4 * Copyright (C) 2002, Linus Torvalds.
5 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
7 * Contains functions related to writing back dirty pages at the
10 * 10Apr2002 Andrew Morton
14 #include <linux/kernel.h>
15 #include <linux/export.h>
16 #include <linux/spinlock.h>
19 #include <linux/swap.h>
20 #include <linux/slab.h>
21 #include <linux/pagemap.h>
22 #include <linux/writeback.h>
23 #include <linux/init.h>
24 #include <linux/backing-dev.h>
25 #include <linux/task_io_accounting_ops.h>
26 #include <linux/blkdev.h>
27 #include <linux/mpage.h>
28 #include <linux/rmap.h>
29 #include <linux/percpu.h>
30 #include <linux/notifier.h>
31 #include <linux/smp.h>
32 #include <linux/sysctl.h>
33 #include <linux/cpu.h>
34 #include <linux/syscalls.h>
35 #include <linux/buffer_head.h> /* __set_page_dirty_buffers */
36 #include <linux/pagevec.h>
37 #include <linux/timer.h>
38 #include <trace/events/writeback.h>
41 * Sleep at most 200ms at a time in balance_dirty_pages().
43 #define MAX_PAUSE max(HZ/5, 1)
46 * Try to keep balance_dirty_pages() call intervals higher than this many pages
47 * by raising pause time to max_pause when falls below it.
49 #define DIRTY_POLL_THRESH (128 >> (PAGE_SHIFT - 10))
52 * Estimate write bandwidth at 200ms intervals.
54 #define BANDWIDTH_INTERVAL max(HZ/5, 1)
56 #define RATELIMIT_CALC_SHIFT 10
59 * After a CPU has dirtied this many pages, balance_dirty_pages_ratelimited
60 * will look to see if it needs to force writeback or throttling.
62 static long ratelimit_pages = 32;
64 /* The following parameters are exported via /proc/sys/vm */
67 * Start background writeback (via writeback threads) at this percentage
69 int dirty_background_ratio = 10;
72 * dirty_background_bytes starts at 0 (disabled) so that it is a function of
73 * dirty_background_ratio * the amount of dirtyable memory
75 unsigned long dirty_background_bytes;
78 * free highmem will not be subtracted from the total free memory
79 * for calculating free ratios if vm_highmem_is_dirtyable is true
81 int vm_highmem_is_dirtyable;
84 * The generator of dirty data starts writeback at this percentage
86 int vm_dirty_ratio = 20;
89 * vm_dirty_bytes starts at 0 (disabled) so that it is a function of
90 * vm_dirty_ratio * the amount of dirtyable memory
92 unsigned long vm_dirty_bytes;
95 * The interval between `kupdate'-style writebacks
97 unsigned int dirty_writeback_interval = 5 * 100; /* centiseconds */
99 EXPORT_SYMBOL_GPL(dirty_writeback_interval);
102 * The longest time for which data is allowed to remain dirty
104 unsigned int dirty_expire_interval = 30 * 100; /* centiseconds */
107 * Flag that makes the machine dump writes/reads and block dirtyings.
112 * Flag that puts the machine in "laptop mode". Doubles as a timeout in jiffies:
113 * a full sync is triggered after this time elapses without any disk activity.
117 EXPORT_SYMBOL(laptop_mode);
119 /* End of sysctl-exported parameters */
121 unsigned long global_dirty_limit;
124 * Scale the writeback cache size proportional to the relative writeout speeds.
126 * We do this by keeping a floating proportion between BDIs, based on page
127 * writeback completions [end_page_writeback()]. Those devices that write out
128 * pages fastest will get the larger share, while the slower will get a smaller
131 * We use page writeout completions because we are interested in getting rid of
132 * dirty pages. Having them written out is the primary goal.
134 * We introduce a concept of time, a period over which we measure these events,
135 * because demand can/will vary over time. The length of this period itself is
136 * measured in page writeback completions.
139 static struct fprop_global writeout_completions;
141 static void writeout_period(unsigned long t);
142 /* Timer for aging of writeout_completions */
143 static struct timer_list writeout_period_timer =
144 TIMER_DEFERRED_INITIALIZER(writeout_period, 0, 0);
145 static unsigned long writeout_period_time = 0;
148 * Length of period for aging writeout fractions of bdis. This is an
149 * arbitrarily chosen number. The longer the period, the slower fractions will
150 * reflect changes in current writeout rate.
152 #define VM_COMPLETIONS_PERIOD_LEN (3*HZ)
155 * Work out the current dirty-memory clamping and background writeout
158 * The main aim here is to lower them aggressively if there is a lot of mapped
159 * memory around. To avoid stressing page reclaim with lots of unreclaimable
160 * pages. It is better to clamp down on writers than to start swapping, and
161 * performing lots of scanning.
163 * We only allow 1/2 of the currently-unmapped memory to be dirtied.
165 * We don't permit the clamping level to fall below 5% - that is getting rather
168 * We make sure that the background writeout level is below the adjusted
173 * In a memory zone, there is a certain amount of pages we consider
174 * available for the page cache, which is essentially the number of
175 * free and reclaimable pages, minus some zone reserves to protect
176 * lowmem and the ability to uphold the zone's watermarks without
177 * requiring writeback.
179 * This number of dirtyable pages is the base value of which the
180 * user-configurable dirty ratio is the effictive number of pages that
181 * are allowed to be actually dirtied. Per individual zone, or
182 * globally by using the sum of dirtyable pages over all zones.
184 * Because the user is allowed to specify the dirty limit globally as
185 * absolute number of bytes, calculating the per-zone dirty limit can
186 * require translating the configured limit into a percentage of
187 * global dirtyable memory first.
190 static unsigned long highmem_dirtyable_memory(unsigned long total)
192 #ifdef CONFIG_HIGHMEM
196 for_each_node_state(node, N_HIGH_MEMORY) {
198 &NODE_DATA(node)->node_zones[ZONE_HIGHMEM];
200 x += zone_page_state(z, NR_FREE_PAGES) +
201 zone_reclaimable_pages(z) - z->dirty_balance_reserve;
204 * Make sure that the number of highmem pages is never larger
205 * than the number of the total dirtyable memory. This can only
206 * occur in very strange VM situations but we want to make sure
207 * that this does not occur.
209 return min(x, total);
216 * global_dirtyable_memory - number of globally dirtyable pages
218 * Returns the global number of pages potentially available for dirty
219 * page cache. This is the base value for the global dirty limits.
221 static unsigned long global_dirtyable_memory(void)
225 x = global_page_state(NR_FREE_PAGES) + global_reclaimable_pages() -
226 dirty_balance_reserve;
228 if (!vm_highmem_is_dirtyable)
229 x -= highmem_dirtyable_memory(x);
231 return x + 1; /* Ensure that we never return 0 */
235 * global_dirty_limits - background-writeback and dirty-throttling thresholds
237 * Calculate the dirty thresholds based on sysctl parameters
238 * - vm.dirty_background_ratio or vm.dirty_background_bytes
239 * - vm.dirty_ratio or vm.dirty_bytes
240 * The dirty limits will be lifted by 1/4 for PF_LESS_THROTTLE (ie. nfsd) and
243 void global_dirty_limits(unsigned long *pbackground, unsigned long *pdirty)
245 unsigned long background;
247 unsigned long uninitialized_var(available_memory);
248 struct task_struct *tsk;
250 if (!vm_dirty_bytes || !dirty_background_bytes)
251 available_memory = global_dirtyable_memory();
254 dirty = DIV_ROUND_UP(vm_dirty_bytes, PAGE_SIZE);
256 dirty = (vm_dirty_ratio * available_memory) / 100;
258 if (dirty_background_bytes)
259 background = DIV_ROUND_UP(dirty_background_bytes, PAGE_SIZE);
261 background = (dirty_background_ratio * available_memory) / 100;
263 if (background >= dirty)
264 background = dirty / 2;
266 if (tsk->flags & PF_LESS_THROTTLE || rt_task(tsk)) {
267 background += background / 4;
270 *pbackground = background;
272 trace_global_dirty_state(background, dirty);
276 * zone_dirtyable_memory - number of dirtyable pages in a zone
279 * Returns the zone's number of pages potentially available for dirty
280 * page cache. This is the base value for the per-zone dirty limits.
282 static unsigned long zone_dirtyable_memory(struct zone *zone)
285 * The effective global number of dirtyable pages may exclude
286 * highmem as a big-picture measure to keep the ratio between
287 * dirty memory and lowmem reasonable.
289 * But this function is purely about the individual zone and a
290 * highmem zone can hold its share of dirty pages, so we don't
291 * care about vm_highmem_is_dirtyable here.
293 return zone_page_state(zone, NR_FREE_PAGES) +
294 zone_reclaimable_pages(zone) -
295 zone->dirty_balance_reserve;
299 * zone_dirty_limit - maximum number of dirty pages allowed in a zone
302 * Returns the maximum number of dirty pages allowed in a zone, based
303 * on the zone's dirtyable memory.
