stale.
214 * Also the migratetype set in the page does not necessarily match the pcplist
215 * index, e.g. page might have MIGRATE_CMA set but be on a pcplist with any
216 * other index - this ensures that it will be put on the correct CMA freelist.
218 static inline int get_pcppage_migratetype(struct page *page)
223 static inline void set_pcppage_migratetype(struct page *page, int migratetype)
225 page->index = migratetype;
228 #ifdef CONFIG_PM_SLEEP
230 * The following functions are used by the suspend/hibernate code to temporarily
231 * change gfp_allowed_mask in order to avoid using I/O during memory allocations
232 * while devices are suspended. To avoid races with the suspend/hibernate code,
233 * they should always be called with system_transition_mutex held
234 * (gfp_allowed_mask also should only be modified with system_transition_mutex
235 * held, unless the suspend/hibernate code is guaranteed not to run in parallel
236 * with that modification).
239 static gfp_t saved_gfp_mask;
241 void pm_restore_gfp_mask(void)
243 WARN_ON(!mutex_is_locked(&system_transition_mutex));
244 if (saved_gfp_mask) {
245 gfp_allowed_mask = saved_gfp_mask;
250 void pm_restrict_gfp_mask(void)
252 WARN_ON(!mutex_is_locked(&system_transition_mutex));
253 WARN_ON(saved_gfp_mask);
254 saved_gfp_mask = gfp_allowed_mask;
255 gfp_allowed_mask &= ~(__GFP_IO | __GFP_FS);
258 bool pm_suspended_storage(void)
260 if ((gfp_allowed_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS))
264 #endif /* CONFIG_PM_SLEEP */
266 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
267 unsigned int pageblock_order __read_mostly;
270 static void __free_pages_ok(struct page *page, unsigned int order,
274 * results with 256, 32 in the lowmem_reserve sysctl:
275 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
276 * 1G machine -> (16M dma, 784M normal, 224M high)
277 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
278 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
279 * HIGHMEM allocation will leave (224M+784M)/256 of ram reserved in ZONE_DMA
281 * TBD: should special case ZONE_DMA32 machines here - in those we normally
282 * don't need any ZONE_NORMAL reservation
284 int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES] = {
285 #ifdef CONFIG_ZONE_DMA
288 #ifdef CONFIG_ZONE_DMA32
292 #ifdef CONFIG_HIGHMEM
298 static char * const zone_names[MAX_NR_ZONES] = {
299 #ifdef CONFIG_ZONE_DMA
302 #ifdef CONFIG_ZONE_DMA32
306 #ifdef CONFIG_HIGHMEM
310 #ifdef CONFIG_ZONE_DEVICE
315 const char * const migratetype_names[MIGRATE_TYPES] = {
323 #ifdef CONFIG_MEMORY_ISOLATION
328 compound_page_dtor * const compound_page_dtors[NR_COMPOUND_DTORS] = {
329 [NULL_COMPOUND_DTOR] = NULL,
330 [COMPOUND_PAGE_DTOR] = free_compound_page,
331 #ifdef CONFIG_HUGETLB_PAGE
332 [HUGETLB_PAGE_DTOR] = free_huge_page,
334 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
335 [TRANSHUGE_PAGE_DTOR] = free_transhuge_page,
339 int min_free_kbytes = 1024;
340 int user_min_free_kbytes = -1;
341 int watermark_boost_factor __read_mostly = 15000;
342 int watermark_scale_factor = 10;
344 static unsigned long nr_kernel_pages __initdata;
345 static unsigned long nr_all_pages __initdata;
346 static unsigned long dma_reserve __initdata;
348 static unsigned long arch_zone_lowest_possible_pfn[MAX_NR_ZONES] __initdata;
349 static unsigned long arch_zone_highest_possible_pfn[MAX_NR_ZONES] __initdata;
350 static unsigned long required_kernelcore __initdata;
351 static unsigned long required_kernelcore_percent __initdata;
352 static unsigned long required_movablecore __initdata;
353 static unsigned long required_movablecore_percent __initdata;
354 static unsigned long zone_movable_pfn[MAX_NUMNODES] __initdata;
355 static bool mirrored_kernelcore __meminitdata;
357 /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
359 EXPORT_SYMBOL(movable_zone);
362 unsigned int nr_node_ids __read_mostly = MAX_NUMNODES;
363 unsigned int nr_online_nodes __read_mostly = 1;
364 EXPORT_SYMBOL(nr_node_ids);
365 EXPORT_SYMBOL(nr_online_nodes);
368 int page_group_by_mobility_disabled __read_mostly;
370 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
372 * During boot we initialize deferred pages on-demand, as needed, but once
373 * page_alloc_init_late() has finished, the deferred pages are all initialized,
374 * and we can permanently disable that path.
376 static DEFINE_STATIC_KEY_TRUE(deferred_pages);
379 * Calling kasan_poison_pages() only after deferred memory initialization
380 * has completed. Poisoning pages during deferred memory init will greatly
381 * lengthen the process and cause problem in large memory systems as the
382 * deferred pages initialization is done with interrupt disabled.
384 * Assuming that there will be no reference to those newly initialized
385 * pages before they are ever allocated, this should have no effect on
386 * KASAN memory tracking as the poison will be properly inserted at page
387 * allocation time. The only corner case is when pages are allocated by
388 * on-demand allocation and then freed again before the deferred pages
389 * initialization is done, but this is not likely to happen.
391 static inline bool should_skip_kasan_poison(struct page *page, fpi_t fpi_flags)
393 return static_branch_unlikely(&deferred_pages) ||
394 (!IS_ENABLED(CONFIG_KASAN_GENERIC) &&
395 (fpi_flags & FPI_SKIP_KASAN_POISON)) ||
396 PageSkipKASanPoison(page);
399 /* Returns true if the struct page for the pfn is uninitialised */
400 static inline bool __meminit early_page_uninitialised(unsigned long pfn)
402 int nid = early_pfn_to_nid(pfn);
404 if (node_online(nid) && pfn >= NODE_DATA(nid)->first_deferred_pfn)
411 * Returns true when the remaining initialisation should be deferred until
412 * later in the boot cycle when it can be parallelised.
414 static bool __meminit
415 defer_init(int nid, unsigned long pfn, unsigned long end_pfn)
417 static unsigned long prev_end_pfn, nr_initialised;
420 * prev_end_pfn static that contains the end of previous zone
421 * No need to protect because called very early in boot before smp_init.
423 if (prev_end_pfn != end_pfn) {
424 prev_end_pfn = end_pfn;
428 /* Always populate low zones for address-constrained allocations */
429 if (end_pfn < pgdat_end_pfn(NODE_DATA(nid)))
432 if (NODE_DATA(nid)->first_deferred_pfn != ULONG_MAX)
435 * We start only with one section of pages, more pages are added as
436 * needed until the rest of deferred pages are initialized.
439 if ((nr_initialised > PAGES_PER_SECTION) &&
440 (pfn & (PAGES_PER_SECTION - 1)) == 0) {
441 NODE_DATA(nid)->first_deferred_pfn = pfn;
447 static inline bool should_skip_kasan_poison(struct page *page, fpi_t fpi_flags)
449 return (!IS_ENABLED(CONFIG_KASAN_GENERIC) &&
450 (fpi_flags & FPI_SKIP_KASAN_POISON)) ||
451 PageSkipKASanPoison(page);
454 static inline bool early_page_uninitialised(unsigned long pfn)
459 static inline bool defer_init(int nid, unsigned long pfn, unsigned long end_pfn)
465 /* Return a pointer to the bitmap storing bits affecting a block of pages */
466 static inline unsigned long *get_pageblock_bitmap(const struct page *page,
469 #ifdef CONFIG_SPARSEMEM
470 return section_to_usemap(__pfn_to_section(pfn));
472 return page_zone(page)->pageblock_flags;
473 #endif /* CONFIG_SPARSEMEM */
476 static inline int pfn_to_bitidx(const struct page *page, unsigned long pfn)
478 #ifdef CONFIG_SPARSEMEM
479 pfn &= (PAGES_PER_SECTION-1);
481 pfn = pfn - round_down(page_zone(page)->zone_start_pfn, pageblock_nr_pages);
482 #endif /* CONFIG_SPARSEMEM */
483 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
486 static __always_inline
487 unsigned long __get_pfnblock_flags_mask(const struct page *page,
491 unsigned long *bitmap;
492 unsigned long bitidx, word_bitidx;
495 bitmap = get_pageblock_bitmap(page, pfn);
496 bitidx = pfn_to_bitidx(page, pfn);
497 word_bitidx = bitidx / BITS_PER_LONG;
498 bitidx &= (BITS_PER_LONG-1);
500 word = bitmap[word_bitidx];
501 return (word >> bitidx) & mask;
505 * get_pfnblock_flags_mask - Return the requested group of flags for the pageblock_nr_pages block of pages
506 * @page: The page within the block of interest
507 * @pfn: The target page frame number
508 * @mask: mask of bits that the caller is interested in
510 * Return: pageblock_bits flags
512 unsigned long get_pfnblock_flags_mask(const struct page *page,
513 unsigned long pfn, unsigned long mask)
515 return __get_pfnblock_flags_mask(page, pfn, mask);
518 static __always_inline int get_pfnblock_migratetype(const struct page *page,
521 return __get_pfnblock_flags_mask(page, pfn, MIGRATETYPE_MASK);
525 * set_pfnblock_flags_mask - Set the requested group of flags for a pageblock_nr_pages block of pages
526 * @page: The page within the block of interest
527 * @flags: The flags to set
528 * @pfn: The target page frame number
529 * @mask: mask of bits that the caller is interested in
531 void set_pfnblock_flags_mask(struct page *page, unsigned long flags,
535 unsigned long *bitmap;
536 unsigned long bitidx, word_bitidx;
537 unsigned long old_word, word;
539 BUILD_BUG_ON(NR_PAGEBLOCK_BITS != 4);
540 BUILD_BUG_ON(MIGRATE_TYPES > (1 << PB_migratetype_bits));
542 bitmap = get_pageblock_bitmap(page, pfn);
543 bitidx = pfn_to_bitidx(page, pfn);
544 word_bitidx = bitidx / BITS_PER_LONG;
545 bitidx &= (BITS_PER_LONG-1);
547 VM_BUG_ON_PAGE(!zone_spans_pfn(page_zone(page), pfn), page);
552 word = READ_ONCE(bitmap[word_bitidx]);
554 old_word = cmpxchg(&bitmap[word_bitidx], word, (word & ~mask) | flags);
555 if (word == old_word)
561 void set_pageblock_migratetype(struct page *page, int migratetype)
563 if (unlikely(page_group_by_mobility_disabled &&
564 migratetype < MIGRATE_PCPTYPES))
565 migratetype = MIGRATE_UNMOVABLE;
567 set_pfnblock_flags_mask(page, (unsigned long)migratetype,
568 page_to_pfn(page), MIGRATETYPE_MASK);
571 #ifdef CONFIG_DEBUG_VM
572 static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
576 unsigned long pfn = page_to_pfn(page);
577 unsigned long sp, start_pfn;
580 seq = zone_span_seqbegin(zone);
581 start_pfn = zone->zone_start_pfn;
582 sp = zone->spanned_pages;
583 if (!zone_spans_pfn(zone, pfn))
585 } while (zone_span_seqretry(zone, seq));
588 pr_err("page 0x%lx outside node %d zone %s [ 0x%lx - 0x%lx ]\n",
589 pfn, zone_to_nid(zone), zone->name,
590 start_pfn, start_pfn + sp);
595 static int page_is_consistent(struct zone *zone, struct page *page)
597 if (!pfn_valid_within(page_to_pfn(page)))
599 if (zone != page_zone(page))
605 * Temporary debugging check for pages not lying within a given zone.
607 static int __maybe_unused bad_range(struct zone *zone, struct page *page)
609 if (page_outside_zone_boundaries(zone, page))
611 if (!page_is_consistent(zone, page))
617 static inline int __maybe_unused bad_range(struct zone *zone, struct page *page)
623 static void bad_page(struct page *page, const char *reason)
625 static unsigned long resume;
626 static unsigned long nr_shown;
627 static unsigned long nr_unshown;
630 * Allow a burst of 60 reports, then keep quiet for that minute;
631 * or allow a steady drip of one report per second.
633 if (nr_shown == 60) {
634 if (time_before(jiffies, resume)) {
640 "BUG: Bad page state: %lu messages suppressed\n",
647 resume = jiffies + 60 * HZ;
649 pr_alert("BUG: Bad page state in process %s pfn:%05lx\n",
650 current->comm, page_to_pfn(page));
651 dump_page(page, reason);
656 /* Leave bad fields for debug, except PageBuddy could make trouble */
657 page_mapcount_reset(page); /* remove PageBuddy */
658 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
661 static inline unsigned int order_to_pindex(int migratetype, int order)
665 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
666 if (order > PAGE_ALLOC_COSTLY_ORDER) {
667 VM_BUG_ON(order != pageblock_order);
668 base = PAGE_ALLOC_COSTLY_ORDER + 1;
671 VM_BUG_ON(order > PAGE_ALLOC_COSTLY_ORDER);
674 return (MIGRATE_PCPTYPES * base) + migratetype;
677 static inline int pindex_to_order(unsigned int pindex)
679 int order = pindex / MIGRATE_PCPTYPES;
681 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
682 if (order > PAGE_ALLOC_COSTLY_ORDER) {
683 order = pageblock_order;
684 VM_BUG_ON(order != pageblock_order);
687 VM_BUG_ON(order > PAGE_ALLOC_COSTLY_ORDER);
693 static inline bool pcp_allowed_order(unsigned int order)
695 if (order <= PAGE_ALLOC_COSTLY_ORDER)
697 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
698 if (order == pageblock_order)
704 static inline void free_the_page(struct page *page, unsigned int order)
706 if (pcp_allowed_order(order)) /* Via pcp? */
707 free_unref_page(page, order);
709 __free_pages_ok(page, order, FPI_NONE);
713 * Higher-order pages are called "compound pages". They are structured thusly:
715 * The first PAGE_SIZE page is called the "head page" and have PG_head set.
717 * The remaining PAGE_SIZE pages are called "tail pages". PageTail() is encoded
718 * in bit 0 of page->compound_head. The rest of bits is pointer to head page.
720 * The first tail page's ->compound_dtor holds the offset in array of compound
721 * page destructors. See compound_page_dtors.
723 * The first tail page's ->compound_order holds the order of allocation.
724 * This usage means that zero-order pages may not be compound.
727 void free_compound_page(struct page *page)
729 mem_cgroup_uncharge(page);
730 free_the_page(page, compound_order(page));
733 void prep_compound_page(struct page *page, unsigned int order)
736 int nr_pages = 1 << order;
739 for (i = 1; i < nr_pages; i++) {
740 struct page *p = page + i;
741 p->mapping = TAIL_MAPPING;
742 set_compound_head(p, page);
745 set_compound_page_dtor(page, COMPOUND_PAGE_DTOR);
746 set_compound_order(page, order);
747 atomic_set(compound_mapcount_ptr(page), -1);
748 if (hpage_pincount_available(page))
749 atomic_set(compound_pincount_ptr(page), 0);
752 #ifdef CONFIG_DEBUG_PAGEALLOC
753 unsigned int _debug_guardpage_minorder;
755 bool _debug_pagealloc_enabled_early __read_mostly
756 = IS_ENABLED(CONFIG_DEBUG_PAGEALLOC_ENABLE_DEFAULT);
757 EXPORT_SYMBOL(_debug_pagealloc_enabled_early);
758 DEFINE_STATIC_KEY_FALSE(_debug_pagealloc_enabled);
759 EXPORT_SYMBOL(_debug_pagealloc_enabled);
761 DEFINE_STATIC_KEY_FALSE(_debug_guardpage_enabled);
763 static int __init early_debug_pagealloc(char *buf)
765 return kstrtobool(buf, &_debug_pagealloc_enabled_early);
767 early_param("debug_pagealloc", early_debug_pagealloc);
769 static int __init debug_guardpage_minorder_setup(char *buf)
773 if (kstrtoul(buf, 10, &res) < 0 || res > MAX_ORDER / 2) {
774 pr_err("Bad debug_guardpage_minorder value\n");
777 _debug_guardpage_minorder = res;
778 pr_info("Setting debug_guardpage_minorder to %lu\n", res);
781 early_param("debug_guardpage_minorder", debug_guardpage_minorder_setup);
783 static inline bool set_page_guard(struct zone *zone, struct page *page,
784 unsigned int order, int migratetype)
786 if (!debug_guardpage_enabled())
789 if (order >= debug_guardpage_minorder())
792 __SetPageGuard(page);
793 INIT_LIST_HEAD(&page->lru);
794 set_page_private(page, order);
795 /* Guard pages are not available for any usage */
796 __mod_zone_freepage_state(zone, -(1 << order), migratetype);
801 static inline void clear_page_guard(struct zone *zone, struct page *page,
802 unsigned int order, int migratetype)
804 if (!debug_guardpage_enabled())
807 __ClearPageGuard(page);
809 set_page_private(page, 0);
810 if (!is_migrate_isolate(migratetype))
811 __mod_zone_freepage_state(zone, (1 << order), migratetype);
814 static inline bool set_page_guard(struct zone *zone, struct page *page,
815 unsigned int order, int migratetype) { return false; }
816 static inline void clear_page_guard(struct zone *zone, struct page *page,
817 unsigned int order, int migratetype) {}
821 * Enable static keys related to various memory debugging and hardening options.
822 * Some override others, and depend on early params that are evaluated in the
823 * order of appearance. So we need to first gather the full picture of what was
824 * enabled, and then make decisions.
826 void init_mem_debugging_and_hardening(void)
828 bool page_poisoning_requested = false;
830 #ifdef CONFIG_PAGE_POISONING
832 * Page poisoning is debug page alloc for some arches. If
833 * either of those options are enabled, enable poisoning.
835 if (page_poisoning_enabled() ||
836 (!IS_ENABLED(CONFIG_ARCH_SUPPORTS_DEBUG_PAGEALLOC) &&
837 debug_pagealloc_enabled())) {
838 static_branch_enable(&_page_poisoning_enabled);
839 page_poisoning_requested = true;
843 if (_init_on_alloc_enabled_early) {
844 if (page_poisoning_requested)
845 pr_info("mem auto-init: CONFIG_PAGE_POISONING is on, "
846 "will take precedence over init_on_alloc\n");
848 static_branch_enable(&init_on_alloc);
850 if (_init_on_free_enabled_early) {
851 if (page_poisoning_requested)
852 pr_info("mem auto-init: CONFIG_PAGE_POISONING is on, "
853 "will take precedence over init_on_free\n");
855 static_branch_enable(&init_on_free);
858 #ifdef CONFIG_DEBUG_PAGEALLOC
859 if (!debug_pagealloc_enabled())
862 static_branch_enable(&_debug_pagealloc_enabled);
864 if (!debug_guardpage_minorder())
867 static_branch_enable(&_debug_guardpage_enabled);
871 static inline void set_buddy_order(struct page *page, unsigned int order)
873 set_page_private(page, order);
874 __SetPageBuddy(page);
878 * This function checks whether a page is free && is the buddy
879 * we can coalesce a page and its buddy if
880 * (a) the buddy is not in a hole (check before calling!) &&
881 * (b) the buddy is in the buddy system &&
882 * (c) a page and its buddy have the same order &&
883 * (d) a page and its buddy are in the same zone.
885 * For recording whether a page is in the buddy system, we set PageBuddy.
886 * Setting, clearing, and testing PageBuddy is serialized by zone->lock.
888 * For recording page's order, we use page_private(page).
890 static inline bool page_is_buddy(struct page *page, struct page *buddy,
893 if (!page_is_guard(buddy) && !PageBuddy(buddy))
896 if (buddy_order(buddy) != order)
900 * zone check is done late to avoid uselessly calculating
901 * zone/node ids for pages that could never merge.
903 if (page_zone_id(page) != page_zone_id(buddy))
906 VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
911 #ifdef CONFIG_COMPACTION
912 static inline struct capture_control *task_capc(struct zone *zone)
914 struct capture_control *capc = current->capture_control;
916 return unlikely(capc) &&
917 !(current->flags & PF_KTHREAD) &&
919 capc->cc->zone == zone ? capc : NULL;
923 compaction_capture(struct capture_control *capc, struct page *page,
924 int order, int migratetype)
926 if (!capc || order != capc->cc->order)
929 /* Do not accidentally pollute CMA or isolated regions*/
930 if (is_migrate_cma(migratetype) ||
931 is_migrate_isolate(migratetype))
935 * Do not let lower order allocations pollute a movable pageblock.
936 * This might let an unmovable request use a reclaimable pageblock
937 * and vice-versa but no more than normal fallback logic which can
938 * have trouble finding a high-order free page.
940 if (order < pageblock_order && migratetype == MIGRATE_MOVABLE)
948 static inline struct capture_control *task_capc(struct zone *zone)
954 compaction_capture(struct capture_control *capc, struct page *page,
955 int order, int migratetype)
959 #endif /* CONFIG_COMPACTION */
961 /* Used for pages not on another list */
962 static inline void add_to_free_list(struct page *page, struct zone *zone,
963 unsigned int order, int migratetype)
965 struct free_area *area = &zone->free_area[order];
967 list_add(&page->lru, &area->free_list[migratetype]);
971 /* Used for pages not on another list */
972 static inline void add_to_free_list_tail(struct page *page, struct zone *zone,
973 unsigned int order, int migratetype)
975 struct free_area *area = &zone->free_area[order];
977 list_add_tail(&page->lru, &area->free_list[migratetype]);
982 * Used for pages which are on another list. Move the pages to the tail
983 * of the list - so the moved pages won't immediately be considered for
984 * allocation again (e.g., optimization for memory onlining).
986 static inline void move_to_free_list(struct page *page, struct zone *zone,
987 unsigned int order, int migratetype)
989 struct free_area *area = &zone->free_area[order];
991 list_move_tail(&page->lru, &area->free_list[migratetype]);
994 static inline void del_page_from_free_list(struct page *page, struct zone *zone,
997 /* clear reported state and update reported page count */
998 if (page_reported(page))
999 __ClearPageReported(page);
1001 list_del(&page->lru);
1002 __ClearPageBuddy(page);
1003 set_page_private(page, 0);
1004 zone->free_area[order].nr_free--;
1008 * If this is not the largest possible page, check if the buddy
1009 * of the next-highest order is free. If it is, it's possible
1010 * that pages are being freed that will coalesce soon. In case,
1011 * that is happening, add the free page to the tail of the list
1012 * so it's less likely to be used soon and more likely to be merged
1013 * as a higher order page
1016 buddy_merge_likely(unsigned long pfn, unsigned long buddy_pfn,
1017 struct page *page, unsigned int order)
1019 struct page *higher_page, *higher_buddy;
1020 unsigned long combined_pfn;
1022 if (order >= MAX_ORDER - 2)
1025 if (!pfn_valid_within(buddy_pfn))
1028 combined_pfn = buddy_pfn & pfn;
1029 higher_page = page + (combined_pfn - pfn);
1030 buddy_pfn = __find_buddy_pfn(combined_pfn, order + 1);
1031 higher_buddy = higher_page + (buddy_pfn - combined_pfn);
1033 return pfn_valid_within(buddy_pfn) &&
1034 page_is_buddy(higher_page, higher_buddy, order + 1);
1038 * Freeing function for a buddy system allocator.
1040 * The concept of a buddy system is to maintain direct-mapped table
1041 * (containing bit values) for memory blocks of various "orders".
1042 * The bottom level table contains the map for the smallest allocatable
1043 * units of memory (here, pages), and each level above it describes
1044 * pairs of units from the levels below, hence, "buddies".
1045 * At a high level, all that happens here is marking the table entry
1046 * at the bottom level available, and propagating the changes upward
1047 * as necessary, plus some accounting needed to play nicely with other
1048 * parts of the VM system.
1049 * At each level, we keep a list of pages, which are heads of continuous
1050 * free pages of length of (1 << order) and marked with PageBuddy.
1051 * Page's order is recorded in page_private(page) field.
1052 * So when we are allocating or freeing one, we can derive the state of the
1053 * other. That is, if we allocate a small block, and both were
1054 * free, the remainder of the region must be split into blocks.
1055 * If a block is freed, and its buddy is also free, then this
1056 * triggers coalescing into a block of larger size.
1061 static inline void __free_one_page(struct page *page,
1063 struct zone *zone, unsigned int order,
1064 int migratetype, fpi_t fpi_flags)
1066 struct capture_control *capc = task_capc(zone);
1067 unsigned long buddy_pfn;
1068 unsigned long combined_pfn;
1069 unsigned int max_order;
1073 max_order = min_t(unsigned int, MAX_ORDER - 1, pageblock_order);
1075 VM_BUG_ON(!zone_is_initialized(zone));
1076 VM_BUG_ON_PAGE(page->flags & PAGE_FLAGS_CHECK_AT_PREP, page);
1078 VM_BUG_ON(migratetype == -1);
1079 if (likely(!is_migrate_isolate(migratetype)))
1080 __mod_zone_freepage_state(zone, 1 << order, migratetype);
1082 VM_BUG_ON_PAGE(pfn & ((1 << order) - 1), page);
1083 VM_BUG_ON_PAGE(bad_range(zone, page), page);
1086 while (order < max_order) {
1087 if (compaction_capture(capc, page, order, migratetype)) {
1088 __mod_zone_freepage_state(zone, -(1 << order),
1092 buddy_pfn = __find_buddy_pfn(pfn, order);
1093 buddy = page + (buddy_pfn - pfn);
1095 if (!pfn_valid_within(buddy_pfn))
1097 if (!page_is_buddy(page, buddy, order))
1100 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page,
1101 * merge with it and move up one order.
1103 if (page_is_guard(buddy))
1104 clear_page_guard(zone, buddy, order, migratetype);
1106 del_page_from_free_list(buddy, zone, order);
1107 combined_pfn = buddy_pfn & pfn;
1108 page = page + (combined_pfn - pfn);
1112 if (order < MAX_ORDER - 1) {
1113 /* If we are here, it means order is >= pageblock_order.
1114 * We want to prevent merge between freepages on isolate
1115 * pageblock and normal pageblock. Without this, pageblock
1116 * isolation could cause incorrect freepage or CMA accounting.
1118 * We don't want to hit this code for the more frequent
1119 * low-order merging.
1121 if (unlikely(has_isolate_pageblock(zone))) {
1124 buddy_pfn = __find_buddy_pfn(pfn, order);
1125 buddy = page + (buddy_pfn - pfn);
1126 buddy_mt = get_pageblock_migratetype(buddy);
1128 if (migratetype != buddy_mt
1129 && (is_migrate_isolate(migratetype) ||
1130 is_migrate_isolate(buddy_mt)))
1133 max_order = order + 1;
1134 goto continue_merging;
1138 set_buddy_order(page, order);
1140 if (fpi_flags & FPI_TO_TAIL)
1142 else if (is_shuffle_order(order))
1143 to_tail = shuffle_pick_tail();
1145 to_tail = buddy_merge_likely(pfn, buddy_pfn, page, order);
1148 add_to_free_list_tail(page, zone, order, migratetype);
1150 add_to_free_list(page, zone, order, migratetype);
1152 /* Notify page reporting subsystem of freed page */
1153 if (!(fpi_flags & FPI_SKIP_REPORT_NOTIFY))
1154 page_reporting_notify_free(order);
1158 * A bad page could be due to a number of fields. Instead of multiple branches,
1159 * try and check multiple fields with one check. The caller must do a detailed
1160 * check if necessary.
1162 static inline bool page_expected_state(struct page *page,
1163 unsigned long check_flags)
1165 if (unlikely(atomic_read(&page->_mapcount) != -1))
1168 if (unlikely((unsigned long)page->mapping |
1169 page_ref_count(page) |
1173 (page->flags & check_flags)))
1179 static const char *page_bad_reason(struct page *page, unsigned long flags)
1181 const char *bad_reason = NULL;
1183 if (unlikely(atomic_read(&page->_mapcount) != -1))
1184 bad_reason = "nonzero mapcount";
1185 if (unlikely(page->mapping != NULL))
1186 bad_reason = "non-NULL mapping";
1187 if (unlikely(page_ref_count(page) != 0))
1188 bad_reason = "nonzero _refcount";
1189 if (unlikely(page->flags & flags)) {
1190 if (flags == PAGE_FLAGS_CHECK_AT_PREP)
1191 bad_reason = "PAGE_FLAGS_CHECK_AT_PREP flag(s) set";
1193 bad_reason = "PAGE_FLAGS_CHECK_AT_FREE flag(s) set";
1196 if (unlikely(page->memcg_data))
1197 bad_reason = "page still charged to cgroup";
1202 static void check_free_page_bad(struct page *page)
1205 page_bad_reason(page, PAGE_FLAGS_CHECK_AT_FREE));
1208 static inline int check_free_page(struct page *page)
1210 if (likely(page_expected_state(page, PAGE_FLAGS_CHECK_AT_FREE)))
1213 /* Something has gone sideways, find it */
1214 check_free_page_bad(page);
1218 static int free_tail_pages_check(struct page *head_page, struct page *page)
1223 * We rely page->lru.next never has bit 0 set, unless the page
1224 * is PageTail(). Let's make sure that's true even for poisoned ->lru.
1226 BUILD_BUG_ON((unsigned long)LIST_POISON1 & 1);
1228 if (!IS_ENABLED(CONFIG_DEBUG_VM)) {
1232 switch (page - head_page) {
1234 /* the first tail page: ->mapping may be compound_mapcount() */
1235 if (unlikely(compound_mapcount(page))) {
1236 bad_page(page, "nonzero compound_mapcount");
1242 * the second tail page: ->mapping is
1243 * deferred_list.next -- ignore value.
1247 if (page->mapping != TAIL_MAPPING) {
1248 bad_page(page, "corrupted mapping in tail page");
1253 if (unlikely(!PageTail(page))) {
1254 bad_page(page, "PageTail not set");
1257 if (unlikely(compound_head(page) != head_page)) {
1258 bad_page(page, "compound_head not consistent");
1263 page->mapping = NULL;
1264 clear_compound_head(page);
1268 static void kernel_init_free_pages(struct page *page, int numpages, bool zero_tags)
1273 for (i = 0; i < numpages; i++)
1274 tag_clear_highpage(page + i);
1278 /* s390's use of memset() could override KASAN redzones. */
1279 kasan_disable_current();
1280 for (i = 0; i < numpages; i++) {
1281 u8 tag = page_kasan_tag(page + i);
1282 page_kasan_tag_reset(page + i);
1283 clear_highpage(page + i);
1284 page_kasan_tag_set(page + i, tag);
1286 kasan_enable_current();
1289 static __always_inline bool free_pages_prepare(struct page *page,
1290 unsigned int order, bool check_free, fpi_t fpi_flags)
1293 bool skip_kasan_poison = should_skip_kasan_poison(page, fpi_flags);
1295 VM_BUG_ON_PAGE(PageTail(page), page);
1297 trace_mm_page_free(page, order);
1299 if (unlikely(PageHWPoison(page)) && !order) {
1301 * Do not let hwpoison pages hit pcplists/buddy
1302 * Untie memcg state and reset page's owner
1304 if (memcg_kmem_enabled() && PageMemcgKmem(page))
1305 __memcg_kmem_uncharge_page(page, order);
1306 reset_page_owner(page, order);
1311 * Check tail pages before head page information is cleared to
1312 * avoid checking PageCompound for order-0 pages.
1314 if (unlikely(order)) {
1315 bool compound = PageCompound(page);
1318 VM_BUG_ON_PAGE(compound && compound_order(page) != order, page);
1321 ClearPageDoubleMap(page);
1322 for (i = 1; i < (1 << order); i++) {
1324 bad += free_tail_pages_check(page, page + i);
1325 if (unlikely(check_free_page(page + i))) {
1329 (page + i)->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1332 if (PageMappingFlags(page))
1333 page->mapping = NULL;
1334 if (memcg_kmem_enabled() && PageMemcgKmem(page))
1335 __memcg_kmem_uncharge_page(page, order);
1337 bad += check_free_page(page);
1341 page_cpupid_reset_last(page);
1342 page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1343 reset_page_owner(page, order);
1345 if (!PageHighMem(page)) {
1346 debug_check_no_locks_freed(page_address(page),
1347 PAGE_SIZE << order);
1348 debug_check_no_obj_freed(page_address(page),
1349 PAGE_SIZE << order);
1352 kernel_poison_pages(page, 1 << order);
1355 * As memory initialization might be integrated into KASAN,
1356 * kasan_free_pages and kernel_init_free_pages must be
1357 * kept together to avoid discrepancies in behavior.
1359 * With hardware tag-based KASAN, memory tags must be set before the
1360 * page becomes unavailable via debug_pagealloc or arch_free_page.
1362 if (kasan_has_integrated_init()) {
1363 if (!skip_kasan_poison)
1364 kasan_free_pages(page, order);
1366 bool init = want_init_on_free();
1369 kernel_init_free_pages(page, 1 << order, false);
1370 if (!skip_kasan_poison)
1371 kasan_poison_pages(page, order, init);
1375 * arch_free_page() can make the page's contents inaccessible. s390
1376 * does this. So nothing which can access the page's contents should
1377 * happen after this.
1379 arch_free_page(page, order);
1381 debug_pagealloc_unmap_pages(page, 1 << order);
1386 #ifdef CONFIG_DEBUG_VM
1388 * With DEBUG_VM enabled, order-0 pages are checked immediately when being freed
1389 * to pcp lists. With debug_pagealloc also enabled, they are also rechecked when
1390 * moved from pcp lists to free lists.
