mm: add bdi_get_max_bytes() function
[platform/kernel/linux-starfive.git] / mm / page-writeback.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * mm/page-writeback.c
4  *
5  * Copyright (C) 2002, Linus Torvalds.
6  * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra
7  *
8  * Contains functions related to writing back dirty pages at the
9  * address_space level.
10  *
11  * 10Apr2002    Andrew Morton
12  *              Initial version
13  */
14
15 #include <linux/kernel.h>
16 #include <linux/export.h>
17 #include <linux/spinlock.h>
18 #include <linux/fs.h>
19 #include <linux/mm.h>
20 #include <linux/swap.h>
21 #include <linux/slab.h>
22 #include <linux/pagemap.h>
23 #include <linux/writeback.h>
24 #include <linux/init.h>
25 #include <linux/backing-dev.h>
26 #include <linux/task_io_accounting_ops.h>
27 #include <linux/blkdev.h>
28 #include <linux/mpage.h>
29 #include <linux/rmap.h>
30 #include <linux/percpu.h>
31 #include <linux/smp.h>
32 #include <linux/sysctl.h>
33 #include <linux/cpu.h>
34 #include <linux/syscalls.h>
35 #include <linux/pagevec.h>
36 #include <linux/timer.h>
37 #include <linux/sched/rt.h>
38 #include <linux/sched/signal.h>
39 #include <linux/mm_inline.h>
40 #include <trace/events/writeback.h>
41
42 #include "internal.h"
43
44 /*
45  * Sleep at most 200ms at a time in balance_dirty_pages().
46  */
47 #define MAX_PAUSE               max(HZ/5, 1)
48
49 /*
50  * Try to keep balance_dirty_pages() call intervals higher than this many pages
51  * by raising pause time to max_pause when falls below it.
52  */
53 #define DIRTY_POLL_THRESH       (128 >> (PAGE_SHIFT - 10))
54
55 /*
56  * Estimate write bandwidth at 200ms intervals.
57  */
58 #define BANDWIDTH_INTERVAL      max(HZ/5, 1)
59
60 #define RATELIMIT_CALC_SHIFT    10
61
62 /*
63  * After a CPU has dirtied this many pages, balance_dirty_pages_ratelimited
64  * will look to see if it needs to force writeback or throttling.
65  */
66 static long ratelimit_pages = 32;
67
68 /* The following parameters are exported via /proc/sys/vm */
69
70 /*
71  * Start background writeback (via writeback threads) at this percentage
72  */
73 static int dirty_background_ratio = 10;
74
75 /*
76  * dirty_background_bytes starts at 0 (disabled) so that it is a function of
77  * dirty_background_ratio * the amount of dirtyable memory
78  */
79 static unsigned long dirty_background_bytes;
80
81 /*
82  * free highmem will not be subtracted from the total free memory
83  * for calculating free ratios if vm_highmem_is_dirtyable is true
84  */
85 static int vm_highmem_is_dirtyable;
86
87 /*
88  * The generator of dirty data starts writeback at this percentage
89  */
90 static int vm_dirty_ratio = 20;
91
92 /*
93  * vm_dirty_bytes starts at 0 (disabled) so that it is a function of
94  * vm_dirty_ratio * the amount of dirtyable memory
95  */
96 static unsigned long vm_dirty_bytes;
97
98 /*
99  * The interval between `kupdate'-style writebacks
100  */
101 unsigned int dirty_writeback_interval = 5 * 100; /* centiseconds */
102
103 EXPORT_SYMBOL_GPL(dirty_writeback_interval);
104
105 /*
106  * The longest time for which data is allowed to remain dirty
107  */
108 unsigned int dirty_expire_interval = 30 * 100; /* centiseconds */
109
110 /*
111  * Flag that puts the machine in "laptop mode". Doubles as a timeout in jiffies:
112  * a full sync is triggered after this time elapses without any disk activity.
113  */
114 int laptop_mode;
115
116 EXPORT_SYMBOL(laptop_mode);
117
118 /* End of sysctl-exported parameters */
119
120 struct wb_domain global_wb_domain;
121
122 /* consolidated parameters for balance_dirty_pages() and its subroutines */
123 struct dirty_throttle_control {
124 #ifdef CONFIG_CGROUP_WRITEBACK
125         struct wb_domain        *dom;
126         struct dirty_throttle_control *gdtc;    /* only set in memcg dtc's */
127 #endif
128         struct bdi_writeback    *wb;
129         struct fprop_local_percpu *wb_completions;
130
131         unsigned long           avail;          /* dirtyable */
132         unsigned long           dirty;          /* file_dirty + write + nfs */
133         unsigned long           thresh;         /* dirty threshold */
134         unsigned long           bg_thresh;      /* dirty background threshold */
135
136         unsigned long           wb_dirty;       /* per-wb counterparts */
137         unsigned long           wb_thresh;
138         unsigned long           wb_bg_thresh;
139
140         unsigned long           pos_ratio;
141 };
142
143 /*
144  * Length of period for aging writeout fractions of bdis. This is an
145  * arbitrarily chosen number. The longer the period, the slower fractions will
146  * reflect changes in current writeout rate.
147  */
148 #define VM_COMPLETIONS_PERIOD_LEN (3*HZ)
149
150 #ifdef CONFIG_CGROUP_WRITEBACK
151
152 #define GDTC_INIT(__wb)         .wb = (__wb),                           \
153                                 .dom = &global_wb_domain,               \
154                                 .wb_completions = &(__wb)->completions
155
156 #define GDTC_INIT_NO_WB         .dom = &global_wb_domain
157
158 #define MDTC_INIT(__wb, __gdtc) .wb = (__wb),                           \
159                                 .dom = mem_cgroup_wb_domain(__wb),      \
160                                 .wb_completions = &(__wb)->memcg_completions, \
161                                 .gdtc = __gdtc
162
163 static bool mdtc_valid(struct dirty_throttle_control *dtc)
164 {
165         return dtc->dom;
166 }
167
168 static struct wb_domain *dtc_dom(struct dirty_throttle_control *dtc)
169 {
170         return dtc->dom;
171 }
172
173 static struct dirty_throttle_control *mdtc_gdtc(struct dirty_throttle_control *mdtc)
174 {
175         return mdtc->gdtc;
176 }
177
178 static struct fprop_local_percpu *wb_memcg_completions(struct bdi_writeback *wb)
179 {
180         return &wb->memcg_completions;
181 }
182
183 static void wb_min_max_ratio(struct bdi_writeback *wb,
184                              unsigned long *minp, unsigned long *maxp)
185 {
186         unsigned long this_bw = READ_ONCE(wb->avg_write_bandwidth);
187         unsigned long tot_bw = atomic_long_read(&wb->bdi->tot_write_bandwidth);
188         unsigned long long min = wb->bdi->min_ratio;
189         unsigned long long max = wb->bdi->max_ratio;
190
191         /*
192          * @wb may already be clean by the time control reaches here and
193          * the total may not include its bw.
194          */
195         if (this_bw < tot_bw) {
196                 if (min) {
197                         min *= this_bw;
198                         min = div64_ul(min, tot_bw);
199                 }
200                 if (max < 100 * BDI_RATIO_SCALE) {
201                         max *= this_bw;
202                         max = div64_ul(max, tot_bw);
203                 }
204         }
205
206         *minp = min;
207         *maxp = max;
208 }
209
210 #else   /* CONFIG_CGROUP_WRITEBACK */
211
212 #define GDTC_INIT(__wb)         .wb = (__wb),                           \
213                                 .wb_completions = &(__wb)->completions
214 #define GDTC_INIT_NO_WB
215 #define MDTC_INIT(__wb, __gdtc)
216
217 static bool mdtc_valid(struct dirty_throttle_control *dtc)
218 {
219         return false;
220 }
221
222 static struct wb_domain *dtc_dom(struct dirty_throttle_control *dtc)
223 {
224         return &global_wb_domain;
225 }
226
227 static struct dirty_throttle_control *mdtc_gdtc(struct dirty_throttle_control *mdtc)
228 {
229         return NULL;
230 }
231
232 static struct fprop_local_percpu *wb_memcg_completions(struct bdi_writeback *wb)
233 {
234         return NULL;
235 }
236
237 static void wb_min_max_ratio(struct bdi_writeback *wb,
238                              unsigned long *minp, unsigned long *maxp)
239 {
240         *minp = wb->bdi->min_ratio;
241         *maxp = wb->bdi->max_ratio;
242 }
243
244 #endif  /* CONFIG_CGROUP_WRITEBACK */
245
246 /*
247  * In a memory zone, there is a certain amount of pages we consider
248  * available for the page cache, which is essentially the number of
249  * free and reclaimable pages, minus some zone reserves to protect
250  * lowmem and the ability to uphold the zone's watermarks without
251  * requiring writeback.
252  *
253  * This number of dirtyable pages is the base value of which the
254  * user-configurable dirty ratio is the effective number of pages that
255  * are allowed to be actually dirtied.  Per individual zone, or
256  * globally by using the sum of dirtyable pages over all zones.