305 static unsigned long zone_dirty_limit(struct zone *zone)
307 unsigned long zone_memory = zone_dirtyable_memory(zone);
308 struct task_struct *tsk = current;
312 dirty = DIV_ROUND_UP(vm_dirty_bytes, PAGE_SIZE) *
313 zone_memory / global_dirtyable_memory();
315 dirty = vm_dirty_ratio * zone_memory / 100;
317 if (tsk->flags & PF_LESS_THROTTLE || rt_task(tsk))
324 * zone_dirty_ok - tells whether a zone is within its dirty limits
325 * @zone: the zone to check
327 * Returns %true when the dirty pages in @zone are within the zone's
328 * dirty limit, %false if the limit is exceeded.
330 bool zone_dirty_ok(struct zone *zone)
332 unsigned long limit = zone_dirty_limit(zone);
334 return zone_page_state(zone, NR_FILE_DIRTY) +
335 zone_page_state(zone, NR_UNSTABLE_NFS) +
336 zone_page_state(zone, NR_WRITEBACK) <= limit;
339 int dirty_background_ratio_handler(struct ctl_table *table, int write,
340 void __user *buffer, size_t *lenp,
345 ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
346 if (ret == 0 && write)
347 dirty_background_bytes = 0;
351 int dirty_background_bytes_handler(struct ctl_table *table, int write,
352 void __user *buffer, size_t *lenp,
357 ret = proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
358 if (ret == 0 && write)
359 dirty_background_ratio = 0;
363 int dirty_ratio_handler(struct ctl_table *table, int write,
364 void __user *buffer, size_t *lenp,
367 int old_ratio = vm_dirty_ratio;
370 ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
371 if (ret == 0 && write && vm_dirty_ratio != old_ratio) {
372 writeback_set_ratelimit();
378 int dirty_bytes_handler(struct ctl_table *table, int write,
379 void __user *buffer, size_t *lenp,
382 unsigned long old_bytes = vm_dirty_bytes;
385 ret = proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
386 if (ret == 0 && write && vm_dirty_bytes != old_bytes) {
387 writeback_set_ratelimit();
393 static unsigned long wp_next_time(unsigned long cur_time)
395 cur_time += VM_COMPLETIONS_PERIOD_LEN;
396 /* 0 has a special meaning... */
403 * Increment the BDI's writeout completion count and the global writeout
404 * completion count. Called from test_clear_page_writeback().
406 static inline void __bdi_writeout_inc(struct backing_dev_info *bdi)
408 __inc_bdi_stat(bdi, BDI_WRITTEN);
409 __fprop_inc_percpu_max(&writeout_completions, &bdi->completions,
411 /* First event after period switching was turned off? */
412 if (!unlikely(writeout_period_time)) {
414 * We can race with other __bdi_writeout_inc calls here but
415 * it does not cause any harm since the resulting time when
416 * timer will fire and what is in writeout_period_time will be
419 writeout_period_time = wp_next_time(jiffies);
420 mod_timer(&writeout_period_timer, writeout_period_time);
424 void bdi_writeout_inc(struct backing_dev_info *bdi)
428 local_irq_save(flags);
429 __bdi_writeout_inc(bdi);
430 local_irq_restore(flags);
432 EXPORT_SYMBOL_GPL(bdi_writeout_inc);
435 * Obtain an accurate fraction of the BDI's portion.
437 static void bdi_writeout_fraction(struct backing_dev_info *bdi,
438 long *numerator, long *denominator)
440 fprop_fraction_percpu(&writeout_completions, &bdi->completions,
441 numerator, denominator);
445 * On idle system, we can be called long after we scheduled because we use
446 * deferred timers so count with missed periods.
448 static void writeout_period(unsigned long t)
450 int miss_periods = (jiffies - writeout_period_time) /
451 VM_COMPLETIONS_PERIOD_LEN;
453 if (fprop_new_period(&writeout_completions, miss_periods + 1)) {
454 writeout_period_time = wp_next_time(writeout_period_time +
455 miss_periods * VM_COMPLETIONS_PERIOD_LEN);
456 mod_timer(&writeout_period_timer, writeout_period_time);
459 * Aging has zeroed all fractions. Stop wasting CPU on period
462 writeout_period_time = 0;
467 * bdi_min_ratio keeps the sum of the minimum dirty shares of all
468 * registered backing devices, which, for obvious reasons, can not
471 static unsigned int bdi_min_ratio;
473 int bdi_set_min_ratio(struct backing_dev_info *bdi, unsigned int min_ratio)
477 spin_lock_bh(&bdi_lock);
478 if (min_ratio > bdi->max_ratio) {
481 min_ratio -= bdi->min_ratio;
482 if (bdi_min_ratio + min_ratio < 100) {
483 bdi_min_ratio += min_ratio;
484 bdi->min_ratio += min_ratio;
489 spin_unlock_bh(&bdi_lock);
494 int bdi_set_max_ratio(struct backing_dev_info *bdi, unsigned max_ratio)
501 spin_lock_bh(&bdi_lock);
502 if (bdi->min_ratio > max_ratio) {
505 bdi->max_ratio = max_ratio;
506 bdi->max_prop_frac = (FPROP_FRAC_BASE * max_ratio) / 100;
508 spin_unlock_bh(&bdi_lock);
512 EXPORT_SYMBOL(bdi_set_max_ratio);
514 static unsigned long dirty_freerun_ceiling(unsigned long thresh,
515 unsigned long bg_thresh)
517 return (thresh + bg_thresh) / 2;
520 static unsigned long hard_dirty_limit(unsigned long thresh)
522 return max(thresh, global_dirty_limit);
526 * bdi_dirty_limit - @bdi's share of dirty throttling threshold
527 * @bdi: the backing_dev_info to query
528 * @dirty: global dirty limit in pages
530 * Returns @bdi's dirty limit in pages. The term "dirty" in the context of
531 * dirty balancing includes all PG_dirty, PG_writeback and NFS unstable pages.
533 * Note that balance_dirty_pages() will only seriously take it as a hard limit
534 * when sleeping max_pause per page is not enough to keep the dirty pages under
535 * control. For example, when the device is completely stalled due to some error
536 * conditions, or when there are 1000 dd tasks writing to a slow 10MB/s USB key.
537 * In the other normal situations, it acts more gently by throttling the tasks
538 * more (rather than completely block them) when the bdi dirty pages go high.
540 * It allocates high/low dirty limits to fast/slow devices, in order to prevent
541 * - starving fast devices
542 * - piling up dirty pages (that will take long time to sync) on slow devices
544 * The bdi's share of dirty limit will be adapting to its throughput and
545 * bounded by the bdi->min_ratio and/or bdi->max_ratio parameters, if set.
547 unsigned long bdi_dirty_limit(struct backing_dev_info *bdi, unsigned long dirty)
550 long numerator, denominator;
553 * Calculate this BDI's share of the dirty ratio.
555 bdi_writeout_fraction(bdi, &numerator, &denominator);
557 bdi_dirty = (dirty * (100 - bdi_min_ratio)) / 100;
558 bdi_dirty *= numerator;
559 do_div(bdi_dirty, denominator);
561 bdi_dirty += (dirty * bdi->min_ratio) / 100;
562 if (bdi_dirty > (dirty * bdi->max_ratio) / 100)
563 bdi_dirty = dirty * bdi->max_ratio / 100;
569 * Dirty position control.
571 * (o) global/bdi setpoints
573 * We want the dirty pages be balanced around the global/bdi setpoints.
574 * When the number of dirty pages is higher/lower than the setpoint, the
575 * dirty position control ratio (and hence task dirty ratelimit) will be
576 * decreased/increased to bring the dirty pages back to the setpoint.
578 * pos_ratio = 1 << RATELIMIT_CALC_SHIFT
580 * if (dirty < setpoint) scale up pos_ratio
581 * if (dirty > setpoint) scale down pos_ratio
583 * if (bdi_dirty < bdi_setpoint) scale up pos_ratio
584 * if (bdi_dirty > bdi_setpoint) scale down pos_ratio
586 * task_ratelimit = dirty_ratelimit * pos_ratio >> RATELIMIT_CALC_SHIFT
588 * (o) global control line
592 * | |<===== global dirty control scope ======>|
600 * 1.0 ................................*
606 * 0 +------------.------------------.----------------------*------------->
607 * freerun^ setpoint^ limit^ dirty pages
609 * (o) bdi control line
617 * | * |<=========== span ============>|
618 * 1.0 .......................*
630 * 1/4 ...............................................* * * * * * * * * * * *
634 * 0 +----------------------.-------------------------------.------------->
635 * bdi_setpoint^ x_intercept^
637 * The bdi control line won't drop below pos_ratio=1/4, so that bdi_dirty can
638 * be smoothly throttled down to normal if it starts high in situations like
639 * - start writing to a slow SD card and a fast disk at the same time. The SD
640 * card's bdi_dirty may rush to many times higher than bdi_setpoint.
