1 // SPDX-License-Identifier: GPL-2.0-only
3 * linux/mm/page_alloc.c
5 * Manages the free list, the system allocates free pages here.
6 * Note that kmalloc() lives in slab.c
8 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
9 * Swap reorganised 29.12.95, Stephen Tweedie
10 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
11 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
12 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
13 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000
14 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
15 * (lots of bits borrowed from Ingo Molnar & Andrew Morton)
18 #include <linux/stddef.h>
20 #include <linux/highmem.h>
21 #include <linux/swap.h>
22 #include <linux/swapops.h>
23 #include <linux/interrupt.h>
24 #include <linux/pagemap.h>
25 #include <linux/jiffies.h>
26 #include <linux/memblock.h>
27 #include <linux/compiler.h>
28 #include <linux/kernel.h>
29 #include <linux/kasan.h>
30 #include <linux/module.h>
31 #include <linux/suspend.h>
32 #include <linux/pagevec.h>
33 #include <linux/blkdev.h>
34 #include <linux/slab.h>
35 #include <linux/ratelimit.h>
36 #include <linux/oom.h>
37 #include <linux/topology.h>
38 #include <linux/sysctl.h>
39 #include <linux/cpu.h>
40 #include <linux/cpuset.h>
41 #include <linux/memory_hotplug.h>
42 #include <linux/nodemask.h>
43 #include <linux/vmalloc.h>
44 #include <linux/vmstat.h>
45 #include <linux/mempolicy.h>
46 #include <linux/memremap.h>
47 #include <linux/stop_machine.h>
48 #include <linux/random.h>
49 #include <linux/sort.h>
50 #include <linux/pfn.h>
51 #include <linux/backing-dev.h>
52 #include <linux/fault-inject.h>
53 #include <linux/page-isolation.h>
54 #include <linux/debugobjects.h>
55 #include <linux/kmemleak.h>
56 #include <linux/compaction.h>
57 #include <trace/events/kmem.h>
58 #include <trace/events/oom.h>
59 #include <linux/prefetch.h>
60 #include <linux/mm_inline.h>
61 #include <linux/mmu_notifier.h>
62 #include <linux/migrate.h>
63 #include <linux/hugetlb.h>
64 #include <linux/sched/rt.h>
65 #include <linux/sched/mm.h>
66 #include <linux/page_owner.h>
67 #include <linux/page_table_check.h>
68 #include <linux/kthread.h>
69 #include <linux/memcontrol.h>
70 #include <linux/ftrace.h>
71 #include <linux/lockdep.h>
72 #include <linux/nmi.h>
73 #include <linux/psi.h>
74 #include <linux/padata.h>
75 #include <linux/khugepaged.h>
76 #include <linux/buffer_head.h>
77 #include <linux/delayacct.h>
78 #include <asm/sections.h>
79 #include <asm/tlbflush.h>
80 #include <asm/div64.h>
83 #include "page_reporting.h"
85 /* Free Page Internal flags: for internal, non-pcp variants of free_pages(). */
86 typedef int __bitwise fpi_t;
88 /* No special request */
89 #define FPI_NONE ((__force fpi_t)0)
92 * Skip free page reporting notification for the (possibly merged) page.
93 * This does not hinder free page reporting from grabbing the page,
94 * reporting it and marking it "reported" - it only skips notifying
95 * the free page reporting infrastructure about a newly freed page. For
96 * example, used when temporarily pulling a page from a freelist and
97 * putting it back unmodified.
99 #define FPI_SKIP_REPORT_NOTIFY ((__force fpi_t)BIT(0))
102 * Place the (possibly merged) page to the tail of the freelist. Will ignore
103 * page shuffling (relevant code - e.g., memory onlining - is expected to
104 * shuffle the whole zone).
106 * Note: No code should rely on this flag for correctness - it's purely
107 * to allow for optimizations when handing back either fresh pages
108 * (memory onlining) or untouched pages (page isolation, free page
111 #define FPI_TO_TAIL ((__force fpi_t)BIT(1))
114 * Don't poison memory with KASAN (only for the tag-based modes).
115 * During boot, all non-reserved memblock memory is exposed to page_alloc.
116 * Poisoning all that memory lengthens boot time, especially on systems with
117 * large amount of RAM. This flag is used to skip that poisoning.
118 * This is only done for the tag-based KASAN modes, as those are able to
119 * detect memory corruptions with the memory tags assigned by default.
120 * All memory allocated normally after boot gets poisoned as usual.
122 #define FPI_SKIP_KASAN_POISON ((__force fpi_t)BIT(2))
124 /* prevent >1 _updater_ of zone percpu pageset ->high and ->batch fields */
125 static DEFINE_MUTEX(pcp_batch_high_lock);
126 #define MIN_PERCPU_PAGELIST_HIGH_FRACTION (8)
131 static DEFINE_PER_CPU(struct pagesets, pagesets) = {
132 .lock = INIT_LOCAL_LOCK(lock),
135 #ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
136 DEFINE_PER_CPU(int, numa_node);
137 EXPORT_PER_CPU_SYMBOL(numa_node);
140 DEFINE_STATIC_KEY_TRUE(vm_numa_stat_key);
142 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
144 * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
145 * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
146 * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
147 * defined in <linux/topology.h>.
149 DEFINE_PER_CPU(int, _numa_mem_); /* Kernel "local memory" node */
150 EXPORT_PER_CPU_SYMBOL(_numa_mem_);
153 /* work_structs for global per-cpu drains */
156 struct work_struct work;
158 static DEFINE_MUTEX(pcpu_drain_mutex);
159 static DEFINE_PER_CPU(struct pcpu_drain, pcpu_drain);
161 #ifdef CONFIG_GCC_PLUGIN_LATENT_ENTROPY
162 volatile unsigned long latent_entropy __latent_entropy;
163 EXPORT_SYMBOL(latent_entropy);
167 * Array of node states.
169 nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
170 [N_POSSIBLE] = NODE_MASK_ALL,
171 [N_ONLINE] = { { [0] = 1UL } },
173 [N_NORMAL_MEMORY] = { { [0] = 1UL } },
174 #ifdef CONFIG_HIGHMEM
175 [N_HIGH_MEMORY] = { { [0] = 1UL } },
177 [N_MEMORY] = { { [0] = 1UL } },
178 [N_CPU] = { { [0] = 1UL } },
181 EXPORT_SYMBOL(node_states);
183 atomic_long_t _totalram_pages __read_mostly;
184 EXPORT_SYMBOL(_totalram_pages);
185 unsigned long totalreserve_pages __read_mostly;
186 unsigned long totalcma_pages __read_mostly;
188 int percpu_pagelist_high_fraction;
189 gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
190 DEFINE_STATIC_KEY_MAYBE(CONFIG_INIT_ON_ALLOC_DEFAULT_ON, init_on_alloc);
191 EXPORT_SYMBOL(init_on_alloc);
193 DEFINE_STATIC_KEY_MAYBE(CONFIG_INIT_ON_FREE_DEFAULT_ON, init_on_free);
194 EXPORT_SYMBOL(init_on_free);
196 static bool _init_on_alloc_enabled_early __read_mostly
197 = IS_ENABLED(CONFIG_INIT_ON_ALLOC_DEFAULT_ON);
198 static int __init early_init_on_alloc(char *buf)
201 return kstrtobool(buf, &_init_on_alloc_enabled_early);
203 early_param("init_on_alloc", early_init_on_alloc);
205 static bool _init_on_free_enabled_early __read_mostly
206 = IS_ENABLED(CONFIG_INIT_ON_FREE_DEFAULT_ON);
207 static int __init early_init_on_free(char *buf)
209 return kstrtobool(buf, &_init_on_free_enabled_early);
211 early_param("init_on_free", early_init_on_free);
214 * A cached value of the page's pageblock's migratetype, used when the page is
215 * put on a pcplist. Used to avoid the pageblock migratetype lookup when
216 * freeing from pcplists in most cases, at the cost of possibly becoming stale.
217 * Also the migratetype set in the page does not necessarily match the pcplist
218 * index, e.g. page might have MIGRATE_CMA set but be on a pcplist with any
219 * other index - this ensures that it will be put on the correct CMA freelist.
221 static inline int get_pcppage_migratetype(struct page *page)
226 static inline void set_pcppage_migratetype(struct page *page, int migratetype)
228 page->index = migratetype;
231 #ifdef CONFIG_PM_SLEEP
233 * The following functions are used by the suspend/hibernate code to temporarily
234 * change gfp_allowed_mask in order to avoid using I/O during memory allocations
235 * while devices are suspended. To avoid races with the suspend/hibernate code,
236 * they should always be called with system_transition_mutex held
237 * (gfp_allowed_mask also should only be modified with system_transition_mutex
238 * held, unless the suspend/hibernate code is guaranteed not to run in parallel
239 * with that modification).
242 static gfp_t saved_gfp_mask;
244 void pm_restore_gfp_mask(void)
246 WARN_ON(!mutex_is_locked(&system_transition_mutex));
247 if (saved_gfp_mask) {
248 gfp_allowed_mask = saved_gfp_mask;
253 void pm_restrict_gfp_mask(void)
255 WARN_ON(!mutex_is_locked(&system_transition_mutex));
256 WARN_ON(saved_gfp_mask);
257 saved_gfp_mask = gfp_allowed_mask;
258 gfp_allowed_mask &= ~(__GFP_IO | __GFP_FS);
261 bool pm_suspended_storage(void)
263 if ((gfp_allowed_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS))
267 #endif /* CONFIG_PM_SLEEP */
269 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
270 unsigned int pageblock_order __read_mostly;
273 static void __free_pages_ok(struct page *page, unsigned int order,
277 * results with 256, 32 in the lowmem_reserve sysctl:
278 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
279 * 1G machine -> (16M dma, 784M normal, 224M high)
280 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
281 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
282 * HIGHMEM allocation will leave (224M+784M)/256 of ram reserved in ZONE_DMA
284 * TBD: should special case ZONE_DMA32 machines here - in those we normally
285 * don't need any ZONE_NORMAL reservation
287 int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES] = {
288 #ifdef CONFIG_ZONE_DMA
291 #ifdef CONFIG_ZONE_DMA32
295 #ifdef CONFIG_HIGHMEM
301 static char * const zone_names[MAX_NR_ZONES] = {
302 #ifdef CONFIG_ZONE_DMA
305 #ifdef CONFIG_ZONE_DMA32
309 #ifdef CONFIG_HIGHMEM
313 #ifdef CONFIG_ZONE_DEVICE
318 const char * const migratetype_names[MIGRATE_TYPES] = {
326 #ifdef CONFIG_MEMORY_ISOLATION
331 compound_page_dtor * const compound_page_dtors[NR_COMPOUND_DTORS] = {
332 [NULL_COMPOUND_DTOR] = NULL,
333 [COMPOUND_PAGE_DTOR] = free_compound_page,
334 #ifdef CONFIG_HUGETLB_PAGE
335 [HUGETLB_PAGE_DTOR] = free_huge_page,
337 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
338 [TRANSHUGE_PAGE_DTOR] = free_transhuge_page,
342 int min_free_kbytes = 1024;
343 int user_min_free_kbytes = -1;
344 int watermark_boost_factor __read_mostly = 15000;
345 int watermark_scale_factor = 10;
347 static unsigned long nr_kernel_pages __initdata;
348 static unsigned long nr_all_pages __initdata;
349 static unsigned long dma_reserve __initdata;
351 static unsigned long arch_zone_lowest_possible_pfn[MAX_NR_ZONES] __initdata;
352 static unsigned long arch_zone_highest_possible_pfn[MAX_NR_ZONES] __initdata;
353 static unsigned long required_kernelcore __initdata;
354 static unsigned long required_kernelcore_percent __initdata;
355 static unsigned long required_movablecore __initdata;
356 static unsigned long required_movablecore_percent __initdata;
357 static unsigned long zone_movable_pfn[MAX_NUMNODES] __initdata;
358 static bool mirrored_kernelcore __meminitdata;
360 /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
362 EXPORT_SYMBOL(movable_zone);
365 unsigned int nr_node_ids __read_mostly = MAX_NUMNODES;
366 unsigned int nr_online_nodes __read_mostly = 1;
367 EXPORT_SYMBOL(nr_node_ids);
368 EXPORT_SYMBOL(nr_online_nodes);
371 int page_group_by_mobility_disabled __read_mostly;
373 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
375 * During boot we initialize deferred pages on-demand, as needed, but once
376 * page_alloc_init_late() has finished, the deferred pages are all initialized,
377 * and we can permanently disable that path.
379 static DEFINE_STATIC_KEY_TRUE(deferred_pages);
381 static inline bool deferred_pages_enabled(void)
383 return static_branch_unlikely(&deferred_pages);
386 /* Returns true if the struct page for the pfn is uninitialised */
387 static inline bool __meminit early_page_uninitialised(unsigned long pfn)
389 int nid = early_pfn_to_nid(pfn);
391 if (node_online(nid) && pfn >= NODE_DATA(nid)->first_deferred_pfn)
398 * Returns true when the remaining initialisation should be deferred until
399 * later in the boot cycle when it can be parallelised.
401 static bool __meminit
402 defer_init(int nid, unsigned long pfn, unsigned long end_pfn)
404 static unsigned long prev_end_pfn, nr_initialised;
407 * prev_end_pfn static that contains the end of previous zone
408 * No need to protect because called very early in boot before smp_init.
410 if (prev_end_pfn != end_pfn) {
411 prev_end_pfn = end_pfn;
415 /* Always populate low zones for address-constrained allocations */
416 if (end_pfn < pgdat_end_pfn(NODE_DATA(nid)))
419 if (NODE_DATA(nid)->first_deferred_pfn != ULONG_MAX)
422 * We start only with one section of pages, more pages are added as
423 * needed until the rest of deferred pages are initialized.
426 if ((nr_initialised > PAGES_PER_SECTION) &&
427 (pfn & (PAGES_PER_SECTION - 1)) == 0) {
428 NODE_DATA(nid)->first_deferred_pfn = pfn;
434 static inline bool deferred_pages_enabled(void)
439 static inline bool early_page_uninitialised(unsigned long pfn)
444 static inline bool defer_init(int nid, unsigned long pfn, unsigned long end_pfn)
450 /* Return a pointer to the bitmap storing bits affecting a block of pages */
451 static inline unsigned long *get_pageblock_bitmap(const struct page *page,
454 #ifdef CONFIG_SPARSEMEM
455 return section_to_usemap(__pfn_to_section(pfn));
457 return page_zone(page)->pageblock_flags;
458 #endif /* CONFIG_SPARSEMEM */
461 static inline int pfn_to_bitidx(const struct page *page, unsigned long pfn)
463 #ifdef CONFIG_SPARSEMEM
464 pfn &= (PAGES_PER_SECTION-1);
466 pfn = pfn - round_down(page_zone(page)->zone_start_pfn, pageblock_nr_pages);
467 #endif /* CONFIG_SPARSEMEM */
468 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
471 static __always_inline
472 unsigned long __get_pfnblock_flags_mask(const struct page *page,
476 unsigned long *bitmap;
477 unsigned long bitidx, word_bitidx;
480 bitmap = get_pageblock_bitmap(page, pfn);
481 bitidx = pfn_to_bitidx(page, pfn);
482 word_bitidx = bitidx / BITS_PER_LONG;
483 bitidx &= (BITS_PER_LONG-1);
485 word = bitmap[word_bitidx];
486 return (word >> bitidx) & mask;
490 * get_pfnblock_flags_mask - Return the requested group of flags for the pageblock_nr_pages block of pages
491 * @page: The page within the block of interest
492 * @pfn: The target page frame number
493 * @mask: mask of bits that the caller is interested in
495 * Return: pageblock_bits flags
497 unsigned long get_pfnblock_flags_mask(const struct page *page,
498 unsigned long pfn, unsigned long mask)
500 return __get_pfnblock_flags_mask(page, pfn, mask);
503 static __always_inline int get_pfnblock_migratetype(const struct page *page,
506 return __get_pfnblock_flags_mask(page, pfn, MIGRATETYPE_MASK);
510 * set_pfnblock_flags_mask - Set the requested group of flags for a pageblock_nr_pages block of pages
511 * @page: The page within the block of interest
512 * @flags: The flags to set
513 * @pfn: The target page frame number
514 * @mask: mask of bits that the caller is interested in
516 void set_pfnblock_flags_mask(struct page *page, unsigned long flags,
520 unsigned long *bitmap;
521 unsigned long bitidx, word_bitidx;
522 unsigned long old_word, word;
524 BUILD_BUG_ON(NR_PAGEBLOCK_BITS != 4);
525 BUILD_BUG_ON(MIGRATE_TYPES > (1 << PB_migratetype_bits));
527 bitmap = get_pageblock_bitmap(page, pfn);
528 bitidx = pfn_to_bitidx(page, pfn);
529 word_bitidx = bitidx / BITS_PER_LONG;
530 bitidx &= (BITS_PER_LONG-1);
532 VM_BUG_ON_PAGE(!zone_spans_pfn(page_zone(page), pfn), page);
537 word = READ_ONCE(bitmap[word_bitidx]);
539 old_word = cmpxchg(&bitmap[word_bitidx], word, (word & ~mask) | flags);
540 if (word == old_word)
546 void set_pageblock_migratetype(struct page *page, int migratetype)
548 if (unlikely(page_group_by_mobility_disabled &&
549 migratetype < MIGRATE_PCPTYPES))
550 migratetype = MIGRATE_UNMOVABLE;
552 set_pfnblock_flags_mask(page, (unsigned long)migratetype,
553 page_to_pfn(page), MIGRATETYPE_MASK);
556 #ifdef CONFIG_DEBUG_VM
557 static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
561 unsigned long pfn = page_to_pfn(page);
562 unsigned long sp, start_pfn;
565 seq = zone_span_seqbegin(zone);
566 start_pfn = zone->zone_start_pfn;
567 sp = zone->spanned_pages;
568 if (!zone_spans_pfn(zone, pfn))
570 } while (zone_span_seqretry(zone, seq));
573 pr_err("page 0x%lx outside node %d zone %s [ 0x%lx - 0x%lx ]\n",
574 pfn, zone_to_nid(zone), zone->name,
575 start_pfn, start_pfn + sp);
580 static int page_is_consistent(struct zone *zone, struct page *page)
582 if (zone != page_zone(page))
588 * Temporary debugging check for pages not lying within a given zone.
590 static int __maybe_unused bad_range(struct zone *zone, struct page *page)
592 if (page_outside_zone_boundaries(zone, page))
594 if (!page_is_consistent(zone, page))
600 static inline int __maybe_unused bad_range(struct zone *zone, struct page *page)
606 static void bad_page(struct page *page, const char *reason)
608 static unsigned long resume;
609 static unsigned long nr_shown;
610 static unsigned long nr_unshown;
613 * Allow a burst of 60 reports, then keep quiet for that minute;
614 * or allow a steady drip of one report per second.
616 if (nr_shown == 60) {
617 if (time_before(jiffies, resume)) {
623 "BUG: Bad page state: %lu messages suppressed\n",
630 resume = jiffies + 60 * HZ;
632 pr_alert("BUG: Bad page state in process %s pfn:%05lx\n",
633 current->comm, page_to_pfn(page));
634 dump_page(page, reason);
639 /* Leave bad fields for debug, except PageBuddy could make trouble */
640 page_mapcount_reset(page); /* remove PageBuddy */
641 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
644 static inline unsigned int order_to_pindex(int migratetype, int order)
648 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
649 if (order > PAGE_ALLOC_COSTLY_ORDER) {
650 VM_BUG_ON(order != pageblock_order);
651 base = PAGE_ALLOC_COSTLY_ORDER + 1;
654 VM_BUG_ON(order > PAGE_ALLOC_COSTLY_ORDER);
657 return (MIGRATE_PCPTYPES * base) + migratetype;
660 static inline int pindex_to_order(unsigned int pindex)
662 int order = pindex / MIGRATE_PCPTYPES;
664 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
665 if (order > PAGE_ALLOC_COSTLY_ORDER)
666 order = pageblock_order;
668 VM_BUG_ON(order > PAGE_ALLOC_COSTLY_ORDER);
674 static inline bool pcp_allowed_order(unsigned int order)
676 if (order <= PAGE_ALLOC_COSTLY_ORDER)
678 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
679 if (order == pageblock_order)
685 static inline void free_the_page(struct page *page, unsigned int order)
687 if (pcp_allowed_order(order)) /* Via pcp? */
688 free_unref_page(page, order);
690 __free_pages_ok(page, order, FPI_NONE);
694 * Higher-order pages are called "compound pages". They are structured thusly:
696 * The first PAGE_SIZE page is called the "head page" and have PG_head set.
698 * The remaining PAGE_SIZE pages are called "tail pages". PageTail() is encoded
699 * in bit 0 of page->compound_head. The rest of bits is pointer to head page.
701 * The first tail page's ->compound_dtor holds the offset in array of compound
702 * page destructors. See compound_page_dtors.
704 * The first tail page's ->compound_order holds the order of allocation.
705 * This usage means that zero-order pages may not be compound.
708 void free_compound_page(struct page *page)
710 mem_cgroup_uncharge(page_folio(page));
711 free_the_page(page, compound_order(page));
714 static void prep_compound_head(struct page *page, unsigned int order)
716 set_compound_page_dtor(page, COMPOUND_PAGE_DTOR);
717 set_compound_order(page, order);
718 atomic_set(compound_mapcount_ptr(page), -1);
719 atomic_set(compound_pincount_ptr(page), 0);
722 static void prep_compound_tail(struct page *head, int tail_idx)
724 struct page *p = head + tail_idx;
726 p->mapping = TAIL_MAPPING;
727 set_compound_head(p, head);
730 void prep_compound_page(struct page *page, unsigned int order)
733 int nr_pages = 1 << order;
736 for (i = 1; i < nr_pages; i++)
737 prep_compound_tail(page, i);
739 prep_compound_head(page, order);
742 #ifdef CONFIG_DEBUG_PAGEALLOC
743 unsigned int _debug_guardpage_minorder;
745 bool _debug_pagealloc_enabled_early __read_mostly
746 = IS_ENABLED(CONFIG_DEBUG_PAGEALLOC_ENABLE_DEFAULT);
747 EXPORT_SYMBOL(_debug_pagealloc_enabled_early);
748 DEFINE_STATIC_KEY_FALSE(_debug_pagealloc_enabled);
749 EXPORT_SYMBOL(_debug_pagealloc_enabled);
751 DEFINE_STATIC_KEY_FALSE(_debug_guardpage_enabled);
753 static int __init early_debug_pagealloc(char *buf)
755 return kstrtobool(buf, &_debug_pagealloc_enabled_early);
757 early_param("debug_pagealloc", early_debug_pagealloc);
759 static int __init debug_guardpage_minorder_setup(char *buf)
763 if (kstrtoul(buf, 10, &res) < 0 || res > MAX_ORDER / 2) {
764 pr_err("Bad debug_guardpage_minorder value\n");
767 _debug_guardpage_minorder = res;
768 pr_info("Setting debug_guardpage_minorder to %lu\n", res);
771 early_param("debug_guardpage_minorder", debug_guardpage_minorder_setup);
773 static inline bool set_page_guard(struct zone *zone, struct page *page,
774 unsigned int order, int migratetype)
776 if (!debug_guardpage_enabled())
779 if (order >= debug_guardpage_minorder())
782 __SetPageGuard(page);
783 INIT_LIST_HEAD(&page->lru);
784 set_page_private(page, order);
785 /* Guard pages are not available for any usage */
786 __mod_zone_freepage_state(zone, -(1 << order), migratetype);
791 static inline void clear_page_guard(struct zone *zone, struct page *page,
792 unsigned int order, int migratetype)
794 if (!debug_guardpage_enabled())
797 __ClearPageGuard(page);
799 set_page_private(page, 0);
800 if (!is_migrate_isolate(migratetype))
801 __mod_zone_freepage_state(zone, (1 << order), migratetype);
804 static inline bool set_page_guard(struct zone *zone, struct page *page,
805 unsigned int order, int migratetype) { return false; }
806 static inline void clear_page_guard(struct zone *zone, struct page *page,
807 unsigned int order, int migratetype) {}
811 * Enable static keys related to various memory debugging and hardening options.
812 * Some override others, and depend on early params that are evaluated in the
813 * order of appearance. So we need to first gather the full picture of what was
814 * enabled, and then make decisions.
816 void init_mem_debugging_and_hardening(void)
818 bool page_poisoning_requested = false;
820 #ifdef CONFIG_PAGE_POISONING
822 * Page poisoning is debug page alloc for some arches. If
823 * either of those options are enabled, enable poisoning.
825 if (page_poisoning_enabled() ||
826 (!IS_ENABLED(CONFIG_ARCH_SUPPORTS_DEBUG_PAGEALLOC) &&
827 debug_pagealloc_enabled())) {
828 static_branch_enable(&_page_poisoning_enabled);
829 page_poisoning_requested = true;
833 if ((_init_on_alloc_enabled_early || _init_on_free_enabled_early) &&
834 page_poisoning_requested) {
835 pr_info("mem auto-init: CONFIG_PAGE_POISONING is on, "
836 "will take precedence over init_on_alloc and init_on_free\n");
837 _init_on_alloc_enabled_early = false;
838 _init_on_free_enabled_early = false;
841 if (_init_on_alloc_enabled_early)
842 static_branch_enable(&init_on_alloc);
844 static_branch_disable(&init_on_alloc);
846 if (_init_on_free_enabled_early)
847 static_branch_enable(&init_on_free);
849 static_branch_disable(&init_on_free);
851 #ifdef CONFIG_DEBUG_PAGEALLOC
852 if (!debug_pagealloc_enabled())
855 static_branch_enable(&_debug_pagealloc_enabled);
857 if (!debug_guardpage_minorder())
860 static_branch_enable(&_debug_guardpage_enabled);
864 static inline void set_buddy_order(struct page *page, unsigned int order)
866 set_page_private(page, order);
867 __SetPageBuddy(page);
871 * This function checks whether a page is free && is the buddy
872 * we can coalesce a page and its buddy if
873 * (a) the buddy is not in a hole (check before calling!) &&
874 * (b) the buddy is in the buddy system &&
875 * (c) a page and its buddy have the same order &&
876 * (d) a page and its buddy are in the same zone.
878 * For recording whether a page is in the buddy system, we set PageBuddy.
879 * Setting, clearing, and testing PageBuddy is serialized by zone->lock.
881 * For recording page's order, we use page_private(page).
883 static inline bool page_is_buddy(struct page *page, struct page *buddy,
886 if (!page_is_guard(buddy) && !PageBuddy(buddy))
889 if (buddy_order(buddy) != order)
893 * zone check is done late to avoid uselessly calculating
894 * zone/node ids for pages that could never merge.
896 if (page_zone_id(page) != page_zone_id(buddy))
899 VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
904 #ifdef CONFIG_COMPACTION
905 static inline struct capture_control *task_capc(struct zone *zone)
907 struct capture_control *capc = current->capture_control;
909 return unlikely(capc) &&
910 !(current->flags & PF_KTHREAD) &&
912 capc->cc->zone == zone ? capc : NULL;
916 compaction_capture(struct capture_control *capc, struct page *page,
917 int order, int migratetype)
919 if (!capc || order != capc->cc->order)
922 /* Do not accidentally pollute CMA or isolated regions*/
923 if (is_migrate_cma(migratetype) ||
924 is_migrate_isolate(migratetype))
928 * Do not let lower order allocations pollute a movable pageblock.
929 * This might let an unmovable request use a reclaimable pageblock
930 * and vice-versa but no more than normal fallback logic which can
931 * have trouble finding a high-order free page.
933 if (order < pageblock_order && migratetype == MIGRATE_MOVABLE)
941 static inline struct capture_control *task_capc(struct zone *zone)
947 compaction_capture(struct capture_control *capc, struct page *page,
948 int order, int migratetype)
952 #endif /* CONFIG_COMPACTION */
954 /* Used for pages not on another list */
955 static inline void add_to_free_list(struct page *page, struct zone *zone,
956 unsigned int order, int migratetype)
958 struct free_area *area = &zone->free_area[order];
960 list_add(&page->lru, &area->free_list[migratetype]);
964 /* Used for pages not on another list */
965 static inline void add_to_free_list_tail(struct page *page, struct zone *zone,
966 unsigned int order, int migratetype)
968 struct free_area *area = &zone->free_area[order];
970 list_add_tail(&page->lru, &area->free_list[migratetype]);
975 * Used for pages which are on another list. Move the pages to the tail
976 * of the list - so the moved pages won't immediately be considered for
977 * allocation again (e.g., optimization for memory onlining).
979 static inline void move_to_free_list(struct page *page, struct zone *zone,
980 unsigned int order, int migratetype)
982 struct free_area *area = &zone->free_area[order];
984 list_move_tail(&page->lru, &area->free_list[migratetype]);
987 static inline void del_page_from_free_list(struct page *page, struct zone *zone,
990 /* clear reported state and update reported page count */
991 if (page_reported(page))
992 __ClearPageReported(page);
994 list_del(&page->lru);
995 __ClearPageBuddy(page);
996 set_page_private(page, 0);
997 zone->free_area[order].nr_free--;
1001 * If this is not the largest possible page, check if the buddy
1002 * of the next-highest order is free. If it is, it's possible
1003 * that pages are being freed that will coalesce soon. In case,
1004 * that is happening, add the free page to the tail of the list
1005 * so it's less likely to be used soon and more likely to be merged
1006 * as a higher order page
1009 buddy_merge_likely(unsigned long pfn, unsigned long buddy_pfn,
1010 struct page *page, unsigned int order)
1012 struct page *higher_page, *higher_buddy;
1013 unsigned long combined_pfn;
1015 if (order >= MAX_ORDER - 2)
1018 combined_pfn = buddy_pfn & pfn;
1019 higher_page = page + (combined_pfn - pfn);
1020 buddy_pfn = __find_buddy_pfn(combined_pfn, order + 1);
1021 higher_buddy = higher_page + (buddy_pfn - combined_pfn);
1023 return page_is_buddy(higher_page, higher_buddy, order + 1);
1027 * Freeing function for a buddy system allocator.
1029 * The concept of a buddy system is to maintain direct-mapped table
1030 * (containing bit values) for memory blocks of various "orders".
1031 * The bottom level table contains the map for the smallest allocatable
1032 * units of memory (here, pages), and each level above it describes
1033 * pairs of units from the levels below, hence, "buddies".
1034 * At a high level, all that happens here is marking the table entry
1035 * at the bottom level available, and propagating the changes upward
1036 * as necessary, plus some accounting needed to play nicely with other
1037 * parts of the VM system.
1038 * At each level, we keep a list of pages, which are heads of continuous
1039 * free pages of length of (1 << order) and marked with PageBuddy.
1040 * Page's order is recorded in page_private(page) field.
1041 * So when we are allocating or freeing one, we can derive the state of the
1042 * other. That is, if we allocate a small block, and both were
1043 * free, the remainder of the region must be split into blocks.
1044 * If a block is freed, and its buddy is also free, then this
1045 * triggers coalescing into a block of larger size.
1050 static inline void __free_one_page(struct page *page,
1052 struct zone *zone, unsigned int order,
1053 int migratetype, fpi_t fpi_flags)
1055 struct capture_control *capc = task_capc(zone);
1056 unsigned int max_order = pageblock_order;
1057 unsigned long buddy_pfn;
1058 unsigned long combined_pfn;
1062 VM_BUG_ON(!zone_is_initialized(zone));
1063 VM_BUG_ON_PAGE(page->flags & PAGE_FLAGS_CHECK_AT_PREP, page);
1065 VM_BUG_ON(migratetype == -1);
1066 if (likely(!is_migrate_isolate(migratetype)))
1067 __mod_zone_freepage_state(zone, 1 << order, migratetype);
1069 VM_BUG_ON_PAGE(pfn & ((1 << order) - 1), page);
1070 VM_BUG_ON_PAGE(bad_range(zone, page), page);
1073 while (order < max_order) {
1074 if (compaction_capture(capc, page, order, migratetype)) {
1075 __mod_zone_freepage_state(zone, -(1 << order),
1079 buddy_pfn = __find_buddy_pfn(pfn, order);
1080 buddy = page + (buddy_pfn - pfn);
1082 if (!page_is_buddy(page, buddy, order))
1085 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page,
1086 * merge with it and move up one order.
1088 if (page_is_guard(buddy))
1089 clear_page_guard(zone, buddy, order, migratetype);
1091 del_page_from_free_list(buddy, zone, order);
1092 combined_pfn = buddy_pfn & pfn;
1093 page = page + (combined_pfn - pfn);
1097 if (order < MAX_ORDER - 1) {
1098 /* If we are here, it means order is >= pageblock_order.
1099 * We want to prevent merge between freepages on pageblock
1100 * without fallbacks and normal pageblock. Without this,
1101 * pageblock isolation could cause incorrect freepage or CMA
1102 * accounting or HIGHATOMIC accounting.
1104 * We don't want to hit this code for the more frequent
1105 * low-order merging.
1109 buddy_pfn = __find_buddy_pfn(pfn, order);
1110 buddy = page + (buddy_pfn - pfn);
1112 if (!page_is_buddy(page, buddy, order))
1114 buddy_mt = get_pageblock_migratetype(buddy);
1116 if (migratetype != buddy_mt
1117 && (!migratetype_is_mergeable(migratetype) ||
1118 !migratetype_is_mergeable(buddy_mt)))
1120 max_order = order + 1;
1121 goto continue_merging;
1125 set_buddy_order(page, order);
1127 if (fpi_flags & FPI_TO_TAIL)
1129 else if (is_shuffle_order(order))
1130 to_tail = shuffle_pick_tail();
1132 to_tail = buddy_merge_likely(pfn, buddy_pfn, page, order);
1135 add_to_free_list_tail(page, zone, order, migratetype);
1137 add_to_free_list(page, zone, order, migratetype);
1139 /* Notify page reporting subsystem of freed page */
1140 if (!(fpi_flags & FPI_SKIP_REPORT_NOTIFY))
1141 page_reporting_notify_free(order);
1145 * A bad page could be due to a number of fields. Instead of multiple branches,
1146 * try and check multiple fields with one check. The caller must do a detailed
1147 * check if necessary.
1149 static inline bool page_expected_state(struct page *page,
1150 unsigned long check_flags)
1152 if (unlikely(atomic_read(&page->_mapcount) != -1))
1155 if (unlikely((unsigned long)page->mapping |
1156 page_ref_count(page) |
1160 (page->flags & check_flags)))
1166 static const char *page_bad_reason(struct page *page, unsigned long flags)
1168 const char *bad_reason = NULL;
1170 if (unlikely(atomic_read(&page->_mapcount) != -1))
1171 bad_reason = "nonzero mapcount";
1172 if (unlikely(page->mapping != NULL))
1173 bad_reason = "non-NULL mapping";
1174 if (unlikely(page_ref_count(page) != 0))
1175 bad_reason = "nonzero _refcount";
1176 if (unlikely(page->flags & flags)) {
1177 if (flags == PAGE_FLAGS_CHECK_AT_PREP)
1178 bad_reason = "PAGE_FLAGS_CHECK_AT_PREP flag(s) set";
1180 bad_reason = "PAGE_FLAGS_CHECK_AT_FREE flag(s) set";
1183 if (unlikely(page->memcg_data))
1184 bad_reason = "page still charged to cgroup";
1189 static void check_free_page_bad(struct page *page)
1192 page_bad_reason(page, PAGE_FLAGS_CHECK_AT_FREE));
1195 static inline int check_free_page(struct page *page)
1197 if (likely(page_expected_state(page, PAGE_FLAGS_CHECK_AT_FREE)))
1200 /* Something has gone sideways, find it */
1201 check_free_page_bad(page);
1205 static int free_tail_pages_check(struct page *head_page, struct page *page)
1210 * We rely page->lru.next never has bit 0 set, unless the page
1211 * is PageTail(). Let's make sure that's true even for poisoned ->lru.