1392 static bool free_pcp_prepare(struct page *page, unsigned int order)
1394 return free_pages_prepare(page, order, true, FPI_NONE);
1397 static bool bulkfree_pcp_prepare(struct page *page)
1399 if (debug_pagealloc_enabled_static())
1400 return check_free_page(page);
1406 * With DEBUG_VM disabled, order-0 pages being freed are checked only when
1407 * moving from pcp lists to free list in order to reduce overhead. With
1408 * debug_pagealloc enabled, they are checked also immediately when being freed
1411 static bool free_pcp_prepare(struct page *page, unsigned int order)
1413 if (debug_pagealloc_enabled_static())
1414 return free_pages_prepare(page, order, true, FPI_NONE);
1416 return free_pages_prepare(page, order, false, FPI_NONE);
1419 static bool bulkfree_pcp_prepare(struct page *page)
1421 return check_free_page(page);
1423 #endif /* CONFIG_DEBUG_VM */
1425 static inline void prefetch_buddy(struct page *page)
1427 unsigned long pfn = page_to_pfn(page);
1428 unsigned long buddy_pfn = __find_buddy_pfn(pfn, 0);
1429 struct page *buddy = page + (buddy_pfn - pfn);
1435 * Frees a number of pages from the PCP lists
1436 * Assumes all pages on list are in same zone, and of same order.
1437 * count is the number of pages to free.
1439 * If the zone was previously in an "all pages pinned" state then look to
1440 * see if this freeing clears that state.
1442 * And clear the zone's pages_scanned counter, to hold off the "all pages are
1443 * pinned" detection logic.
1445 static void free_pcppages_bulk(struct zone *zone, int count,
1446 struct per_cpu_pages *pcp)
1452 int prefetch_nr = READ_ONCE(pcp->batch);
1453 bool isolated_pageblocks;
1454 struct page *page, *tmp;
1458 * Ensure proper count is passed which otherwise would stuck in the
1459 * below while (list_empty(list)) loop.
1461 count = min(pcp->count, count);
1463 struct list_head *list;
1466 * Remove pages from lists in a round-robin fashion. A
1467 * batch_free count is maintained that is incremented when an
1468 * empty list is encountered. This is so more pages are freed
1469 * off fuller lists instead of spinning excessively around empty
1474 if (++pindex == NR_PCP_LISTS)
1476 list = &pcp->lists[pindex];
1477 } while (list_empty(list));
1479 /* This is the only non-empty list. Free them all. */
1480 if (batch_free == NR_PCP_LISTS)
1483 order = pindex_to_order(pindex);
1484 BUILD_BUG_ON(MAX_ORDER >= (1<<NR_PCP_ORDER_WIDTH));
1486 page = list_last_entry(list, struct page, lru);
1487 /* must delete to avoid corrupting pcp list */
1488 list_del(&page->lru);
1489 nr_freed += 1 << order;
1490 count -= 1 << order;
1492 if (bulkfree_pcp_prepare(page))
1495 /* Encode order with the migratetype */
1496 page->index <<= NR_PCP_ORDER_WIDTH;
1497 page->index |= order;
1499 list_add_tail(&page->lru, &head);
1502 * We are going to put the page back to the global
1503 * pool, prefetch its buddy to speed up later access
1504 * under zone->lock. It is believed the overhead of
1505 * an additional test and calculating buddy_pfn here
1506 * can be offset by reduced memory latency later. To
1507 * avoid excessive prefetching due to large count, only
1508 * prefetch buddy for the first pcp->batch nr of pages.
1511 prefetch_buddy(page);
1514 } while (count > 0 && --batch_free && !list_empty(list));
1516 pcp->count -= nr_freed;
1519 * local_lock_irq held so equivalent to spin_lock_irqsave for
1520 * both PREEMPT_RT and non-PREEMPT_RT configurations.
1522 spin_lock(&zone->lock);
1523 isolated_pageblocks = has_isolate_pageblock(zone);
1526 * Use safe version since after __free_one_page(),
1527 * page->lru.next will not point to original list.
1529 list_for_each_entry_safe(page, tmp, &head, lru) {
1530 int mt = get_pcppage_migratetype(page);
1532 /* mt has been encoded with the order (see above) */
1533 order = mt & NR_PCP_ORDER_MASK;
1534 mt >>= NR_PCP_ORDER_WIDTH;
1536 /* MIGRATE_ISOLATE page should not go to pcplists */
1537 VM_BUG_ON_PAGE(is_migrate_isolate(mt), page);
1538 /* Pageblock could have been isolated meanwhile */
1539 if (unlikely(isolated_pageblocks))
1540 mt = get_pageblock_migratetype(page);
1542 __free_one_page(page, page_to_pfn(page), zone, order, mt, FPI_NONE);
1543 trace_mm_page_pcpu_drain(page, order, mt);
1545 spin_unlock(&zone->lock);
1548 static void free_one_page(struct zone *zone,
1549 struct page *page, unsigned long pfn,
1551 int migratetype, fpi_t fpi_flags)
1553 unsigned long flags;
1555 spin_lock_irqsave(&zone->lock, flags);
1556 if (unlikely(has_isolate_pageblock(zone) ||
1557 is_migrate_isolate(migratetype))) {
1558 migratetype = get_pfnblock_migratetype(page, pfn);
1560 __free_one_page(page, pfn, zone, order, migratetype, fpi_flags);
1561 spin_unlock_irqrestore(&zone->lock, flags);
1564 static void __meminit __init_single_page(struct page *page, unsigned long pfn,
1565 unsigned long zone, int nid)
1567 mm_zero_struct_page(page);
1568 set_page_links(page, zone, nid, pfn);
1569 init_page_count(page);
1570 page_mapcount_reset(page);
1571 page_cpupid_reset_last(page);
1572 page_kasan_tag_reset(page);
1574 INIT_LIST_HEAD(&page->lru);
1575 #ifdef WANT_PAGE_VIRTUAL
1576 /* The shift won't overflow because ZONE_NORMAL is below 4G. */
1577 if (!is_highmem_idx(zone))
1578 set_page_address(page, __va(pfn << PAGE_SHIFT));
1582 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1583 static void __meminit init_reserved_page(unsigned long pfn)
1588 if (!early_page_uninitialised(pfn))
1591 nid = early_pfn_to_nid(pfn);
1592 pgdat = NODE_DATA(nid);
1594 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1595 struct zone *zone = &pgdat->node_zones[zid];
1597 if (pfn >= zone->zone_start_pfn && pfn < zone_end_pfn(zone))
1600 __init_single_page(pfn_to_page(pfn), pfn, zid, nid);
1603 static inline void init_reserved_page(unsigned long pfn)
1606 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
1609 * Initialised pages do not have PageReserved set. This function is
1610 * called for each range allocated by the bootmem allocator and
1611 * marks the pages PageReserved. The remaining valid pages are later
1612 * sent to the buddy page allocator.
1614 void __meminit reserve_bootmem_region(phys_addr_t start, phys_addr_t end)
1616 unsigned long start_pfn = PFN_DOWN(start);
1617 unsigned long end_pfn = PFN_UP(end);
1619 for (; start_pfn < end_pfn; start_pfn++) {
1620 if (pfn_valid(start_pfn)) {
1621 struct page *page = pfn_to_page(start_pfn);
1623 init_reserved_page(start_pfn);
1625 /* Avoid false-positive PageTail() */
1626 INIT_LIST_HEAD(&page->lru);
1629 * no need for atomic set_bit because the struct
1630 * page is not visible yet so nobody should
1633 __SetPageReserved(page);
1638 static void __free_pages_ok(struct page *page, unsigned int order,
1641 unsigned long flags;
1643 unsigned long pfn = page_to_pfn(page);
1644 struct zone *zone = page_zone(page);
1646 if (!free_pages_prepare(page, order, true, fpi_flags))
1649 migratetype = get_pfnblock_migratetype(page, pfn);
1651 spin_lock_irqsave(&zone->lock, flags);
1652 if (unlikely(has_isolate_pageblock(zone) ||
1653 is_migrate_isolate(migratetype))) {
1654 migratetype = get_pfnblock_migratetype(page, pfn);
1656 __free_one_page(page, pfn, zone, order, migratetype, fpi_flags);
1657 spin_unlock_irqrestore(&zone->lock, flags);
1659 __count_vm_events(PGFREE, 1 << order);
1662 void __free_pages_core(struct page *page, unsigned int order)
1664 unsigned int nr_pages = 1 << order;
1665 struct page *p = page;
1669 * When initializing the memmap, __init_single_page() sets the refcount
1670 * of all pages to 1 ("allocated"/"not free"). We have to set the
1671 * refcount of all involved pages to 0.
1674 for (loop = 0; loop < (nr_pages - 1); loop++, p++) {
1676 __ClearPageReserved(p);
1677 set_page_count(p, 0);
1679 __ClearPageReserved(p);
1680 set_page_count(p, 0);
1682 atomic_long_add(nr_pages, &page_zone(page)->managed_pages);
1685 * Bypass PCP and place fresh pages right to the tail, primarily
1686 * relevant for memory onlining.
1688 __free_pages_ok(page, order, FPI_TO_TAIL | FPI_SKIP_KASAN_POISON);
1694 * During memory init memblocks map pfns to nids. The search is expensive and
1695 * this caches recent lookups. The implementation of __early_pfn_to_nid
1696 * treats start/end as pfns.
1698 struct mminit_pfnnid_cache {
1699 unsigned long last_start;
1700 unsigned long last_end;
1704 static struct mminit_pfnnid_cache early_pfnnid_cache __meminitdata;
1707 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
1709 static int __meminit __early_pfn_to_nid(unsigned long pfn,
1710 struct mminit_pfnnid_cache *state)
1712 unsigned long start_pfn, end_pfn;
1715 if (state->last_start <= pfn && pfn < state->last_end)
1716 return state->last_nid;
1718 nid = memblock_search_pfn_nid(pfn, &start_pfn, &end_pfn);
1719 if (nid != NUMA_NO_NODE) {
1720 state->last_start = start_pfn;
1721 state->last_end = end_pfn;
1722 state->last_nid = nid;
1728 int __meminit early_pfn_to_nid(unsigned long pfn)
1730 static DEFINE_SPINLOCK(early_pfn_lock);
1733 spin_lock(&early_pfn_lock);
1734 nid = __early_pfn_to_nid(pfn, &early_pfnnid_cache);
1736 nid = first_online_node;
1737 spin_unlock(&early_pfn_lock);
1741 #endif /* CONFIG_NUMA */
1743 void __init memblock_free_pages(struct page *page, unsigned long pfn,
1746 if (early_page_uninitialised(pfn))
1748 __free_pages_core(page, order);
1752 * Check that the whole (or subset of) a pageblock given by the interval of
1753 * [start_pfn, end_pfn) is valid and within the same zone, before scanning it
1754 * with the migration of free compaction scanner. The scanners then need to
1755 * use only pfn_valid_within() check for arches that allow holes within
1758 * Return struct page pointer of start_pfn, or NULL if checks were not passed.
1760 * It's possible on some configurations to have a setup like node0 node1 node0
1761 * i.e. it's possible that all pages within a zones range of pages do not
1762 * belong to a single zone. We assume that a border between node0 and node1
1763 * can occur within a single pageblock, but not a node0 node1 node0
1764 * interleaving within a single pageblock. It is therefore sufficient to check
1765 * the first and last page of a pageblock and avoid checking each individual
1766 * page in a pageblock.
1768 struct page *__pageblock_pfn_to_page(unsigned long start_pfn,
1769 unsigned long end_pfn, struct zone *zone)
1771 struct page *start_page;
1772 struct page *end_page;
1774 /* end_pfn is one past the range we are checking */
1777 if (!pfn_valid(start_pfn) || !pfn_valid(end_pfn))
1780 start_page = pfn_to_online_page(start_pfn);
1784 if (page_zone(start_page) != zone)
1787 end_page = pfn_to_page(end_pfn);
1789 /* This gives a shorter code than deriving page_zone(end_page) */
1790 if (page_zone_id(start_page) != page_zone_id(end_page))
1796 void set_zone_contiguous(struct zone *zone)
1798 unsigned long block_start_pfn = zone->zone_start_pfn;
1799 unsigned long block_end_pfn;
1801 block_end_pfn = ALIGN(block_start_pfn + 1, pageblock_nr_pages);
1802 for (; block_start_pfn < zone_end_pfn(zone);
1803 block_start_pfn = block_end_pfn,
1804 block_end_pfn += pageblock_nr_pages) {
1806 block_end_pfn = min(block_end_pfn, zone_end_pfn(zone));
1808 if (!__pageblock_pfn_to_page(block_start_pfn,
1809 block_end_pfn, zone))
1814 /* We confirm that there is no hole */
1815 zone->contiguous = true;
1818 void clear_zone_contiguous(struct zone *zone)
1820 zone->contiguous = false;
1823 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1824 static void __init deferred_free_range(unsigned long pfn,
1825 unsigned long nr_pages)
1833 page = pfn_to_page(pfn);
1835 /* Free a large naturally-aligned chunk if possible */
1836 if (nr_pages == pageblock_nr_pages &&
1837 (pfn & (pageblock_nr_pages - 1)) == 0) {
1838 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
1839 __free_pages_core(page, pageblock_order);
1843 for (i = 0; i < nr_pages; i++, page++, pfn++) {
1844 if ((pfn & (pageblock_nr_pages - 1)) == 0)
1845 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
1846 __free_pages_core(page, 0);
1850 /* Completion tracking for deferred_init_memmap() threads */
1851 static atomic_t pgdat_init_n_undone __initdata;
1852 static __initdata DECLARE_COMPLETION(pgdat_init_all_done_comp);
1854 static inline void __init pgdat_init_report_one_done(void)
1856 if (atomic_dec_and_test(&pgdat_init_n_undone))
1857 complete(&pgdat_init_all_done_comp);
1861 * Returns true if page needs to be initialized or freed to buddy allocator.
1863 * First we check if pfn is valid on architectures where it is possible to have
1864 * holes within pageblock_nr_pages. On systems where it is not possible, this
1865 * function is optimized out.
1867 * Then, we check if a current large page is valid by only checking the validity
1870 static inline bool __init deferred_pfn_valid(unsigned long pfn)
1872 if (!pfn_valid_within(pfn))
1874 if (!(pfn & (pageblock_nr_pages - 1)) && !pfn_valid(pfn))
1880 * Free pages to buddy allocator. Try to free aligned pages in
1881 * pageblock_nr_pages sizes.
1883 static void __init deferred_free_pages(unsigned long pfn,
1884 unsigned long end_pfn)
1886 unsigned long nr_pgmask = pageblock_nr_pages - 1;
1887 unsigned long nr_free = 0;
1889 for (; pfn < end_pfn; pfn++) {
1890 if (!deferred_pfn_valid(pfn)) {
1891 deferred_free_range(pfn - nr_free, nr_free);
1893 } else if (!(pfn & nr_pgmask)) {
1894 deferred_free_range(pfn - nr_free, nr_free);
1900 /* Free the last block of pages to allocator */
1901 deferred_free_range(pfn - nr_free, nr_free);
1905 * Initialize struct pages. We minimize pfn page lookups and scheduler checks
1906 * by performing it only once every pageblock_nr_pages.
1907 * Return number of pages initialized.
1909 static unsigned long __init deferred_init_pages(struct zone *zone,
1911 unsigned long end_pfn)
1913 unsigned long nr_pgmask = pageblock_nr_pages - 1;
1914 int nid = zone_to_nid(zone);
1915 unsigned long nr_pages = 0;
1916 int zid = zone_idx(zone);
1917 struct page *page = NULL;
1919 for (; pfn < end_pfn; pfn++) {
1920 if (!deferred_pfn_valid(pfn)) {
1923 } else if (!page || !(pfn & nr_pgmask)) {
1924 page = pfn_to_page(pfn);
1928 __init_single_page(page, pfn, zid, nid);
1935 * This function is meant to pre-load the iterator for the zone init.
1936 * Specifically it walks through the ranges until we are caught up to the
1937 * first_init_pfn value and exits there. If we never encounter the value we
1938 * return false indicating there are no valid ranges left.
1941 deferred_init_mem_pfn_range_in_zone(u64 *i, struct zone *zone,
1942 unsigned long *spfn, unsigned long *epfn,
1943 unsigned long first_init_pfn)
1948 * Start out by walking through the ranges in this zone that have
1949 * already been initialized. We don't need to do anything with them
1950 * so we just need to flush them out of the system.
1952 for_each_free_mem_pfn_range_in_zone(j, zone, spfn, epfn) {
1953 if (*epfn <= first_init_pfn)
1955 if (*spfn < first_init_pfn)
1956 *spfn = first_init_pfn;
1965 * Initialize and free pages. We do it in two loops: first we initialize
1966 * struct page, then free to buddy allocator, because while we are
1967 * freeing pages we can access pages that are ahead (computing buddy
1968 * page in __free_one_page()).
1970 * In order to try and keep some memory in the cache we have the loop
1971 * broken along max page order boundaries. This way we will not cause
1972 * any issues with the buddy page computation.
1974 static unsigned long __init
1975 deferred_init_maxorder(u64 *i, struct zone *zone, unsigned long *start_pfn,
1976 unsigned long *end_pfn)
1978 unsigned long mo_pfn = ALIGN(*start_pfn + 1, MAX_ORDER_NR_PAGES);
1979 unsigned long spfn = *start_pfn, epfn = *end_pfn;
1980 unsigned long nr_pages = 0;
1983 /* First we loop through and initialize the page values */
1984 for_each_free_mem_pfn_range_in_zone_from(j, zone, start_pfn, end_pfn) {
1987 if (mo_pfn <= *start_pfn)
1990 t = min(mo_pfn, *end_pfn);
1991 nr_pages += deferred_init_pages(zone, *start_pfn, t);
1993 if (mo_pfn < *end_pfn) {
1994 *start_pfn = mo_pfn;
1999 /* Reset values and now loop through freeing pages as needed */
2002 for_each_free_mem_pfn_range_in_zone_from(j, zone, &spfn, &epfn) {
2008 t = min(mo_pfn, epfn);
2009 deferred_free_pages(spfn, t);
2019 deferred_init_memmap_chunk(unsigned long start_pfn, unsigned long end_pfn,
2022 unsigned long spfn, epfn;
2023 struct zone *zone = arg;
2026 deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn, start_pfn);
2029 * Initialize and free pages in MAX_ORDER sized increments so that we
2030 * can avoid introducing any issues with the buddy allocator.
2032 while (spfn < end_pfn) {
2033 deferred_init_maxorder(&i, zone, &spfn, &epfn);
2038 /* An arch may override for more concurrency. */
2040 deferred_page_init_max_threads(const struct cpumask *node_cpumask)
2045 /* Initialise remaining memory on a node */
2046 static int __init deferred_init_memmap(void *data)
2048 pg_data_t *pgdat = data;
2049 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
2050 unsigned long spfn = 0, epfn = 0;
2051 unsigned long first_init_pfn, flags;
2052 unsigned long start = jiffies;
2054 int zid, max_threads;
2057 /* Bind memory initialisation thread to a local node if possible */
2058 if (!cpumask_empty(cpumask))
2059 set_cpus_allowed_ptr(current, cpumask);
2061 pgdat_resize_lock(pgdat, &flags);
2062 first_init_pfn = pgdat->first_deferred_pfn;
2063 if (first_init_pfn == ULONG_MAX) {
2064 pgdat_resize_unlock(pgdat, &flags);
2065 pgdat_init_report_one_done();
2069 /* Sanity check boundaries */
2070 BUG_ON(pgdat->first_deferred_pfn < pgdat->node_start_pfn);
2071 BUG_ON(pgdat->first_deferred_pfn > pgdat_end_pfn(pgdat));
2072 pgdat->first_deferred_pfn = ULONG_MAX;
2075 * Once we unlock here, the zone cannot be grown anymore, thus if an
2076 * interrupt thread must allocate this early in boot, zone must be
2077 * pre-grown prior to start of deferred page initialization.
2079 pgdat_resize_unlock(pgdat, &flags);
2081 /* Only the highest zone is deferred so find it */
2082 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
2083 zone = pgdat->node_zones + zid;
2084 if (first_init_pfn < zone_end_pfn(zone))
2088 /* If the zone is empty somebody else may have cleared out the zone */
2089 if (!deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn,
2093 max_threads = deferred_page_init_max_threads(cpumask);
2095 while (spfn < epfn) {
2096 unsigned long epfn_align = ALIGN(epfn, PAGES_PER_SECTION);
2097 struct padata_mt_job job = {
2098 .thread_fn = deferred_init_memmap_chunk,
2101 .size = epfn_align - spfn,
2102 .align = PAGES_PER_SECTION,
2103 .min_chunk = PAGES_PER_SECTION,
2104 .max_threads = max_threads,
2107 padata_do_multithreaded(&job);
2108 deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn,
2112 /* Sanity check that the next zone really is unpopulated */
2113 WARN_ON(++zid < MAX_NR_ZONES && populated_zone(++zone));
2115 pr_info("node %d deferred pages initialised in %ums\n",
2116 pgdat->node_id, jiffies_to_msecs(jiffies - start));
2118 pgdat_init_report_one_done();
2123 * If this zone has deferred pages, try to grow it by initializing enough
2124 * deferred pages to satisfy the allocation specified by order, rounded up to
2125 * the nearest PAGES_PER_SECTION boundary. So we're adding memory in increments
2126 * of SECTION_SIZE bytes by initializing struct pages in increments of
2127 * PAGES_PER_SECTION * sizeof(struct page) bytes.
2129 * Return true when zone was grown, otherwise return false. We return true even
2130 * when we grow less than requested, to let the caller decide if there are
2131 * enough pages to satisfy the allocation.
2133 * Note: We use noinline because this function is needed only during boot, and
2134 * it is called from a __ref function _deferred_grow_zone. This way we are
2135 * making sure that it is not inlined into permanent text section.
2137 static noinline bool __init
2138 deferred_grow_zone(struct zone *zone, unsigned int order)
2140 unsigned long nr_pages_needed = ALIGN(1 << order, PAGES_PER_SECTION);
2141 pg_data_t *pgdat = zone->zone_pgdat;
2142 unsigned long first_deferred_pfn = pgdat->first_deferred_pfn;
2143 unsigned long spfn, epfn, flags;
2144 unsigned long nr_pages = 0;
2147 /* Only the last zone may have deferred pages */
2148 if (zone_end_pfn(zone) != pgdat_end_pfn(pgdat))
2151 pgdat_resize_lock(pgdat, &flags);
2154 * If someone grew this zone while we were waiting for spinlock, return
2155 * true, as there might be enough pages already.
2157 if (first_deferred_pfn != pgdat->first_deferred_pfn) {
2158 pgdat_resize_unlock(pgdat, &flags);
2162 /* If the zone is empty somebody else may have cleared out the zone */
2163 if (!deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn,
2164 first_deferred_pfn)) {
2165 pgdat->first_deferred_pfn = ULONG_MAX;
2166 pgdat_resize_unlock(pgdat, &flags);
2167 /* Retry only once. */
2168 return first_deferred_pfn != ULONG_MAX;
2172 * Initialize and free pages in MAX_ORDER sized increments so
2173 * that we can avoid introducing any issues with the buddy
2176 while (spfn < epfn) {
2177 /* update our first deferred PFN for this section */
2178 first_deferred_pfn = spfn;
2180 nr_pages += deferred_init_maxorder(&i, zone, &spfn, &epfn);
2181 touch_nmi_watchdog();
2183 /* We should only stop along section boundaries */
2184 if ((first_deferred_pfn ^ spfn) < PAGES_PER_SECTION)
2187 /* If our quota has been met we can stop here */
2188 if (nr_pages >= nr_pages_needed)
2192 pgdat->first_deferred_pfn = spfn;
2193 pgdat_resize_unlock(pgdat, &flags);
2195 return nr_pages > 0;
2199 * deferred_grow_zone() is __init, but it is called from
2200 * get_page_from_freelist() during early boot until deferred_pages permanently
2201 * disables this call. This is why we have refdata wrapper to avoid warning,
2202 * and to ensure that the function body gets unloaded.
2205 _deferred_grow_zone(struct zone *zone, unsigned int order)
2207 return deferred_grow_zone(zone, order);
2210 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
2212 void __init page_alloc_init_late(void)
2217 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
2219 /* There will be num_node_state(N_MEMORY) threads */
2220 atomic_set(&pgdat_init_n_undone, num_node_state(N_MEMORY));
2221 for_each_node_state(nid, N_MEMORY) {
2222 kthread_run(deferred_init_memmap, NODE_DATA(nid), "pgdatinit%d", nid);
2225 /* Block until all are initialised */
2226 wait_for_completion(&pgdat_init_all_done_comp);
2229 * We initialized the rest of the deferred pages. Permanently disable
2230 * on-demand struct page initialization.
2232 static_branch_disable(&deferred_pages);
2234 /* Reinit limits that are based on free pages after the kernel is up */
2235 files_maxfiles_init();
2240 /* Discard memblock private memory */
2243 for_each_node_state(nid, N_MEMORY)
2244 shuffle_free_memory(NODE_DATA(nid));
2246 for_each_populated_zone(zone)
2247 set_zone_contiguous(zone);
2251 /* Free whole pageblock and set its migration type to MIGRATE_CMA. */
2252 void __init init_cma_reserved_pageblock(struct page *page)
2254 unsigned i = pageblock_nr_pages;
2255 struct page *p = page;
2258 __ClearPageReserved(p);
2259 set_page_count(p, 0);
2262 set_pageblock_migratetype(page, MIGRATE_CMA);
2264 if (pageblock_order >= MAX_ORDER) {
2265 i = pageblock_nr_pages;
2268 set_page_refcounted(p);
2269 __free_pages(p, MAX_ORDER - 1);
2270 p += MAX_ORDER_NR_PAGES;
2271 } while (i -= MAX_ORDER_NR_PAGES);
2273 set_page_refcounted(page);
2274 __free_pages(page, pageblock_order);
2277 adjust_managed_page_count(page, pageblock_nr_pages);
2278 page_zone(page)->cma_pages += pageblock_nr_pages;
2283 * The order of subdivision here is critical for the IO subsystem.
2284 * Please do not alter this order without good reasons and regression
2285 * testing. Specifically, as large blocks of memory are subdivided,
2286 * the order in which smaller blocks are delivered depends on the order
2287 * they're subdivided in this function. This is the primary factor
2288 * influencing the order in which pages are delivered to the IO
2289 * subsystem according to empirical testing, and this is also justified
2290 * by considering the behavior of a buddy system containing a single
2291 * large block of memory acted on by a series of small allocations.
2292 * This behavior is a critical factor in sglist merging's success.
2296 static inline void expand(struct zone *zone, struct page *page,
2297 int low, int high, int migratetype)
2299 unsigned long size = 1 << high;
2301 while (high > low) {
2304 VM_BUG_ON_PAGE(bad_range(zone, &page[size]), &page[size]);
2307 * Mark as guard pages (or page), that will allow to
2308 * merge back to allocator when buddy will be freed.
2309 * Corresponding page table entries will not be touched,
2310 * pages will stay not present in virtual address space
2312 if (set_page_guard(zone, &page[size], high, migratetype))
2315 add_to_free_list(&page[size], zone, high, migratetype);
2316 set_buddy_order(&page[size], high);
2320 static void check_new_page_bad(struct page *page)
2322 if (unlikely(page->flags & __PG_HWPOISON)) {
2323 /* Don't complain about hwpoisoned pages */
2324 page_mapcount_reset(page); /* remove PageBuddy */
2329 page_bad_reason(page, PAGE_FLAGS_CHECK_AT_PREP));
2333 * This page is about to be returned from the page allocator
2335 static inline int check_new_page(struct page *page)
2337 if (likely(page_expected_state(page,
2338 PAGE_FLAGS_CHECK_AT_PREP|__PG_HWPOISON)))
2341 check_new_page_bad(page);
2345 #ifdef CONFIG_DEBUG_VM
2347 * With DEBUG_VM enabled, order-0 pages are checked for expected state when
2348 * being allocated from pcp lists. With debug_pagealloc also enabled, they are
2349 * also checked when pcp lists are refilled from the free lists.
2351 static inline bool check_pcp_refill(struct page *page)
2353 if (debug_pagealloc_enabled_static())
2354 return check_new_page(page);
2359 static inline bool check_new_pcp(struct page *page)
2361 return check_new_page(page);
2365 * With DEBUG_VM disabled, free order-0 pages are checked for expected state
2366 * when pcp lists are being refilled from the free lists. With debug_pagealloc
2367 * enabled, they are also checked when being allocated from the pcp lists.
2369 static inline bool check_pcp_refill(struct page *page)
2371 return check_new_page(page);
2373 static inline bool check_new_pcp(struct page *page)
2375 if (debug_pagealloc_enabled_static())
2376 return check_new_page(page);
2380 #endif /* CONFIG_DEBUG_VM */
2382 static bool check_new_pages(struct page *page, unsigned int order)
2385 for (i = 0; i < (1 << order); i++) {
2386 struct page *p = page + i;
2388 if (unlikely(check_new_page(p)))
2395 inline void post_alloc_hook(struct page *page, unsigned int order,
2398 set_page_private(page, 0);
2399 set_page_refcounted(page);
2401 arch_alloc_page(page, order);
2402 debug_pagealloc_map_pages(page, 1 << order);
2405 * Page unpoisoning must happen before memory initialization.
2406 * Otherwise, the poison pattern will be overwritten for __GFP_ZERO
2407 * allocations and the page unpoisoning code will complain.
2409 kernel_unpoison_pages(page, 1 << order);
2412 * As memory initialization might be integrated into KASAN,
2413 * kasan_alloc_pages and kernel_init_free_pages must be
2414 * kept together to avoid discrepancies in behavior.
2416 if (kasan_has_integrated_init()) {
2417 kasan_alloc_pages(page, order, gfp_flags);
2419 bool init = !want_init_on_free() && want_init_on_alloc(gfp_flags);
2421 kasan_unpoison_pages(page, order, init);
2423 kernel_init_free_pages(page, 1 << order,
2424 gfp_flags & __GFP_ZEROTAGS);
2427 set_page_owner(page, order, gfp_flags);
2430 static void prep_new_page(struct page *page, unsigned int order, gfp_t gfp_flags,
2431 unsigned int alloc_flags)
2433 post_alloc_hook(page, order, gfp_flags);
2435 if (order && (gfp_flags & __GFP_COMP))
2436 prep_compound_page(page, order);
2439 * page is set pfmemalloc when ALLOC_NO_WATERMARKS was necessary to
2440 * allocate the page. The expectation is that the caller is taking
2441 * steps that will free more memory. The caller should avoid the page
2442 * being used for !PFMEMALLOC purposes.
2444 if (alloc_flags & ALLOC_NO_WATERMARKS)
2445 set_page_pfmemalloc(page);
2447 clear_page_pfmemalloc(page);
2451 * Go through the free lists for the given migratetype and remove
2452 * the smallest available page from the freelists
2454 static __always_inline
2455 struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
2458 unsigned int current_order;
2459 struct free_area *area;
2462 /* Find a page of the appropriate size in the preferred list */
2463 for (current_order = order; current_order < MAX_ORDER; ++current_order) {
2464 area = &(zone->free_area[current_order]);
2465 page = get_page_from_free_area(area, migratetype);
2468 del_page_from_free_list(page, zone, current_order);
2469 expand(zone, page, order, current_order, migratetype);
2470 set_pcppage_migratetype(page, migratetype);
2479 * This array describes the order lists are fallen back to when
2480 * the free lists for the desirable migrate type are depleted
2482 static int fallbacks[MIGRATE_TYPES][3] = {
2483 [MIGRATE_UNMOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE, MIGRATE_TYPES },
2484 [MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_TYPES },
2485 [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE, MIGRATE_TYPES },
2487 [MIGRATE_CMA] = { MIGRATE_TYPES }, /* Never used */
2489 #ifdef CONFIG_MEMORY_ISOLATION
2490 [MIGRATE_ISOLATE] = { MIGRATE_TYPES }, /* Never used */
2495 static __always_inline struct page *__rmqueue_cma_fallback(struct zone *zone,
2498 return __rmqueue_smallest(zone, order, MIGRATE_CMA);
2501 static inline struct page *__rmqueue_cma_fallback(struct zone *zone,
2502 unsigned int order) { return NULL; }
2506 * Move the free pages in a range to the freelist tail of the requested type.
2507 * Note that start_page and end_pages are not aligned on a pageblock
2508 * boundary. If alignment is required, use move_freepages_block()
2510 static int move_freepages(struct zone *zone,
2511 unsigned long start_pfn, unsigned long end_pfn,
2512 int migratetype, int *num_movable)
2517 int pages_moved = 0;
2519 for (pfn = start_pfn; pfn <= end_pfn;) {
2520 if (!pfn_valid_within(pfn)) {
2525 page = pfn_to_page(pfn);
2526 if (!PageBuddy(page)) {
2528 * We assume that pages that could be isolated for
2529 * migration are movable. But we don't actually try
2530 * isolating, as that would be expensive.
2533 (PageLRU(page) || __PageMovable(page)))
2539 /* Make sure we are not inadvertently changing nodes */
2540 VM_BUG_ON_PAGE(page_to_nid(page) != zone_to_nid(zone), page);
2541 VM_BUG_ON_PAGE(page_zone(page) != zone, page);
2543 order = buddy_order(page);
2544 move_to_free_list(page, zone, order, migratetype);
2546 pages_moved += 1 << order;
2552 int move_freepages_block(struct zone *zone, struct page *page,
2553 int migratetype, int *num_movable)
2555 unsigned long start_pfn, end_pfn, pfn;
2560 pfn = page_to_pfn(page);
2561 start_pfn = pfn & ~(pageblock_nr_pages - 1);
2562 end_pfn = start_pfn + pageblock_nr_pages - 1;
2564 /* Do not cross zone boundaries */
2565 if (!zone_spans_pfn(zone, start_pfn))
2567 if (!zone_spans_pfn(zone, end_pfn))
2570 return move_freepages(zone, start_pfn, end_pfn, migratetype,
2574 static void change_pageblock_range(struct page *pageblock_page,
2575 int start_order, int migratetype)
2577 int nr_pageblocks = 1 << (start_order - pageblock_order);
2579 while (nr_pageblocks--) {
2580 set_pageblock_migratetype(pageblock_page, migratetype);
2581 pageblock_page += pageblock_nr_pages;
2586 * When we are falling back to another migratetype during allocation, try to
2587 * steal extra free pages from the same pageblocks to satisfy further
2588 * allocations, instead of polluting multiple pageblocks.