641 * - the bdi dirty thresh drops quickly due to change of JBOD workload
643 static unsigned long bdi_position_ratio(struct backing_dev_info *bdi,
644 unsigned long thresh,
645 unsigned long bg_thresh,
647 unsigned long bdi_thresh,
648 unsigned long bdi_dirty)
650 unsigned long write_bw = bdi->avg_write_bandwidth;
651 unsigned long freerun = dirty_freerun_ceiling(thresh, bg_thresh);
652 unsigned long limit = hard_dirty_limit(thresh);
653 unsigned long x_intercept;
654 unsigned long setpoint; /* dirty pages' target balance point */
655 unsigned long bdi_setpoint;
657 long long pos_ratio; /* for scaling up/down the rate limit */
660 if (unlikely(dirty >= limit))
667 * f(dirty) := 1.0 + (----------------)
670 * it's a 3rd order polynomial that subjects to
672 * (1) f(freerun) = 2.0 => rampup dirty_ratelimit reasonably fast
673 * (2) f(setpoint) = 1.0 => the balance point
674 * (3) f(limit) = 0 => the hard limit
675 * (4) df/dx <= 0 => negative feedback control
676 * (5) the closer to setpoint, the smaller |df/dx| (and the reverse)
677 * => fast response on large errors; small oscillation near setpoint
679 setpoint = (freerun + limit) / 2;
680 x = div_s64((setpoint - dirty) << RATELIMIT_CALC_SHIFT,
681 limit - setpoint + 1);
683 pos_ratio = pos_ratio * x >> RATELIMIT_CALC_SHIFT;
684 pos_ratio = pos_ratio * x >> RATELIMIT_CALC_SHIFT;
685 pos_ratio += 1 << RATELIMIT_CALC_SHIFT;
688 * We have computed basic pos_ratio above based on global situation. If
689 * the bdi is over/under its share of dirty pages, we want to scale
690 * pos_ratio further down/up. That is done by the following mechanism.
696 * f(bdi_dirty) := 1.0 + k * (bdi_dirty - bdi_setpoint)
698 * x_intercept - bdi_dirty
699 * := --------------------------
700 * x_intercept - bdi_setpoint
702 * The main bdi control line is a linear function that subjects to
704 * (1) f(bdi_setpoint) = 1.0
705 * (2) k = - 1 / (8 * write_bw) (in single bdi case)
706 * or equally: x_intercept = bdi_setpoint + 8 * write_bw
708 * For single bdi case, the dirty pages are observed to fluctuate
709 * regularly within range
710 * [bdi_setpoint - write_bw/2, bdi_setpoint + write_bw/2]
711 * for various filesystems, where (2) can yield in a reasonable 12.5%
712 * fluctuation range for pos_ratio.
714 * For JBOD case, bdi_thresh (not bdi_dirty!) could fluctuate up to its
715 * own size, so move the slope over accordingly and choose a slope that
716 * yields 100% pos_ratio fluctuation on suddenly doubled bdi_thresh.
718 if (unlikely(bdi_thresh > thresh))
721 * It's very possible that bdi_thresh is close to 0 not because the
722 * device is slow, but that it has remained inactive for long time.
723 * Honour such devices a reasonable good (hopefully IO efficient)
724 * threshold, so that the occasional writes won't be blocked and active
725 * writes can rampup the threshold quickly.
727 bdi_thresh = max(bdi_thresh, (limit - dirty) / 8);
729 * scale global setpoint to bdi's:
730 * bdi_setpoint = setpoint * bdi_thresh / thresh
732 x = div_u64((u64)bdi_thresh << 16, thresh + 1);
733 bdi_setpoint = setpoint * (u64)x >> 16;
735 * Use span=(8*write_bw) in single bdi case as indicated by
736 * (thresh - bdi_thresh ~= 0) and transit to bdi_thresh in JBOD case.
738 * bdi_thresh thresh - bdi_thresh
739 * span = ---------- * (8 * write_bw) + ------------------- * bdi_thresh
742 span = (thresh - bdi_thresh + 8 * write_bw) * (u64)x >> 16;
743 x_intercept = bdi_setpoint + span;
745 if (bdi_dirty < x_intercept - span / 4) {
746 pos_ratio = div_u64(pos_ratio * (x_intercept - bdi_dirty),
747 x_intercept - bdi_setpoint + 1);
752 * bdi reserve area, safeguard against dirty pool underrun and disk idle
753 * It may push the desired control point of global dirty pages higher
756 x_intercept = bdi_thresh / 2;
757 if (bdi_dirty < x_intercept) {
758 if (bdi_dirty > x_intercept / 8)
759 pos_ratio = div_u64(pos_ratio * x_intercept, bdi_dirty);
767 static void bdi_update_write_bandwidth(struct backing_dev_info *bdi,
768 unsigned long elapsed,
769 unsigned long written)
771 const unsigned long period = roundup_pow_of_two(3 * HZ);
772 unsigned long avg = bdi->avg_write_bandwidth;
773 unsigned long old = bdi->write_bandwidth;
777 * bw = written * HZ / elapsed
779 * bw * elapsed + write_bandwidth * (period - elapsed)
780 * write_bandwidth = ---------------------------------------------------
783 bw = written - bdi->written_stamp;
785 if (unlikely(elapsed > period)) {
790 bw += (u64)bdi->write_bandwidth * (period - elapsed);
791 bw >>= ilog2(period);
794 * one more level of smoothing, for filtering out sudden spikes
796 if (avg > old && old >= (unsigned long)bw)
797 avg -= (avg - old) >> 3;
799 if (avg < old && old <= (unsigned long)bw)
800 avg += (old - avg) >> 3;
803 bdi->write_bandwidth = bw;
804 bdi->avg_write_bandwidth = avg;
808 * The global dirtyable memory and dirty threshold could be suddenly knocked
809 * down by a large amount (eg. on the startup of KVM in a swapless system).
810 * This may throw the system into deep dirty exceeded state and throttle
811 * heavy/light dirtiers alike. To retain good responsiveness, maintain
812 * global_dirty_limit for tracking slowly down to the knocked down dirty
815 static void update_dirty_limit(unsigned long thresh, unsigned long dirty)
817 unsigned long limit = global_dirty_limit;
820 * Follow up in one step.
822 if (limit < thresh) {
828 * Follow down slowly. Use the higher one as the target, because thresh
829 * may drop below dirty. This is exactly the reason to introduce
830 * global_dirty_limit which is guaranteed to lie above the dirty pages.
832 thresh = max(thresh, dirty);
833 if (limit > thresh) {
834 limit -= (limit - thresh) >> 5;
839 global_dirty_limit = limit;
842 static void global_update_bandwidth(unsigned long thresh,
846 static DEFINE_SPINLOCK(dirty_lock);
847 static unsigned long update_time;
850 * check locklessly first to optimize away locking for the most time
852 if (time_before(now, update_time + BANDWIDTH_INTERVAL))
855 spin_lock(&dirty_lock);
856 if (time_after_eq(now, update_time + BANDWIDTH_INTERVAL)) {
857 update_dirty_limit(thresh, dirty);
860 spin_unlock(&dirty_lock);
864 * Maintain bdi->dirty_ratelimit, the base dirty throttle rate.
866 * Normal bdi tasks will be curbed at or below it in long term.
867 * Obviously it should be around (write_bw / N) when there are N dd tasks.
869 static void bdi_update_dirty_ratelimit(struct backing_dev_info *bdi,
870 unsigned long thresh,
871 unsigned long bg_thresh,
873 unsigned long bdi_thresh,
874 unsigned long bdi_dirty,
875 unsigned long dirtied,
876 unsigned long elapsed)
878 unsigned long freerun = dirty_freerun_ceiling(thresh, bg_thresh);
879 unsigned long limit = hard_dirty_limit(thresh);
880 unsigned long setpoint = (freerun + limit) / 2;
881 unsigned long write_bw = bdi->avg_write_bandwidth;
882 unsigned long dirty_ratelimit = bdi->dirty_ratelimit;
883 unsigned long dirty_rate;
884 unsigned long task_ratelimit;
885 unsigned long balanced_dirty_ratelimit;
886 unsigned long pos_ratio;
891 * The dirty rate will match the writeout rate in long term, except
892 * when dirty pages are truncated by userspace or re-dirtied by FS.
894 dirty_rate = (dirtied - bdi->dirtied_stamp) * HZ / elapsed;
896 pos_ratio = bdi_position_ratio(bdi, thresh, bg_thresh, dirty,
897 bdi_thresh, bdi_dirty);
899 * task_ratelimit reflects each dd's dirty rate for the past 200ms.
901 task_ratelimit = (u64)dirty_ratelimit *
902 pos_ratio >> RATELIMIT_CALC_SHIFT;
903 task_ratelimit++; /* it helps rampup dirty_ratelimit from tiny values */
906 * A linear estimation of the "balanced" throttle rate. The theory is,
907 * if there are N dd tasks, each throttled at task_ratelimit, the bdi's
908 * dirty_rate will be measured to be (N * task_ratelimit). So the below
909 * formula will yield the balanced rate limit (write_bw / N).