257  *
258  * Because the user is allowed to specify the dirty limit globally as
259  * absolute number of bytes, calculating the per-zone dirty limit can
260  * require translating the configured limit into a percentage of
261  * global dirtyable memory first.
262  */
263
264 /**
265  * node_dirtyable_memory - number of dirtyable pages in a node
266  * @pgdat: the node
267  *
268  * Return: the node's number of pages potentially available for dirty
269  * page cache.  This is the base value for the per-node dirty limits.
270  */
271 static unsigned long node_dirtyable_memory(struct pglist_data *pgdat)
272 {
273         unsigned long nr_pages = 0;
274         int z;
275
276         for (z = 0; z < MAX_NR_ZONES; z++) {
277                 struct zone *zone = pgdat->node_zones + z;
278
279                 if (!populated_zone(zone))
280                         continue;
281
282                 nr_pages += zone_page_state(zone, NR_FREE_PAGES);
283         }
284
285         /*
286          * Pages reserved for the kernel should not be considered
287          * dirtyable, to prevent a situation where reclaim has to
288          * clean pages in order to balance the zones.
289          */
290         nr_pages -= min(nr_pages, pgdat->totalreserve_pages);
291
292         nr_pages += node_page_state(pgdat, NR_INACTIVE_FILE);
293         nr_pages += node_page_state(pgdat, NR_ACTIVE_FILE);
294
295         return nr_pages;
296 }
297
298 static unsigned long highmem_dirtyable_memory(unsigned long total)
299 {
300 #ifdef CONFIG_HIGHMEM
301         int node;
302         unsigned long x = 0;
303         int i;
304
305         for_each_node_state(node, N_HIGH_MEMORY) {
306                 for (i = ZONE_NORMAL + 1; i < MAX_NR_ZONES; i++) {
307                         struct zone *z;
308                         unsigned long nr_pages;
309
310                         if (!is_highmem_idx(i))
311                                 continue;
312
313                         z = &NODE_DATA(node)->node_zones[i];
314                         if (!populated_zone(z))
315                                 continue;
316
317                         nr_pages = zone_page_state(z, NR_FREE_PAGES);
318                         /* watch for underflows */
319                         nr_pages -= min(nr_pages, high_wmark_pages(z));
320                         nr_pages += zone_page_state(z, NR_ZONE_INACTIVE_FILE);
321                         nr_pages += zone_page_state(z, NR_ZONE_ACTIVE_FILE);
322                         x += nr_pages;
323                 }
324         }
325
326         /*
327          * Make sure that the number of highmem pages is never larger
328          * than the number of the total dirtyable memory. This can only
329          * occur in very strange VM situations but we want to make sure
330          * that this does not occur.
331          */
332         return min(x, total);
333 #else
334         return 0;
335 #endif
336 }
337
338 /**
339  * global_dirtyable_memory - number of globally dirtyable pages
340  *
341  * Return: the global number of pages potentially available for dirty
342  * page cache.  This is the base value for the global dirty limits.
343  */
344 static unsigned long global_dirtyable_memory(void)
345 {
346         unsigned long x;
347
348         x = global_zone_page_state(NR_FREE_PAGES);
349         /*
350          * Pages reserved for the kernel should not be considered
351          * dirtyable, to prevent a situation where reclaim has to
352          * clean pages in order to balance the zones.
353          */
354         x -= min(x, totalreserve_pages);
355
356         x += global_node_page_state(NR_INACTIVE_FILE);
357         x += global_node_page_state(NR_ACTIVE_FILE);
358
359         if (!vm_highmem_is_dirtyable)
360                 x -= highmem_dirtyable_memory(x);
361
362         return x + 1;   /* Ensure that we never return 0 */
363 }
364
365 /**
366  * domain_dirty_limits - calculate thresh and bg_thresh for a wb_domain
367  * @dtc: dirty_throttle_control of interest
368  *
369  * Calculate @dtc->thresh and ->bg_thresh considering
370  * vm_dirty_{bytes|ratio} and dirty_background_{bytes|ratio}.  The caller
371  * must ensure that @dtc->avail is set before calling this function.  The
372  * dirty limits will be lifted by 1/4 for real-time tasks.
373  */
374 static void domain_dirty_limits(struct dirty_throttle_control *dtc)
375 {
376         const unsigned long available_memory = dtc->avail;
377         struct dirty_throttle_control *gdtc = mdtc_gdtc(dtc);
378         unsigned long bytes = vm_dirty_bytes;
379         unsigned long bg_bytes = dirty_background_bytes;
380         /* convert ratios to per-PAGE_SIZE for higher precision */
381         unsigned long ratio = (vm_dirty_ratio * PAGE_SIZE) / 100;
382         unsigned long bg_ratio = (dirty_background_ratio * PAGE_SIZE) / 100;
383         unsigned long thresh;
384         unsigned long bg_thresh;
385         struct task_struct *tsk;
386
387         /* gdtc is !NULL iff @dtc is for memcg domain */
388         if (gdtc) {
389                 unsigned long global_avail = gdtc->avail;
390
391                 /*
392                  * The byte settings can't be applied directly to memcg
393                  * domains.  Convert them to ratios by scaling against
394                  * globally available memory.  As the ratios are in
395                  * per-PAGE_SIZE, they can be obtained by dividing bytes by
396                  * number of pages.
397                  */
398                 if (bytes)
399                         ratio = min(DIV_ROUND_UP(bytes, global_avail),
400                                     PAGE_SIZE);
401                 if (bg_bytes)
402                         bg_ratio = min(DIV_ROUND_UP(bg_bytes, global_avail),
403                                        PAGE_SIZE);
404                 bytes = bg_bytes = 0;
405         }
406
407         if (bytes)
408                 thresh = DIV_ROUND_UP(bytes, PAGE_SIZE);
409         else
410                 thresh = (ratio * available_memory) / PAGE_SIZE;
411
412         if (bg_bytes)
413                 bg_thresh = DIV_ROUND_UP(bg_bytes, PAGE_SIZE);
414         else
415                 bg_thresh = (bg_ratio * available_memory) / PAGE_SIZE;
416
417         if (bg_thresh >= thresh)
418                 bg_thresh = thresh / 2;
419         tsk = current;
420         if (rt_task(tsk)) {
421                 bg_thresh += bg_thresh / 4 + global_wb_domain.dirty_limit / 32;
422                 thresh += thresh / 4 + global_wb_domain.dirty_limit / 32;
423         }
424         dtc->thresh = thresh;
425         dtc->bg_thresh = bg_thresh;
426
427         /* we should eventually report the domain in the TP */
428         if (!gdtc)
429                 trace_global_dirty_state(bg_thresh, thresh);
430 }
431
432 /**
433  * global_dirty_limits - background-writeback and dirty-throttling thresholds
434  * @pbackground: out parameter for bg_thresh
435  * @pdirty: out parameter for thresh
436  *
437  * Calculate bg_thresh and thresh for global_wb_domain.  See
438  * domain_dirty_limits() for details.
439  */
440 void global_dirty_limits(unsigned long *pbackground, unsigned long *pdirty)
441 {
442         struct dirty_throttle_control gdtc = { GDTC_INIT_NO_WB };
443
444         gdtc.avail = global_dirtyable_memory();
445         domain_dirty_limits(&gdtc);
446
447         *pbackground = gdtc.bg_thresh;
448         *pdirty = gdtc.thresh;
449 }
450
451 /**
452  * node_dirty_limit - maximum number of dirty pages allowed in a node
453  * @pgdat: the node
454  *
455  * Return: the maximum number of dirty pages allowed in a node, based
456  * on the node's dirtyable memory.
457  */
458 static unsigned long node_dirty_limit(struct pglist_data *pgdat)
459 {
460         unsigned long node_memory = node_dirtyable_memory(pgdat);
461         struct task_struct *tsk = current;
462         unsigned long dirty;
463
464         if (vm_dirty_bytes)
465                 dirty = DIV_ROUND_UP(vm_dirty_bytes, PAGE_SIZE) *
466                         node_memory / global_dirtyable_memory();
467         else
468                 dirty = vm_dirty_ratio * node_memory / 100;
469
470         if (rt_task(tsk))
471                 dirty += dirty / 4;
472
473         return dirty;
474 }
475
476 /**
477  * node_dirty_ok - tells whether a node is within its dirty limits
478  * @pgdat: the node to check
479  *
480  * Return: %true when the dirty pages in @pgdat are within the node's
481  * dirty limit, %false if the limit is exceeded.