1213 BUILD_BUG_ON((unsigned long)LIST_POISON1 & 1);
1215 if (!IS_ENABLED(CONFIG_DEBUG_VM)) {
1219 switch (page - head_page) {
1221 /* the first tail page: ->mapping may be compound_mapcount() */
1222 if (unlikely(compound_mapcount(page))) {
1223 bad_page(page, "nonzero compound_mapcount");
1229 * the second tail page: ->mapping is
1230 * deferred_list.next -- ignore value.
1234 if (page->mapping != TAIL_MAPPING) {
1235 bad_page(page, "corrupted mapping in tail page");
1240 if (unlikely(!PageTail(page))) {
1241 bad_page(page, "PageTail not set");
1244 if (unlikely(compound_head(page) != head_page)) {
1245 bad_page(page, "compound_head not consistent");
1250 page->mapping = NULL;
1251 clear_compound_head(page);
1256 * Skip KASAN memory poisoning when either:
1258 * 1. Deferred memory initialization has not yet completed,
1259 * see the explanation below.
1260 * 2. Skipping poisoning is requested via FPI_SKIP_KASAN_POISON,
1261 * see the comment next to it.
1262 * 3. Skipping poisoning is requested via __GFP_SKIP_KASAN_POISON,
1263 * see the comment next to it.
1265 * Poisoning pages during deferred memory init will greatly lengthen the
1266 * process and cause problem in large memory systems as the deferred pages
1267 * initialization is done with interrupt disabled.
1269 * Assuming that there will be no reference to those newly initialized
1270 * pages before they are ever allocated, this should have no effect on
1271 * KASAN memory tracking as the poison will be properly inserted at page
1272 * allocation time. The only corner case is when pages are allocated by
1273 * on-demand allocation and then freed again before the deferred pages
1274 * initialization is done, but this is not likely to happen.
1276 static inline bool should_skip_kasan_poison(struct page *page, fpi_t fpi_flags)
1278 return deferred_pages_enabled() ||
1279 (!IS_ENABLED(CONFIG_KASAN_GENERIC) &&
1280 (fpi_flags & FPI_SKIP_KASAN_POISON)) ||
1281 PageSkipKASanPoison(page);
1284 static void kernel_init_free_pages(struct page *page, int numpages)
1288 /* s390's use of memset() could override KASAN redzones. */
1289 kasan_disable_current();
1290 for (i = 0; i < numpages; i++) {
1291 u8 tag = page_kasan_tag(page + i);
1292 page_kasan_tag_reset(page + i);
1293 clear_highpage(page + i);
1294 page_kasan_tag_set(page + i, tag);
1296 kasan_enable_current();
1299 static __always_inline bool free_pages_prepare(struct page *page,
1300 unsigned int order, bool check_free, fpi_t fpi_flags)
1303 bool init = want_init_on_free();
1305 VM_BUG_ON_PAGE(PageTail(page), page);
1307 trace_mm_page_free(page, order);
1309 if (unlikely(PageHWPoison(page)) && !order) {
1311 * Do not let hwpoison pages hit pcplists/buddy
1312 * Untie memcg state and reset page's owner
1314 if (memcg_kmem_enabled() && PageMemcgKmem(page))
1315 __memcg_kmem_uncharge_page(page, order);
1316 reset_page_owner(page, order);
1317 page_table_check_free(page, order);
1322 * Check tail pages before head page information is cleared to
1323 * avoid checking PageCompound for order-0 pages.
1325 if (unlikely(order)) {
1326 bool compound = PageCompound(page);
1329 VM_BUG_ON_PAGE(compound && compound_order(page) != order, page);
1332 ClearPageDoubleMap(page);
1333 ClearPageHasHWPoisoned(page);
1335 for (i = 1; i < (1 << order); i++) {
1337 bad += free_tail_pages_check(page, page + i);
1338 if (unlikely(check_free_page(page + i))) {
1342 (page + i)->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1345 if (PageMappingFlags(page))
1346 page->mapping = NULL;
1347 if (memcg_kmem_enabled() && PageMemcgKmem(page))
1348 __memcg_kmem_uncharge_page(page, order);
1350 bad += check_free_page(page);
1354 page_cpupid_reset_last(page);
1355 page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1356 reset_page_owner(page, order);
1357 page_table_check_free(page, order);
1359 if (!PageHighMem(page)) {
1360 debug_check_no_locks_freed(page_address(page),
1361 PAGE_SIZE << order);
1362 debug_check_no_obj_freed(page_address(page),
1363 PAGE_SIZE << order);
1366 kernel_poison_pages(page, 1 << order);
1369 * As memory initialization might be integrated into KASAN,
1370 * KASAN poisoning and memory initialization code must be
1371 * kept together to avoid discrepancies in behavior.
1373 * With hardware tag-based KASAN, memory tags must be set before the
1374 * page becomes unavailable via debug_pagealloc or arch_free_page.
1376 if (!should_skip_kasan_poison(page, fpi_flags)) {
1377 kasan_poison_pages(page, order, init);
1379 /* Memory is already initialized if KASAN did it internally. */
1380 if (kasan_has_integrated_init())
1384 kernel_init_free_pages(page, 1 << order);
1387 * arch_free_page() can make the page's contents inaccessible. s390
1388 * does this. So nothing which can access the page's contents should
1389 * happen after this.
1391 arch_free_page(page, order);
1393 debug_pagealloc_unmap_pages(page, 1 << order);
1398 #ifdef CONFIG_DEBUG_VM
1400 * With DEBUG_VM enabled, order-0 pages are checked immediately when being freed
1401 * to pcp lists. With debug_pagealloc also enabled, they are also rechecked when
1402 * moved from pcp lists to free lists.
1404 static bool free_pcp_prepare(struct page *page, unsigned int order)
1406 return free_pages_prepare(page, order, true, FPI_NONE);
1409 static bool bulkfree_pcp_prepare(struct page *page)
1411 if (debug_pagealloc_enabled_static())
1412 return check_free_page(page);
1418 * With DEBUG_VM disabled, order-0 pages being freed are checked only when
1419 * moving from pcp lists to free list in order to reduce overhead. With
1420 * debug_pagealloc enabled, they are checked also immediately when being freed
1423 static bool free_pcp_prepare(struct page *page, unsigned int order)
1425 if (debug_pagealloc_enabled_static())
1426 return free_pages_prepare(page, order, true, FPI_NONE);
1428 return free_pages_prepare(page, order, false, FPI_NONE);
1431 static bool bulkfree_pcp_prepare(struct page *page)
1433 return check_free_page(page);
1435 #endif /* CONFIG_DEBUG_VM */
1438 * Frees a number of pages from the PCP lists
1439 * Assumes all pages on list are in same zone.
1440 * count is the number of pages to free.
1442 static void free_pcppages_bulk(struct zone *zone, int count,
1443 struct per_cpu_pages *pcp,
1447 int max_pindex = NR_PCP_LISTS - 1;
1449 bool isolated_pageblocks;
1453 * Ensure proper count is passed which otherwise would stuck in the
1454 * below while (list_empty(list)) loop.
1456 count = min(pcp->count, count);
1458 /* Ensure requested pindex is drained first. */
1459 pindex = pindex - 1;
1462 * local_lock_irq held so equivalent to spin_lock_irqsave for
1463 * both PREEMPT_RT and non-PREEMPT_RT configurations.
1465 spin_lock(&zone->lock);
1466 isolated_pageblocks = has_isolate_pageblock(zone);
1469 struct list_head *list;
1472 /* Remove pages from lists in a round-robin fashion. */
1474 if (++pindex > max_pindex)
1475 pindex = min_pindex;
1476 list = &pcp->lists[pindex];
1477 if (!list_empty(list))
1480 if (pindex == max_pindex)
1482 if (pindex == min_pindex)
1486 order = pindex_to_order(pindex);
1487 nr_pages = 1 << order;
1488 BUILD_BUG_ON(MAX_ORDER >= (1<<NR_PCP_ORDER_WIDTH));
1492 page = list_last_entry(list, struct page, lru);
1493 mt = get_pcppage_migratetype(page);
1495 /* must delete to avoid corrupting pcp list */
1496 list_del(&page->lru);
1498 pcp->count -= nr_pages;
1500 if (bulkfree_pcp_prepare(page))
1503 /* MIGRATE_ISOLATE page should not go to pcplists */
1504 VM_BUG_ON_PAGE(is_migrate_isolate(mt), page);
1505 /* Pageblock could have been isolated meanwhile */
1506 if (unlikely(isolated_pageblocks))
1507 mt = get_pageblock_migratetype(page);
1509 __free_one_page(page, page_to_pfn(page), zone, order, mt, FPI_NONE);
1510 trace_mm_page_pcpu_drain(page, order, mt);
1511 } while (count > 0 && !list_empty(list));
1514 spin_unlock(&zone->lock);
1517 static void free_one_page(struct zone *zone,
1518 struct page *page, unsigned long pfn,
1520 int migratetype, fpi_t fpi_flags)
1522 unsigned long flags;
1524 spin_lock_irqsave(&zone->lock, flags);
1525 if (unlikely(has_isolate_pageblock(zone) ||
1526 is_migrate_isolate(migratetype))) {
1527 migratetype = get_pfnblock_migratetype(page, pfn);
1529 __free_one_page(page, pfn, zone, order, migratetype, fpi_flags);
1530 spin_unlock_irqrestore(&zone->lock, flags);
1533 static void __meminit __init_single_page(struct page *page, unsigned long pfn,
1534 unsigned long zone, int nid)
1536 mm_zero_struct_page(page);
1537 set_page_links(page, zone, nid, pfn);
1538 init_page_count(page);
1539 page_mapcount_reset(page);
1540 page_cpupid_reset_last(page);
1541 page_kasan_tag_reset(page);
1543 INIT_LIST_HEAD(&page->lru);
1544 #ifdef WANT_PAGE_VIRTUAL
1545 /* The shift won't overflow because ZONE_NORMAL is below 4G. */
1546 if (!is_highmem_idx(zone))
1547 set_page_address(page, __va(pfn << PAGE_SHIFT));
1551 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1552 static void __meminit init_reserved_page(unsigned long pfn)
1557 if (!early_page_uninitialised(pfn))
1560 nid = early_pfn_to_nid(pfn);
1561 pgdat = NODE_DATA(nid);
1563 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1564 struct zone *zone = &pgdat->node_zones[zid];
1566 if (zone_spans_pfn(zone, pfn))
1569 __init_single_page(pfn_to_page(pfn), pfn, zid, nid);
1572 static inline void init_reserved_page(unsigned long pfn)
1575 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
1578 * Initialised pages do not have PageReserved set. This function is
1579 * called for each range allocated by the bootmem allocator and
1580 * marks the pages PageReserved. The remaining valid pages are later
1581 * sent to the buddy page allocator.
1583 void __meminit reserve_bootmem_region(phys_addr_t start, phys_addr_t end)
1585 unsigned long start_pfn = PFN_DOWN(start);
1586 unsigned long end_pfn = PFN_UP(end);
1588 for (; start_pfn < end_pfn; start_pfn++) {
1589 if (pfn_valid(start_pfn)) {
1590 struct page *page = pfn_to_page(start_pfn);
1592 init_reserved_page(start_pfn);
1594 /* Avoid false-positive PageTail() */
1595 INIT_LIST_HEAD(&page->lru);
1598 * no need for atomic set_bit because the struct
1599 * page is not visible yet so nobody should
1602 __SetPageReserved(page);
1607 static void __free_pages_ok(struct page *page, unsigned int order,
1610 unsigned long flags;
1612 unsigned long pfn = page_to_pfn(page);
1613 struct zone *zone = page_zone(page);
1615 if (!free_pages_prepare(page, order, true, fpi_flags))
1618 migratetype = get_pfnblock_migratetype(page, pfn);
1620 spin_lock_irqsave(&zone->lock, flags);
1621 if (unlikely(has_isolate_pageblock(zone) ||
1622 is_migrate_isolate(migratetype))) {
1623 migratetype = get_pfnblock_migratetype(page, pfn);
1625 __free_one_page(page, pfn, zone, order, migratetype, fpi_flags);
1626 spin_unlock_irqrestore(&zone->lock, flags);
1628 __count_vm_events(PGFREE, 1 << order);
1631 void __free_pages_core(struct page *page, unsigned int order)
1633 unsigned int nr_pages = 1 << order;
1634 struct page *p = page;
1638 * When initializing the memmap, __init_single_page() sets the refcount
1639 * of all pages to 1 ("allocated"/"not free"). We have to set the
1640 * refcount of all involved pages to 0.
1643 for (loop = 0; loop < (nr_pages - 1); loop++, p++) {
1645 __ClearPageReserved(p);
1646 set_page_count(p, 0);
1648 __ClearPageReserved(p);
1649 set_page_count(p, 0);
1651 atomic_long_add(nr_pages, &page_zone(page)->managed_pages);
1654 * Bypass PCP and place fresh pages right to the tail, primarily
1655 * relevant for memory onlining.
1657 __free_pages_ok(page, order, FPI_TO_TAIL | FPI_SKIP_KASAN_POISON);
1663 * During memory init memblocks map pfns to nids. The search is expensive and
1664 * this caches recent lookups. The implementation of __early_pfn_to_nid
1665 * treats start/end as pfns.
1667 struct mminit_pfnnid_cache {
1668 unsigned long last_start;
1669 unsigned long last_end;
1673 static struct mminit_pfnnid_cache early_pfnnid_cache __meminitdata;
1676 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
1678 static int __meminit __early_pfn_to_nid(unsigned long pfn,
1679 struct mminit_pfnnid_cache *state)
1681 unsigned long start_pfn, end_pfn;
1684 if (state->last_start <= pfn && pfn < state->last_end)
1685 return state->last_nid;
1687 nid = memblock_search_pfn_nid(pfn, &start_pfn, &end_pfn);
1688 if (nid != NUMA_NO_NODE) {
1689 state->last_start = start_pfn;
1690 state->last_end = end_pfn;
1691 state->last_nid = nid;
1697 int __meminit early_pfn_to_nid(unsigned long pfn)
1699 static DEFINE_SPINLOCK(early_pfn_lock);
1702 spin_lock(&early_pfn_lock);
1703 nid = __early_pfn_to_nid(pfn, &early_pfnnid_cache);
1705 nid = first_online_node;
1706 spin_unlock(&early_pfn_lock);
1710 #endif /* CONFIG_NUMA */
1712 void __init memblock_free_pages(struct page *page, unsigned long pfn,
1715 if (early_page_uninitialised(pfn))
1717 __free_pages_core(page, order);
1721 * Check that the whole (or subset of) a pageblock given by the interval of
1722 * [start_pfn, end_pfn) is valid and within the same zone, before scanning it
1723 * with the migration of free compaction scanner.
1725 * Return struct page pointer of start_pfn, or NULL if checks were not passed.
1727 * It's possible on some configurations to have a setup like node0 node1 node0
1728 * i.e. it's possible that all pages within a zones range of pages do not
1729 * belong to a single zone. We assume that a border between node0 and node1
1730 * can occur within a single pageblock, but not a node0 node1 node0
1731 * interleaving within a single pageblock. It is therefore sufficient to check
1732 * the first and last page of a pageblock and avoid checking each individual
1733 * page in a pageblock.
1735 struct page *__pageblock_pfn_to_page(unsigned long start_pfn,
1736 unsigned long end_pfn, struct zone *zone)
1738 struct page *start_page;
1739 struct page *end_page;
1741 /* end_pfn is one past the range we are checking */
1744 if (!pfn_valid(start_pfn) || !pfn_valid(end_pfn))
1747 start_page = pfn_to_online_page(start_pfn);
1751 if (page_zone(start_page) != zone)
1754 end_page = pfn_to_page(end_pfn);
1756 /* This gives a shorter code than deriving page_zone(end_page) */
1757 if (page_zone_id(start_page) != page_zone_id(end_page))
1763 void set_zone_contiguous(struct zone *zone)
1765 unsigned long block_start_pfn = zone->zone_start_pfn;
1766 unsigned long block_end_pfn;
1768 block_end_pfn = ALIGN(block_start_pfn + 1, pageblock_nr_pages);
1769 for (; block_start_pfn < zone_end_pfn(zone);
1770 block_start_pfn = block_end_pfn,
1771 block_end_pfn += pageblock_nr_pages) {
1773 block_end_pfn = min(block_end_pfn, zone_end_pfn(zone));
1775 if (!__pageblock_pfn_to_page(block_start_pfn,
1776 block_end_pfn, zone))
1781 /* We confirm that there is no hole */
1782 zone->contiguous = true;
1785 void clear_zone_contiguous(struct zone *zone)
1787 zone->contiguous = false;
1790 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1791 static void __init deferred_free_range(unsigned long pfn,
1792 unsigned long nr_pages)
1800 page = pfn_to_page(pfn);
1802 /* Free a large naturally-aligned chunk if possible */
1803 if (nr_pages == pageblock_nr_pages &&
1804 (pfn & (pageblock_nr_pages - 1)) == 0) {
1805 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
1806 __free_pages_core(page, pageblock_order);
1810 for (i = 0; i < nr_pages; i++, page++, pfn++) {
1811 if ((pfn & (pageblock_nr_pages - 1)) == 0)
1812 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
1813 __free_pages_core(page, 0);
1817 /* Completion tracking for deferred_init_memmap() threads */
1818 static atomic_t pgdat_init_n_undone __initdata;
1819 static __initdata DECLARE_COMPLETION(pgdat_init_all_done_comp);
1821 static inline void __init pgdat_init_report_one_done(void)
1823 if (atomic_dec_and_test(&pgdat_init_n_undone))
1824 complete(&pgdat_init_all_done_comp);
1828 * Returns true if page needs to be initialized or freed to buddy allocator.
1830 * First we check if pfn is valid on architectures where it is possible to have
1831 * holes within pageblock_nr_pages. On systems where it is not possible, this
1832 * function is optimized out.
1834 * Then, we check if a current large page is valid by only checking the validity
1837 static inline bool __init deferred_pfn_valid(unsigned long pfn)
1839 if (!(pfn & (pageblock_nr_pages - 1)) && !pfn_valid(pfn))
1845 * Free pages to buddy allocator. Try to free aligned pages in
1846 * pageblock_nr_pages sizes.
1848 static void __init deferred_free_pages(unsigned long pfn,
1849 unsigned long end_pfn)
1851 unsigned long nr_pgmask = pageblock_nr_pages - 1;
1852 unsigned long nr_free = 0;
1854 for (; pfn < end_pfn; pfn++) {
1855 if (!deferred_pfn_valid(pfn)) {
1856 deferred_free_range(pfn - nr_free, nr_free);
1858 } else if (!(pfn & nr_pgmask)) {
1859 deferred_free_range(pfn - nr_free, nr_free);
1865 /* Free the last block of pages to allocator */
1866 deferred_free_range(pfn - nr_free, nr_free);
1870 * Initialize struct pages. We minimize pfn page lookups and scheduler checks
1871 * by performing it only once every pageblock_nr_pages.
1872 * Return number of pages initialized.
1874 static unsigned long __init deferred_init_pages(struct zone *zone,
1876 unsigned long end_pfn)
1878 unsigned long nr_pgmask = pageblock_nr_pages - 1;
1879 int nid = zone_to_nid(zone);
1880 unsigned long nr_pages = 0;
1881 int zid = zone_idx(zone);
1882 struct page *page = NULL;
1884 for (; pfn < end_pfn; pfn++) {
1885 if (!deferred_pfn_valid(pfn)) {
1888 } else if (!page || !(pfn & nr_pgmask)) {
1889 page = pfn_to_page(pfn);
1893 __init_single_page(page, pfn, zid, nid);
1900 * This function is meant to pre-load the iterator for the zone init.
1901 * Specifically it walks through the ranges until we are caught up to the
1902 * first_init_pfn value and exits there. If we never encounter the value we
1903 * return false indicating there are no valid ranges left.
1906 deferred_init_mem_pfn_range_in_zone(u64 *i, struct zone *zone,
1907 unsigned long *spfn, unsigned long *epfn,
1908 unsigned long first_init_pfn)
1913 * Start out by walking through the ranges in this zone that have
1914 * already been initialized. We don't need to do anything with them
1915 * so we just need to flush them out of the system.
1917 for_each_free_mem_pfn_range_in_zone(j, zone, spfn, epfn) {
1918 if (*epfn <= first_init_pfn)
1920 if (*spfn < first_init_pfn)
1921 *spfn = first_init_pfn;
1930 * Initialize and free pages. We do it in two loops: first we initialize
1931 * struct page, then free to buddy allocator, because while we are
1932 * freeing pages we can access pages that are ahead (computing buddy
1933 * page in __free_one_page()).
1935 * In order to try and keep some memory in the cache we have the loop
1936 * broken along max page order boundaries. This way we will not cause
1937 * any issues with the buddy page computation.
1939 static unsigned long __init
1940 deferred_init_maxorder(u64 *i, struct zone *zone, unsigned long *start_pfn,
1941 unsigned long *end_pfn)
1943 unsigned long mo_pfn = ALIGN(*start_pfn + 1, MAX_ORDER_NR_PAGES);
1944 unsigned long spfn = *start_pfn, epfn = *end_pfn;
1945 unsigned long nr_pages = 0;
1948 /* First we loop through and initialize the page values */
1949 for_each_free_mem_pfn_range_in_zone_from(j, zone, start_pfn, end_pfn) {
1952 if (mo_pfn <= *start_pfn)
1955 t = min(mo_pfn, *end_pfn);
1956 nr_pages += deferred_init_pages(zone, *start_pfn, t);
1958 if (mo_pfn < *end_pfn) {
1959 *start_pfn = mo_pfn;
1964 /* Reset values and now loop through freeing pages as needed */
1967 for_each_free_mem_pfn_range_in_zone_from(j, zone, &spfn, &epfn) {
1973 t = min(mo_pfn, epfn);
1974 deferred_free_pages(spfn, t);
1984 deferred_init_memmap_chunk(unsigned long start_pfn, unsigned long end_pfn,
1987 unsigned long spfn, epfn;
1988 struct zone *zone = arg;
1991 deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn, start_pfn);
1994 * Initialize and free pages in MAX_ORDER sized increments so that we
1995 * can avoid introducing any issues with the buddy allocator.
1997 while (spfn < end_pfn) {
1998 deferred_init_maxorder(&i, zone, &spfn, &epfn);
2003 /* An arch may override for more concurrency. */
2005 deferred_page_init_max_threads(const struct cpumask *node_cpumask)
2010 /* Initialise remaining memory on a node */
2011 static int __init deferred_init_memmap(void *data)
2013 pg_data_t *pgdat = data;
2014 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
2015 unsigned long spfn = 0, epfn = 0;
2016 unsigned long first_init_pfn, flags;
2017 unsigned long start = jiffies;
2019 int zid, max_threads;
2022 /* Bind memory initialisation thread to a local node if possible */
2023 if (!cpumask_empty(cpumask))
2024 set_cpus_allowed_ptr(current, cpumask);
2026 pgdat_resize_lock(pgdat, &flags);
2027 first_init_pfn = pgdat->first_deferred_pfn;
2028 if (first_init_pfn == ULONG_MAX) {
2029 pgdat_resize_unlock(pgdat, &flags);
2030 pgdat_init_report_one_done();
2034 /* Sanity check boundaries */
2035 BUG_ON(pgdat->first_deferred_pfn < pgdat->node_start_pfn);
2036 BUG_ON(pgdat->first_deferred_pfn > pgdat_end_pfn(pgdat));
2037 pgdat->first_deferred_pfn = ULONG_MAX;
2040 * Once we unlock here, the zone cannot be grown anymore, thus if an
2041 * interrupt thread must allocate this early in boot, zone must be
2042 * pre-grown prior to start of deferred page initialization.
2044 pgdat_resize_unlock(pgdat, &flags);
2046 /* Only the highest zone is deferred so find it */
2047 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
2048 zone = pgdat->node_zones + zid;
2049 if (first_init_pfn < zone_end_pfn(zone))
2053 /* If the zone is empty somebody else may have cleared out the zone */
2054 if (!deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn,
2058 max_threads = deferred_page_init_max_threads(cpumask);
2060 while (spfn < epfn) {
2061 unsigned long epfn_align = ALIGN(epfn, PAGES_PER_SECTION);
2062 struct padata_mt_job job = {
2063 .thread_fn = deferred_init_memmap_chunk,
2066 .size = epfn_align - spfn,
2067 .align = PAGES_PER_SECTION,
2068 .min_chunk = PAGES_PER_SECTION,
2069 .max_threads = max_threads,
2072 padata_do_multithreaded(&job);
2073 deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn,
2077 /* Sanity check that the next zone really is unpopulated */
2078 WARN_ON(++zid < MAX_NR_ZONES && populated_zone(++zone));
2080 pr_info("node %d deferred pages initialised in %ums\n",
2081 pgdat->node_id, jiffies_to_msecs(jiffies - start));
2083 pgdat_init_report_one_done();
2088 * If this zone has deferred pages, try to grow it by initializing enough
2089 * deferred pages to satisfy the allocation specified by order, rounded up to
2090 * the nearest PAGES_PER_SECTION boundary. So we're adding memory in increments
2091 * of SECTION_SIZE bytes by initializing struct pages in increments of
2092 * PAGES_PER_SECTION * sizeof(struct page) bytes.
2094 * Return true when zone was grown, otherwise return false. We return true even
2095 * when we grow less than requested, to let the caller decide if there are
2096 * enough pages to satisfy the allocation.
2098 * Note: We use noinline because this function is needed only during boot, and
2099 * it is called from a __ref function _deferred_grow_zone. This way we are
2100 * making sure that it is not inlined into permanent text section.
2102 static noinline bool __init
2103 deferred_grow_zone(struct zone *zone, unsigned int order)
2105 unsigned long nr_pages_needed = ALIGN(1 << order, PAGES_PER_SECTION);
2106 pg_data_t *pgdat = zone->zone_pgdat;
2107 unsigned long first_deferred_pfn = pgdat->first_deferred_pfn;
2108 unsigned long spfn, epfn, flags;
2109 unsigned long nr_pages = 0;
2112 /* Only the last zone may have deferred pages */
2113 if (zone_end_pfn(zone) != pgdat_end_pfn(pgdat))
2116 pgdat_resize_lock(pgdat, &flags);
2119 * If someone grew this zone while we were waiting for spinlock, return
2120 * true, as there might be enough pages already.
2122 if (first_deferred_pfn != pgdat->first_deferred_pfn) {
2123 pgdat_resize_unlock(pgdat, &flags);
2127 /* If the zone is empty somebody else may have cleared out the zone */
2128 if (!deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn,
2129 first_deferred_pfn)) {
2130 pgdat->first_deferred_pfn = ULONG_MAX;
2131 pgdat_resize_unlock(pgdat, &flags);
2132 /* Retry only once. */
2133 return first_deferred_pfn != ULONG_MAX;
2137 * Initialize and free pages in MAX_ORDER sized increments so
2138 * that we can avoid introducing any issues with the buddy
2141 while (spfn < epfn) {
2142 /* update our first deferred PFN for this section */
2143 first_deferred_pfn = spfn;
2145 nr_pages += deferred_init_maxorder(&i, zone, &spfn, &epfn);
2146 touch_nmi_watchdog();
2148 /* We should only stop along section boundaries */
2149 if ((first_deferred_pfn ^ spfn) < PAGES_PER_SECTION)
2152 /* If our quota has been met we can stop here */
2153 if (nr_pages >= nr_pages_needed)
2157 pgdat->first_deferred_pfn = spfn;
2158 pgdat_resize_unlock(pgdat, &flags);
2160 return nr_pages > 0;
2164 * deferred_grow_zone() is __init, but it is called from
2165 * get_page_from_freelist() during early boot until deferred_pages permanently
2166 * disables this call. This is why we have refdata wrapper to avoid warning,
2167 * and to ensure that the function body gets unloaded.
2170 _deferred_grow_zone(struct zone *zone, unsigned int order)
2172 return deferred_grow_zone(zone, order);
2175 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
2177 void __init page_alloc_init_late(void)
2182 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
2184 /* There will be num_node_state(N_MEMORY) threads */
2185 atomic_set(&pgdat_init_n_undone, num_node_state(N_MEMORY));
2186 for_each_node_state(nid, N_MEMORY) {
2187 kthread_run(deferred_init_memmap, NODE_DATA(nid), "pgdatinit%d", nid);
2190 /* Block until all are initialised */
2191 wait_for_completion(&pgdat_init_all_done_comp);
2194 * We initialized the rest of the deferred pages. Permanently disable
2195 * on-demand struct page initialization.
2197 static_branch_disable(&deferred_pages);
2199 /* Reinit limits that are based on free pages after the kernel is up */
2200 files_maxfiles_init();
2205 /* Discard memblock private memory */
2208 for_each_node_state(nid, N_MEMORY)
2209 shuffle_free_memory(NODE_DATA(nid));
2211 for_each_populated_zone(zone)
2212 set_zone_contiguous(zone);
2216 /* Free whole pageblock and set its migration type to MIGRATE_CMA. */
2217 void __init init_cma_reserved_pageblock(struct page *page)
2219 unsigned i = pageblock_nr_pages;
2220 struct page *p = page;
2223 __ClearPageReserved(p);
2224 set_page_count(p, 0);
2227 set_pageblock_migratetype(page, MIGRATE_CMA);
2228 set_page_refcounted(page);
2229 __free_pages(page, pageblock_order);
2231 adjust_managed_page_count(page, pageblock_nr_pages);
2232 page_zone(page)->cma_pages += pageblock_nr_pages;
2237 * The order of subdivision here is critical for the IO subsystem.
2238 * Please do not alter this order without good reasons and regression
2239 * testing. Specifically, as large blocks of memory are subdivided,
2240 * the order in which smaller blocks are delivered depends on the order
2241 * they're subdivided in this function. This is the primary factor
2242 * influencing the order in which pages are delivered to the IO
2243 * subsystem according to empirical testing, and this is also justified
2244 * by considering the behavior of a buddy system containing a single
2245 * large block of memory acted on by a series of small allocations.
2246 * This behavior is a critical factor in sglist merging's success.
2250 static inline void expand(struct zone *zone, struct page *page,
2251 int low, int high, int migratetype)
2253 unsigned long size = 1 << high;
2255 while (high > low) {
2258 VM_BUG_ON_PAGE(bad_range(zone, &page[size]), &page[size]);
2261 * Mark as guard pages (or page), that will allow to
2262 * merge back to allocator when buddy will be freed.
2263 * Corresponding page table entries will not be touched,
2264 * pages will stay not present in virtual address space
2266 if (set_page_guard(zone, &page[size], high, migratetype))
2269 add_to_free_list(&page[size], zone, high, migratetype);
2270 set_buddy_order(&page[size], high);
2274 static void check_new_page_bad(struct page *page)
2276 if (unlikely(page->flags & __PG_HWPOISON)) {
2277 /* Don't complain about hwpoisoned pages */
2278 page_mapcount_reset(page); /* remove PageBuddy */
2283 page_bad_reason(page, PAGE_FLAGS_CHECK_AT_PREP));
2287 * This page is about to be returned from the page allocator
2289 static inline int check_new_page(struct page *page)
2291 if (likely(page_expected_state(page,
2292 PAGE_FLAGS_CHECK_AT_PREP|__PG_HWPOISON)))
2295 check_new_page_bad(page);
2299 static bool check_new_pages(struct page *page, unsigned int order)
2302 for (i = 0; i < (1 << order); i++) {
2303 struct page *p = page + i;
2305 if (unlikely(check_new_page(p)))
2312 #ifdef CONFIG_DEBUG_VM
2314 * With DEBUG_VM enabled, order-0 pages are checked for expected state when
2315 * being allocated from pcp lists. With debug_pagealloc also enabled, they are
2316 * also checked when pcp lists are refilled from the free lists.
2318 static inline bool check_pcp_refill(struct page *page, unsigned int order)
2320 if (debug_pagealloc_enabled_static())
2321 return check_new_pages(page, order);
2326 static inline bool check_new_pcp(struct page *page, unsigned int order)
2328 return check_new_pages(page, order);
2332 * With DEBUG_VM disabled, free order-0 pages are checked for expected state
2333 * when pcp lists are being refilled from the free lists. With debug_pagealloc
2334 * enabled, they are also checked when being allocated from the pcp lists.
2336 static inline bool check_pcp_refill(struct page *page, unsigned int order)
2338 return check_new_pages(page, order);
2340 static inline bool check_new_pcp(struct page *page, unsigned int order)
2342 if (debug_pagealloc_enabled_static())
2343 return check_new_pages(page, order);
2347 #endif /* CONFIG_DEBUG_VM */
2349 static inline bool should_skip_kasan_unpoison(gfp_t flags, bool init_tags)
2351 /* Don't skip if a software KASAN mode is enabled. */
2352 if (IS_ENABLED(CONFIG_KASAN_GENERIC) ||
2353 IS_ENABLED(CONFIG_KASAN_SW_TAGS))
2356 /* Skip, if hardware tag-based KASAN is not enabled. */
2357 if (!kasan_hw_tags_enabled())
2361 * With hardware tag-based KASAN enabled, skip if either:
2363 * 1. Memory tags have already been cleared via tag_clear_highpage().
2364 * 2. Skipping has been requested via __GFP_SKIP_KASAN_UNPOISON.
2366 return init_tags || (flags & __GFP_SKIP_KASAN_UNPOISON);
2369 static inline bool should_skip_init(gfp_t flags)
2371 /* Don't skip, if hardware tag-based KASAN is not enabled. */
2372 if (!kasan_hw_tags_enabled())
2375 /* For hardware tag-based KASAN, skip if requested. */
2376 return (flags & __GFP_SKIP_ZERO);
2379 inline void post_alloc_hook(struct page *page, unsigned int order,
2382 bool init = !want_init_on_free() && want_init_on_alloc(gfp_flags) &&
2383 !should_skip_init(gfp_flags);
2384 bool init_tags = init && (gfp_flags & __GFP_ZEROTAGS);
2386 set_page_private(page, 0);
2387 set_page_refcounted(page);
2389 arch_alloc_page(page, order);
2390 debug_pagealloc_map_pages(page, 1 << order);
2393 * Page unpoisoning must happen before memory initialization.
2394 * Otherwise, the poison pattern will be overwritten for __GFP_ZERO
2395 * allocations and the page unpoisoning code will complain.
2397 kernel_unpoison_pages(page, 1 << order);
2400 * As memory initialization might be integrated into KASAN,
2401 * KASAN unpoisoning and memory initializion code must be
2402 * kept together to avoid discrepancies in behavior.
2406 * If memory tags should be zeroed (which happens only when memory
2407 * should be initialized as well).
2412 /* Initialize both memory and tags. */
2413 for (i = 0; i != 1 << order; ++i)
2414 tag_clear_highpage(page + i);
2416 /* Note that memory is already initialized by the loop above. */
2419 if (!should_skip_kasan_unpoison(gfp_flags, init_tags)) {
2420 /* Unpoison shadow memory or set memory tags. */
2421 kasan_unpoison_pages(page, order, init);
2423 /* Note that memory is already initialized by KASAN. */
2424 if (kasan_has_integrated_init())
2427 /* If memory is still not initialized, do it now. */
2429 kernel_init_free_pages(page, 1 << order);
2430 /* Propagate __GFP_SKIP_KASAN_POISON to page flags. */
2431 if (kasan_hw_tags_enabled() && (gfp_flags & __GFP_SKIP_KASAN_POISON))
2432 SetPageSkipKASanPoison(page);
2434 set_page_owner(page, order, gfp_flags);
2435 page_table_check_alloc(page, order);
2438 static void prep_new_page(struct page *page, unsigned int order, gfp_t gfp_flags,
2439 unsigned int alloc_flags)
2441 post_alloc_hook(page, order, gfp_flags);
2443 if (order && (gfp_flags & __GFP_COMP))
2444 prep_compound_page(page, order);
2447 * page is set pfmemalloc when ALLOC_NO_WATERMARKS was necessary to
2448 * allocate the page. The expectation is that the caller is taking
2449 * steps that will free more memory. The caller should avoid the page
2450 * being used for !PFMEMALLOC purposes.