911 * Note that the expanded form is not a pure rate feedback:
912 * rate_(i+1) = rate_(i) * (write_bw / dirty_rate) (1)
913 * but also takes pos_ratio into account:
914 * rate_(i+1) = rate_(i) * (write_bw / dirty_rate) * pos_ratio (2)
916 * (1) is not realistic because pos_ratio also takes part in balancing
917 * the dirty rate. Consider the state
918 * pos_ratio = 0.5 (3)
919 * rate = 2 * (write_bw / N) (4)
920 * If (1) is used, it will stuck in that state! Because each dd will
922 * task_ratelimit = pos_ratio * rate = (write_bw / N) (5)
924 * dirty_rate = N * task_ratelimit = write_bw (6)
925 * put (6) into (1) we get
926 * rate_(i+1) = rate_(i) (7)
928 * So we end up using (2) to always keep
929 * rate_(i+1) ~= (write_bw / N) (8)
930 * regardless of the value of pos_ratio. As long as (8) is satisfied,
931 * pos_ratio is able to drive itself to 1.0, which is not only where
932 * the dirty count meet the setpoint, but also where the slope of
933 * pos_ratio is most flat and hence task_ratelimit is least fluctuated.
935 balanced_dirty_ratelimit = div_u64((u64)task_ratelimit * write_bw,
938 * balanced_dirty_ratelimit ~= (write_bw / N) <= write_bw
940 if (unlikely(balanced_dirty_ratelimit > write_bw))
941 balanced_dirty_ratelimit = write_bw;
944 * We could safely do this and return immediately:
946 * bdi->dirty_ratelimit = balanced_dirty_ratelimit;
948 * However to get a more stable dirty_ratelimit, the below elaborated
949 * code makes use of task_ratelimit to filter out singular points and
950 * limit the step size.
952 * The below code essentially only uses the relative value of
954 * task_ratelimit - dirty_ratelimit
955 * = (pos_ratio - 1) * dirty_ratelimit
957 * which reflects the direction and size of dirty position error.
961 * dirty_ratelimit will follow balanced_dirty_ratelimit iff
962 * task_ratelimit is on the same side of dirty_ratelimit, too.
964 * - dirty_ratelimit > balanced_dirty_ratelimit
965 * - dirty_ratelimit > task_ratelimit (dirty pages are above setpoint)
966 * lowering dirty_ratelimit will help meet both the position and rate
967 * control targets. Otherwise, don't update dirty_ratelimit if it will
968 * only help meet the rate target. After all, what the users ultimately
969 * feel and care are stable dirty rate and small position error.
971 * |task_ratelimit - dirty_ratelimit| is used to limit the step size
972 * and filter out the singular points of balanced_dirty_ratelimit. Which
973 * keeps jumping around randomly and can even leap far away at times
974 * due to the small 200ms estimation period of dirty_rate (we want to
975 * keep that period small to reduce time lags).
978 if (dirty < setpoint) {
979 x = min(bdi->balanced_dirty_ratelimit,
980 min(balanced_dirty_ratelimit, task_ratelimit));
981 if (dirty_ratelimit < x)
982 step = x - dirty_ratelimit;
984 x = max(bdi->balanced_dirty_ratelimit,
985 max(balanced_dirty_ratelimit, task_ratelimit));
986 if (dirty_ratelimit > x)
987 step = dirty_ratelimit - x;
991 * Don't pursue 100% rate matching. It's impossible since the balanced
992 * rate itself is constantly fluctuating. So decrease the track speed
993 * when it gets close to the target. Helps eliminate pointless tremors.
995 step >>= dirty_ratelimit / (2 * step + 1);
997 * Limit the tracking speed to avoid overshooting.
999 step = (step + 7) / 8;
1001 if (dirty_ratelimit < balanced_dirty_ratelimit)
1002 dirty_ratelimit += step;
1004 dirty_ratelimit -= step;
1006 bdi->dirty_ratelimit = max(dirty_ratelimit, 1UL);
1007 bdi->balanced_dirty_ratelimit = balanced_dirty_ratelimit;
1009 trace_bdi_dirty_ratelimit(bdi, dirty_rate, task_ratelimit);
1012 void __bdi_update_bandwidth(struct backing_dev_info *bdi,
1013 unsigned long thresh,
1014 unsigned long bg_thresh,
1015 unsigned long dirty,
1016 unsigned long bdi_thresh,
1017 unsigned long bdi_dirty,
1018 unsigned long start_time)
1020 unsigned long now = jiffies;
1021 unsigned long elapsed = now - bdi->bw_time_stamp;
1022 unsigned long dirtied;
1023 unsigned long written;
1026 * rate-limit, only update once every 200ms.
1028 if (elapsed < BANDWIDTH_INTERVAL)
1031 dirtied = percpu_counter_read(&bdi->bdi_stat[BDI_DIRTIED]);
1032 written = percpu_counter_read(&bdi->bdi_stat[BDI_WRITTEN]);
1035 * Skip quiet periods when disk bandwidth is under-utilized.
1036 * (at least 1s idle time between two flusher runs)
1038 if (elapsed > HZ && time_before(bdi->bw_time_stamp, start_time))
1042 global_update_bandwidth(thresh, dirty, now);
1043 bdi_update_dirty_ratelimit(bdi, thresh, bg_thresh, dirty,
1044 bdi_thresh, bdi_dirty,
1047 bdi_update_write_bandwidth(bdi, elapsed, written);
1050 bdi->dirtied_stamp = dirtied;
1051 bdi->written_stamp = written;
1052 bdi->bw_time_stamp = now;
1055 static void bdi_update_bandwidth(struct backing_dev_info *bdi,
1056 unsigned long thresh,
1057 unsigned long bg_thresh,
1058 unsigned long dirty,
1059 unsigned long bdi_thresh,
1060 unsigned long bdi_dirty,
1061 unsigned long start_time)
1063 if (time_is_after_eq_jiffies(bdi->bw_time_stamp + BANDWIDTH_INTERVAL))
1065 spin_lock(&bdi->wb.list_lock);
1066 __bdi_update_bandwidth(bdi, thresh, bg_thresh, dirty,
1067 bdi_thresh, bdi_dirty, start_time);
1068 spin_unlock(&bdi->wb.list_lock);
1072 * After a task dirtied this many pages, balance_dirty_pages_ratelimited()
1073 * will look to see if it needs to start dirty throttling.
1075 * If dirty_poll_interval is too low, big NUMA machines will call the expensive
1076 * global_page_state() too often. So scale it near-sqrt to the safety margin
1077 * (the number of pages we may dirty without exceeding the dirty limits).
1079 static unsigned long dirty_poll_interval(unsigned long dirty,
1080 unsigned long thresh)
1083 return 1UL << (ilog2(thresh - dirty) >> 1);
1088 static long bdi_max_pause(struct backing_dev_info *bdi,
1089 unsigned long bdi_dirty)
1091 long bw = bdi->avg_write_bandwidth;
1095 * Limit pause time for small memory systems. If sleeping for too long
1096 * time, a small pool of dirty/writeback pages may go empty and disk go
1099 * 8 serves as the safety ratio.
1101 t = bdi_dirty / (1 + bw / roundup_pow_of_two(1 + HZ / 8));
1104 return min_t(long, t, MAX_PAUSE);
1107 static long bdi_min_pause(struct backing_dev_info *bdi,
1109 unsigned long task_ratelimit,
1110 unsigned long dirty_ratelimit,
1111 int *nr_dirtied_pause)
1113 long hi = ilog2(bdi->avg_write_bandwidth);
1114 long lo = ilog2(bdi->dirty_ratelimit);
1115 long t; /* target pause */
1116 long pause; /* estimated next pause */
1117 int pages; /* target nr_dirtied_pause */
1119 /* target for 10ms pause on 1-dd case */
1120 t = max(1, HZ / 100);
1123 * Scale up pause time for concurrent dirtiers in order to reduce CPU
1126 * (N * 10ms) on 2^N concurrent tasks.
1129 t += (hi - lo) * (10 * HZ) / 1024;
1132 * This is a bit convoluted. We try to base the next nr_dirtied_pause
1133 * on the much more stable dirty_ratelimit. However the next pause time
1134 * will be computed based on task_ratelimit and the two rate limits may
1135 * depart considerably at some time. Especially if task_ratelimit goes
1136 * below dirty_ratelimit/2 and the target pause is max_pause, the next
1137 * pause time will be max_pause*2 _trimmed down_ to max_pause. As a
1138 * result task_ratelimit won't be executed faithfully, which could
1139 * eventually bring down dirty_ratelimit.
1141 * We apply two rules to fix it up:
1142 * 1) try to estimate the next pause time and if necessary, use a lower
1143 * nr_dirtied_pause so as not to exceed max_pause. When this happens,
1144 * nr_dirtied_pause will be "dancing" with task_ratelimit.
1145 * 2) limit the target pause time to max_pause/2, so that the normal
1146 * small fluctuations of task_ratelimit won't trigger rule (1) and
1147 * nr_dirtied_pause will remain as stable as dirty_ratelimit.