482  */
483 bool node_dirty_ok(struct pglist_data *pgdat)
484 {
485         unsigned long limit = node_dirty_limit(pgdat);
486         unsigned long nr_pages = 0;
487
488         nr_pages += node_page_state(pgdat, NR_FILE_DIRTY);
489         nr_pages += node_page_state(pgdat, NR_WRITEBACK);
490
491         return nr_pages <= limit;
492 }
493
494 #ifdef CONFIG_SYSCTL
495 static int dirty_background_ratio_handler(struct ctl_table *table, int write,
496                 void *buffer, size_t *lenp, loff_t *ppos)
497 {
498         int ret;
499
500         ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
501         if (ret == 0 && write)
502                 dirty_background_bytes = 0;
503         return ret;
504 }
505
506 static int dirty_background_bytes_handler(struct ctl_table *table, int write,
507                 void *buffer, size_t *lenp, loff_t *ppos)
508 {
509         int ret;
510
511         ret = proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
512         if (ret == 0 && write)
513                 dirty_background_ratio = 0;
514         return ret;
515 }
516
517 static int dirty_ratio_handler(struct ctl_table *table, int write, void *buffer,
518                 size_t *lenp, loff_t *ppos)
519 {
520         int old_ratio = vm_dirty_ratio;
521         int ret;
522
523         ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
524         if (ret == 0 && write && vm_dirty_ratio != old_ratio) {
525                 writeback_set_ratelimit();
526                 vm_dirty_bytes = 0;
527         }
528         return ret;
529 }
530
531 static int dirty_bytes_handler(struct ctl_table *table, int write,
532                 void *buffer, size_t *lenp, loff_t *ppos)
533 {
534         unsigned long old_bytes = vm_dirty_bytes;
535         int ret;
536
537         ret = proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
538         if (ret == 0 && write && vm_dirty_bytes != old_bytes) {
539                 writeback_set_ratelimit();
540                 vm_dirty_ratio = 0;
541         }
542         return ret;
543 }
544 #endif
545
546 static unsigned long wp_next_time(unsigned long cur_time)
547 {
548         cur_time += VM_COMPLETIONS_PERIOD_LEN;
549         /* 0 has a special meaning... */
550         if (!cur_time)
551                 return 1;
552         return cur_time;
553 }
554
555 static void wb_domain_writeout_add(struct wb_domain *dom,
556                                    struct fprop_local_percpu *completions,
557                                    unsigned int max_prop_frac, long nr)
558 {
559         __fprop_add_percpu_max(&dom->completions, completions,
560                                max_prop_frac, nr);
561         /* First event after period switching was turned off? */
562         if (unlikely(!dom->period_time)) {
563                 /*
564                  * We can race with other __bdi_writeout_inc calls here but
565                  * it does not cause any harm since the resulting time when
566                  * timer will fire and what is in writeout_period_time will be
567                  * roughly the same.
568                  */
569                 dom->period_time = wp_next_time(jiffies);
570                 mod_timer(&dom->period_timer, dom->period_time);
571         }
572 }
573
574 /*
575  * Increment @wb's writeout completion count and the global writeout
576  * completion count. Called from __folio_end_writeback().
577  */
578 static inline void __wb_writeout_add(struct bdi_writeback *wb, long nr)
579 {
580         struct wb_domain *cgdom;
581
582         wb_stat_mod(wb, WB_WRITTEN, nr);
583         wb_domain_writeout_add(&global_wb_domain, &wb->completions,
584                                wb->bdi->max_prop_frac, nr);
585
586         cgdom = mem_cgroup_wb_domain(wb);
587         if (cgdom)
588                 wb_domain_writeout_add(cgdom, wb_memcg_completions(wb),
589                                        wb->bdi->max_prop_frac, nr);
590 }
591
592 void wb_writeout_inc(struct bdi_writeback *wb)
593 {
594         unsigned long flags;
595
596         local_irq_save(flags);
597         __wb_writeout_add(wb, 1);
598         local_irq_restore(flags);
599 }
600 EXPORT_SYMBOL_GPL(wb_writeout_inc);
601
602 /*
603  * On idle system, we can be called long after we scheduled because we use
604  * deferred timers so count with missed periods.
605  */
606 static void writeout_period(struct timer_list *t)
607 {
608         struct wb_domain *dom = from_timer(dom, t, period_timer);
609         int miss_periods = (jiffies - dom->period_time) /
610                                                  VM_COMPLETIONS_PERIOD_LEN;
611
612         if (fprop_new_period(&dom->completions, miss_periods + 1)) {
613                 dom->period_time = wp_next_time(dom->period_time +
614                                 miss_periods * VM_COMPLETIONS_PERIOD_LEN);
615                 mod_timer(&dom->period_timer, dom->period_time);
616         } else {
617                 /*
618                  * Aging has zeroed all fractions. Stop wasting CPU on period
619                  * updates.
620                  */
621                 dom->period_time = 0;
622         }
623 }
624
625 int wb_domain_init(struct wb_domain *dom, gfp_t gfp)
626 {
627         memset(dom, 0, sizeof(*dom));
628
629         spin_lock_init(&dom->lock);
630
631         timer_setup(&dom->period_timer, writeout_period, TIMER_DEFERRABLE);
632
633         dom->dirty_limit_tstamp = jiffies;
634
635         return fprop_global_init(&dom->completions, gfp);
636 }
637
638 #ifdef CONFIG_CGROUP_WRITEBACK
639 void wb_domain_exit(struct wb_domain *dom)
640 {
641         del_timer_sync(&dom->period_timer);
642         fprop_global_destroy(&dom->completions);
643 }
644 #endif
645
646 /*
647  * bdi_min_ratio keeps the sum of the minimum dirty shares of all
648  * registered backing devices, which, for obvious reasons, can not
649  * exceed 100%.
650  */
651 static unsigned int bdi_min_ratio;
652
653 static u64 bdi_get_bytes(unsigned int ratio)
654 {
655         unsigned long background_thresh;
656         unsigned long dirty_thresh;
657         u64 bytes;
658
659         global_dirty_limits(&background_thresh, &dirty_thresh);
660         bytes = (dirty_thresh * PAGE_SIZE * ratio) / BDI_RATIO_SCALE / 100;
661
662         return bytes;
663 }
664
665 int bdi_set_min_ratio(struct backing_dev_info *bdi, unsigned int min_ratio)
666 {
667         unsigned int delta;
668         int ret = 0;
669
670         min_ratio *= BDI_RATIO_SCALE;
671
672         spin_lock_bh(&bdi_lock);
673         if (min_ratio > bdi->max_ratio) {
674                 ret = -EINVAL;
675         } else {
676                 if (min_ratio < bdi->min_ratio) {
677                         delta = bdi->min_ratio - min_ratio;
678                         bdi_min_ratio -= delta;
679                         bdi->min_ratio = min_ratio;
680                 } else {
681                         delta = min_ratio - bdi->min_ratio;
682                         if (bdi_min_ratio + delta < 100 * BDI_RATIO_SCALE) {
683                                 bdi_min_ratio += delta;
684                                 bdi->min_ratio = min_ratio;
685                         } else {
686                                 ret = -EINVAL;
687                         }
688                 }
689         }
690         spin_unlock_bh(&bdi_lock);
691
692         return ret;
693 }
694
695 int bdi_set_max_ratio(struct backing_dev_info *bdi, unsigned max_ratio)
696 {
697         int ret = 0;
698
699         if (max_ratio > 100)
700                 return -EINVAL;
701         max_ratio *= BDI_RATIO_SCALE;
702
703         spin_lock_bh(&bdi_lock);
704         if (bdi->min_ratio > max_ratio) {
705                 ret = -EINVAL;
706         } else {
707                 bdi->max_ratio = max_ratio;
708                 bdi->max_prop_frac = (FPROP_FRAC_BASE * max_ratio) / 100;
709         }
710         spin_unlock_bh(&bdi_lock);
711
712         return ret;
713 }
714 EXPORT_SYMBOL(bdi_set_max_ratio);
715
716 u64 bdi_get_max_bytes(struct backing_dev_info *bdi)
717 {
718         return bdi_get_bytes(bdi->max_ratio);
719 }
720
721 int bdi_set_strict_limit(struct backing_dev_info *bdi, unsigned int strict_limit)
722 {
723         if (strict_limit > 1)
724                 return -EINVAL;
725
726         spin_lock_bh(&bdi_lock);
727         if (strict_limit)
728                 bdi->capabilities |= BDI_CAP_STRICTLIMIT;
729         else
730                 bdi->capabilities &= ~BDI_CAP_STRICTLIMIT;
731         spin_unlock_bh(&bdi_lock);
732
733         return 0;
734 }
735
736 static unsigned long dirty_freerun_ceiling(unsigned long thresh,
737                                            unsigned long bg_thresh)
738 {
739         return (thresh + bg_thresh) / 2;
740 }
741
742 static unsigned long hard_dirty_limit(struct wb_domain *dom,
743                                       unsigned long thresh)
744 {
745         return max(thresh, dom->dirty_limit);
746 }
747
748 /*
749  * Memory which can be further allocated to a memcg domain is capped by
750  * system-wide clean memory excluding the amount being used in the domain.
751  */
752 static void mdtc_calc_avail(struct dirty_throttle_control *mdtc,
753                             unsigned long filepages, unsigned long headroom)
754 {
755         struct dirty_throttle_control *gdtc = mdtc_gdtc(mdtc);
756         unsigned long clean = filepages - min(filepages, mdtc->dirty);
757         unsigned long global_clean = gdtc->avail - min(gdtc->avail, gdtc->dirty);
758         unsigned long other_clean = global_clean - min(global_clean, clean);
759
760         mdtc->avail = filepages + min(headroom, other_clean);
761 }
762
763 /**
764  * __wb_calc_thresh - @wb's share of dirty throttling threshold
765  * @dtc: dirty_throttle_context of interest
766  *
767  * Note that balance_dirty_pages() will only seriously take it as a hard limit
768  * when sleeping max_pause per page is not enough to keep the dirty pages under
769  * control. For example, when the device is completely stalled due to some error
770  * conditions, or when there are 1000 dd tasks writing to a slow 10MB/s USB key.