2452 if (alloc_flags & ALLOC_NO_WATERMARKS)
2453 set_page_pfmemalloc(page);
2455 clear_page_pfmemalloc(page);
2459 * Go through the free lists for the given migratetype and remove
2460 * the smallest available page from the freelists
2462 static __always_inline
2463 struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
2466 unsigned int current_order;
2467 struct free_area *area;
2470 /* Find a page of the appropriate size in the preferred list */
2471 for (current_order = order; current_order < MAX_ORDER; ++current_order) {
2472 area = &(zone->free_area[current_order]);
2473 page = get_page_from_free_area(area, migratetype);
2476 del_page_from_free_list(page, zone, current_order);
2477 expand(zone, page, order, current_order, migratetype);
2478 set_pcppage_migratetype(page, migratetype);
2487 * This array describes the order lists are fallen back to when
2488 * the free lists for the desirable migrate type are depleted
2490 * The other migratetypes do not have fallbacks.
2492 static int fallbacks[MIGRATE_TYPES][3] = {
2493 [MIGRATE_UNMOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE, MIGRATE_TYPES },
2494 [MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_TYPES },
2495 [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE, MIGRATE_TYPES },
2499 static __always_inline struct page *__rmqueue_cma_fallback(struct zone *zone,
2502 return __rmqueue_smallest(zone, order, MIGRATE_CMA);
2505 static inline struct page *__rmqueue_cma_fallback(struct zone *zone,
2506 unsigned int order) { return NULL; }
2510 * Move the free pages in a range to the freelist tail of the requested type.
2511 * Note that start_page and end_pages are not aligned on a pageblock
2512 * boundary. If alignment is required, use move_freepages_block()
2514 static int move_freepages(struct zone *zone,
2515 unsigned long start_pfn, unsigned long end_pfn,
2516 int migratetype, int *num_movable)
2521 int pages_moved = 0;
2523 for (pfn = start_pfn; pfn <= end_pfn;) {
2524 page = pfn_to_page(pfn);
2525 if (!PageBuddy(page)) {
2527 * We assume that pages that could be isolated for
2528 * migration are movable. But we don't actually try
2529 * isolating, as that would be expensive.
2532 (PageLRU(page) || __PageMovable(page)))
2538 /* Make sure we are not inadvertently changing nodes */
2539 VM_BUG_ON_PAGE(page_to_nid(page) != zone_to_nid(zone), page);
2540 VM_BUG_ON_PAGE(page_zone(page) != zone, page);
2542 order = buddy_order(page);
2543 move_to_free_list(page, zone, order, migratetype);
2545 pages_moved += 1 << order;
2551 int move_freepages_block(struct zone *zone, struct page *page,
2552 int migratetype, int *num_movable)
2554 unsigned long start_pfn, end_pfn, pfn;
2559 pfn = page_to_pfn(page);
2560 start_pfn = pfn & ~(pageblock_nr_pages - 1);
2561 end_pfn = start_pfn + pageblock_nr_pages - 1;
2563 /* Do not cross zone boundaries */
2564 if (!zone_spans_pfn(zone, start_pfn))
2566 if (!zone_spans_pfn(zone, end_pfn))
2569 return move_freepages(zone, start_pfn, end_pfn, migratetype,
2573 static void change_pageblock_range(struct page *pageblock_page,
2574 int start_order, int migratetype)
2576 int nr_pageblocks = 1 << (start_order - pageblock_order);
2578 while (nr_pageblocks--) {
2579 set_pageblock_migratetype(pageblock_page, migratetype);
2580 pageblock_page += pageblock_nr_pages;
2585 * When we are falling back to another migratetype during allocation, try to
2586 * steal extra free pages from the same pageblocks to satisfy further
2587 * allocations, instead of polluting multiple pageblocks.
2589 * If we are stealing a relatively large buddy page, it is likely there will
2590 * be more free pages in the pageblock, so try to steal them all. For
2591 * reclaimable and unmovable allocations, we steal regardless of page size,
2592 * as fragmentation caused by those allocations polluting movable pageblocks
2593 * is worse than movable allocations stealing from unmovable and reclaimable
2596 static bool can_steal_fallback(unsigned int order, int start_mt)
2599 * Leaving this order check is intended, although there is
2600 * relaxed order check in next check. The reason is that
2601 * we can actually steal whole pageblock if this condition met,
2602 * but, below check doesn't guarantee it and that is just heuristic
2603 * so could be changed anytime.
2605 if (order >= pageblock_order)
2608 if (order >= pageblock_order / 2 ||
2609 start_mt == MIGRATE_RECLAIMABLE ||
2610 start_mt == MIGRATE_UNMOVABLE ||
2611 page_group_by_mobility_disabled)
2617 static inline bool boost_watermark(struct zone *zone)
2619 unsigned long max_boost;
2621 if (!watermark_boost_factor)
2624 * Don't bother in zones that are unlikely to produce results.
2625 * On small machines, including kdump capture kernels running
2626 * in a small area, boosting the watermark can cause an out of
2627 * memory situation immediately.
2629 if ((pageblock_nr_pages * 4) > zone_managed_pages(zone))
2632 max_boost = mult_frac(zone->_watermark[WMARK_HIGH],
2633 watermark_boost_factor, 10000);
2636 * high watermark may be uninitialised if fragmentation occurs
2637 * very early in boot so do not boost. We do not fall
2638 * through and boost by pageblock_nr_pages as failing
2639 * allocations that early means that reclaim is not going
2640 * to help and it may even be impossible to reclaim the
2641 * boosted watermark resulting in a hang.
2646 max_boost = max(pageblock_nr_pages, max_boost);
2648 zone->watermark_boost = min(zone->watermark_boost + pageblock_nr_pages,
2655 * This function implements actual steal behaviour. If order is large enough,
2656 * we can steal whole pageblock. If not, we first move freepages in this
2657 * pageblock to our migratetype and determine how many already-allocated pages
2658 * are there in the pageblock with a compatible migratetype. If at least half
2659 * of pages are free or compatible, we can change migratetype of the pageblock
2660 * itself, so pages freed in the future will be put on the correct free list.
2662 static void steal_suitable_fallback(struct zone *zone, struct page *page,
2663 unsigned int alloc_flags, int start_type, bool whole_block)
2665 unsigned int current_order = buddy_order(page);
2666 int free_pages, movable_pages, alike_pages;
2669 old_block_type = get_pageblock_migratetype(page);
2672 * This can happen due to races and we want to prevent broken
2673 * highatomic accounting.
2675 if (is_migrate_highatomic(old_block_type))
2678 /* Take ownership for orders >= pageblock_order */
2679 if (current_order >= pageblock_order) {
2680 change_pageblock_range(page, current_order, start_type);
2685 * Boost watermarks to increase reclaim pressure to reduce the
2686 * likelihood of future fallbacks. Wake kswapd now as the node
2687 * may be balanced overall and kswapd will not wake naturally.
2689 if (boost_watermark(zone) && (alloc_flags & ALLOC_KSWAPD))
2690 set_bit(ZONE_BOOSTED_WATERMARK, &zone->flags);
2692 /* We are not allowed to try stealing from the whole block */
2696 free_pages = move_freepages_block(zone, page, start_type,
2699 * Determine how many pages are compatible with our allocation.
2700 * For movable allocation, it's the number of movable pages which
2701 * we just obtained. For other types it's a bit more tricky.
2703 if (start_type == MIGRATE_MOVABLE) {
2704 alike_pages = movable_pages;
2707 * If we are falling back a RECLAIMABLE or UNMOVABLE allocation
2708 * to MOVABLE pageblock, consider all non-movable pages as
2709 * compatible. If it's UNMOVABLE falling back to RECLAIMABLE or
2710 * vice versa, be conservative since we can't distinguish the
2711 * exact migratetype of non-movable pages.
2713 if (old_block_type == MIGRATE_MOVABLE)
2714 alike_pages = pageblock_nr_pages
2715 - (free_pages + movable_pages);
2720 /* moving whole block can fail due to zone boundary conditions */
2725 * If a sufficient number of pages in the block are either free or of
2726 * comparable migratability as our allocation, claim the whole block.
2728 if (free_pages + alike_pages >= (1 << (pageblock_order-1)) ||
2729 page_group_by_mobility_disabled)
2730 set_pageblock_migratetype(page, start_type);
2735 move_to_free_list(page, zone, current_order, start_type);
2739 * Check whether there is a suitable fallback freepage with requested order.
2740 * If only_stealable is true, this function returns fallback_mt only if
2741 * we can steal other freepages all together. This would help to reduce
2742 * fragmentation due to mixed migratetype pages in one pageblock.
2744 int find_suitable_fallback(struct free_area *area, unsigned int order,
2745 int migratetype, bool only_stealable, bool *can_steal)
2750 if (area->nr_free == 0)
2755 fallback_mt = fallbacks[migratetype][i];
2756 if (fallback_mt == MIGRATE_TYPES)
2759 if (free_area_empty(area, fallback_mt))
2762 if (can_steal_fallback(order, migratetype))
2765 if (!only_stealable)
2776 * Reserve a pageblock for exclusive use of high-order atomic allocations if
2777 * there are no empty page blocks that contain a page with a suitable order
2779 static void reserve_highatomic_pageblock(struct page *page, struct zone *zone,
2780 unsigned int alloc_order)
2783 unsigned long max_managed, flags;
2786 * Limit the number reserved to 1 pageblock or roughly 1% of a zone.
2787 * Check is race-prone but harmless.
2789 max_managed = (zone_managed_pages(zone) / 100) + pageblock_nr_pages;
2790 if (zone->nr_reserved_highatomic >= max_managed)
2793 spin_lock_irqsave(&zone->lock, flags);
2795 /* Recheck the nr_reserved_highatomic limit under the lock */
2796 if (zone->nr_reserved_highatomic >= max_managed)
2800 mt = get_pageblock_migratetype(page);
2801 /* Only reserve normal pageblocks (i.e., they can merge with others) */
2802 if (migratetype_is_mergeable(mt)) {
2803 zone->nr_reserved_highatomic += pageblock_nr_pages;
2804 set_pageblock_migratetype(page, MIGRATE_HIGHATOMIC);
2805 move_freepages_block(zone, page, MIGRATE_HIGHATOMIC, NULL);
2809 spin_unlock_irqrestore(&zone->lock, flags);
2813 * Used when an allocation is about to fail under memory pressure. This
2814 * potentially hurts the reliability of high-order allocations when under
2815 * intense memory pressure but failed atomic allocations should be easier
2816 * to recover from than an OOM.
2818 * If @force is true, try to unreserve a pageblock even though highatomic
2819 * pageblock is exhausted.
2821 static bool unreserve_highatomic_pageblock(const struct alloc_context *ac,
2824 struct zonelist *zonelist = ac->zonelist;
2825 unsigned long flags;
2832 for_each_zone_zonelist_nodemask(zone, z, zonelist, ac->highest_zoneidx,
2835 * Preserve at least one pageblock unless memory pressure
2838 if (!force && zone->nr_reserved_highatomic <=
2842 spin_lock_irqsave(&zone->lock, flags);
2843 for (order = 0; order < MAX_ORDER; order++) {
2844 struct free_area *area = &(zone->free_area[order]);
2846 page = get_page_from_free_area(area, MIGRATE_HIGHATOMIC);
2851 * In page freeing path, migratetype change is racy so
2852 * we can counter several free pages in a pageblock
2853 * in this loop although we changed the pageblock type
2854 * from highatomic to ac->migratetype. So we should
2855 * adjust the count once.
2857 if (is_migrate_highatomic_page(page)) {
2859 * It should never happen but changes to
2860 * locking could inadvertently allow a per-cpu
2861 * drain to add pages to MIGRATE_HIGHATOMIC
2862 * while unreserving so be safe and watch for
2865 zone->nr_reserved_highatomic -= min(
2867 zone->nr_reserved_highatomic);
2871 * Convert to ac->migratetype and avoid the normal
2872 * pageblock stealing heuristics. Minimally, the caller
2873 * is doing the work and needs the pages. More
2874 * importantly, if the block was always converted to
2875 * MIGRATE_UNMOVABLE or another type then the number
2876 * of pageblocks that cannot be completely freed
2879 set_pageblock_migratetype(page, ac->migratetype);
2880 ret = move_freepages_block(zone, page, ac->migratetype,
2883 spin_unlock_irqrestore(&zone->lock, flags);
2887 spin_unlock_irqrestore(&zone->lock, flags);
2894 * Try finding a free buddy page on the fallback list and put it on the free
2895 * list of requested migratetype, possibly along with other pages from the same
2896 * block, depending on fragmentation avoidance heuristics. Returns true if
2897 * fallback was found so that __rmqueue_smallest() can grab it.
2899 * The use of signed ints for order and current_order is a deliberate
2900 * deviation from the rest of this file, to make the for loop
2901 * condition simpler.
2903 static __always_inline bool
2904 __rmqueue_fallback(struct zone *zone, int order, int start_migratetype,
2905 unsigned int alloc_flags)
2907 struct free_area *area;
2909 int min_order = order;
2915 * Do not steal pages from freelists belonging to other pageblocks
2916 * i.e. orders < pageblock_order. If there are no local zones free,
2917 * the zonelists will be reiterated without ALLOC_NOFRAGMENT.
2919 if (alloc_flags & ALLOC_NOFRAGMENT)
2920 min_order = pageblock_order;
2923 * Find the largest available free page in the other list. This roughly
2924 * approximates finding the pageblock with the most free pages, which
2925 * would be too costly to do exactly.
2927 for (current_order = MAX_ORDER - 1; current_order >= min_order;
2929 area = &(zone->free_area[current_order]);
2930 fallback_mt = find_suitable_fallback(area, current_order,
2931 start_migratetype, false, &can_steal);
2932 if (fallback_mt == -1)
2936 * We cannot steal all free pages from the pageblock and the
2937 * requested migratetype is movable. In that case it's better to
2938 * steal and split the smallest available page instead of the
2939 * largest available page, because even if the next movable
2940 * allocation falls back into a different pageblock than this
2941 * one, it won't cause permanent fragmentation.
2943 if (!can_steal && start_migratetype == MIGRATE_MOVABLE
2944 && current_order > order)
2953 for (current_order = order; current_order < MAX_ORDER;
2955 area = &(zone->free_area[current_order]);
2956 fallback_mt = find_suitable_fallback(area, current_order,
2957 start_migratetype, false, &can_steal);
2958 if (fallback_mt != -1)
2963 * This should not happen - we already found a suitable fallback
2964 * when looking for the largest page.
2966 VM_BUG_ON(current_order == MAX_ORDER);
2969 page = get_page_from_free_area(area, fallback_mt);
2971 steal_suitable_fallback(zone, page, alloc_flags, start_migratetype,
2974 trace_mm_page_alloc_extfrag(page, order, current_order,
2975 start_migratetype, fallback_mt);
2982 * Do the hard work of removing an element from the buddy allocator.
2983 * Call me with the zone->lock already held.
2985 static __always_inline struct page *
2986 __rmqueue(struct zone *zone, unsigned int order, int migratetype,
2987 unsigned int alloc_flags)
2991 if (IS_ENABLED(CONFIG_CMA)) {
2993 * Balance movable allocations between regular and CMA areas by
2994 * allocating from CMA when over half of the zone's free memory
2995 * is in the CMA area.
2997 if (alloc_flags & ALLOC_CMA &&
2998 zone_page_state(zone, NR_FREE_CMA_PAGES) >
2999 zone_page_state(zone, NR_FREE_PAGES) / 2) {
3000 page = __rmqueue_cma_fallback(zone, order);
3006 page = __rmqueue_smallest(zone, order, migratetype);
3007 if (unlikely(!page)) {
3008 if (alloc_flags & ALLOC_CMA)
3009 page = __rmqueue_cma_fallback(zone, order);
3011 if (!page && __rmqueue_fallback(zone, order, migratetype,
3017 trace_mm_page_alloc_zone_locked(page, order, migratetype);
3022 * Obtain a specified number of elements from the buddy allocator, all under
3023 * a single hold of the lock, for efficiency. Add them to the supplied list.
3024 * Returns the number of new pages which were placed at *list.
3026 static int rmqueue_bulk(struct zone *zone, unsigned int order,
3027 unsigned long count, struct list_head *list,
3028 int migratetype, unsigned int alloc_flags)
3030 int i, allocated = 0;
3033 * local_lock_irq held so equivalent to spin_lock_irqsave for
3034 * both PREEMPT_RT and non-PREEMPT_RT configurations.
3036 spin_lock(&zone->lock);
3037 for (i = 0; i < count; ++i) {
3038 struct page *page = __rmqueue(zone, order, migratetype,
3040 if (unlikely(page == NULL))
3043 if (unlikely(check_pcp_refill(page, order)))
3047 * Split buddy pages returned by expand() are received here in
3048 * physical page order. The page is added to the tail of
3049 * caller's list. From the callers perspective, the linked list
3050 * is ordered by page number under some conditions. This is
3051 * useful for IO devices that can forward direction from the
3052 * head, thus also in the physical page order. This is useful
3053 * for IO devices that can merge IO requests if the physical
3054 * pages are ordered properly.
3056 list_add_tail(&page->lru, list);
3058 if (is_migrate_cma(get_pcppage_migratetype(page)))
3059 __mod_zone_page_state(zone, NR_FREE_CMA_PAGES,
3064 * i pages were removed from the buddy list even if some leak due
3065 * to check_pcp_refill failing so adjust NR_FREE_PAGES based
3066 * on i. Do not confuse with 'allocated' which is the number of
3067 * pages added to the pcp list.
3069 __mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order));
3070 spin_unlock(&zone->lock);
3076 * Called from the vmstat counter updater to drain pagesets of this
3077 * currently executing processor on remote nodes after they have
3080 * Note that this function must be called with the thread pinned to
3081 * a single processor.
3083 void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
3085 unsigned long flags;
3086 int to_drain, batch;
3088 local_lock_irqsave(&pagesets.lock, flags);
3089 batch = READ_ONCE(pcp->batch);
3090 to_drain = min(pcp->count, batch);
3092 free_pcppages_bulk(zone, to_drain, pcp, 0);
3093 local_unlock_irqrestore(&pagesets.lock, flags);
3098 * Drain pcplists of the indicated processor and zone.
3100 * The processor must either be the current processor and the
3101 * thread pinned to the current processor or a processor that
3104 static void drain_pages_zone(unsigned int cpu, struct zone *zone)
3106 unsigned long flags;
3107 struct per_cpu_pages *pcp;
3109 local_lock_irqsave(&pagesets.lock, flags);
3111 pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu);
3113 free_pcppages_bulk(zone, pcp->count, pcp, 0);
3115 local_unlock_irqrestore(&pagesets.lock, flags);
3119 * Drain pcplists of all zones on the indicated processor.
3121 * The processor must either be the current processor and the
3122 * thread pinned to the current processor or a processor that
3125 static void drain_pages(unsigned int cpu)
3129 for_each_populated_zone(zone) {
3130 drain_pages_zone(cpu, zone);
3135 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
3137 * The CPU has to be pinned. When zone parameter is non-NULL, spill just
3138 * the single zone's pages.
3140 void drain_local_pages(struct zone *zone)
3142 int cpu = smp_processor_id();
3145 drain_pages_zone(cpu, zone);
3150 static void drain_local_pages_wq(struct work_struct *work)
3152 struct pcpu_drain *drain;
3154 drain = container_of(work, struct pcpu_drain, work);
3157 * drain_all_pages doesn't use proper cpu hotplug protection so
3158 * we can race with cpu offline when the WQ can move this from
3159 * a cpu pinned worker to an unbound one. We can operate on a different
3160 * cpu which is alright but we also have to make sure to not move to
3164 drain_local_pages(drain->zone);
3169 * The implementation of drain_all_pages(), exposing an extra parameter to
3170 * drain on all cpus.
3172 * drain_all_pages() is optimized to only execute on cpus where pcplists are
3173 * not empty. The check for non-emptiness can however race with a free to
3174 * pcplist that has not yet increased the pcp->count from 0 to 1. Callers
3175 * that need the guarantee that every CPU has drained can disable the
3176 * optimizing racy check.
3178 static void __drain_all_pages(struct zone *zone, bool force_all_cpus)
3183 * Allocate in the BSS so we won't require allocation in
3184 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y
3186 static cpumask_t cpus_with_pcps;
3189 * Make sure nobody triggers this path before mm_percpu_wq is fully
3192 if (WARN_ON_ONCE(!mm_percpu_wq))
3196 * Do not drain if one is already in progress unless it's specific to
3197 * a zone. Such callers are primarily CMA and memory hotplug and need
3198 * the drain to be complete when the call returns.
3200 if (unlikely(!mutex_trylock(&pcpu_drain_mutex))) {
3203 mutex_lock(&pcpu_drain_mutex);
3207 * We don't care about racing with CPU hotplug event
3208 * as offline notification will cause the notified
3209 * cpu to drain that CPU pcps and on_each_cpu_mask
3210 * disables preemption as part of its processing
3212 for_each_online_cpu(cpu) {
3213 struct per_cpu_pages *pcp;
3215 bool has_pcps = false;
3217 if (force_all_cpus) {
3219 * The pcp.count check is racy, some callers need a
3220 * guarantee that no cpu is missed.
3224 pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu);
3228 for_each_populated_zone(z) {
3229 pcp = per_cpu_ptr(z->per_cpu_pageset, cpu);
3238 cpumask_set_cpu(cpu, &cpus_with_pcps);
3240 cpumask_clear_cpu(cpu, &cpus_with_pcps);
3243 for_each_cpu(cpu, &cpus_with_pcps) {
3244 struct pcpu_drain *drain = per_cpu_ptr(&pcpu_drain, cpu);
3247 INIT_WORK(&drain->work, drain_local_pages_wq);
3248 queue_work_on(cpu, mm_percpu_wq, &drain->work);
3250 for_each_cpu(cpu, &cpus_with_pcps)
3251 flush_work(&per_cpu_ptr(&pcpu_drain, cpu)->work);
3253 mutex_unlock(&pcpu_drain_mutex);
3257 * Spill all the per-cpu pages from all CPUs back into the buddy allocator.
3259 * When zone parameter is non-NULL, spill just the single zone's pages.
3261 * Note that this can be extremely slow as the draining happens in a workqueue.
3263 void drain_all_pages(struct zone *zone)
3265 __drain_all_pages(zone, false);
3268 #ifdef CONFIG_HIBERNATION
3271 * Touch the watchdog for every WD_PAGE_COUNT pages.
3273 #define WD_PAGE_COUNT (128*1024)
3275 void mark_free_pages(struct zone *zone)
3277 unsigned long pfn, max_zone_pfn, page_count = WD_PAGE_COUNT;
3278 unsigned long flags;
3279 unsigned int order, t;
3282 if (zone_is_empty(zone))
3285 spin_lock_irqsave(&zone->lock, flags);
3287 max_zone_pfn = zone_end_pfn(zone);
3288 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
3289 if (pfn_valid(pfn)) {
3290 page = pfn_to_page(pfn);
3292 if (!--page_count) {
3293 touch_nmi_watchdog();
3294 page_count = WD_PAGE_COUNT;
3297 if (page_zone(page) != zone)
3300 if (!swsusp_page_is_forbidden(page))
3301 swsusp_unset_page_free(page);
3304 for_each_migratetype_order(order, t) {
3305 list_for_each_entry(page,
3306 &zone->free_area[order].free_list[t], lru) {
3309 pfn = page_to_pfn(page);
3310 for (i = 0; i < (1UL << order); i++) {
3311 if (!--page_count) {
3312 touch_nmi_watchdog();
3313 page_count = WD_PAGE_COUNT;
3315 swsusp_set_page_free(pfn_to_page(pfn + i));
3319 spin_unlock_irqrestore(&zone->lock, flags);
3321 #endif /* CONFIG_PM */
3323 static bool free_unref_page_prepare(struct page *page, unsigned long pfn,
3328 if (!free_pcp_prepare(page, order))
3331 migratetype = get_pfnblock_migratetype(page, pfn);
3332 set_pcppage_migratetype(page, migratetype);
3336 static int nr_pcp_free(struct per_cpu_pages *pcp, int high, int batch,
3339 int min_nr_free, max_nr_free;
3341 /* Free everything if batch freeing high-order pages. */
3342 if (unlikely(free_high))
3345 /* Check for PCP disabled or boot pageset */
3346 if (unlikely(high < batch))
3349 /* Leave at least pcp->batch pages on the list */
3350 min_nr_free = batch;
3351 max_nr_free = high - batch;
3354 * Double the number of pages freed each time there is subsequent
3355 * freeing of pages without any allocation.
3357 batch <<= pcp->free_factor;
3358 if (batch < max_nr_free)
3360 batch = clamp(batch, min_nr_free, max_nr_free);
3365 static int nr_pcp_high(struct per_cpu_pages *pcp, struct zone *zone,
3368 int high = READ_ONCE(pcp->high);
3370 if (unlikely(!high || free_high))
3373 if (!test_bit(ZONE_RECLAIM_ACTIVE, &zone->flags))
3377 * If reclaim is active, limit the number of pages that can be
3378 * stored on pcp lists
3380 return min(READ_ONCE(pcp->batch) << 2, high);
3383 static void free_unref_page_commit(struct page *page, int migratetype,
3386 struct zone *zone = page_zone(page);
3387 struct per_cpu_pages *pcp;
3392 __count_vm_event(PGFREE);
3393 pcp = this_cpu_ptr(zone->per_cpu_pageset);
3394 pindex = order_to_pindex(migratetype, order);
3395 list_add(&page->lru, &pcp->lists[pindex]);
3396 pcp->count += 1 << order;
3399 * As high-order pages other than THP's stored on PCP can contribute
3400 * to fragmentation, limit the number stored when PCP is heavily
3401 * freeing without allocation. The remainder after bulk freeing
3402 * stops will be drained from vmstat refresh context.
3404 free_high = (pcp->free_factor && order && order <= PAGE_ALLOC_COSTLY_ORDER);
3406 high = nr_pcp_high(pcp, zone, free_high);
3407 if (pcp->count >= high) {
3408 int batch = READ_ONCE(pcp->batch);
3410 free_pcppages_bulk(zone, nr_pcp_free(pcp, high, batch, free_high), pcp, pindex);
3417 void free_unref_page(struct page *page, unsigned int order)
3419 unsigned long flags;
3420 unsigned long pfn = page_to_pfn(page);
3423 if (!free_unref_page_prepare(page, pfn, order))
3427 * We only track unmovable, reclaimable and movable on pcp lists.
3428 * Place ISOLATE pages on the isolated list because they are being
3429 * offlined but treat HIGHATOMIC as movable pages so we can get those
3430 * areas back if necessary. Otherwise, we may have to free
3431 * excessively into the page allocator
3433 migratetype = get_pcppage_migratetype(page);
3434 if (unlikely(migratetype >= MIGRATE_PCPTYPES)) {
3435 if (unlikely(is_migrate_isolate(migratetype))) {
3436 free_one_page(page_zone(page), page, pfn, order, migratetype, FPI_NONE);
3439 migratetype = MIGRATE_MOVABLE;
3442 local_lock_irqsave(&pagesets.lock, flags);
3443 free_unref_page_commit(page, migratetype, order);
3444 local_unlock_irqrestore(&pagesets.lock, flags);
3448 * Free a list of 0-order pages
3450 void free_unref_page_list(struct list_head *list)
3452 struct page *page, *next;
3453 unsigned long flags;
3454 int batch_count = 0;
3457 /* Prepare pages for freeing */
3458 list_for_each_entry_safe(page, next, list, lru) {
3459 unsigned long pfn = page_to_pfn(page);
3460 if (!free_unref_page_prepare(page, pfn, 0)) {
3461 list_del(&page->lru);
3466 * Free isolated pages directly to the allocator, see
3467 * comment in free_unref_page.
3469 migratetype = get_pcppage_migratetype(page);
3470 if (unlikely(is_migrate_isolate(migratetype))) {
3471 list_del(&page->lru);
3472 free_one_page(page_zone(page), page, pfn, 0, migratetype, FPI_NONE);
3477 local_lock_irqsave(&pagesets.lock, flags);
3478 list_for_each_entry_safe(page, next, list, lru) {
3480 * Non-isolated types over MIGRATE_PCPTYPES get added
3481 * to the MIGRATE_MOVABLE pcp list.
3483 migratetype = get_pcppage_migratetype(page);
3484 if (unlikely(migratetype >= MIGRATE_PCPTYPES))
3485 migratetype = MIGRATE_MOVABLE;
3487 trace_mm_page_free_batched(page);
3488 free_unref_page_commit(page, migratetype, 0);
3491 * Guard against excessive IRQ disabled times when we get
3492 * a large list of pages to free.
3494 if (++batch_count == SWAP_CLUSTER_MAX) {
3495 local_unlock_irqrestore(&pagesets.lock, flags);
3497 local_lock_irqsave(&pagesets.lock, flags);
3500 local_unlock_irqrestore(&pagesets.lock, flags);
3504 * split_page takes a non-compound higher-order page, and splits it into
3505 * n (1<<order) sub-pages: page[0..n]
3506 * Each sub-page must be freed individually.
3508 * Note: this is probably too low level an operation for use in drivers.
3509 * Please consult with lkml before using this in your driver.
3511 void split_page(struct page *page, unsigned int order)
3515 VM_BUG_ON_PAGE(PageCompound(page), page);
3516 VM_BUG_ON_PAGE(!page_count(page), page);
3518 for (i = 1; i < (1 << order); i++)
3519 set_page_refcounted(page + i);
3520 split_page_owner(page, 1 << order);
3521 split_page_memcg(page, 1 << order);
3523 EXPORT_SYMBOL_GPL(split_page);
3525 int __isolate_free_page(struct page *page, unsigned int order)
3527 unsigned long watermark;
3531 BUG_ON(!PageBuddy(page));
3533 zone = page_zone(page);
3534 mt = get_pageblock_migratetype(page);
3536 if (!is_migrate_isolate(mt)) {
3538 * Obey watermarks as if the page was being allocated. We can
3539 * emulate a high-order watermark check with a raised order-0
3540 * watermark, because we already know our high-order page
3543 watermark = zone->_watermark[WMARK_MIN] + (1UL << order);
3544 if (!zone_watermark_ok(zone, 0, watermark, 0, ALLOC_CMA))
3547 __mod_zone_freepage_state(zone, -(1UL << order), mt);
3550 /* Remove page from free list */
3552 del_page_from_free_list(page, zone, order);
3555 * Set the pageblock if the isolated page is at least half of a
3558 if (order >= pageblock_order - 1) {
3559 struct page *endpage = page + (1 << order) - 1;
3560 for (; page < endpage; page += pageblock_nr_pages) {
3561 int mt = get_pageblock_migratetype(page);
3563 * Only change normal pageblocks (i.e., they can merge
3566 if (migratetype_is_mergeable(mt))
3567 set_pageblock_migratetype(page,
3573 return 1UL << order;
3577 * __putback_isolated_page - Return a now-isolated page back where we got it
3578 * @page: Page that was isolated
3579 * @order: Order of the isolated page
3580 * @mt: The page's pageblock's migratetype
3582 * This function is meant to return a page pulled from the free lists via
3583 * __isolate_free_page back to the free lists they were pulled from.
3585 void __putback_isolated_page(struct page *page, unsigned int order, int mt)
3587 struct zone *zone = page_zone(page);
3589 /* zone lock should be held when this function is called */
3590 lockdep_assert_held(&zone->lock);
3592 /* Return isolated page to tail of freelist. */
3593 __free_one_page(page, page_to_pfn(page), zone, order, mt,
3594 FPI_SKIP_REPORT_NOTIFY | FPI_TO_TAIL);
3598 * Update NUMA hit/miss statistics
3600 * Must be called with interrupts disabled.
3602 static inline void zone_statistics(struct zone *preferred_zone, struct zone *z,
3606 enum numa_stat_item local_stat = NUMA_LOCAL;
3608 /* skip numa counters update if numa stats is disabled */
3609 if (!static_branch_likely(&vm_numa_stat_key))
3612 if (zone_to_nid(z) != numa_node_id())
3613 local_stat = NUMA_OTHER;
3615 if (zone_to_nid(z) == zone_to_nid(preferred_zone))
3616 __count_numa_events(z, NUMA_HIT, nr_account);
3618 __count_numa_events(z, NUMA_MISS, nr_account);
3619 __count_numa_events(preferred_zone, NUMA_FOREIGN, nr_account);
3621 __count_numa_events(z, local_stat, nr_account);
3625 /* Remove page from the per-cpu list, caller must protect the list */
3627 struct page *__rmqueue_pcplist(struct zone *zone, unsigned int order,
3629 unsigned int alloc_flags,
3630 struct per_cpu_pages *pcp,
3631 struct list_head *list)
3636 if (list_empty(list)) {
3637 int batch = READ_ONCE(pcp->batch);
3641 * Scale batch relative to order if batch implies
3642 * free pages can be stored on the PCP. Batch can
3643 * be 1 for small zones or for boot pagesets which
3644 * should never store free pages as the pages may
3645 * belong to arbitrary zones.
3648 batch = max(batch >> order, 2);
3649 alloced = rmqueue_bulk(zone, order,
3651 migratetype, alloc_flags);
3653 pcp->count += alloced << order;
3654 if (unlikely(list_empty(list)))
3658 page = list_first_entry(list, struct page, lru);
3659 list_del(&page->lru);
3660 pcp->count -= 1 << order;
3661 } while (check_new_pcp(page, order));
3666 /* Lock and remove page from the per-cpu list */
3667 static struct page *rmqueue_pcplist(struct zone *preferred_zone,
3668 struct zone *zone, unsigned int order,
3669 gfp_t gfp_flags, int migratetype,
3670 unsigned int alloc_flags)
3672 struct per_cpu_pages *pcp;
3673 struct list_head *list;
3675 unsigned long flags;
3677 local_lock_irqsave(&pagesets.lock, flags);
3680 * On allocation, reduce the number of pages that are batch freed.
3681 * See nr_pcp_free() where free_factor is increased for subsequent
3684 pcp = this_cpu_ptr(zone->per_cpu_pageset);
3685 pcp->free_factor >>= 1;
3686 list = &pcp->lists[order_to_pindex(migratetype, order)];
3687 page = __rmqueue_pcplist(zone, order, migratetype, alloc_flags, pcp, list);
3688 local_unlock_irqrestore(&pagesets.lock, flags);
3690 __count_zid_vm_events(PGALLOC, page_zonenum(page), 1);
3691 zone_statistics(preferred_zone, zone, 1);
3697 * Allocate a page from the given zone. Use pcplists for order-0 allocations.
3700 struct page *rmqueue(struct zone *preferred_zone,
3701 struct zone *zone, unsigned int order,
3702 gfp_t gfp_flags, unsigned int alloc_flags,
3705 unsigned long flags;
3708 if (likely(pcp_allowed_order(order))) {
3710 * MIGRATE_MOVABLE pcplist could have the pages on CMA area and
3711 * we need to skip it when CMA area isn't allowed.
3713 if (!IS_ENABLED(CONFIG_CMA) || alloc_flags & ALLOC_CMA ||
3714 migratetype != MIGRATE_MOVABLE) {
3715 page = rmqueue_pcplist(preferred_zone, zone, order,
3716 gfp_flags, migratetype, alloc_flags);
3722 * We most definitely don't want callers attempting to
3723 * allocate greater than order-1 page units with __GFP_NOFAIL.