2590 * If we are stealing a relatively large buddy page, it is likely there will
2591 * be more free pages in the pageblock, so try to steal them all. For
2592 * reclaimable and unmovable allocations, we steal regardless of page size,
2593 * as fragmentation caused by those allocations polluting movable pageblocks
2594 * is worse than movable allocations stealing from unmovable and reclaimable
2597 static bool can_steal_fallback(unsigned int order, int start_mt)
2600 * Leaving this order check is intended, although there is
2601 * relaxed order check in next check. The reason is that
2602 * we can actually steal whole pageblock if this condition met,
2603 * but, below check doesn't guarantee it and that is just heuristic
2604 * so could be changed anytime.
2606 if (order >= pageblock_order)
2609 if (order >= pageblock_order / 2 ||
2610 start_mt == MIGRATE_RECLAIMABLE ||
2611 start_mt == MIGRATE_UNMOVABLE ||
2612 page_group_by_mobility_disabled)
2618 static inline bool boost_watermark(struct zone *zone)
2620 unsigned long max_boost;
2622 if (!watermark_boost_factor)
2625 * Don't bother in zones that are unlikely to produce results.
2626 * On small machines, including kdump capture kernels running
2627 * in a small area, boosting the watermark can cause an out of
2628 * memory situation immediately.
2630 if ((pageblock_nr_pages * 4) > zone_managed_pages(zone))
2633 max_boost = mult_frac(zone->_watermark[WMARK_HIGH],
2634 watermark_boost_factor, 10000);
2637 * high watermark may be uninitialised if fragmentation occurs
2638 * very early in boot so do not boost. We do not fall
2639 * through and boost by pageblock_nr_pages as failing
2640 * allocations that early means that reclaim is not going
2641 * to help and it may even be impossible to reclaim the
2642 * boosted watermark resulting in a hang.
2647 max_boost = max(pageblock_nr_pages, max_boost);
2649 zone->watermark_boost = min(zone->watermark_boost + pageblock_nr_pages,
2656 * This function implements actual steal behaviour. If order is large enough,
2657 * we can steal whole pageblock. If not, we first move freepages in this
2658 * pageblock to our migratetype and determine how many already-allocated pages
2659 * are there in the pageblock with a compatible migratetype. If at least half
2660 * of pages are free or compatible, we can change migratetype of the pageblock
2661 * itself, so pages freed in the future will be put on the correct free list.
2663 static void steal_suitable_fallback(struct zone *zone, struct page *page,
2664 unsigned int alloc_flags, int start_type, bool whole_block)
2666 unsigned int current_order = buddy_order(page);
2667 int free_pages, movable_pages, alike_pages;
2670 old_block_type = get_pageblock_migratetype(page);
2673 * This can happen due to races and we want to prevent broken
2674 * highatomic accounting.
2676 if (is_migrate_highatomic(old_block_type))
2679 /* Take ownership for orders >= pageblock_order */
2680 if (current_order >= pageblock_order) {
2681 change_pageblock_range(page, current_order, start_type);
2686 * Boost watermarks to increase reclaim pressure to reduce the
2687 * likelihood of future fallbacks. Wake kswapd now as the node
2688 * may be balanced overall and kswapd will not wake naturally.
2690 if (boost_watermark(zone) && (alloc_flags & ALLOC_KSWAPD))
2691 set_bit(ZONE_BOOSTED_WATERMARK, &zone->flags);
2693 /* We are not allowed to try stealing from the whole block */
2697 free_pages = move_freepages_block(zone, page, start_type,
2700 * Determine how many pages are compatible with our allocation.
2701 * For movable allocation, it's the number of movable pages which
2702 * we just obtained. For other types it's a bit more tricky.
2704 if (start_type == MIGRATE_MOVABLE) {
2705 alike_pages = movable_pages;
2708 * If we are falling back a RECLAIMABLE or UNMOVABLE allocation
2709 * to MOVABLE pageblock, consider all non-movable pages as
2710 * compatible. If it's UNMOVABLE falling back to RECLAIMABLE or
2711 * vice versa, be conservative since we can't distinguish the
2712 * exact migratetype of non-movable pages.
2714 if (old_block_type == MIGRATE_MOVABLE)
2715 alike_pages = pageblock_nr_pages
2716 - (free_pages + movable_pages);
2721 /* moving whole block can fail due to zone boundary conditions */
2726 * If a sufficient number of pages in the block are either free or of
2727 * comparable migratability as our allocation, claim the whole block.
2729 if (free_pages + alike_pages >= (1 << (pageblock_order-1)) ||
2730 page_group_by_mobility_disabled)
2731 set_pageblock_migratetype(page, start_type);
2736 move_to_free_list(page, zone, current_order, start_type);
2740 * Check whether there is a suitable fallback freepage with requested order.
2741 * If only_stealable is true, this function returns fallback_mt only if
2742 * we can steal other freepages all together. This would help to reduce
2743 * fragmentation due to mixed migratetype pages in one pageblock.
2745 int find_suitable_fallback(struct free_area *area, unsigned int order,
2746 int migratetype, bool only_stealable, bool *can_steal)
2751 if (area->nr_free == 0)
2756 fallback_mt = fallbacks[migratetype][i];
2757 if (fallback_mt == MIGRATE_TYPES)
2760 if (free_area_empty(area, fallback_mt))
2763 if (can_steal_fallback(order, migratetype))
2766 if (!only_stealable)
2777 * Reserve a pageblock for exclusive use of high-order atomic allocations if
2778 * there are no empty page blocks that contain a page with a suitable order
2780 static void reserve_highatomic_pageblock(struct page *page, struct zone *zone,
2781 unsigned int alloc_order)
2784 unsigned long max_managed, flags;
2787 * Limit the number reserved to 1 pageblock or roughly 1% of a zone.
2788 * Check is race-prone but harmless.
2790 max_managed = (zone_managed_pages(zone) / 100) + pageblock_nr_pages;
2791 if (zone->nr_reserved_highatomic >= max_managed)
2794 spin_lock_irqsave(&zone->lock, flags);
2796 /* Recheck the nr_reserved_highatomic limit under the lock */
2797 if (zone->nr_reserved_highatomic >= max_managed)
2801 mt = get_pageblock_migratetype(page);
2802 if (!is_migrate_highatomic(mt) && !is_migrate_isolate(mt)
2803 && !is_migrate_cma(mt)) {
2804 zone->nr_reserved_highatomic += pageblock_nr_pages;
2805 set_pageblock_migratetype(page, MIGRATE_HIGHATOMIC);
2806 move_freepages_block(zone, page, MIGRATE_HIGHATOMIC, NULL);
2810 spin_unlock_irqrestore(&zone->lock, flags);
2814 * Used when an allocation is about to fail under memory pressure. This
2815 * potentially hurts the reliability of high-order allocations when under
2816 * intense memory pressure but failed atomic allocations should be easier
2817 * to recover from than an OOM.
2819 * If @force is true, try to unreserve a pageblock even though highatomic
2820 * pageblock is exhausted.
2822 static bool unreserve_highatomic_pageblock(const struct alloc_context *ac,
2825 struct zonelist *zonelist = ac->zonelist;
2826 unsigned long flags;
2833 for_each_zone_zonelist_nodemask(zone, z, zonelist, ac->highest_zoneidx,
2836 * Preserve at least one pageblock unless memory pressure
2839 if (!force && zone->nr_reserved_highatomic <=
2843 spin_lock_irqsave(&zone->lock, flags);
2844 for (order = 0; order < MAX_ORDER; order++) {
2845 struct free_area *area = &(zone->free_area[order]);
2847 page = get_page_from_free_area(area, MIGRATE_HIGHATOMIC);
2852 * In page freeing path, migratetype change is racy so
2853 * we can counter several free pages in a pageblock
2854 * in this loop although we changed the pageblock type
2855 * from highatomic to ac->migratetype. So we should
2856 * adjust the count once.
2858 if (is_migrate_highatomic_page(page)) {
2860 * It should never happen but changes to
2861 * locking could inadvertently allow a per-cpu
2862 * drain to add pages to MIGRATE_HIGHATOMIC
2863 * while unreserving so be safe and watch for
2866 zone->nr_reserved_highatomic -= min(
2868 zone->nr_reserved_highatomic);
2872 * Convert to ac->migratetype and avoid the normal
2873 * pageblock stealing heuristics. Minimally, the caller
2874 * is doing the work and needs the pages. More
2875 * importantly, if the block was always converted to
2876 * MIGRATE_UNMOVABLE or another type then the number
2877 * of pageblocks that cannot be completely freed
2880 set_pageblock_migratetype(page, ac->migratetype);
2881 ret = move_freepages_block(zone, page, ac->migratetype,
2884 spin_unlock_irqrestore(&zone->lock, flags);
2888 spin_unlock_irqrestore(&zone->lock, flags);
2895 * Try finding a free buddy page on the fallback list and put it on the free
2896 * list of requested migratetype, possibly along with other pages from the same
2897 * block, depending on fragmentation avoidance heuristics. Returns true if
2898 * fallback was found so that __rmqueue_smallest() can grab it.
2900 * The use of signed ints for order and current_order is a deliberate
2901 * deviation from the rest of this file, to make the for loop
2902 * condition simpler.
2904 static __always_inline bool
2905 __rmqueue_fallback(struct zone *zone, int order, int start_migratetype,
2906 unsigned int alloc_flags)
2908 struct free_area *area;
2910 int min_order = order;
2916 * Do not steal pages from freelists belonging to other pageblocks
2917 * i.e. orders < pageblock_order. If there are no local zones free,
2918 * the zonelists will be reiterated without ALLOC_NOFRAGMENT.
2920 if (alloc_flags & ALLOC_NOFRAGMENT)
2921 min_order = pageblock_order;
2924 * Find the largest available free page in the other list. This roughly
2925 * approximates finding the pageblock with the most free pages, which
2926 * would be too costly to do exactly.
2928 for (current_order = MAX_ORDER - 1; current_order >= min_order;
2930 area = &(zone->free_area[current_order]);
2931 fallback_mt = find_suitable_fallback(area, current_order,
2932 start_migratetype, false, &can_steal);
2933 if (fallback_mt == -1)
2937 * We cannot steal all free pages from the pageblock and the
2938 * requested migratetype is movable. In that case it's better to
2939 * steal and split the smallest available page instead of the
2940 * largest available page, because even if the next movable
2941 * allocation falls back into a different pageblock than this
2942 * one, it won't cause permanent fragmentation.
2944 if (!can_steal && start_migratetype == MIGRATE_MOVABLE
2945 && current_order > order)
2954 for (current_order = order; current_order < MAX_ORDER;
2956 area = &(zone->free_area[current_order]);
2957 fallback_mt = find_suitable_fallback(area, current_order,
2958 start_migratetype, false, &can_steal);
2959 if (fallback_mt != -1)
2964 * This should not happen - we already found a suitable fallback
2965 * when looking for the largest page.
2967 VM_BUG_ON(current_order == MAX_ORDER);
2970 page = get_page_from_free_area(area, fallback_mt);
2972 steal_suitable_fallback(zone, page, alloc_flags, start_migratetype,
2975 trace_mm_page_alloc_extfrag(page, order, current_order,
2976 start_migratetype, fallback_mt);
2983 * Do the hard work of removing an element from the buddy allocator.
2984 * Call me with the zone->lock already held.
2986 static __always_inline struct page *
2987 __rmqueue(struct zone *zone, unsigned int order, int migratetype,
2988 unsigned int alloc_flags)
2992 if (IS_ENABLED(CONFIG_CMA)) {
2994 * Balance movable allocations between regular and CMA areas by
2995 * allocating from CMA when over half of the zone's free memory
2996 * is in the CMA area.
2998 if (alloc_flags & ALLOC_CMA &&
2999 zone_page_state(zone, NR_FREE_CMA_PAGES) >
3000 zone_page_state(zone, NR_FREE_PAGES) / 2) {
3001 page = __rmqueue_cma_fallback(zone, order);
3007 page = __rmqueue_smallest(zone, order, migratetype);
3008 if (unlikely(!page)) {
3009 if (alloc_flags & ALLOC_CMA)
3010 page = __rmqueue_cma_fallback(zone, order);
3012 if (!page && __rmqueue_fallback(zone, order, migratetype,
3018 trace_mm_page_alloc_zone_locked(page, order, migratetype);
3023 * Obtain a specified number of elements from the buddy allocator, all under
3024 * a single hold of the lock, for efficiency. Add them to the supplied list.
3025 * Returns the number of new pages which were placed at *list.
3027 static int rmqueue_bulk(struct zone *zone, unsigned int order,
3028 unsigned long count, struct list_head *list,
3029 int migratetype, unsigned int alloc_flags)
3031 int i, allocated = 0;
3034 * local_lock_irq held so equivalent to spin_lock_irqsave for
3035 * both PREEMPT_RT and non-PREEMPT_RT configurations.
3037 spin_lock(&zone->lock);
3038 for (i = 0; i < count; ++i) {
3039 struct page *page = __rmqueue(zone, order, migratetype,
3041 if (unlikely(page == NULL))
3044 if (unlikely(check_pcp_refill(page)))
3048 * Split buddy pages returned by expand() are received here in
3049 * physical page order. The page is added to the tail of
3050 * caller's list. From the callers perspective, the linked list
3051 * is ordered by page number under some conditions. This is
3052 * useful for IO devices that can forward direction from the
3053 * head, thus also in the physical page order. This is useful
3054 * for IO devices that can merge IO requests if the physical
3055 * pages are ordered properly.
3057 list_add_tail(&page->lru, list);
3059 if (is_migrate_cma(get_pcppage_migratetype(page)))
3060 __mod_zone_page_state(zone, NR_FREE_CMA_PAGES,
3065 * i pages were removed from the buddy list even if some leak due
3066 * to check_pcp_refill failing so adjust NR_FREE_PAGES based
3067 * on i. Do not confuse with 'allocated' which is the number of
3068 * pages added to the pcp list.
3070 __mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order));
3071 spin_unlock(&zone->lock);
3077 * Called from the vmstat counter updater to drain pagesets of this
3078 * currently executing processor on remote nodes after they have
3081 * Note that this function must be called with the thread pinned to
3082 * a single processor.
3084 void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
3086 unsigned long flags;
3087 int to_drain, batch;
3089 local_lock_irqsave(&pagesets.lock, flags);
3090 batch = READ_ONCE(pcp->batch);
3091 to_drain = min(pcp->count, batch);
3093 free_pcppages_bulk(zone, to_drain, pcp);
3094 local_unlock_irqrestore(&pagesets.lock, flags);
3099 * Drain pcplists of the indicated processor and zone.
3101 * The processor must either be the current processor and the
3102 * thread pinned to the current processor or a processor that
3105 static void drain_pages_zone(unsigned int cpu, struct zone *zone)
3107 unsigned long flags;
3108 struct per_cpu_pages *pcp;
3110 local_lock_irqsave(&pagesets.lock, flags);
3112 pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu);
3114 free_pcppages_bulk(zone, pcp->count, pcp);
3116 local_unlock_irqrestore(&pagesets.lock, flags);
3120 * Drain pcplists of all zones on the indicated processor.
3122 * The processor must either be the current processor and the
3123 * thread pinned to the current processor or a processor that
3126 static void drain_pages(unsigned int cpu)
3130 for_each_populated_zone(zone) {
3131 drain_pages_zone(cpu, zone);
3136 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
3138 * The CPU has to be pinned. When zone parameter is non-NULL, spill just
3139 * the single zone's pages.
3141 void drain_local_pages(struct zone *zone)
3143 int cpu = smp_processor_id();
3146 drain_pages_zone(cpu, zone);
3151 static void drain_local_pages_wq(struct work_struct *work)
3153 struct pcpu_drain *drain;
3155 drain = container_of(work, struct pcpu_drain, work);
3158 * drain_all_pages doesn't use proper cpu hotplug protection so
3159 * we can race with cpu offline when the WQ can move this from
3160 * a cpu pinned worker to an unbound one. We can operate on a different
3161 * cpu which is alright but we also have to make sure to not move to
3165 drain_local_pages(drain->zone);
3170 * The implementation of drain_all_pages(), exposing an extra parameter to
3171 * drain on all cpus.
3173 * drain_all_pages() is optimized to only execute on cpus where pcplists are
3174 * not empty. The check for non-emptiness can however race with a free to
3175 * pcplist that has not yet increased the pcp->count from 0 to 1. Callers
3176 * that need the guarantee that every CPU has drained can disable the
3177 * optimizing racy check.
3179 static void __drain_all_pages(struct zone *zone, bool force_all_cpus)
3184 * Allocate in the BSS so we won't require allocation in
3185 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y
3187 static cpumask_t cpus_with_pcps;
3190 * Make sure nobody triggers this path before mm_percpu_wq is fully
3193 if (WARN_ON_ONCE(!mm_percpu_wq))
3197 * Do not drain if one is already in progress unless it's specific to
3198 * a zone. Such callers are primarily CMA and memory hotplug and need
3199 * the drain to be complete when the call returns.
3201 if (unlikely(!mutex_trylock(&pcpu_drain_mutex))) {
3204 mutex_lock(&pcpu_drain_mutex);
3208 * We don't care about racing with CPU hotplug event
3209 * as offline notification will cause the notified
3210 * cpu to drain that CPU pcps and on_each_cpu_mask
3211 * disables preemption as part of its processing
3213 for_each_online_cpu(cpu) {
3214 struct per_cpu_pages *pcp;
3216 bool has_pcps = false;
3218 if (force_all_cpus) {
3220 * The pcp.count check is racy, some callers need a
3221 * guarantee that no cpu is missed.
3225 pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu);
3229 for_each_populated_zone(z) {
3230 pcp = per_cpu_ptr(z->per_cpu_pageset, cpu);
3239 cpumask_set_cpu(cpu, &cpus_with_pcps);
3241 cpumask_clear_cpu(cpu, &cpus_with_pcps);
3244 for_each_cpu(cpu, &cpus_with_pcps) {
3245 struct pcpu_drain *drain = per_cpu_ptr(&pcpu_drain, cpu);
3248 INIT_WORK(&drain->work, drain_local_pages_wq);
3249 queue_work_on(cpu, mm_percpu_wq, &drain->work);
3251 for_each_cpu(cpu, &cpus_with_pcps)
3252 flush_work(&per_cpu_ptr(&pcpu_drain, cpu)->work);
3254 mutex_unlock(&pcpu_drain_mutex);
3258 * Spill all the per-cpu pages from all CPUs back into the buddy allocator.
3260 * When zone parameter is non-NULL, spill just the single zone's pages.
3262 * Note that this can be extremely slow as the draining happens in a workqueue.
3264 void drain_all_pages(struct zone *zone)
3266 __drain_all_pages(zone, false);
3269 #ifdef CONFIG_HIBERNATION
3272 * Touch the watchdog for every WD_PAGE_COUNT pages.
3274 #define WD_PAGE_COUNT (128*1024)
3276 void mark_free_pages(struct zone *zone)
3278 unsigned long pfn, max_zone_pfn, page_count = WD_PAGE_COUNT;
3279 unsigned long flags;
3280 unsigned int order, t;
3283 if (zone_is_empty(zone))
3286 spin_lock_irqsave(&zone->lock, flags);
3288 max_zone_pfn = zone_end_pfn(zone);
3289 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
3290 if (pfn_valid(pfn)) {
3291 page = pfn_to_page(pfn);
3293 if (!--page_count) {
3294 touch_nmi_watchdog();
3295 page_count = WD_PAGE_COUNT;
3298 if (page_zone(page) != zone)
3301 if (!swsusp_page_is_forbidden(page))
3302 swsusp_unset_page_free(page);
3305 for_each_migratetype_order(order, t) {
3306 list_for_each_entry(page,
3307 &zone->free_area[order].free_list[t], lru) {
3310 pfn = page_to_pfn(page);
3311 for (i = 0; i < (1UL << order); i++) {
3312 if (!--page_count) {
3313 touch_nmi_watchdog();
3314 page_count = WD_PAGE_COUNT;
3316 swsusp_set_page_free(pfn_to_page(pfn + i));
3320 spin_unlock_irqrestore(&zone->lock, flags);
3322 #endif /* CONFIG_PM */
3324 static bool free_unref_page_prepare(struct page *page, unsigned long pfn,
3329 if (!free_pcp_prepare(page, order))
3332 migratetype = get_pfnblock_migratetype(page, pfn);
3333 set_pcppage_migratetype(page, migratetype);
3337 static int nr_pcp_free(struct per_cpu_pages *pcp, int high, int batch)
3339 int min_nr_free, max_nr_free;
3341 /* Check for PCP disabled or boot pageset */
3342 if (unlikely(high < batch))
3345 /* Leave at least pcp->batch pages on the list */
3346 min_nr_free = batch;
3347 max_nr_free = high - batch;
3350 * Double the number of pages freed each time there is subsequent
3351 * freeing of pages without any allocation.
3353 batch <<= pcp->free_factor;
3354 if (batch < max_nr_free)
3356 batch = clamp(batch, min_nr_free, max_nr_free);
3361 static int nr_pcp_high(struct per_cpu_pages *pcp, struct zone *zone)
3363 int high = READ_ONCE(pcp->high);
3365 if (unlikely(!high))
3368 if (!test_bit(ZONE_RECLAIM_ACTIVE, &zone->flags))
3372 * If reclaim is active, limit the number of pages that can be
3373 * stored on pcp lists
3375 return min(READ_ONCE(pcp->batch) << 2, high);
3378 static void free_unref_page_commit(struct page *page, unsigned long pfn,
3379 int migratetype, unsigned int order)
3381 struct zone *zone = page_zone(page);
3382 struct per_cpu_pages *pcp;
3386 __count_vm_event(PGFREE);
3387 pcp = this_cpu_ptr(zone->per_cpu_pageset);
3388 pindex = order_to_pindex(migratetype, order);
3389 list_add(&page->lru, &pcp->lists[pindex]);
3390 pcp->count += 1 << order;
3391 high = nr_pcp_high(pcp, zone);
3392 if (pcp->count >= high) {
3393 int batch = READ_ONCE(pcp->batch);
3395 free_pcppages_bulk(zone, nr_pcp_free(pcp, high, batch), pcp);
3402 void free_unref_page(struct page *page, unsigned int order)
3404 unsigned long flags;
3405 unsigned long pfn = page_to_pfn(page);
3408 if (!free_unref_page_prepare(page, pfn, order))
3412 * We only track unmovable, reclaimable and movable on pcp lists.
3413 * Place ISOLATE pages on the isolated list because they are being
3414 * offlined but treat HIGHATOMIC as movable pages so we can get those
3415 * areas back if necessary. Otherwise, we may have to free
3416 * excessively into the page allocator
3418 migratetype = get_pcppage_migratetype(page);
3419 if (unlikely(migratetype >= MIGRATE_PCPTYPES)) {
3420 if (unlikely(is_migrate_isolate(migratetype))) {
3421 free_one_page(page_zone(page), page, pfn, order, migratetype, FPI_NONE);
3424 migratetype = MIGRATE_MOVABLE;
3427 local_lock_irqsave(&pagesets.lock, flags);
3428 free_unref_page_commit(page, pfn, migratetype, order);
3429 local_unlock_irqrestore(&pagesets.lock, flags);
3433 * Free a list of 0-order pages
3435 void free_unref_page_list(struct list_head *list)
3437 struct page *page, *next;
3438 unsigned long flags, pfn;
3439 int batch_count = 0;
3442 /* Prepare pages for freeing */
3443 list_for_each_entry_safe(page, next, list, lru) {
3444 pfn = page_to_pfn(page);
3445 if (!free_unref_page_prepare(page, pfn, 0))
3446 list_del(&page->lru);
3449 * Free isolated pages directly to the allocator, see
3450 * comment in free_unref_page.
3452 migratetype = get_pcppage_migratetype(page);
3453 if (unlikely(migratetype >= MIGRATE_PCPTYPES)) {
3454 if (unlikely(is_migrate_isolate(migratetype))) {
3455 list_del(&page->lru);
3456 free_one_page(page_zone(page), page, pfn, 0,
3457 migratetype, FPI_NONE);
3462 * Non-isolated types over MIGRATE_PCPTYPES get added
3463 * to the MIGRATE_MOVABLE pcp list.
3465 set_pcppage_migratetype(page, MIGRATE_MOVABLE);
3468 set_page_private(page, pfn);
3471 local_lock_irqsave(&pagesets.lock, flags);
3472 list_for_each_entry_safe(page, next, list, lru) {
3473 pfn = page_private(page);
3474 set_page_private(page, 0);
3475 migratetype = get_pcppage_migratetype(page);
3476 trace_mm_page_free_batched(page);
3477 free_unref_page_commit(page, pfn, migratetype, 0);
3480 * Guard against excessive IRQ disabled times when we get
3481 * a large list of pages to free.
3483 if (++batch_count == SWAP_CLUSTER_MAX) {
3484 local_unlock_irqrestore(&pagesets.lock, flags);
3486 local_lock_irqsave(&pagesets.lock, flags);
3489 local_unlock_irqrestore(&pagesets.lock, flags);
3493 * split_page takes a non-compound higher-order page, and splits it into
3494 * n (1<<order) sub-pages: page[0..n]
3495 * Each sub-page must be freed individually.
3497 * Note: this is probably too low level an operation for use in drivers.
3498 * Please consult with lkml before using this in your driver.
3500 void split_page(struct page *page, unsigned int order)
3504 VM_BUG_ON_PAGE(PageCompound(page), page);
3505 VM_BUG_ON_PAGE(!page_count(page), page);
3507 for (i = 1; i < (1 << order); i++)
3508 set_page_refcounted(page + i);
3509 split_page_owner(page, 1 << order);
3510 split_page_memcg(page, 1 << order);
3512 EXPORT_SYMBOL_GPL(split_page);
3514 int __isolate_free_page(struct page *page, unsigned int order)
3516 unsigned long watermark;
3520 BUG_ON(!PageBuddy(page));
3522 zone = page_zone(page);
3523 mt = get_pageblock_migratetype(page);
3525 if (!is_migrate_isolate(mt)) {
3527 * Obey watermarks as if the page was being allocated. We can
3528 * emulate a high-order watermark check with a raised order-0
3529 * watermark, because we already know our high-order page
3532 watermark = zone->_watermark[WMARK_MIN] + (1UL << order);
3533 if (!zone_watermark_ok(zone, 0, watermark, 0, ALLOC_CMA))
3536 __mod_zone_freepage_state(zone, -(1UL << order), mt);
3539 /* Remove page from free list */
3541 del_page_from_free_list(page, zone, order);
3544 * Set the pageblock if the isolated page is at least half of a
3547 if (order >= pageblock_order - 1) {
3548 struct page *endpage = page + (1 << order) - 1;
3549 for (; page < endpage; page += pageblock_nr_pages) {
3550 int mt = get_pageblock_migratetype(page);
3551 if (!is_migrate_isolate(mt) && !is_migrate_cma(mt)
3552 && !is_migrate_highatomic(mt))
3553 set_pageblock_migratetype(page,
3559 return 1UL << order;
3563 * __putback_isolated_page - Return a now-isolated page back where we got it
3564 * @page: Page that was isolated
3565 * @order: Order of the isolated page
3566 * @mt: The page's pageblock's migratetype
3568 * This function is meant to return a page pulled from the free lists via
3569 * __isolate_free_page back to the free lists they were pulled from.
3571 void __putback_isolated_page(struct page *page, unsigned int order, int mt)
3573 struct zone *zone = page_zone(page);
3575 /* zone lock should be held when this function is called */
3576 lockdep_assert_held(&zone->lock);
3578 /* Return isolated page to tail of freelist. */
3579 __free_one_page(page, page_to_pfn(page), zone, order, mt,
3580 FPI_SKIP_REPORT_NOTIFY | FPI_TO_TAIL);
3584 * Update NUMA hit/miss statistics
3586 * Must be called with interrupts disabled.
3588 static inline void zone_statistics(struct zone *preferred_zone, struct zone *z,
3592 enum numa_stat_item local_stat = NUMA_LOCAL;
3594 /* skip numa counters update if numa stats is disabled */
3595 if (!static_branch_likely(&vm_numa_stat_key))
3598 if (zone_to_nid(z) != numa_node_id())
3599 local_stat = NUMA_OTHER;
3601 if (zone_to_nid(z) == zone_to_nid(preferred_zone))
3602 __count_numa_events(z, NUMA_HIT, nr_account);
3604 __count_numa_events(z, NUMA_MISS, nr_account);
3605 __count_numa_events(preferred_zone, NUMA_FOREIGN, nr_account);
3607 __count_numa_events(z, local_stat, nr_account);
3611 /* Remove page from the per-cpu list, caller must protect the list */
3613 struct page *__rmqueue_pcplist(struct zone *zone, unsigned int order,
3615 unsigned int alloc_flags,
3616 struct per_cpu_pages *pcp,
3617 struct list_head *list)
3622 if (list_empty(list)) {
3623 int batch = READ_ONCE(pcp->batch);
3627 * Scale batch relative to order if batch implies
3628 * free pages can be stored on the PCP. Batch can
3629 * be 1 for small zones or for boot pagesets which
3630 * should never store free pages as the pages may
3631 * belong to arbitrary zones.
3634 batch = max(batch >> order, 2);
3635 alloced = rmqueue_bulk(zone, order,
3637 migratetype, alloc_flags);
3639 pcp->count += alloced << order;
3640 if (unlikely(list_empty(list)))
3644 page = list_first_entry(list, struct page, lru);
3645 list_del(&page->lru);
3646 pcp->count -= 1 << order;
3647 } while (check_new_pcp(page));
3652 /* Lock and remove page from the per-cpu list */
3653 static struct page *rmqueue_pcplist(struct zone *preferred_zone,
3654 struct zone *zone, unsigned int order,
3655 gfp_t gfp_flags, int migratetype,
3656 unsigned int alloc_flags)
3658 struct per_cpu_pages *pcp;
3659 struct list_head *list;
3661 unsigned long flags;
3663 local_lock_irqsave(&pagesets.lock, flags);
3666 * On allocation, reduce the number of pages that are batch freed.
3667 * See nr_pcp_free() where free_factor is increased for subsequent
3670 pcp = this_cpu_ptr(zone->per_cpu_pageset);
3671 pcp->free_factor >>= 1;
3672 list = &pcp->lists[order_to_pindex(migratetype, order)];
3673 page = __rmqueue_pcplist(zone, order, migratetype, alloc_flags, pcp, list);
3674 local_unlock_irqrestore(&pagesets.lock, flags);
3676 __count_zid_vm_events(PGALLOC, page_zonenum(page), 1);
3677 zone_statistics(preferred_zone, zone, 1);
3683 * Allocate a page from the given zone. Use pcplists for order-0 allocations.
3686 struct page *rmqueue(struct zone *preferred_zone,
3687 struct zone *zone, unsigned int order,
3688 gfp_t gfp_flags, unsigned int alloc_flags,
3691 unsigned long flags;
3694 if (likely(pcp_allowed_order(order))) {
3696 * MIGRATE_MOVABLE pcplist could have the pages on CMA area and
3697 * we need to skip it when CMA area isn't allowed.
3699 if (!IS_ENABLED(CONFIG_CMA) || alloc_flags & ALLOC_CMA ||
3700 migratetype != MIGRATE_MOVABLE) {
3701 page = rmqueue_pcplist(preferred_zone, zone, order,
3702 gfp_flags, migratetype, alloc_flags);
3708 * We most definitely don't want callers attempting to
3709 * allocate greater than order-1 page units with __GFP_NOFAIL.
3711 WARN_ON_ONCE((gfp_flags & __GFP_NOFAIL) && (order > 1));
3712 spin_lock_irqsave(&zone->lock, flags);
3717 * order-0 request can reach here when the pcplist is skipped
3718 * due to non-CMA allocation context. HIGHATOMIC area is
3719 * reserved for high-order atomic allocation, so order-0
3720 * request should skip it.
3722 if (order > 0 && alloc_flags & ALLOC_HARDER) {
3723 page = __rmqueue_smallest(zone, order, MIGRATE_HIGHATOMIC);
3725 trace_mm_page_alloc_zone_locked(page, order, migratetype);
3728 page = __rmqueue(zone, order, migratetype, alloc_flags);
3729 } while (page && check_new_pages(page, order));
3733 __mod_zone_freepage_state(zone, -(1 << order),
3734 get_pcppage_migratetype(page));
3735 spin_unlock_irqrestore(&zone->lock, flags);
3737 __count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order);
3738 zone_statistics(preferred_zone, zone, 1);
3741 /* Separate test+clear to avoid unnecessary atomics */
3742 if (test_bit(ZONE_BOOSTED_WATERMARK, &zone->flags)) {
3743 clear_bit(ZONE_BOOSTED_WATERMARK, &zone->flags);
3744 wakeup_kswapd(zone, 0, 0, zone_idx(zone));
3747 VM_BUG_ON_PAGE(page && bad_range(zone, page), page);
3751 spin_unlock_irqrestore(&zone->lock, flags);
3755 #ifdef CONFIG_FAIL_PAGE_ALLOC
3758 struct fault_attr attr;
3760 bool ignore_gfp_highmem;
3761 bool ignore_gfp_reclaim;
3763 } fail_page_alloc = {
3764 .attr = FAULT_ATTR_INITIALIZER,
3765 .ignore_gfp_reclaim = true,
3766 .ignore_gfp_highmem = true,
3770 static int __init setup_fail_page_alloc(char *str)
3772 return setup_fault_attr(&fail_page_alloc.attr, str);
3774 __setup("fail_page_alloc=", setup_fail_page_alloc);
3776 static bool __should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
3778 if (order < fail_page_alloc.min_order)
3780 if (gfp_mask & __GFP_NOFAIL)
3782 if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
3784 if (fail_page_alloc.ignore_gfp_reclaim &&
3785 (gfp_mask & __GFP_DIRECT_RECLAIM))
3788 return should_fail(&fail_page_alloc.attr, 1 << order);
3791 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
3793 static int __init fail_page_alloc_debugfs(void)
3795 umode_t mode = S_IFREG | 0600;
3798 dir = fault_create_debugfs_attr("fail_page_alloc", NULL,
3799 &fail_page_alloc.attr);
3801 debugfs_create_bool("ignore-gfp-wait", mode, dir,
3802 &fail_page_alloc.ignore_gfp_reclaim);
3803 debugfs_create_bool("ignore-gfp-highmem", mode, dir,
3804 &fail_page_alloc.ignore_gfp_highmem);
3805 debugfs_create_u32("min-order", mode, dir, &fail_page_alloc.min_order);
3810 late_initcall(fail_page_alloc_debugfs);
3812 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
3814 #else /* CONFIG_FAIL_PAGE_ALLOC */
3816 static inline bool __should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
3821 #endif /* CONFIG_FAIL_PAGE_ALLOC */
3823 static noinline bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
3825 return __should_fail_alloc_page(gfp_mask, order);
3827 ALLOW_ERROR_INJECTION(should_fail_alloc_page, TRUE);
3829 static inline long __zone_watermark_unusable_free(struct zone *z,
3830 unsigned int order, unsigned int alloc_flags)
3832 const bool alloc_harder = (alloc_flags & (ALLOC_HARDER|ALLOC_OOM));
3833 long unusable_free = (1 << order) - 1;
3836 * If the caller does not have rights to ALLOC_HARDER then subtract
3837 * the high-atomic reserves. This will over-estimate the size of the
3838 * atomic reserve but it avoids a search.