771  * In the other normal situations, it acts more gently by throttling the tasks
772  * more (rather than completely block them) when the wb dirty pages go high.
773  *
774  * It allocates high/low dirty limits to fast/slow devices, in order to prevent
775  * - starving fast devices
776  * - piling up dirty pages (that will take long time to sync) on slow devices
777  *
778  * The wb's share of dirty limit will be adapting to its throughput and
779  * bounded by the bdi->min_ratio and/or bdi->max_ratio parameters, if set.
780  *
781  * Return: @wb's dirty limit in pages. The term "dirty" in the context of
782  * dirty balancing includes all PG_dirty and PG_writeback pages.
783  */
784 static unsigned long __wb_calc_thresh(struct dirty_throttle_control *dtc)
785 {
786         struct wb_domain *dom = dtc_dom(dtc);
787         unsigned long thresh = dtc->thresh;
788         u64 wb_thresh;
789         unsigned long numerator, denominator;
790         unsigned long wb_min_ratio, wb_max_ratio;
791
792         /*
793          * Calculate this BDI's share of the thresh ratio.
794          */
795         fprop_fraction_percpu(&dom->completions, dtc->wb_completions,
796                               &numerator, &denominator);
797
798         wb_thresh = (thresh * (100 * BDI_RATIO_SCALE - bdi_min_ratio)) / (100 * BDI_RATIO_SCALE);
799         wb_thresh *= numerator;
800         wb_thresh = div64_ul(wb_thresh, denominator);
801
802         wb_min_max_ratio(dtc->wb, &wb_min_ratio, &wb_max_ratio);
803
804         wb_thresh += (thresh * wb_min_ratio) / (100 * BDI_RATIO_SCALE);
805         if (wb_thresh > (thresh * wb_max_ratio) / (100 * BDI_RATIO_SCALE))
806                 wb_thresh = thresh * wb_max_ratio / (100 * BDI_RATIO_SCALE);
807
808         return wb_thresh;
809 }
810
811 unsigned long wb_calc_thresh(struct bdi_writeback *wb, unsigned long thresh)
812 {
813         struct dirty_throttle_control gdtc = { GDTC_INIT(wb),
814                                                .thresh = thresh };
815         return __wb_calc_thresh(&gdtc);
816 }
817
818 /*
819  *                           setpoint - dirty 3
820  *        f(dirty) := 1.0 + (----------------)
821  *                           limit - setpoint
822  *
823  * it's a 3rd order polynomial that subjects to
824  *
825  * (1) f(freerun)  = 2.0 => rampup dirty_ratelimit reasonably fast
826  * (2) f(setpoint) = 1.0 => the balance point
827  * (3) f(limit)    = 0   => the hard limit
828  * (4) df/dx      <= 0   => negative feedback control
829  * (5) the closer to setpoint, the smaller |df/dx| (and the reverse)
830  *     => fast response on large errors; small oscillation near setpoint
831  */
832 static long long pos_ratio_polynom(unsigned long setpoint,
833                                           unsigned long dirty,
834                                           unsigned long limit)
835 {
836         long long pos_ratio;
837         long x;
838
839         x = div64_s64(((s64)setpoint - (s64)dirty) << RATELIMIT_CALC_SHIFT,
840                       (limit - setpoint) | 1);
841         pos_ratio = x;
842         pos_ratio = pos_ratio * x >> RATELIMIT_CALC_SHIFT;
843         pos_ratio = pos_ratio * x >> RATELIMIT_CALC_SHIFT;
844         pos_ratio += 1 << RATELIMIT_CALC_SHIFT;
845
846         return clamp(pos_ratio, 0LL, 2LL << RATELIMIT_CALC_SHIFT);
847 }
848
849 /*
850  * Dirty position control.
851  *
852  * (o) global/bdi setpoints
853  *
854  * We want the dirty pages be balanced around the global/wb setpoints.
855  * When the number of dirty pages is higher/lower than the setpoint, the
856  * dirty position control ratio (and hence task dirty ratelimit) will be
857  * decreased/increased to bring the dirty pages back to the setpoint.
858  *
859  *     pos_ratio = 1 << RATELIMIT_CALC_SHIFT
860  *
861  *     if (dirty < setpoint) scale up   pos_ratio
862  *     if (dirty > setpoint) scale down pos_ratio
863  *
864  *     if (wb_dirty < wb_setpoint) scale up   pos_ratio
865  *     if (wb_dirty > wb_setpoint) scale down pos_ratio
866  *
867  *     task_ratelimit = dirty_ratelimit * pos_ratio >> RATELIMIT_CALC_SHIFT
868  *
869  * (o) global control line
870  *
871  *     ^ pos_ratio
872  *     |
873  *     |            |<===== global dirty control scope ======>|
874  * 2.0  * * * * * * *
875  *     |            .*
876  *     |            . *
877  *     |            .   *
878  *     |            .     *
879  *     |            .        *
880  *     |            .            *
881  * 1.0 ................................*
882  *     |            .                  .     *
883  *     |            .                  .          *
884  *     |            .                  .              *
885  *     |            .                  .                 *
886  *     |            .                  .                    *
887  *   0 +------------.------------------.----------------------*------------->
888  *           freerun^          setpoint^                 limit^   dirty pages
889  *
890  * (o) wb control line
891  *
892  *     ^ pos_ratio
893  *     |
894  *     |            *
895  *     |              *
896  *     |                *
897  *     |                  *
898  *     |                    * |<=========== span ============>|
899  * 1.0 .......................*
900  *     |                      . *
901  *     |                      .   *
902  *     |                      .     *
903  *     |                      .       *
904  *     |                      .         *
905  *     |                      .           *
906  *     |                      .             *
907  *     |                      .               *
908  *     |                      .                 *
909  *     |                      .                   *
910  *     |                      .                     *
911  * 1/4 ...............................................* * * * * * * * * * * *
912  *     |                      .                         .
913  *     |                      .                           .
914  *     |                      .                             .
915  *   0 +----------------------.-------------------------------.------------->
916  *                wb_setpoint^                    x_intercept^
917  *
918  * The wb control line won't drop below pos_ratio=1/4, so that wb_dirty can
919  * be smoothly throttled down to normal if it starts high in situations like
920  * - start writing to a slow SD card and a fast disk at the same time. The SD
921  *   card's wb_dirty may rush to many times higher than wb_setpoint.
922  * - the wb dirty thresh drops quickly due to change of JBOD workload
923  */
924 static void wb_position_ratio(struct dirty_throttle_control *dtc)
925 {
926         struct bdi_writeback *wb = dtc->wb;
927         unsigned long write_bw = READ_ONCE(wb->avg_write_bandwidth);
928         unsigned long freerun = dirty_freerun_ceiling(dtc->thresh, dtc->bg_thresh);
929         unsigned long limit = hard_dirty_limit(dtc_dom(dtc), dtc->thresh);
930         unsigned long wb_thresh = dtc->wb_thresh;
931         unsigned long x_intercept;
932         unsigned long setpoint;         /* dirty pages' target balance point */
933         unsigned long wb_setpoint;
934         unsigned long span;
935         long long pos_ratio;            /* for scaling up/down the rate limit */
936         long x;
937
938         dtc->pos_ratio = 0;
939
940         if (unlikely(dtc->dirty >= limit))
941                 return;
942
943         /*
944          * global setpoint
945          *
946          * See comment for pos_ratio_polynom().
947          */
948         setpoint = (freerun + limit) / 2;
949         pos_ratio = pos_ratio_polynom(setpoint, dtc->dirty, limit);
950
951         /*
952          * The strictlimit feature is a tool preventing mistrusted filesystems
953          * from growing a large number of dirty pages before throttling. For
954          * such filesystems balance_dirty_pages always checks wb counters
955          * against wb limits. Even if global "nr_dirty" is under "freerun".
956          * This is especially important for fuse which sets bdi->max_ratio to
957          * 1% by default. Without strictlimit feature, fuse writeback may
958          * consume arbitrary amount of RAM because it is accounted in
959          * NR_WRITEBACK_TEMP which is not involved in calculating "nr_dirty".
960          *
961          * Here, in wb_position_ratio(), we calculate pos_ratio based on
962          * two values: wb_dirty and wb_thresh. Let's consider an example:
963          * total amount of RAM is 16GB, bdi->max_ratio is equal to 1%, global
964          * limits are set by default to 10% and 20% (background and throttle).
965          * Then wb_thresh is 1% of 20% of 16GB. This amounts to ~8K pages.
966          * wb_calc_thresh(wb, bg_thresh) is about ~4K pages. wb_setpoint is
967          * about ~6K pages (as the average of background and throttle wb
968          * limits). The 3rd order polynomial will provide positive feedback if
969          * wb_dirty is under wb_setpoint and vice versa.