3725 WARN_ON_ONCE((gfp_flags & __GFP_NOFAIL) && (order > 1));
3729 spin_lock_irqsave(&zone->lock, flags);
3731 * order-0 request can reach here when the pcplist is skipped
3732 * due to non-CMA allocation context. HIGHATOMIC area is
3733 * reserved for high-order atomic allocation, so order-0
3734 * request should skip it.
3736 if (order > 0 && alloc_flags & ALLOC_HARDER) {
3737 page = __rmqueue_smallest(zone, order, MIGRATE_HIGHATOMIC);
3739 trace_mm_page_alloc_zone_locked(page, order, migratetype);
3742 page = __rmqueue(zone, order, migratetype, alloc_flags);
3746 __mod_zone_freepage_state(zone, -(1 << order),
3747 get_pcppage_migratetype(page));
3748 spin_unlock_irqrestore(&zone->lock, flags);
3749 } while (check_new_pages(page, order));
3751 __count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order);
3752 zone_statistics(preferred_zone, zone, 1);
3755 /* Separate test+clear to avoid unnecessary atomics */
3756 if (test_bit(ZONE_BOOSTED_WATERMARK, &zone->flags)) {
3757 clear_bit(ZONE_BOOSTED_WATERMARK, &zone->flags);
3758 wakeup_kswapd(zone, 0, 0, zone_idx(zone));
3761 VM_BUG_ON_PAGE(page && bad_range(zone, page), page);
3765 spin_unlock_irqrestore(&zone->lock, flags);
3769 #ifdef CONFIG_FAIL_PAGE_ALLOC
3772 struct fault_attr attr;
3774 bool ignore_gfp_highmem;
3775 bool ignore_gfp_reclaim;
3777 } fail_page_alloc = {
3778 .attr = FAULT_ATTR_INITIALIZER,
3779 .ignore_gfp_reclaim = true,
3780 .ignore_gfp_highmem = true,
3784 static int __init setup_fail_page_alloc(char *str)
3786 return setup_fault_attr(&fail_page_alloc.attr, str);
3788 __setup("fail_page_alloc=", setup_fail_page_alloc);
3790 static bool __should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
3792 if (order < fail_page_alloc.min_order)
3794 if (gfp_mask & __GFP_NOFAIL)
3796 if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
3798 if (fail_page_alloc.ignore_gfp_reclaim &&
3799 (gfp_mask & __GFP_DIRECT_RECLAIM))
3802 return should_fail(&fail_page_alloc.attr, 1 << order);
3805 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
3807 static int __init fail_page_alloc_debugfs(void)
3809 umode_t mode = S_IFREG | 0600;
3812 dir = fault_create_debugfs_attr("fail_page_alloc", NULL,
3813 &fail_page_alloc.attr);
3815 debugfs_create_bool("ignore-gfp-wait", mode, dir,
3816 &fail_page_alloc.ignore_gfp_reclaim);
3817 debugfs_create_bool("ignore-gfp-highmem", mode, dir,
3818 &fail_page_alloc.ignore_gfp_highmem);
3819 debugfs_create_u32("min-order", mode, dir, &fail_page_alloc.min_order);
3824 late_initcall(fail_page_alloc_debugfs);
3826 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
3828 #else /* CONFIG_FAIL_PAGE_ALLOC */
3830 static inline bool __should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
3835 #endif /* CONFIG_FAIL_PAGE_ALLOC */
3837 noinline bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
3839 return __should_fail_alloc_page(gfp_mask, order);
3841 ALLOW_ERROR_INJECTION(should_fail_alloc_page, TRUE);
3843 static inline long __zone_watermark_unusable_free(struct zone *z,
3844 unsigned int order, unsigned int alloc_flags)
3846 const bool alloc_harder = (alloc_flags & (ALLOC_HARDER|ALLOC_OOM));
3847 long unusable_free = (1 << order) - 1;
3850 * If the caller does not have rights to ALLOC_HARDER then subtract
3851 * the high-atomic reserves. This will over-estimate the size of the
3852 * atomic reserve but it avoids a search.
3854 if (likely(!alloc_harder))
3855 unusable_free += z->nr_reserved_highatomic;
3858 /* If allocation can't use CMA areas don't use free CMA pages */
3859 if (!(alloc_flags & ALLOC_CMA))
3860 unusable_free += zone_page_state(z, NR_FREE_CMA_PAGES);
3863 return unusable_free;
3867 * Return true if free base pages are above 'mark'. For high-order checks it
3868 * will return true of the order-0 watermark is reached and there is at least
3869 * one free page of a suitable size. Checking now avoids taking the zone lock
3870 * to check in the allocation paths if no pages are free.
3872 bool __zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
3873 int highest_zoneidx, unsigned int alloc_flags,
3878 const bool alloc_harder = (alloc_flags & (ALLOC_HARDER|ALLOC_OOM));
3880 /* free_pages may go negative - that's OK */
3881 free_pages -= __zone_watermark_unusable_free(z, order, alloc_flags);
3883 if (alloc_flags & ALLOC_HIGH)
3886 if (unlikely(alloc_harder)) {
3888 * OOM victims can try even harder than normal ALLOC_HARDER
3889 * users on the grounds that it's definitely going to be in
3890 * the exit path shortly and free memory. Any allocation it
3891 * makes during the free path will be small and short-lived.
3893 if (alloc_flags & ALLOC_OOM)
3900 * Check watermarks for an order-0 allocation request. If these
3901 * are not met, then a high-order request also cannot go ahead
3902 * even if a suitable page happened to be free.
3904 if (free_pages <= min + z->lowmem_reserve[highest_zoneidx])
3907 /* If this is an order-0 request then the watermark is fine */
3911 /* For a high-order request, check at least one suitable page is free */
3912 for (o = order; o < MAX_ORDER; o++) {
3913 struct free_area *area = &z->free_area[o];
3919 for (mt = 0; mt < MIGRATE_PCPTYPES; mt++) {
3920 if (!free_area_empty(area, mt))
3925 if ((alloc_flags & ALLOC_CMA) &&
3926 !free_area_empty(area, MIGRATE_CMA)) {
3930 if (alloc_harder && !free_area_empty(area, MIGRATE_HIGHATOMIC))
3936 bool zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
3937 int highest_zoneidx, unsigned int alloc_flags)
3939 return __zone_watermark_ok(z, order, mark, highest_zoneidx, alloc_flags,
3940 zone_page_state(z, NR_FREE_PAGES));
3943 static inline bool zone_watermark_fast(struct zone *z, unsigned int order,
3944 unsigned long mark, int highest_zoneidx,
3945 unsigned int alloc_flags, gfp_t gfp_mask)
3949 free_pages = zone_page_state(z, NR_FREE_PAGES);
3952 * Fast check for order-0 only. If this fails then the reserves
3953 * need to be calculated.
3958 fast_free = free_pages;
3959 fast_free -= __zone_watermark_unusable_free(z, 0, alloc_flags);
3960 if (fast_free > mark + z->lowmem_reserve[highest_zoneidx])
3964 if (__zone_watermark_ok(z, order, mark, highest_zoneidx, alloc_flags,
3968 * Ignore watermark boosting for GFP_ATOMIC order-0 allocations
3969 * when checking the min watermark. The min watermark is the
3970 * point where boosting is ignored so that kswapd is woken up
3971 * when below the low watermark.
3973 if (unlikely(!order && (gfp_mask & __GFP_ATOMIC) && z->watermark_boost
3974 && ((alloc_flags & ALLOC_WMARK_MASK) == WMARK_MIN))) {
3975 mark = z->_watermark[WMARK_MIN];
3976 return __zone_watermark_ok(z, order, mark, highest_zoneidx,
3977 alloc_flags, free_pages);
3983 bool zone_watermark_ok_safe(struct zone *z, unsigned int order,
3984 unsigned long mark, int highest_zoneidx)
3986 long free_pages = zone_page_state(z, NR_FREE_PAGES);
3988 if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark)
3989 free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES);
3991 return __zone_watermark_ok(z, order, mark, highest_zoneidx, 0,
3996 int __read_mostly node_reclaim_distance = RECLAIM_DISTANCE;
3998 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
4000 return node_distance(zone_to_nid(local_zone), zone_to_nid(zone)) <=
4001 node_reclaim_distance;
4003 #else /* CONFIG_NUMA */
4004 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
4008 #endif /* CONFIG_NUMA */
4011 * The restriction on ZONE_DMA32 as being a suitable zone to use to avoid
4012 * fragmentation is subtle. If the preferred zone was HIGHMEM then
4013 * premature use of a lower zone may cause lowmem pressure problems that
4014 * are worse than fragmentation. If the next zone is ZONE_DMA then it is
4015 * probably too small. It only makes sense to spread allocations to avoid
4016 * fragmentation between the Normal and DMA32 zones.
4018 static inline unsigned int
4019 alloc_flags_nofragment(struct zone *zone, gfp_t gfp_mask)
4021 unsigned int alloc_flags;
4024 * __GFP_KSWAPD_RECLAIM is assumed to be the same as ALLOC_KSWAPD
4027 alloc_flags = (__force int) (gfp_mask & __GFP_KSWAPD_RECLAIM);
4029 #ifdef CONFIG_ZONE_DMA32
4033 if (zone_idx(zone) != ZONE_NORMAL)
4037 * If ZONE_DMA32 exists, assume it is the one after ZONE_NORMAL and
4038 * the pointer is within zone->zone_pgdat->node_zones[]. Also assume
4039 * on UMA that if Normal is populated then so is DMA32.
4041 BUILD_BUG_ON(ZONE_NORMAL - ZONE_DMA32 != 1);
4042 if (nr_online_nodes > 1 && !populated_zone(--zone))
4045 alloc_flags |= ALLOC_NOFRAGMENT;
4046 #endif /* CONFIG_ZONE_DMA32 */
4050 /* Must be called after current_gfp_context() which can change gfp_mask */
4051 static inline unsigned int gfp_to_alloc_flags_cma(gfp_t gfp_mask,
4052 unsigned int alloc_flags)
4055 if (gfp_migratetype(gfp_mask) == MIGRATE_MOVABLE)
4056 alloc_flags |= ALLOC_CMA;
4062 * get_page_from_freelist goes through the zonelist trying to allocate
4065 static struct page *
4066 get_page_from_freelist(gfp_t gfp_mask, unsigned int order, int alloc_flags,
4067 const struct alloc_context *ac)
4071 struct pglist_data *last_pgdat_dirty_limit = NULL;
4076 * Scan zonelist, looking for a zone with enough free.
4077 * See also __cpuset_node_allowed() comment in kernel/cpuset.c.
4079 no_fallback = alloc_flags & ALLOC_NOFRAGMENT;
4080 z = ac->preferred_zoneref;
4081 for_next_zone_zonelist_nodemask(zone, z, ac->highest_zoneidx,
4086 if (cpusets_enabled() &&
4087 (alloc_flags & ALLOC_CPUSET) &&
4088 !__cpuset_zone_allowed(zone, gfp_mask))
4091 * When allocating a page cache page for writing, we
4092 * want to get it from a node that is within its dirty
4093 * limit, such that no single node holds more than its
4094 * proportional share of globally allowed dirty pages.
4095 * The dirty limits take into account the node's
4096 * lowmem reserves and high watermark so that kswapd
4097 * should be able to balance it without having to
4098 * write pages from its LRU list.
4100 * XXX: For now, allow allocations to potentially
4101 * exceed the per-node dirty limit in the slowpath
4102 * (spread_dirty_pages unset) before going into reclaim,
4103 * which is important when on a NUMA setup the allowed
4104 * nodes are together not big enough to reach the
4105 * global limit. The proper fix for these situations
4106 * will require awareness of nodes in the
4107 * dirty-throttling and the flusher threads.
4109 if (ac->spread_dirty_pages) {
4110 if (last_pgdat_dirty_limit == zone->zone_pgdat)
4113 if (!node_dirty_ok(zone->zone_pgdat)) {
4114 last_pgdat_dirty_limit = zone->zone_pgdat;
4119 if (no_fallback && nr_online_nodes > 1 &&
4120 zone != ac->preferred_zoneref->zone) {
4124 * If moving to a remote node, retry but allow
4125 * fragmenting fallbacks. Locality is more important
4126 * than fragmentation avoidance.
4128 local_nid = zone_to_nid(ac->preferred_zoneref->zone);
4129 if (zone_to_nid(zone) != local_nid) {
4130 alloc_flags &= ~ALLOC_NOFRAGMENT;
4135 mark = wmark_pages(zone, alloc_flags & ALLOC_WMARK_MASK);
4136 if (!zone_watermark_fast(zone, order, mark,
4137 ac->highest_zoneidx, alloc_flags,
4141 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
4143 * Watermark failed for this zone, but see if we can
4144 * grow this zone if it contains deferred pages.
4146 if (static_branch_unlikely(&deferred_pages)) {
4147 if (_deferred_grow_zone(zone, order))
4151 /* Checked here to keep the fast path fast */
4152 BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
4153 if (alloc_flags & ALLOC_NO_WATERMARKS)
4156 if (!node_reclaim_enabled() ||
4157 !zone_allows_reclaim(ac->preferred_zoneref->zone, zone))
4160 ret = node_reclaim(zone->zone_pgdat, gfp_mask, order);
4162 case NODE_RECLAIM_NOSCAN:
4165 case NODE_RECLAIM_FULL:
4166 /* scanned but unreclaimable */
4169 /* did we reclaim enough */
4170 if (zone_watermark_ok(zone, order, mark,
4171 ac->highest_zoneidx, alloc_flags))
4179 page = rmqueue(ac->preferred_zoneref->zone, zone, order,
4180 gfp_mask, alloc_flags, ac->migratetype);
4182 prep_new_page(page, order, gfp_mask, alloc_flags);
4185 * If this is a high-order atomic allocation then check
4186 * if the pageblock should be reserved for the future
4188 if (unlikely(order && (alloc_flags & ALLOC_HARDER)))
4189 reserve_highatomic_pageblock(page, zone, order);
4193 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
4194 /* Try again if zone has deferred pages */
4195 if (static_branch_unlikely(&deferred_pages)) {
4196 if (_deferred_grow_zone(zone, order))
4204 * It's possible on a UMA machine to get through all zones that are
4205 * fragmented. If avoiding fragmentation, reset and try again.
4208 alloc_flags &= ~ALLOC_NOFRAGMENT;
4215 static void warn_alloc_show_mem(gfp_t gfp_mask, nodemask_t *nodemask)
4217 unsigned int filter = SHOW_MEM_FILTER_NODES;
4220 * This documents exceptions given to allocations in certain
4221 * contexts that are allowed to allocate outside current's set
4224 if (!(gfp_mask & __GFP_NOMEMALLOC))
4225 if (tsk_is_oom_victim(current) ||
4226 (current->flags & (PF_MEMALLOC | PF_EXITING)))
4227 filter &= ~SHOW_MEM_FILTER_NODES;
4228 if (!in_task() || !(gfp_mask & __GFP_DIRECT_RECLAIM))
4229 filter &= ~SHOW_MEM_FILTER_NODES;
4231 show_mem(filter, nodemask);
4234 void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...)
4236 struct va_format vaf;
4238 static DEFINE_RATELIMIT_STATE(nopage_rs, 10*HZ, 1);
4240 if ((gfp_mask & __GFP_NOWARN) ||
4241 !__ratelimit(&nopage_rs) ||
4242 ((gfp_mask & __GFP_DMA) && !has_managed_dma()))
4245 va_start(args, fmt);
4248 pr_warn("%s: %pV, mode:%#x(%pGg), nodemask=%*pbl",
4249 current->comm, &vaf, gfp_mask, &gfp_mask,
4250 nodemask_pr_args(nodemask));
4253 cpuset_print_current_mems_allowed();
4256 warn_alloc_show_mem(gfp_mask, nodemask);
4259 static inline struct page *
4260 __alloc_pages_cpuset_fallback(gfp_t gfp_mask, unsigned int order,
4261 unsigned int alloc_flags,
4262 const struct alloc_context *ac)
4266 page = get_page_from_freelist(gfp_mask, order,
4267 alloc_flags|ALLOC_CPUSET, ac);
4269 * fallback to ignore cpuset restriction if our nodes
4273 page = get_page_from_freelist(gfp_mask, order,
4279 static inline struct page *
4280 __alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
4281 const struct alloc_context *ac, unsigned long *did_some_progress)
4283 struct oom_control oc = {
4284 .zonelist = ac->zonelist,
4285 .nodemask = ac->nodemask,
4287 .gfp_mask = gfp_mask,
4292 *did_some_progress = 0;
4295 * Acquire the oom lock. If that fails, somebody else is
4296 * making progress for us.
4298 if (!mutex_trylock(&oom_lock)) {
4299 *did_some_progress = 1;
4300 schedule_timeout_uninterruptible(1);
4305 * Go through the zonelist yet one more time, keep very high watermark
4306 * here, this is only to catch a parallel oom killing, we must fail if
4307 * we're still under heavy pressure. But make sure that this reclaim
4308 * attempt shall not depend on __GFP_DIRECT_RECLAIM && !__GFP_NORETRY
4309 * allocation which will never fail due to oom_lock already held.
4311 page = get_page_from_freelist((gfp_mask | __GFP_HARDWALL) &
4312 ~__GFP_DIRECT_RECLAIM, order,
4313 ALLOC_WMARK_HIGH|ALLOC_CPUSET, ac);
4317 /* Coredumps can quickly deplete all memory reserves */
4318 if (current->flags & PF_DUMPCORE)
4320 /* The OOM killer will not help higher order allocs */
4321 if (order > PAGE_ALLOC_COSTLY_ORDER)
4324 * We have already exhausted all our reclaim opportunities without any
4325 * success so it is time to admit defeat. We will skip the OOM killer
4326 * because it is very likely that the caller has a more reasonable
4327 * fallback than shooting a random task.
4329 * The OOM killer may not free memory on a specific node.
4331 if (gfp_mask & (__GFP_RETRY_MAYFAIL | __GFP_THISNODE))
4333 /* The OOM killer does not needlessly kill tasks for lowmem */
4334 if (ac->highest_zoneidx < ZONE_NORMAL)
4336 if (pm_suspended_storage())
4339 * XXX: GFP_NOFS allocations should rather fail than rely on
4340 * other request to make a forward progress.
4341 * We are in an unfortunate situation where out_of_memory cannot
4342 * do much for this context but let's try it to at least get
4343 * access to memory reserved if the current task is killed (see
4344 * out_of_memory). Once filesystems are ready to handle allocation
4345 * failures more gracefully we should just bail out here.
4348 /* Exhausted what can be done so it's blame time */
4349 if (out_of_memory(&oc) || WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL)) {
4350 *did_some_progress = 1;
4353 * Help non-failing allocations by giving them access to memory
4356 if (gfp_mask & __GFP_NOFAIL)
4357 page = __alloc_pages_cpuset_fallback(gfp_mask, order,
4358 ALLOC_NO_WATERMARKS, ac);
4361 mutex_unlock(&oom_lock);
4366 * Maximum number of compaction retries with a progress before OOM
4367 * killer is consider as the only way to move forward.
4369 #define MAX_COMPACT_RETRIES 16
4371 #ifdef CONFIG_COMPACTION
4372 /* Try memory compaction for high-order allocations before reclaim */
4373 static struct page *
4374 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
4375 unsigned int alloc_flags, const struct alloc_context *ac,
4376 enum compact_priority prio, enum compact_result *compact_result)
4378 struct page *page = NULL;
4379 unsigned long pflags;
4380 unsigned int noreclaim_flag;
4385 psi_memstall_enter(&pflags);
4386 delayacct_compact_start();
4387 noreclaim_flag = memalloc_noreclaim_save();
4389 *compact_result = try_to_compact_pages(gfp_mask, order, alloc_flags, ac,
4392 memalloc_noreclaim_restore(noreclaim_flag);
4393 psi_memstall_leave(&pflags);
4394 delayacct_compact_end();
4396 if (*compact_result == COMPACT_SKIPPED)
4399 * At least in one zone compaction wasn't deferred or skipped, so let's
4400 * count a compaction stall
4402 count_vm_event(COMPACTSTALL);
4404 /* Prep a captured page if available */
4406 prep_new_page(page, order, gfp_mask, alloc_flags);
4408 /* Try get a page from the freelist if available */
4410 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
4413 struct zone *zone = page_zone(page);
4415 zone->compact_blockskip_flush = false;
4416 compaction_defer_reset(zone, order, true);
4417 count_vm_event(COMPACTSUCCESS);
4422 * It's bad if compaction run occurs and fails. The most likely reason
4423 * is that pages exist, but not enough to satisfy watermarks.
4425 count_vm_event(COMPACTFAIL);
4433 should_compact_retry(struct alloc_context *ac, int order, int alloc_flags,
4434 enum compact_result compact_result,
4435 enum compact_priority *compact_priority,
4436 int *compaction_retries)
4438 int max_retries = MAX_COMPACT_RETRIES;
4441 int retries = *compaction_retries;
4442 enum compact_priority priority = *compact_priority;
4447 if (fatal_signal_pending(current))
4450 if (compaction_made_progress(compact_result))
4451 (*compaction_retries)++;
4454 * compaction considers all the zone as desperately out of memory
4455 * so it doesn't really make much sense to retry except when the
4456 * failure could be caused by insufficient priority
4458 if (compaction_failed(compact_result))
4459 goto check_priority;
4462 * compaction was skipped because there are not enough order-0 pages
4463 * to work with, so we retry only if it looks like reclaim can help.
4465 if (compaction_needs_reclaim(compact_result)) {
4466 ret = compaction_zonelist_suitable(ac, order, alloc_flags);
4471 * make sure the compaction wasn't deferred or didn't bail out early
4472 * due to locks contention before we declare that we should give up.
4473 * But the next retry should use a higher priority if allowed, so
4474 * we don't just keep bailing out endlessly.
4476 if (compaction_withdrawn(compact_result)) {
4477 goto check_priority;
4481 * !costly requests are much more important than __GFP_RETRY_MAYFAIL
4482 * costly ones because they are de facto nofail and invoke OOM
4483 * killer to move on while costly can fail and users are ready
4484 * to cope with that. 1/4 retries is rather arbitrary but we
4485 * would need much more detailed feedback from compaction to
4486 * make a better decision.
4488 if (order > PAGE_ALLOC_COSTLY_ORDER)
4490 if (*compaction_retries <= max_retries) {
4496 * Make sure there are attempts at the highest priority if we exhausted
4497 * all retries or failed at the lower priorities.
4500 min_priority = (order > PAGE_ALLOC_COSTLY_ORDER) ?
4501 MIN_COMPACT_COSTLY_PRIORITY : MIN_COMPACT_PRIORITY;
4503 if (*compact_priority > min_priority) {
4504 (*compact_priority)--;
4505 *compaction_retries = 0;
4509 trace_compact_retry(order, priority, compact_result, retries, max_retries, ret);
4513 static inline struct page *
4514 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
4515 unsigned int alloc_flags, const struct alloc_context *ac,
4516 enum compact_priority prio, enum compact_result *compact_result)
4518 *compact_result = COMPACT_SKIPPED;
4523 should_compact_retry(struct alloc_context *ac, unsigned int order, int alloc_flags,
4524 enum compact_result compact_result,
4525 enum compact_priority *compact_priority,
4526 int *compaction_retries)
4531 if (!order || order > PAGE_ALLOC_COSTLY_ORDER)
4535 * There are setups with compaction disabled which would prefer to loop
4536 * inside the allocator rather than hit the oom killer prematurely.
4537 * Let's give them a good hope and keep retrying while the order-0
4538 * watermarks are OK.
4540 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
4541 ac->highest_zoneidx, ac->nodemask) {
4542 if (zone_watermark_ok(zone, 0, min_wmark_pages(zone),
4543 ac->highest_zoneidx, alloc_flags))
4548 #endif /* CONFIG_COMPACTION */
4550 #ifdef CONFIG_LOCKDEP
4551 static struct lockdep_map __fs_reclaim_map =
4552 STATIC_LOCKDEP_MAP_INIT("fs_reclaim", &__fs_reclaim_map);
4554 static bool __need_reclaim(gfp_t gfp_mask)
4556 /* no reclaim without waiting on it */
4557 if (!(gfp_mask & __GFP_DIRECT_RECLAIM))
4560 /* this guy won't enter reclaim */
4561 if (current->flags & PF_MEMALLOC)
4564 if (gfp_mask & __GFP_NOLOCKDEP)
4570 void __fs_reclaim_acquire(unsigned long ip)
4572 lock_acquire_exclusive(&__fs_reclaim_map, 0, 0, NULL, ip);
4575 void __fs_reclaim_release(unsigned long ip)
4577 lock_release(&__fs_reclaim_map, ip);
4580 void fs_reclaim_acquire(gfp_t gfp_mask)
4582 gfp_mask = current_gfp_context(gfp_mask);
4584 if (__need_reclaim(gfp_mask)) {
4585 if (gfp_mask & __GFP_FS)
4586 __fs_reclaim_acquire(_RET_IP_);
4588 #ifdef CONFIG_MMU_NOTIFIER
4589 lock_map_acquire(&__mmu_notifier_invalidate_range_start_map);
4590 lock_map_release(&__mmu_notifier_invalidate_range_start_map);
4595 EXPORT_SYMBOL_GPL(fs_reclaim_acquire);
4597 void fs_reclaim_release(gfp_t gfp_mask)
4599 gfp_mask = current_gfp_context(gfp_mask);
4601 if (__need_reclaim(gfp_mask)) {
4602 if (gfp_mask & __GFP_FS)
4603 __fs_reclaim_release(_RET_IP_);
4606 EXPORT_SYMBOL_GPL(fs_reclaim_release);
4609 /* Perform direct synchronous page reclaim */
4610 static unsigned long
4611 __perform_reclaim(gfp_t gfp_mask, unsigned int order,
4612 const struct alloc_context *ac)
4614 unsigned int noreclaim_flag;
4615 unsigned long progress;
4619 /* We now go into synchronous reclaim */
4620 cpuset_memory_pressure_bump();
4621 fs_reclaim_acquire(gfp_mask);
4622 noreclaim_flag = memalloc_noreclaim_save();
4624 progress = try_to_free_pages(ac->zonelist, order, gfp_mask,
4627 memalloc_noreclaim_restore(noreclaim_flag);
4628 fs_reclaim_release(gfp_mask);
4635 /* The really slow allocator path where we enter direct reclaim */
4636 static inline struct page *
4637 __alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
4638 unsigned int alloc_flags, const struct alloc_context *ac,
4639 unsigned long *did_some_progress)
4641 struct page *page = NULL;
4642 unsigned long pflags;
4643 bool drained = false;
4645 psi_memstall_enter(&pflags);
4646 *did_some_progress = __perform_reclaim(gfp_mask, order, ac);
4647 if (unlikely(!(*did_some_progress)))
4651 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
4654 * If an allocation failed after direct reclaim, it could be because
4655 * pages are pinned on the per-cpu lists or in high alloc reserves.
4656 * Shrink them and try again
4658 if (!page && !drained) {
4659 unreserve_highatomic_pageblock(ac, false);
4660 drain_all_pages(NULL);
4665 psi_memstall_leave(&pflags);
4670 static void wake_all_kswapds(unsigned int order, gfp_t gfp_mask,
4671 const struct alloc_context *ac)
4675 pg_data_t *last_pgdat = NULL;
4676 enum zone_type highest_zoneidx = ac->highest_zoneidx;
4678 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, highest_zoneidx,
4680 if (last_pgdat != zone->zone_pgdat)
4681 wakeup_kswapd(zone, gfp_mask, order, highest_zoneidx);
4682 last_pgdat = zone->zone_pgdat;
4686 static inline unsigned int
4687 gfp_to_alloc_flags(gfp_t gfp_mask)
4689 unsigned int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
4692 * __GFP_HIGH is assumed to be the same as ALLOC_HIGH
4693 * and __GFP_KSWAPD_RECLAIM is assumed to be the same as ALLOC_KSWAPD
4694 * to save two branches.
4696 BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_HIGH);
4697 BUILD_BUG_ON(__GFP_KSWAPD_RECLAIM != (__force gfp_t) ALLOC_KSWAPD);
4700 * The caller may dip into page reserves a bit more if the caller
4701 * cannot run direct reclaim, or if the caller has realtime scheduling
4702 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will
4703 * set both ALLOC_HARDER (__GFP_ATOMIC) and ALLOC_HIGH (__GFP_HIGH).
4705 alloc_flags |= (__force int)
4706 (gfp_mask & (__GFP_HIGH | __GFP_KSWAPD_RECLAIM));
4708 if (gfp_mask & __GFP_ATOMIC) {
4710 * Not worth trying to allocate harder for __GFP_NOMEMALLOC even
4711 * if it can't schedule.
4713 if (!(gfp_mask & __GFP_NOMEMALLOC))
4714 alloc_flags |= ALLOC_HARDER;
4716 * Ignore cpuset mems for GFP_ATOMIC rather than fail, see the
4717 * comment for __cpuset_node_allowed().
4719 alloc_flags &= ~ALLOC_CPUSET;
4720 } else if (unlikely(rt_task(current)) && in_task())
4721 alloc_flags |= ALLOC_HARDER;
4723 alloc_flags = gfp_to_alloc_flags_cma(gfp_mask, alloc_flags);
4728 static bool oom_reserves_allowed(struct task_struct *tsk)
4730 if (!tsk_is_oom_victim(tsk))
4734 * !MMU doesn't have oom reaper so give access to memory reserves
4735 * only to the thread with TIF_MEMDIE set
4737 if (!IS_ENABLED(CONFIG_MMU) && !test_thread_flag(TIF_MEMDIE))
4744 * Distinguish requests which really need access to full memory
4745 * reserves from oom victims which can live with a portion of it
4747 static inline int __gfp_pfmemalloc_flags(gfp_t gfp_mask)
4749 if (unlikely(gfp_mask & __GFP_NOMEMALLOC))
4751 if (gfp_mask & __GFP_MEMALLOC)
4752 return ALLOC_NO_WATERMARKS;
4753 if (in_serving_softirq() && (current->flags & PF_MEMALLOC))
4754 return ALLOC_NO_WATERMARKS;
4755 if (!in_interrupt()) {
4756 if (current->flags & PF_MEMALLOC)
4757 return ALLOC_NO_WATERMARKS;
4758 else if (oom_reserves_allowed(current))
4765 bool gfp_pfmemalloc_allowed(gfp_t gfp_mask)
4767 return !!__gfp_pfmemalloc_flags(gfp_mask);
4771 * Checks whether it makes sense to retry the reclaim to make a forward progress
4772 * for the given allocation request.
4774 * We give up when we either have tried MAX_RECLAIM_RETRIES in a row
4775 * without success, or when we couldn't even meet the watermark if we
4776 * reclaimed all remaining pages on the LRU lists.
4778 * Returns true if a retry is viable or false to enter the oom path.
4781 should_reclaim_retry(gfp_t gfp_mask, unsigned order,
4782 struct alloc_context *ac, int alloc_flags,
4783 bool did_some_progress, int *no_progress_loops)
4790 * Costly allocations might have made a progress but this doesn't mean
4791 * their order will become available due to high fragmentation so
4792 * always increment the no progress counter for them
4794 if (did_some_progress && order <= PAGE_ALLOC_COSTLY_ORDER)
4795 *no_progress_loops = 0;
4797 (*no_progress_loops)++;
4800 * Make sure we converge to OOM if we cannot make any progress
4801 * several times in the row.
4803 if (*no_progress_loops > MAX_RECLAIM_RETRIES) {
4804 /* Before OOM, exhaust highatomic_reserve */
4805 return unreserve_highatomic_pageblock(ac, true);
4809 * Keep reclaiming pages while there is a chance this will lead
4810 * somewhere. If none of the target zones can satisfy our allocation
4811 * request even if all reclaimable pages are considered then we are
4812 * screwed and have to go OOM.
4814 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
4815 ac->highest_zoneidx, ac->nodemask) {
4816 unsigned long available;
4817 unsigned long reclaimable;
4818 unsigned long min_wmark = min_wmark_pages(zone);
4821 available = reclaimable = zone_reclaimable_pages(zone);
4822 available += zone_page_state_snapshot(zone, NR_FREE_PAGES);
4825 * Would the allocation succeed if we reclaimed all
4826 * reclaimable pages?
4828 wmark = __zone_watermark_ok(zone, order, min_wmark,
4829 ac->highest_zoneidx, alloc_flags, available);
4830 trace_reclaim_retry_zone(z, order, reclaimable,
4831 available, min_wmark, *no_progress_loops, wmark);
4839 * Memory allocation/reclaim might be called from a WQ context and the
4840 * current implementation of the WQ concurrency control doesn't
4841 * recognize that a particular WQ is congested if the worker thread is
4842 * looping without ever sleeping. Therefore we have to do a short sleep
4843 * here rather than calling cond_resched().
4845 if (current->flags & PF_WQ_WORKER)
4846 schedule_timeout_uninterruptible(1);
4853 check_retry_cpuset(int cpuset_mems_cookie, struct alloc_context *ac)
4856 * It's possible that cpuset's mems_allowed and the nodemask from
4857 * mempolicy don't intersect. This should be normally dealt with by
4858 * policy_nodemask(), but it's possible to race with cpuset update in
4859 * such a way the check therein was true, and then it became false
4860 * before we got our cpuset_mems_cookie here.
4861 * This assumes that for all allocations, ac->nodemask can come only
4862 * from MPOL_BIND mempolicy (whose documented semantics is to be ignored
4863 * when it does not intersect with the cpuset restrictions) or the
4864 * caller can deal with a violated nodemask.
4866 if (cpusets_enabled() && ac->nodemask &&
4867 !cpuset_nodemask_valid_mems_allowed(ac->nodemask)) {
4868 ac->nodemask = NULL;
4873 * When updating a task's mems_allowed or mempolicy nodemask, it is
4874 * possible to race with parallel threads in such a way that our
4875 * allocation can fail while the mask is being updated. If we are about
4876 * to fail, check if the cpuset changed during allocation and if so,
4879 if (read_mems_allowed_retry(cpuset_mems_cookie))
4885 static inline struct page *
4886 __alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
4887 struct alloc_context *ac)
4889 bool can_direct_reclaim = gfp_mask & __GFP_DIRECT_RECLAIM;
4890 const bool costly_order = order > PAGE_ALLOC_COSTLY_ORDER;
4891 struct page *page = NULL;
4892 unsigned int alloc_flags;
4893 unsigned long did_some_progress;
4894 enum compact_priority compact_priority;
4895 enum compact_result compact_result;
4896 int compaction_retries;
4897 int no_progress_loops;
4898 unsigned int cpuset_mems_cookie;
4902 * We also sanity check to catch abuse of atomic reserves being used by
4903 * callers that are not in atomic context.
4905 if (WARN_ON_ONCE((gfp_mask & (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)) ==
4906 (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)))
4907 gfp_mask &= ~__GFP_ATOMIC;
4910 compaction_retries = 0;
4911 no_progress_loops = 0;
4912 compact_priority = DEF_COMPACT_PRIORITY;
4913 cpuset_mems_cookie = read_mems_allowed_begin();
4916 * The fast path uses conservative alloc_flags to succeed only until
4917 * kswapd needs to be woken up, and to avoid the cost of setting up
4918 * alloc_flags precisely. So we do that now.
4920 alloc_flags = gfp_to_alloc_flags(gfp_mask);
4923 * We need to recalculate the starting point for the zonelist iterator
4924 * because we might have used different nodemask in the fast path, or
4925 * there was a cpuset modification and we are retrying - otherwise we
4926 * could end up iterating over non-eligible zones endlessly.
4928 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
4929 ac->highest_zoneidx, ac->nodemask);
4930 if (!ac->preferred_zoneref->zone)
4934 * Check for insane configurations where the cpuset doesn't contain
4935 * any suitable zone to satisfy the request - e.g. non-movable
4936 * GFP_HIGHUSER allocations from MOVABLE nodes only.