1149 t = min(t, 1 + max_pause / 2);
1150 pages = dirty_ratelimit * t / roundup_pow_of_two(HZ);
1153 * Tiny nr_dirtied_pause is found to hurt I/O performance in the test
1154 * case fio-mmap-randwrite-64k, which does 16*{sync read, async write}.
1155 * When the 16 consecutive reads are often interrupted by some dirty
1156 * throttling pause during the async writes, cfq will go into idles
1157 * (deadline is fine). So push nr_dirtied_pause as high as possible
1158 * until reaches DIRTY_POLL_THRESH=32 pages.
1160 if (pages < DIRTY_POLL_THRESH) {
1162 pages = dirty_ratelimit * t / roundup_pow_of_two(HZ);
1163 if (pages > DIRTY_POLL_THRESH) {
1164 pages = DIRTY_POLL_THRESH;
1165 t = HZ * DIRTY_POLL_THRESH / dirty_ratelimit;
1169 pause = HZ * pages / (task_ratelimit + 1);
1170 if (pause > max_pause) {
1172 pages = task_ratelimit * t / roundup_pow_of_two(HZ);
1175 *nr_dirtied_pause = pages;
1177 * The minimal pause time will normally be half the target pause time.
1179 return pages >= DIRTY_POLL_THRESH ? 1 + t / 2 : t;
1183 * balance_dirty_pages() must be called by processes which are generating dirty
1184 * data. It looks at the number of dirty pages in the machine and will force
1185 * the caller to wait once crossing the (background_thresh + dirty_thresh) / 2.
1186 * If we're over `background_thresh' then the writeback threads are woken to
1187 * perform some writeout.
1189 static void balance_dirty_pages(struct address_space *mapping,
1190 unsigned long pages_dirtied)
1192 unsigned long nr_reclaimable; /* = file_dirty + unstable_nfs */
1193 unsigned long bdi_reclaimable;
1194 unsigned long nr_dirty; /* = file_dirty + writeback + unstable_nfs */
1195 unsigned long bdi_dirty;
1196 unsigned long freerun;
1197 unsigned long background_thresh;
1198 unsigned long dirty_thresh;
1199 unsigned long bdi_thresh;
1204 int nr_dirtied_pause;
1205 bool dirty_exceeded = false;
1206 unsigned long task_ratelimit;
1207 unsigned long dirty_ratelimit;
1208 unsigned long pos_ratio;
1209 struct backing_dev_info *bdi = mapping->backing_dev_info;
1210 unsigned long start_time = jiffies;
1213 unsigned long now = jiffies;
1216 * Unstable writes are a feature of certain networked
1217 * filesystems (i.e. NFS) in which data may have been
1218 * written to the server's write cache, but has not yet
1219 * been flushed to permanent storage.
1221 nr_reclaimable = global_page_state(NR_FILE_DIRTY) +
1222 global_page_state(NR_UNSTABLE_NFS);
1223 nr_dirty = nr_reclaimable + global_page_state(NR_WRITEBACK);
1225 global_dirty_limits(&background_thresh, &dirty_thresh);
1228 * Throttle it only when the background writeback cannot
1229 * catch-up. This avoids (excessively) small writeouts
1230 * when the bdi limits are ramping up.
1232 freerun = dirty_freerun_ceiling(dirty_thresh,
1234 if (nr_dirty <= freerun) {
1235 current->dirty_paused_when = now;
1236 current->nr_dirtied = 0;
1237 current->nr_dirtied_pause =
1238 dirty_poll_interval(nr_dirty, dirty_thresh);
1242 if (unlikely(!writeback_in_progress(bdi)))
1243 bdi_start_background_writeback(bdi);
1246 * bdi_thresh is not treated as some limiting factor as
1247 * dirty_thresh, due to reasons
1248 * - in JBOD setup, bdi_thresh can fluctuate a lot
1249 * - in a system with HDD and USB key, the USB key may somehow
1250 * go into state (bdi_dirty >> bdi_thresh) either because
1251 * bdi_dirty starts high, or because bdi_thresh drops low.
1252 * In this case we don't want to hard throttle the USB key
1253 * dirtiers for 100 seconds until bdi_dirty drops under
1254 * bdi_thresh. Instead the auxiliary bdi control line in
1255 * bdi_position_ratio() will let the dirtier task progress
1256 * at some rate <= (write_bw / 2) for bringing down bdi_dirty.
1258 bdi_thresh = bdi_dirty_limit(bdi, dirty_thresh);
1261 * In order to avoid the stacked BDI deadlock we need
1262 * to ensure we accurately count the 'dirty' pages when
1263 * the threshold is low.
1265 * Otherwise it would be possible to get thresh+n pages
1266 * reported dirty, even though there are thresh-m pages
1267 * actually dirty; with m+n sitting in the percpu
1270 if (bdi_thresh < 2 * bdi_stat_error(bdi)) {
1271 bdi_reclaimable = bdi_stat_sum(bdi, BDI_RECLAIMABLE);
1272 bdi_dirty = bdi_reclaimable +
1273 bdi_stat_sum(bdi, BDI_WRITEBACK);
1275 bdi_reclaimable = bdi_stat(bdi, BDI_RECLAIMABLE);
1276 bdi_dirty = bdi_reclaimable +
1277 bdi_stat(bdi, BDI_WRITEBACK);
1280 dirty_exceeded = (bdi_dirty > bdi_thresh) &&
1281 (nr_dirty > dirty_thresh);
1282 if (dirty_exceeded && !bdi->dirty_exceeded)
1283 bdi->dirty_exceeded = 1;
1285 bdi_update_bandwidth(bdi, dirty_thresh, background_thresh,
1286 nr_dirty, bdi_thresh, bdi_dirty,
1289 dirty_ratelimit = bdi->dirty_ratelimit;
1290 pos_ratio = bdi_position_ratio(bdi, dirty_thresh,
1291 background_thresh, nr_dirty,
1292 bdi_thresh, bdi_dirty);
1293 task_ratelimit = ((u64)dirty_ratelimit * pos_ratio) >>
1294 RATELIMIT_CALC_SHIFT;
1295 max_pause = bdi_max_pause(bdi, bdi_dirty);
1296 min_pause = bdi_min_pause(bdi, max_pause,
1297 task_ratelimit, dirty_ratelimit,
1300 if (unlikely(task_ratelimit == 0)) {
1305 period = HZ * pages_dirtied / task_ratelimit;
1307 if (current->dirty_paused_when)
1308 pause -= now - current->dirty_paused_when;
1310 * For less than 1s think time (ext3/4 may block the dirtier
1311 * for up to 800ms from time to time on 1-HDD; so does xfs,
1312 * however at much less frequency), try to compensate it in
1313 * future periods by updating the virtual time; otherwise just
1314 * do a reset, as it may be a light dirtier.
1316 if (pause < min_pause) {
1317 trace_balance_dirty_pages(bdi,
1330 current->dirty_paused_when = now;
1331 current->nr_dirtied = 0;
1332 } else if (period) {
1333 current->dirty_paused_when += period;
1334 current->nr_dirtied = 0;
1335 } else if (current->nr_dirtied_pause <= pages_dirtied)
1336 current->nr_dirtied_pause += pages_dirtied;
1339 if (unlikely(pause > max_pause)) {
1340 /* for occasional dropped task_ratelimit */
1341 now += min(pause - max_pause, max_pause);
1346 trace_balance_dirty_pages(bdi,
1358 __set_current_state(TASK_KILLABLE);
1359 io_schedule_timeout(pause);
1361 current->dirty_paused_when = now + pause;
1362 current->nr_dirtied = 0;
1363 current->nr_dirtied_pause = nr_dirtied_pause;
1366 * This is typically equal to (nr_dirty < dirty_thresh) and can
1367 * also keep "1000+ dd on a slow USB stick" under control.
1373 * In the case of an unresponding NFS server and the NFS dirty
1374 * pages exceeds dirty_thresh, give the other good bdi's a pipe
1375 * to go through, so that tasks on them still remain responsive.
1377 * In theory 1 page is enough to keep the comsumer-producer
1378 * pipe going: the flusher cleans 1 page => the task dirties 1
1379 * more page. However bdi_dirty has accounting errors. So use
1380 * the larger and more IO friendly bdi_stat_error.
1382 if (bdi_dirty <= bdi_stat_error(bdi))
1385 if (fatal_signal_pending(current))
1389 if (!dirty_exceeded && bdi->dirty_exceeded)
1390 bdi->dirty_exceeded = 0;
1392 if (writeback_in_progress(bdi))
1396 * In laptop mode, we wait until hitting the higher threshold before
1397 * starting background writeout, and then write out all the way down
1398 * to the lower threshold. So slow writers cause minimal disk activity.
1400 * In normal mode, we start background writeout at the lower
1401 * background_thresh, to keep the amount of dirty memory low.