970          *
971          * Note, that we cannot use global counters in these calculations
972          * because we want to throttle process writing to a strictlimit wb
973          * much earlier than global "freerun" is reached (~23MB vs. ~2.3GB
974          * in the example above).
975          */
976         if (unlikely(wb->bdi->capabilities & BDI_CAP_STRICTLIMIT)) {
977                 long long wb_pos_ratio;
978
979                 if (dtc->wb_dirty < 8) {
980                         dtc->pos_ratio = min_t(long long, pos_ratio * 2,
981                                            2 << RATELIMIT_CALC_SHIFT);
982                         return;
983                 }
984
985                 if (dtc->wb_dirty >= wb_thresh)
986                         return;
987
988                 wb_setpoint = dirty_freerun_ceiling(wb_thresh,
989                                                     dtc->wb_bg_thresh);
990
991                 if (wb_setpoint == 0 || wb_setpoint == wb_thresh)
992                         return;
993
994                 wb_pos_ratio = pos_ratio_polynom(wb_setpoint, dtc->wb_dirty,
995                                                  wb_thresh);
996
997                 /*
998                  * Typically, for strictlimit case, wb_setpoint << setpoint
999                  * and pos_ratio >> wb_pos_ratio. In the other words global
1000                  * state ("dirty") is not limiting factor and we have to
1001                  * make decision based on wb counters. But there is an
1002                  * important case when global pos_ratio should get precedence:
1003                  * global limits are exceeded (e.g. due to activities on other
1004                  * wb's) while given strictlimit wb is below limit.
1005                  *
1006                  * "pos_ratio * wb_pos_ratio" would work for the case above,
1007                  * but it would look too non-natural for the case of all
1008                  * activity in the system coming from a single strictlimit wb
1009                  * with bdi->max_ratio == 100%.
1010                  *
1011                  * Note that min() below somewhat changes the dynamics of the
1012                  * control system. Normally, pos_ratio value can be well over 3
1013                  * (when globally we are at freerun and wb is well below wb
1014                  * setpoint). Now the maximum pos_ratio in the same situation
1015                  * is 2. We might want to tweak this if we observe the control
1016                  * system is too slow to adapt.
1017                  */
1018                 dtc->pos_ratio = min(pos_ratio, wb_pos_ratio);
1019                 return;
1020         }
1021
1022         /*
1023          * We have computed basic pos_ratio above based on global situation. If
1024          * the wb is over/under its share of dirty pages, we want to scale
1025          * pos_ratio further down/up. That is done by the following mechanism.
1026          */
1027
1028         /*
1029          * wb setpoint
1030          *
1031          *        f(wb_dirty) := 1.0 + k * (wb_dirty - wb_setpoint)
1032          *
1033          *                        x_intercept - wb_dirty
1034          *                     := --------------------------
1035          *                        x_intercept - wb_setpoint
1036          *
1037          * The main wb control line is a linear function that subjects to
1038          *
1039          * (1) f(wb_setpoint) = 1.0
1040          * (2) k = - 1 / (8 * write_bw)  (in single wb case)
1041          *     or equally: x_intercept = wb_setpoint + 8 * write_bw
1042          *
1043          * For single wb case, the dirty pages are observed to fluctuate
1044          * regularly within range
1045          *        [wb_setpoint - write_bw/2, wb_setpoint + write_bw/2]
1046          * for various filesystems, where (2) can yield in a reasonable 12.5%
1047          * fluctuation range for pos_ratio.
1048          *
1049          * For JBOD case, wb_thresh (not wb_dirty!) could fluctuate up to its
1050          * own size, so move the slope over accordingly and choose a slope that
1051          * yields 100% pos_ratio fluctuation on suddenly doubled wb_thresh.
1052          */
1053         if (unlikely(wb_thresh > dtc->thresh))
1054                 wb_thresh = dtc->thresh;
1055         /*
1056          * It's very possible that wb_thresh is close to 0 not because the
1057          * device is slow, but that it has remained inactive for long time.
1058          * Honour such devices a reasonable good (hopefully IO efficient)
1059          * threshold, so that the occasional writes won't be blocked and active
1060          * writes can rampup the threshold quickly.
1061          */
1062         wb_thresh = max(wb_thresh, (limit - dtc->dirty) / 8);
1063         /*
1064          * scale global setpoint to wb's:
1065          *      wb_setpoint = setpoint * wb_thresh / thresh
1066          */
1067         x = div_u64((u64)wb_thresh << 16, dtc->thresh | 1);
1068         wb_setpoint = setpoint * (u64)x >> 16;
1069         /*
1070          * Use span=(8*write_bw) in single wb case as indicated by
1071          * (thresh - wb_thresh ~= 0) and transit to wb_thresh in JBOD case.
1072          *
1073          *        wb_thresh                    thresh - wb_thresh
1074          * span = --------- * (8 * write_bw) + ------------------ * wb_thresh
1075          *         thresh                           thresh
1076          */
1077         span = (dtc->thresh - wb_thresh + 8 * write_bw) * (u64)x >> 16;
1078         x_intercept = wb_setpoint + span;
1079
1080         if (dtc->wb_dirty < x_intercept - span / 4) {
1081                 pos_ratio = div64_u64(pos_ratio * (x_intercept - dtc->wb_dirty),
1082                                       (x_intercept - wb_setpoint) | 1);
1083         } else
1084                 pos_ratio /= 4;
1085
1086         /*
1087          * wb reserve area, safeguard against dirty pool underrun and disk idle
1088          * It may push the desired control point of global dirty pages higher
1089          * than setpoint.
1090          */
1091         x_intercept = wb_thresh / 2;
1092         if (dtc->wb_dirty < x_intercept) {
1093                 if (dtc->wb_dirty > x_intercept / 8)
1094                         pos_ratio = div_u64(pos_ratio * x_intercept,
1095                                             dtc->wb_dirty);
1096                 else
1097                         pos_ratio *= 8;
1098         }
1099
1100         dtc->pos_ratio = pos_ratio;
1101 }
1102
1103 static void wb_update_write_bandwidth(struct bdi_writeback *wb,
1104                                       unsigned long elapsed,
1105                                       unsigned long written)
1106 {
1107         const unsigned long period = roundup_pow_of_two(3 * HZ);
1108         unsigned long avg = wb->avg_write_bandwidth;
1109         unsigned long old = wb->write_bandwidth;
1110         u64 bw;
1111
1112         /*
1113          * bw = written * HZ / elapsed
1114          *
1115          *                   bw * elapsed + write_bandwidth * (period - elapsed)
1116          * write_bandwidth = ---------------------------------------------------
1117          *                                          period
1118          *
1119          * @written may have decreased due to folio_account_redirty().
1120          * Avoid underflowing @bw calculation.
1121          */
1122         bw = written - min(written, wb->written_stamp);
1123         bw *= HZ;
1124         if (unlikely(elapsed > period)) {
1125                 bw = div64_ul(bw, elapsed);
1126                 avg = bw;
1127                 goto out;
1128         }
1129         bw += (u64)wb->write_bandwidth * (period - elapsed);
1130         bw >>= ilog2(period);
1131
1132         /*
1133          * one more level of smoothing, for filtering out sudden spikes
1134          */
1135         if (avg > old && old >= (unsigned long)bw)
1136                 avg -= (avg - old) >> 3;
1137
1138         if (avg < old && old <= (unsigned long)bw)
1139                 avg += (old - avg) >> 3;
1140
1141 out:
1142         /* keep avg > 0 to guarantee that tot > 0 if there are dirty wbs */
1143         avg = max(avg, 1LU);
1144         if (wb_has_dirty_io(wb)) {
1145                 long delta = avg - wb->avg_write_bandwidth;
1146                 WARN_ON_ONCE(atomic_long_add_return(delta,
1147                                         &wb->bdi->tot_write_bandwidth) <= 0);
1148         }
1149         wb->write_bandwidth = bw;
1150         WRITE_ONCE(wb->avg_write_bandwidth, avg);
1151 }
1152
1153 static void update_dirty_limit(struct dirty_throttle_control *dtc)
1154 {
1155         struct wb_domain *dom = dtc_dom(dtc);
1156         unsigned long thresh = dtc->thresh;
1157         unsigned long limit = dom->dirty_limit;
1158
1159         /*
1160          * Follow up in one step.
1161          */
1162         if (limit < thresh) {
1163                 limit = thresh;
1164                 goto update;
1165         }
1166
1167         /*
1168          * Follow down slowly. Use the higher one as the target, because thresh
1169          * may drop below dirty. This is exactly the reason to introduce
1170          * dom->dirty_limit which is guaranteed to lie above the dirty pages.
1171          */
1172         thresh = max(thresh, dtc->dirty);
1173         if (limit > thresh) {
1174                 limit -= (limit - thresh) >> 5;
1175                 goto update;
1176         }
1177         return;
1178 update:
1179         dom->dirty_limit = limit;
1180 }
1181
1182 static void domain_update_dirty_limit(struct dirty_throttle_control *dtc,
1183                                       unsigned long now)
1184 {
1185         struct wb_domain *dom = dtc_dom(dtc);
1186
1187         /*
1188          * check locklessly first to optimize away locking for the most time
1189          */
1190         if (time_before(now, dom->dirty_limit_tstamp + BANDWIDTH_INTERVAL))
1191                 return;
1192
1193         spin_lock(&dom->lock);
1194         if (time_after_eq(now, dom->dirty_limit_tstamp + BANDWIDTH_INTERVAL)) {
1195                 update_dirty_limit(dtc);
1196                 dom->dirty_limit_tstamp = now;
1197         }
1198         spin_unlock(&dom->lock);
1199 }
1200
1201 /*
1202  * Maintain wb->dirty_ratelimit, the base dirty throttle rate.