4938 if (cpusets_insane_config() && (gfp_mask & __GFP_HARDWALL)) {
4939 struct zoneref *z = first_zones_zonelist(ac->zonelist,
4940 ac->highest_zoneidx,
4941 &cpuset_current_mems_allowed);
4946 if (alloc_flags & ALLOC_KSWAPD)
4947 wake_all_kswapds(order, gfp_mask, ac);
4950 * The adjusted alloc_flags might result in immediate success, so try
4953 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
4958 * For costly allocations, try direct compaction first, as it's likely
4959 * that we have enough base pages and don't need to reclaim. For non-
4960 * movable high-order allocations, do that as well, as compaction will
4961 * try prevent permanent fragmentation by migrating from blocks of the
4963 * Don't try this for allocations that are allowed to ignore
4964 * watermarks, as the ALLOC_NO_WATERMARKS attempt didn't yet happen.
4966 if (can_direct_reclaim &&
4968 (order > 0 && ac->migratetype != MIGRATE_MOVABLE))
4969 && !gfp_pfmemalloc_allowed(gfp_mask)) {
4970 page = __alloc_pages_direct_compact(gfp_mask, order,
4972 INIT_COMPACT_PRIORITY,
4978 * Checks for costly allocations with __GFP_NORETRY, which
4979 * includes some THP page fault allocations
4981 if (costly_order && (gfp_mask & __GFP_NORETRY)) {
4983 * If allocating entire pageblock(s) and compaction
4984 * failed because all zones are below low watermarks
4985 * or is prohibited because it recently failed at this
4986 * order, fail immediately unless the allocator has
4987 * requested compaction and reclaim retry.
4990 * - potentially very expensive because zones are far
4991 * below their low watermarks or this is part of very
4992 * bursty high order allocations,
4993 * - not guaranteed to help because isolate_freepages()
4994 * may not iterate over freed pages as part of its
4996 * - unlikely to make entire pageblocks free on its
4999 if (compact_result == COMPACT_SKIPPED ||
5000 compact_result == COMPACT_DEFERRED)
5004 * Looks like reclaim/compaction is worth trying, but
5005 * sync compaction could be very expensive, so keep
5006 * using async compaction.
5008 compact_priority = INIT_COMPACT_PRIORITY;
5013 /* Ensure kswapd doesn't accidentally go to sleep as long as we loop */
5014 if (alloc_flags & ALLOC_KSWAPD)
5015 wake_all_kswapds(order, gfp_mask, ac);
5017 reserve_flags = __gfp_pfmemalloc_flags(gfp_mask);
5019 alloc_flags = gfp_to_alloc_flags_cma(gfp_mask, reserve_flags);
5022 * Reset the nodemask and zonelist iterators if memory policies can be
5023 * ignored. These allocations are high priority and system rather than
5026 if (!(alloc_flags & ALLOC_CPUSET) || reserve_flags) {
5027 ac->nodemask = NULL;
5028 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
5029 ac->highest_zoneidx, ac->nodemask);
5032 /* Attempt with potentially adjusted zonelist and alloc_flags */
5033 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
5037 /* Caller is not willing to reclaim, we can't balance anything */
5038 if (!can_direct_reclaim)
5041 /* Avoid recursion of direct reclaim */
5042 if (current->flags & PF_MEMALLOC)
5045 /* Try direct reclaim and then allocating */
5046 page = __alloc_pages_direct_reclaim(gfp_mask, order, alloc_flags, ac,
5047 &did_some_progress);
5051 /* Try direct compaction and then allocating */
5052 page = __alloc_pages_direct_compact(gfp_mask, order, alloc_flags, ac,
5053 compact_priority, &compact_result);
5057 /* Do not loop if specifically requested */
5058 if (gfp_mask & __GFP_NORETRY)
5062 * Do not retry costly high order allocations unless they are
5063 * __GFP_RETRY_MAYFAIL
5065 if (costly_order && !(gfp_mask & __GFP_RETRY_MAYFAIL))
5068 if (should_reclaim_retry(gfp_mask, order, ac, alloc_flags,
5069 did_some_progress > 0, &no_progress_loops))
5073 * It doesn't make any sense to retry for the compaction if the order-0
5074 * reclaim is not able to make any progress because the current
5075 * implementation of the compaction depends on the sufficient amount
5076 * of free memory (see __compaction_suitable)
5078 if (did_some_progress > 0 &&
5079 should_compact_retry(ac, order, alloc_flags,
5080 compact_result, &compact_priority,
5081 &compaction_retries))
5085 /* Deal with possible cpuset update races before we start OOM killing */
5086 if (check_retry_cpuset(cpuset_mems_cookie, ac))
5089 /* Reclaim has failed us, start killing things */
5090 page = __alloc_pages_may_oom(gfp_mask, order, ac, &did_some_progress);
5094 /* Avoid allocations with no watermarks from looping endlessly */
5095 if (tsk_is_oom_victim(current) &&
5096 (alloc_flags & ALLOC_OOM ||
5097 (gfp_mask & __GFP_NOMEMALLOC)))
5100 /* Retry as long as the OOM killer is making progress */
5101 if (did_some_progress) {
5102 no_progress_loops = 0;
5107 /* Deal with possible cpuset update races before we fail */
5108 if (check_retry_cpuset(cpuset_mems_cookie, ac))
5112 * Make sure that __GFP_NOFAIL request doesn't leak out and make sure
5115 if (gfp_mask & __GFP_NOFAIL) {
5117 * All existing users of the __GFP_NOFAIL are blockable, so warn
5118 * of any new users that actually require GFP_NOWAIT
5120 if (WARN_ON_ONCE(!can_direct_reclaim))
5124 * PF_MEMALLOC request from this context is rather bizarre
5125 * because we cannot reclaim anything and only can loop waiting
5126 * for somebody to do a work for us
5128 WARN_ON_ONCE(current->flags & PF_MEMALLOC);
5131 * non failing costly orders are a hard requirement which we
5132 * are not prepared for much so let's warn about these users
5133 * so that we can identify them and convert them to something
5136 WARN_ON_ONCE(order > PAGE_ALLOC_COSTLY_ORDER);
5139 * Help non-failing allocations by giving them access to memory
5140 * reserves but do not use ALLOC_NO_WATERMARKS because this
5141 * could deplete whole memory reserves which would just make
5142 * the situation worse
5144 page = __alloc_pages_cpuset_fallback(gfp_mask, order, ALLOC_HARDER, ac);
5152 warn_alloc(gfp_mask, ac->nodemask,
5153 "page allocation failure: order:%u", order);
5158 static inline bool prepare_alloc_pages(gfp_t gfp_mask, unsigned int order,
5159 int preferred_nid, nodemask_t *nodemask,
5160 struct alloc_context *ac, gfp_t *alloc_gfp,
5161 unsigned int *alloc_flags)
5163 ac->highest_zoneidx = gfp_zone(gfp_mask);
5164 ac->zonelist = node_zonelist(preferred_nid, gfp_mask);
5165 ac->nodemask = nodemask;
5166 ac->migratetype = gfp_migratetype(gfp_mask);
5168 if (cpusets_enabled()) {
5169 *alloc_gfp |= __GFP_HARDWALL;
5171 * When we are in the interrupt context, it is irrelevant
5172 * to the current task context. It means that any node ok.
5174 if (in_task() && !ac->nodemask)
5175 ac->nodemask = &cpuset_current_mems_allowed;
5177 *alloc_flags |= ALLOC_CPUSET;
5180 fs_reclaim_acquire(gfp_mask);
5181 fs_reclaim_release(gfp_mask);
5183 might_sleep_if(gfp_mask & __GFP_DIRECT_RECLAIM);
5185 if (should_fail_alloc_page(gfp_mask, order))
5188 *alloc_flags = gfp_to_alloc_flags_cma(gfp_mask, *alloc_flags);
5190 /* Dirty zone balancing only done in the fast path */
5191 ac->spread_dirty_pages = (gfp_mask & __GFP_WRITE);
5194 * The preferred zone is used for statistics but crucially it is
5195 * also used as the starting point for the zonelist iterator. It
5196 * may get reset for allocations that ignore memory policies.
5198 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
5199 ac->highest_zoneidx, ac->nodemask);
5205 * __alloc_pages_bulk - Allocate a number of order-0 pages to a list or array
5206 * @gfp: GFP flags for the allocation
5207 * @preferred_nid: The preferred NUMA node ID to allocate from
5208 * @nodemask: Set of nodes to allocate from, may be NULL
5209 * @nr_pages: The number of pages desired on the list or array
5210 * @page_list: Optional list to store the allocated pages
5211 * @page_array: Optional array to store the pages
5213 * This is a batched version of the page allocator that attempts to
5214 * allocate nr_pages quickly. Pages are added to page_list if page_list
5215 * is not NULL, otherwise it is assumed that the page_array is valid.
5217 * For lists, nr_pages is the number of pages that should be allocated.
5219 * For arrays, only NULL elements are populated with pages and nr_pages
5220 * is the maximum number of pages that will be stored in the array.
5222 * Returns the number of pages on the list or array.
5224 unsigned long __alloc_pages_bulk(gfp_t gfp, int preferred_nid,
5225 nodemask_t *nodemask, int nr_pages,
5226 struct list_head *page_list,
5227 struct page **page_array)
5230 unsigned long flags;
5233 struct per_cpu_pages *pcp;
5234 struct list_head *pcp_list;
5235 struct alloc_context ac;
5237 unsigned int alloc_flags = ALLOC_WMARK_LOW;
5238 int nr_populated = 0, nr_account = 0;
5241 * Skip populated array elements to determine if any pages need
5242 * to be allocated before disabling IRQs.
5244 while (page_array && nr_populated < nr_pages && page_array[nr_populated])
5247 /* No pages requested? */
5248 if (unlikely(nr_pages <= 0))
5251 /* Already populated array? */
5252 if (unlikely(page_array && nr_pages - nr_populated == 0))
5255 /* Bulk allocator does not support memcg accounting. */
5256 if (memcg_kmem_enabled() && (gfp & __GFP_ACCOUNT))
5259 /* Use the single page allocator for one page. */
5260 if (nr_pages - nr_populated == 1)
5263 #ifdef CONFIG_PAGE_OWNER
5265 * PAGE_OWNER may recurse into the allocator to allocate space to
5266 * save the stack with pagesets.lock held. Releasing/reacquiring
5267 * removes much of the performance benefit of bulk allocation so
5268 * force the caller to allocate one page at a time as it'll have
5269 * similar performance to added complexity to the bulk allocator.
5271 if (static_branch_unlikely(&page_owner_inited))
5275 /* May set ALLOC_NOFRAGMENT, fragmentation will return 1 page. */
5276 gfp &= gfp_allowed_mask;
5278 if (!prepare_alloc_pages(gfp, 0, preferred_nid, nodemask, &ac, &alloc_gfp, &alloc_flags))
5282 /* Find an allowed local zone that meets the low watermark. */
5283 for_each_zone_zonelist_nodemask(zone, z, ac.zonelist, ac.highest_zoneidx, ac.nodemask) {
5286 if (cpusets_enabled() && (alloc_flags & ALLOC_CPUSET) &&
5287 !__cpuset_zone_allowed(zone, gfp)) {
5291 if (nr_online_nodes > 1 && zone != ac.preferred_zoneref->zone &&
5292 zone_to_nid(zone) != zone_to_nid(ac.preferred_zoneref->zone)) {
5296 mark = wmark_pages(zone, alloc_flags & ALLOC_WMARK_MASK) + nr_pages;
5297 if (zone_watermark_fast(zone, 0, mark,
5298 zonelist_zone_idx(ac.preferred_zoneref),
5299 alloc_flags, gfp)) {
5305 * If there are no allowed local zones that meets the watermarks then
5306 * try to allocate a single page and reclaim if necessary.
5308 if (unlikely(!zone))
5311 /* Attempt the batch allocation */
5312 local_lock_irqsave(&pagesets.lock, flags);
5313 pcp = this_cpu_ptr(zone->per_cpu_pageset);
5314 pcp_list = &pcp->lists[order_to_pindex(ac.migratetype, 0)];
5316 while (nr_populated < nr_pages) {
5318 /* Skip existing pages */
5319 if (page_array && page_array[nr_populated]) {
5324 page = __rmqueue_pcplist(zone, 0, ac.migratetype, alloc_flags,
5326 if (unlikely(!page)) {
5327 /* Try and get at least one page */
5334 prep_new_page(page, 0, gfp, 0);
5336 list_add(&page->lru, page_list);
5338 page_array[nr_populated] = page;
5342 local_unlock_irqrestore(&pagesets.lock, flags);
5344 __count_zid_vm_events(PGALLOC, zone_idx(zone), nr_account);
5345 zone_statistics(ac.preferred_zoneref->zone, zone, nr_account);
5348 return nr_populated;
5351 local_unlock_irqrestore(&pagesets.lock, flags);
5354 page = __alloc_pages(gfp, 0, preferred_nid, nodemask);
5357 list_add(&page->lru, page_list);
5359 page_array[nr_populated] = page;
5365 EXPORT_SYMBOL_GPL(__alloc_pages_bulk);
5368 * This is the 'heart' of the zoned buddy allocator.
5370 struct page *__alloc_pages(gfp_t gfp, unsigned int order, int preferred_nid,
5371 nodemask_t *nodemask)
5374 unsigned int alloc_flags = ALLOC_WMARK_LOW;
5375 gfp_t alloc_gfp; /* The gfp_t that was actually used for allocation */
5376 struct alloc_context ac = { };
5379 * There are several places where we assume that the order value is sane
5380 * so bail out early if the request is out of bound.
5382 if (unlikely(order >= MAX_ORDER)) {
5383 WARN_ON_ONCE(!(gfp & __GFP_NOWARN));
5387 gfp &= gfp_allowed_mask;
5389 * Apply scoped allocation constraints. This is mainly about GFP_NOFS
5390 * resp. GFP_NOIO which has to be inherited for all allocation requests
5391 * from a particular context which has been marked by
5392 * memalloc_no{fs,io}_{save,restore}. And PF_MEMALLOC_PIN which ensures
5393 * movable zones are not used during allocation.
5395 gfp = current_gfp_context(gfp);
5397 if (!prepare_alloc_pages(gfp, order, preferred_nid, nodemask, &ac,
5398 &alloc_gfp, &alloc_flags))
5402 * Forbid the first pass from falling back to types that fragment
5403 * memory until all local zones are considered.
5405 alloc_flags |= alloc_flags_nofragment(ac.preferred_zoneref->zone, gfp);
5407 /* First allocation attempt */
5408 page = get_page_from_freelist(alloc_gfp, order, alloc_flags, &ac);
5413 ac.spread_dirty_pages = false;
5416 * Restore the original nodemask if it was potentially replaced with
5417 * &cpuset_current_mems_allowed to optimize the fast-path attempt.
5419 ac.nodemask = nodemask;
5421 page = __alloc_pages_slowpath(alloc_gfp, order, &ac);
5424 if (memcg_kmem_enabled() && (gfp & __GFP_ACCOUNT) && page &&
5425 unlikely(__memcg_kmem_charge_page(page, gfp, order) != 0)) {
5426 __free_pages(page, order);
5430 trace_mm_page_alloc(page, order, alloc_gfp, ac.migratetype);
5434 EXPORT_SYMBOL(__alloc_pages);
5436 struct folio *__folio_alloc(gfp_t gfp, unsigned int order, int preferred_nid,
5437 nodemask_t *nodemask)
5439 struct page *page = __alloc_pages(gfp | __GFP_COMP, order,
5440 preferred_nid, nodemask);
5442 if (page && order > 1)
5443 prep_transhuge_page(page);
5444 return (struct folio *)page;
5446 EXPORT_SYMBOL(__folio_alloc);
5449 * Common helper functions. Never use with __GFP_HIGHMEM because the returned
5450 * address cannot represent highmem pages. Use alloc_pages and then kmap if
5451 * you need to access high mem.
5453 unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
5457 page = alloc_pages(gfp_mask & ~__GFP_HIGHMEM, order);
5460 return (unsigned long) page_address(page);
5462 EXPORT_SYMBOL(__get_free_pages);
5464 unsigned long get_zeroed_page(gfp_t gfp_mask)
5466 return __get_free_pages(gfp_mask | __GFP_ZERO, 0);
5468 EXPORT_SYMBOL(get_zeroed_page);
5471 * __free_pages - Free pages allocated with alloc_pages().
5472 * @page: The page pointer returned from alloc_pages().
5473 * @order: The order of the allocation.
5475 * This function can free multi-page allocations that are not compound
5476 * pages. It does not check that the @order passed in matches that of
5477 * the allocation, so it is easy to leak memory. Freeing more memory
5478 * than was allocated will probably emit a warning.
5480 * If the last reference to this page is speculative, it will be released
5481 * by put_page() which only frees the first page of a non-compound
5482 * allocation. To prevent the remaining pages from being leaked, we free
5483 * the subsequent pages here. If you want to use the page's reference
5484 * count to decide when to free the allocation, you should allocate a
5485 * compound page, and use put_page() instead of __free_pages().
5487 * Context: May be called in interrupt context or while holding a normal
5488 * spinlock, but not in NMI context or while holding a raw spinlock.
5490 void __free_pages(struct page *page, unsigned int order)
5492 if (put_page_testzero(page))
5493 free_the_page(page, order);
5494 else if (!PageHead(page))
5496 free_the_page(page + (1 << order), order);
5498 EXPORT_SYMBOL(__free_pages);
5500 void free_pages(unsigned long addr, unsigned int order)
5503 VM_BUG_ON(!virt_addr_valid((void *)addr));
5504 __free_pages(virt_to_page((void *)addr), order);
5508 EXPORT_SYMBOL(free_pages);
5512 * An arbitrary-length arbitrary-offset area of memory which resides
5513 * within a 0 or higher order page. Multiple fragments within that page
5514 * are individually refcounted, in the page's reference counter.
5516 * The page_frag functions below provide a simple allocation framework for
5517 * page fragments. This is used by the network stack and network device
5518 * drivers to provide a backing region of memory for use as either an
5519 * sk_buff->head, or to be used in the "frags" portion of skb_shared_info.
5521 static struct page *__page_frag_cache_refill(struct page_frag_cache *nc,
5524 struct page *page = NULL;
5525 gfp_t gfp = gfp_mask;
5527 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
5528 gfp_mask |= __GFP_COMP | __GFP_NOWARN | __GFP_NORETRY |
5530 page = alloc_pages_node(NUMA_NO_NODE, gfp_mask,
5531 PAGE_FRAG_CACHE_MAX_ORDER);
5532 nc->size = page ? PAGE_FRAG_CACHE_MAX_SIZE : PAGE_SIZE;
5534 if (unlikely(!page))
5535 page = alloc_pages_node(NUMA_NO_NODE, gfp, 0);
5537 nc->va = page ? page_address(page) : NULL;
5542 void __page_frag_cache_drain(struct page *page, unsigned int count)
5544 VM_BUG_ON_PAGE(page_ref_count(page) == 0, page);
5546 if (page_ref_sub_and_test(page, count))
5547 free_the_page(page, compound_order(page));
5549 EXPORT_SYMBOL(__page_frag_cache_drain);
5551 void *page_frag_alloc_align(struct page_frag_cache *nc,
5552 unsigned int fragsz, gfp_t gfp_mask,
5553 unsigned int align_mask)
5555 unsigned int size = PAGE_SIZE;
5559 if (unlikely(!nc->va)) {
5561 page = __page_frag_cache_refill(nc, gfp_mask);
5565 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
5566 /* if size can vary use size else just use PAGE_SIZE */
5569 /* Even if we own the page, we do not use atomic_set().
5570 * This would break get_page_unless_zero() users.
5572 page_ref_add(page, PAGE_FRAG_CACHE_MAX_SIZE);
5574 /* reset page count bias and offset to start of new frag */
5575 nc->pfmemalloc = page_is_pfmemalloc(page);
5576 nc->pagecnt_bias = PAGE_FRAG_CACHE_MAX_SIZE + 1;
5580 offset = nc->offset - fragsz;
5581 if (unlikely(offset < 0)) {
5582 page = virt_to_page(nc->va);
5584 if (!page_ref_sub_and_test(page, nc->pagecnt_bias))
5587 if (unlikely(nc->pfmemalloc)) {
5588 free_the_page(page, compound_order(page));
5592 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
5593 /* if size can vary use size else just use PAGE_SIZE */
5596 /* OK, page count is 0, we can safely set it */
5597 set_page_count(page, PAGE_FRAG_CACHE_MAX_SIZE + 1);
5599 /* reset page count bias and offset to start of new frag */
5600 nc->pagecnt_bias = PAGE_FRAG_CACHE_MAX_SIZE + 1;
5601 offset = size - fragsz;
5605 offset &= align_mask;
5606 nc->offset = offset;
5608 return nc->va + offset;
5610 EXPORT_SYMBOL(page_frag_alloc_align);
5613 * Frees a page fragment allocated out of either a compound or order 0 page.
5615 void page_frag_free(void *addr)
5617 struct page *page = virt_to_head_page(addr);
5619 if (unlikely(put_page_testzero(page)))
5620 free_the_page(page, compound_order(page));
5622 EXPORT_SYMBOL(page_frag_free);
5624 static void *make_alloc_exact(unsigned long addr, unsigned int order,
5628 unsigned long alloc_end = addr + (PAGE_SIZE << order);
5629 unsigned long used = addr + PAGE_ALIGN(size);
5631 split_page(virt_to_page((void *)addr), order);
5632 while (used < alloc_end) {
5637 return (void *)addr;
5641 * alloc_pages_exact - allocate an exact number physically-contiguous pages.
5642 * @size: the number of bytes to allocate
5643 * @gfp_mask: GFP flags for the allocation, must not contain __GFP_COMP
5645 * This function is similar to alloc_pages(), except that it allocates the
5646 * minimum number of pages to satisfy the request. alloc_pages() can only
5647 * allocate memory in power-of-two pages.
5649 * This function is also limited by MAX_ORDER.
5651 * Memory allocated by this function must be released by free_pages_exact().
5653 * Return: pointer to the allocated area or %NULL in case of error.
5655 void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
5657 unsigned int order = get_order(size);
5660 if (WARN_ON_ONCE(gfp_mask & (__GFP_COMP | __GFP_HIGHMEM)))
5661 gfp_mask &= ~(__GFP_COMP | __GFP_HIGHMEM);
5663 addr = __get_free_pages(gfp_mask, order);
5664 return make_alloc_exact(addr, order, size);
5666 EXPORT_SYMBOL(alloc_pages_exact);
5669 * alloc_pages_exact_nid - allocate an exact number of physically-contiguous
5671 * @nid: the preferred node ID where memory should be allocated
5672 * @size: the number of bytes to allocate
5673 * @gfp_mask: GFP flags for the allocation, must not contain __GFP_COMP
5675 * Like alloc_pages_exact(), but try to allocate on node nid first before falling
5678 * Return: pointer to the allocated area or %NULL in case of error.
5680 void * __meminit alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask)
5682 unsigned int order = get_order(size);
5685 if (WARN_ON_ONCE(gfp_mask & (__GFP_COMP | __GFP_HIGHMEM)))
5686 gfp_mask &= ~(__GFP_COMP | __GFP_HIGHMEM);
5688 p = alloc_pages_node(nid, gfp_mask, order);
5691 return make_alloc_exact((unsigned long)page_address(p), order, size);
5695 * free_pages_exact - release memory allocated via alloc_pages_exact()
5696 * @virt: the value returned by alloc_pages_exact.
5697 * @size: size of allocation, same value as passed to alloc_pages_exact().
5699 * Release the memory allocated by a previous call to alloc_pages_exact.
5701 void free_pages_exact(void *virt, size_t size)
5703 unsigned long addr = (unsigned long)virt;
5704 unsigned long end = addr + PAGE_ALIGN(size);
5706 while (addr < end) {
5711 EXPORT_SYMBOL(free_pages_exact);
5714 * nr_free_zone_pages - count number of pages beyond high watermark
5715 * @offset: The zone index of the highest zone
5717 * nr_free_zone_pages() counts the number of pages which are beyond the
5718 * high watermark within all zones at or below a given zone index. For each
5719 * zone, the number of pages is calculated as:
5721 * nr_free_zone_pages = managed_pages - high_pages
5723 * Return: number of pages beyond high watermark.
5725 static unsigned long nr_free_zone_pages(int offset)
5730 /* Just pick one node, since fallback list is circular */
5731 unsigned long sum = 0;
5733 struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
5735 for_each_zone_zonelist(zone, z, zonelist, offset) {
5736 unsigned long size = zone_managed_pages(zone);
5737 unsigned long high = high_wmark_pages(zone);
5746 * nr_free_buffer_pages - count number of pages beyond high watermark
5748 * nr_free_buffer_pages() counts the number of pages which are beyond the high
5749 * watermark within ZONE_DMA and ZONE_NORMAL.
5751 * Return: number of pages beyond high watermark within ZONE_DMA and
5754 unsigned long nr_free_buffer_pages(void)
5756 return nr_free_zone_pages(gfp_zone(GFP_USER));
5758 EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
5760 static inline void show_node(struct zone *zone)
5762 if (IS_ENABLED(CONFIG_NUMA))
5763 printk("Node %d ", zone_to_nid(zone));
5766 long si_mem_available(void)
5769 unsigned long pagecache;
5770 unsigned long wmark_low = 0;
5771 unsigned long pages[NR_LRU_LISTS];
5772 unsigned long reclaimable;
5776 for (lru = LRU_BASE; lru < NR_LRU_LISTS; lru++)
5777 pages[lru] = global_node_page_state(NR_LRU_BASE + lru);
5780 wmark_low += low_wmark_pages(zone);
5783 * Estimate the amount of memory available for userspace allocations,
5784 * without causing swapping.
5786 available = global_zone_page_state(NR_FREE_PAGES) - totalreserve_pages;
5789 * Not all the page cache can be freed, otherwise the system will
5790 * start swapping. Assume at least half of the page cache, or the
5791 * low watermark worth of cache, needs to stay.
5793 pagecache = pages[LRU_ACTIVE_FILE] + pages[LRU_INACTIVE_FILE];
5794 pagecache -= min(pagecache / 2, wmark_low);
5795 available += pagecache;
5798 * Part of the reclaimable slab and other kernel memory consists of
5799 * items that are in use, and cannot be freed. Cap this estimate at the
5802 reclaimable = global_node_page_state_pages(NR_SLAB_RECLAIMABLE_B) +
5803 global_node_page_state(NR_KERNEL_MISC_RECLAIMABLE);
5804 available += reclaimable - min(reclaimable / 2, wmark_low);
5810 EXPORT_SYMBOL_GPL(si_mem_available);
5812 void si_meminfo(struct sysinfo *val)
5814 val->totalram = totalram_pages();
5815 val->sharedram = global_node_page_state(NR_SHMEM);
5816 val->freeram = global_zone_page_state(NR_FREE_PAGES);
5817 val->bufferram = nr_blockdev_pages();
5818 val->totalhigh = totalhigh_pages();
5819 val->freehigh = nr_free_highpages();
5820 val->mem_unit = PAGE_SIZE;
5823 EXPORT_SYMBOL(si_meminfo);
5826 void si_meminfo_node(struct sysinfo *val, int nid)
5828 int zone_type; /* needs to be signed */
5829 unsigned long managed_pages = 0;
5830 unsigned long managed_highpages = 0;
5831 unsigned long free_highpages = 0;
5832 pg_data_t *pgdat = NODE_DATA(nid);
5834 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++)
5835 managed_pages += zone_managed_pages(&pgdat->node_zones[zone_type]);
5836 val->totalram = managed_pages;
5837 val->sharedram = node_page_state(pgdat, NR_SHMEM);
5838 val->freeram = sum_zone_node_page_state(nid, NR_FREE_PAGES);
5839 #ifdef CONFIG_HIGHMEM
5840 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
5841 struct zone *zone = &pgdat->node_zones[zone_type];
5843 if (is_highmem(zone)) {
5844 managed_highpages += zone_managed_pages(zone);
5845 free_highpages += zone_page_state(zone, NR_FREE_PAGES);
5848 val->totalhigh = managed_highpages;
5849 val->freehigh = free_highpages;
5851 val->totalhigh = managed_highpages;
5852 val->freehigh = free_highpages;
5854 val->mem_unit = PAGE_SIZE;
5859 * Determine whether the node should be displayed or not, depending on whether
5860 * SHOW_MEM_FILTER_NODES was passed to show_free_areas().
5862 static bool show_mem_node_skip(unsigned int flags, int nid, nodemask_t *nodemask)
5864 if (!(flags & SHOW_MEM_FILTER_NODES))
5868 * no node mask - aka implicit memory numa policy. Do not bother with
5869 * the synchronization - read_mems_allowed_begin - because we do not
5870 * have to be precise here.
5873 nodemask = &cpuset_current_mems_allowed;
5875 return !node_isset(nid, *nodemask);
5878 #define K(x) ((x) << (PAGE_SHIFT-10))
5880 static void show_migration_types(unsigned char type)
5882 static const char types[MIGRATE_TYPES] = {
5883 [MIGRATE_UNMOVABLE] = 'U',
5884 [MIGRATE_MOVABLE] = 'M',
5885 [MIGRATE_RECLAIMABLE] = 'E',
5886 [MIGRATE_HIGHATOMIC] = 'H',
5888 [MIGRATE_CMA] = 'C',
5890 #ifdef CONFIG_MEMORY_ISOLATION
5891 [MIGRATE_ISOLATE] = 'I',
5894 char tmp[MIGRATE_TYPES + 1];
5898 for (i = 0; i < MIGRATE_TYPES; i++) {
5899 if (type & (1 << i))
5904 printk(KERN_CONT "(%s) ", tmp);
5908 * Show free area list (used inside shift_scroll-lock stuff)
5909 * We also calculate the percentage fragmentation. We do this by counting the
5910 * memory on each free list with the exception of the first item on the list.
5913 * SHOW_MEM_FILTER_NODES: suppress nodes that are not allowed by current's
5916 void show_free_areas(unsigned int filter, nodemask_t *nodemask)
5918 unsigned long free_pcp = 0;
5923 for_each_populated_zone(zone) {
5924 if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
5927 for_each_online_cpu(cpu)
5928 free_pcp += per_cpu_ptr(zone->per_cpu_pageset, cpu)->count;
5931 printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n"
5932 " active_file:%lu inactive_file:%lu isolated_file:%lu\n"
5933 " unevictable:%lu dirty:%lu writeback:%lu\n"
5934 " slab_reclaimable:%lu slab_unreclaimable:%lu\n"
5935 " mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n"
5936 " kernel_misc_reclaimable:%lu\n"
5937 " free:%lu free_pcp:%lu free_cma:%lu\n",
5938 global_node_page_state(NR_ACTIVE_ANON),
5939 global_node_page_state(NR_INACTIVE_ANON),
5940 global_node_page_state(NR_ISOLATED_ANON),
5941 global_node_page_state(NR_ACTIVE_FILE),
5942 global_node_page_state(NR_INACTIVE_FILE),
5943 global_node_page_state(NR_ISOLATED_FILE),
5944 global_node_page_state(NR_UNEVICTABLE),
5945 global_node_page_state(NR_FILE_DIRTY),
5946 global_node_page_state(NR_WRITEBACK),
5947 global_node_page_state_pages(NR_SLAB_RECLAIMABLE_B),
5948 global_node_page_state_pages(NR_SLAB_UNRECLAIMABLE_B),
5949 global_node_page_state(NR_FILE_MAPPED),
5950 global_node_page_state(NR_SHMEM),
5951 global_node_page_state(NR_PAGETABLE),
5952 global_zone_page_state(NR_BOUNCE),
5953 global_node_page_state(NR_KERNEL_MISC_RECLAIMABLE),
5954 global_zone_page_state(NR_FREE_PAGES),
5956 global_zone_page_state(NR_FREE_CMA_PAGES));
5958 for_each_online_pgdat(pgdat) {
5959 if (show_mem_node_skip(filter, pgdat->node_id, nodemask))
5963 " active_anon:%lukB"
5964 " inactive_anon:%lukB"
5965 " active_file:%lukB"
5966 " inactive_file:%lukB"
5967 " unevictable:%lukB"
5968 " isolated(anon):%lukB"
5969 " isolated(file):%lukB"
5974 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
5976 " shmem_pmdmapped: %lukB"
5979 " writeback_tmp:%lukB"
5980 " kernel_stack:%lukB"
5981 #ifdef CONFIG_SHADOW_CALL_STACK
5982 " shadow_call_stack:%lukB"
5985 " all_unreclaimable? %s"
5988 K(node_page_state(pgdat, NR_ACTIVE_ANON)),
5989 K(node_page_state(pgdat, NR_INACTIVE_ANON)),
5990 K(node_page_state(pgdat, NR_ACTIVE_FILE)),
5991 K(node_page_state(pgdat, NR_INACTIVE_FILE)),
5992 K(node_page_state(pgdat, NR_UNEVICTABLE)),
5993 K(node_page_state(pgdat, NR_ISOLATED_ANON)),
5994 K(node_page_state(pgdat, NR_ISOLATED_FILE)),
5995 K(node_page_state(pgdat, NR_FILE_MAPPED)),
5996 K(node_page_state(pgdat, NR_FILE_DIRTY)),
5997 K(node_page_state(pgdat, NR_WRITEBACK)),
5998 K(node_page_state(pgdat, NR_SHMEM)),
5999 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
6000 K(node_page_state(pgdat, NR_SHMEM_THPS)),
6001 K(node_page_state(pgdat, NR_SHMEM_PMDMAPPED)),
6002 K(node_page_state(pgdat, NR_ANON_THPS)),
6004 K(node_page_state(pgdat, NR_WRITEBACK_TEMP)),
6005 node_page_state(pgdat, NR_KERNEL_STACK_KB),
6006 #ifdef CONFIG_SHADOW_CALL_STACK
6007 node_page_state(pgdat, NR_KERNEL_SCS_KB),
6009 K(node_page_state(pgdat, NR_PAGETABLE)),
6010 pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES ?
6014 for_each_populated_zone(zone) {
6017 if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
6021 for_each_online_cpu(cpu)
6022 free_pcp += per_cpu_ptr(zone->per_cpu_pageset, cpu)->count;
6032 " reserved_highatomic:%luKB"
6033 " active_anon:%lukB"
6034 " inactive_anon:%lukB"
6035 " active_file:%lukB"
6036 " inactive_file:%lukB"
6037 " unevictable:%lukB"
6038 " writepending:%lukB"
6048 K(zone_page_state(zone, NR_FREE_PAGES)),
6049 K(zone->watermark_boost),
6050 K(min_wmark_pages(zone)),
6051 K(low_wmark_pages(zone)),
6052 K(high_wmark_pages(zone)),
6053 K(zone->nr_reserved_highatomic),
6054 K(zone_page_state(zone, NR_ZONE_ACTIVE_ANON)),
6055 K(zone_page_state(zone, NR_ZONE_INACTIVE_ANON)),
6056 K(zone_page_state(zone, NR_ZONE_ACTIVE_FILE)),
6057 K(zone_page_state(zone, NR_ZONE_INACTIVE_FILE)),
6058 K(zone_page_state(zone, NR_ZONE_UNEVICTABLE)),
6059 K(zone_page_state(zone, NR_ZONE_WRITE_PENDING)),
6060 K(zone->present_pages),
6061 K(zone_managed_pages(zone)),
6062 K(zone_page_state(zone, NR_MLOCK)),
6063 K(zone_page_state(zone, NR_BOUNCE)),
6065 K(this_cpu_read(zone->per_cpu_pageset->count)),
6066 K(zone_page_state(zone, NR_FREE_CMA_PAGES)));
6067 printk("lowmem_reserve[]:");
6068 for (i = 0; i < MAX_NR_ZONES; i++)
6069 printk(KERN_CONT " %ld", zone->lowmem_reserve[i]);
6070 printk(KERN_CONT "\n");
6073 for_each_populated_zone(zone) {
6075 unsigned long nr[MAX_ORDER], flags, total = 0;
6076 unsigned char types[MAX_ORDER];
6078 if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
6081 printk(KERN_CONT "%s: ", zone->name);
6083 spin_lock_irqsave(&zone->lock, flags);
6084 for (order = 0; order < MAX_ORDER; order++) {
6085 struct free_area *area = &zone->free_area[order];
6088 nr[order] = area->nr_free;
6089 total += nr[order] << order;
6092 for (type = 0; type < MIGRATE_TYPES; type++) {
6093 if (!free_area_empty(area, type))
6094 types[order] |= 1 << type;
6097 spin_unlock_irqrestore(&zone->lock, flags);
6098 for (order = 0; order < MAX_ORDER; order++) {
6099 printk(KERN_CONT "%lu*%lukB ",
6100 nr[order], K(1UL) << order);
6102 show_migration_types(types[order]);
6104 printk(KERN_CONT "= %lukB\n", K(total));
6107 hugetlb_show_meminfo();
6109 printk("%ld total pagecache pages\n", global_node_page_state(NR_FILE_PAGES));
6111 show_swap_cache_info();
6114 static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
6116 zoneref->zone = zone;
6117 zoneref->zone_idx = zone_idx(zone);
6121 * Builds allocation fallback zone lists.