3840 if (likely(!alloc_harder))
3841 unusable_free += z->nr_reserved_highatomic;
3844 /* If allocation can't use CMA areas don't use free CMA pages */
3845 if (!(alloc_flags & ALLOC_CMA))
3846 unusable_free += zone_page_state(z, NR_FREE_CMA_PAGES);
3849 return unusable_free;
3853 * Return true if free base pages are above 'mark'. For high-order checks it
3854 * will return true of the order-0 watermark is reached and there is at least
3855 * one free page of a suitable size. Checking now avoids taking the zone lock
3856 * to check in the allocation paths if no pages are free.
3858 bool __zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
3859 int highest_zoneidx, unsigned int alloc_flags,
3864 const bool alloc_harder = (alloc_flags & (ALLOC_HARDER|ALLOC_OOM));
3866 /* free_pages may go negative - that's OK */
3867 free_pages -= __zone_watermark_unusable_free(z, order, alloc_flags);
3869 if (alloc_flags & ALLOC_HIGH)
3872 if (unlikely(alloc_harder)) {
3874 * OOM victims can try even harder than normal ALLOC_HARDER
3875 * users on the grounds that it's definitely going to be in
3876 * the exit path shortly and free memory. Any allocation it
3877 * makes during the free path will be small and short-lived.
3879 if (alloc_flags & ALLOC_OOM)
3886 * Check watermarks for an order-0 allocation request. If these
3887 * are not met, then a high-order request also cannot go ahead
3888 * even if a suitable page happened to be free.
3890 if (free_pages <= min + z->lowmem_reserve[highest_zoneidx])
3893 /* If this is an order-0 request then the watermark is fine */
3897 /* For a high-order request, check at least one suitable page is free */
3898 for (o = order; o < MAX_ORDER; o++) {
3899 struct free_area *area = &z->free_area[o];
3905 for (mt = 0; mt < MIGRATE_PCPTYPES; mt++) {
3906 if (!free_area_empty(area, mt))
3911 if ((alloc_flags & ALLOC_CMA) &&
3912 !free_area_empty(area, MIGRATE_CMA)) {
3916 if (alloc_harder && !free_area_empty(area, MIGRATE_HIGHATOMIC))
3922 bool zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
3923 int highest_zoneidx, unsigned int alloc_flags)
3925 return __zone_watermark_ok(z, order, mark, highest_zoneidx, alloc_flags,
3926 zone_page_state(z, NR_FREE_PAGES));
3929 static inline bool zone_watermark_fast(struct zone *z, unsigned int order,
3930 unsigned long mark, int highest_zoneidx,
3931 unsigned int alloc_flags, gfp_t gfp_mask)
3935 free_pages = zone_page_state(z, NR_FREE_PAGES);
3938 * Fast check for order-0 only. If this fails then the reserves
3939 * need to be calculated.
3944 fast_free = free_pages;
3945 fast_free -= __zone_watermark_unusable_free(z, 0, alloc_flags);
3946 if (fast_free > mark + z->lowmem_reserve[highest_zoneidx])
3950 if (__zone_watermark_ok(z, order, mark, highest_zoneidx, alloc_flags,
3954 * Ignore watermark boosting for GFP_ATOMIC order-0 allocations
3955 * when checking the min watermark. The min watermark is the
3956 * point where boosting is ignored so that kswapd is woken up
3957 * when below the low watermark.
3959 if (unlikely(!order && (gfp_mask & __GFP_ATOMIC) && z->watermark_boost
3960 && ((alloc_flags & ALLOC_WMARK_MASK) == WMARK_MIN))) {
3961 mark = z->_watermark[WMARK_MIN];
3962 return __zone_watermark_ok(z, order, mark, highest_zoneidx,
3963 alloc_flags, free_pages);
3969 bool zone_watermark_ok_safe(struct zone *z, unsigned int order,
3970 unsigned long mark, int highest_zoneidx)
3972 long free_pages = zone_page_state(z, NR_FREE_PAGES);
3974 if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark)
3975 free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES);
3977 return __zone_watermark_ok(z, order, mark, highest_zoneidx, 0,
3982 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
3984 return node_distance(zone_to_nid(local_zone), zone_to_nid(zone)) <=
3985 node_reclaim_distance;
3987 #else /* CONFIG_NUMA */
3988 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
3992 #endif /* CONFIG_NUMA */
3995 * The restriction on ZONE_DMA32 as being a suitable zone to use to avoid
3996 * fragmentation is subtle. If the preferred zone was HIGHMEM then
3997 * premature use of a lower zone may cause lowmem pressure problems that
3998 * are worse than fragmentation. If the next zone is ZONE_DMA then it is
3999 * probably too small. It only makes sense to spread allocations to avoid
4000 * fragmentation between the Normal and DMA32 zones.
4002 static inline unsigned int
4003 alloc_flags_nofragment(struct zone *zone, gfp_t gfp_mask)
4005 unsigned int alloc_flags;
4008 * __GFP_KSWAPD_RECLAIM is assumed to be the same as ALLOC_KSWAPD
4011 alloc_flags = (__force int) (gfp_mask & __GFP_KSWAPD_RECLAIM);
4013 #ifdef CONFIG_ZONE_DMA32
4017 if (zone_idx(zone) != ZONE_NORMAL)
4021 * If ZONE_DMA32 exists, assume it is the one after ZONE_NORMAL and
4022 * the pointer is within zone->zone_pgdat->node_zones[]. Also assume
4023 * on UMA that if Normal is populated then so is DMA32.
4025 BUILD_BUG_ON(ZONE_NORMAL - ZONE_DMA32 != 1);
4026 if (nr_online_nodes > 1 && !populated_zone(--zone))
4029 alloc_flags |= ALLOC_NOFRAGMENT;
4030 #endif /* CONFIG_ZONE_DMA32 */
4034 /* Must be called after current_gfp_context() which can change gfp_mask */
4035 static inline unsigned int gfp_to_alloc_flags_cma(gfp_t gfp_mask,
4036 unsigned int alloc_flags)
4039 if (gfp_migratetype(gfp_mask) == MIGRATE_MOVABLE)
4040 alloc_flags |= ALLOC_CMA;
4046 * get_page_from_freelist goes through the zonelist trying to allocate
4049 static struct page *
4050 get_page_from_freelist(gfp_t gfp_mask, unsigned int order, int alloc_flags,
4051 const struct alloc_context *ac)
4055 struct pglist_data *last_pgdat_dirty_limit = NULL;
4060 * Scan zonelist, looking for a zone with enough free.
4061 * See also __cpuset_node_allowed() comment in kernel/cpuset.c.
4063 no_fallback = alloc_flags & ALLOC_NOFRAGMENT;
4064 z = ac->preferred_zoneref;
4065 for_next_zone_zonelist_nodemask(zone, z, ac->highest_zoneidx,
4070 if (cpusets_enabled() &&
4071 (alloc_flags & ALLOC_CPUSET) &&
4072 !__cpuset_zone_allowed(zone, gfp_mask))
4075 * When allocating a page cache page for writing, we
4076 * want to get it from a node that is within its dirty
4077 * limit, such that no single node holds more than its
4078 * proportional share of globally allowed dirty pages.
4079 * The dirty limits take into account the node's
4080 * lowmem reserves and high watermark so that kswapd
4081 * should be able to balance it without having to
4082 * write pages from its LRU list.
4084 * XXX: For now, allow allocations to potentially
4085 * exceed the per-node dirty limit in the slowpath
4086 * (spread_dirty_pages unset) before going into reclaim,
4087 * which is important when on a NUMA setup the allowed
4088 * nodes are together not big enough to reach the
4089 * global limit. The proper fix for these situations
4090 * will require awareness of nodes in the
4091 * dirty-throttling and the flusher threads.
4093 if (ac->spread_dirty_pages) {
4094 if (last_pgdat_dirty_limit == zone->zone_pgdat)
4097 if (!node_dirty_ok(zone->zone_pgdat)) {
4098 last_pgdat_dirty_limit = zone->zone_pgdat;
4103 if (no_fallback && nr_online_nodes > 1 &&
4104 zone != ac->preferred_zoneref->zone) {
4108 * If moving to a remote node, retry but allow
4109 * fragmenting fallbacks. Locality is more important
4110 * than fragmentation avoidance.
4112 local_nid = zone_to_nid(ac->preferred_zoneref->zone);
4113 if (zone_to_nid(zone) != local_nid) {
4114 alloc_flags &= ~ALLOC_NOFRAGMENT;
4119 mark = wmark_pages(zone, alloc_flags & ALLOC_WMARK_MASK);
4120 if (!zone_watermark_fast(zone, order, mark,
4121 ac->highest_zoneidx, alloc_flags,
4125 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
4127 * Watermark failed for this zone, but see if we can
4128 * grow this zone if it contains deferred pages.
4130 if (static_branch_unlikely(&deferred_pages)) {
4131 if (_deferred_grow_zone(zone, order))
4135 /* Checked here to keep the fast path fast */
4136 BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
4137 if (alloc_flags & ALLOC_NO_WATERMARKS)
4140 if (!node_reclaim_enabled() ||
4141 !zone_allows_reclaim(ac->preferred_zoneref->zone, zone))
4144 ret = node_reclaim(zone->zone_pgdat, gfp_mask, order);
4146 case NODE_RECLAIM_NOSCAN:
4149 case NODE_RECLAIM_FULL:
4150 /* scanned but unreclaimable */
4153 /* did we reclaim enough */
4154 if (zone_watermark_ok(zone, order, mark,
4155 ac->highest_zoneidx, alloc_flags))
4163 page = rmqueue(ac->preferred_zoneref->zone, zone, order,
4164 gfp_mask, alloc_flags, ac->migratetype);
4166 prep_new_page(page, order, gfp_mask, alloc_flags);
4169 * If this is a high-order atomic allocation then check
4170 * if the pageblock should be reserved for the future
4172 if (unlikely(order && (alloc_flags & ALLOC_HARDER)))
4173 reserve_highatomic_pageblock(page, zone, order);
4177 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
4178 /* Try again if zone has deferred pages */
4179 if (static_branch_unlikely(&deferred_pages)) {
4180 if (_deferred_grow_zone(zone, order))
4188 * It's possible on a UMA machine to get through all zones that are
4189 * fragmented. If avoiding fragmentation, reset and try again.
4192 alloc_flags &= ~ALLOC_NOFRAGMENT;
4199 static void warn_alloc_show_mem(gfp_t gfp_mask, nodemask_t *nodemask)
4201 unsigned int filter = SHOW_MEM_FILTER_NODES;
4204 * This documents exceptions given to allocations in certain
4205 * contexts that are allowed to allocate outside current's set
4208 if (!(gfp_mask & __GFP_NOMEMALLOC))
4209 if (tsk_is_oom_victim(current) ||
4210 (current->flags & (PF_MEMALLOC | PF_EXITING)))
4211 filter &= ~SHOW_MEM_FILTER_NODES;
4212 if (in_interrupt() || !(gfp_mask & __GFP_DIRECT_RECLAIM))
4213 filter &= ~SHOW_MEM_FILTER_NODES;
4215 show_mem(filter, nodemask);
4218 void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...)
4220 struct va_format vaf;
4222 static DEFINE_RATELIMIT_STATE(nopage_rs, 10*HZ, 1);
4224 if ((gfp_mask & __GFP_NOWARN) || !__ratelimit(&nopage_rs))
4227 va_start(args, fmt);
4230 pr_warn("%s: %pV, mode:%#x(%pGg), nodemask=%*pbl",
4231 current->comm, &vaf, gfp_mask, &gfp_mask,
4232 nodemask_pr_args(nodemask));
4235 cpuset_print_current_mems_allowed();
4238 warn_alloc_show_mem(gfp_mask, nodemask);
4241 static inline struct page *
4242 __alloc_pages_cpuset_fallback(gfp_t gfp_mask, unsigned int order,
4243 unsigned int alloc_flags,
4244 const struct alloc_context *ac)
4248 page = get_page_from_freelist(gfp_mask, order,
4249 alloc_flags|ALLOC_CPUSET, ac);
4251 * fallback to ignore cpuset restriction if our nodes
4255 page = get_page_from_freelist(gfp_mask, order,
4261 static inline struct page *
4262 __alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
4263 const struct alloc_context *ac, unsigned long *did_some_progress)
4265 struct oom_control oc = {
4266 .zonelist = ac->zonelist,
4267 .nodemask = ac->nodemask,
4269 .gfp_mask = gfp_mask,
4274 *did_some_progress = 0;
4277 * Acquire the oom lock. If that fails, somebody else is
4278 * making progress for us.
4280 if (!mutex_trylock(&oom_lock)) {
4281 *did_some_progress = 1;
4282 schedule_timeout_uninterruptible(1);
4287 * Go through the zonelist yet one more time, keep very high watermark
4288 * here, this is only to catch a parallel oom killing, we must fail if
4289 * we're still under heavy pressure. But make sure that this reclaim
4290 * attempt shall not depend on __GFP_DIRECT_RECLAIM && !__GFP_NORETRY
4291 * allocation which will never fail due to oom_lock already held.
4293 page = get_page_from_freelist((gfp_mask | __GFP_HARDWALL) &
4294 ~__GFP_DIRECT_RECLAIM, order,
4295 ALLOC_WMARK_HIGH|ALLOC_CPUSET, ac);
4299 /* Coredumps can quickly deplete all memory reserves */
4300 if (current->flags & PF_DUMPCORE)
4302 /* The OOM killer will not help higher order allocs */
4303 if (order > PAGE_ALLOC_COSTLY_ORDER)
4306 * We have already exhausted all our reclaim opportunities without any
4307 * success so it is time to admit defeat. We will skip the OOM killer
4308 * because it is very likely that the caller has a more reasonable
4309 * fallback than shooting a random task.
4311 * The OOM killer may not free memory on a specific node.
4313 if (gfp_mask & (__GFP_RETRY_MAYFAIL | __GFP_THISNODE))
4315 /* The OOM killer does not needlessly kill tasks for lowmem */
4316 if (ac->highest_zoneidx < ZONE_NORMAL)
4318 if (pm_suspended_storage())
4321 * XXX: GFP_NOFS allocations should rather fail than rely on
4322 * other request to make a forward progress.
4323 * We are in an unfortunate situation where out_of_memory cannot
4324 * do much for this context but let's try it to at least get
4325 * access to memory reserved if the current task is killed (see
4326 * out_of_memory). Once filesystems are ready to handle allocation
4327 * failures more gracefully we should just bail out here.
4330 /* Exhausted what can be done so it's blame time */
4331 if (out_of_memory(&oc) || WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL)) {
4332 *did_some_progress = 1;
4335 * Help non-failing allocations by giving them access to memory
4338 if (gfp_mask & __GFP_NOFAIL)
4339 page = __alloc_pages_cpuset_fallback(gfp_mask, order,
4340 ALLOC_NO_WATERMARKS, ac);
4343 mutex_unlock(&oom_lock);
4348 * Maximum number of compaction retries with a progress before OOM
4349 * killer is consider as the only way to move forward.
4351 #define MAX_COMPACT_RETRIES 16
4353 #ifdef CONFIG_COMPACTION
4354 /* Try memory compaction for high-order allocations before reclaim */
4355 static struct page *
4356 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
4357 unsigned int alloc_flags, const struct alloc_context *ac,
4358 enum compact_priority prio, enum compact_result *compact_result)
4360 struct page *page = NULL;
4361 unsigned long pflags;
4362 unsigned int noreclaim_flag;
4367 psi_memstall_enter(&pflags);
4368 noreclaim_flag = memalloc_noreclaim_save();
4370 *compact_result = try_to_compact_pages(gfp_mask, order, alloc_flags, ac,
4373 memalloc_noreclaim_restore(noreclaim_flag);
4374 psi_memstall_leave(&pflags);
4376 if (*compact_result == COMPACT_SKIPPED)
4379 * At least in one zone compaction wasn't deferred or skipped, so let's
4380 * count a compaction stall
4382 count_vm_event(COMPACTSTALL);
4384 /* Prep a captured page if available */
4386 prep_new_page(page, order, gfp_mask, alloc_flags);
4388 /* Try get a page from the freelist if available */
4390 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
4393 struct zone *zone = page_zone(page);
4395 zone->compact_blockskip_flush = false;
4396 compaction_defer_reset(zone, order, true);
4397 count_vm_event(COMPACTSUCCESS);
4402 * It's bad if compaction run occurs and fails. The most likely reason
4403 * is that pages exist, but not enough to satisfy watermarks.
4405 count_vm_event(COMPACTFAIL);
4413 should_compact_retry(struct alloc_context *ac, int order, int alloc_flags,
4414 enum compact_result compact_result,
4415 enum compact_priority *compact_priority,
4416 int *compaction_retries)
4418 int max_retries = MAX_COMPACT_RETRIES;
4421 int retries = *compaction_retries;
4422 enum compact_priority priority = *compact_priority;
4427 if (fatal_signal_pending(current))
4430 if (compaction_made_progress(compact_result))
4431 (*compaction_retries)++;
4434 * compaction considers all the zone as desperately out of memory
4435 * so it doesn't really make much sense to retry except when the
4436 * failure could be caused by insufficient priority
4438 if (compaction_failed(compact_result))
4439 goto check_priority;
4442 * compaction was skipped because there are not enough order-0 pages
4443 * to work with, so we retry only if it looks like reclaim can help.
4445 if (compaction_needs_reclaim(compact_result)) {
4446 ret = compaction_zonelist_suitable(ac, order, alloc_flags);
4451 * make sure the compaction wasn't deferred or didn't bail out early
4452 * due to locks contention before we declare that we should give up.
4453 * But the next retry should use a higher priority if allowed, so
4454 * we don't just keep bailing out endlessly.
4456 if (compaction_withdrawn(compact_result)) {
4457 goto check_priority;
4461 * !costly requests are much more important than __GFP_RETRY_MAYFAIL
4462 * costly ones because they are de facto nofail and invoke OOM
4463 * killer to move on while costly can fail and users are ready
4464 * to cope with that. 1/4 retries is rather arbitrary but we
4465 * would need much more detailed feedback from compaction to
4466 * make a better decision.
4468 if (order > PAGE_ALLOC_COSTLY_ORDER)
4470 if (*compaction_retries <= max_retries) {
4476 * Make sure there are attempts at the highest priority if we exhausted
4477 * all retries or failed at the lower priorities.
4480 min_priority = (order > PAGE_ALLOC_COSTLY_ORDER) ?
4481 MIN_COMPACT_COSTLY_PRIORITY : MIN_COMPACT_PRIORITY;
4483 if (*compact_priority > min_priority) {
4484 (*compact_priority)--;
4485 *compaction_retries = 0;
4489 trace_compact_retry(order, priority, compact_result, retries, max_retries, ret);
4493 static inline struct page *
4494 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
4495 unsigned int alloc_flags, const struct alloc_context *ac,
4496 enum compact_priority prio, enum compact_result *compact_result)
4498 *compact_result = COMPACT_SKIPPED;
4503 should_compact_retry(struct alloc_context *ac, unsigned int order, int alloc_flags,
4504 enum compact_result compact_result,
4505 enum compact_priority *compact_priority,
4506 int *compaction_retries)
4511 if (!order || order > PAGE_ALLOC_COSTLY_ORDER)
4515 * There are setups with compaction disabled which would prefer to loop
4516 * inside the allocator rather than hit the oom killer prematurely.
4517 * Let's give them a good hope and keep retrying while the order-0
4518 * watermarks are OK.
4520 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
4521 ac->highest_zoneidx, ac->nodemask) {
4522 if (zone_watermark_ok(zone, 0, min_wmark_pages(zone),
4523 ac->highest_zoneidx, alloc_flags))
4528 #endif /* CONFIG_COMPACTION */
4530 #ifdef CONFIG_LOCKDEP
4531 static struct lockdep_map __fs_reclaim_map =
4532 STATIC_LOCKDEP_MAP_INIT("fs_reclaim", &__fs_reclaim_map);
4534 static bool __need_reclaim(gfp_t gfp_mask)
4536 /* no reclaim without waiting on it */
4537 if (!(gfp_mask & __GFP_DIRECT_RECLAIM))
4540 /* this guy won't enter reclaim */
4541 if (current->flags & PF_MEMALLOC)
4544 if (gfp_mask & __GFP_NOLOCKDEP)
4550 void __fs_reclaim_acquire(void)
4552 lock_map_acquire(&__fs_reclaim_map);
4555 void __fs_reclaim_release(void)
4557 lock_map_release(&__fs_reclaim_map);
4560 void fs_reclaim_acquire(gfp_t gfp_mask)
4562 gfp_mask = current_gfp_context(gfp_mask);
4564 if (__need_reclaim(gfp_mask)) {
4565 if (gfp_mask & __GFP_FS)
4566 __fs_reclaim_acquire();
4568 #ifdef CONFIG_MMU_NOTIFIER
4569 lock_map_acquire(&__mmu_notifier_invalidate_range_start_map);
4570 lock_map_release(&__mmu_notifier_invalidate_range_start_map);
4575 EXPORT_SYMBOL_GPL(fs_reclaim_acquire);
4577 void fs_reclaim_release(gfp_t gfp_mask)
4579 gfp_mask = current_gfp_context(gfp_mask);
4581 if (__need_reclaim(gfp_mask)) {
4582 if (gfp_mask & __GFP_FS)
4583 __fs_reclaim_release();
4586 EXPORT_SYMBOL_GPL(fs_reclaim_release);
4589 /* Perform direct synchronous page reclaim */
4590 static unsigned long
4591 __perform_reclaim(gfp_t gfp_mask, unsigned int order,
4592 const struct alloc_context *ac)
4594 unsigned int noreclaim_flag;
4595 unsigned long pflags, progress;
4599 /* We now go into synchronous reclaim */
4600 cpuset_memory_pressure_bump();
4601 psi_memstall_enter(&pflags);
4602 fs_reclaim_acquire(gfp_mask);
4603 noreclaim_flag = memalloc_noreclaim_save();
4605 progress = try_to_free_pages(ac->zonelist, order, gfp_mask,
4608 memalloc_noreclaim_restore(noreclaim_flag);
4609 fs_reclaim_release(gfp_mask);
4610 psi_memstall_leave(&pflags);
4617 /* The really slow allocator path where we enter direct reclaim */
4618 static inline struct page *
4619 __alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
4620 unsigned int alloc_flags, const struct alloc_context *ac,
4621 unsigned long *did_some_progress)
4623 struct page *page = NULL;
4624 bool drained = false;
4626 *did_some_progress = __perform_reclaim(gfp_mask, order, ac);
4627 if (unlikely(!(*did_some_progress)))
4631 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
4634 * If an allocation failed after direct reclaim, it could be because
4635 * pages are pinned on the per-cpu lists or in high alloc reserves.
4636 * Shrink them and try again
4638 if (!page && !drained) {
4639 unreserve_highatomic_pageblock(ac, false);
4640 drain_all_pages(NULL);
4648 static void wake_all_kswapds(unsigned int order, gfp_t gfp_mask,
4649 const struct alloc_context *ac)
4653 pg_data_t *last_pgdat = NULL;
4654 enum zone_type highest_zoneidx = ac->highest_zoneidx;
4656 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, highest_zoneidx,
4658 if (last_pgdat != zone->zone_pgdat)
4659 wakeup_kswapd(zone, gfp_mask, order, highest_zoneidx);
4660 last_pgdat = zone->zone_pgdat;
4664 static inline unsigned int
4665 gfp_to_alloc_flags(gfp_t gfp_mask)
4667 unsigned int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
4670 * __GFP_HIGH is assumed to be the same as ALLOC_HIGH
4671 * and __GFP_KSWAPD_RECLAIM is assumed to be the same as ALLOC_KSWAPD
4672 * to save two branches.
4674 BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_HIGH);
4675 BUILD_BUG_ON(__GFP_KSWAPD_RECLAIM != (__force gfp_t) ALLOC_KSWAPD);
4678 * The caller may dip into page reserves a bit more if the caller
4679 * cannot run direct reclaim, or if the caller has realtime scheduling
4680 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will
4681 * set both ALLOC_HARDER (__GFP_ATOMIC) and ALLOC_HIGH (__GFP_HIGH).
4683 alloc_flags |= (__force int)
4684 (gfp_mask & (__GFP_HIGH | __GFP_KSWAPD_RECLAIM));
4686 if (gfp_mask & __GFP_ATOMIC) {
4688 * Not worth trying to allocate harder for __GFP_NOMEMALLOC even
4689 * if it can't schedule.
4691 if (!(gfp_mask & __GFP_NOMEMALLOC))
4692 alloc_flags |= ALLOC_HARDER;
4694 * Ignore cpuset mems for GFP_ATOMIC rather than fail, see the
4695 * comment for __cpuset_node_allowed().
4697 alloc_flags &= ~ALLOC_CPUSET;
4698 } else if (unlikely(rt_task(current)) && !in_interrupt())
4699 alloc_flags |= ALLOC_HARDER;
4701 alloc_flags = gfp_to_alloc_flags_cma(gfp_mask, alloc_flags);
4706 static bool oom_reserves_allowed(struct task_struct *tsk)
4708 if (!tsk_is_oom_victim(tsk))
4712 * !MMU doesn't have oom reaper so give access to memory reserves
4713 * only to the thread with TIF_MEMDIE set
4715 if (!IS_ENABLED(CONFIG_MMU) && !test_thread_flag(TIF_MEMDIE))
4722 * Distinguish requests which really need access to full memory
4723 * reserves from oom victims which can live with a portion of it
4725 static inline int __gfp_pfmemalloc_flags(gfp_t gfp_mask)
4727 if (unlikely(gfp_mask & __GFP_NOMEMALLOC))
4729 if (gfp_mask & __GFP_MEMALLOC)
4730 return ALLOC_NO_WATERMARKS;
4731 if (in_serving_softirq() && (current->flags & PF_MEMALLOC))
4732 return ALLOC_NO_WATERMARKS;
4733 if (!in_interrupt()) {
4734 if (current->flags & PF_MEMALLOC)
4735 return ALLOC_NO_WATERMARKS;
4736 else if (oom_reserves_allowed(current))
4743 bool gfp_pfmemalloc_allowed(gfp_t gfp_mask)
4745 return !!__gfp_pfmemalloc_flags(gfp_mask);
4749 * Checks whether it makes sense to retry the reclaim to make a forward progress
4750 * for the given allocation request.
4752 * We give up when we either have tried MAX_RECLAIM_RETRIES in a row
4753 * without success, or when we couldn't even meet the watermark if we
4754 * reclaimed all remaining pages on the LRU lists.
4756 * Returns true if a retry is viable or false to enter the oom path.
4759 should_reclaim_retry(gfp_t gfp_mask, unsigned order,
4760 struct alloc_context *ac, int alloc_flags,
4761 bool did_some_progress, int *no_progress_loops)
4768 * Costly allocations might have made a progress but this doesn't mean
4769 * their order will become available due to high fragmentation so
4770 * always increment the no progress counter for them
4772 if (did_some_progress && order <= PAGE_ALLOC_COSTLY_ORDER)
4773 *no_progress_loops = 0;
4775 (*no_progress_loops)++;
4778 * Make sure we converge to OOM if we cannot make any progress
4779 * several times in the row.
4781 if (*no_progress_loops > MAX_RECLAIM_RETRIES) {
4782 /* Before OOM, exhaust highatomic_reserve */
4783 return unreserve_highatomic_pageblock(ac, true);
4787 * Keep reclaiming pages while there is a chance this will lead
4788 * somewhere. If none of the target zones can satisfy our allocation
4789 * request even if all reclaimable pages are considered then we are
4790 * screwed and have to go OOM.
4792 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
4793 ac->highest_zoneidx, ac->nodemask) {
4794 unsigned long available;
4795 unsigned long reclaimable;
4796 unsigned long min_wmark = min_wmark_pages(zone);
4799 available = reclaimable = zone_reclaimable_pages(zone);
4800 available += zone_page_state_snapshot(zone, NR_FREE_PAGES);
4803 * Would the allocation succeed if we reclaimed all
4804 * reclaimable pages?
4806 wmark = __zone_watermark_ok(zone, order, min_wmark,
4807 ac->highest_zoneidx, alloc_flags, available);
4808 trace_reclaim_retry_zone(z, order, reclaimable,
4809 available, min_wmark, *no_progress_loops, wmark);
4812 * If we didn't make any progress and have a lot of
4813 * dirty + writeback pages then we should wait for
4814 * an IO to complete to slow down the reclaim and
4815 * prevent from pre mature OOM
4817 if (!did_some_progress) {
4818 unsigned long write_pending;
4820 write_pending = zone_page_state_snapshot(zone,
4821 NR_ZONE_WRITE_PENDING);
4823 if (2 * write_pending > reclaimable) {
4824 congestion_wait(BLK_RW_ASYNC, HZ/10);
4836 * Memory allocation/reclaim might be called from a WQ context and the
4837 * current implementation of the WQ concurrency control doesn't
4838 * recognize that a particular WQ is congested if the worker thread is
4839 * looping without ever sleeping. Therefore we have to do a short sleep
4840 * here rather than calling cond_resched().
4842 if (current->flags & PF_WQ_WORKER)
4843 schedule_timeout_uninterruptible(1);
4850 check_retry_cpuset(int cpuset_mems_cookie, struct alloc_context *ac)
4853 * It's possible that cpuset's mems_allowed and the nodemask from
4854 * mempolicy don't intersect. This should be normally dealt with by
4855 * policy_nodemask(), but it's possible to race with cpuset update in
4856 * such a way the check therein was true, and then it became false
4857 * before we got our cpuset_mems_cookie here.
4858 * This assumes that for all allocations, ac->nodemask can come only
4859 * from MPOL_BIND mempolicy (whose documented semantics is to be ignored
4860 * when it does not intersect with the cpuset restrictions) or the
4861 * caller can deal with a violated nodemask.
4863 if (cpusets_enabled() && ac->nodemask &&
4864 !cpuset_nodemask_valid_mems_allowed(ac->nodemask)) {
4865 ac->nodemask = NULL;
4870 * When updating a task's mems_allowed or mempolicy nodemask, it is
4871 * possible to race with parallel threads in such a way that our
4872 * allocation can fail while the mask is being updated. If we are about
4873 * to fail, check if the cpuset changed during allocation and if so,
4876 if (read_mems_allowed_retry(cpuset_mems_cookie))
4882 static inline struct page *
4883 __alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
4884 struct alloc_context *ac)
4886 bool can_direct_reclaim = gfp_mask & __GFP_DIRECT_RECLAIM;
4887 const bool costly_order = order > PAGE_ALLOC_COSTLY_ORDER;
4888 struct page *page = NULL;
4889 unsigned int alloc_flags;
4890 unsigned long did_some_progress;
4891 enum compact_priority compact_priority;
4892 enum compact_result compact_result;
4893 int compaction_retries;
4894 int no_progress_loops;
4895 unsigned int cpuset_mems_cookie;
4899 * We also sanity check to catch abuse of atomic reserves being used by
4900 * callers that are not in atomic context.
4902 if (WARN_ON_ONCE((gfp_mask & (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)) ==
4903 (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)))
4904 gfp_mask &= ~__GFP_ATOMIC;
4907 compaction_retries = 0;
4908 no_progress_loops = 0;
4909 compact_priority = DEF_COMPACT_PRIORITY;
4910 cpuset_mems_cookie = read_mems_allowed_begin();
4913 * The fast path uses conservative alloc_flags to succeed only until
4914 * kswapd needs to be woken up, and to avoid the cost of setting up
4915 * alloc_flags precisely. So we do that now.
4917 alloc_flags = gfp_to_alloc_flags(gfp_mask);
4920 * We need to recalculate the starting point for the zonelist iterator
4921 * because we might have used different nodemask in the fast path, or
4922 * there was a cpuset modification and we are retrying - otherwise we
4923 * could end up iterating over non-eligible zones endlessly.
4925 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
4926 ac->highest_zoneidx, ac->nodemask);
4927 if (!ac->preferred_zoneref->zone)
4930 if (alloc_flags & ALLOC_KSWAPD)
4931 wake_all_kswapds(order, gfp_mask, ac);
4934 * The adjusted alloc_flags might result in immediate success, so try
4937 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
4942 * For costly allocations, try direct compaction first, as it's likely
4943 * that we have enough base pages and don't need to reclaim. For non-
4944 * movable high-order allocations, do that as well, as compaction will
4945 * try prevent permanent fragmentation by migrating from blocks of the
4947 * Don't try this for allocations that are allowed to ignore
4948 * watermarks, as the ALLOC_NO_WATERMARKS attempt didn't yet happen.