1203  *
1204  * Normal wb tasks will be curbed at or below it in long term.
1205  * Obviously it should be around (write_bw / N) when there are N dd tasks.
1206  */
1207 static void wb_update_dirty_ratelimit(struct dirty_throttle_control *dtc,
1208                                       unsigned long dirtied,
1209                                       unsigned long elapsed)
1210 {
1211         struct bdi_writeback *wb = dtc->wb;
1212         unsigned long dirty = dtc->dirty;
1213         unsigned long freerun = dirty_freerun_ceiling(dtc->thresh, dtc->bg_thresh);
1214         unsigned long limit = hard_dirty_limit(dtc_dom(dtc), dtc->thresh);
1215         unsigned long setpoint = (freerun + limit) / 2;
1216         unsigned long write_bw = wb->avg_write_bandwidth;
1217         unsigned long dirty_ratelimit = wb->dirty_ratelimit;
1218         unsigned long dirty_rate;
1219         unsigned long task_ratelimit;
1220         unsigned long balanced_dirty_ratelimit;
1221         unsigned long step;
1222         unsigned long x;
1223         unsigned long shift;
1224
1225         /*
1226          * The dirty rate will match the writeout rate in long term, except
1227          * when dirty pages are truncated by userspace or re-dirtied by FS.
1228          */
1229         dirty_rate = (dirtied - wb->dirtied_stamp) * HZ / elapsed;
1230
1231         /*
1232          * task_ratelimit reflects each dd's dirty rate for the past 200ms.
1233          */
1234         task_ratelimit = (u64)dirty_ratelimit *
1235                                         dtc->pos_ratio >> RATELIMIT_CALC_SHIFT;
1236         task_ratelimit++; /* it helps rampup dirty_ratelimit from tiny values */
1237
1238         /*
1239          * A linear estimation of the "balanced" throttle rate. The theory is,
1240          * if there are N dd tasks, each throttled at task_ratelimit, the wb's
1241          * dirty_rate will be measured to be (N * task_ratelimit). So the below
1242          * formula will yield the balanced rate limit (write_bw / N).
1243          *
1244          * Note that the expanded form is not a pure rate feedback:
1245          *      rate_(i+1) = rate_(i) * (write_bw / dirty_rate)              (1)
1246          * but also takes pos_ratio into account:
1247          *      rate_(i+1) = rate_(i) * (write_bw / dirty_rate) * pos_ratio  (2)
1248          *
1249          * (1) is not realistic because pos_ratio also takes part in balancing
1250          * the dirty rate.  Consider the state
1251          *      pos_ratio = 0.5                                              (3)
1252          *      rate = 2 * (write_bw / N)                                    (4)
1253          * If (1) is used, it will stuck in that state! Because each dd will
1254          * be throttled at
1255          *      task_ratelimit = pos_ratio * rate = (write_bw / N)           (5)
1256          * yielding
1257          *      dirty_rate = N * task_ratelimit = write_bw                   (6)
1258          * put (6) into (1) we get
1259          *      rate_(i+1) = rate_(i)                                        (7)
1260          *
1261          * So we end up using (2) to always keep
1262          *      rate_(i+1) ~= (write_bw / N)                                 (8)
1263          * regardless of the value of pos_ratio. As long as (8) is satisfied,
1264          * pos_ratio is able to drive itself to 1.0, which is not only where
1265          * the dirty count meet the setpoint, but also where the slope of
1266          * pos_ratio is most flat and hence task_ratelimit is least fluctuated.
1267          */
1268         balanced_dirty_ratelimit = div_u64((u64)task_ratelimit * write_bw,
1269                                            dirty_rate | 1);
1270         /*
1271          * balanced_dirty_ratelimit ~= (write_bw / N) <= write_bw
1272          */
1273         if (unlikely(balanced_dirty_ratelimit > write_bw))
1274                 balanced_dirty_ratelimit = write_bw;
1275
1276         /*
1277          * We could safely do this and return immediately:
1278          *
1279          *      wb->dirty_ratelimit = balanced_dirty_ratelimit;
1280          *
1281          * However to get a more stable dirty_ratelimit, the below elaborated
1282          * code makes use of task_ratelimit to filter out singular points and
1283          * limit the step size.
1284          *
1285          * The below code essentially only uses the relative value of
1286          *
1287          *      task_ratelimit - dirty_ratelimit
1288          *      = (pos_ratio - 1) * dirty_ratelimit
1289          *
1290          * which reflects the direction and size of dirty position error.
1291          */
1292
1293         /*
1294          * dirty_ratelimit will follow balanced_dirty_ratelimit iff
1295          * task_ratelimit is on the same side of dirty_ratelimit, too.
1296          * For example, when
1297          * - dirty_ratelimit > balanced_dirty_ratelimit
1298          * - dirty_ratelimit > task_ratelimit (dirty pages are above setpoint)
1299          * lowering dirty_ratelimit will help meet both the position and rate
1300          * control targets. Otherwise, don't update dirty_ratelimit if it will
1301          * only help meet the rate target. After all, what the users ultimately
1302          * feel and care are stable dirty rate and small position error.
1303          *
1304          * |task_ratelimit - dirty_ratelimit| is used to limit the step size
1305          * and filter out the singular points of balanced_dirty_ratelimit. Which
1306          * keeps jumping around randomly and can even leap far away at times
1307          * due to the small 200ms estimation period of dirty_rate (we want to
1308          * keep that period small to reduce time lags).
1309          */
1310         step = 0;
1311
1312         /*
1313          * For strictlimit case, calculations above were based on wb counters
1314          * and limits (starting from pos_ratio = wb_position_ratio() and up to
1315          * balanced_dirty_ratelimit = task_ratelimit * write_bw / dirty_rate).
1316          * Hence, to calculate "step" properly, we have to use wb_dirty as
1317          * "dirty" and wb_setpoint as "setpoint".
1318          *
1319          * We rampup dirty_ratelimit forcibly if wb_dirty is low because
1320          * it's possible that wb_thresh is close to zero due to inactivity
1321          * of backing device.
1322          */
1323         if (unlikely(wb->bdi->capabilities & BDI_CAP_STRICTLIMIT)) {
1324                 dirty = dtc->wb_dirty;
1325                 if (dtc->wb_dirty < 8)
1326                         setpoint = dtc->wb_dirty + 1;
1327                 else
1328                         setpoint = (dtc->wb_thresh + dtc->wb_bg_thresh) / 2;
1329         }
1330
1331         if (dirty < setpoint) {
1332                 x = min3(wb->balanced_dirty_ratelimit,
1333                          balanced_dirty_ratelimit, task_ratelimit);
1334                 if (dirty_ratelimit < x)
1335                         step = x - dirty_ratelimit;
1336         } else {
1337                 x = max3(wb->balanced_dirty_ratelimit,
1338                          balanced_dirty_ratelimit, task_ratelimit);
1339                 if (dirty_ratelimit > x)
1340                         step = dirty_ratelimit - x;
1341         }
1342
1343         /*
1344          * Don't pursue 100% rate matching. It's impossible since the balanced
1345          * rate itself is constantly fluctuating. So decrease the track speed
1346          * when it gets close to the target. Helps eliminate pointless tremors.
1347          */
1348         shift = dirty_ratelimit / (2 * step + 1);
1349         if (shift < BITS_PER_LONG)
1350                 step = DIV_ROUND_UP(step >> shift, 8);
1351         else
1352                 step = 0;
1353
1354         if (dirty_ratelimit < balanced_dirty_ratelimit)
1355                 dirty_ratelimit += step;
1356         else
1357                 dirty_ratelimit -= step;
1358
1359         WRITE_ONCE(wb->dirty_ratelimit, max(dirty_ratelimit, 1UL));
1360         wb->balanced_dirty_ratelimit = balanced_dirty_ratelimit;
1361
1362         trace_bdi_dirty_ratelimit(wb, dirty_rate, task_ratelimit);
1363 }
1364
1365 static void __wb_update_bandwidth(struct dirty_throttle_control *gdtc,
1366                                   struct dirty_throttle_control *mdtc,
1367                                   bool update_ratelimit)
1368 {
1369         struct bdi_writeback *wb = gdtc->wb;
1370         unsigned long now = jiffies;
1371         unsigned long elapsed;
1372         unsigned long dirtied;
1373         unsigned long written;
1374
1375         spin_lock(&wb->list_lock);
1376
1377         /*
1378          * Lockless checks for elapsed time are racy and delayed update after
1379          * IO completion doesn't do it at all (to make sure written pages are
1380          * accounted reasonably quickly). Make sure elapsed >= 1 to avoid
1381          * division errors.