6123 * Add all populated zones of a node to the zonelist.
6125 static int build_zonerefs_node(pg_data_t *pgdat, struct zoneref *zonerefs)
6128 enum zone_type zone_type = MAX_NR_ZONES;
6133 zone = pgdat->node_zones + zone_type;
6134 if (populated_zone(zone)) {
6135 zoneref_set_zone(zone, &zonerefs[nr_zones++]);
6136 check_highest_zone(zone_type);
6138 } while (zone_type);
6145 static int __parse_numa_zonelist_order(char *s)
6148 * We used to support different zonelists modes but they turned
6149 * out to be just not useful. Let's keep the warning in place
6150 * if somebody still use the cmd line parameter so that we do
6151 * not fail it silently
6153 if (!(*s == 'd' || *s == 'D' || *s == 'n' || *s == 'N')) {
6154 pr_warn("Ignoring unsupported numa_zonelist_order value: %s\n", s);
6160 char numa_zonelist_order[] = "Node";
6163 * sysctl handler for numa_zonelist_order
6165 int numa_zonelist_order_handler(struct ctl_table *table, int write,
6166 void *buffer, size_t *length, loff_t *ppos)
6169 return __parse_numa_zonelist_order(buffer);
6170 return proc_dostring(table, write, buffer, length, ppos);
6174 #define MAX_NODE_LOAD (nr_online_nodes)
6175 static int node_load[MAX_NUMNODES];
6178 * find_next_best_node - find the next node that should appear in a given node's fallback list
6179 * @node: node whose fallback list we're appending
6180 * @used_node_mask: nodemask_t of already used nodes
6182 * We use a number of factors to determine which is the next node that should
6183 * appear on a given node's fallback list. The node should not have appeared
6184 * already in @node's fallback list, and it should be the next closest node
6185 * according to the distance array (which contains arbitrary distance values
6186 * from each node to each node in the system), and should also prefer nodes
6187 * with no CPUs, since presumably they'll have very little allocation pressure
6188 * on them otherwise.
6190 * Return: node id of the found node or %NUMA_NO_NODE if no node is found.
6192 int find_next_best_node(int node, nodemask_t *used_node_mask)
6195 int min_val = INT_MAX;
6196 int best_node = NUMA_NO_NODE;
6198 /* Use the local node if we haven't already */
6199 if (!node_isset(node, *used_node_mask)) {
6200 node_set(node, *used_node_mask);
6204 for_each_node_state(n, N_MEMORY) {
6206 /* Don't want a node to appear more than once */
6207 if (node_isset(n, *used_node_mask))
6210 /* Use the distance array to find the distance */
6211 val = node_distance(node, n);
6213 /* Penalize nodes under us ("prefer the next node") */
6216 /* Give preference to headless and unused nodes */
6217 if (!cpumask_empty(cpumask_of_node(n)))
6218 val += PENALTY_FOR_NODE_WITH_CPUS;
6220 /* Slight preference for less loaded node */
6221 val *= (MAX_NODE_LOAD*MAX_NUMNODES);
6222 val += node_load[n];
6224 if (val < min_val) {
6231 node_set(best_node, *used_node_mask);
6238 * Build zonelists ordered by node and zones within node.
6239 * This results in maximum locality--normal zone overflows into local
6240 * DMA zone, if any--but risks exhausting DMA zone.
6242 static void build_zonelists_in_node_order(pg_data_t *pgdat, int *node_order,
6245 struct zoneref *zonerefs;
6248 zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs;
6250 for (i = 0; i < nr_nodes; i++) {
6253 pg_data_t *node = NODE_DATA(node_order[i]);
6255 nr_zones = build_zonerefs_node(node, zonerefs);
6256 zonerefs += nr_zones;
6258 zonerefs->zone = NULL;
6259 zonerefs->zone_idx = 0;
6263 * Build gfp_thisnode zonelists
6265 static void build_thisnode_zonelists(pg_data_t *pgdat)
6267 struct zoneref *zonerefs;
6270 zonerefs = pgdat->node_zonelists[ZONELIST_NOFALLBACK]._zonerefs;
6271 nr_zones = build_zonerefs_node(pgdat, zonerefs);
6272 zonerefs += nr_zones;
6273 zonerefs->zone = NULL;
6274 zonerefs->zone_idx = 0;
6278 * Build zonelists ordered by zone and nodes within zones.
6279 * This results in conserving DMA zone[s] until all Normal memory is
6280 * exhausted, but results in overflowing to remote node while memory
6281 * may still exist in local DMA zone.
6284 static void build_zonelists(pg_data_t *pgdat)
6286 static int node_order[MAX_NUMNODES];
6287 int node, load, nr_nodes = 0;
6288 nodemask_t used_mask = NODE_MASK_NONE;
6289 int local_node, prev_node;
6291 /* NUMA-aware ordering of nodes */
6292 local_node = pgdat->node_id;
6293 load = nr_online_nodes;
6294 prev_node = local_node;
6296 memset(node_order, 0, sizeof(node_order));
6297 while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
6299 * We don't want to pressure a particular node.
6300 * So adding penalty to the first node in same
6301 * distance group to make it round-robin.
6303 if (node_distance(local_node, node) !=
6304 node_distance(local_node, prev_node))
6305 node_load[node] += load;
6307 node_order[nr_nodes++] = node;
6312 build_zonelists_in_node_order(pgdat, node_order, nr_nodes);
6313 build_thisnode_zonelists(pgdat);
6314 pr_info("Fallback order for Node %d: ", local_node);
6315 for (node = 0; node < nr_nodes; node++)
6316 pr_cont("%d ", node_order[node]);
6320 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
6322 * Return node id of node used for "local" allocations.
6323 * I.e., first node id of first zone in arg node's generic zonelist.
6324 * Used for initializing percpu 'numa_mem', which is used primarily
6325 * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
6327 int local_memory_node(int node)
6331 z = first_zones_zonelist(node_zonelist(node, GFP_KERNEL),
6332 gfp_zone(GFP_KERNEL),
6334 return zone_to_nid(z->zone);
6338 static void setup_min_unmapped_ratio(void);
6339 static void setup_min_slab_ratio(void);
6340 #else /* CONFIG_NUMA */
6342 static void build_zonelists(pg_data_t *pgdat)
6344 int node, local_node;
6345 struct zoneref *zonerefs;
6348 local_node = pgdat->node_id;
6350 zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs;
6351 nr_zones = build_zonerefs_node(pgdat, zonerefs);
6352 zonerefs += nr_zones;
6355 * Now we build the zonelist so that it contains the zones
6356 * of all the other nodes.
6357 * We don't want to pressure a particular node, so when
6358 * building the zones for node N, we make sure that the
6359 * zones coming right after the local ones are those from
6360 * node N+1 (modulo N)
6362 for (node = local_node + 1; node < MAX_NUMNODES; node++) {
6363 if (!node_online(node))
6365 nr_zones = build_zonerefs_node(NODE_DATA(node), zonerefs);
6366 zonerefs += nr_zones;
6368 for (node = 0; node < local_node; node++) {
6369 if (!node_online(node))
6371 nr_zones = build_zonerefs_node(NODE_DATA(node), zonerefs);
6372 zonerefs += nr_zones;
6375 zonerefs->zone = NULL;
6376 zonerefs->zone_idx = 0;
6379 #endif /* CONFIG_NUMA */
6382 * Boot pageset table. One per cpu which is going to be used for all
6383 * zones and all nodes. The parameters will be set in such a way
6384 * that an item put on a list will immediately be handed over to
6385 * the buddy list. This is safe since pageset manipulation is done
6386 * with interrupts disabled.
6388 * The boot_pagesets must be kept even after bootup is complete for
6389 * unused processors and/or zones. They do play a role for bootstrapping
6390 * hotplugged processors.
6392 * zoneinfo_show() and maybe other functions do
6393 * not check if the processor is online before following the pageset pointer.
6394 * Other parts of the kernel may not check if the zone is available.
6396 static void per_cpu_pages_init(struct per_cpu_pages *pcp, struct per_cpu_zonestat *pzstats);
6397 /* These effectively disable the pcplists in the boot pageset completely */
6398 #define BOOT_PAGESET_HIGH 0
6399 #define BOOT_PAGESET_BATCH 1
6400 static DEFINE_PER_CPU(struct per_cpu_pages, boot_pageset);
6401 static DEFINE_PER_CPU(struct per_cpu_zonestat, boot_zonestats);
6402 DEFINE_PER_CPU(struct per_cpu_nodestat, boot_nodestats);
6404 static void __build_all_zonelists(void *data)
6407 int __maybe_unused cpu;
6408 pg_data_t *self = data;
6409 static DEFINE_SPINLOCK(lock);
6414 memset(node_load, 0, sizeof(node_load));
6418 * This node is hotadded and no memory is yet present. So just
6419 * building zonelists is fine - no need to touch other nodes.
6421 if (self && !node_online(self->node_id)) {
6422 build_zonelists(self);
6425 * All possible nodes have pgdat preallocated
6428 for_each_node(nid) {
6429 pg_data_t *pgdat = NODE_DATA(nid);
6431 build_zonelists(pgdat);
6434 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
6436 * We now know the "local memory node" for each node--
6437 * i.e., the node of the first zone in the generic zonelist.
6438 * Set up numa_mem percpu variable for on-line cpus. During
6439 * boot, only the boot cpu should be on-line; we'll init the
6440 * secondary cpus' numa_mem as they come on-line. During
6441 * node/memory hotplug, we'll fixup all on-line cpus.
6443 for_each_online_cpu(cpu)
6444 set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu)));
6451 static noinline void __init
6452 build_all_zonelists_init(void)
6456 __build_all_zonelists(NULL);
6459 * Initialize the boot_pagesets that are going to be used
6460 * for bootstrapping processors. The real pagesets for
6461 * each zone will be allocated later when the per cpu
6462 * allocator is available.
6464 * boot_pagesets are used also for bootstrapping offline
6465 * cpus if the system is already booted because the pagesets
6466 * are needed to initialize allocators on a specific cpu too.
6467 * F.e. the percpu allocator needs the page allocator which
6468 * needs the percpu allocator in order to allocate its pagesets
6469 * (a chicken-egg dilemma).
6471 for_each_possible_cpu(cpu)
6472 per_cpu_pages_init(&per_cpu(boot_pageset, cpu), &per_cpu(boot_zonestats, cpu));
6474 mminit_verify_zonelist();
6475 cpuset_init_current_mems_allowed();
6479 * unless system_state == SYSTEM_BOOTING.
6481 * __ref due to call of __init annotated helper build_all_zonelists_init
6482 * [protected by SYSTEM_BOOTING].
6484 void __ref build_all_zonelists(pg_data_t *pgdat)
6486 unsigned long vm_total_pages;
6488 if (system_state == SYSTEM_BOOTING) {
6489 build_all_zonelists_init();
6491 __build_all_zonelists(pgdat);
6492 /* cpuset refresh routine should be here */
6494 /* Get the number of free pages beyond high watermark in all zones. */
6495 vm_total_pages = nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
6497 * Disable grouping by mobility if the number of pages in the
6498 * system is too low to allow the mechanism to work. It would be
6499 * more accurate, but expensive to check per-zone. This check is
6500 * made on memory-hotadd so a system can start with mobility
6501 * disabled and enable it later
6503 if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
6504 page_group_by_mobility_disabled = 1;
6506 page_group_by_mobility_disabled = 0;
6508 pr_info("Built %u zonelists, mobility grouping %s. Total pages: %ld\n",
6510 page_group_by_mobility_disabled ? "off" : "on",
6513 pr_info("Policy zone: %s\n", zone_names[policy_zone]);
6517 /* If zone is ZONE_MOVABLE but memory is mirrored, it is an overlapped init */
6518 static bool __meminit
6519 overlap_memmap_init(unsigned long zone, unsigned long *pfn)
6521 static struct memblock_region *r;
6523 if (mirrored_kernelcore && zone == ZONE_MOVABLE) {
6524 if (!r || *pfn >= memblock_region_memory_end_pfn(r)) {
6525 for_each_mem_region(r) {
6526 if (*pfn < memblock_region_memory_end_pfn(r))
6530 if (*pfn >= memblock_region_memory_base_pfn(r) &&
6531 memblock_is_mirror(r)) {
6532 *pfn = memblock_region_memory_end_pfn(r);
6540 * Initially all pages are reserved - free ones are freed
6541 * up by memblock_free_all() once the early boot process is
6542 * done. Non-atomic initialization, single-pass.
6544 * All aligned pageblocks are initialized to the specified migratetype
6545 * (usually MIGRATE_MOVABLE). Besides setting the migratetype, no related
6546 * zone stats (e.g., nr_isolate_pageblock) are touched.
6548 void __meminit memmap_init_range(unsigned long size, int nid, unsigned long zone,
6549 unsigned long start_pfn, unsigned long zone_end_pfn,
6550 enum meminit_context context,
6551 struct vmem_altmap *altmap, int migratetype)
6553 unsigned long pfn, end_pfn = start_pfn + size;
6556 if (highest_memmap_pfn < end_pfn - 1)
6557 highest_memmap_pfn = end_pfn - 1;
6559 #ifdef CONFIG_ZONE_DEVICE
6561 * Honor reservation requested by the driver for this ZONE_DEVICE
6562 * memory. We limit the total number of pages to initialize to just
6563 * those that might contain the memory mapping. We will defer the
6564 * ZONE_DEVICE page initialization until after we have released
6567 if (zone == ZONE_DEVICE) {
6571 if (start_pfn == altmap->base_pfn)
6572 start_pfn += altmap->reserve;
6573 end_pfn = altmap->base_pfn + vmem_altmap_offset(altmap);
6577 for (pfn = start_pfn; pfn < end_pfn; ) {
6579 * There can be holes in boot-time mem_map[]s handed to this
6580 * function. They do not exist on hotplugged memory.
6582 if (context == MEMINIT_EARLY) {
6583 if (overlap_memmap_init(zone, &pfn))
6585 if (defer_init(nid, pfn, zone_end_pfn))
6589 page = pfn_to_page(pfn);
6590 __init_single_page(page, pfn, zone, nid);
6591 if (context == MEMINIT_HOTPLUG)
6592 __SetPageReserved(page);
6595 * Usually, we want to mark the pageblock MIGRATE_MOVABLE,
6596 * such that unmovable allocations won't be scattered all
6597 * over the place during system boot.
6599 if (IS_ALIGNED(pfn, pageblock_nr_pages)) {
6600 set_pageblock_migratetype(page, migratetype);
6607 #ifdef CONFIG_ZONE_DEVICE
6608 static void __ref __init_zone_device_page(struct page *page, unsigned long pfn,
6609 unsigned long zone_idx, int nid,
6610 struct dev_pagemap *pgmap)
6613 __init_single_page(page, pfn, zone_idx, nid);
6616 * Mark page reserved as it will need to wait for onlining
6617 * phase for it to be fully associated with a zone.
6619 * We can use the non-atomic __set_bit operation for setting
6620 * the flag as we are still initializing the pages.
6622 __SetPageReserved(page);
6625 * ZONE_DEVICE pages union ->lru with a ->pgmap back pointer
6626 * and zone_device_data. It is a bug if a ZONE_DEVICE page is
6627 * ever freed or placed on a driver-private list.
6629 page->pgmap = pgmap;
6630 page->zone_device_data = NULL;
6633 * Mark the block movable so that blocks are reserved for
6634 * movable at startup. This will force kernel allocations
6635 * to reserve their blocks rather than leaking throughout
6636 * the address space during boot when many long-lived
6637 * kernel allocations are made.
6639 * Please note that MEMINIT_HOTPLUG path doesn't clear memmap
6640 * because this is done early in section_activate()
6642 if (IS_ALIGNED(pfn, pageblock_nr_pages)) {
6643 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
6648 static void __ref memmap_init_compound(struct page *head,
6649 unsigned long head_pfn,
6650 unsigned long zone_idx, int nid,
6651 struct dev_pagemap *pgmap,
6652 unsigned long nr_pages)
6654 unsigned long pfn, end_pfn = head_pfn + nr_pages;
6655 unsigned int order = pgmap->vmemmap_shift;
6657 __SetPageHead(head);
6658 for (pfn = head_pfn + 1; pfn < end_pfn; pfn++) {
6659 struct page *page = pfn_to_page(pfn);
6661 __init_zone_device_page(page, pfn, zone_idx, nid, pgmap);
6662 prep_compound_tail(head, pfn - head_pfn);
6663 set_page_count(page, 0);
6666 * The first tail page stores compound_mapcount_ptr() and
6667 * compound_order() and the second tail page stores
6668 * compound_pincount_ptr(). Call prep_compound_head() after
6669 * the first and second tail pages have been initialized to
6670 * not have the data overwritten.
6672 if (pfn == head_pfn + 2)
6673 prep_compound_head(head, order);
6677 void __ref memmap_init_zone_device(struct zone *zone,
6678 unsigned long start_pfn,
6679 unsigned long nr_pages,
6680 struct dev_pagemap *pgmap)
6682 unsigned long pfn, end_pfn = start_pfn + nr_pages;
6683 struct pglist_data *pgdat = zone->zone_pgdat;
6684 struct vmem_altmap *altmap = pgmap_altmap(pgmap);
6685 unsigned int pfns_per_compound = pgmap_vmemmap_nr(pgmap);
6686 unsigned long zone_idx = zone_idx(zone);
6687 unsigned long start = jiffies;
6688 int nid = pgdat->node_id;
6690 if (WARN_ON_ONCE(!pgmap || zone_idx(zone) != ZONE_DEVICE))
6694 * The call to memmap_init should have already taken care
6695 * of the pages reserved for the memmap, so we can just jump to
6696 * the end of that region and start processing the device pages.
6699 start_pfn = altmap->base_pfn + vmem_altmap_offset(altmap);
6700 nr_pages = end_pfn - start_pfn;
6703 for (pfn = start_pfn; pfn < end_pfn; pfn += pfns_per_compound) {
6704 struct page *page = pfn_to_page(pfn);
6706 __init_zone_device_page(page, pfn, zone_idx, nid, pgmap);
6708 if (pfns_per_compound == 1)
6711 memmap_init_compound(page, pfn, zone_idx, nid, pgmap,
6715 pr_info("%s initialised %lu pages in %ums\n", __func__,
6716 nr_pages, jiffies_to_msecs(jiffies - start));
6720 static void __meminit zone_init_free_lists(struct zone *zone)
6722 unsigned int order, t;
6723 for_each_migratetype_order(order, t) {
6724 INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
6725 zone->free_area[order].nr_free = 0;
6730 * Only struct pages that correspond to ranges defined by memblock.memory
6731 * are zeroed and initialized by going through __init_single_page() during
6732 * memmap_init_zone_range().
6734 * But, there could be struct pages that correspond to holes in
6735 * memblock.memory. This can happen because of the following reasons:
6736 * - physical memory bank size is not necessarily the exact multiple of the
6737 * arbitrary section size
6738 * - early reserved memory may not be listed in memblock.memory
6739 * - memory layouts defined with memmap= kernel parameter may not align
6740 * nicely with memmap sections
6742 * Explicitly initialize those struct pages so that:
6743 * - PG_Reserved is set
6744 * - zone and node links point to zone and node that span the page if the
6745 * hole is in the middle of a zone
6746 * - zone and node links point to adjacent zone/node if the hole falls on
6747 * the zone boundary; the pages in such holes will be prepended to the
6748 * zone/node above the hole except for the trailing pages in the last
6749 * section that will be appended to the zone/node below.
6751 static void __init init_unavailable_range(unsigned long spfn,
6758 for (pfn = spfn; pfn < epfn; pfn++) {
6759 if (!pfn_valid(ALIGN_DOWN(pfn, pageblock_nr_pages))) {
6760 pfn = ALIGN_DOWN(pfn, pageblock_nr_pages)
6761 + pageblock_nr_pages - 1;
6764 __init_single_page(pfn_to_page(pfn), pfn, zone, node);
6765 __SetPageReserved(pfn_to_page(pfn));
6770 pr_info("On node %d, zone %s: %lld pages in unavailable ranges",
6771 node, zone_names[zone], pgcnt);
6774 static void __init memmap_init_zone_range(struct zone *zone,
6775 unsigned long start_pfn,
6776 unsigned long end_pfn,
6777 unsigned long *hole_pfn)
6779 unsigned long zone_start_pfn = zone->zone_start_pfn;
6780 unsigned long zone_end_pfn = zone_start_pfn + zone->spanned_pages;
6781 int nid = zone_to_nid(zone), zone_id = zone_idx(zone);
6783 start_pfn = clamp(start_pfn, zone_start_pfn, zone_end_pfn);
6784 end_pfn = clamp(end_pfn, zone_start_pfn, zone_end_pfn);
6786 if (start_pfn >= end_pfn)
6789 memmap_init_range(end_pfn - start_pfn, nid, zone_id, start_pfn,
6790 zone_end_pfn, MEMINIT_EARLY, NULL, MIGRATE_MOVABLE);
6792 if (*hole_pfn < start_pfn)
6793 init_unavailable_range(*hole_pfn, start_pfn, zone_id, nid);
6795 *hole_pfn = end_pfn;
6798 static void __init memmap_init(void)
6800 unsigned long start_pfn, end_pfn;
6801 unsigned long hole_pfn = 0;
6802 int i, j, zone_id = 0, nid;
6804 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
6805 struct pglist_data *node = NODE_DATA(nid);
6807 for (j = 0; j < MAX_NR_ZONES; j++) {
6808 struct zone *zone = node->node_zones + j;
6810 if (!populated_zone(zone))
6813 memmap_init_zone_range(zone, start_pfn, end_pfn,
6819 #ifdef CONFIG_SPARSEMEM
6821 * Initialize the memory map for hole in the range [memory_end,
6823 * Append the pages in this hole to the highest zone in the last
6825 * The call to init_unavailable_range() is outside the ifdef to
6826 * silence the compiler warining about zone_id set but not used;
6827 * for FLATMEM it is a nop anyway
6829 end_pfn = round_up(end_pfn, PAGES_PER_SECTION);
6830 if (hole_pfn < end_pfn)
6832 init_unavailable_range(hole_pfn, end_pfn, zone_id, nid);
6835 void __init *memmap_alloc(phys_addr_t size, phys_addr_t align,
6836 phys_addr_t min_addr, int nid, bool exact_nid)
6841 ptr = memblock_alloc_exact_nid_raw(size, align, min_addr,
6842 MEMBLOCK_ALLOC_ACCESSIBLE,
6845 ptr = memblock_alloc_try_nid_raw(size, align, min_addr,
6846 MEMBLOCK_ALLOC_ACCESSIBLE,
6849 if (ptr && size > 0)
6850 page_init_poison(ptr, size);
6855 static int zone_batchsize(struct zone *zone)
6861 * The number of pages to batch allocate is either ~0.1%
6862 * of the zone or 1MB, whichever is smaller. The batch
6863 * size is striking a balance between allocation latency
6864 * and zone lock contention.
6866 batch = min(zone_managed_pages(zone) >> 10, (1024 * 1024) / PAGE_SIZE);
6867 batch /= 4; /* We effectively *= 4 below */
6872 * Clamp the batch to a 2^n - 1 value. Having a power
6873 * of 2 value was found to be more likely to have
6874 * suboptimal cache aliasing properties in some cases.
6876 * For example if 2 tasks are alternately allocating
6877 * batches of pages, one task can end up with a lot
6878 * of pages of one half of the possible page colors
6879 * and the other with pages of the other colors.
6881 batch = rounddown_pow_of_two(batch + batch/2) - 1;
6886 /* The deferral and batching of frees should be suppressed under NOMMU
6889 * The problem is that NOMMU needs to be able to allocate large chunks
6890 * of contiguous memory as there's no hardware page translation to
6891 * assemble apparent contiguous memory from discontiguous pages.
6893 * Queueing large contiguous runs of pages for batching, however,
6894 * causes the pages to actually be freed in smaller chunks. As there
6895 * can be a significant delay between the individual batches being
6896 * recycled, this leads to the once large chunks of space being
6897 * fragmented and becoming unavailable for high-order allocations.
6903 static int zone_highsize(struct zone *zone, int batch, int cpu_online)
6908 unsigned long total_pages;
6910 if (!percpu_pagelist_high_fraction) {
6912 * By default, the high value of the pcp is based on the zone
6913 * low watermark so that if they are full then background
6914 * reclaim will not be started prematurely.
6916 total_pages = low_wmark_pages(zone);
6919 * If percpu_pagelist_high_fraction is configured, the high
6920 * value is based on a fraction of the managed pages in the
6923 total_pages = zone_managed_pages(zone) / percpu_pagelist_high_fraction;
6927 * Split the high value across all online CPUs local to the zone. Note
6928 * that early in boot that CPUs may not be online yet and that during
6929 * CPU hotplug that the cpumask is not yet updated when a CPU is being
6930 * onlined. For memory nodes that have no CPUs, split pcp->high across
6931 * all online CPUs to mitigate the risk that reclaim is triggered
6932 * prematurely due to pages stored on pcp lists.
6934 nr_split_cpus = cpumask_weight(cpumask_of_node(zone_to_nid(zone))) + cpu_online;
6936 nr_split_cpus = num_online_cpus();
6937 high = total_pages / nr_split_cpus;
6940 * Ensure high is at least batch*4. The multiple is based on the
6941 * historical relationship between high and batch.
6943 high = max(high, batch << 2);
6952 * pcp->high and pcp->batch values are related and generally batch is lower
6953 * than high. They are also related to pcp->count such that count is lower
6954 * than high, and as soon as it reaches high, the pcplist is flushed.
6956 * However, guaranteeing these relations at all times would require e.g. write
6957 * barriers here but also careful usage of read barriers at the read side, and
6958 * thus be prone to error and bad for performance. Thus the update only prevents
6959 * store tearing. Any new users of pcp->batch and pcp->high should ensure they
6960 * can cope with those fields changing asynchronously, and fully trust only the
6961 * pcp->count field on the local CPU with interrupts disabled.
6963 * mutex_is_locked(&pcp_batch_high_lock) required when calling this function
6964 * outside of boot time (or some other assurance that no concurrent updaters
6967 static void pageset_update(struct per_cpu_pages *pcp, unsigned long high,
6968 unsigned long batch)
6970 WRITE_ONCE(pcp->batch, batch);
6971 WRITE_ONCE(pcp->high, high);
6974 static void per_cpu_pages_init(struct per_cpu_pages *pcp, struct per_cpu_zonestat *pzstats)
6978 memset(pcp, 0, sizeof(*pcp));
6979 memset(pzstats, 0, sizeof(*pzstats));
6981 for (pindex = 0; pindex < NR_PCP_LISTS; pindex++)
6982 INIT_LIST_HEAD(&pcp->lists[pindex]);
6985 * Set batch and high values safe for a boot pageset. A true percpu
6986 * pageset's initialization will update them subsequently. Here we don't
6987 * need to be as careful as pageset_update() as nobody can access the
6990 pcp->high = BOOT_PAGESET_HIGH;
6991 pcp->batch = BOOT_PAGESET_BATCH;
6992 pcp->free_factor = 0;
6995 static void __zone_set_pageset_high_and_batch(struct zone *zone, unsigned long high,
6996 unsigned long batch)
6998 struct per_cpu_pages *pcp;
7001 for_each_possible_cpu(cpu) {
7002 pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu);
7003 pageset_update(pcp, high, batch);
7008 * Calculate and set new high and batch values for all per-cpu pagesets of a
7009 * zone based on the zone's size.
7011 static void zone_set_pageset_high_and_batch(struct zone *zone, int cpu_online)
7013 int new_high, new_batch;
7015 new_batch = max(1, zone_batchsize(zone));
7016 new_high = zone_highsize(zone, new_batch, cpu_online);
7018 if (zone->pageset_high == new_high &&
7019 zone->pageset_batch == new_batch)
7022 zone->pageset_high = new_high;
7023 zone->pageset_batch = new_batch;
7025 __zone_set_pageset_high_and_batch(zone, new_high, new_batch);
7028 void __meminit setup_zone_pageset(struct zone *zone)
7032 /* Size may be 0 on !SMP && !NUMA */
7033 if (sizeof(struct per_cpu_zonestat) > 0)
7034 zone->per_cpu_zonestats = alloc_percpu(struct per_cpu_zonestat);
7036 zone->per_cpu_pageset = alloc_percpu(struct per_cpu_pages);
7037 for_each_possible_cpu(cpu) {
7038 struct per_cpu_pages *pcp;
7039 struct per_cpu_zonestat *pzstats;
7041 pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu);
7042 pzstats = per_cpu_ptr(zone->per_cpu_zonestats, cpu);
7043 per_cpu_pages_init(pcp, pzstats);
7046 zone_set_pageset_high_and_batch(zone, 0);
7050 * Allocate per cpu pagesets and initialize them.
7051 * Before this call only boot pagesets were available.
7053 void __init setup_per_cpu_pageset(void)
7055 struct pglist_data *pgdat;
7057 int __maybe_unused cpu;
7059 for_each_populated_zone(zone)
7060 setup_zone_pageset(zone);
7064 * Unpopulated zones continue using the boot pagesets.
7065 * The numa stats for these pagesets need to be reset.
7066 * Otherwise, they will end up skewing the stats of
7067 * the nodes these zones are associated with.
7069 for_each_possible_cpu(cpu) {
7070 struct per_cpu_zonestat *pzstats = &per_cpu(boot_zonestats, cpu);
7071 memset(pzstats->vm_numa_event, 0,
7072 sizeof(pzstats->vm_numa_event));
7076 for_each_online_pgdat(pgdat)
7077 pgdat->per_cpu_nodestats =
7078 alloc_percpu(struct per_cpu_nodestat);
7081 static __meminit void zone_pcp_init(struct zone *zone)
7084 * per cpu subsystem is not up at this point. The following code
7085 * relies on the ability of the linker to provide the
7086 * offset of a (static) per cpu variable into the per cpu area.
7088 zone->per_cpu_pageset = &boot_pageset;
7089 zone->per_cpu_zonestats = &boot_zonestats;
7090 zone->pageset_high = BOOT_PAGESET_HIGH;
7091 zone->pageset_batch = BOOT_PAGESET_BATCH;
7093 if (populated_zone(zone))
7094 pr_debug(" %s zone: %lu pages, LIFO batch:%u\n", zone->name,
7095 zone->present_pages, zone_batchsize(zone));
7098 void __meminit init_currently_empty_zone(struct zone *zone,
7099 unsigned long zone_start_pfn,
7102 struct pglist_data *pgdat = zone->zone_pgdat;
7103 int zone_idx = zone_idx(zone) + 1;
7105 if (zone_idx > pgdat->nr_zones)
7106 pgdat->nr_zones = zone_idx;
7108 zone->zone_start_pfn = zone_start_pfn;
7110 mminit_dprintk(MMINIT_TRACE, "memmap_init",
7111 "Initialising map node %d zone %lu pfns %lu -> %lu\n",
7113 (unsigned long)zone_idx(zone),
7114 zone_start_pfn, (zone_start_pfn + size));
7116 zone_init_free_lists(zone);
7117 zone->initialized = 1;
7121 * get_pfn_range_for_nid - Return the start and end page frames for a node
7122 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
7123 * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
7124 * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
7126 * It returns the start and end page frame of a node based on information
7127 * provided by memblock_set_node(). If called for a node
7128 * with no available memory, a warning is printed and the start and end
7131 void __init get_pfn_range_for_nid(unsigned int nid,
7132 unsigned long *start_pfn, unsigned long *end_pfn)
7134 unsigned long this_start_pfn, this_end_pfn;
7140 for_each_mem_pfn_range(i, nid, &this_start_pfn, &this_end_pfn, NULL) {
7141 *start_pfn = min(*start_pfn, this_start_pfn);
7142 *end_pfn = max(*end_pfn, this_end_pfn);
7145 if (*start_pfn == -1UL)
7150 * This finds a zone that can be used for ZONE_MOVABLE pages. The
7151 * assumption is made that zones within a node are ordered in monotonic
7152 * increasing memory addresses so that the "highest" populated zone is used
7154 static void __init find_usable_zone_for_movable(void)
7157 for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
7158 if (zone_index == ZONE_MOVABLE)
7161 if (arch_zone_highest_possible_pfn[zone_index] >
7162 arch_zone_lowest_possible_pfn[zone_index])
7166 VM_BUG_ON(zone_index == -1);
7167 movable_zone = zone_index;
7171 * The zone ranges provided by the architecture do not include ZONE_MOVABLE
7172 * because it is sized independent of architecture. Unlike the other zones,
7173 * the starting point for ZONE_MOVABLE is not fixed. It may be different
7174 * in each node depending on the size of each node and how evenly kernelcore
7175 * is distributed. This helper function adjusts the zone ranges
7176 * provided by the architecture for a given node by using the end of the
7177 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
7178 * zones within a node are in order of monotonic increases memory addresses
7180 static void __init adjust_zone_range_for_zone_movable(int nid,
7181 unsigned long zone_type,
7182 unsigned long node_start_pfn,
7183 unsigned long node_end_pfn,
7184 unsigned long *zone_start_pfn,
7185 unsigned long *zone_end_pfn)
7187 /* Only adjust if ZONE_MOVABLE is on this node */
7188 if (zone_movable_pfn[nid]) {
7189 /* Size ZONE_MOVABLE */
7190 if (zone_type == ZONE_MOVABLE) {
7191 *zone_start_pfn = zone_movable_pfn[nid];
7192 *zone_end_pfn = min(node_end_pfn,
7193 arch_zone_highest_possible_pfn[movable_zone]);
7195 /* Adjust for ZONE_MOVABLE starting within this range */
7196 } else if (!mirrored_kernelcore &&
7197 *zone_start_pfn < zone_movable_pfn[nid] &&
7198 *zone_end_pfn > zone_movable_pfn[nid]) {
7199 *zone_end_pfn = zone_movable_pfn[nid];
7201 /* Check if this whole range is within ZONE_MOVABLE */
7202 } else if (*zone_start_pfn >= zone_movable_pfn[nid])
7203 *zone_start_pfn = *zone_end_pfn;
7208 * Return the number of pages a zone spans in a node, including holes
7209 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
7211 static unsigned long __init zone_spanned_pages_in_node(int nid,
7212 unsigned long zone_type,
7213 unsigned long node_start_pfn,
7214 unsigned long node_end_pfn,
7215 unsigned long *zone_start_pfn,
7216 unsigned long *zone_end_pfn)
7218 unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
7219 unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
7220 /* When hotadd a new node from cpu_up(), the node should be empty */
7221 if (!node_start_pfn && !node_end_pfn)
7224 /* Get the start and end of the zone */
7225 *zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
7226 *zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
7227 adjust_zone_range_for_zone_movable(nid, zone_type,
7228 node_start_pfn, node_end_pfn,
7229 zone_start_pfn, zone_end_pfn);
7231 /* Check that this node has pages within the zone's required range */
7232 if (*zone_end_pfn < node_start_pfn || *zone_start_pfn > node_end_pfn)
7235 /* Move the zone boundaries inside the node if necessary */
7236 *zone_end_pfn = min(*zone_end_pfn, node_end_pfn);
7237 *zone_start_pfn = max(*zone_start_pfn, node_start_pfn);
7239 /* Return the spanned pages */
7240 return *zone_end_pfn - *zone_start_pfn;
7244 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
7245 * then all holes in the requested range will be accounted for.