4950 if (can_direct_reclaim &&
4952 (order > 0 && ac->migratetype != MIGRATE_MOVABLE))
4953 && !gfp_pfmemalloc_allowed(gfp_mask)) {
4954 page = __alloc_pages_direct_compact(gfp_mask, order,
4956 INIT_COMPACT_PRIORITY,
4962 * Checks for costly allocations with __GFP_NORETRY, which
4963 * includes some THP page fault allocations
4965 if (costly_order && (gfp_mask & __GFP_NORETRY)) {
4967 * If allocating entire pageblock(s) and compaction
4968 * failed because all zones are below low watermarks
4969 * or is prohibited because it recently failed at this
4970 * order, fail immediately unless the allocator has
4971 * requested compaction and reclaim retry.
4974 * - potentially very expensive because zones are far
4975 * below their low watermarks or this is part of very
4976 * bursty high order allocations,
4977 * - not guaranteed to help because isolate_freepages()
4978 * may not iterate over freed pages as part of its
4980 * - unlikely to make entire pageblocks free on its
4983 if (compact_result == COMPACT_SKIPPED ||
4984 compact_result == COMPACT_DEFERRED)
4988 * Looks like reclaim/compaction is worth trying, but
4989 * sync compaction could be very expensive, so keep
4990 * using async compaction.
4992 compact_priority = INIT_COMPACT_PRIORITY;
4997 /* Ensure kswapd doesn't accidentally go to sleep as long as we loop */
4998 if (alloc_flags & ALLOC_KSWAPD)
4999 wake_all_kswapds(order, gfp_mask, ac);
5001 reserve_flags = __gfp_pfmemalloc_flags(gfp_mask);
5003 alloc_flags = gfp_to_alloc_flags_cma(gfp_mask, reserve_flags);
5006 * Reset the nodemask and zonelist iterators if memory policies can be
5007 * ignored. These allocations are high priority and system rather than
5010 if (!(alloc_flags & ALLOC_CPUSET) || reserve_flags) {
5011 ac->nodemask = NULL;
5012 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
5013 ac->highest_zoneidx, ac->nodemask);
5016 /* Attempt with potentially adjusted zonelist and alloc_flags */
5017 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
5021 /* Caller is not willing to reclaim, we can't balance anything */
5022 if (!can_direct_reclaim)
5025 /* Avoid recursion of direct reclaim */
5026 if (current->flags & PF_MEMALLOC)
5029 /* Try direct reclaim and then allocating */
5030 page = __alloc_pages_direct_reclaim(gfp_mask, order, alloc_flags, ac,
5031 &did_some_progress);
5035 /* Try direct compaction and then allocating */
5036 page = __alloc_pages_direct_compact(gfp_mask, order, alloc_flags, ac,
5037 compact_priority, &compact_result);
5041 /* Do not loop if specifically requested */
5042 if (gfp_mask & __GFP_NORETRY)
5046 * Do not retry costly high order allocations unless they are
5047 * __GFP_RETRY_MAYFAIL
5049 if (costly_order && !(gfp_mask & __GFP_RETRY_MAYFAIL))
5052 if (should_reclaim_retry(gfp_mask, order, ac, alloc_flags,
5053 did_some_progress > 0, &no_progress_loops))
5057 * It doesn't make any sense to retry for the compaction if the order-0
5058 * reclaim is not able to make any progress because the current
5059 * implementation of the compaction depends on the sufficient amount
5060 * of free memory (see __compaction_suitable)
5062 if (did_some_progress > 0 &&
5063 should_compact_retry(ac, order, alloc_flags,
5064 compact_result, &compact_priority,
5065 &compaction_retries))
5069 /* Deal with possible cpuset update races before we start OOM killing */
5070 if (check_retry_cpuset(cpuset_mems_cookie, ac))
5073 /* Reclaim has failed us, start killing things */
5074 page = __alloc_pages_may_oom(gfp_mask, order, ac, &did_some_progress);
5078 /* Avoid allocations with no watermarks from looping endlessly */
5079 if (tsk_is_oom_victim(current) &&
5080 (alloc_flags & ALLOC_OOM ||
5081 (gfp_mask & __GFP_NOMEMALLOC)))
5084 /* Retry as long as the OOM killer is making progress */
5085 if (did_some_progress) {
5086 no_progress_loops = 0;
5091 /* Deal with possible cpuset update races before we fail */
5092 if (check_retry_cpuset(cpuset_mems_cookie, ac))
5096 * Make sure that __GFP_NOFAIL request doesn't leak out and make sure
5099 if (gfp_mask & __GFP_NOFAIL) {
5101 * All existing users of the __GFP_NOFAIL are blockable, so warn
5102 * of any new users that actually require GFP_NOWAIT
5104 if (WARN_ON_ONCE(!can_direct_reclaim))
5108 * PF_MEMALLOC request from this context is rather bizarre
5109 * because we cannot reclaim anything and only can loop waiting
5110 * for somebody to do a work for us
5112 WARN_ON_ONCE(current->flags & PF_MEMALLOC);
5115 * non failing costly orders are a hard requirement which we
5116 * are not prepared for much so let's warn about these users
5117 * so that we can identify them and convert them to something
5120 WARN_ON_ONCE(order > PAGE_ALLOC_COSTLY_ORDER);
5123 * Help non-failing allocations by giving them access to memory
5124 * reserves but do not use ALLOC_NO_WATERMARKS because this
5125 * could deplete whole memory reserves which would just make
5126 * the situation worse
5128 page = __alloc_pages_cpuset_fallback(gfp_mask, order, ALLOC_HARDER, ac);
5136 warn_alloc(gfp_mask, ac->nodemask,
5137 "page allocation failure: order:%u", order);
5142 static inline bool prepare_alloc_pages(gfp_t gfp_mask, unsigned int order,
5143 int preferred_nid, nodemask_t *nodemask,
5144 struct alloc_context *ac, gfp_t *alloc_gfp,
5145 unsigned int *alloc_flags)
5147 ac->highest_zoneidx = gfp_zone(gfp_mask);
5148 ac->zonelist = node_zonelist(preferred_nid, gfp_mask);
5149 ac->nodemask = nodemask;
5150 ac->migratetype = gfp_migratetype(gfp_mask);
5152 if (cpusets_enabled()) {
5153 *alloc_gfp |= __GFP_HARDWALL;
5155 * When we are in the interrupt context, it is irrelevant
5156 * to the current task context. It means that any node ok.
5158 if (!in_interrupt() && !ac->nodemask)
5159 ac->nodemask = &cpuset_current_mems_allowed;
5161 *alloc_flags |= ALLOC_CPUSET;
5164 fs_reclaim_acquire(gfp_mask);
5165 fs_reclaim_release(gfp_mask);
5167 might_sleep_if(gfp_mask & __GFP_DIRECT_RECLAIM);
5169 if (should_fail_alloc_page(gfp_mask, order))
5172 *alloc_flags = gfp_to_alloc_flags_cma(gfp_mask, *alloc_flags);
5174 /* Dirty zone balancing only done in the fast path */
5175 ac->spread_dirty_pages = (gfp_mask & __GFP_WRITE);
5178 * The preferred zone is used for statistics but crucially it is
5179 * also used as the starting point for the zonelist iterator. It
5180 * may get reset for allocations that ignore memory policies.
5182 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
5183 ac->highest_zoneidx, ac->nodemask);
5189 * __alloc_pages_bulk - Allocate a number of order-0 pages to a list or array
5190 * @gfp: GFP flags for the allocation
5191 * @preferred_nid: The preferred NUMA node ID to allocate from
5192 * @nodemask: Set of nodes to allocate from, may be NULL
5193 * @nr_pages: The number of pages desired on the list or array
5194 * @page_list: Optional list to store the allocated pages
5195 * @page_array: Optional array to store the pages
5197 * This is a batched version of the page allocator that attempts to
5198 * allocate nr_pages quickly. Pages are added to page_list if page_list
5199 * is not NULL, otherwise it is assumed that the page_array is valid.
5201 * For lists, nr_pages is the number of pages that should be allocated.
5203 * For arrays, only NULL elements are populated with pages and nr_pages
5204 * is the maximum number of pages that will be stored in the array.
5206 * Returns the number of pages on the list or array.
5208 unsigned long __alloc_pages_bulk(gfp_t gfp, int preferred_nid,
5209 nodemask_t *nodemask, int nr_pages,
5210 struct list_head *page_list,
5211 struct page **page_array)
5214 unsigned long flags;
5217 struct per_cpu_pages *pcp;
5218 struct list_head *pcp_list;
5219 struct alloc_context ac;
5221 unsigned int alloc_flags = ALLOC_WMARK_LOW;
5222 int nr_populated = 0, nr_account = 0;
5224 if (unlikely(nr_pages <= 0))
5228 * Skip populated array elements to determine if any pages need
5229 * to be allocated before disabling IRQs.
5231 while (page_array && nr_populated < nr_pages && page_array[nr_populated])
5234 /* Already populated array? */
5235 if (unlikely(page_array && nr_pages - nr_populated == 0))
5236 return nr_populated;
5238 /* Use the single page allocator for one page. */
5239 if (nr_pages - nr_populated == 1)
5242 /* May set ALLOC_NOFRAGMENT, fragmentation will return 1 page. */
5243 gfp &= gfp_allowed_mask;
5245 if (!prepare_alloc_pages(gfp, 0, preferred_nid, nodemask, &ac, &alloc_gfp, &alloc_flags))
5249 /* Find an allowed local zone that meets the low watermark. */
5250 for_each_zone_zonelist_nodemask(zone, z, ac.zonelist, ac.highest_zoneidx, ac.nodemask) {
5253 if (cpusets_enabled() && (alloc_flags & ALLOC_CPUSET) &&
5254 !__cpuset_zone_allowed(zone, gfp)) {
5258 if (nr_online_nodes > 1 && zone != ac.preferred_zoneref->zone &&
5259 zone_to_nid(zone) != zone_to_nid(ac.preferred_zoneref->zone)) {
5263 mark = wmark_pages(zone, alloc_flags & ALLOC_WMARK_MASK) + nr_pages;
5264 if (zone_watermark_fast(zone, 0, mark,
5265 zonelist_zone_idx(ac.preferred_zoneref),
5266 alloc_flags, gfp)) {
5272 * If there are no allowed local zones that meets the watermarks then
5273 * try to allocate a single page and reclaim if necessary.
5275 if (unlikely(!zone))
5278 /* Attempt the batch allocation */
5279 local_lock_irqsave(&pagesets.lock, flags);
5280 pcp = this_cpu_ptr(zone->per_cpu_pageset);
5281 pcp_list = &pcp->lists[order_to_pindex(ac.migratetype, 0)];
5283 while (nr_populated < nr_pages) {
5285 /* Skip existing pages */
5286 if (page_array && page_array[nr_populated]) {
5291 page = __rmqueue_pcplist(zone, 0, ac.migratetype, alloc_flags,
5293 if (unlikely(!page)) {
5294 /* Try and get at least one page */
5301 prep_new_page(page, 0, gfp, 0);
5303 list_add(&page->lru, page_list);
5305 page_array[nr_populated] = page;
5309 local_unlock_irqrestore(&pagesets.lock, flags);
5311 __count_zid_vm_events(PGALLOC, zone_idx(zone), nr_account);
5312 zone_statistics(ac.preferred_zoneref->zone, zone, nr_account);
5314 return nr_populated;
5317 local_unlock_irqrestore(&pagesets.lock, flags);
5320 page = __alloc_pages(gfp, 0, preferred_nid, nodemask);
5323 list_add(&page->lru, page_list);
5325 page_array[nr_populated] = page;
5329 return nr_populated;
5331 EXPORT_SYMBOL_GPL(__alloc_pages_bulk);
5334 * This is the 'heart' of the zoned buddy allocator.
5336 struct page *__alloc_pages(gfp_t gfp, unsigned int order, int preferred_nid,
5337 nodemask_t *nodemask)
5340 unsigned int alloc_flags = ALLOC_WMARK_LOW;
5341 gfp_t alloc_gfp; /* The gfp_t that was actually used for allocation */
5342 struct alloc_context ac = { };
5345 * There are several places where we assume that the order value is sane
5346 * so bail out early if the request is out of bound.
5348 if (unlikely(order >= MAX_ORDER)) {
5349 WARN_ON_ONCE(!(gfp & __GFP_NOWARN));
5353 gfp &= gfp_allowed_mask;
5355 * Apply scoped allocation constraints. This is mainly about GFP_NOFS
5356 * resp. GFP_NOIO which has to be inherited for all allocation requests
5357 * from a particular context which has been marked by
5358 * memalloc_no{fs,io}_{save,restore}. And PF_MEMALLOC_PIN which ensures
5359 * movable zones are not used during allocation.
5361 gfp = current_gfp_context(gfp);
5363 if (!prepare_alloc_pages(gfp, order, preferred_nid, nodemask, &ac,
5364 &alloc_gfp, &alloc_flags))
5368 * Forbid the first pass from falling back to types that fragment
5369 * memory until all local zones are considered.
5371 alloc_flags |= alloc_flags_nofragment(ac.preferred_zoneref->zone, gfp);
5373 /* First allocation attempt */
5374 page = get_page_from_freelist(alloc_gfp, order, alloc_flags, &ac);
5379 ac.spread_dirty_pages = false;
5382 * Restore the original nodemask if it was potentially replaced with
5383 * &cpuset_current_mems_allowed to optimize the fast-path attempt.
5385 ac.nodemask = nodemask;
5387 page = __alloc_pages_slowpath(alloc_gfp, order, &ac);
5390 if (memcg_kmem_enabled() && (gfp & __GFP_ACCOUNT) && page &&
5391 unlikely(__memcg_kmem_charge_page(page, gfp, order) != 0)) {
5392 __free_pages(page, order);
5396 trace_mm_page_alloc(page, order, alloc_gfp, ac.migratetype);
5400 EXPORT_SYMBOL(__alloc_pages);
5403 * Common helper functions. Never use with __GFP_HIGHMEM because the returned
5404 * address cannot represent highmem pages. Use alloc_pages and then kmap if
5405 * you need to access high mem.
5407 unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
5411 page = alloc_pages(gfp_mask & ~__GFP_HIGHMEM, order);
5414 return (unsigned long) page_address(page);
5416 EXPORT_SYMBOL(__get_free_pages);
5418 unsigned long get_zeroed_page(gfp_t gfp_mask)
5420 return __get_free_pages(gfp_mask | __GFP_ZERO, 0);
5422 EXPORT_SYMBOL(get_zeroed_page);
5425 * __free_pages - Free pages allocated with alloc_pages().
5426 * @page: The page pointer returned from alloc_pages().
5427 * @order: The order of the allocation.
5429 * This function can free multi-page allocations that are not compound
5430 * pages. It does not check that the @order passed in matches that of
5431 * the allocation, so it is easy to leak memory. Freeing more memory
5432 * than was allocated will probably emit a warning.
5434 * If the last reference to this page is speculative, it will be released
5435 * by put_page() which only frees the first page of a non-compound
5436 * allocation. To prevent the remaining pages from being leaked, we free
5437 * the subsequent pages here. If you want to use the page's reference
5438 * count to decide when to free the allocation, you should allocate a
5439 * compound page, and use put_page() instead of __free_pages().
5441 * Context: May be called in interrupt context or while holding a normal
5442 * spinlock, but not in NMI context or while holding a raw spinlock.
5444 void __free_pages(struct page *page, unsigned int order)
5446 if (put_page_testzero(page))
5447 free_the_page(page, order);
5448 else if (!PageHead(page))
5450 free_the_page(page + (1 << order), order);
5452 EXPORT_SYMBOL(__free_pages);
5454 void free_pages(unsigned long addr, unsigned int order)
5457 VM_BUG_ON(!virt_addr_valid((void *)addr));
5458 __free_pages(virt_to_page((void *)addr), order);
5462 EXPORT_SYMBOL(free_pages);
5466 * An arbitrary-length arbitrary-offset area of memory which resides
5467 * within a 0 or higher order page. Multiple fragments within that page
5468 * are individually refcounted, in the page's reference counter.
5470 * The page_frag functions below provide a simple allocation framework for
5471 * page fragments. This is used by the network stack and network device
5472 * drivers to provide a backing region of memory for use as either an
5473 * sk_buff->head, or to be used in the "frags" portion of skb_shared_info.
5475 static struct page *__page_frag_cache_refill(struct page_frag_cache *nc,
5478 struct page *page = NULL;
5479 gfp_t gfp = gfp_mask;
5481 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
5482 gfp_mask |= __GFP_COMP | __GFP_NOWARN | __GFP_NORETRY |
5484 page = alloc_pages_node(NUMA_NO_NODE, gfp_mask,
5485 PAGE_FRAG_CACHE_MAX_ORDER);
5486 nc->size = page ? PAGE_FRAG_CACHE_MAX_SIZE : PAGE_SIZE;
5488 if (unlikely(!page))
5489 page = alloc_pages_node(NUMA_NO_NODE, gfp, 0);
5491 nc->va = page ? page_address(page) : NULL;
5496 void __page_frag_cache_drain(struct page *page, unsigned int count)
5498 VM_BUG_ON_PAGE(page_ref_count(page) == 0, page);
5500 if (page_ref_sub_and_test(page, count))
5501 free_the_page(page, compound_order(page));
5503 EXPORT_SYMBOL(__page_frag_cache_drain);
5505 void *page_frag_alloc_align(struct page_frag_cache *nc,
5506 unsigned int fragsz, gfp_t gfp_mask,
5507 unsigned int align_mask)
5509 unsigned int size = PAGE_SIZE;
5513 if (unlikely(!nc->va)) {
5515 page = __page_frag_cache_refill(nc, gfp_mask);
5519 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
5520 /* if size can vary use size else just use PAGE_SIZE */
5523 /* Even if we own the page, we do not use atomic_set().
5524 * This would break get_page_unless_zero() users.
5526 page_ref_add(page, PAGE_FRAG_CACHE_MAX_SIZE);
5528 /* reset page count bias and offset to start of new frag */
5529 nc->pfmemalloc = page_is_pfmemalloc(page);
5530 nc->pagecnt_bias = PAGE_FRAG_CACHE_MAX_SIZE + 1;
5534 offset = nc->offset - fragsz;
5535 if (unlikely(offset < 0)) {
5536 page = virt_to_page(nc->va);
5538 if (!page_ref_sub_and_test(page, nc->pagecnt_bias))
5541 if (unlikely(nc->pfmemalloc)) {
5542 free_the_page(page, compound_order(page));
5546 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
5547 /* if size can vary use size else just use PAGE_SIZE */
5550 /* OK, page count is 0, we can safely set it */
5551 set_page_count(page, PAGE_FRAG_CACHE_MAX_SIZE + 1);
5553 /* reset page count bias and offset to start of new frag */
5554 nc->pagecnt_bias = PAGE_FRAG_CACHE_MAX_SIZE + 1;
5555 offset = size - fragsz;
5559 offset &= align_mask;
5560 nc->offset = offset;
5562 return nc->va + offset;
5564 EXPORT_SYMBOL(page_frag_alloc_align);
5567 * Frees a page fragment allocated out of either a compound or order 0 page.
5569 void page_frag_free(void *addr)
5571 struct page *page = virt_to_head_page(addr);
5573 if (unlikely(put_page_testzero(page)))
5574 free_the_page(page, compound_order(page));
5576 EXPORT_SYMBOL(page_frag_free);
5578 static void *make_alloc_exact(unsigned long addr, unsigned int order,
5582 unsigned long alloc_end = addr + (PAGE_SIZE << order);
5583 unsigned long used = addr + PAGE_ALIGN(size);
5585 split_page(virt_to_page((void *)addr), order);
5586 while (used < alloc_end) {
5591 return (void *)addr;
5595 * alloc_pages_exact - allocate an exact number physically-contiguous pages.
5596 * @size: the number of bytes to allocate
5597 * @gfp_mask: GFP flags for the allocation, must not contain __GFP_COMP
5599 * This function is similar to alloc_pages(), except that it allocates the
5600 * minimum number of pages to satisfy the request. alloc_pages() can only
5601 * allocate memory in power-of-two pages.
5603 * This function is also limited by MAX_ORDER.
5605 * Memory allocated by this function must be released by free_pages_exact().
5607 * Return: pointer to the allocated area or %NULL in case of error.
5609 void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
5611 unsigned int order = get_order(size);
5614 if (WARN_ON_ONCE(gfp_mask & __GFP_COMP))
5615 gfp_mask &= ~__GFP_COMP;
5617 addr = __get_free_pages(gfp_mask, order);
5618 return make_alloc_exact(addr, order, size);
5620 EXPORT_SYMBOL(alloc_pages_exact);
5623 * alloc_pages_exact_nid - allocate an exact number of physically-contiguous
5625 * @nid: the preferred node ID where memory should be allocated
5626 * @size: the number of bytes to allocate
5627 * @gfp_mask: GFP flags for the allocation, must not contain __GFP_COMP
5629 * Like alloc_pages_exact(), but try to allocate on node nid first before falling
5632 * Return: pointer to the allocated area or %NULL in case of error.
5634 void * __meminit alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask)
5636 unsigned int order = get_order(size);
5639 if (WARN_ON_ONCE(gfp_mask & __GFP_COMP))
5640 gfp_mask &= ~__GFP_COMP;
5642 p = alloc_pages_node(nid, gfp_mask, order);
5645 return make_alloc_exact((unsigned long)page_address(p), order, size);
5649 * free_pages_exact - release memory allocated via alloc_pages_exact()
5650 * @virt: the value returned by alloc_pages_exact.
5651 * @size: size of allocation, same value as passed to alloc_pages_exact().
5653 * Release the memory allocated by a previous call to alloc_pages_exact.
5655 void free_pages_exact(void *virt, size_t size)
5657 unsigned long addr = (unsigned long)virt;
5658 unsigned long end = addr + PAGE_ALIGN(size);
5660 while (addr < end) {
5665 EXPORT_SYMBOL(free_pages_exact);
5668 * nr_free_zone_pages - count number of pages beyond high watermark
5669 * @offset: The zone index of the highest zone
5671 * nr_free_zone_pages() counts the number of pages which are beyond the
5672 * high watermark within all zones at or below a given zone index. For each
5673 * zone, the number of pages is calculated as:
5675 * nr_free_zone_pages = managed_pages - high_pages
5677 * Return: number of pages beyond high watermark.
5679 static unsigned long nr_free_zone_pages(int offset)
5684 /* Just pick one node, since fallback list is circular */
5685 unsigned long sum = 0;
5687 struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
5689 for_each_zone_zonelist(zone, z, zonelist, offset) {
5690 unsigned long size = zone_managed_pages(zone);
5691 unsigned long high = high_wmark_pages(zone);
5700 * nr_free_buffer_pages - count number of pages beyond high watermark
5702 * nr_free_buffer_pages() counts the number of pages which are beyond the high
5703 * watermark within ZONE_DMA and ZONE_NORMAL.
5705 * Return: number of pages beyond high watermark within ZONE_DMA and
5708 unsigned long nr_free_buffer_pages(void)
5710 return nr_free_zone_pages(gfp_zone(GFP_USER));
5712 EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
5714 static inline void show_node(struct zone *zone)
5716 if (IS_ENABLED(CONFIG_NUMA))
5717 printk("Node %d ", zone_to_nid(zone));
5720 long si_mem_available(void)
5723 unsigned long pagecache;
5724 unsigned long wmark_low = 0;
5725 unsigned long pages[NR_LRU_LISTS];
5726 unsigned long reclaimable;
5730 for (lru = LRU_BASE; lru < NR_LRU_LISTS; lru++)
5731 pages[lru] = global_node_page_state(NR_LRU_BASE + lru);
5734 wmark_low += low_wmark_pages(zone);
5737 * Estimate the amount of memory available for userspace allocations,
5738 * without causing swapping.
5740 available = global_zone_page_state(NR_FREE_PAGES) - totalreserve_pages;
5743 * Not all the page cache can be freed, otherwise the system will
5744 * start swapping. Assume at least half of the page cache, or the
5745 * low watermark worth of cache, needs to stay.
5747 pagecache = pages[LRU_ACTIVE_FILE] + pages[LRU_INACTIVE_FILE];
5748 pagecache -= min(pagecache / 2, wmark_low);
5749 available += pagecache;
5752 * Part of the reclaimable slab and other kernel memory consists of
5753 * items that are in use, and cannot be freed. Cap this estimate at the
5756 reclaimable = global_node_page_state_pages(NR_SLAB_RECLAIMABLE_B) +
5757 global_node_page_state(NR_KERNEL_MISC_RECLAIMABLE);
5758 available += reclaimable - min(reclaimable / 2, wmark_low);
5764 EXPORT_SYMBOL_GPL(si_mem_available);
5766 void si_meminfo(struct sysinfo *val)
5768 val->totalram = totalram_pages();
5769 val->sharedram = global_node_page_state(NR_SHMEM);
5770 val->freeram = global_zone_page_state(NR_FREE_PAGES);
5771 val->bufferram = nr_blockdev_pages();
5772 val->totalhigh = totalhigh_pages();
5773 val->freehigh = nr_free_highpages();
5774 val->mem_unit = PAGE_SIZE;
5777 EXPORT_SYMBOL(si_meminfo);
5780 void si_meminfo_node(struct sysinfo *val, int nid)
5782 int zone_type; /* needs to be signed */
5783 unsigned long managed_pages = 0;
5784 unsigned long managed_highpages = 0;
5785 unsigned long free_highpages = 0;
5786 pg_data_t *pgdat = NODE_DATA(nid);
5788 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++)
5789 managed_pages += zone_managed_pages(&pgdat->node_zones[zone_type]);
5790 val->totalram = managed_pages;
5791 val->sharedram = node_page_state(pgdat, NR_SHMEM);
5792 val->freeram = sum_zone_node_page_state(nid, NR_FREE_PAGES);
5793 #ifdef CONFIG_HIGHMEM
5794 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
5795 struct zone *zone = &pgdat->node_zones[zone_type];
5797 if (is_highmem(zone)) {
5798 managed_highpages += zone_managed_pages(zone);
5799 free_highpages += zone_page_state(zone, NR_FREE_PAGES);
5802 val->totalhigh = managed_highpages;
5803 val->freehigh = free_highpages;
5805 val->totalhigh = managed_highpages;
5806 val->freehigh = free_highpages;
5808 val->mem_unit = PAGE_SIZE;
5813 * Determine whether the node should be displayed or not, depending on whether
5814 * SHOW_MEM_FILTER_NODES was passed to show_free_areas().
5816 static bool show_mem_node_skip(unsigned int flags, int nid, nodemask_t *nodemask)
5818 if (!(flags & SHOW_MEM_FILTER_NODES))
5822 * no node mask - aka implicit memory numa policy. Do not bother with
5823 * the synchronization - read_mems_allowed_begin - because we do not
5824 * have to be precise here.
5827 nodemask = &cpuset_current_mems_allowed;
5829 return !node_isset(nid, *nodemask);
5832 #define K(x) ((x) << (PAGE_SHIFT-10))
5834 static void show_migration_types(unsigned char type)
5836 static const char types[MIGRATE_TYPES] = {
5837 [MIGRATE_UNMOVABLE] = 'U',
5838 [MIGRATE_MOVABLE] = 'M',
5839 [MIGRATE_RECLAIMABLE] = 'E',
5840 [MIGRATE_HIGHATOMIC] = 'H',
5842 [MIGRATE_CMA] = 'C',
5844 #ifdef CONFIG_MEMORY_ISOLATION
5845 [MIGRATE_ISOLATE] = 'I',
5848 char tmp[MIGRATE_TYPES + 1];
5852 for (i = 0; i < MIGRATE_TYPES; i++) {
5853 if (type & (1 << i))
5858 printk(KERN_CONT "(%s) ", tmp);
5862 * Show free area list (used inside shift_scroll-lock stuff)
5863 * We also calculate the percentage fragmentation. We do this by counting the
5864 * memory on each free list with the exception of the first item on the list.
5867 * SHOW_MEM_FILTER_NODES: suppress nodes that are not allowed by current's
5870 void show_free_areas(unsigned int filter, nodemask_t *nodemask)
5872 unsigned long free_pcp = 0;
5877 for_each_populated_zone(zone) {
5878 if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
5881 for_each_online_cpu(cpu)
5882 free_pcp += per_cpu_ptr(zone->per_cpu_pageset, cpu)->count;
5885 printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n"
5886 " active_file:%lu inactive_file:%lu isolated_file:%lu\n"
5887 " unevictable:%lu dirty:%lu writeback:%lu\n"
5888 " slab_reclaimable:%lu slab_unreclaimable:%lu\n"
5889 " mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n"
5890 " free:%lu free_pcp:%lu free_cma:%lu\n",
5891 global_node_page_state(NR_ACTIVE_ANON),
5892 global_node_page_state(NR_INACTIVE_ANON),
5893 global_node_page_state(NR_ISOLATED_ANON),
5894 global_node_page_state(NR_ACTIVE_FILE),
5895 global_node_page_state(NR_INACTIVE_FILE),
5896 global_node_page_state(NR_ISOLATED_FILE),
5897 global_node_page_state(NR_UNEVICTABLE),
5898 global_node_page_state(NR_FILE_DIRTY),
5899 global_node_page_state(NR_WRITEBACK),
5900 global_node_page_state_pages(NR_SLAB_RECLAIMABLE_B),
5901 global_node_page_state_pages(NR_SLAB_UNRECLAIMABLE_B),
5902 global_node_page_state(NR_FILE_MAPPED),
5903 global_node_page_state(NR_SHMEM),
5904 global_node_page_state(NR_PAGETABLE),
5905 global_zone_page_state(NR_BOUNCE),
5906 global_zone_page_state(NR_FREE_PAGES),
5908 global_zone_page_state(NR_FREE_CMA_PAGES));
5910 for_each_online_pgdat(pgdat) {
5911 if (show_mem_node_skip(filter, pgdat->node_id, nodemask))
5915 " active_anon:%lukB"
5916 " inactive_anon:%lukB"
5917 " active_file:%lukB"
5918 " inactive_file:%lukB"
5919 " unevictable:%lukB"
5920 " isolated(anon):%lukB"
5921 " isolated(file):%lukB"
5926 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
5928 " shmem_pmdmapped: %lukB"
5931 " writeback_tmp:%lukB"
5932 " kernel_stack:%lukB"
5933 #ifdef CONFIG_SHADOW_CALL_STACK
5934 " shadow_call_stack:%lukB"
5937 " all_unreclaimable? %s"
5940 K(node_page_state(pgdat, NR_ACTIVE_ANON)),
5941 K(node_page_state(pgdat, NR_INACTIVE_ANON)),
5942 K(node_page_state(pgdat, NR_ACTIVE_FILE)),
5943 K(node_page_state(pgdat, NR_INACTIVE_FILE)),
5944 K(node_page_state(pgdat, NR_UNEVICTABLE)),
5945 K(node_page_state(pgdat, NR_ISOLATED_ANON)),
5946 K(node_page_state(pgdat, NR_ISOLATED_FILE)),
5947 K(node_page_state(pgdat, NR_FILE_MAPPED)),
5948 K(node_page_state(pgdat, NR_FILE_DIRTY)),
5949 K(node_page_state(pgdat, NR_WRITEBACK)),
5950 K(node_page_state(pgdat, NR_SHMEM)),
5951 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
5952 K(node_page_state(pgdat, NR_SHMEM_THPS)),
5953 K(node_page_state(pgdat, NR_SHMEM_PMDMAPPED)),
5954 K(node_page_state(pgdat, NR_ANON_THPS)),
5956 K(node_page_state(pgdat, NR_WRITEBACK_TEMP)),
5957 node_page_state(pgdat, NR_KERNEL_STACK_KB),
5958 #ifdef CONFIG_SHADOW_CALL_STACK
5959 node_page_state(pgdat, NR_KERNEL_SCS_KB),
5961 K(node_page_state(pgdat, NR_PAGETABLE)),
5962 pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES ?
5966 for_each_populated_zone(zone) {
5969 if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
5973 for_each_online_cpu(cpu)
5974 free_pcp += per_cpu_ptr(zone->per_cpu_pageset, cpu)->count;
5983 " reserved_highatomic:%luKB"
5984 " active_anon:%lukB"
5985 " inactive_anon:%lukB"
5986 " active_file:%lukB"
5987 " inactive_file:%lukB"
5988 " unevictable:%lukB"
5989 " writepending:%lukB"
5999 K(zone_page_state(zone, NR_FREE_PAGES)),
6000 K(min_wmark_pages(zone)),
6001 K(low_wmark_pages(zone)),
6002 K(high_wmark_pages(zone)),
6003 K(zone->nr_reserved_highatomic),
6004 K(zone_page_state(zone, NR_ZONE_ACTIVE_ANON)),
6005 K(zone_page_state(zone, NR_ZONE_INACTIVE_ANON)),
6006 K(zone_page_state(zone, NR_ZONE_ACTIVE_FILE)),
6007 K(zone_page_state(zone, NR_ZONE_INACTIVE_FILE)),
6008 K(zone_page_state(zone, NR_ZONE_UNEVICTABLE)),
6009 K(zone_page_state(zone, NR_ZONE_WRITE_PENDING)),
6010 K(zone->present_pages),
6011 K(zone_managed_pages(zone)),
6012 K(zone_page_state(zone, NR_MLOCK)),
6013 K(zone_page_state(zone, NR_BOUNCE)),
6015 K(this_cpu_read(zone->per_cpu_pageset->count)),
6016 K(zone_page_state(zone, NR_FREE_CMA_PAGES)));
6017 printk("lowmem_reserve[]:");
6018 for (i = 0; i < MAX_NR_ZONES; i++)
6019 printk(KERN_CONT " %ld", zone->lowmem_reserve[i]);
6020 printk(KERN_CONT "\n");
6023 for_each_populated_zone(zone) {
6025 unsigned long nr[MAX_ORDER], flags, total = 0;
6026 unsigned char types[MAX_ORDER];
6028 if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
6031 printk(KERN_CONT "%s: ", zone->name);
6033 spin_lock_irqsave(&zone->lock, flags);
6034 for (order = 0; order < MAX_ORDER; order++) {
6035 struct free_area *area = &zone->free_area[order];
6038 nr[order] = area->nr_free;
6039 total += nr[order] << order;
6042 for (type = 0; type < MIGRATE_TYPES; type++) {
6043 if (!free_area_empty(area, type))
6044 types[order] |= 1 << type;
6047 spin_unlock_irqrestore(&zone->lock, flags);
6048 for (order = 0; order < MAX_ORDER; order++) {
6049 printk(KERN_CONT "%lu*%lukB ",
6050 nr[order], K(1UL) << order);
6052 show_migration_types(types[order]);
6054 printk(KERN_CONT "= %lukB\n", K(total));
6057 hugetlb_show_meminfo();
6059 printk("%ld total pagecache pages\n", global_node_page_state(NR_FILE_PAGES));
6061 show_swap_cache_info();
6064 static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
6066 zoneref->zone = zone;
6067 zoneref->zone_idx = zone_idx(zone);
6071 * Builds allocation fallback zone lists.