1382          */
1383         elapsed = max(now - wb->bw_time_stamp, 1UL);
1384         dirtied = percpu_counter_read(&wb->stat[WB_DIRTIED]);
1385         written = percpu_counter_read(&wb->stat[WB_WRITTEN]);
1386
1387         if (update_ratelimit) {
1388                 domain_update_dirty_limit(gdtc, now);
1389                 wb_update_dirty_ratelimit(gdtc, dirtied, elapsed);
1390
1391                 /*
1392                  * @mdtc is always NULL if !CGROUP_WRITEBACK but the
1393                  * compiler has no way to figure that out.  Help it.
1394                  */
1395                 if (IS_ENABLED(CONFIG_CGROUP_WRITEBACK) && mdtc) {
1396                         domain_update_dirty_limit(mdtc, now);
1397                         wb_update_dirty_ratelimit(mdtc, dirtied, elapsed);
1398                 }
1399         }
1400         wb_update_write_bandwidth(wb, elapsed, written);
1401
1402         wb->dirtied_stamp = dirtied;
1403         wb->written_stamp = written;
1404         WRITE_ONCE(wb->bw_time_stamp, now);
1405         spin_unlock(&wb->list_lock);
1406 }
1407
1408 void wb_update_bandwidth(struct bdi_writeback *wb)
1409 {
1410         struct dirty_throttle_control gdtc = { GDTC_INIT(wb) };
1411
1412         __wb_update_bandwidth(&gdtc, NULL, false);
1413 }
1414
1415 /* Interval after which we consider wb idle and don't estimate bandwidth */
1416 #define WB_BANDWIDTH_IDLE_JIF (HZ)
1417
1418 static void wb_bandwidth_estimate_start(struct bdi_writeback *wb)
1419 {
1420         unsigned long now = jiffies;
1421         unsigned long elapsed = now - READ_ONCE(wb->bw_time_stamp);
1422
1423         if (elapsed > WB_BANDWIDTH_IDLE_JIF &&
1424             !atomic_read(&wb->writeback_inodes)) {
1425                 spin_lock(&wb->list_lock);
1426                 wb->dirtied_stamp = wb_stat(wb, WB_DIRTIED);
1427                 wb->written_stamp = wb_stat(wb, WB_WRITTEN);
1428                 WRITE_ONCE(wb->bw_time_stamp, now);
1429                 spin_unlock(&wb->list_lock);
1430         }
1431 }
1432
1433 /*
1434  * After a task dirtied this many pages, balance_dirty_pages_ratelimited()
1435  * will look to see if it needs to start dirty throttling.
1436  *
1437  * If dirty_poll_interval is too low, big NUMA machines will call the expensive
1438  * global_zone_page_state() too often. So scale it near-sqrt to the safety margin
1439  * (the number of pages we may dirty without exceeding the dirty limits).
1440  */
1441 static unsigned long dirty_poll_interval(unsigned long dirty,
1442                                          unsigned long thresh)
1443 {
1444         if (thresh > dirty)
1445                 return 1UL << (ilog2(thresh - dirty) >> 1);
1446
1447         return 1;
1448 }
1449
1450 static unsigned long wb_max_pause(struct bdi_writeback *wb,
1451                                   unsigned long wb_dirty)
1452 {
1453         unsigned long bw = READ_ONCE(wb->avg_write_bandwidth);
1454         unsigned long t;
1455
1456         /*
1457          * Limit pause time for small memory systems. If sleeping for too long
1458          * time, a small pool of dirty/writeback pages may go empty and disk go
1459          * idle.
1460          *
1461          * 8 serves as the safety ratio.
1462          */
1463         t = wb_dirty / (1 + bw / roundup_pow_of_two(1 + HZ / 8));
1464         t++;
1465
1466         return min_t(unsigned long, t, MAX_PAUSE);
1467 }
1468
1469 static long wb_min_pause(struct bdi_writeback *wb,
1470                          long max_pause,
1471                          unsigned long task_ratelimit,
1472                          unsigned long dirty_ratelimit,
1473                          int *nr_dirtied_pause)
1474 {
1475         long hi = ilog2(READ_ONCE(wb->avg_write_bandwidth));
1476         long lo = ilog2(READ_ONCE(wb->dirty_ratelimit));
1477         long t;         /* target pause */
1478         long pause;     /* estimated next pause */
1479         int pages;      /* target nr_dirtied_pause */
1480
1481         /* target for 10ms pause on 1-dd case */
1482         t = max(1, HZ / 100);
1483
1484         /*
1485          * Scale up pause time for concurrent dirtiers in order to reduce CPU
1486          * overheads.
1487          *
1488          * (N * 10ms) on 2^N concurrent tasks.
1489          */
1490         if (hi > lo)
1491                 t += (hi - lo) * (10 * HZ) / 1024;
1492
1493         /*
1494          * This is a bit convoluted. We try to base the next nr_dirtied_pause
1495          * on the much more stable dirty_ratelimit. However the next pause time
1496          * will be computed based on task_ratelimit and the two rate limits may
1497          * depart considerably at some time. Especially if task_ratelimit goes
1498          * below dirty_ratelimit/2 and the target pause is max_pause, the next
1499          * pause time will be max_pause*2 _trimmed down_ to max_pause.  As a
1500          * result task_ratelimit won't be executed faithfully, which could
1501          * eventually bring down dirty_ratelimit.
1502          *
1503          * We apply two rules to fix it up:
1504          * 1) try to estimate the next pause time and if necessary, use a lower
1505          *    nr_dirtied_pause so as not to exceed max_pause. When this happens,
1506          *    nr_dirtied_pause will be "dancing" with task_ratelimit.
1507          * 2) limit the target pause time to max_pause/2, so that the normal
1508          *    small fluctuations of task_ratelimit won't trigger rule (1) and
1509          *    nr_dirtied_pause will remain as stable as dirty_ratelimit.
1510          */
1511         t = min(t, 1 + max_pause / 2);
1512         pages = dirty_ratelimit * t / roundup_pow_of_two(HZ);
1513
1514         /*
1515          * Tiny nr_dirtied_pause is found to hurt I/O performance in the test
1516          * case fio-mmap-randwrite-64k, which does 16*{sync read, async write}.
1517          * When the 16 consecutive reads are often interrupted by some dirty
1518          * throttling pause during the async writes, cfq will go into idles
1519          * (deadline is fine). So push nr_dirtied_pause as high as possible
1520          * until reaches DIRTY_POLL_THRESH=32 pages.
1521          */
1522         if (pages < DIRTY_POLL_THRESH) {
1523                 t = max_pause;
1524                 pages = dirty_ratelimit * t / roundup_pow_of_two(HZ);
1525                 if (pages > DIRTY_POLL_THRESH) {
1526                         pages = DIRTY_POLL_THRESH;
1527                         t = HZ * DIRTY_POLL_THRESH / dirty_ratelimit;
1528                 }
1529         }
1530
1531         pause = HZ * pages / (task_ratelimit + 1);
1532         if (pause > max_pause) {
1533                 t = max_pause;
1534                 pages = task_ratelimit * t / roundup_pow_of_two(HZ);
1535         }
1536
1537         *nr_dirtied_pause = pages;
1538         /*
1539          * The minimal pause time will normally be half the target pause time.
1540          */
1541         return pages >= DIRTY_POLL_THRESH ? 1 + t / 2 : t;
1542 }
1543
1544 static inline void wb_dirty_limits(struct dirty_throttle_control *dtc)
1545 {
1546         struct bdi_writeback *wb = dtc->wb;
1547         unsigned long wb_reclaimable;
1548
1549         /*
1550          * wb_thresh is not treated as some limiting factor as
1551          * dirty_thresh, due to reasons
1552          * - in JBOD setup, wb_thresh can fluctuate a lot
1553          * - in a system with HDD and USB key, the USB key may somehow
1554          *   go into state (wb_dirty >> wb_thresh) either because
1555          *   wb_dirty starts high, or because wb_thresh drops low.
1556          *   In this case we don't want to hard throttle the USB key
1557          *   dirtiers for 100 seconds until wb_dirty drops under
1558          *   wb_thresh. Instead the auxiliary wb control line in
1559          *   wb_position_ratio() will let the dirtier task progress
1560          *   at some rate <= (write_bw / 2) for bringing down wb_dirty.
1561          */
1562         dtc->wb_thresh = __wb_calc_thresh(dtc);
1563         dtc->wb_bg_thresh = dtc->thresh ?
1564                 div_u64((u64)dtc->wb_thresh * dtc->bg_thresh, dtc->thresh) : 0;
1565
1566         /*
1567          * In order to avoid the stacked BDI deadlock we need
1568          * to ensure we accurately count the 'dirty' pages when
1569          * the threshold is low.
1570          *
1571          * Otherwise it would be possible to get thresh+n pages
1572          * reported dirty, even though there are thresh-m pages
1573          * actually dirty; with m+n sitting in the percpu
1574          * deltas.