7247 unsigned long __init __absent_pages_in_range(int nid,
7248 unsigned long range_start_pfn,
7249 unsigned long range_end_pfn)
7251 unsigned long nr_absent = range_end_pfn - range_start_pfn;
7252 unsigned long start_pfn, end_pfn;
7255 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
7256 start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn);
7257 end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn);
7258 nr_absent -= end_pfn - start_pfn;
7264 * absent_pages_in_range - Return number of page frames in holes within a range
7265 * @start_pfn: The start PFN to start searching for holes
7266 * @end_pfn: The end PFN to stop searching for holes
7268 * Return: the number of pages frames in memory holes within a range.
7270 unsigned long __init absent_pages_in_range(unsigned long start_pfn,
7271 unsigned long end_pfn)
7273 return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
7276 /* Return the number of page frames in holes in a zone on a node */
7277 static unsigned long __init zone_absent_pages_in_node(int nid,
7278 unsigned long zone_type,
7279 unsigned long node_start_pfn,
7280 unsigned long node_end_pfn)
7282 unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
7283 unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
7284 unsigned long zone_start_pfn, zone_end_pfn;
7285 unsigned long nr_absent;
7287 /* When hotadd a new node from cpu_up(), the node should be empty */
7288 if (!node_start_pfn && !node_end_pfn)
7291 zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
7292 zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
7294 adjust_zone_range_for_zone_movable(nid, zone_type,
7295 node_start_pfn, node_end_pfn,
7296 &zone_start_pfn, &zone_end_pfn);
7297 nr_absent = __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
7300 * ZONE_MOVABLE handling.
7301 * Treat pages to be ZONE_MOVABLE in ZONE_NORMAL as absent pages
7304 if (mirrored_kernelcore && zone_movable_pfn[nid]) {
7305 unsigned long start_pfn, end_pfn;
7306 struct memblock_region *r;
7308 for_each_mem_region(r) {
7309 start_pfn = clamp(memblock_region_memory_base_pfn(r),
7310 zone_start_pfn, zone_end_pfn);
7311 end_pfn = clamp(memblock_region_memory_end_pfn(r),
7312 zone_start_pfn, zone_end_pfn);
7314 if (zone_type == ZONE_MOVABLE &&
7315 memblock_is_mirror(r))
7316 nr_absent += end_pfn - start_pfn;
7318 if (zone_type == ZONE_NORMAL &&
7319 !memblock_is_mirror(r))
7320 nr_absent += end_pfn - start_pfn;
7327 static void __init calculate_node_totalpages(struct pglist_data *pgdat,
7328 unsigned long node_start_pfn,
7329 unsigned long node_end_pfn)
7331 unsigned long realtotalpages = 0, totalpages = 0;
7334 for (i = 0; i < MAX_NR_ZONES; i++) {
7335 struct zone *zone = pgdat->node_zones + i;
7336 unsigned long zone_start_pfn, zone_end_pfn;
7337 unsigned long spanned, absent;
7338 unsigned long size, real_size;
7340 spanned = zone_spanned_pages_in_node(pgdat->node_id, i,
7345 absent = zone_absent_pages_in_node(pgdat->node_id, i,
7350 real_size = size - absent;
7353 zone->zone_start_pfn = zone_start_pfn;
7355 zone->zone_start_pfn = 0;
7356 zone->spanned_pages = size;
7357 zone->present_pages = real_size;
7358 #if defined(CONFIG_MEMORY_HOTPLUG)
7359 zone->present_early_pages = real_size;
7363 realtotalpages += real_size;
7366 pgdat->node_spanned_pages = totalpages;
7367 pgdat->node_present_pages = realtotalpages;
7368 pr_debug("On node %d totalpages: %lu\n", pgdat->node_id, realtotalpages);
7371 #ifndef CONFIG_SPARSEMEM
7373 * Calculate the size of the zone->blockflags rounded to an unsigned long
7374 * Start by making sure zonesize is a multiple of pageblock_order by rounding
7375 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
7376 * round what is now in bits to nearest long in bits, then return it in
7379 static unsigned long __init usemap_size(unsigned long zone_start_pfn, unsigned long zonesize)
7381 unsigned long usemapsize;
7383 zonesize += zone_start_pfn & (pageblock_nr_pages-1);
7384 usemapsize = roundup(zonesize, pageblock_nr_pages);
7385 usemapsize = usemapsize >> pageblock_order;
7386 usemapsize *= NR_PAGEBLOCK_BITS;
7387 usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));
7389 return usemapsize / 8;
7392 static void __ref setup_usemap(struct zone *zone)
7394 unsigned long usemapsize = usemap_size(zone->zone_start_pfn,
7395 zone->spanned_pages);
7396 zone->pageblock_flags = NULL;
7398 zone->pageblock_flags =
7399 memblock_alloc_node(usemapsize, SMP_CACHE_BYTES,
7401 if (!zone->pageblock_flags)
7402 panic("Failed to allocate %ld bytes for zone %s pageblock flags on node %d\n",
7403 usemapsize, zone->name, zone_to_nid(zone));
7407 static inline void setup_usemap(struct zone *zone) {}
7408 #endif /* CONFIG_SPARSEMEM */
7410 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
7412 /* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
7413 void __init set_pageblock_order(void)
7415 unsigned int order = MAX_ORDER - 1;
7417 /* Check that pageblock_nr_pages has not already been setup */
7418 if (pageblock_order)
7421 /* Don't let pageblocks exceed the maximum allocation granularity. */
7422 if (HPAGE_SHIFT > PAGE_SHIFT && HUGETLB_PAGE_ORDER < order)
7423 order = HUGETLB_PAGE_ORDER;
7426 * Assume the largest contiguous order of interest is a huge page.
7427 * This value may be variable depending on boot parameters on IA64 and
7430 pageblock_order = order;
7432 #else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
7435 * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
7436 * is unused as pageblock_order is set at compile-time. See
7437 * include/linux/pageblock-flags.h for the values of pageblock_order based on
7440 void __init set_pageblock_order(void)
7444 #endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
7446 static unsigned long __init calc_memmap_size(unsigned long spanned_pages,
7447 unsigned long present_pages)
7449 unsigned long pages = spanned_pages;
7452 * Provide a more accurate estimation if there are holes within
7453 * the zone and SPARSEMEM is in use. If there are holes within the
7454 * zone, each populated memory region may cost us one or two extra
7455 * memmap pages due to alignment because memmap pages for each
7456 * populated regions may not be naturally aligned on page boundary.
7457 * So the (present_pages >> 4) heuristic is a tradeoff for that.
7459 if (spanned_pages > present_pages + (present_pages >> 4) &&
7460 IS_ENABLED(CONFIG_SPARSEMEM))
7461 pages = present_pages;
7463 return PAGE_ALIGN(pages * sizeof(struct page)) >> PAGE_SHIFT;
7466 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
7467 static void pgdat_init_split_queue(struct pglist_data *pgdat)
7469 struct deferred_split *ds_queue = &pgdat->deferred_split_queue;
7471 spin_lock_init(&ds_queue->split_queue_lock);
7472 INIT_LIST_HEAD(&ds_queue->split_queue);
7473 ds_queue->split_queue_len = 0;
7476 static void pgdat_init_split_queue(struct pglist_data *pgdat) {}
7479 #ifdef CONFIG_COMPACTION
7480 static void pgdat_init_kcompactd(struct pglist_data *pgdat)
7482 init_waitqueue_head(&pgdat->kcompactd_wait);
7485 static void pgdat_init_kcompactd(struct pglist_data *pgdat) {}
7488 static void __meminit pgdat_init_internals(struct pglist_data *pgdat)
7492 pgdat_resize_init(pgdat);
7494 pgdat_init_split_queue(pgdat);
7495 pgdat_init_kcompactd(pgdat);
7497 init_waitqueue_head(&pgdat->kswapd_wait);
7498 init_waitqueue_head(&pgdat->pfmemalloc_wait);
7500 for (i = 0; i < NR_VMSCAN_THROTTLE; i++)
7501 init_waitqueue_head(&pgdat->reclaim_wait[i]);
7503 pgdat_page_ext_init(pgdat);
7504 lruvec_init(&pgdat->__lruvec);
7507 static void __meminit zone_init_internals(struct zone *zone, enum zone_type idx, int nid,
7508 unsigned long remaining_pages)
7510 atomic_long_set(&zone->managed_pages, remaining_pages);
7511 zone_set_nid(zone, nid);
7512 zone->name = zone_names[idx];
7513 zone->zone_pgdat = NODE_DATA(nid);
7514 spin_lock_init(&zone->lock);
7515 zone_seqlock_init(zone);
7516 zone_pcp_init(zone);
7520 * Set up the zone data structures
7521 * - init pgdat internals
7522 * - init all zones belonging to this node
7524 * NOTE: this function is only called during memory hotplug
7526 #ifdef CONFIG_MEMORY_HOTPLUG
7527 void __ref free_area_init_core_hotplug(struct pglist_data *pgdat)
7529 int nid = pgdat->node_id;
7533 pgdat_init_internals(pgdat);
7535 if (pgdat->per_cpu_nodestats == &boot_nodestats)
7536 pgdat->per_cpu_nodestats = alloc_percpu(struct per_cpu_nodestat);
7539 * Reset the nr_zones, order and highest_zoneidx before reuse.
7540 * Note that kswapd will init kswapd_highest_zoneidx properly
7541 * when it starts in the near future.
7543 pgdat->nr_zones = 0;
7544 pgdat->kswapd_order = 0;
7545 pgdat->kswapd_highest_zoneidx = 0;
7546 pgdat->node_start_pfn = 0;
7547 for_each_online_cpu(cpu) {
7548 struct per_cpu_nodestat *p;
7550 p = per_cpu_ptr(pgdat->per_cpu_nodestats, cpu);
7551 memset(p, 0, sizeof(*p));
7554 for (z = 0; z < MAX_NR_ZONES; z++)
7555 zone_init_internals(&pgdat->node_zones[z], z, nid, 0);
7560 * Set up the zone data structures:
7561 * - mark all pages reserved
7562 * - mark all memory queues empty
7563 * - clear the memory bitmaps
7565 * NOTE: pgdat should get zeroed by caller.
7566 * NOTE: this function is only called during early init.
7568 static void __init free_area_init_core(struct pglist_data *pgdat)
7571 int nid = pgdat->node_id;
7573 pgdat_init_internals(pgdat);
7574 pgdat->per_cpu_nodestats = &boot_nodestats;
7576 for (j = 0; j < MAX_NR_ZONES; j++) {
7577 struct zone *zone = pgdat->node_zones + j;
7578 unsigned long size, freesize, memmap_pages;
7580 size = zone->spanned_pages;
7581 freesize = zone->present_pages;
7584 * Adjust freesize so that it accounts for how much memory
7585 * is used by this zone for memmap. This affects the watermark
7586 * and per-cpu initialisations
7588 memmap_pages = calc_memmap_size(size, freesize);
7589 if (!is_highmem_idx(j)) {
7590 if (freesize >= memmap_pages) {
7591 freesize -= memmap_pages;
7593 pr_debug(" %s zone: %lu pages used for memmap\n",
7594 zone_names[j], memmap_pages);
7596 pr_warn(" %s zone: %lu memmap pages exceeds freesize %lu\n",
7597 zone_names[j], memmap_pages, freesize);
7600 /* Account for reserved pages */
7601 if (j == 0 && freesize > dma_reserve) {
7602 freesize -= dma_reserve;
7603 pr_debug(" %s zone: %lu pages reserved\n", zone_names[0], dma_reserve);
7606 if (!is_highmem_idx(j))
7607 nr_kernel_pages += freesize;
7608 /* Charge for highmem memmap if there are enough kernel pages */
7609 else if (nr_kernel_pages > memmap_pages * 2)
7610 nr_kernel_pages -= memmap_pages;
7611 nr_all_pages += freesize;
7614 * Set an approximate value for lowmem here, it will be adjusted
7615 * when the bootmem allocator frees pages into the buddy system.
7616 * And all highmem pages will be managed by the buddy system.
7618 zone_init_internals(zone, j, nid, freesize);
7623 set_pageblock_order();
7625 init_currently_empty_zone(zone, zone->zone_start_pfn, size);
7629 #ifdef CONFIG_FLATMEM
7630 static void __init alloc_node_mem_map(struct pglist_data *pgdat)
7632 unsigned long __maybe_unused start = 0;
7633 unsigned long __maybe_unused offset = 0;
7635 /* Skip empty nodes */
7636 if (!pgdat->node_spanned_pages)
7639 start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
7640 offset = pgdat->node_start_pfn - start;
7641 /* ia64 gets its own node_mem_map, before this, without bootmem */
7642 if (!pgdat->node_mem_map) {
7643 unsigned long size, end;
7647 * The zone's endpoints aren't required to be MAX_ORDER
7648 * aligned but the node_mem_map endpoints must be in order
7649 * for the buddy allocator to function correctly.
7651 end = pgdat_end_pfn(pgdat);
7652 end = ALIGN(end, MAX_ORDER_NR_PAGES);
7653 size = (end - start) * sizeof(struct page);
7654 map = memmap_alloc(size, SMP_CACHE_BYTES, MEMBLOCK_LOW_LIMIT,
7655 pgdat->node_id, false);
7657 panic("Failed to allocate %ld bytes for node %d memory map\n",
7658 size, pgdat->node_id);
7659 pgdat->node_mem_map = map + offset;
7661 pr_debug("%s: node %d, pgdat %08lx, node_mem_map %08lx\n",
7662 __func__, pgdat->node_id, (unsigned long)pgdat,
7663 (unsigned long)pgdat->node_mem_map);
7666 * With no DISCONTIG, the global mem_map is just set as node 0's
7668 if (pgdat == NODE_DATA(0)) {
7669 mem_map = NODE_DATA(0)->node_mem_map;
7670 if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
7676 static inline void alloc_node_mem_map(struct pglist_data *pgdat) { }
7677 #endif /* CONFIG_FLATMEM */
7679 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
7680 static inline void pgdat_set_deferred_range(pg_data_t *pgdat)
7682 pgdat->first_deferred_pfn = ULONG_MAX;
7685 static inline void pgdat_set_deferred_range(pg_data_t *pgdat) {}
7688 static void __init free_area_init_node(int nid)
7690 pg_data_t *pgdat = NODE_DATA(nid);
7691 unsigned long start_pfn = 0;
7692 unsigned long end_pfn = 0;
7694 /* pg_data_t should be reset to zero when it's allocated */
7695 WARN_ON(pgdat->nr_zones || pgdat->kswapd_highest_zoneidx);
7697 get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
7699 pgdat->node_id = nid;
7700 pgdat->node_start_pfn = start_pfn;
7701 pgdat->per_cpu_nodestats = NULL;
7703 if (start_pfn != end_pfn) {
7704 pr_info("Initmem setup node %d [mem %#018Lx-%#018Lx]\n", nid,
7705 (u64)start_pfn << PAGE_SHIFT,
7706 end_pfn ? ((u64)end_pfn << PAGE_SHIFT) - 1 : 0);
7708 pr_info("Initmem setup node %d as memoryless\n", nid);
7711 calculate_node_totalpages(pgdat, start_pfn, end_pfn);
7713 alloc_node_mem_map(pgdat);
7714 pgdat_set_deferred_range(pgdat);
7716 free_area_init_core(pgdat);
7719 static void __init free_area_init_memoryless_node(int nid)
7721 free_area_init_node(nid);
7724 #if MAX_NUMNODES > 1
7726 * Figure out the number of possible node ids.
7728 void __init setup_nr_node_ids(void)
7730 unsigned int highest;
7732 highest = find_last_bit(node_possible_map.bits, MAX_NUMNODES);
7733 nr_node_ids = highest + 1;
7738 * node_map_pfn_alignment - determine the maximum internode alignment
7740 * This function should be called after node map is populated and sorted.
7741 * It calculates the maximum power of two alignment which can distinguish
7744 * For example, if all nodes are 1GiB and aligned to 1GiB, the return value
7745 * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)). If the
7746 * nodes are shifted by 256MiB, 256MiB. Note that if only the last node is
7747 * shifted, 1GiB is enough and this function will indicate so.
7749 * This is used to test whether pfn -> nid mapping of the chosen memory
7750 * model has fine enough granularity to avoid incorrect mapping for the
7751 * populated node map.
7753 * Return: the determined alignment in pfn's. 0 if there is no alignment
7754 * requirement (single node).
7756 unsigned long __init node_map_pfn_alignment(void)
7758 unsigned long accl_mask = 0, last_end = 0;
7759 unsigned long start, end, mask;
7760 int last_nid = NUMA_NO_NODE;
7763 for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid) {
7764 if (!start || last_nid < 0 || last_nid == nid) {
7771 * Start with a mask granular enough to pin-point to the
7772 * start pfn and tick off bits one-by-one until it becomes
7773 * too coarse to separate the current node from the last.
7775 mask = ~((1 << __ffs(start)) - 1);
7776 while (mask && last_end <= (start & (mask << 1)))
7779 /* accumulate all internode masks */
7783 /* convert mask to number of pages */
7784 return ~accl_mask + 1;
7788 * find_min_pfn_with_active_regions - Find the minimum PFN registered
7790 * Return: the minimum PFN based on information provided via
7791 * memblock_set_node().
7793 unsigned long __init find_min_pfn_with_active_regions(void)
7795 return PHYS_PFN(memblock_start_of_DRAM());
7799 * early_calculate_totalpages()
7800 * Sum pages in active regions for movable zone.
7801 * Populate N_MEMORY for calculating usable_nodes.
7803 static unsigned long __init early_calculate_totalpages(void)
7805 unsigned long totalpages = 0;
7806 unsigned long start_pfn, end_pfn;
7809 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
7810 unsigned long pages = end_pfn - start_pfn;
7812 totalpages += pages;
7814 node_set_state(nid, N_MEMORY);
7820 * Find the PFN the Movable zone begins in each node. Kernel memory
7821 * is spread evenly between nodes as long as the nodes have enough
7822 * memory. When they don't, some nodes will have more kernelcore than
7825 static void __init find_zone_movable_pfns_for_nodes(void)
7828 unsigned long usable_startpfn;
7829 unsigned long kernelcore_node, kernelcore_remaining;
7830 /* save the state before borrow the nodemask */
7831 nodemask_t saved_node_state = node_states[N_MEMORY];
7832 unsigned long totalpages = early_calculate_totalpages();
7833 int usable_nodes = nodes_weight(node_states[N_MEMORY]);
7834 struct memblock_region *r;
7836 /* Need to find movable_zone earlier when movable_node is specified. */
7837 find_usable_zone_for_movable();
7840 * If movable_node is specified, ignore kernelcore and movablecore
7843 if (movable_node_is_enabled()) {
7844 for_each_mem_region(r) {
7845 if (!memblock_is_hotpluggable(r))
7848 nid = memblock_get_region_node(r);
7850 usable_startpfn = PFN_DOWN(r->base);
7851 zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
7852 min(usable_startpfn, zone_movable_pfn[nid]) :
7860 * If kernelcore=mirror is specified, ignore movablecore option
7862 if (mirrored_kernelcore) {
7863 bool mem_below_4gb_not_mirrored = false;
7865 for_each_mem_region(r) {
7866 if (memblock_is_mirror(r))
7869 nid = memblock_get_region_node(r);
7871 usable_startpfn = memblock_region_memory_base_pfn(r);
7873 if (usable_startpfn < 0x100000) {
7874 mem_below_4gb_not_mirrored = true;
7878 zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
7879 min(usable_startpfn, zone_movable_pfn[nid]) :
7883 if (mem_below_4gb_not_mirrored)
7884 pr_warn("This configuration results in unmirrored kernel memory.\n");
7890 * If kernelcore=nn% or movablecore=nn% was specified, calculate the
7891 * amount of necessary memory.
7893 if (required_kernelcore_percent)
7894 required_kernelcore = (totalpages * 100 * required_kernelcore_percent) /
7896 if (required_movablecore_percent)
7897 required_movablecore = (totalpages * 100 * required_movablecore_percent) /
7901 * If movablecore= was specified, calculate what size of
7902 * kernelcore that corresponds so that memory usable for
7903 * any allocation type is evenly spread. If both kernelcore
7904 * and movablecore are specified, then the value of kernelcore
7905 * will be used for required_kernelcore if it's greater than
7906 * what movablecore would have allowed.
7908 if (required_movablecore) {
7909 unsigned long corepages;
7912 * Round-up so that ZONE_MOVABLE is at least as large as what
7913 * was requested by the user
7915 required_movablecore =
7916 roundup(required_movablecore, MAX_ORDER_NR_PAGES);
7917 required_movablecore = min(totalpages, required_movablecore);
7918 corepages = totalpages - required_movablecore;
7920 required_kernelcore = max(required_kernelcore, corepages);
7924 * If kernelcore was not specified or kernelcore size is larger
7925 * than totalpages, there is no ZONE_MOVABLE.
7927 if (!required_kernelcore || required_kernelcore >= totalpages)
7930 /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
7931 usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
7934 /* Spread kernelcore memory as evenly as possible throughout nodes */
7935 kernelcore_node = required_kernelcore / usable_nodes;
7936 for_each_node_state(nid, N_MEMORY) {
7937 unsigned long start_pfn, end_pfn;
7940 * Recalculate kernelcore_node if the division per node
7941 * now exceeds what is necessary to satisfy the requested
7942 * amount of memory for the kernel
7944 if (required_kernelcore < kernelcore_node)
7945 kernelcore_node = required_kernelcore / usable_nodes;
7948 * As the map is walked, we track how much memory is usable
7949 * by the kernel using kernelcore_remaining. When it is
7950 * 0, the rest of the node is usable by ZONE_MOVABLE
7952 kernelcore_remaining = kernelcore_node;
7954 /* Go through each range of PFNs within this node */
7955 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
7956 unsigned long size_pages;
7958 start_pfn = max(start_pfn, zone_movable_pfn[nid]);
7959 if (start_pfn >= end_pfn)
7962 /* Account for what is only usable for kernelcore */
7963 if (start_pfn < usable_startpfn) {
7964 unsigned long kernel_pages;
7965 kernel_pages = min(end_pfn, usable_startpfn)
7968 kernelcore_remaining -= min(kernel_pages,
7969 kernelcore_remaining);
7970 required_kernelcore -= min(kernel_pages,
7971 required_kernelcore);
7973 /* Continue if range is now fully accounted */
7974 if (end_pfn <= usable_startpfn) {
7977 * Push zone_movable_pfn to the end so
7978 * that if we have to rebalance
7979 * kernelcore across nodes, we will
7980 * not double account here
7982 zone_movable_pfn[nid] = end_pfn;
7985 start_pfn = usable_startpfn;
7989 * The usable PFN range for ZONE_MOVABLE is from
7990 * start_pfn->end_pfn. Calculate size_pages as the
7991 * number of pages used as kernelcore
7993 size_pages = end_pfn - start_pfn;
7994 if (size_pages > kernelcore_remaining)
7995 size_pages = kernelcore_remaining;
7996 zone_movable_pfn[nid] = start_pfn + size_pages;
7999 * Some kernelcore has been met, update counts and
8000 * break if the kernelcore for this node has been
8003 required_kernelcore -= min(required_kernelcore,
8005 kernelcore_remaining -= size_pages;
8006 if (!kernelcore_remaining)
8012 * If there is still required_kernelcore, we do another pass with one
8013 * less node in the count. This will push zone_movable_pfn[nid] further
8014 * along on the nodes that still have memory until kernelcore is
8018 if (usable_nodes && required_kernelcore > usable_nodes)
8022 /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
8023 for (nid = 0; nid < MAX_NUMNODES; nid++) {
8024 unsigned long start_pfn, end_pfn;
8026 zone_movable_pfn[nid] =
8027 roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
8029 get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
8030 if (zone_movable_pfn[nid] >= end_pfn)
8031 zone_movable_pfn[nid] = 0;
8035 /* restore the node_state */
8036 node_states[N_MEMORY] = saved_node_state;
8039 /* Any regular or high memory on that node ? */
8040 static void check_for_memory(pg_data_t *pgdat, int nid)
8042 enum zone_type zone_type;
8044 for (zone_type = 0; zone_type <= ZONE_MOVABLE - 1; zone_type++) {
8045 struct zone *zone = &pgdat->node_zones[zone_type];
8046 if (populated_zone(zone)) {
8047 if (IS_ENABLED(CONFIG_HIGHMEM))
8048 node_set_state(nid, N_HIGH_MEMORY);
8049 if (zone_type <= ZONE_NORMAL)
8050 node_set_state(nid, N_NORMAL_MEMORY);
8057 * Some architectures, e.g. ARC may have ZONE_HIGHMEM below ZONE_NORMAL. For
8058 * such cases we allow max_zone_pfn sorted in the descending order
8060 bool __weak arch_has_descending_max_zone_pfns(void)
8066 * free_area_init - Initialise all pg_data_t and zone data
8067 * @max_zone_pfn: an array of max PFNs for each zone
8069 * This will call free_area_init_node() for each active node in the system.
8070 * Using the page ranges provided by memblock_set_node(), the size of each
8071 * zone in each node and their holes is calculated. If the maximum PFN
8072 * between two adjacent zones match, it is assumed that the zone is empty.
8073 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
8074 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
8075 * starts where the previous one ended. For example, ZONE_DMA32 starts
8076 * at arch_max_dma_pfn.
8078 void __init free_area_init(unsigned long *max_zone_pfn)
8080 unsigned long start_pfn, end_pfn;
8084 /* Record where the zone boundaries are */
8085 memset(arch_zone_lowest_possible_pfn, 0,
8086 sizeof(arch_zone_lowest_possible_pfn));
8087 memset(arch_zone_highest_possible_pfn, 0,
8088 sizeof(arch_zone_highest_possible_pfn));
8090 start_pfn = find_min_pfn_with_active_regions();
8091 descending = arch_has_descending_max_zone_pfns();
8093 for (i = 0; i < MAX_NR_ZONES; i++) {
8095 zone = MAX_NR_ZONES - i - 1;
8099 if (zone == ZONE_MOVABLE)
8102 end_pfn = max(max_zone_pfn[zone], start_pfn);
8103 arch_zone_lowest_possible_pfn[zone] = start_pfn;
8104 arch_zone_highest_possible_pfn[zone] = end_pfn;
8106 start_pfn = end_pfn;
8109 /* Find the PFNs that ZONE_MOVABLE begins at in each node */
8110 memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
8111 find_zone_movable_pfns_for_nodes();
8113 /* Print out the zone ranges */
8114 pr_info("Zone ranges:\n");
8115 for (i = 0; i < MAX_NR_ZONES; i++) {
8116 if (i == ZONE_MOVABLE)
8118 pr_info(" %-8s ", zone_names[i]);
8119 if (arch_zone_lowest_possible_pfn[i] ==
8120 arch_zone_highest_possible_pfn[i])
8123 pr_cont("[mem %#018Lx-%#018Lx]\n",
8124 (u64)arch_zone_lowest_possible_pfn[i]
8126 ((u64)arch_zone_highest_possible_pfn[i]
8127 << PAGE_SHIFT) - 1);
8130 /* Print out the PFNs ZONE_MOVABLE begins at in each node */
8131 pr_info("Movable zone start for each node\n");
8132 for (i = 0; i < MAX_NUMNODES; i++) {
8133 if (zone_movable_pfn[i])
8134 pr_info(" Node %d: %#018Lx\n", i,
8135 (u64)zone_movable_pfn[i] << PAGE_SHIFT);
8139 * Print out the early node map, and initialize the
8140 * subsection-map relative to active online memory ranges to
8141 * enable future "sub-section" extensions of the memory map.
8143 pr_info("Early memory node ranges\n");
8144 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
8145 pr_info(" node %3d: [mem %#018Lx-%#018Lx]\n", nid,
8146 (u64)start_pfn << PAGE_SHIFT,
8147 ((u64)end_pfn << PAGE_SHIFT) - 1);
8148 subsection_map_init(start_pfn, end_pfn - start_pfn);
8151 /* Initialise every node */
8152 mminit_verify_pageflags_layout();
8153 setup_nr_node_ids();
8154 for_each_node(nid) {
8157 if (!node_online(nid)) {
8158 pr_info("Initializing node %d as memoryless\n", nid);
8160 /* Allocator not initialized yet */
8161 pgdat = arch_alloc_nodedata(nid);
8163 pr_err("Cannot allocate %zuB for node %d.\n",
8164 sizeof(*pgdat), nid);
8167 arch_refresh_nodedata(nid, pgdat);
8168 free_area_init_memoryless_node(nid);
8171 * We do not want to confuse userspace by sysfs
8172 * files/directories for node without any memory
8173 * attached to it, so this node is not marked as
8174 * N_MEMORY and not marked online so that no sysfs
8175 * hierarchy will be created via register_one_node for
8176 * it. The pgdat will get fully initialized by
8177 * hotadd_init_pgdat() when memory is hotplugged into
8183 pgdat = NODE_DATA(nid);
8184 free_area_init_node(nid);
8186 /* Any memory on that node */
8187 if (pgdat->node_present_pages)
8188 node_set_state(nid, N_MEMORY);
8189 check_for_memory(pgdat, nid);
8195 static int __init cmdline_parse_core(char *p, unsigned long *core,
8196 unsigned long *percent)
8198 unsigned long long coremem;
8204 /* Value may be a percentage of total memory, otherwise bytes */
8205 coremem = simple_strtoull(p, &endptr, 0);
8206 if (*endptr == '%') {
8207 /* Paranoid check for percent values greater than 100 */
8208 WARN_ON(coremem > 100);
8212 coremem = memparse(p, &p);
8213 /* Paranoid check that UL is enough for the coremem value */
8214 WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
8216 *core = coremem >> PAGE_SHIFT;
8223 * kernelcore=size sets the amount of memory for use for allocations that
8224 * cannot be reclaimed or migrated.
8226 static int __init cmdline_parse_kernelcore(char *p)
8228 /* parse kernelcore=mirror */
8229 if (parse_option_str(p, "mirror")) {
8230 mirrored_kernelcore = true;
8234 return cmdline_parse_core(p, &required_kernelcore,
8235 &required_kernelcore_percent);
8239 * movablecore=size sets the amount of memory for use for allocations that
8240 * can be reclaimed or migrated.
8242 static int __init cmdline_parse_movablecore(char *p)
8244 return cmdline_parse_core(p, &required_movablecore,
8245 &required_movablecore_percent);
8248 early_param("kernelcore", cmdline_parse_kernelcore);
8249 early_param("movablecore", cmdline_parse_movablecore);
8251 void adjust_managed_page_count(struct page *page, long count)
8253 atomic_long_add(count, &page_zone(page)->managed_pages);
8254 totalram_pages_add(count);
8255 #ifdef CONFIG_HIGHMEM
8256 if (PageHighMem(page))
8257 totalhigh_pages_add(count);
8260 EXPORT_SYMBOL(adjust_managed_page_count);
8262 unsigned long free_reserved_area(void *start, void *end, int poison, const char *s)
8265 unsigned long pages = 0;
8267 start = (void *)PAGE_ALIGN((unsigned long)start);
8268 end = (void *)((unsigned long)end & PAGE_MASK);
8269 for (pos = start; pos < end; pos += PAGE_SIZE, pages++) {
8270 struct page *page = virt_to_page(pos);
8271 void *direct_map_addr;
8274 * 'direct_map_addr' might be different from 'pos'
8275 * because some architectures' virt_to_page()
8276 * work with aliases. Getting the direct map
8277 * address ensures that we get a _writeable_
8278 * alias for the memset().
8280 direct_map_addr = page_address(page);
8282 * Perform a kasan-unchecked memset() since this memory
8283 * has not been initialized.
8285 direct_map_addr = kasan_reset_tag(direct_map_addr);
8286 if ((unsigned int)poison <= 0xFF)
8287 memset(direct_map_addr, poison, PAGE_SIZE);
8289 free_reserved_page(page);
8293 pr_info("Freeing %s memory: %ldK\n", s, K(pages));
8298 void __init mem_init_print_info(void)
8300 unsigned long physpages, codesize, datasize, rosize, bss_size;
8301 unsigned long init_code_size, init_data_size;
8303 physpages = get_num_physpages();
8304 codesize = _etext - _stext;
8305 datasize = _edata - _sdata;
8306 rosize = __end_rodata - __start_rodata;
8307 bss_size = __bss_stop - __bss_start;
8308 init_data_size = __init_end - __init_begin;
8309 init_code_size = _einittext - _sinittext;
8312 * Detect special cases and adjust section sizes accordingly:
8313 * 1) .init.* may be embedded into .data sections
8314 * 2) .init.text.* may be out of [__init_begin, __init_end],
8315 * please refer to arch/tile/kernel/vmlinux.lds.S.
8316 * 3) .rodata.* may be embedded into .text or .data sections.
8318 #define adj_init_size(start, end, size, pos, adj) \
8320 if (&start[0] <= &pos[0] && &pos[0] < &end[0] && size > adj) \
8324 adj_init_size(__init_begin, __init_end, init_data_size,
8325 _sinittext, init_code_size);
8326 adj_init_size(_stext, _etext, codesize, _sinittext, init_code_size);
8327 adj_init_size(_sdata, _edata, datasize, __init_begin, init_data_size);
8328 adj_init_size(_stext, _etext, codesize, __start_rodata, rosize);
8329 adj_init_size(_sdata, _edata, datasize, __start_rodata, rosize);
8331 #undef adj_init_size
8333 pr_info("Memory: %luK/%luK available (%luK kernel code, %luK rwdata, %luK rodata, %luK init, %luK bss, %luK reserved, %luK cma-reserved"
8334 #ifdef CONFIG_HIGHMEM
8338 K(nr_free_pages()), K(physpages),
8339 codesize >> 10, datasize >> 10, rosize >> 10,
8340 (init_data_size + init_code_size) >> 10, bss_size >> 10,
8341 K(physpages - totalram_pages() - totalcma_pages),
8343 #ifdef CONFIG_HIGHMEM
8344 , K(totalhigh_pages())
8350 * set_dma_reserve - set the specified number of pages reserved in the first zone
8351 * @new_dma_reserve: The number of pages to mark reserved
8353 * The per-cpu batchsize and zone watermarks are determined by managed_pages.
8354 * In the DMA zone, a significant percentage may be consumed by kernel image
8355 * and other unfreeable allocations which can skew the watermarks badly. This
8356 * function may optionally be used to account for unfreeable pages in the
8357 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
8358 * smaller per-cpu batchsize.
8360 void __init set_dma_reserve(unsigned long new_dma_reserve)
8362 dma_reserve = new_dma_reserve;
8365 static int page_alloc_cpu_dead(unsigned int cpu)
8369 lru_add_drain_cpu(cpu);
8370 mlock_page_drain_remote(cpu);
8374 * Spill the event counters of the dead processor
8375 * into the current processors event counters.
8376 * This artificially elevates the count of the current
8379 vm_events_fold_cpu(cpu);
8382 * Zero the differential counters of the dead processor
8383 * so that the vm statistics are consistent.
8385 * This is only okay since the processor is dead and cannot
8386 * race with what we are doing.