6073 * Add all populated zones of a node to the zonelist.
6075 static int build_zonerefs_node(pg_data_t *pgdat, struct zoneref *zonerefs)
6078 enum zone_type zone_type = MAX_NR_ZONES;
6083 zone = pgdat->node_zones + zone_type;
6084 if (managed_zone(zone)) {
6085 zoneref_set_zone(zone, &zonerefs[nr_zones++]);
6086 check_highest_zone(zone_type);
6088 } while (zone_type);
6095 static int __parse_numa_zonelist_order(char *s)
6098 * We used to support different zonelists modes but they turned
6099 * out to be just not useful. Let's keep the warning in place
6100 * if somebody still use the cmd line parameter so that we do
6101 * not fail it silently
6103 if (!(*s == 'd' || *s == 'D' || *s == 'n' || *s == 'N')) {
6104 pr_warn("Ignoring unsupported numa_zonelist_order value: %s\n", s);
6110 char numa_zonelist_order[] = "Node";
6113 * sysctl handler for numa_zonelist_order
6115 int numa_zonelist_order_handler(struct ctl_table *table, int write,
6116 void *buffer, size_t *length, loff_t *ppos)
6119 return __parse_numa_zonelist_order(buffer);
6120 return proc_dostring(table, write, buffer, length, ppos);
6124 #define MAX_NODE_LOAD (nr_online_nodes)
6125 static int node_load[MAX_NUMNODES];
6128 * find_next_best_node - find the next node that should appear in a given node's fallback list
6129 * @node: node whose fallback list we're appending
6130 * @used_node_mask: nodemask_t of already used nodes
6132 * We use a number of factors to determine which is the next node that should
6133 * appear on a given node's fallback list. The node should not have appeared
6134 * already in @node's fallback list, and it should be the next closest node
6135 * according to the distance array (which contains arbitrary distance values
6136 * from each node to each node in the system), and should also prefer nodes
6137 * with no CPUs, since presumably they'll have very little allocation pressure
6138 * on them otherwise.
6140 * Return: node id of the found node or %NUMA_NO_NODE if no node is found.
6142 static int find_next_best_node(int node, nodemask_t *used_node_mask)
6145 int min_val = INT_MAX;
6146 int best_node = NUMA_NO_NODE;
6148 /* Use the local node if we haven't already */
6149 if (!node_isset(node, *used_node_mask)) {
6150 node_set(node, *used_node_mask);
6154 for_each_node_state(n, N_MEMORY) {
6156 /* Don't want a node to appear more than once */
6157 if (node_isset(n, *used_node_mask))
6160 /* Use the distance array to find the distance */
6161 val = node_distance(node, n);
6163 /* Penalize nodes under us ("prefer the next node") */
6166 /* Give preference to headless and unused nodes */
6167 if (!cpumask_empty(cpumask_of_node(n)))
6168 val += PENALTY_FOR_NODE_WITH_CPUS;
6170 /* Slight preference for less loaded node */
6171 val *= (MAX_NODE_LOAD*MAX_NUMNODES);
6172 val += node_load[n];
6174 if (val < min_val) {
6181 node_set(best_node, *used_node_mask);
6188 * Build zonelists ordered by node and zones within node.
6189 * This results in maximum locality--normal zone overflows into local
6190 * DMA zone, if any--but risks exhausting DMA zone.
6192 static void build_zonelists_in_node_order(pg_data_t *pgdat, int *node_order,
6195 struct zoneref *zonerefs;
6198 zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs;
6200 for (i = 0; i < nr_nodes; i++) {
6203 pg_data_t *node = NODE_DATA(node_order[i]);
6205 nr_zones = build_zonerefs_node(node, zonerefs);
6206 zonerefs += nr_zones;
6208 zonerefs->zone = NULL;
6209 zonerefs->zone_idx = 0;
6213 * Build gfp_thisnode zonelists
6215 static void build_thisnode_zonelists(pg_data_t *pgdat)
6217 struct zoneref *zonerefs;
6220 zonerefs = pgdat->node_zonelists[ZONELIST_NOFALLBACK]._zonerefs;
6221 nr_zones = build_zonerefs_node(pgdat, zonerefs);
6222 zonerefs += nr_zones;
6223 zonerefs->zone = NULL;
6224 zonerefs->zone_idx = 0;
6228 * Build zonelists ordered by zone and nodes within zones.
6229 * This results in conserving DMA zone[s] until all Normal memory is
6230 * exhausted, but results in overflowing to remote node while memory
6231 * may still exist in local DMA zone.
6234 static void build_zonelists(pg_data_t *pgdat)
6236 static int node_order[MAX_NUMNODES];
6237 int node, load, nr_nodes = 0;
6238 nodemask_t used_mask = NODE_MASK_NONE;
6239 int local_node, prev_node;
6241 /* NUMA-aware ordering of nodes */
6242 local_node = pgdat->node_id;
6243 load = nr_online_nodes;
6244 prev_node = local_node;
6246 memset(node_order, 0, sizeof(node_order));
6247 while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
6249 * We don't want to pressure a particular node.
6250 * So adding penalty to the first node in same
6251 * distance group to make it round-robin.
6253 if (node_distance(local_node, node) !=
6254 node_distance(local_node, prev_node))
6255 node_load[node] = load;
6257 node_order[nr_nodes++] = node;
6262 build_zonelists_in_node_order(pgdat, node_order, nr_nodes);
6263 build_thisnode_zonelists(pgdat);
6266 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
6268 * Return node id of node used for "local" allocations.
6269 * I.e., first node id of first zone in arg node's generic zonelist.
6270 * Used for initializing percpu 'numa_mem', which is used primarily
6271 * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
6273 int local_memory_node(int node)
6277 z = first_zones_zonelist(node_zonelist(node, GFP_KERNEL),
6278 gfp_zone(GFP_KERNEL),
6280 return zone_to_nid(z->zone);
6284 static void setup_min_unmapped_ratio(void);
6285 static void setup_min_slab_ratio(void);
6286 #else /* CONFIG_NUMA */
6288 static void build_zonelists(pg_data_t *pgdat)
6290 int node, local_node;
6291 struct zoneref *zonerefs;
6294 local_node = pgdat->node_id;
6296 zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs;
6297 nr_zones = build_zonerefs_node(pgdat, zonerefs);
6298 zonerefs += nr_zones;
6301 * Now we build the zonelist so that it contains the zones
6302 * of all the other nodes.
6303 * We don't want to pressure a particular node, so when
6304 * building the zones for node N, we make sure that the
6305 * zones coming right after the local ones are those from
6306 * node N+1 (modulo N)
6308 for (node = local_node + 1; node < MAX_NUMNODES; node++) {
6309 if (!node_online(node))
6311 nr_zones = build_zonerefs_node(NODE_DATA(node), zonerefs);
6312 zonerefs += nr_zones;
6314 for (node = 0; node < local_node; node++) {
6315 if (!node_online(node))
6317 nr_zones = build_zonerefs_node(NODE_DATA(node), zonerefs);
6318 zonerefs += nr_zones;
6321 zonerefs->zone = NULL;
6322 zonerefs->zone_idx = 0;
6325 #endif /* CONFIG_NUMA */
6328 * Boot pageset table. One per cpu which is going to be used for all
6329 * zones and all nodes. The parameters will be set in such a way
6330 * that an item put on a list will immediately be handed over to
6331 * the buddy list. This is safe since pageset manipulation is done
6332 * with interrupts disabled.
6334 * The boot_pagesets must be kept even after bootup is complete for
6335 * unused processors and/or zones. They do play a role for bootstrapping
6336 * hotplugged processors.
6338 * zoneinfo_show() and maybe other functions do
6339 * not check if the processor is online before following the pageset pointer.
6340 * Other parts of the kernel may not check if the zone is available.
6342 static void per_cpu_pages_init(struct per_cpu_pages *pcp, struct per_cpu_zonestat *pzstats);
6343 /* These effectively disable the pcplists in the boot pageset completely */
6344 #define BOOT_PAGESET_HIGH 0
6345 #define BOOT_PAGESET_BATCH 1
6346 static DEFINE_PER_CPU(struct per_cpu_pages, boot_pageset);
6347 static DEFINE_PER_CPU(struct per_cpu_zonestat, boot_zonestats);
6348 static DEFINE_PER_CPU(struct per_cpu_nodestat, boot_nodestats);
6350 static void __build_all_zonelists(void *data)
6353 int __maybe_unused cpu;
6354 pg_data_t *self = data;
6355 static DEFINE_SPINLOCK(lock);
6360 memset(node_load, 0, sizeof(node_load));
6364 * This node is hotadded and no memory is yet present. So just
6365 * building zonelists is fine - no need to touch other nodes.
6367 if (self && !node_online(self->node_id)) {
6368 build_zonelists(self);
6370 for_each_online_node(nid) {
6371 pg_data_t *pgdat = NODE_DATA(nid);
6373 build_zonelists(pgdat);
6376 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
6378 * We now know the "local memory node" for each node--
6379 * i.e., the node of the first zone in the generic zonelist.
6380 * Set up numa_mem percpu variable for on-line cpus. During
6381 * boot, only the boot cpu should be on-line; we'll init the
6382 * secondary cpus' numa_mem as they come on-line. During
6383 * node/memory hotplug, we'll fixup all on-line cpus.
6385 for_each_online_cpu(cpu)
6386 set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu)));
6393 static noinline void __init
6394 build_all_zonelists_init(void)
6398 __build_all_zonelists(NULL);
6401 * Initialize the boot_pagesets that are going to be used
6402 * for bootstrapping processors. The real pagesets for
6403 * each zone will be allocated later when the per cpu
6404 * allocator is available.
6406 * boot_pagesets are used also for bootstrapping offline
6407 * cpus if the system is already booted because the pagesets
6408 * are needed to initialize allocators on a specific cpu too.
6409 * F.e. the percpu allocator needs the page allocator which
6410 * needs the percpu allocator in order to allocate its pagesets
6411 * (a chicken-egg dilemma).
6413 for_each_possible_cpu(cpu)
6414 per_cpu_pages_init(&per_cpu(boot_pageset, cpu), &per_cpu(boot_zonestats, cpu));
6416 mminit_verify_zonelist();
6417 cpuset_init_current_mems_allowed();
6421 * unless system_state == SYSTEM_BOOTING.
6423 * __ref due to call of __init annotated helper build_all_zonelists_init
6424 * [protected by SYSTEM_BOOTING].
6426 void __ref build_all_zonelists(pg_data_t *pgdat)
6428 unsigned long vm_total_pages;
6430 if (system_state == SYSTEM_BOOTING) {
6431 build_all_zonelists_init();
6433 __build_all_zonelists(pgdat);
6434 /* cpuset refresh routine should be here */
6436 /* Get the number of free pages beyond high watermark in all zones. */
6437 vm_total_pages = nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
6439 * Disable grouping by mobility if the number of pages in the
6440 * system is too low to allow the mechanism to work. It would be
6441 * more accurate, but expensive to check per-zone. This check is
6442 * made on memory-hotadd so a system can start with mobility
6443 * disabled and enable it later
6445 if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
6446 page_group_by_mobility_disabled = 1;
6448 page_group_by_mobility_disabled = 0;
6450 pr_info("Built %u zonelists, mobility grouping %s. Total pages: %ld\n",
6452 page_group_by_mobility_disabled ? "off" : "on",
6455 pr_info("Policy zone: %s\n", zone_names[policy_zone]);
6459 /* If zone is ZONE_MOVABLE but memory is mirrored, it is an overlapped init */
6460 static bool __meminit
6461 overlap_memmap_init(unsigned long zone, unsigned long *pfn)
6463 static struct memblock_region *r;
6465 if (mirrored_kernelcore && zone == ZONE_MOVABLE) {
6466 if (!r || *pfn >= memblock_region_memory_end_pfn(r)) {
6467 for_each_mem_region(r) {
6468 if (*pfn < memblock_region_memory_end_pfn(r))
6472 if (*pfn >= memblock_region_memory_base_pfn(r) &&
6473 memblock_is_mirror(r)) {
6474 *pfn = memblock_region_memory_end_pfn(r);
6482 * Initially all pages are reserved - free ones are freed
6483 * up by memblock_free_all() once the early boot process is
6484 * done. Non-atomic initialization, single-pass.
6486 * All aligned pageblocks are initialized to the specified migratetype
6487 * (usually MIGRATE_MOVABLE). Besides setting the migratetype, no related
6488 * zone stats (e.g., nr_isolate_pageblock) are touched.
6490 void __meminit memmap_init_range(unsigned long size, int nid, unsigned long zone,
6491 unsigned long start_pfn, unsigned long zone_end_pfn,
6492 enum meminit_context context,
6493 struct vmem_altmap *altmap, int migratetype)
6495 unsigned long pfn, end_pfn = start_pfn + size;
6498 if (highest_memmap_pfn < end_pfn - 1)
6499 highest_memmap_pfn = end_pfn - 1;
6501 #ifdef CONFIG_ZONE_DEVICE
6503 * Honor reservation requested by the driver for this ZONE_DEVICE
6504 * memory. We limit the total number of pages to initialize to just
6505 * those that might contain the memory mapping. We will defer the
6506 * ZONE_DEVICE page initialization until after we have released
6509 if (zone == ZONE_DEVICE) {
6513 if (start_pfn == altmap->base_pfn)
6514 start_pfn += altmap->reserve;
6515 end_pfn = altmap->base_pfn + vmem_altmap_offset(altmap);
6519 for (pfn = start_pfn; pfn < end_pfn; ) {
6521 * There can be holes in boot-time mem_map[]s handed to this
6522 * function. They do not exist on hotplugged memory.
6524 if (context == MEMINIT_EARLY) {
6525 if (overlap_memmap_init(zone, &pfn))
6527 if (defer_init(nid, pfn, zone_end_pfn))
6531 page = pfn_to_page(pfn);
6532 __init_single_page(page, pfn, zone, nid);
6533 if (context == MEMINIT_HOTPLUG)
6534 __SetPageReserved(page);
6537 * Usually, we want to mark the pageblock MIGRATE_MOVABLE,
6538 * such that unmovable allocations won't be scattered all
6539 * over the place during system boot.
6541 if (IS_ALIGNED(pfn, pageblock_nr_pages)) {
6542 set_pageblock_migratetype(page, migratetype);
6549 #ifdef CONFIG_ZONE_DEVICE
6550 void __ref memmap_init_zone_device(struct zone *zone,
6551 unsigned long start_pfn,
6552 unsigned long nr_pages,
6553 struct dev_pagemap *pgmap)
6555 unsigned long pfn, end_pfn = start_pfn + nr_pages;
6556 struct pglist_data *pgdat = zone->zone_pgdat;
6557 struct vmem_altmap *altmap = pgmap_altmap(pgmap);
6558 unsigned long zone_idx = zone_idx(zone);
6559 unsigned long start = jiffies;
6560 int nid = pgdat->node_id;
6562 if (WARN_ON_ONCE(!pgmap || zone_idx(zone) != ZONE_DEVICE))
6566 * The call to memmap_init should have already taken care
6567 * of the pages reserved for the memmap, so we can just jump to
6568 * the end of that region and start processing the device pages.
6571 start_pfn = altmap->base_pfn + vmem_altmap_offset(altmap);
6572 nr_pages = end_pfn - start_pfn;
6575 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
6576 struct page *page = pfn_to_page(pfn);
6578 __init_single_page(page, pfn, zone_idx, nid);
6581 * Mark page reserved as it will need to wait for onlining
6582 * phase for it to be fully associated with a zone.
6584 * We can use the non-atomic __set_bit operation for setting
6585 * the flag as we are still initializing the pages.
6587 __SetPageReserved(page);
6590 * ZONE_DEVICE pages union ->lru with a ->pgmap back pointer
6591 * and zone_device_data. It is a bug if a ZONE_DEVICE page is
6592 * ever freed or placed on a driver-private list.
6594 page->pgmap = pgmap;
6595 page->zone_device_data = NULL;
6598 * Mark the block movable so that blocks are reserved for
6599 * movable at startup. This will force kernel allocations
6600 * to reserve their blocks rather than leaking throughout
6601 * the address space during boot when many long-lived
6602 * kernel allocations are made.
6604 * Please note that MEMINIT_HOTPLUG path doesn't clear memmap
6605 * because this is done early in section_activate()
6607 if (IS_ALIGNED(pfn, pageblock_nr_pages)) {
6608 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
6613 pr_info("%s initialised %lu pages in %ums\n", __func__,
6614 nr_pages, jiffies_to_msecs(jiffies - start));
6618 static void __meminit zone_init_free_lists(struct zone *zone)
6620 unsigned int order, t;
6621 for_each_migratetype_order(order, t) {
6622 INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
6623 zone->free_area[order].nr_free = 0;
6627 #if !defined(CONFIG_FLATMEM)
6629 * Only struct pages that correspond to ranges defined by memblock.memory
6630 * are zeroed and initialized by going through __init_single_page() during
6631 * memmap_init_zone_range().
6633 * But, there could be struct pages that correspond to holes in
6634 * memblock.memory. This can happen because of the following reasons:
6635 * - physical memory bank size is not necessarily the exact multiple of the
6636 * arbitrary section size
6637 * - early reserved memory may not be listed in memblock.memory
6638 * - memory layouts defined with memmap= kernel parameter may not align
6639 * nicely with memmap sections
6641 * Explicitly initialize those struct pages so that:
6642 * - PG_Reserved is set
6643 * - zone and node links point to zone and node that span the page if the
6644 * hole is in the middle of a zone
6645 * - zone and node links point to adjacent zone/node if the hole falls on
6646 * the zone boundary; the pages in such holes will be prepended to the
6647 * zone/node above the hole except for the trailing pages in the last
6648 * section that will be appended to the zone/node below.
6650 static void __init init_unavailable_range(unsigned long spfn,
6657 for (pfn = spfn; pfn < epfn; pfn++) {
6658 if (!pfn_valid(ALIGN_DOWN(pfn, pageblock_nr_pages))) {
6659 pfn = ALIGN_DOWN(pfn, pageblock_nr_pages)
6660 + pageblock_nr_pages - 1;
6663 __init_single_page(pfn_to_page(pfn), pfn, zone, node);
6664 __SetPageReserved(pfn_to_page(pfn));
6669 pr_info("On node %d, zone %s: %lld pages in unavailable ranges",
6670 node, zone_names[zone], pgcnt);
6673 static inline void init_unavailable_range(unsigned long spfn,
6680 static void __init memmap_init_zone_range(struct zone *zone,
6681 unsigned long start_pfn,
6682 unsigned long end_pfn,
6683 unsigned long *hole_pfn)
6685 unsigned long zone_start_pfn = zone->zone_start_pfn;
6686 unsigned long zone_end_pfn = zone_start_pfn + zone->spanned_pages;
6687 int nid = zone_to_nid(zone), zone_id = zone_idx(zone);
6689 start_pfn = clamp(start_pfn, zone_start_pfn, zone_end_pfn);
6690 end_pfn = clamp(end_pfn, zone_start_pfn, zone_end_pfn);
6692 if (start_pfn >= end_pfn)
6695 memmap_init_range(end_pfn - start_pfn, nid, zone_id, start_pfn,
6696 zone_end_pfn, MEMINIT_EARLY, NULL, MIGRATE_MOVABLE);
6698 if (*hole_pfn < start_pfn)
6699 init_unavailable_range(*hole_pfn, start_pfn, zone_id, nid);
6701 *hole_pfn = end_pfn;
6704 static void __init memmap_init(void)
6706 unsigned long start_pfn, end_pfn;
6707 unsigned long hole_pfn = 0;
6708 int i, j, zone_id, nid;
6710 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
6711 struct pglist_data *node = NODE_DATA(nid);
6713 for (j = 0; j < MAX_NR_ZONES; j++) {
6714 struct zone *zone = node->node_zones + j;
6716 if (!populated_zone(zone))
6719 memmap_init_zone_range(zone, start_pfn, end_pfn,
6725 #ifdef CONFIG_SPARSEMEM
6727 * Initialize the memory map for hole in the range [memory_end,
6729 * Append the pages in this hole to the highest zone in the last
6731 * The call to init_unavailable_range() is outside the ifdef to
6732 * silence the compiler warining about zone_id set but not used;
6733 * for FLATMEM it is a nop anyway
6735 end_pfn = round_up(end_pfn, PAGES_PER_SECTION);
6736 if (hole_pfn < end_pfn)
6738 init_unavailable_range(hole_pfn, end_pfn, zone_id, nid);
6741 static int zone_batchsize(struct zone *zone)
6747 * The number of pages to batch allocate is either ~0.1%
6748 * of the zone or 1MB, whichever is smaller. The batch
6749 * size is striking a balance between allocation latency
6750 * and zone lock contention.
6752 batch = min(zone_managed_pages(zone) >> 10, (1024 * 1024) / PAGE_SIZE);
6753 batch /= 4; /* We effectively *= 4 below */
6758 * Clamp the batch to a 2^n - 1 value. Having a power
6759 * of 2 value was found to be more likely to have
6760 * suboptimal cache aliasing properties in some cases.
6762 * For example if 2 tasks are alternately allocating
6763 * batches of pages, one task can end up with a lot
6764 * of pages of one half of the possible page colors
6765 * and the other with pages of the other colors.
6767 batch = rounddown_pow_of_two(batch + batch/2) - 1;
6772 /* The deferral and batching of frees should be suppressed under NOMMU
6775 * The problem is that NOMMU needs to be able to allocate large chunks
6776 * of contiguous memory as there's no hardware page translation to
6777 * assemble apparent contiguous memory from discontiguous pages.
6779 * Queueing large contiguous runs of pages for batching, however,
6780 * causes the pages to actually be freed in smaller chunks. As there
6781 * can be a significant delay between the individual batches being
6782 * recycled, this leads to the once large chunks of space being
6783 * fragmented and becoming unavailable for high-order allocations.
6789 static int zone_highsize(struct zone *zone, int batch, int cpu_online)
6794 unsigned long total_pages;
6796 if (!percpu_pagelist_high_fraction) {
6798 * By default, the high value of the pcp is based on the zone
6799 * low watermark so that if they are full then background
6800 * reclaim will not be started prematurely.
6802 total_pages = low_wmark_pages(zone);
6805 * If percpu_pagelist_high_fraction is configured, the high
6806 * value is based on a fraction of the managed pages in the
6809 total_pages = zone_managed_pages(zone) / percpu_pagelist_high_fraction;
6813 * Split the high value across all online CPUs local to the zone. Note
6814 * that early in boot that CPUs may not be online yet and that during
6815 * CPU hotplug that the cpumask is not yet updated when a CPU is being
6816 * onlined. For memory nodes that have no CPUs, split pcp->high across
6817 * all online CPUs to mitigate the risk that reclaim is triggered
6818 * prematurely due to pages stored on pcp lists.
6820 nr_split_cpus = cpumask_weight(cpumask_of_node(zone_to_nid(zone))) + cpu_online;
6822 nr_split_cpus = num_online_cpus();
6823 high = total_pages / nr_split_cpus;
6826 * Ensure high is at least batch*4. The multiple is based on the
6827 * historical relationship between high and batch.
6829 high = max(high, batch << 2);
6838 * pcp->high and pcp->batch values are related and generally batch is lower
6839 * than high. They are also related to pcp->count such that count is lower
6840 * than high, and as soon as it reaches high, the pcplist is flushed.
6842 * However, guaranteeing these relations at all times would require e.g. write
6843 * barriers here but also careful usage of read barriers at the read side, and
6844 * thus be prone to error and bad for performance. Thus the update only prevents
6845 * store tearing. Any new users of pcp->batch and pcp->high should ensure they
6846 * can cope with those fields changing asynchronously, and fully trust only the
6847 * pcp->count field on the local CPU with interrupts disabled.
6849 * mutex_is_locked(&pcp_batch_high_lock) required when calling this function
6850 * outside of boot time (or some other assurance that no concurrent updaters
6853 static void pageset_update(struct per_cpu_pages *pcp, unsigned long high,
6854 unsigned long batch)
6856 WRITE_ONCE(pcp->batch, batch);
6857 WRITE_ONCE(pcp->high, high);
6860 static void per_cpu_pages_init(struct per_cpu_pages *pcp, struct per_cpu_zonestat *pzstats)
6864 memset(pcp, 0, sizeof(*pcp));
6865 memset(pzstats, 0, sizeof(*pzstats));
6867 for (pindex = 0; pindex < NR_PCP_LISTS; pindex++)
6868 INIT_LIST_HEAD(&pcp->lists[pindex]);
6871 * Set batch and high values safe for a boot pageset. A true percpu
6872 * pageset's initialization will update them subsequently. Here we don't
6873 * need to be as careful as pageset_update() as nobody can access the
6876 pcp->high = BOOT_PAGESET_HIGH;
6877 pcp->batch = BOOT_PAGESET_BATCH;
6878 pcp->free_factor = 0;
6881 static void __zone_set_pageset_high_and_batch(struct zone *zone, unsigned long high,
6882 unsigned long batch)
6884 struct per_cpu_pages *pcp;
6887 for_each_possible_cpu(cpu) {
6888 pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu);
6889 pageset_update(pcp, high, batch);
6894 * Calculate and set new high and batch values for all per-cpu pagesets of a
6895 * zone based on the zone's size.
6897 static void zone_set_pageset_high_and_batch(struct zone *zone, int cpu_online)
6899 int new_high, new_batch;
6901 new_batch = max(1, zone_batchsize(zone));
6902 new_high = zone_highsize(zone, new_batch, cpu_online);
6904 if (zone->pageset_high == new_high &&
6905 zone->pageset_batch == new_batch)
6908 zone->pageset_high = new_high;
6909 zone->pageset_batch = new_batch;
6911 __zone_set_pageset_high_and_batch(zone, new_high, new_batch);
6914 void __meminit setup_zone_pageset(struct zone *zone)
6918 /* Size may be 0 on !SMP && !NUMA */
6919 if (sizeof(struct per_cpu_zonestat) > 0)
6920 zone->per_cpu_zonestats = alloc_percpu(struct per_cpu_zonestat);
6922 zone->per_cpu_pageset = alloc_percpu(struct per_cpu_pages);
6923 for_each_possible_cpu(cpu) {
6924 struct per_cpu_pages *pcp;
6925 struct per_cpu_zonestat *pzstats;
6927 pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu);
6928 pzstats = per_cpu_ptr(zone->per_cpu_zonestats, cpu);
6929 per_cpu_pages_init(pcp, pzstats);
6932 zone_set_pageset_high_and_batch(zone, 0);
6936 * Allocate per cpu pagesets and initialize them.
6937 * Before this call only boot pagesets were available.
6939 void __init setup_per_cpu_pageset(void)
6941 struct pglist_data *pgdat;
6943 int __maybe_unused cpu;
6945 for_each_populated_zone(zone)
6946 setup_zone_pageset(zone);
6950 * Unpopulated zones continue using the boot pagesets.
6951 * The numa stats for these pagesets need to be reset.
6952 * Otherwise, they will end up skewing the stats of
6953 * the nodes these zones are associated with.
6955 for_each_possible_cpu(cpu) {
6956 struct per_cpu_zonestat *pzstats = &per_cpu(boot_zonestats, cpu);
6957 memset(pzstats->vm_numa_event, 0,
6958 sizeof(pzstats->vm_numa_event));
6962 for_each_online_pgdat(pgdat)
6963 pgdat->per_cpu_nodestats =
6964 alloc_percpu(struct per_cpu_nodestat);
6967 static __meminit void zone_pcp_init(struct zone *zone)
6970 * per cpu subsystem is not up at this point. The following code
6971 * relies on the ability of the linker to provide the
6972 * offset of a (static) per cpu variable into the per cpu area.
6974 zone->per_cpu_pageset = &boot_pageset;
6975 zone->per_cpu_zonestats = &boot_zonestats;
6976 zone->pageset_high = BOOT_PAGESET_HIGH;
6977 zone->pageset_batch = BOOT_PAGESET_BATCH;
6979 if (populated_zone(zone))
6980 pr_debug(" %s zone: %lu pages, LIFO batch:%u\n", zone->name,
6981 zone->present_pages, zone_batchsize(zone));
6984 void __meminit init_currently_empty_zone(struct zone *zone,
6985 unsigned long zone_start_pfn,
6988 struct pglist_data *pgdat = zone->zone_pgdat;
6989 int zone_idx = zone_idx(zone) + 1;
6991 if (zone_idx > pgdat->nr_zones)
6992 pgdat->nr_zones = zone_idx;
6994 zone->zone_start_pfn = zone_start_pfn;
6996 mminit_dprintk(MMINIT_TRACE, "memmap_init",
6997 "Initialising map node %d zone %lu pfns %lu -> %lu\n",
6999 (unsigned long)zone_idx(zone),
7000 zone_start_pfn, (zone_start_pfn + size));
7002 zone_init_free_lists(zone);
7003 zone->initialized = 1;
7007 * get_pfn_range_for_nid - Return the start and end page frames for a node
7008 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
7009 * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
7010 * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
7012 * It returns the start and end page frame of a node based on information
7013 * provided by memblock_set_node(). If called for a node
7014 * with no available memory, a warning is printed and the start and end
7017 void __init get_pfn_range_for_nid(unsigned int nid,
7018 unsigned long *start_pfn, unsigned long *end_pfn)
7020 unsigned long this_start_pfn, this_end_pfn;
7026 for_each_mem_pfn_range(i, nid, &this_start_pfn, &this_end_pfn, NULL) {
7027 *start_pfn = min(*start_pfn, this_start_pfn);
7028 *end_pfn = max(*end_pfn, this_end_pfn);
7031 if (*start_pfn == -1UL)
7036 * This finds a zone that can be used for ZONE_MOVABLE pages. The
7037 * assumption is made that zones within a node are ordered in monotonic
7038 * increasing memory addresses so that the "highest" populated zone is used
7040 static void __init find_usable_zone_for_movable(void)
7043 for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
7044 if (zone_index == ZONE_MOVABLE)
7047 if (arch_zone_highest_possible_pfn[zone_index] >
7048 arch_zone_lowest_possible_pfn[zone_index])
7052 VM_BUG_ON(zone_index == -1);
7053 movable_zone = zone_index;
7057 * The zone ranges provided by the architecture do not include ZONE_MOVABLE
7058 * because it is sized independent of architecture. Unlike the other zones,
7059 * the starting point for ZONE_MOVABLE is not fixed. It may be different
7060 * in each node depending on the size of each node and how evenly kernelcore
7061 * is distributed. This helper function adjusts the zone ranges
7062 * provided by the architecture for a given node by using the end of the
7063 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
7064 * zones within a node are in order of monotonic increases memory addresses
7066 static void __init adjust_zone_range_for_zone_movable(int nid,
7067 unsigned long zone_type,
7068 unsigned long node_start_pfn,
7069 unsigned long node_end_pfn,
7070 unsigned long *zone_start_pfn,
7071 unsigned long *zone_end_pfn)
7073 /* Only adjust if ZONE_MOVABLE is on this node */
7074 if (zone_movable_pfn[nid]) {
7075 /* Size ZONE_MOVABLE */
7076 if (zone_type == ZONE_MOVABLE) {
7077 *zone_start_pfn = zone_movable_pfn[nid];
7078 *zone_end_pfn = min(node_end_pfn,
7079 arch_zone_highest_possible_pfn[movable_zone]);
7081 /* Adjust for ZONE_MOVABLE starting within this range */
7082 } else if (!mirrored_kernelcore &&
7083 *zone_start_pfn < zone_movable_pfn[nid] &&
7084 *zone_end_pfn > zone_movable_pfn[nid]) {
7085 *zone_end_pfn = zone_movable_pfn[nid];
7087 /* Check if this whole range is within ZONE_MOVABLE */
7088 } else if (*zone_start_pfn >= zone_movable_pfn[nid])
7089 *zone_start_pfn = *zone_end_pfn;
7094 * Return the number of pages a zone spans in a node, including holes
7095 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
7097 static unsigned long __init zone_spanned_pages_in_node(int nid,
7098 unsigned long zone_type,
7099 unsigned long node_start_pfn,
7100 unsigned long node_end_pfn,
7101 unsigned long *zone_start_pfn,
7102 unsigned long *zone_end_pfn)
7104 unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
7105 unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
7106 /* When hotadd a new node from cpu_up(), the node should be empty */
7107 if (!node_start_pfn && !node_end_pfn)
7110 /* Get the start and end of the zone */
7111 *zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
7112 *zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
7113 adjust_zone_range_for_zone_movable(nid, zone_type,
7114 node_start_pfn, node_end_pfn,
7115 zone_start_pfn, zone_end_pfn);
7117 /* Check that this node has pages within the zone's required range */
7118 if (*zone_end_pfn < node_start_pfn || *zone_start_pfn > node_end_pfn)
7121 /* Move the zone boundaries inside the node if necessary */
7122 *zone_end_pfn = min(*zone_end_pfn, node_end_pfn);
7123 *zone_start_pfn = max(*zone_start_pfn, node_start_pfn);
7125 /* Return the spanned pages */
7126 return *zone_end_pfn - *zone_start_pfn;
7130 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
7131 * then all holes in the requested range will be accounted for.