1406 if (nr_reclaimable > background_thresh)
1407 bdi_start_background_writeback(bdi);
1410 void set_page_dirty_balance(struct page *page, int page_mkwrite)
1412 if (set_page_dirty(page) || page_mkwrite) {
1413 struct address_space *mapping = page_mapping(page);
1416 balance_dirty_pages_ratelimited(mapping);
1420 static DEFINE_PER_CPU(int, bdp_ratelimits);
1423 * Normal tasks are throttled by
1425 * dirty tsk->nr_dirtied_pause pages;
1426 * take a snap in balance_dirty_pages();
1428 * However there is a worst case. If every task exit immediately when dirtied
1429 * (tsk->nr_dirtied_pause - 1) pages, balance_dirty_pages() will never be
1430 * called to throttle the page dirties. The solution is to save the not yet
1431 * throttled page dirties in dirty_throttle_leaks on task exit and charge them
1432 * randomly into the running tasks. This works well for the above worst case,
1433 * as the new task will pick up and accumulate the old task's leaked dirty
1434 * count and eventually get throttled.
1436 DEFINE_PER_CPU(int, dirty_throttle_leaks) = 0;
1439 * balance_dirty_pages_ratelimited - balance dirty memory state
1440 * @mapping: address_space which was dirtied
1442 * Processes which are dirtying memory should call in here once for each page
1443 * which was newly dirtied. The function will periodically check the system's
1444 * dirty state and will initiate writeback if needed.
1446 * On really big machines, get_writeback_state is expensive, so try to avoid
1447 * calling it too often (ratelimiting). But once we're over the dirty memory
1448 * limit we decrease the ratelimiting by a lot, to prevent individual processes
1449 * from overshooting the limit by (ratelimit_pages) each.
1451 void balance_dirty_pages_ratelimited(struct address_space *mapping)
1453 struct backing_dev_info *bdi = mapping->backing_dev_info;
1457 if (!bdi_cap_account_dirty(bdi))
1460 ratelimit = current->nr_dirtied_pause;
1461 if (bdi->dirty_exceeded)
1462 ratelimit = min(ratelimit, 32 >> (PAGE_SHIFT - 10));
1466 * This prevents one CPU to accumulate too many dirtied pages without
1467 * calling into balance_dirty_pages(), which can happen when there are
1468 * 1000+ tasks, all of them start dirtying pages at exactly the same
1469 * time, hence all honoured too large initial task->nr_dirtied_pause.
1471 p = &__get_cpu_var(bdp_ratelimits);
1472 if (unlikely(current->nr_dirtied >= ratelimit))
1474 else if (unlikely(*p >= ratelimit_pages)) {
1479 * Pick up the dirtied pages by the exited tasks. This avoids lots of
1480 * short-lived tasks (eg. gcc invocations in a kernel build) escaping
1481 * the dirty throttling and livelock other long-run dirtiers.
1483 p = &__get_cpu_var(dirty_throttle_leaks);
1484 if (*p > 0 && current->nr_dirtied < ratelimit) {
1485 unsigned long nr_pages_dirtied;
1486 nr_pages_dirtied = min(*p, ratelimit - current->nr_dirtied);
1487 *p -= nr_pages_dirtied;
1488 current->nr_dirtied += nr_pages_dirtied;
1492 if (unlikely(current->nr_dirtied >= ratelimit))
1493 balance_dirty_pages(mapping, current->nr_dirtied);
1495 EXPORT_SYMBOL(balance_dirty_pages_ratelimited);
1497 void throttle_vm_writeout(gfp_t gfp_mask)
1499 unsigned long background_thresh;
1500 unsigned long dirty_thresh;
1503 global_dirty_limits(&background_thresh, &dirty_thresh);
1504 dirty_thresh = hard_dirty_limit(dirty_thresh);
1507 * Boost the allowable dirty threshold a bit for page
1508 * allocators so they don't get DoS'ed by heavy writers
1510 dirty_thresh += dirty_thresh / 10; /* wheeee... */
1512 if (global_page_state(NR_UNSTABLE_NFS) +
1513 global_page_state(NR_WRITEBACK) <= dirty_thresh)
1515 congestion_wait(BLK_RW_ASYNC, HZ/10);
1518 * The caller might hold locks which can prevent IO completion
1519 * or progress in the filesystem. So we cannot just sit here
1520 * waiting for IO to complete.
1522 if ((gfp_mask & (__GFP_FS|__GFP_IO)) != (__GFP_FS|__GFP_IO))
1528 * sysctl handler for /proc/sys/vm/dirty_writeback_centisecs
1530 int dirty_writeback_centisecs_handler(ctl_table *table, int write,
1531 void __user *buffer, size_t *length, loff_t *ppos)
1533 proc_dointvec(table, write, buffer, length, ppos);
1538 void laptop_mode_timer_fn(unsigned long data)
1540 struct request_queue *q = (struct request_queue *)data;
1541 int nr_pages = global_page_state(NR_FILE_DIRTY) +
1542 global_page_state(NR_UNSTABLE_NFS);
1545 * We want to write everything out, not just down to the dirty
1548 if (bdi_has_dirty_io(&q->backing_dev_info))
1549 bdi_start_writeback(&q->backing_dev_info, nr_pages,
1550 WB_REASON_LAPTOP_TIMER);
1554 * We've spun up the disk and we're in laptop mode: schedule writeback
1555 * of all dirty data a few seconds from now. If the flush is already scheduled
1556 * then push it back - the user is still using the disk.
1558 void laptop_io_completion(struct backing_dev_info *info)
1560 mod_timer(&info->laptop_mode_wb_timer, jiffies + laptop_mode);
1564 * We're in laptop mode and we've just synced. The sync's writes will have
1565 * caused another writeback to be scheduled by laptop_io_completion.
1566 * Nothing needs to be written back anymore, so we unschedule the writeback.
1568 void laptop_sync_completion(void)
1570 struct backing_dev_info *bdi;
1574 list_for_each_entry_rcu(bdi, &bdi_list, bdi_list)
1575 del_timer(&bdi->laptop_mode_wb_timer);
1582 * If ratelimit_pages is too high then we can get into dirty-data overload
1583 * if a large number of processes all perform writes at the same time.
1584 * If it is too low then SMP machines will call the (expensive)
1585 * get_writeback_state too often.
1587 * Here we set ratelimit_pages to a level which ensures that when all CPUs are
1588 * dirtying in parallel, we cannot go more than 3% (1/32) over the dirty memory
1592 void writeback_set_ratelimit(void)
1594 unsigned long background_thresh;
1595 unsigned long dirty_thresh;
1596 global_dirty_limits(&background_thresh, &dirty_thresh);
1597 global_dirty_limit = dirty_thresh;
1598 ratelimit_pages = dirty_thresh / (num_online_cpus() * 32);
1599 if (ratelimit_pages < 16)
1600 ratelimit_pages = 16;
1603 static int __cpuinit
1604 ratelimit_handler(struct notifier_block *self, unsigned long action,
1608 switch (action & ~CPU_TASKS_FROZEN) {
1611 writeback_set_ratelimit();
1618 static struct notifier_block __cpuinitdata ratelimit_nb = {
1619 .notifier_call = ratelimit_handler,
1624 * Called early on to tune the page writeback dirty limits.
1626 * We used to scale dirty pages according to how total memory
1627 * related to pages that could be allocated for buffers (by
1628 * comparing nr_free_buffer_pages() to vm_total_pages.
1630 * However, that was when we used "dirty_ratio" to scale with
1631 * all memory, and we don't do that any more. "dirty_ratio"
1632 * is now applied to total non-HIGHPAGE memory (by subtracting
1633 * totalhigh_pages from vm_total_pages), and as such we can't
1634 * get into the old insane situation any more where we had
1635 * large amounts of dirty pages compared to a small amount of
1636 * non-HIGHMEM memory.
1638 * But we might still want to scale the dirty_ratio by how
1639 * much memory the box has..
1641 void __init page_writeback_init(void)
1643 writeback_set_ratelimit();
1644 register_cpu_notifier(&ratelimit_nb);
1646 fprop_global_init(&writeout_completions);
1650 * tag_pages_for_writeback - tag pages to be written by write_cache_pages
1651 * @mapping: address space structure to write
1652 * @start: starting page index
1653 * @end: ending page index (inclusive)
1655 * This function scans the page range from @start to @end (inclusive) and tags
1656 * all pages that have DIRTY tag set with a special TOWRITE tag. The idea is
1657 * that write_cache_pages (or whoever calls this function) will then use
1658 * TOWRITE tag to identify pages eligible for writeback. This mechanism is
1659 * used to avoid livelocking of writeback by a process steadily creating new
1660 * dirty pages in the file (thus it is important for this function to be quick
1661 * so that it can tag pages faster than a dirtying process can create them).
1664 * We tag pages in batches of WRITEBACK_TAG_BATCH to reduce tree_lock latency.