8388 cpu_vm_stats_fold(cpu);
8390 for_each_populated_zone(zone)
8391 zone_pcp_update(zone, 0);
8396 static int page_alloc_cpu_online(unsigned int cpu)
8400 for_each_populated_zone(zone)
8401 zone_pcp_update(zone, 1);
8406 int hashdist = HASHDIST_DEFAULT;
8408 static int __init set_hashdist(char *str)
8412 hashdist = simple_strtoul(str, &str, 0);
8415 __setup("hashdist=", set_hashdist);
8418 void __init page_alloc_init(void)
8423 if (num_node_state(N_MEMORY) == 1)
8427 ret = cpuhp_setup_state_nocalls(CPUHP_PAGE_ALLOC,
8428 "mm/page_alloc:pcp",
8429 page_alloc_cpu_online,
8430 page_alloc_cpu_dead);
8435 * calculate_totalreserve_pages - called when sysctl_lowmem_reserve_ratio
8436 * or min_free_kbytes changes.
8438 static void calculate_totalreserve_pages(void)
8440 struct pglist_data *pgdat;
8441 unsigned long reserve_pages = 0;
8442 enum zone_type i, j;
8444 for_each_online_pgdat(pgdat) {
8446 pgdat->totalreserve_pages = 0;
8448 for (i = 0; i < MAX_NR_ZONES; i++) {
8449 struct zone *zone = pgdat->node_zones + i;
8451 unsigned long managed_pages = zone_managed_pages(zone);
8453 /* Find valid and maximum lowmem_reserve in the zone */
8454 for (j = i; j < MAX_NR_ZONES; j++) {
8455 if (zone->lowmem_reserve[j] > max)
8456 max = zone->lowmem_reserve[j];
8459 /* we treat the high watermark as reserved pages. */
8460 max += high_wmark_pages(zone);
8462 if (max > managed_pages)
8463 max = managed_pages;
8465 pgdat->totalreserve_pages += max;
8467 reserve_pages += max;
8470 totalreserve_pages = reserve_pages;
8474 * setup_per_zone_lowmem_reserve - called whenever
8475 * sysctl_lowmem_reserve_ratio changes. Ensures that each zone
8476 * has a correct pages reserved value, so an adequate number of
8477 * pages are left in the zone after a successful __alloc_pages().
8479 static void setup_per_zone_lowmem_reserve(void)
8481 struct pglist_data *pgdat;
8482 enum zone_type i, j;
8484 for_each_online_pgdat(pgdat) {
8485 for (i = 0; i < MAX_NR_ZONES - 1; i++) {
8486 struct zone *zone = &pgdat->node_zones[i];
8487 int ratio = sysctl_lowmem_reserve_ratio[i];
8488 bool clear = !ratio || !zone_managed_pages(zone);
8489 unsigned long managed_pages = 0;
8491 for (j = i + 1; j < MAX_NR_ZONES; j++) {
8492 struct zone *upper_zone = &pgdat->node_zones[j];
8494 managed_pages += zone_managed_pages(upper_zone);
8497 zone->lowmem_reserve[j] = 0;
8499 zone->lowmem_reserve[j] = managed_pages / ratio;
8504 /* update totalreserve_pages */
8505 calculate_totalreserve_pages();
8508 static void __setup_per_zone_wmarks(void)
8510 unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
8511 unsigned long lowmem_pages = 0;
8513 unsigned long flags;
8515 /* Calculate total number of !ZONE_HIGHMEM pages */
8516 for_each_zone(zone) {
8517 if (!is_highmem(zone))
8518 lowmem_pages += zone_managed_pages(zone);
8521 for_each_zone(zone) {
8524 spin_lock_irqsave(&zone->lock, flags);
8525 tmp = (u64)pages_min * zone_managed_pages(zone);
8526 do_div(tmp, lowmem_pages);
8527 if (is_highmem(zone)) {
8529 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
8530 * need highmem pages, so cap pages_min to a small
8533 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
8534 * deltas control async page reclaim, and so should
8535 * not be capped for highmem.
8537 unsigned long min_pages;
8539 min_pages = zone_managed_pages(zone) / 1024;
8540 min_pages = clamp(min_pages, SWAP_CLUSTER_MAX, 128UL);
8541 zone->_watermark[WMARK_MIN] = min_pages;
8544 * If it's a lowmem zone, reserve a number of pages
8545 * proportionate to the zone's size.
8547 zone->_watermark[WMARK_MIN] = tmp;
8551 * Set the kswapd watermarks distance according to the
8552 * scale factor in proportion to available memory, but
8553 * ensure a minimum size on small systems.
8555 tmp = max_t(u64, tmp >> 2,
8556 mult_frac(zone_managed_pages(zone),
8557 watermark_scale_factor, 10000));
8559 zone->watermark_boost = 0;
8560 zone->_watermark[WMARK_LOW] = min_wmark_pages(zone) + tmp;
8561 zone->_watermark[WMARK_HIGH] = low_wmark_pages(zone) + tmp;
8562 zone->_watermark[WMARK_PROMO] = high_wmark_pages(zone) + tmp;
8564 spin_unlock_irqrestore(&zone->lock, flags);
8567 /* update totalreserve_pages */
8568 calculate_totalreserve_pages();
8572 * setup_per_zone_wmarks - called when min_free_kbytes changes
8573 * or when memory is hot-{added|removed}
8575 * Ensures that the watermark[min,low,high] values for each zone are set
8576 * correctly with respect to min_free_kbytes.
8578 void setup_per_zone_wmarks(void)
8581 static DEFINE_SPINLOCK(lock);
8584 __setup_per_zone_wmarks();
8588 * The watermark size have changed so update the pcpu batch
8589 * and high limits or the limits may be inappropriate.
8592 zone_pcp_update(zone, 0);
8596 * Initialise min_free_kbytes.
8598 * For small machines we want it small (128k min). For large machines
8599 * we want it large (256MB max). But it is not linear, because network
8600 * bandwidth does not increase linearly with machine size. We use
8602 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
8603 * min_free_kbytes = sqrt(lowmem_kbytes * 16)
8619 void calculate_min_free_kbytes(void)
8621 unsigned long lowmem_kbytes;
8622 int new_min_free_kbytes;
8624 lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
8625 new_min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
8627 if (new_min_free_kbytes > user_min_free_kbytes)
8628 min_free_kbytes = clamp(new_min_free_kbytes, 128, 262144);
8630 pr_warn("min_free_kbytes is not updated to %d because user defined value %d is preferred\n",
8631 new_min_free_kbytes, user_min_free_kbytes);
8635 int __meminit init_per_zone_wmark_min(void)
8637 calculate_min_free_kbytes();
8638 setup_per_zone_wmarks();
8639 refresh_zone_stat_thresholds();
8640 setup_per_zone_lowmem_reserve();
8643 setup_min_unmapped_ratio();
8644 setup_min_slab_ratio();
8647 khugepaged_min_free_kbytes_update();
8651 postcore_initcall(init_per_zone_wmark_min)
8654 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
8655 * that we can call two helper functions whenever min_free_kbytes
8658 int min_free_kbytes_sysctl_handler(struct ctl_table *table, int write,
8659 void *buffer, size_t *length, loff_t *ppos)
8663 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
8668 user_min_free_kbytes = min_free_kbytes;
8669 setup_per_zone_wmarks();
8674 int watermark_scale_factor_sysctl_handler(struct ctl_table *table, int write,
8675 void *buffer, size_t *length, loff_t *ppos)
8679 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
8684 setup_per_zone_wmarks();
8690 static void setup_min_unmapped_ratio(void)
8695 for_each_online_pgdat(pgdat)
8696 pgdat->min_unmapped_pages = 0;
8699 zone->zone_pgdat->min_unmapped_pages += (zone_managed_pages(zone) *
8700 sysctl_min_unmapped_ratio) / 100;
8704 int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *table, int write,
8705 void *buffer, size_t *length, loff_t *ppos)
8709 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
8713 setup_min_unmapped_ratio();
8718 static void setup_min_slab_ratio(void)
8723 for_each_online_pgdat(pgdat)
8724 pgdat->min_slab_pages = 0;
8727 zone->zone_pgdat->min_slab_pages += (zone_managed_pages(zone) *
8728 sysctl_min_slab_ratio) / 100;
8731 int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *table, int write,
8732 void *buffer, size_t *length, loff_t *ppos)
8736 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
8740 setup_min_slab_ratio();
8747 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
8748 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
8749 * whenever sysctl_lowmem_reserve_ratio changes.
8751 * The reserve ratio obviously has absolutely no relation with the
8752 * minimum watermarks. The lowmem reserve ratio can only make sense
8753 * if in function of the boot time zone sizes.
8755 int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *table, int write,
8756 void *buffer, size_t *length, loff_t *ppos)
8760 proc_dointvec_minmax(table, write, buffer, length, ppos);
8762 for (i = 0; i < MAX_NR_ZONES; i++) {
8763 if (sysctl_lowmem_reserve_ratio[i] < 1)
8764 sysctl_lowmem_reserve_ratio[i] = 0;
8767 setup_per_zone_lowmem_reserve();
8772 * percpu_pagelist_high_fraction - changes the pcp->high for each zone on each
8773 * cpu. It is the fraction of total pages in each zone that a hot per cpu
8774 * pagelist can have before it gets flushed back to buddy allocator.
8776 int percpu_pagelist_high_fraction_sysctl_handler(struct ctl_table *table,
8777 int write, void *buffer, size_t *length, loff_t *ppos)
8780 int old_percpu_pagelist_high_fraction;
8783 mutex_lock(&pcp_batch_high_lock);
8784 old_percpu_pagelist_high_fraction = percpu_pagelist_high_fraction;
8786 ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
8787 if (!write || ret < 0)
8790 /* Sanity checking to avoid pcp imbalance */
8791 if (percpu_pagelist_high_fraction &&
8792 percpu_pagelist_high_fraction < MIN_PERCPU_PAGELIST_HIGH_FRACTION) {
8793 percpu_pagelist_high_fraction = old_percpu_pagelist_high_fraction;
8799 if (percpu_pagelist_high_fraction == old_percpu_pagelist_high_fraction)
8802 for_each_populated_zone(zone)
8803 zone_set_pageset_high_and_batch(zone, 0);
8805 mutex_unlock(&pcp_batch_high_lock);
8809 #ifndef __HAVE_ARCH_RESERVED_KERNEL_PAGES
8811 * Returns the number of pages that arch has reserved but
8812 * is not known to alloc_large_system_hash().
8814 static unsigned long __init arch_reserved_kernel_pages(void)
8821 * Adaptive scale is meant to reduce sizes of hash tables on large memory
8822 * machines. As memory size is increased the scale is also increased but at
8823 * slower pace. Starting from ADAPT_SCALE_BASE (64G), every time memory
8824 * quadruples the scale is increased by one, which means the size of hash table
8825 * only doubles, instead of quadrupling as well.
8826 * Because 32-bit systems cannot have large physical memory, where this scaling
8827 * makes sense, it is disabled on such platforms.
8829 #if __BITS_PER_LONG > 32
8830 #define ADAPT_SCALE_BASE (64ul << 30)
8831 #define ADAPT_SCALE_SHIFT 2
8832 #define ADAPT_SCALE_NPAGES (ADAPT_SCALE_BASE >> PAGE_SHIFT)
8836 * allocate a large system hash table from bootmem
8837 * - it is assumed that the hash table must contain an exact power-of-2
8838 * quantity of entries
8839 * - limit is the number of hash buckets, not the total allocation size
8841 void *__init alloc_large_system_hash(const char *tablename,
8842 unsigned long bucketsize,
8843 unsigned long numentries,
8846 unsigned int *_hash_shift,
8847 unsigned int *_hash_mask,
8848 unsigned long low_limit,
8849 unsigned long high_limit)
8851 unsigned long long max = high_limit;
8852 unsigned long log2qty, size;
8858 /* allow the kernel cmdline to have a say */
8860 /* round applicable memory size up to nearest megabyte */
8861 numentries = nr_kernel_pages;
8862 numentries -= arch_reserved_kernel_pages();
8864 /* It isn't necessary when PAGE_SIZE >= 1MB */
8865 if (PAGE_SHIFT < 20)
8866 numentries = round_up(numentries, (1<<20)/PAGE_SIZE);
8868 #if __BITS_PER_LONG > 32
8870 unsigned long adapt;
8872 for (adapt = ADAPT_SCALE_NPAGES; adapt < numentries;
8873 adapt <<= ADAPT_SCALE_SHIFT)
8878 /* limit to 1 bucket per 2^scale bytes of low memory */
8879 if (scale > PAGE_SHIFT)
8880 numentries >>= (scale - PAGE_SHIFT);
8882 numentries <<= (PAGE_SHIFT - scale);
8884 /* Make sure we've got at least a 0-order allocation.. */
8885 if (unlikely(flags & HASH_SMALL)) {
8886 /* Makes no sense without HASH_EARLY */
8887 WARN_ON(!(flags & HASH_EARLY));
8888 if (!(numentries >> *_hash_shift)) {
8889 numentries = 1UL << *_hash_shift;
8890 BUG_ON(!numentries);
8892 } else if (unlikely((numentries * bucketsize) < PAGE_SIZE))
8893 numentries = PAGE_SIZE / bucketsize;
8895 numentries = roundup_pow_of_two(numentries);
8897 /* limit allocation size to 1/16 total memory by default */
8899 max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
8900 do_div(max, bucketsize);
8902 max = min(max, 0x80000000ULL);
8904 if (numentries < low_limit)
8905 numentries = low_limit;
8906 if (numentries > max)
8909 log2qty = ilog2(numentries);
8911 gfp_flags = (flags & HASH_ZERO) ? GFP_ATOMIC | __GFP_ZERO : GFP_ATOMIC;
8914 size = bucketsize << log2qty;
8915 if (flags & HASH_EARLY) {
8916 if (flags & HASH_ZERO)
8917 table = memblock_alloc(size, SMP_CACHE_BYTES);
8919 table = memblock_alloc_raw(size,
8921 } else if (get_order(size) >= MAX_ORDER || hashdist) {
8922 table = __vmalloc(size, gfp_flags);
8925 huge = is_vm_area_hugepages(table);
8928 * If bucketsize is not a power-of-two, we may free
8929 * some pages at the end of hash table which
8930 * alloc_pages_exact() automatically does
8932 table = alloc_pages_exact(size, gfp_flags);
8933 kmemleak_alloc(table, size, 1, gfp_flags);
8935 } while (!table && size > PAGE_SIZE && --log2qty);
8938 panic("Failed to allocate %s hash table\n", tablename);
8940 pr_info("%s hash table entries: %ld (order: %d, %lu bytes, %s)\n",
8941 tablename, 1UL << log2qty, ilog2(size) - PAGE_SHIFT, size,
8942 virt ? (huge ? "vmalloc hugepage" : "vmalloc") : "linear");
8945 *_hash_shift = log2qty;
8947 *_hash_mask = (1 << log2qty) - 1;
8953 * This function checks whether pageblock includes unmovable pages or not.
8955 * PageLRU check without isolation or lru_lock could race so that
8956 * MIGRATE_MOVABLE block might include unmovable pages. And __PageMovable
8957 * check without lock_page also may miss some movable non-lru pages at
8958 * race condition. So you can't expect this function should be exact.
8960 * Returns a page without holding a reference. If the caller wants to
8961 * dereference that page (e.g., dumping), it has to make sure that it
8962 * cannot get removed (e.g., via memory unplug) concurrently.
8965 struct page *has_unmovable_pages(struct zone *zone, struct page *page,
8966 int migratetype, int flags)
8968 unsigned long iter = 0;
8969 unsigned long pfn = page_to_pfn(page);
8970 unsigned long offset = pfn % pageblock_nr_pages;
8972 if (is_migrate_cma_page(page)) {
8974 * CMA allocations (alloc_contig_range) really need to mark
8975 * isolate CMA pageblocks even when they are not movable in fact
8976 * so consider them movable here.
8978 if (is_migrate_cma(migratetype))
8984 for (; iter < pageblock_nr_pages - offset; iter++) {
8985 page = pfn_to_page(pfn + iter);
8988 * Both, bootmem allocations and memory holes are marked
8989 * PG_reserved and are unmovable. We can even have unmovable
8990 * allocations inside ZONE_MOVABLE, for example when
8991 * specifying "movablecore".
8993 if (PageReserved(page))
8997 * If the zone is movable and we have ruled out all reserved
8998 * pages then it should be reasonably safe to assume the rest
9001 if (zone_idx(zone) == ZONE_MOVABLE)
9005 * Hugepages are not in LRU lists, but they're movable.
9006 * THPs are on the LRU, but need to be counted as #small pages.
9007 * We need not scan over tail pages because we don't
9008 * handle each tail page individually in migration.
9010 if (PageHuge(page) || PageTransCompound(page)) {
9011 struct page *head = compound_head(page);
9012 unsigned int skip_pages;
9014 if (PageHuge(page)) {
9015 if (!hugepage_migration_supported(page_hstate(head)))
9017 } else if (!PageLRU(head) && !__PageMovable(head)) {
9021 skip_pages = compound_nr(head) - (page - head);
9022 iter += skip_pages - 1;
9027 * We can't use page_count without pin a page
9028 * because another CPU can free compound page.
9029 * This check already skips compound tails of THP
9030 * because their page->_refcount is zero at all time.
9032 if (!page_ref_count(page)) {
9033 if (PageBuddy(page))
9034 iter += (1 << buddy_order(page)) - 1;
9039 * The HWPoisoned page may be not in buddy system, and
9040 * page_count() is not 0.
9042 if ((flags & MEMORY_OFFLINE) && PageHWPoison(page))
9046 * We treat all PageOffline() pages as movable when offlining
9047 * to give drivers a chance to decrement their reference count
9048 * in MEM_GOING_OFFLINE in order to indicate that these pages
9049 * can be offlined as there are no direct references anymore.
9050 * For actually unmovable PageOffline() where the driver does
9051 * not support this, we will fail later when trying to actually
9052 * move these pages that still have a reference count > 0.
9053 * (false negatives in this function only)
9055 if ((flags & MEMORY_OFFLINE) && PageOffline(page))
9058 if (__PageMovable(page) || PageLRU(page))
9062 * If there are RECLAIMABLE pages, we need to check
9063 * it. But now, memory offline itself doesn't call
9064 * shrink_node_slabs() and it still to be fixed.
9071 #ifdef CONFIG_CONTIG_ALLOC
9072 static unsigned long pfn_max_align_down(unsigned long pfn)
9074 return ALIGN_DOWN(pfn, MAX_ORDER_NR_PAGES);
9077 static unsigned long pfn_max_align_up(unsigned long pfn)
9079 return ALIGN(pfn, MAX_ORDER_NR_PAGES);
9082 #if defined(CONFIG_DYNAMIC_DEBUG) || \
9083 (defined(CONFIG_DYNAMIC_DEBUG_CORE) && defined(DYNAMIC_DEBUG_MODULE))
9084 /* Usage: See admin-guide/dynamic-debug-howto.rst */
9085 static void alloc_contig_dump_pages(struct list_head *page_list)
9087 DEFINE_DYNAMIC_DEBUG_METADATA(descriptor, "migrate failure");
9089 if (DYNAMIC_DEBUG_BRANCH(descriptor)) {
9093 list_for_each_entry(page, page_list, lru)
9094 dump_page(page, "migration failure");
9098 static inline void alloc_contig_dump_pages(struct list_head *page_list)
9103 /* [start, end) must belong to a single zone. */
9104 static int __alloc_contig_migrate_range(struct compact_control *cc,
9105 unsigned long start, unsigned long end)
9107 /* This function is based on compact_zone() from compaction.c. */
9108 unsigned int nr_reclaimed;
9109 unsigned long pfn = start;
9110 unsigned int tries = 0;
9112 struct migration_target_control mtc = {
9113 .nid = zone_to_nid(cc->zone),
9114 .gfp_mask = GFP_USER | __GFP_MOVABLE | __GFP_RETRY_MAYFAIL,
9117 lru_cache_disable();
9119 while (pfn < end || !list_empty(&cc->migratepages)) {
9120 if (fatal_signal_pending(current)) {
9125 if (list_empty(&cc->migratepages)) {
9126 cc->nr_migratepages = 0;
9127 ret = isolate_migratepages_range(cc, pfn, end);
9128 if (ret && ret != -EAGAIN)
9130 pfn = cc->migrate_pfn;
9132 } else if (++tries == 5) {
9137 nr_reclaimed = reclaim_clean_pages_from_list(cc->zone,
9139 cc->nr_migratepages -= nr_reclaimed;
9141 ret = migrate_pages(&cc->migratepages, alloc_migration_target,
9142 NULL, (unsigned long)&mtc, cc->mode, MR_CONTIG_RANGE, NULL);
9145 * On -ENOMEM, migrate_pages() bails out right away. It is pointless
9146 * to retry again over this error, so do the same here.
9155 alloc_contig_dump_pages(&cc->migratepages);
9156 putback_movable_pages(&cc->migratepages);
9163 * alloc_contig_range() -- tries to allocate given range of pages
9164 * @start: start PFN to allocate
9165 * @end: one-past-the-last PFN to allocate
9166 * @migratetype: migratetype of the underlying pageblocks (either
9167 * #MIGRATE_MOVABLE or #MIGRATE_CMA). All pageblocks
9168 * in range must have the same migratetype and it must
9169 * be either of the two.
9170 * @gfp_mask: GFP mask to use during compaction
9172 * The PFN range does not have to be pageblock or MAX_ORDER_NR_PAGES
9173 * aligned. The PFN range must belong to a single zone.
9175 * The first thing this routine does is attempt to MIGRATE_ISOLATE all
9176 * pageblocks in the range. Once isolated, the pageblocks should not
9177 * be modified by others.
9179 * Return: zero on success or negative error code. On success all
9180 * pages which PFN is in [start, end) are allocated for the caller and
9181 * need to be freed with free_contig_range().
9183 int alloc_contig_range(unsigned long start, unsigned long end,
9184 unsigned migratetype, gfp_t gfp_mask)
9186 unsigned long outer_start, outer_end;
9190 struct compact_control cc = {
9191 .nr_migratepages = 0,
9193 .zone = page_zone(pfn_to_page(start)),
9194 .mode = MIGRATE_SYNC,
9195 .ignore_skip_hint = true,
9196 .no_set_skip_hint = true,
9197 .gfp_mask = current_gfp_context(gfp_mask),
9198 .alloc_contig = true,
9200 INIT_LIST_HEAD(&cc.migratepages);
9203 * What we do here is we mark all pageblocks in range as
9204 * MIGRATE_ISOLATE. Because pageblock and max order pages may
9205 * have different sizes, and due to the way page allocator
9206 * work, we align the range to biggest of the two pages so
9207 * that page allocator won't try to merge buddies from
9208 * different pageblocks and change MIGRATE_ISOLATE to some
9209 * other migration type.
9211 * Once the pageblocks are marked as MIGRATE_ISOLATE, we
9212 * migrate the pages from an unaligned range (ie. pages that
9213 * we are interested in). This will put all the pages in
9214 * range back to page allocator as MIGRATE_ISOLATE.
9216 * When this is done, we take the pages in range from page
9217 * allocator removing them from the buddy system. This way
9218 * page allocator will never consider using them.
9220 * This lets us mark the pageblocks back as
9221 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the
9222 * aligned range but not in the unaligned, original range are
9223 * put back to page allocator so that buddy can use them.
9226 ret = start_isolate_page_range(pfn_max_align_down(start),
9227 pfn_max_align_up(end), migratetype, 0);
9231 drain_all_pages(cc.zone);
9234 * In case of -EBUSY, we'd like to know which page causes problem.
9235 * So, just fall through. test_pages_isolated() has a tracepoint
9236 * which will report the busy page.
9238 * It is possible that busy pages could become available before
9239 * the call to test_pages_isolated, and the range will actually be
9240 * allocated. So, if we fall through be sure to clear ret so that
9241 * -EBUSY is not accidentally used or returned to caller.
9243 ret = __alloc_contig_migrate_range(&cc, start, end);
9244 if (ret && ret != -EBUSY)
9249 * Pages from [start, end) are within a MAX_ORDER_NR_PAGES
9250 * aligned blocks that are marked as MIGRATE_ISOLATE. What's
9251 * more, all pages in [start, end) are free in page allocator.
9252 * What we are going to do is to allocate all pages from
9253 * [start, end) (that is remove them from page allocator).
9255 * The only problem is that pages at the beginning and at the
9256 * end of interesting range may be not aligned with pages that
9257 * page allocator holds, ie. they can be part of higher order
9258 * pages. Because of this, we reserve the bigger range and
9259 * once this is done free the pages we are not interested in.
9261 * We don't have to hold zone->lock here because the pages are
9262 * isolated thus they won't get removed from buddy.
9266 outer_start = start;
9267 while (!PageBuddy(pfn_to_page(outer_start))) {
9268 if (++order >= MAX_ORDER) {
9269 outer_start = start;
9272 outer_start &= ~0UL << order;
9275 if (outer_start != start) {
9276 order = buddy_order(pfn_to_page(outer_start));
9279 * outer_start page could be small order buddy page and
9280 * it doesn't include start page. Adjust outer_start
9281 * in this case to report failed page properly
9282 * on tracepoint in test_pages_isolated()
9284 if (outer_start + (1UL << order) <= start)
9285 outer_start = start;
9288 /* Make sure the range is really isolated. */
9289 if (test_pages_isolated(outer_start, end, 0)) {
9294 /* Grab isolated pages from freelists. */
9295 outer_end = isolate_freepages_range(&cc, outer_start, end);
9301 /* Free head and tail (if any) */
9302 if (start != outer_start)
9303 free_contig_range(outer_start, start - outer_start);
9304 if (end != outer_end)
9305 free_contig_range(end, outer_end - end);
9308 undo_isolate_page_range(pfn_max_align_down(start),
9309 pfn_max_align_up(end), migratetype);
9312 EXPORT_SYMBOL(alloc_contig_range);
9314 static int __alloc_contig_pages(unsigned long start_pfn,
9315 unsigned long nr_pages, gfp_t gfp_mask)
9317 unsigned long end_pfn = start_pfn + nr_pages;
9319 return alloc_contig_range(start_pfn, end_pfn, MIGRATE_MOVABLE,
9323 static bool pfn_range_valid_contig(struct zone *z, unsigned long start_pfn,
9324 unsigned long nr_pages)
9326 unsigned long i, end_pfn = start_pfn + nr_pages;
9329 for (i = start_pfn; i < end_pfn; i++) {
9330 page = pfn_to_online_page(i);
9334 if (page_zone(page) != z)
9337 if (PageReserved(page))
9343 static bool zone_spans_last_pfn(const struct zone *zone,
9344 unsigned long start_pfn, unsigned long nr_pages)
9346 unsigned long last_pfn = start_pfn + nr_pages - 1;
9348 return zone_spans_pfn(zone, last_pfn);
9352 * alloc_contig_pages() -- tries to find and allocate contiguous range of pages
9353 * @nr_pages: Number of contiguous pages to allocate
9354 * @gfp_mask: GFP mask to limit search and used during compaction
9356 * @nodemask: Mask for other possible nodes
9358 * This routine is a wrapper around alloc_contig_range(). It scans over zones
9359 * on an applicable zonelist to find a contiguous pfn range which can then be
9360 * tried for allocation with alloc_contig_range(). This routine is intended
9361 * for allocation requests which can not be fulfilled with the buddy allocator.
9363 * The allocated memory is always aligned to a page boundary. If nr_pages is a
9364 * power of two, then allocated range is also guaranteed to be aligned to same
9365 * nr_pages (e.g. 1GB request would be aligned to 1GB).
9367 * Allocated pages can be freed with free_contig_range() or by manually calling
9368 * __free_page() on each allocated page.
9370 * Return: pointer to contiguous pages on success, or NULL if not successful.
9372 struct page *alloc_contig_pages(unsigned long nr_pages, gfp_t gfp_mask,
9373 int nid, nodemask_t *nodemask)
9375 unsigned long ret, pfn, flags;
9376 struct zonelist *zonelist;
9380 zonelist = node_zonelist(nid, gfp_mask);
9381 for_each_zone_zonelist_nodemask(zone, z, zonelist,
9382 gfp_zone(gfp_mask), nodemask) {
9383 spin_lock_irqsave(&zone->lock, flags);
9385 pfn = ALIGN(zone->zone_start_pfn, nr_pages);
9386 while (zone_spans_last_pfn(zone, pfn, nr_pages)) {
9387 if (pfn_range_valid_contig(zone, pfn, nr_pages)) {
9389 * We release the zone lock here because
9390 * alloc_contig_range() will also lock the zone
9391 * at some point. If there's an allocation
9392 * spinning on this lock, it may win the race
9393 * and cause alloc_contig_range() to fail...
9395 spin_unlock_irqrestore(&zone->lock, flags);
9396 ret = __alloc_contig_pages(pfn, nr_pages,
9399 return pfn_to_page(pfn);
9400 spin_lock_irqsave(&zone->lock, flags);
9404 spin_unlock_irqrestore(&zone->lock, flags);
9408 #endif /* CONFIG_CONTIG_ALLOC */
9410 void free_contig_range(unsigned long pfn, unsigned long nr_pages)
9412 unsigned long count = 0;
9414 for (; nr_pages--; pfn++) {
9415 struct page *page = pfn_to_page(pfn);
9417 count += page_count(page) != 1;
9420 WARN(count != 0, "%lu pages are still in use!\n", count);
9422 EXPORT_SYMBOL(free_contig_range);
9425 * The zone indicated has a new number of managed_pages; batch sizes and percpu
9426 * page high values need to be recalculated.
9428 void zone_pcp_update(struct zone *zone, int cpu_online)
9430 mutex_lock(&pcp_batch_high_lock);
9431 zone_set_pageset_high_and_batch(zone, cpu_online);
9432 mutex_unlock(&pcp_batch_high_lock);
9436 * Effectively disable pcplists for the zone by setting the high limit to 0
9437 * and draining all cpus. A concurrent page freeing on another CPU that's about
9438 * to put the page on pcplist will either finish before the drain and the page
9439 * will be drained, or observe the new high limit and skip the pcplist.
9441 * Must be paired with a call to zone_pcp_enable().
9443 void zone_pcp_disable(struct zone *zone)
9445 mutex_lock(&pcp_batch_high_lock);
9446 __zone_set_pageset_high_and_batch(zone, 0, 1);
9447 __drain_all_pages(zone, true);
9450 void zone_pcp_enable(struct zone *zone)
9452 __zone_set_pageset_high_and_batch(zone, zone->pageset_high, zone->pageset_batch);
9453 mutex_unlock(&pcp_batch_high_lock);
9456 void zone_pcp_reset(struct zone *zone)
9459 struct per_cpu_zonestat *pzstats;
9461 if (zone->per_cpu_pageset != &boot_pageset) {
9462 for_each_online_cpu(cpu) {
9463 pzstats = per_cpu_ptr(zone->per_cpu_zonestats, cpu);
9464 drain_zonestat(zone, pzstats);
9466 free_percpu(zone->per_cpu_pageset);
9467 free_percpu(zone->per_cpu_zonestats);
9468 zone->per_cpu_pageset = &boot_pageset;
9469 zone->per_cpu_zonestats = &boot_zonestats;
9473 #ifdef CONFIG_MEMORY_HOTREMOVE
9475 * All pages in the range must be in a single zone, must not contain holes,
9476 * must span full sections, and must be isolated before calling this function.
9478 void __offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
9480 unsigned long pfn = start_pfn;
9484 unsigned long flags;
9486 offline_mem_sections(pfn, end_pfn);
9487 zone = page_zone(pfn_to_page(pfn));
9488 spin_lock_irqsave(&zone->lock, flags);
9489 while (pfn < end_pfn) {
9490 page = pfn_to_page(pfn);
9492 * The HWPoisoned page may be not in buddy system, and
9493 * page_count() is not 0.
9495 if (unlikely(!PageBuddy(page) && PageHWPoison(page))) {
9500 * At this point all remaining PageOffline() pages have a
9501 * reference count of 0 and can simply be skipped.
9503 if (PageOffline(page)) {
9504 BUG_ON(page_count(page));
9505 BUG_ON(PageBuddy(page));
9510 BUG_ON(page_count(page));
9511 BUG_ON(!PageBuddy(page));
9512 order = buddy_order(page);
9513 del_page_from_free_list(page, zone, order);
9514 pfn += (1 << order);
9516 spin_unlock_irqrestore(&zone->lock, flags);
9521 * This function returns a stable result only if called under zone lock.
9523 bool is_free_buddy_page(struct page *page)
9525 unsigned long pfn = page_to_pfn(page);
9528 for (order = 0; order < MAX_ORDER; order++) {
9529 struct page *page_head = page - (pfn & ((1 << order) - 1));
9531 if (PageBuddy(page_head) &&
9532 buddy_order_unsafe(page_head) >= order)
9536 return order < MAX_ORDER;
9538 EXPORT_SYMBOL(is_free_buddy_page);
9540 #ifdef CONFIG_MEMORY_FAILURE
9542 * Break down a higher-order page in sub-pages, and keep our target out of
9545 static void break_down_buddy_pages(struct zone *zone, struct page *page,
9546 struct page *target, int low, int high,
9549 unsigned long size = 1 << high;
9550 struct page *current_buddy, *next_page;
9552 while (high > low) {
9556 if (target >= &page[size]) {
9557 next_page = page + size;
9558 current_buddy = page;
9561 current_buddy = page + size;
9564 if (set_page_guard(zone, current_buddy, high, migratetype))
9567 if (current_buddy != target) {
9568 add_to_free_list(current_buddy, zone, high, migratetype);
9569 set_buddy_order(current_buddy, high);
9576 * Take a page that will be marked as poisoned off the buddy allocator.
9578 bool take_page_off_buddy(struct page *page)
9580 struct zone *zone = page_zone(page);
9581 unsigned long pfn = page_to_pfn(page);
9582 unsigned long flags;
9586 spin_lock_irqsave(&zone->lock, flags);
9587 for (order = 0; order < MAX_ORDER; order++) {
9588 struct page *page_head = page - (pfn & ((1 << order) - 1));
9589 int page_order = buddy_order(page_head);
9591 if (PageBuddy(page_head) && page_order >= order) {
9592 unsigned long pfn_head = page_to_pfn(page_head);
9593 int migratetype = get_pfnblock_migratetype(page_head,
9596 del_page_from_free_list(page_head, zone, page_order);
9597 break_down_buddy_pages(zone, page_head, page, 0,
9598 page_order, migratetype);
9599 SetPageHWPoisonTakenOff(page);
9600 if (!is_migrate_isolate(migratetype))
9601 __mod_zone_freepage_state(zone, -1, migratetype);
9605 if (page_count(page_head) > 0)
9608 spin_unlock_irqrestore(&zone->lock, flags);
9613 * Cancel takeoff done by take_page_off_buddy().
9615 bool put_page_back_buddy(struct page *page)
9617 struct zone *zone = page_zone(page);
9618 unsigned long pfn = page_to_pfn(page);
9619 unsigned long flags;
9620 int migratetype = get_pfnblock_migratetype(page, pfn);
9623 spin_lock_irqsave(&zone->lock, flags);
9624 if (put_page_testzero(page)) {
9625 ClearPageHWPoisonTakenOff(page);
9626 __free_one_page(page, pfn, zone, 0, migratetype, FPI_NONE);
9627 if (TestClearPageHWPoison(page)) {
9628 num_poisoned_pages_dec();
9632 spin_unlock_irqrestore(&zone->lock, flags);
9638 #ifdef CONFIG_ZONE_DMA
9639 bool has_managed_dma(void)
9641 struct pglist_data *pgdat;
9643 for_each_online_pgdat(pgdat) {
9644 struct zone *zone = &pgdat->node_zones[ZONE_DMA];
9646 if (managed_zone(zone))
9651 #endif /* CONFIG_ZONE_DMA */