7133 unsigned long __init __absent_pages_in_range(int nid,
7134 unsigned long range_start_pfn,
7135 unsigned long range_end_pfn)
7137 unsigned long nr_absent = range_end_pfn - range_start_pfn;
7138 unsigned long start_pfn, end_pfn;
7141 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
7142 start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn);
7143 end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn);
7144 nr_absent -= end_pfn - start_pfn;
7150 * absent_pages_in_range - Return number of page frames in holes within a range
7151 * @start_pfn: The start PFN to start searching for holes
7152 * @end_pfn: The end PFN to stop searching for holes
7154 * Return: the number of pages frames in memory holes within a range.
7156 unsigned long __init absent_pages_in_range(unsigned long start_pfn,
7157 unsigned long end_pfn)
7159 return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
7162 /* Return the number of page frames in holes in a zone on a node */
7163 static unsigned long __init zone_absent_pages_in_node(int nid,
7164 unsigned long zone_type,
7165 unsigned long node_start_pfn,
7166 unsigned long node_end_pfn)
7168 unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
7169 unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
7170 unsigned long zone_start_pfn, zone_end_pfn;
7171 unsigned long nr_absent;
7173 /* When hotadd a new node from cpu_up(), the node should be empty */
7174 if (!node_start_pfn && !node_end_pfn)
7177 zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
7178 zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
7180 adjust_zone_range_for_zone_movable(nid, zone_type,
7181 node_start_pfn, node_end_pfn,
7182 &zone_start_pfn, &zone_end_pfn);
7183 nr_absent = __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
7186 * ZONE_MOVABLE handling.
7187 * Treat pages to be ZONE_MOVABLE in ZONE_NORMAL as absent pages
7190 if (mirrored_kernelcore && zone_movable_pfn[nid]) {
7191 unsigned long start_pfn, end_pfn;
7192 struct memblock_region *r;
7194 for_each_mem_region(r) {
7195 start_pfn = clamp(memblock_region_memory_base_pfn(r),
7196 zone_start_pfn, zone_end_pfn);
7197 end_pfn = clamp(memblock_region_memory_end_pfn(r),
7198 zone_start_pfn, zone_end_pfn);
7200 if (zone_type == ZONE_MOVABLE &&
7201 memblock_is_mirror(r))
7202 nr_absent += end_pfn - start_pfn;
7204 if (zone_type == ZONE_NORMAL &&
7205 !memblock_is_mirror(r))
7206 nr_absent += end_pfn - start_pfn;
7213 static void __init calculate_node_totalpages(struct pglist_data *pgdat,
7214 unsigned long node_start_pfn,
7215 unsigned long node_end_pfn)
7217 unsigned long realtotalpages = 0, totalpages = 0;
7220 for (i = 0; i < MAX_NR_ZONES; i++) {
7221 struct zone *zone = pgdat->node_zones + i;
7222 unsigned long zone_start_pfn, zone_end_pfn;
7223 unsigned long spanned, absent;
7224 unsigned long size, real_size;
7226 spanned = zone_spanned_pages_in_node(pgdat->node_id, i,
7231 absent = zone_absent_pages_in_node(pgdat->node_id, i,
7236 real_size = size - absent;
7239 zone->zone_start_pfn = zone_start_pfn;
7241 zone->zone_start_pfn = 0;
7242 zone->spanned_pages = size;
7243 zone->present_pages = real_size;
7246 realtotalpages += real_size;
7249 pgdat->node_spanned_pages = totalpages;
7250 pgdat->node_present_pages = realtotalpages;
7251 pr_debug("On node %d totalpages: %lu\n", pgdat->node_id, realtotalpages);
7254 #ifndef CONFIG_SPARSEMEM
7256 * Calculate the size of the zone->blockflags rounded to an unsigned long
7257 * Start by making sure zonesize is a multiple of pageblock_order by rounding
7258 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
7259 * round what is now in bits to nearest long in bits, then return it in
7262 static unsigned long __init usemap_size(unsigned long zone_start_pfn, unsigned long zonesize)
7264 unsigned long usemapsize;
7266 zonesize += zone_start_pfn & (pageblock_nr_pages-1);
7267 usemapsize = roundup(zonesize, pageblock_nr_pages);
7268 usemapsize = usemapsize >> pageblock_order;
7269 usemapsize *= NR_PAGEBLOCK_BITS;
7270 usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));
7272 return usemapsize / 8;
7275 static void __ref setup_usemap(struct zone *zone)
7277 unsigned long usemapsize = usemap_size(zone->zone_start_pfn,
7278 zone->spanned_pages);
7279 zone->pageblock_flags = NULL;
7281 zone->pageblock_flags =
7282 memblock_alloc_node(usemapsize, SMP_CACHE_BYTES,
7284 if (!zone->pageblock_flags)
7285 panic("Failed to allocate %ld bytes for zone %s pageblock flags on node %d\n",
7286 usemapsize, zone->name, zone_to_nid(zone));
7290 static inline void setup_usemap(struct zone *zone) {}
7291 #endif /* CONFIG_SPARSEMEM */
7293 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
7295 /* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
7296 void __init set_pageblock_order(void)
7300 /* Check that pageblock_nr_pages has not already been setup */
7301 if (pageblock_order)
7304 if (HPAGE_SHIFT > PAGE_SHIFT)
7305 order = HUGETLB_PAGE_ORDER;
7307 order = MAX_ORDER - 1;
7310 * Assume the largest contiguous order of interest is a huge page.
7311 * This value may be variable depending on boot parameters on IA64 and
7314 pageblock_order = order;
7316 #else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
7319 * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
7320 * is unused as pageblock_order is set at compile-time. See
7321 * include/linux/pageblock-flags.h for the values of pageblock_order based on
7324 void __init set_pageblock_order(void)
7328 #endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
7330 static unsigned long __init calc_memmap_size(unsigned long spanned_pages,
7331 unsigned long present_pages)
7333 unsigned long pages = spanned_pages;
7336 * Provide a more accurate estimation if there are holes within
7337 * the zone and SPARSEMEM is in use. If there are holes within the
7338 * zone, each populated memory region may cost us one or two extra
7339 * memmap pages due to alignment because memmap pages for each
7340 * populated regions may not be naturally aligned on page boundary.
7341 * So the (present_pages >> 4) heuristic is a tradeoff for that.
7343 if (spanned_pages > present_pages + (present_pages >> 4) &&
7344 IS_ENABLED(CONFIG_SPARSEMEM))
7345 pages = present_pages;
7347 return PAGE_ALIGN(pages * sizeof(struct page)) >> PAGE_SHIFT;
7350 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
7351 static void pgdat_init_split_queue(struct pglist_data *pgdat)
7353 struct deferred_split *ds_queue = &pgdat->deferred_split_queue;
7355 spin_lock_init(&ds_queue->split_queue_lock);
7356 INIT_LIST_HEAD(&ds_queue->split_queue);
7357 ds_queue->split_queue_len = 0;
7360 static void pgdat_init_split_queue(struct pglist_data *pgdat) {}
7363 #ifdef CONFIG_COMPACTION
7364 static void pgdat_init_kcompactd(struct pglist_data *pgdat)
7366 init_waitqueue_head(&pgdat->kcompactd_wait);
7369 static void pgdat_init_kcompactd(struct pglist_data *pgdat) {}
7372 static void __meminit pgdat_init_internals(struct pglist_data *pgdat)
7374 pgdat_resize_init(pgdat);
7376 pgdat_init_split_queue(pgdat);
7377 pgdat_init_kcompactd(pgdat);
7379 init_waitqueue_head(&pgdat->kswapd_wait);
7380 init_waitqueue_head(&pgdat->pfmemalloc_wait);
7382 pgdat_page_ext_init(pgdat);
7383 lruvec_init(&pgdat->__lruvec);
7386 static void __meminit zone_init_internals(struct zone *zone, enum zone_type idx, int nid,
7387 unsigned long remaining_pages)
7389 atomic_long_set(&zone->managed_pages, remaining_pages);
7390 zone_set_nid(zone, nid);
7391 zone->name = zone_names[idx];
7392 zone->zone_pgdat = NODE_DATA(nid);
7393 spin_lock_init(&zone->lock);
7394 zone_seqlock_init(zone);
7395 zone_pcp_init(zone);
7399 * Set up the zone data structures
7400 * - init pgdat internals
7401 * - init all zones belonging to this node
7403 * NOTE: this function is only called during memory hotplug
7405 #ifdef CONFIG_MEMORY_HOTPLUG
7406 void __ref free_area_init_core_hotplug(int nid)
7409 pg_data_t *pgdat = NODE_DATA(nid);
7411 pgdat_init_internals(pgdat);
7412 for (z = 0; z < MAX_NR_ZONES; z++)
7413 zone_init_internals(&pgdat->node_zones[z], z, nid, 0);
7418 * Set up the zone data structures:
7419 * - mark all pages reserved
7420 * - mark all memory queues empty
7421 * - clear the memory bitmaps
7423 * NOTE: pgdat should get zeroed by caller.
7424 * NOTE: this function is only called during early init.
7426 static void __init free_area_init_core(struct pglist_data *pgdat)
7429 int nid = pgdat->node_id;
7431 pgdat_init_internals(pgdat);
7432 pgdat->per_cpu_nodestats = &boot_nodestats;
7434 for (j = 0; j < MAX_NR_ZONES; j++) {
7435 struct zone *zone = pgdat->node_zones + j;
7436 unsigned long size, freesize, memmap_pages;
7438 size = zone->spanned_pages;
7439 freesize = zone->present_pages;
7442 * Adjust freesize so that it accounts for how much memory
7443 * is used by this zone for memmap. This affects the watermark
7444 * and per-cpu initialisations
7446 memmap_pages = calc_memmap_size(size, freesize);
7447 if (!is_highmem_idx(j)) {
7448 if (freesize >= memmap_pages) {
7449 freesize -= memmap_pages;
7451 pr_debug(" %s zone: %lu pages used for memmap\n",
7452 zone_names[j], memmap_pages);
7454 pr_warn(" %s zone: %lu memmap pages exceeds freesize %lu\n",
7455 zone_names[j], memmap_pages, freesize);
7458 /* Account for reserved pages */
7459 if (j == 0 && freesize > dma_reserve) {
7460 freesize -= dma_reserve;
7461 pr_debug(" %s zone: %lu pages reserved\n", zone_names[0], dma_reserve);
7464 if (!is_highmem_idx(j))
7465 nr_kernel_pages += freesize;
7466 /* Charge for highmem memmap if there are enough kernel pages */
7467 else if (nr_kernel_pages > memmap_pages * 2)
7468 nr_kernel_pages -= memmap_pages;
7469 nr_all_pages += freesize;
7472 * Set an approximate value for lowmem here, it will be adjusted
7473 * when the bootmem allocator frees pages into the buddy system.
7474 * And all highmem pages will be managed by the buddy system.
7476 zone_init_internals(zone, j, nid, freesize);
7481 set_pageblock_order();
7483 init_currently_empty_zone(zone, zone->zone_start_pfn, size);
7487 #ifdef CONFIG_FLATMEM
7488 static void __ref alloc_node_mem_map(struct pglist_data *pgdat)
7490 unsigned long __maybe_unused start = 0;
7491 unsigned long __maybe_unused offset = 0;
7493 /* Skip empty nodes */
7494 if (!pgdat->node_spanned_pages)
7497 start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
7498 offset = pgdat->node_start_pfn - start;
7499 /* ia64 gets its own node_mem_map, before this, without bootmem */
7500 if (!pgdat->node_mem_map) {
7501 unsigned long size, end;
7505 * The zone's endpoints aren't required to be MAX_ORDER
7506 * aligned but the node_mem_map endpoints must be in order
7507 * for the buddy allocator to function correctly.
7509 end = pgdat_end_pfn(pgdat);
7510 end = ALIGN(end, MAX_ORDER_NR_PAGES);
7511 size = (end - start) * sizeof(struct page);
7512 map = memblock_alloc_node(size, SMP_CACHE_BYTES,
7515 panic("Failed to allocate %ld bytes for node %d memory map\n",
7516 size, pgdat->node_id);
7517 pgdat->node_mem_map = map + offset;
7519 pr_debug("%s: node %d, pgdat %08lx, node_mem_map %08lx\n",
7520 __func__, pgdat->node_id, (unsigned long)pgdat,
7521 (unsigned long)pgdat->node_mem_map);
7524 * With no DISCONTIG, the global mem_map is just set as node 0's
7526 if (pgdat == NODE_DATA(0)) {
7527 mem_map = NODE_DATA(0)->node_mem_map;
7528 if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
7534 static void __ref alloc_node_mem_map(struct pglist_data *pgdat) { }
7535 #endif /* CONFIG_FLATMEM */
7537 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
7538 static inline void pgdat_set_deferred_range(pg_data_t *pgdat)
7540 pgdat->first_deferred_pfn = ULONG_MAX;
7543 static inline void pgdat_set_deferred_range(pg_data_t *pgdat) {}
7546 static void __init free_area_init_node(int nid)
7548 pg_data_t *pgdat = NODE_DATA(nid);
7549 unsigned long start_pfn = 0;
7550 unsigned long end_pfn = 0;
7552 /* pg_data_t should be reset to zero when it's allocated */
7553 WARN_ON(pgdat->nr_zones || pgdat->kswapd_highest_zoneidx);
7555 get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
7557 pgdat->node_id = nid;
7558 pgdat->node_start_pfn = start_pfn;
7559 pgdat->per_cpu_nodestats = NULL;
7561 pr_info("Initmem setup node %d [mem %#018Lx-%#018Lx]\n", nid,
7562 (u64)start_pfn << PAGE_SHIFT,
7563 end_pfn ? ((u64)end_pfn << PAGE_SHIFT) - 1 : 0);
7564 calculate_node_totalpages(pgdat, start_pfn, end_pfn);
7566 alloc_node_mem_map(pgdat);
7567 pgdat_set_deferred_range(pgdat);
7569 free_area_init_core(pgdat);
7572 void __init free_area_init_memoryless_node(int nid)
7574 free_area_init_node(nid);
7577 #if MAX_NUMNODES > 1
7579 * Figure out the number of possible node ids.
7581 void __init setup_nr_node_ids(void)
7583 unsigned int highest;
7585 highest = find_last_bit(node_possible_map.bits, MAX_NUMNODES);
7586 nr_node_ids = highest + 1;
7591 * node_map_pfn_alignment - determine the maximum internode alignment
7593 * This function should be called after node map is populated and sorted.
7594 * It calculates the maximum power of two alignment which can distinguish
7597 * For example, if all nodes are 1GiB and aligned to 1GiB, the return value
7598 * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)). If the
7599 * nodes are shifted by 256MiB, 256MiB. Note that if only the last node is
7600 * shifted, 1GiB is enough and this function will indicate so.
7602 * This is used to test whether pfn -> nid mapping of the chosen memory
7603 * model has fine enough granularity to avoid incorrect mapping for the
7604 * populated node map.
7606 * Return: the determined alignment in pfn's. 0 if there is no alignment
7607 * requirement (single node).
7609 unsigned long __init node_map_pfn_alignment(void)
7611 unsigned long accl_mask = 0, last_end = 0;
7612 unsigned long start, end, mask;
7613 int last_nid = NUMA_NO_NODE;
7616 for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid) {
7617 if (!start || last_nid < 0 || last_nid == nid) {
7624 * Start with a mask granular enough to pin-point to the
7625 * start pfn and tick off bits one-by-one until it becomes
7626 * too coarse to separate the current node from the last.
7628 mask = ~((1 << __ffs(start)) - 1);
7629 while (mask && last_end <= (start & (mask << 1)))
7632 /* accumulate all internode masks */
7636 /* convert mask to number of pages */
7637 return ~accl_mask + 1;
7641 * find_min_pfn_with_active_regions - Find the minimum PFN registered
7643 * Return: the minimum PFN based on information provided via
7644 * memblock_set_node().
7646 unsigned long __init find_min_pfn_with_active_regions(void)
7648 return PHYS_PFN(memblock_start_of_DRAM());
7652 * early_calculate_totalpages()
7653 * Sum pages in active regions for movable zone.
7654 * Populate N_MEMORY for calculating usable_nodes.
7656 static unsigned long __init early_calculate_totalpages(void)
7658 unsigned long totalpages = 0;
7659 unsigned long start_pfn, end_pfn;
7662 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
7663 unsigned long pages = end_pfn - start_pfn;
7665 totalpages += pages;
7667 node_set_state(nid, N_MEMORY);
7673 * Find the PFN the Movable zone begins in each node. Kernel memory
7674 * is spread evenly between nodes as long as the nodes have enough
7675 * memory. When they don't, some nodes will have more kernelcore than
7678 static void __init find_zone_movable_pfns_for_nodes(void)
7681 unsigned long usable_startpfn;
7682 unsigned long kernelcore_node, kernelcore_remaining;
7683 /* save the state before borrow the nodemask */
7684 nodemask_t saved_node_state = node_states[N_MEMORY];
7685 unsigned long totalpages = early_calculate_totalpages();
7686 int usable_nodes = nodes_weight(node_states[N_MEMORY]);
7687 struct memblock_region *r;
7689 /* Need to find movable_zone earlier when movable_node is specified. */
7690 find_usable_zone_for_movable();
7693 * If movable_node is specified, ignore kernelcore and movablecore
7696 if (movable_node_is_enabled()) {
7697 for_each_mem_region(r) {
7698 if (!memblock_is_hotpluggable(r))
7701 nid = memblock_get_region_node(r);
7703 usable_startpfn = PFN_DOWN(r->base);
7704 zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
7705 min(usable_startpfn, zone_movable_pfn[nid]) :
7713 * If kernelcore=mirror is specified, ignore movablecore option
7715 if (mirrored_kernelcore) {
7716 bool mem_below_4gb_not_mirrored = false;
7718 for_each_mem_region(r) {
7719 if (memblock_is_mirror(r))
7722 nid = memblock_get_region_node(r);
7724 usable_startpfn = memblock_region_memory_base_pfn(r);
7726 if (usable_startpfn < 0x100000) {
7727 mem_below_4gb_not_mirrored = true;
7731 zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
7732 min(usable_startpfn, zone_movable_pfn[nid]) :
7736 if (mem_below_4gb_not_mirrored)
7737 pr_warn("This configuration results in unmirrored kernel memory.\n");
7743 * If kernelcore=nn% or movablecore=nn% was specified, calculate the
7744 * amount of necessary memory.
7746 if (required_kernelcore_percent)
7747 required_kernelcore = (totalpages * 100 * required_kernelcore_percent) /
7749 if (required_movablecore_percent)
7750 required_movablecore = (totalpages * 100 * required_movablecore_percent) /
7754 * If movablecore= was specified, calculate what size of
7755 * kernelcore that corresponds so that memory usable for
7756 * any allocation type is evenly spread. If both kernelcore
7757 * and movablecore are specified, then the value of kernelcore
7758 * will be used for required_kernelcore if it's greater than
7759 * what movablecore would have allowed.
7761 if (required_movablecore) {
7762 unsigned long corepages;
7765 * Round-up so that ZONE_MOVABLE is at least as large as what
7766 * was requested by the user
7768 required_movablecore =
7769 roundup(required_movablecore, MAX_ORDER_NR_PAGES);
7770 required_movablecore = min(totalpages, required_movablecore);
7771 corepages = totalpages - required_movablecore;
7773 required_kernelcore = max(required_kernelcore, corepages);
7777 * If kernelcore was not specified or kernelcore size is larger
7778 * than totalpages, there is no ZONE_MOVABLE.
7780 if (!required_kernelcore || required_kernelcore >= totalpages)
7783 /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
7784 usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
7787 /* Spread kernelcore memory as evenly as possible throughout nodes */
7788 kernelcore_node = required_kernelcore / usable_nodes;
7789 for_each_node_state(nid, N_MEMORY) {
7790 unsigned long start_pfn, end_pfn;
7793 * Recalculate kernelcore_node if the division per node
7794 * now exceeds what is necessary to satisfy the requested
7795 * amount of memory for the kernel
7797 if (required_kernelcore < kernelcore_node)
7798 kernelcore_node = required_kernelcore / usable_nodes;
7801 * As the map is walked, we track how much memory is usable
7802 * by the kernel using kernelcore_remaining. When it is
7803 * 0, the rest of the node is usable by ZONE_MOVABLE
7805 kernelcore_remaining = kernelcore_node;
7807 /* Go through each range of PFNs within this node */
7808 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
7809 unsigned long size_pages;
7811 start_pfn = max(start_pfn, zone_movable_pfn[nid]);
7812 if (start_pfn >= end_pfn)
7815 /* Account for what is only usable for kernelcore */
7816 if (start_pfn < usable_startpfn) {
7817 unsigned long kernel_pages;
7818 kernel_pages = min(end_pfn, usable_startpfn)
7821 kernelcore_remaining -= min(kernel_pages,
7822 kernelcore_remaining);
7823 required_kernelcore -= min(kernel_pages,
7824 required_kernelcore);
7826 /* Continue if range is now fully accounted */
7827 if (end_pfn <= usable_startpfn) {
7830 * Push zone_movable_pfn to the end so
7831 * that if we have to rebalance
7832 * kernelcore across nodes, we will
7833 * not double account here
7835 zone_movable_pfn[nid] = end_pfn;
7838 start_pfn = usable_startpfn;
7842 * The usable PFN range for ZONE_MOVABLE is from
7843 * start_pfn->end_pfn. Calculate size_pages as the
7844 * number of pages used as kernelcore
7846 size_pages = end_pfn - start_pfn;
7847 if (size_pages > kernelcore_remaining)
7848 size_pages = kernelcore_remaining;
7849 zone_movable_pfn[nid] = start_pfn + size_pages;
7852 * Some kernelcore has been met, update counts and
7853 * break if the kernelcore for this node has been
7856 required_kernelcore -= min(required_kernelcore,
7858 kernelcore_remaining -= size_pages;
7859 if (!kernelcore_remaining)
7865 * If there is still required_kernelcore, we do another pass with one
7866 * less node in the count. This will push zone_movable_pfn[nid] further
7867 * along on the nodes that still have memory until kernelcore is
7871 if (usable_nodes && required_kernelcore > usable_nodes)
7875 /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
7876 for (nid = 0; nid < MAX_NUMNODES; nid++)
7877 zone_movable_pfn[nid] =
7878 roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
7881 /* restore the node_state */
7882 node_states[N_MEMORY] = saved_node_state;
7885 /* Any regular or high memory on that node ? */
7886 static void check_for_memory(pg_data_t *pgdat, int nid)
7888 enum zone_type zone_type;
7890 for (zone_type = 0; zone_type <= ZONE_MOVABLE - 1; zone_type++) {
7891 struct zone *zone = &pgdat->node_zones[zone_type];
7892 if (populated_zone(zone)) {
7893 if (IS_ENABLED(CONFIG_HIGHMEM))
7894 node_set_state(nid, N_HIGH_MEMORY);
7895 if (zone_type <= ZONE_NORMAL)
7896 node_set_state(nid, N_NORMAL_MEMORY);
7903 * Some architectures, e.g. ARC may have ZONE_HIGHMEM below ZONE_NORMAL. For
7904 * such cases we allow max_zone_pfn sorted in the descending order
7906 bool __weak arch_has_descending_max_zone_pfns(void)
7912 * free_area_init - Initialise all pg_data_t and zone data
7913 * @max_zone_pfn: an array of max PFNs for each zone
7915 * This will call free_area_init_node() for each active node in the system.
7916 * Using the page ranges provided by memblock_set_node(), the size of each
7917 * zone in each node and their holes is calculated. If the maximum PFN
7918 * between two adjacent zones match, it is assumed that the zone is empty.
7919 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
7920 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
7921 * starts where the previous one ended. For example, ZONE_DMA32 starts
7922 * at arch_max_dma_pfn.
7924 void __init free_area_init(unsigned long *max_zone_pfn)
7926 unsigned long start_pfn, end_pfn;
7930 /* Record where the zone boundaries are */
7931 memset(arch_zone_lowest_possible_pfn, 0,
7932 sizeof(arch_zone_lowest_possible_pfn));
7933 memset(arch_zone_highest_possible_pfn, 0,
7934 sizeof(arch_zone_highest_possible_pfn));
7936 start_pfn = find_min_pfn_with_active_regions();
7937 descending = arch_has_descending_max_zone_pfns();
7939 for (i = 0; i < MAX_NR_ZONES; i++) {
7941 zone = MAX_NR_ZONES - i - 1;
7945 if (zone == ZONE_MOVABLE)
7948 end_pfn = max(max_zone_pfn[zone], start_pfn);
7949 arch_zone_lowest_possible_pfn[zone] = start_pfn;
7950 arch_zone_highest_possible_pfn[zone] = end_pfn;
7952 start_pfn = end_pfn;
7955 /* Find the PFNs that ZONE_MOVABLE begins at in each node */
7956 memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
7957 find_zone_movable_pfns_for_nodes();
7959 /* Print out the zone ranges */
7960 pr_info("Zone ranges:\n");
7961 for (i = 0; i < MAX_NR_ZONES; i++) {
7962 if (i == ZONE_MOVABLE)
7964 pr_info(" %-8s ", zone_names[i]);
7965 if (arch_zone_lowest_possible_pfn[i] ==
7966 arch_zone_highest_possible_pfn[i])
7969 pr_cont("[mem %#018Lx-%#018Lx]\n",
7970 (u64)arch_zone_lowest_possible_pfn[i]
7972 ((u64)arch_zone_highest_possible_pfn[i]
7973 << PAGE_SHIFT) - 1);
7976 /* Print out the PFNs ZONE_MOVABLE begins at in each node */
7977 pr_info("Movable zone start for each node\n");
7978 for (i = 0; i < MAX_NUMNODES; i++) {
7979 if (zone_movable_pfn[i])
7980 pr_info(" Node %d: %#018Lx\n", i,
7981 (u64)zone_movable_pfn[i] << PAGE_SHIFT);
7985 * Print out the early node map, and initialize the
7986 * subsection-map relative to active online memory ranges to
7987 * enable future "sub-section" extensions of the memory map.
7989 pr_info("Early memory node ranges\n");
7990 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
7991 pr_info(" node %3d: [mem %#018Lx-%#018Lx]\n", nid,
7992 (u64)start_pfn << PAGE_SHIFT,
7993 ((u64)end_pfn << PAGE_SHIFT) - 1);
7994 subsection_map_init(start_pfn, end_pfn - start_pfn);
7997 /* Initialise every node */
7998 mminit_verify_pageflags_layout();
7999 setup_nr_node_ids();
8000 for_each_online_node(nid) {
8001 pg_data_t *pgdat = NODE_DATA(nid);
8002 free_area_init_node(nid);
8004 /* Any memory on that node */
8005 if (pgdat->node_present_pages)
8006 node_set_state(nid, N_MEMORY);
8007 check_for_memory(pgdat, nid);
8013 static int __init cmdline_parse_core(char *p, unsigned long *core,
8014 unsigned long *percent)
8016 unsigned long long coremem;
8022 /* Value may be a percentage of total memory, otherwise bytes */
8023 coremem = simple_strtoull(p, &endptr, 0);
8024 if (*endptr == '%') {
8025 /* Paranoid check for percent values greater than 100 */
8026 WARN_ON(coremem > 100);
8030 coremem = memparse(p, &p);
8031 /* Paranoid check that UL is enough for the coremem value */
8032 WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
8034 *core = coremem >> PAGE_SHIFT;
8041 * kernelcore=size sets the amount of memory for use for allocations that
8042 * cannot be reclaimed or migrated.
8044 static int __init cmdline_parse_kernelcore(char *p)
8046 /* parse kernelcore=mirror */
8047 if (parse_option_str(p, "mirror")) {
8048 mirrored_kernelcore = true;
8052 return cmdline_parse_core(p, &required_kernelcore,
8053 &required_kernelcore_percent);
8057 * movablecore=size sets the amount of memory for use for allocations that
8058 * can be reclaimed or migrated.
8060 static int __init cmdline_parse_movablecore(char *p)
8062 return cmdline_parse_core(p, &required_movablecore,
8063 &required_movablecore_percent);
8066 early_param("kernelcore", cmdline_parse_kernelcore);
8067 early_param("movablecore", cmdline_parse_movablecore);
8069 void adjust_managed_page_count(struct page *page, long count)
8071 atomic_long_add(count, &page_zone(page)->managed_pages);
8072 totalram_pages_add(count);
8073 #ifdef CONFIG_HIGHMEM
8074 if (PageHighMem(page))
8075 totalhigh_pages_add(count);
8078 EXPORT_SYMBOL(adjust_managed_page_count);
8080 unsigned long free_reserved_area(void *start, void *end, int poison, const char *s)
8083 unsigned long pages = 0;
8085 start = (void *)PAGE_ALIGN((unsigned long)start);
8086 end = (void *)((unsigned long)end & PAGE_MASK);
8087 for (pos = start; pos < end; pos += PAGE_SIZE, pages++) {
8088 struct page *page = virt_to_page(pos);
8089 void *direct_map_addr;
8092 * 'direct_map_addr' might be different from 'pos'
8093 * because some architectures' virt_to_page()
8094 * work with aliases. Getting the direct map
8095 * address ensures that we get a _writeable_
8096 * alias for the memset().
8098 direct_map_addr = page_address(page);
8100 * Perform a kasan-unchecked memset() since this memory
8101 * has not been initialized.
8103 direct_map_addr = kasan_reset_tag(direct_map_addr);
8104 if ((unsigned int)poison <= 0xFF)
8105 memset(direct_map_addr, poison, PAGE_SIZE);
8107 free_reserved_page(page);
8111 pr_info("Freeing %s memory: %ldK\n",
8112 s, pages << (PAGE_SHIFT - 10));
8117 void __init mem_init_print_info(void)
8119 unsigned long physpages, codesize, datasize, rosize, bss_size;
8120 unsigned long init_code_size, init_data_size;
8122 physpages = get_num_physpages();
8123 codesize = _etext - _stext;
8124 datasize = _edata - _sdata;
8125 rosize = __end_rodata - __start_rodata;
8126 bss_size = __bss_stop - __bss_start;
8127 init_data_size = __init_end - __init_begin;
8128 init_code_size = _einittext - _sinittext;
8131 * Detect special cases and adjust section sizes accordingly:
8132 * 1) .init.* may be embedded into .data sections
8133 * 2) .init.text.* may be out of [__init_begin, __init_end],
8134 * please refer to arch/tile/kernel/vmlinux.lds.S.
8135 * 3) .rodata.* may be embedded into .text or .data sections.
8137 #define adj_init_size(start, end, size, pos, adj) \
8139 if (start <= pos && pos < end && size > adj) \
8143 adj_init_size(__init_begin, __init_end, init_data_size,
8144 _sinittext, init_code_size);
8145 adj_init_size(_stext, _etext, codesize, _sinittext, init_code_size);
8146 adj_init_size(_sdata, _edata, datasize, __init_begin, init_data_size);
8147 adj_init_size(_stext, _etext, codesize, __start_rodata, rosize);
8148 adj_init_size(_sdata, _edata, datasize, __start_rodata, rosize);
8150 #undef adj_init_size
8152 pr_info("Memory: %luK/%luK available (%luK kernel code, %luK rwdata, %luK rodata, %luK init, %luK bss, %luK reserved, %luK cma-reserved"
8153 #ifdef CONFIG_HIGHMEM
8157 nr_free_pages() << (PAGE_SHIFT - 10),
8158 physpages << (PAGE_SHIFT - 10),
8159 codesize >> 10, datasize >> 10, rosize >> 10,
8160 (init_data_size + init_code_size) >> 10, bss_size >> 10,
8161 (physpages - totalram_pages() - totalcma_pages) << (PAGE_SHIFT - 10),
8162 totalcma_pages << (PAGE_SHIFT - 10)
8163 #ifdef CONFIG_HIGHMEM
8164 , totalhigh_pages() << (PAGE_SHIFT - 10)
8170 * set_dma_reserve - set the specified number of pages reserved in the first zone
8171 * @new_dma_reserve: The number of pages to mark reserved
8173 * The per-cpu batchsize and zone watermarks are determined by managed_pages.
8174 * In the DMA zone, a significant percentage may be consumed by kernel image
8175 * and other unfreeable allocations which can skew the watermarks badly. This
8176 * function may optionally be used to account for unfreeable pages in the
8177 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
8178 * smaller per-cpu batchsize.
8180 void __init set_dma_reserve(unsigned long new_dma_reserve)
8182 dma_reserve = new_dma_reserve;
8185 static int page_alloc_cpu_dead(unsigned int cpu)
8189 lru_add_drain_cpu(cpu);
8193 * Spill the event counters of the dead processor
8194 * into the current processors event counters.
8195 * This artificially elevates the count of the current
8198 vm_events_fold_cpu(cpu);
8201 * Zero the differential counters of the dead processor
8202 * so that the vm statistics are consistent.
8204 * This is only okay since the processor is dead and cannot
8205 * race with what we are doing.
8207 cpu_vm_stats_fold(cpu);
8209 for_each_populated_zone(zone)
8210 zone_pcp_update(zone, 0);
8215 static int page_alloc_cpu_online(unsigned int cpu)
8219 for_each_populated_zone(zone)
8220 zone_pcp_update(zone, 1);
8225 int hashdist = HASHDIST_DEFAULT;
8227 static int __init set_hashdist(char *str)
8231 hashdist = simple_strtoul(str, &str, 0);
8234 __setup("hashdist=", set_hashdist);
8237 void __init page_alloc_init(void)
8242 if (num_node_state(N_MEMORY) == 1)
8246 ret = cpuhp_setup_state_nocalls(CPUHP_PAGE_ALLOC,
8247 "mm/page_alloc:pcp",
8248 page_alloc_cpu_online,
8249 page_alloc_cpu_dead);
8254 * calculate_totalreserve_pages - called when sysctl_lowmem_reserve_ratio
8255 * or min_free_kbytes changes.