1666 void tag_pages_for_writeback(struct address_space *mapping,
1667 pgoff_t start, pgoff_t end)
1669 #define WRITEBACK_TAG_BATCH 4096
1670 unsigned long tagged;
1673 spin_lock_irq(&mapping->tree_lock);
1674 tagged = radix_tree_range_tag_if_tagged(&mapping->page_tree,
1675 &start, end, WRITEBACK_TAG_BATCH,
1676 PAGECACHE_TAG_DIRTY, PAGECACHE_TAG_TOWRITE);
1677 spin_unlock_irq(&mapping->tree_lock);
1678 WARN_ON_ONCE(tagged > WRITEBACK_TAG_BATCH);
1680 /* We check 'start' to handle wrapping when end == ~0UL */
1681 } while (tagged >= WRITEBACK_TAG_BATCH && start);
1683 EXPORT_SYMBOL(tag_pages_for_writeback);
1686 * write_cache_pages - walk the list of dirty pages of the given address space and write all of them.
1687 * @mapping: address space structure to write
1688 * @wbc: subtract the number of written pages from *@wbc->nr_to_write
1689 * @writepage: function called for each page
1690 * @data: data passed to writepage function
1692 * If a page is already under I/O, write_cache_pages() skips it, even
1693 * if it's dirty. This is desirable behaviour for memory-cleaning writeback,
1694 * but it is INCORRECT for data-integrity system calls such as fsync(). fsync()
1695 * and msync() need to guarantee that all the data which was dirty at the time
1696 * the call was made get new I/O started against them. If wbc->sync_mode is
1697 * WB_SYNC_ALL then we were called for data integrity and we must wait for
1698 * existing IO to complete.
1700 * To avoid livelocks (when other process dirties new pages), we first tag
1701 * pages which should be written back with TOWRITE tag and only then start
1702 * writing them. For data-integrity sync we have to be careful so that we do
1703 * not miss some pages (e.g., because some other process has cleared TOWRITE
1704 * tag we set). The rule we follow is that TOWRITE tag can be cleared only
1705 * by the process clearing the DIRTY tag (and submitting the page for IO).
1707 int write_cache_pages(struct address_space *mapping,
1708 struct writeback_control *wbc, writepage_t writepage,
1713 struct pagevec pvec;
1715 pgoff_t uninitialized_var(writeback_index);
1717 pgoff_t end; /* Inclusive */
1720 int range_whole = 0;
1723 pagevec_init(&pvec, 0);
1724 if (wbc->range_cyclic) {
1725 writeback_index = mapping->writeback_index; /* prev offset */
1726 index = writeback_index;
1733 index = wbc->range_start >> PAGE_CACHE_SHIFT;
1734 end = wbc->range_end >> PAGE_CACHE_SHIFT;
1735 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
1737 cycled = 1; /* ignore range_cyclic tests */
1739 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
1740 tag = PAGECACHE_TAG_TOWRITE;
1742 tag = PAGECACHE_TAG_DIRTY;
1744 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
1745 tag_pages_for_writeback(mapping, index, end);
1747 while (!done && (index <= end)) {
1750 nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
1751 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
1755 for (i = 0; i < nr_pages; i++) {
1756 struct page *page = pvec.pages[i];
1759 * At this point, the page may be truncated or
1760 * invalidated (changing page->mapping to NULL), or
1761 * even swizzled back from swapper_space to tmpfs file
1762 * mapping. However, page->index will not change
1763 * because we have a reference on the page.
1765 if (page->index > end) {
1767 * can't be range_cyclic (1st pass) because
1768 * end == -1 in that case.
1774 done_index = page->index;
1779 * Page truncated or invalidated. We can freely skip it
1780 * then, even for data integrity operations: the page
1781 * has disappeared concurrently, so there could be no
1782 * real expectation of this data interity operation
1783 * even if there is now a new, dirty page at the same
1784 * pagecache address.
1786 if (unlikely(page->mapping != mapping)) {
1792 if (!PageDirty(page)) {
1793 /* someone wrote it for us */
1794 goto continue_unlock;
1797 if (PageWriteback(page)) {
1798 if (wbc->sync_mode != WB_SYNC_NONE)
1799 wait_on_page_writeback(page);
1801 goto continue_unlock;
1804 BUG_ON(PageWriteback(page));
1805 if (!clear_page_dirty_for_io(page))
1806 goto continue_unlock;
1808 trace_wbc_writepage(wbc, mapping->backing_dev_info);
1809 ret = (*writepage)(page, wbc, data);
1810 if (unlikely(ret)) {
1811 if (ret == AOP_WRITEPAGE_ACTIVATE) {
1816 * done_index is set past this page,
1817 * so media errors will not choke
1818 * background writeout for the entire
1819 * file. This has consequences for
1820 * range_cyclic semantics (ie. it may
1821 * not be suitable for data integrity
1824 done_index = page->index + 1;
1831 * We stop writing back only if we are not doing
1832 * integrity sync. In case of integrity sync we have to
1833 * keep going until we have written all the pages
1834 * we tagged for writeback prior to entering this loop.
1836 if (--wbc->nr_to_write <= 0 &&
1837 wbc->sync_mode == WB_SYNC_NONE) {
1842 pagevec_release(&pvec);
1845 if (!cycled && !done) {
1848 * We hit the last page and there is more work to be done: wrap
1849 * back to the start of the file
1853 end = writeback_index - 1;
1856 if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
1857 mapping->writeback_index = done_index;
1861 EXPORT_SYMBOL(write_cache_pages);
1864 * Function used by generic_writepages to call the real writepage
1865 * function and set the mapping flags on error
1867 static int __writepage(struct page *page, struct writeback_control *wbc,
1870 struct address_space *mapping = data;
1871 int ret = mapping->a_ops->writepage(page, wbc);
1872 mapping_set_error(mapping, ret);
1877 * generic_writepages - walk the list of dirty pages of the given address space and writepage() all of them.
1878 * @mapping: address space structure to write
1879 * @wbc: subtract the number of written pages from *@wbc->nr_to_write
1881 * This is a library function, which implements the writepages()
1882 * address_space_operation.
1884 int generic_writepages(struct address_space *mapping,
1885 struct writeback_control *wbc)
1887 struct blk_plug plug;
1890 /* deal with chardevs and other special file */
1891 if (!mapping->a_ops->writepage)
1894 blk_start_plug(&plug);
1895 ret = write_cache_pages(mapping, wbc, __writepage, mapping);
1896 blk_finish_plug(&plug);
1900 EXPORT_SYMBOL(generic_writepages);
1902 int do_writepages(struct address_space *mapping, struct writeback_control *wbc)
1906 if (wbc->nr_to_write <= 0)
1908 if (mapping->a_ops->writepages)
1909 ret = mapping->a_ops->writepages(mapping, wbc);
1911 ret = generic_writepages(mapping, wbc);
1916 * write_one_page - write out a single page and optionally wait on I/O
1917 * @page: the page to write
1918 * @wait: if true, wait on writeout
1920 * The page must be locked by the caller and will be unlocked upon return.
1922 * write_one_page() returns a negative error code if I/O failed.
1924 int write_one_page(struct page *page, int wait)
1926 struct address_space *mapping = page->mapping;
1928 struct writeback_control wbc = {
1929 .sync_mode = WB_SYNC_ALL,
1933 BUG_ON(!PageLocked(page));
1936 wait_on_page_writeback(page);
1938 if (clear_page_dirty_for_io(page)) {
1939 page_cache_get(page);
1940 ret = mapping->a_ops->writepage(page, &wbc);
1941 if (ret == 0 && wait) {
1942 wait_on_page_writeback(page);
1943 if (PageError(page))
1946 page_cache_release(page);
1952 EXPORT_SYMBOL(write_one_page);
1955 * For address_spaces which do not use buffers nor write back.
1957 int __set_page_dirty_no_writeback(struct page *page)
1959 if (!PageDirty(page))
1960 return !TestSetPageDirty(page);
1965 * Helper function for set_page_dirty family.
1966 * NOTE: This relies on being atomic wrt interrupts.
1968 void account_page_dirtied(struct page *page, struct address_space *mapping)
1970 if (mapping_cap_account_dirty(mapping)) {
1971 __inc_zone_page_state(page, NR_FILE_DIRTY);
1972 __inc_zone_page_state(page, NR_DIRTIED);
1973 __inc_bdi_stat(mapping->backing_dev_info, BDI_RECLAIMABLE);
1974 __inc_bdi_stat(mapping->backing_dev_info, BDI_DIRTIED);
1975 task_io_account_write(PAGE_CACHE_SIZE);
1976 current->nr_dirtied++;
1977 this_cpu_inc(bdp_ratelimits);
1980 EXPORT_SYMBOL(account_page_dirtied);
1983 * Helper function for set_page_writeback family.
1984 * NOTE: Unlike account_page_dirtied this does not rely on being atomic
1987 void account_page_writeback(struct page *page)
1989 inc_zone_page_state(page, NR_WRITEBACK);
1991 EXPORT_SYMBOL(account_page_writeback);
1994 * For address_spaces which do not use buffers. Just tag the page as dirty in
1997 * This is also used when a single buffer is being dirtied: we want to set the
1998 * page dirty in that case, but not all the buffers. This is a "bottom-up"
1999 * dirtying, whereas __set_page_dirty_buffers() is a "top-down" dirtying.