8257 static void calculate_totalreserve_pages(void)
8259 struct pglist_data *pgdat;
8260 unsigned long reserve_pages = 0;
8261 enum zone_type i, j;
8263 for_each_online_pgdat(pgdat) {
8265 pgdat->totalreserve_pages = 0;
8267 for (i = 0; i < MAX_NR_ZONES; i++) {
8268 struct zone *zone = pgdat->node_zones + i;
8270 unsigned long managed_pages = zone_managed_pages(zone);
8272 /* Find valid and maximum lowmem_reserve in the zone */
8273 for (j = i; j < MAX_NR_ZONES; j++) {
8274 if (zone->lowmem_reserve[j] > max)
8275 max = zone->lowmem_reserve[j];
8278 /* we treat the high watermark as reserved pages. */
8279 max += high_wmark_pages(zone);
8281 if (max > managed_pages)
8282 max = managed_pages;
8284 pgdat->totalreserve_pages += max;
8286 reserve_pages += max;
8289 totalreserve_pages = reserve_pages;
8293 * setup_per_zone_lowmem_reserve - called whenever
8294 * sysctl_lowmem_reserve_ratio changes. Ensures that each zone
8295 * has a correct pages reserved value, so an adequate number of
8296 * pages are left in the zone after a successful __alloc_pages().
8298 static void setup_per_zone_lowmem_reserve(void)
8300 struct pglist_data *pgdat;
8301 enum zone_type i, j;
8303 for_each_online_pgdat(pgdat) {
8304 for (i = 0; i < MAX_NR_ZONES - 1; i++) {
8305 struct zone *zone = &pgdat->node_zones[i];
8306 int ratio = sysctl_lowmem_reserve_ratio[i];
8307 bool clear = !ratio || !zone_managed_pages(zone);
8308 unsigned long managed_pages = 0;
8310 for (j = i + 1; j < MAX_NR_ZONES; j++) {
8311 struct zone *upper_zone = &pgdat->node_zones[j];
8313 managed_pages += zone_managed_pages(upper_zone);
8316 zone->lowmem_reserve[j] = 0;
8318 zone->lowmem_reserve[j] = managed_pages / ratio;
8323 /* update totalreserve_pages */
8324 calculate_totalreserve_pages();
8327 static void __setup_per_zone_wmarks(void)
8329 unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
8330 unsigned long lowmem_pages = 0;
8332 unsigned long flags;
8334 /* Calculate total number of !ZONE_HIGHMEM pages */
8335 for_each_zone(zone) {
8336 if (!is_highmem(zone))
8337 lowmem_pages += zone_managed_pages(zone);
8340 for_each_zone(zone) {
8343 spin_lock_irqsave(&zone->lock, flags);
8344 tmp = (u64)pages_min * zone_managed_pages(zone);
8345 do_div(tmp, lowmem_pages);
8346 if (is_highmem(zone)) {
8348 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
8349 * need highmem pages, so cap pages_min to a small
8352 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
8353 * deltas control async page reclaim, and so should
8354 * not be capped for highmem.
8356 unsigned long min_pages;
8358 min_pages = zone_managed_pages(zone) / 1024;
8359 min_pages = clamp(min_pages, SWAP_CLUSTER_MAX, 128UL);
8360 zone->_watermark[WMARK_MIN] = min_pages;
8363 * If it's a lowmem zone, reserve a number of pages
8364 * proportionate to the zone's size.
8366 zone->_watermark[WMARK_MIN] = tmp;
8370 * Set the kswapd watermarks distance according to the
8371 * scale factor in proportion to available memory, but
8372 * ensure a minimum size on small systems.
8374 tmp = max_t(u64, tmp >> 2,
8375 mult_frac(zone_managed_pages(zone),
8376 watermark_scale_factor, 10000));
8378 zone->watermark_boost = 0;
8379 zone->_watermark[WMARK_LOW] = min_wmark_pages(zone) + tmp;
8380 zone->_watermark[WMARK_HIGH] = min_wmark_pages(zone) + tmp * 2;
8382 spin_unlock_irqrestore(&zone->lock, flags);
8385 /* update totalreserve_pages */
8386 calculate_totalreserve_pages();
8390 * setup_per_zone_wmarks - called when min_free_kbytes changes
8391 * or when memory is hot-{added|removed}
8393 * Ensures that the watermark[min,low,high] values for each zone are set
8394 * correctly with respect to min_free_kbytes.
8396 void setup_per_zone_wmarks(void)
8399 static DEFINE_SPINLOCK(lock);
8402 __setup_per_zone_wmarks();
8406 * The watermark size have changed so update the pcpu batch
8407 * and high limits or the limits may be inappropriate.
8410 zone_pcp_update(zone, 0);
8414 * Initialise min_free_kbytes.
8416 * For small machines we want it small (128k min). For large machines
8417 * we want it large (256MB max). But it is not linear, because network
8418 * bandwidth does not increase linearly with machine size. We use
8420 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
8421 * min_free_kbytes = sqrt(lowmem_kbytes * 16)
8437 int __meminit init_per_zone_wmark_min(void)
8439 unsigned long lowmem_kbytes;
8440 int new_min_free_kbytes;
8442 lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
8443 new_min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
8445 if (new_min_free_kbytes > user_min_free_kbytes) {
8446 min_free_kbytes = new_min_free_kbytes;
8447 if (min_free_kbytes < 128)
8448 min_free_kbytes = 128;
8449 if (min_free_kbytes > 262144)
8450 min_free_kbytes = 262144;
8452 pr_warn("min_free_kbytes is not updated to %d because user defined value %d is preferred\n",
8453 new_min_free_kbytes, user_min_free_kbytes);
8455 setup_per_zone_wmarks();
8456 refresh_zone_stat_thresholds();
8457 setup_per_zone_lowmem_reserve();
8460 setup_min_unmapped_ratio();
8461 setup_min_slab_ratio();
8464 khugepaged_min_free_kbytes_update();
8468 postcore_initcall(init_per_zone_wmark_min)
8471 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
8472 * that we can call two helper functions whenever min_free_kbytes
8475 int min_free_kbytes_sysctl_handler(struct ctl_table *table, int write,
8476 void *buffer, size_t *length, loff_t *ppos)
8480 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
8485 user_min_free_kbytes = min_free_kbytes;
8486 setup_per_zone_wmarks();
8491 int watermark_scale_factor_sysctl_handler(struct ctl_table *table, int write,
8492 void *buffer, size_t *length, loff_t *ppos)
8496 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
8501 setup_per_zone_wmarks();
8507 static void setup_min_unmapped_ratio(void)
8512 for_each_online_pgdat(pgdat)
8513 pgdat->min_unmapped_pages = 0;
8516 zone->zone_pgdat->min_unmapped_pages += (zone_managed_pages(zone) *
8517 sysctl_min_unmapped_ratio) / 100;
8521 int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *table, int write,
8522 void *buffer, size_t *length, loff_t *ppos)
8526 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
8530 setup_min_unmapped_ratio();
8535 static void setup_min_slab_ratio(void)
8540 for_each_online_pgdat(pgdat)
8541 pgdat->min_slab_pages = 0;
8544 zone->zone_pgdat->min_slab_pages += (zone_managed_pages(zone) *
8545 sysctl_min_slab_ratio) / 100;
8548 int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *table, int write,
8549 void *buffer, size_t *length, loff_t *ppos)
8553 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
8557 setup_min_slab_ratio();
8564 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
8565 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
8566 * whenever sysctl_lowmem_reserve_ratio changes.
8568 * The reserve ratio obviously has absolutely no relation with the
8569 * minimum watermarks. The lowmem reserve ratio can only make sense
8570 * if in function of the boot time zone sizes.
8572 int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *table, int write,
8573 void *buffer, size_t *length, loff_t *ppos)
8577 proc_dointvec_minmax(table, write, buffer, length, ppos);
8579 for (i = 0; i < MAX_NR_ZONES; i++) {
8580 if (sysctl_lowmem_reserve_ratio[i] < 1)
8581 sysctl_lowmem_reserve_ratio[i] = 0;
8584 setup_per_zone_lowmem_reserve();
8589 * percpu_pagelist_high_fraction - changes the pcp->high for each zone on each
8590 * cpu. It is the fraction of total pages in each zone that a hot per cpu
8591 * pagelist can have before it gets flushed back to buddy allocator.
8593 int percpu_pagelist_high_fraction_sysctl_handler(struct ctl_table *table,
8594 int write, void *buffer, size_t *length, loff_t *ppos)
8597 int old_percpu_pagelist_high_fraction;
8600 mutex_lock(&pcp_batch_high_lock);
8601 old_percpu_pagelist_high_fraction = percpu_pagelist_high_fraction;
8603 ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
8604 if (!write || ret < 0)
8607 /* Sanity checking to avoid pcp imbalance */
8608 if (percpu_pagelist_high_fraction &&
8609 percpu_pagelist_high_fraction < MIN_PERCPU_PAGELIST_HIGH_FRACTION) {
8610 percpu_pagelist_high_fraction = old_percpu_pagelist_high_fraction;
8616 if (percpu_pagelist_high_fraction == old_percpu_pagelist_high_fraction)
8619 for_each_populated_zone(zone)
8620 zone_set_pageset_high_and_batch(zone, 0);
8622 mutex_unlock(&pcp_batch_high_lock);
8626 #ifndef __HAVE_ARCH_RESERVED_KERNEL_PAGES
8628 * Returns the number of pages that arch has reserved but
8629 * is not known to alloc_large_system_hash().
8631 static unsigned long __init arch_reserved_kernel_pages(void)
8638 * Adaptive scale is meant to reduce sizes of hash tables on large memory
8639 * machines. As memory size is increased the scale is also increased but at
8640 * slower pace. Starting from ADAPT_SCALE_BASE (64G), every time memory
8641 * quadruples the scale is increased by one, which means the size of hash table
8642 * only doubles, instead of quadrupling as well.
8643 * Because 32-bit systems cannot have large physical memory, where this scaling
8644 * makes sense, it is disabled on such platforms.
8646 #if __BITS_PER_LONG > 32
8647 #define ADAPT_SCALE_BASE (64ul << 30)
8648 #define ADAPT_SCALE_SHIFT 2
8649 #define ADAPT_SCALE_NPAGES (ADAPT_SCALE_BASE >> PAGE_SHIFT)
8653 * allocate a large system hash table from bootmem
8654 * - it is assumed that the hash table must contain an exact power-of-2
8655 * quantity of entries
8656 * - limit is the number of hash buckets, not the total allocation size
8658 void *__init alloc_large_system_hash(const char *tablename,
8659 unsigned long bucketsize,
8660 unsigned long numentries,
8663 unsigned int *_hash_shift,
8664 unsigned int *_hash_mask,
8665 unsigned long low_limit,
8666 unsigned long high_limit)
8668 unsigned long long max = high_limit;
8669 unsigned long log2qty, size;
8675 /* allow the kernel cmdline to have a say */
8677 /* round applicable memory size up to nearest megabyte */
8678 numentries = nr_kernel_pages;
8679 numentries -= arch_reserved_kernel_pages();
8681 /* It isn't necessary when PAGE_SIZE >= 1MB */
8682 if (PAGE_SHIFT < 20)
8683 numentries = round_up(numentries, (1<<20)/PAGE_SIZE);
8685 #if __BITS_PER_LONG > 32
8687 unsigned long adapt;
8689 for (adapt = ADAPT_SCALE_NPAGES; adapt < numentries;
8690 adapt <<= ADAPT_SCALE_SHIFT)
8695 /* limit to 1 bucket per 2^scale bytes of low memory */
8696 if (scale > PAGE_SHIFT)
8697 numentries >>= (scale - PAGE_SHIFT);
8699 numentries <<= (PAGE_SHIFT - scale);
8701 /* Make sure we've got at least a 0-order allocation.. */
8702 if (unlikely(flags & HASH_SMALL)) {
8703 /* Makes no sense without HASH_EARLY */
8704 WARN_ON(!(flags & HASH_EARLY));
8705 if (!(numentries >> *_hash_shift)) {
8706 numentries = 1UL << *_hash_shift;
8707 BUG_ON(!numentries);
8709 } else if (unlikely((numentries * bucketsize) < PAGE_SIZE))
8710 numentries = PAGE_SIZE / bucketsize;
8712 numentries = roundup_pow_of_two(numentries);
8714 /* limit allocation size to 1/16 total memory by default */
8716 max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
8717 do_div(max, bucketsize);
8719 max = min(max, 0x80000000ULL);
8721 if (numentries < low_limit)
8722 numentries = low_limit;
8723 if (numentries > max)
8726 log2qty = ilog2(numentries);
8728 gfp_flags = (flags & HASH_ZERO) ? GFP_ATOMIC | __GFP_ZERO : GFP_ATOMIC;
8731 size = bucketsize << log2qty;
8732 if (flags & HASH_EARLY) {
8733 if (flags & HASH_ZERO)
8734 table = memblock_alloc(size, SMP_CACHE_BYTES);
8736 table = memblock_alloc_raw(size,
8738 } else if (get_order(size) >= MAX_ORDER || hashdist) {
8739 table = __vmalloc(size, gfp_flags);
8741 huge = is_vm_area_hugepages(table);
8744 * If bucketsize is not a power-of-two, we may free
8745 * some pages at the end of hash table which
8746 * alloc_pages_exact() automatically does
8748 table = alloc_pages_exact(size, gfp_flags);
8749 kmemleak_alloc(table, size, 1, gfp_flags);
8751 } while (!table && size > PAGE_SIZE && --log2qty);
8754 panic("Failed to allocate %s hash table\n", tablename);
8756 pr_info("%s hash table entries: %ld (order: %d, %lu bytes, %s)\n",
8757 tablename, 1UL << log2qty, ilog2(size) - PAGE_SHIFT, size,
8758 virt ? (huge ? "vmalloc hugepage" : "vmalloc") : "linear");
8761 *_hash_shift = log2qty;
8763 *_hash_mask = (1 << log2qty) - 1;
8769 * This function checks whether pageblock includes unmovable pages or not.
8771 * PageLRU check without isolation or lru_lock could race so that
8772 * MIGRATE_MOVABLE block might include unmovable pages. And __PageMovable
8773 * check without lock_page also may miss some movable non-lru pages at
8774 * race condition. So you can't expect this function should be exact.
8776 * Returns a page without holding a reference. If the caller wants to
8777 * dereference that page (e.g., dumping), it has to make sure that it
8778 * cannot get removed (e.g., via memory unplug) concurrently.
8781 struct page *has_unmovable_pages(struct zone *zone, struct page *page,
8782 int migratetype, int flags)
8784 unsigned long iter = 0;
8785 unsigned long pfn = page_to_pfn(page);
8786 unsigned long offset = pfn % pageblock_nr_pages;
8788 if (is_migrate_cma_page(page)) {
8790 * CMA allocations (alloc_contig_range) really need to mark
8791 * isolate CMA pageblocks even when they are not movable in fact
8792 * so consider them movable here.
8794 if (is_migrate_cma(migratetype))
8800 for (; iter < pageblock_nr_pages - offset; iter++) {
8801 if (!pfn_valid_within(pfn + iter))
8804 page = pfn_to_page(pfn + iter);
8807 * Both, bootmem allocations and memory holes are marked
8808 * PG_reserved and are unmovable. We can even have unmovable
8809 * allocations inside ZONE_MOVABLE, for example when
8810 * specifying "movablecore".
8812 if (PageReserved(page))
8816 * If the zone is movable and we have ruled out all reserved
8817 * pages then it should be reasonably safe to assume the rest
8820 if (zone_idx(zone) == ZONE_MOVABLE)
8824 * Hugepages are not in LRU lists, but they're movable.
8825 * THPs are on the LRU, but need to be counted as #small pages.
8826 * We need not scan over tail pages because we don't
8827 * handle each tail page individually in migration.
8829 if (PageHuge(page) || PageTransCompound(page)) {
8830 struct page *head = compound_head(page);
8831 unsigned int skip_pages;
8833 if (PageHuge(page)) {
8834 if (!hugepage_migration_supported(page_hstate(head)))
8836 } else if (!PageLRU(head) && !__PageMovable(head)) {
8840 skip_pages = compound_nr(head) - (page - head);
8841 iter += skip_pages - 1;
8846 * We can't use page_count without pin a page
8847 * because another CPU can free compound page.
8848 * This check already skips compound tails of THP
8849 * because their page->_refcount is zero at all time.
8851 if (!page_ref_count(page)) {
8852 if (PageBuddy(page))
8853 iter += (1 << buddy_order(page)) - 1;
8858 * The HWPoisoned page may be not in buddy system, and
8859 * page_count() is not 0.
8861 if ((flags & MEMORY_OFFLINE) && PageHWPoison(page))
8865 * We treat all PageOffline() pages as movable when offlining
8866 * to give drivers a chance to decrement their reference count
8867 * in MEM_GOING_OFFLINE in order to indicate that these pages
8868 * can be offlined as there are no direct references anymore.
8869 * For actually unmovable PageOffline() where the driver does
8870 * not support this, we will fail later when trying to actually
8871 * move these pages that still have a reference count > 0.
8872 * (false negatives in this function only)
8874 if ((flags & MEMORY_OFFLINE) && PageOffline(page))
8877 if (__PageMovable(page) || PageLRU(page))
8881 * If there are RECLAIMABLE pages, we need to check
8882 * it. But now, memory offline itself doesn't call
8883 * shrink_node_slabs() and it still to be fixed.
8890 #ifdef CONFIG_CONTIG_ALLOC
8891 static unsigned long pfn_max_align_down(unsigned long pfn)
8893 return pfn & ~(max_t(unsigned long, MAX_ORDER_NR_PAGES,
8894 pageblock_nr_pages) - 1);
8897 static unsigned long pfn_max_align_up(unsigned long pfn)
8899 return ALIGN(pfn, max_t(unsigned long, MAX_ORDER_NR_PAGES,
8900 pageblock_nr_pages));
8903 #if defined(CONFIG_DYNAMIC_DEBUG) || \
8904 (defined(CONFIG_DYNAMIC_DEBUG_CORE) && defined(DYNAMIC_DEBUG_MODULE))
8905 /* Usage: See admin-guide/dynamic-debug-howto.rst */
8906 static void alloc_contig_dump_pages(struct list_head *page_list)
8908 DEFINE_DYNAMIC_DEBUG_METADATA(descriptor, "migrate failure");
8910 if (DYNAMIC_DEBUG_BRANCH(descriptor)) {
8914 list_for_each_entry(page, page_list, lru)
8915 dump_page(page, "migration failure");
8919 static inline void alloc_contig_dump_pages(struct list_head *page_list)
8924 /* [start, end) must belong to a single zone. */
8925 static int __alloc_contig_migrate_range(struct compact_control *cc,
8926 unsigned long start, unsigned long end)
8928 /* This function is based on compact_zone() from compaction.c. */
8929 unsigned int nr_reclaimed;
8930 unsigned long pfn = start;
8931 unsigned int tries = 0;
8933 struct migration_target_control mtc = {
8934 .nid = zone_to_nid(cc->zone),
8935 .gfp_mask = GFP_USER | __GFP_MOVABLE | __GFP_RETRY_MAYFAIL,
8938 lru_cache_disable();
8940 while (pfn < end || !list_empty(&cc->migratepages)) {
8941 if (fatal_signal_pending(current)) {
8946 if (list_empty(&cc->migratepages)) {
8947 cc->nr_migratepages = 0;
8948 ret = isolate_migratepages_range(cc, pfn, end);
8949 if (ret && ret != -EAGAIN)
8951 pfn = cc->migrate_pfn;
8953 } else if (++tries == 5) {
8958 nr_reclaimed = reclaim_clean_pages_from_list(cc->zone,
8960 cc->nr_migratepages -= nr_reclaimed;
8962 ret = migrate_pages(&cc->migratepages, alloc_migration_target,
8963 NULL, (unsigned long)&mtc, cc->mode, MR_CONTIG_RANGE);
8966 * On -ENOMEM, migrate_pages() bails out right away. It is pointless
8967 * to retry again over this error, so do the same here.
8976 alloc_contig_dump_pages(&cc->migratepages);
8977 putback_movable_pages(&cc->migratepages);
8984 * alloc_contig_range() -- tries to allocate given range of pages
8985 * @start: start PFN to allocate
8986 * @end: one-past-the-last PFN to allocate
8987 * @migratetype: migratetype of the underlying pageblocks (either
8988 * #MIGRATE_MOVABLE or #MIGRATE_CMA). All pageblocks
8989 * in range must have the same migratetype and it must
8990 * be either of the two.
8991 * @gfp_mask: GFP mask to use during compaction
8993 * The PFN range does not have to be pageblock or MAX_ORDER_NR_PAGES
8994 * aligned. The PFN range must belong to a single zone.
8996 * The first thing this routine does is attempt to MIGRATE_ISOLATE all
8997 * pageblocks in the range. Once isolated, the pageblocks should not
8998 * be modified by others.
9000 * Return: zero on success or negative error code. On success all
9001 * pages which PFN is in [start, end) are allocated for the caller and
9002 * need to be freed with free_contig_range().
9004 int alloc_contig_range(unsigned long start, unsigned long end,
9005 unsigned migratetype, gfp_t gfp_mask)
9007 unsigned long outer_start, outer_end;
9011 struct compact_control cc = {
9012 .nr_migratepages = 0,
9014 .zone = page_zone(pfn_to_page(start)),
9015 .mode = MIGRATE_SYNC,
9016 .ignore_skip_hint = true,
9017 .no_set_skip_hint = true,
9018 .gfp_mask = current_gfp_context(gfp_mask),
9019 .alloc_contig = true,
9021 INIT_LIST_HEAD(&cc.migratepages);
9024 * What we do here is we mark all pageblocks in range as
9025 * MIGRATE_ISOLATE. Because pageblock and max order pages may
9026 * have different sizes, and due to the way page allocator
9027 * work, we align the range to biggest of the two pages so
9028 * that page allocator won't try to merge buddies from
9029 * different pageblocks and change MIGRATE_ISOLATE to some
9030 * other migration type.
9032 * Once the pageblocks are marked as MIGRATE_ISOLATE, we
9033 * migrate the pages from an unaligned range (ie. pages that
9034 * we are interested in). This will put all the pages in
9035 * range back to page allocator as MIGRATE_ISOLATE.
9037 * When this is done, we take the pages in range from page
9038 * allocator removing them from the buddy system. This way
9039 * page allocator will never consider using them.
9041 * This lets us mark the pageblocks back as
9042 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the
9043 * aligned range but not in the unaligned, original range are
9044 * put back to page allocator so that buddy can use them.
9047 ret = start_isolate_page_range(pfn_max_align_down(start),
9048 pfn_max_align_up(end), migratetype, 0);
9052 drain_all_pages(cc.zone);
9055 * In case of -EBUSY, we'd like to know which page causes problem.
9056 * So, just fall through. test_pages_isolated() has a tracepoint
9057 * which will report the busy page.
9059 * It is possible that busy pages could become available before
9060 * the call to test_pages_isolated, and the range will actually be
9061 * allocated. So, if we fall through be sure to clear ret so that
9062 * -EBUSY is not accidentally used or returned to caller.
9064 ret = __alloc_contig_migrate_range(&cc, start, end);
9065 if (ret && ret != -EBUSY)
9070 * Pages from [start, end) are within a MAX_ORDER_NR_PAGES
9071 * aligned blocks that are marked as MIGRATE_ISOLATE. What's
9072 * more, all pages in [start, end) are free in page allocator.
9073 * What we are going to do is to allocate all pages from
9074 * [start, end) (that is remove them from page allocator).
9076 * The only problem is that pages at the beginning and at the
9077 * end of interesting range may be not aligned with pages that
9078 * page allocator holds, ie. they can be part of higher order
9079 * pages. Because of this, we reserve the bigger range and
9080 * once this is done free the pages we are not interested in.
9082 * We don't have to hold zone->lock here because the pages are
9083 * isolated thus they won't get removed from buddy.
9087 outer_start = start;
9088 while (!PageBuddy(pfn_to_page(outer_start))) {
9089 if (++order >= MAX_ORDER) {
9090 outer_start = start;
9093 outer_start &= ~0UL << order;
9096 if (outer_start != start) {
9097 order = buddy_order(pfn_to_page(outer_start));
9100 * outer_start page could be small order buddy page and
9101 * it doesn't include start page. Adjust outer_start
9102 * in this case to report failed page properly
9103 * on tracepoint in test_pages_isolated()
9105 if (outer_start + (1UL << order) <= start)
9106 outer_start = start;
9109 /* Make sure the range is really isolated. */
9110 if (test_pages_isolated(outer_start, end, 0)) {
9115 /* Grab isolated pages from freelists. */
9116 outer_end = isolate_freepages_range(&cc, outer_start, end);
9122 /* Free head and tail (if any) */
9123 if (start != outer_start)
9124 free_contig_range(outer_start, start - outer_start);
9125 if (end != outer_end)
9126 free_contig_range(end, outer_end - end);
9129 undo_isolate_page_range(pfn_max_align_down(start),
9130 pfn_max_align_up(end), migratetype);
9133 EXPORT_SYMBOL(alloc_contig_range);
9135 static int __alloc_contig_pages(unsigned long start_pfn,
9136 unsigned long nr_pages, gfp_t gfp_mask)
9138 unsigned long end_pfn = start_pfn + nr_pages;
9140 return alloc_contig_range(start_pfn, end_pfn, MIGRATE_MOVABLE,
9144 static bool pfn_range_valid_contig(struct zone *z, unsigned long start_pfn,
9145 unsigned long nr_pages)
9147 unsigned long i, end_pfn = start_pfn + nr_pages;
9150 for (i = start_pfn; i < end_pfn; i++) {
9151 page = pfn_to_online_page(i);
9155 if (page_zone(page) != z)
9158 if (PageReserved(page))
9164 static bool zone_spans_last_pfn(const struct zone *zone,
9165 unsigned long start_pfn, unsigned long nr_pages)
9167 unsigned long last_pfn = start_pfn + nr_pages - 1;
9169 return zone_spans_pfn(zone, last_pfn);
9173 * alloc_contig_pages() -- tries to find and allocate contiguous range of pages
9174 * @nr_pages: Number of contiguous pages to allocate
9175 * @gfp_mask: GFP mask to limit search and used during compaction
9177 * @nodemask: Mask for other possible nodes
9179 * This routine is a wrapper around alloc_contig_range(). It scans over zones
9180 * on an applicable zonelist to find a contiguous pfn range which can then be
9181 * tried for allocation with alloc_contig_range(). This routine is intended
9182 * for allocation requests which can not be fulfilled with the buddy allocator.
9184 * The allocated memory is always aligned to a page boundary. If nr_pages is a
9185 * power of two then the alignment is guaranteed to be to the given nr_pages
9186 * (e.g. 1GB request would be aligned to 1GB).
9188 * Allocated pages can be freed with free_contig_range() or by manually calling
9189 * __free_page() on each allocated page.
9191 * Return: pointer to contiguous pages on success, or NULL if not successful.
9193 struct page *alloc_contig_pages(unsigned long nr_pages, gfp_t gfp_mask,
9194 int nid, nodemask_t *nodemask)
9196 unsigned long ret, pfn, flags;
9197 struct zonelist *zonelist;
9201 zonelist = node_zonelist(nid, gfp_mask);
9202 for_each_zone_zonelist_nodemask(zone, z, zonelist,
9203 gfp_zone(gfp_mask), nodemask) {
9204 spin_lock_irqsave(&zone->lock, flags);
9206 pfn = ALIGN(zone->zone_start_pfn, nr_pages);
9207 while (zone_spans_last_pfn(zone, pfn, nr_pages)) {
9208 if (pfn_range_valid_contig(zone, pfn, nr_pages)) {
9210 * We release the zone lock here because
9211 * alloc_contig_range() will also lock the zone
9212 * at some point. If there's an allocation
9213 * spinning on this lock, it may win the race
9214 * and cause alloc_contig_range() to fail...
9216 spin_unlock_irqrestore(&zone->lock, flags);
9217 ret = __alloc_contig_pages(pfn, nr_pages,
9220 return pfn_to_page(pfn);
9221 spin_lock_irqsave(&zone->lock, flags);
9225 spin_unlock_irqrestore(&zone->lock, flags);
9229 #endif /* CONFIG_CONTIG_ALLOC */
9231 void free_contig_range(unsigned long pfn, unsigned long nr_pages)
9233 unsigned long count = 0;
9235 for (; nr_pages--; pfn++) {
9236 struct page *page = pfn_to_page(pfn);
9238 count += page_count(page) != 1;
9241 WARN(count != 0, "%lu pages are still in use!\n", count);
9243 EXPORT_SYMBOL(free_contig_range);
9246 * The zone indicated has a new number of managed_pages; batch sizes and percpu
9247 * page high values need to be recalculated.
9249 void zone_pcp_update(struct zone *zone, int cpu_online)
9251 mutex_lock(&pcp_batch_high_lock);
9252 zone_set_pageset_high_and_batch(zone, cpu_online);
9253 mutex_unlock(&pcp_batch_high_lock);
9257 * Effectively disable pcplists for the zone by setting the high limit to 0
9258 * and draining all cpus. A concurrent page freeing on another CPU that's about
9259 * to put the page on pcplist will either finish before the drain and the page
9260 * will be drained, or observe the new high limit and skip the pcplist.
9262 * Must be paired with a call to zone_pcp_enable().
9264 void zone_pcp_disable(struct zone *zone)
9266 mutex_lock(&pcp_batch_high_lock);
9267 __zone_set_pageset_high_and_batch(zone, 0, 1);
9268 __drain_all_pages(zone, true);
9271 void zone_pcp_enable(struct zone *zone)
9273 __zone_set_pageset_high_and_batch(zone, zone->pageset_high, zone->pageset_batch);
9274 mutex_unlock(&pcp_batch_high_lock);
9277 void zone_pcp_reset(struct zone *zone)
9280 struct per_cpu_zonestat *pzstats;
9282 if (zone->per_cpu_pageset != &boot_pageset) {
9283 for_each_online_cpu(cpu) {
9284 pzstats = per_cpu_ptr(zone->per_cpu_zonestats, cpu);
9285 drain_zonestat(zone, pzstats);
9287 free_percpu(zone->per_cpu_pageset);
9288 free_percpu(zone->per_cpu_zonestats);
9289 zone->per_cpu_pageset = &boot_pageset;
9290 zone->per_cpu_zonestats = &boot_zonestats;
9294 #ifdef CONFIG_MEMORY_HOTREMOVE
9296 * All pages in the range must be in a single zone, must not contain holes,
9297 * must span full sections, and must be isolated before calling this function.
9299 void __offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
9301 unsigned long pfn = start_pfn;
9305 unsigned long flags;
9307 offline_mem_sections(pfn, end_pfn);
9308 zone = page_zone(pfn_to_page(pfn));
9309 spin_lock_irqsave(&zone->lock, flags);
9310 while (pfn < end_pfn) {
9311 page = pfn_to_page(pfn);
9313 * The HWPoisoned page may be not in buddy system, and
9314 * page_count() is not 0.
9316 if (unlikely(!PageBuddy(page) && PageHWPoison(page))) {
9321 * At this point all remaining PageOffline() pages have a
9322 * reference count of 0 and can simply be skipped.
9324 if (PageOffline(page)) {
9325 BUG_ON(page_count(page));
9326 BUG_ON(PageBuddy(page));
9331 BUG_ON(page_count(page));
9332 BUG_ON(!PageBuddy(page));
9333 order = buddy_order(page);
9334 del_page_from_free_list(page, zone, order);
9335 pfn += (1 << order);
9337 spin_unlock_irqrestore(&zone->lock, flags);
9341 bool is_free_buddy_page(struct page *page)
9343 struct zone *zone = page_zone(page);
9344 unsigned long pfn = page_to_pfn(page);
9345 unsigned long flags;
9348 spin_lock_irqsave(&zone->lock, flags);
9349 for (order = 0; order < MAX_ORDER; order++) {
9350 struct page *page_head = page - (pfn & ((1 << order) - 1));
9352 if (PageBuddy(page_head) && buddy_order(page_head) >= order)
9355 spin_unlock_irqrestore(&zone->lock, flags);
9357 return order < MAX_ORDER;
9360 #ifdef CONFIG_MEMORY_FAILURE
9362 * Break down a higher-order page in sub-pages, and keep our target out of
9365 static void break_down_buddy_pages(struct zone *zone, struct page *page,
9366 struct page *target, int low, int high,
9369 unsigned long size = 1 << high;
9370 struct page *current_buddy, *next_page;
9372 while (high > low) {
9376 if (target >= &page[size]) {
9377 next_page = page + size;
9378 current_buddy = page;
9381 current_buddy = page + size;
9384 if (set_page_guard(zone, current_buddy, high, migratetype))
9387 if (current_buddy != target) {
9388 add_to_free_list(current_buddy, zone, high, migratetype);
9389 set_buddy_order(current_buddy, high);
9396 * Take a page that will be marked as poisoned off the buddy allocator.
9398 bool take_page_off_buddy(struct page *page)
9400 struct zone *zone = page_zone(page);
9401 unsigned long pfn = page_to_pfn(page);
9402 unsigned long flags;
9406 spin_lock_irqsave(&zone->lock, flags);
9407 for (order = 0; order < MAX_ORDER; order++) {
9408 struct page *page_head = page - (pfn & ((1 << order) - 1));
9409 int page_order = buddy_order(page_head);
9411 if (PageBuddy(page_head) && page_order >= order) {
9412 unsigned long pfn_head = page_to_pfn(page_head);
9413 int migratetype = get_pfnblock_migratetype(page_head,
9416 del_page_from_free_list(page_head, zone, page_order);
9417 break_down_buddy_pages(zone, page_head, page, 0,
9418 page_order, migratetype);
9419 if (!is_migrate_isolate(migratetype))
9420 __mod_zone_freepage_state(zone, -1, migratetype);
9424 if (page_count(page_head) > 0)
9427 spin_unlock_irqrestore(&zone->lock, flags);