2001 * Most callers have locked the page, which pins the address_space in memory.
2002 * But zap_pte_range() does not lock the page, however in that case the
2003 * mapping is pinned by the vma's ->vm_file reference.
2005 * We take care to handle the case where the page was truncated from the
2006 * mapping by re-checking page_mapping() inside tree_lock.
2008 int __set_page_dirty_nobuffers(struct page *page)
2010 if (!TestSetPageDirty(page)) {
2011 struct address_space *mapping = page_mapping(page);
2012 struct address_space *mapping2;
2017 spin_lock_irq(&mapping->tree_lock);
2018 mapping2 = page_mapping(page);
2019 if (mapping2) { /* Race with truncate? */
2020 BUG_ON(mapping2 != mapping);
2021 WARN_ON_ONCE(!PagePrivate(page) && !PageUptodate(page));
2022 account_page_dirtied(page, mapping);
2023 radix_tree_tag_set(&mapping->page_tree,
2024 page_index(page), PAGECACHE_TAG_DIRTY);
2026 spin_unlock_irq(&mapping->tree_lock);
2027 if (mapping->host) {
2028 /* !PageAnon && !swapper_space */
2029 __mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
2035 EXPORT_SYMBOL(__set_page_dirty_nobuffers);
2038 * Call this whenever redirtying a page, to de-account the dirty counters
2039 * (NR_DIRTIED, BDI_DIRTIED, tsk->nr_dirtied), so that they match the written
2040 * counters (NR_WRITTEN, BDI_WRITTEN) in long term. The mismatches will lead to
2041 * systematic errors in balanced_dirty_ratelimit and the dirty pages position
2044 void account_page_redirty(struct page *page)
2046 struct address_space *mapping = page->mapping;
2047 if (mapping && mapping_cap_account_dirty(mapping)) {
2048 current->nr_dirtied--;
2049 dec_zone_page_state(page, NR_DIRTIED);
2050 dec_bdi_stat(mapping->backing_dev_info, BDI_DIRTIED);
2053 EXPORT_SYMBOL(account_page_redirty);
2056 * When a writepage implementation decides that it doesn't want to write this
2057 * page for some reason, it should redirty the locked page via
2058 * redirty_page_for_writepage() and it should then unlock the page and return 0
2060 int redirty_page_for_writepage(struct writeback_control *wbc, struct page *page)
2062 wbc->pages_skipped++;
2063 account_page_redirty(page);
2064 return __set_page_dirty_nobuffers(page);
2066 EXPORT_SYMBOL(redirty_page_for_writepage);
2071 * For pages with a mapping this should be done under the page lock
2072 * for the benefit of asynchronous memory errors who prefer a consistent
2073 * dirty state. This rule can be broken in some special cases,
2074 * but should be better not to.
2076 * If the mapping doesn't provide a set_page_dirty a_op, then
2077 * just fall through and assume that it wants buffer_heads.
2079 int set_page_dirty(struct page *page)
2081 struct address_space *mapping = page_mapping(page);
2083 if (likely(mapping)) {
2084 int (*spd)(struct page *) = mapping->a_ops->set_page_dirty;
2086 * readahead/lru_deactivate_page could remain
2087 * PG_readahead/PG_reclaim due to race with end_page_writeback
2088 * About readahead, if the page is written, the flags would be
2089 * reset. So no problem.
2090 * About lru_deactivate_page, if the page is redirty, the flag
2091 * will be reset. So no problem. but if the page is used by readahead
2092 * it will confuse readahead and make it restart the size rampup
2093 * process. But it's a trivial problem.
2095 ClearPageReclaim(page);
2098 spd = __set_page_dirty_buffers;
2100 return (*spd)(page);
2102 if (!PageDirty(page)) {
2103 if (!TestSetPageDirty(page))
2108 EXPORT_SYMBOL(set_page_dirty);
2111 * set_page_dirty() is racy if the caller has no reference against
2112 * page->mapping->host, and if the page is unlocked. This is because another
2113 * CPU could truncate the page off the mapping and then free the mapping.
2115 * Usually, the page _is_ locked, or the caller is a user-space process which
2116 * holds a reference on the inode by having an open file.
2118 * In other cases, the page should be locked before running set_page_dirty().
2120 int set_page_dirty_lock(struct page *page)
2125 ret = set_page_dirty(page);
2129 EXPORT_SYMBOL(set_page_dirty_lock);
2132 * Clear a page's dirty flag, while caring for dirty memory accounting.
2133 * Returns true if the page was previously dirty.
2135 * This is for preparing to put the page under writeout. We leave the page
2136 * tagged as dirty in the radix tree so that a concurrent write-for-sync
2137 * can discover it via a PAGECACHE_TAG_DIRTY walk. The ->writepage
2138 * implementation will run either set_page_writeback() or set_page_dirty(),
2139 * at which stage we bring the page's dirty flag and radix-tree dirty tag
2142 * This incoherency between the page's dirty flag and radix-tree tag is
2143 * unfortunate, but it only exists while the page is locked.
2145 int clear_page_dirty_for_io(struct page *page)
2147 struct address_space *mapping = page_mapping(page);
2149 BUG_ON(!PageLocked(page));
2151 if (mapping && mapping_cap_account_dirty(mapping)) {
2153 * Yes, Virginia, this is indeed insane.
2155 * We use this sequence to make sure that
2156 * (a) we account for dirty stats properly
2157 * (b) we tell the low-level filesystem to
2158 * mark the whole page dirty if it was
2159 * dirty in a pagetable. Only to then
2160 * (c) clean the page again and return 1 to
2161 * cause the writeback.
2163 * This way we avoid all nasty races with the
2164 * dirty bit in multiple places and clearing
2165 * them concurrently from different threads.
2167 * Note! Normally the "set_page_dirty(page)"
2168 * has no effect on the actual dirty bit - since
2169 * that will already usually be set. But we
2170 * need the side effects, and it can help us
2173 * We basically use the page "master dirty bit"
2174 * as a serialization point for all the different
2175 * threads doing their things.
2177 if (page_mkclean(page))
2178 set_page_dirty(page);
2180 * We carefully synchronise fault handlers against
2181 * installing a dirty pte and marking the page dirty
2182 * at this point. We do this by having them hold the
2183 * page lock at some point after installing their
2184 * pte, but before marking the page dirty.
2185 * Pages are always locked coming in here, so we get
2186 * the desired exclusion. See mm/memory.c:do_wp_page()
2187 * for more comments.
2189 if (TestClearPageDirty(page)) {
2190 dec_zone_page_state(page, NR_FILE_DIRTY);
2191 dec_bdi_stat(mapping->backing_dev_info,
2197 return TestClearPageDirty(page);
2199 EXPORT_SYMBOL(clear_page_dirty_for_io);
2201 int test_clear_page_writeback(struct page *page)
2203 struct address_space *mapping = page_mapping(page);
2207 struct backing_dev_info *bdi = mapping->backing_dev_info;
2208 unsigned long flags;
2210 spin_lock_irqsave(&mapping->tree_lock, flags);
2211 ret = TestClearPageWriteback(page);
2213 radix_tree_tag_clear(&mapping->page_tree,
2215 PAGECACHE_TAG_WRITEBACK);
2216 if (bdi_cap_account_writeback(bdi)) {
2217 __dec_bdi_stat(bdi, BDI_WRITEBACK);
2218 __bdi_writeout_inc(bdi);
2221 spin_unlock_irqrestore(&mapping->tree_lock, flags);
2223 ret = TestClearPageWriteback(page);
2226 dec_zone_page_state(page, NR_WRITEBACK);
2227 inc_zone_page_state(page, NR_WRITTEN);
2232 int test_set_page_writeback(struct page *page)
2234 struct address_space *mapping = page_mapping(page);
2238 struct backing_dev_info *bdi = mapping->backing_dev_info;
2239 unsigned long flags;
2241 spin_lock_irqsave(&mapping->tree_lock, flags);
2242 ret = TestSetPageWriteback(page);
2244 radix_tree_tag_set(&mapping->page_tree,
2246 PAGECACHE_TAG_WRITEBACK);
2247 if (bdi_cap_account_writeback(bdi))
2248 __inc_bdi_stat(bdi, BDI_WRITEBACK);
2250 if (!PageDirty(page))
2251 radix_tree_tag_clear(&mapping->page_tree,
2253 PAGECACHE_TAG_DIRTY);
2254 radix_tree_tag_clear(&mapping->page_tree,
2256 PAGECACHE_TAG_TOWRITE);
2257 spin_unlock_irqrestore(&mapping->tree_lock, flags);
2259 ret = TestSetPageWriteback(page);
2262 account_page_writeback(page);
2266 EXPORT_SYMBOL(test_set_page_writeback);
2269 * Return true if any of the pages in the mapping are marked with the
2272 int mapping_tagged(struct address_space *mapping, int tag)
2274 return radix_tree_tagged(&mapping->page_tree, tag);
2276 EXPORT_SYMBOL(mapping_tagged);