1575          */
1576         if (dtc->wb_thresh < 2 * wb_stat_error()) {
1577                 wb_reclaimable = wb_stat_sum(wb, WB_RECLAIMABLE);
1578                 dtc->wb_dirty = wb_reclaimable + wb_stat_sum(wb, WB_WRITEBACK);
1579         } else {
1580                 wb_reclaimable = wb_stat(wb, WB_RECLAIMABLE);
1581                 dtc->wb_dirty = wb_reclaimable + wb_stat(wb, WB_WRITEBACK);
1582         }
1583 }
1584
1585 /*
1586  * balance_dirty_pages() must be called by processes which are generating dirty
1587  * data.  It looks at the number of dirty pages in the machine and will force
1588  * the caller to wait once crossing the (background_thresh + dirty_thresh) / 2.
1589  * If we're over `background_thresh' then the writeback threads are woken to
1590  * perform some writeout.
1591  */
1592 static int balance_dirty_pages(struct bdi_writeback *wb,
1593                                unsigned long pages_dirtied, unsigned int flags)
1594 {
1595         struct dirty_throttle_control gdtc_stor = { GDTC_INIT(wb) };
1596         struct dirty_throttle_control mdtc_stor = { MDTC_INIT(wb, &gdtc_stor) };
1597         struct dirty_throttle_control * const gdtc = &gdtc_stor;
1598         struct dirty_throttle_control * const mdtc = mdtc_valid(&mdtc_stor) ?
1599                                                      &mdtc_stor : NULL;
1600         struct dirty_throttle_control *sdtc;
1601         unsigned long nr_reclaimable;   /* = file_dirty */
1602         long period;
1603         long pause;
1604         long max_pause;
1605         long min_pause;
1606         int nr_dirtied_pause;
1607         bool dirty_exceeded = false;
1608         unsigned long task_ratelimit;
1609         unsigned long dirty_ratelimit;
1610         struct backing_dev_info *bdi = wb->bdi;
1611         bool strictlimit = bdi->capabilities & BDI_CAP_STRICTLIMIT;
1612         unsigned long start_time = jiffies;
1613         int ret = 0;
1614
1615         for (;;) {
1616                 unsigned long now = jiffies;
1617                 unsigned long dirty, thresh, bg_thresh;
1618                 unsigned long m_dirty = 0;      /* stop bogus uninit warnings */
1619                 unsigned long m_thresh = 0;
1620                 unsigned long m_bg_thresh = 0;
1621
1622                 nr_reclaimable = global_node_page_state(NR_FILE_DIRTY);
1623                 gdtc->avail = global_dirtyable_memory();
1624                 gdtc->dirty = nr_reclaimable + global_node_page_state(NR_WRITEBACK);
1625
1626                 domain_dirty_limits(gdtc);
1627
1628                 if (unlikely(strictlimit)) {
1629                         wb_dirty_limits(gdtc);
1630
1631                         dirty = gdtc->wb_dirty;
1632                         thresh = gdtc->wb_thresh;
1633                         bg_thresh = gdtc->wb_bg_thresh;
1634                 } else {
1635                         dirty = gdtc->dirty;
1636                         thresh = gdtc->thresh;
1637                         bg_thresh = gdtc->bg_thresh;
1638                 }
1639
1640                 if (mdtc) {
1641                         unsigned long filepages, headroom, writeback;
1642
1643                         /*
1644                          * If @wb belongs to !root memcg, repeat the same
1645                          * basic calculations for the memcg domain.
1646                          */
1647                         mem_cgroup_wb_stats(wb, &filepages, &headroom,
1648                                             &mdtc->dirty, &writeback);
1649                         mdtc->dirty += writeback;
1650                         mdtc_calc_avail(mdtc, filepages, headroom);
1651
1652                         domain_dirty_limits(mdtc);
1653
1654                         if (unlikely(strictlimit)) {
1655                                 wb_dirty_limits(mdtc);
1656                                 m_dirty = mdtc->wb_dirty;
1657                                 m_thresh = mdtc->wb_thresh;
1658                                 m_bg_thresh = mdtc->wb_bg_thresh;
1659                         } else {
1660                                 m_dirty = mdtc->dirty;
1661                                 m_thresh = mdtc->thresh;
1662                                 m_bg_thresh = mdtc->bg_thresh;
1663                         }
1664                 }
1665
1666                 /*
1667                  * In laptop mode, we wait until hitting the higher threshold
1668                  * before starting background writeout, and then write out all
1669                  * the way down to the lower threshold.  So slow writers cause
1670                  * minimal disk activity.
1671                  *
1672                  * In normal mode, we start background writeout at the lower
1673                  * background_thresh, to keep the amount of dirty memory low.
1674                  */
1675                 if (!laptop_mode && nr_reclaimable > gdtc->bg_thresh &&
1676                     !writeback_in_progress(wb))
1677                         wb_start_background_writeback(wb);
1678
1679                 /*
1680                  * Throttle it only when the background writeback cannot
1681                  * catch-up. This avoids (excessively) small writeouts
1682                  * when the wb limits are ramping up in case of !strictlimit.
1683                  *
1684                  * In strictlimit case make decision based on the wb counters
1685                  * and limits. Small writeouts when the wb limits are ramping
1686                  * up are the price we consciously pay for strictlimit-ing.
1687                  *
1688                  * If memcg domain is in effect, @dirty should be under
1689                  * both global and memcg freerun ceilings.
1690                  */
1691                 if (dirty <= dirty_freerun_ceiling(thresh, bg_thresh) &&
1692                     (!mdtc ||
1693                      m_dirty <= dirty_freerun_ceiling(m_thresh, m_bg_thresh))) {
1694                         unsigned long intv;
1695                         unsigned long m_intv;
1696
1697 free_running:
1698                         intv = dirty_poll_interval(dirty, thresh);
1699                         m_intv = ULONG_MAX;
1700
1701                         current->dirty_paused_when = now;
1702                         current->nr_dirtied = 0;
1703                         if (mdtc)
1704                                 m_intv = dirty_poll_interval(m_dirty, m_thresh);
1705                         current->nr_dirtied_pause = min(intv, m_intv);
1706                         break;
1707                 }
1708
1709                 /* Start writeback even when in laptop mode */
1710                 if (unlikely(!writeback_in_progress(wb)))
1711                         wb_start_background_writeback(wb);
1712
1713                 mem_cgroup_flush_foreign(wb);
1714
1715                 /*
1716                  * Calculate global domain's pos_ratio and select the
1717                  * global dtc by default.
1718                  */
1719                 if (!strictlimit) {
1720                         wb_dirty_limits(gdtc);
1721
1722                         if ((current->flags & PF_LOCAL_THROTTLE) &&
1723                             gdtc->wb_dirty <
1724                             dirty_freerun_ceiling(gdtc->wb_thresh,
1725                                                   gdtc->wb_bg_thresh))
1726                                 /*
1727                                  * LOCAL_THROTTLE tasks must not be throttled
1728                                  * when below the per-wb freerun ceiling.
1729                                  */
1730                                 goto free_running;
1731                 }
1732
1733                 dirty_exceeded = (gdtc->wb_dirty > gdtc->wb_thresh) &&
1734                         ((gdtc->dirty > gdtc->thresh) || strictlimit);
1735
1736                 wb_position_ratio(gdtc);
1737                 sdtc = gdtc;
1738
1739                 if (mdtc) {
1740                         /*
1741                          * If memcg domain is in effect, calculate its
1742                          * pos_ratio.  @wb should satisfy constraints from
1743                          * both global and memcg domains.  Choose the one
1744                          * w/ lower pos_ratio.
1745                          */
1746                         if (!strictlimit) {
1747                                 wb_dirty_limits(mdtc);
1748
1749                                 if ((current->flags & PF_LOCAL_THROTTLE) &&
1750                                     mdtc->wb_dirty <
1751                                     dirty_freerun_ceiling(mdtc->wb_thresh,
1752                                                           mdtc->wb_bg_thresh))
1753                                         /*
1754                                          * LOCAL_THROTTLE tasks must not be
1755                                          * throttled when below the per-wb
1756                                          * freerun ceiling.
1757                                          */
1758                                         goto free_running;
1759                         }
1760                         dirty_exceeded |= (mdtc->wb_dirty > mdtc->wb_thresh) &&
1761                                 ((mdtc->dirty > mdtc->thresh) || strictlimit);
1762
1763                         wb_position_ratio(mdtc);
1764                         if (mdtc->pos_ratio < gdtc->pos_ratio)
1765                                 sdtc = mdtc;
1766                 }
1767
1768                 if (dirty_exceeded != wb->dirty_exceeded)
1769                         wb->dirty_exceeded = dirty_exceeded;
1770
1771                 if (time_is_before_jiffies(READ_ONCE(wb->bw_time_stamp) +
1772                                            BANDWIDTH_INTERVAL))
1773                         __wb_update_bandwidth(gdtc, mdtc, true);
1774
1775                 /* throttle according to the chosen dtc */
1776                 dirty_ratelimit = READ_ONCE(wb->dirty_ratelimit);
1777                 task_ratelimit = ((u64)dirty_ratelimit * sdtc->pos_ratio) >>
1778                                                         RATELIMIT_CALC_SHIFT;
1779                 max_pause = wb_max_pause(wb, sdtc->wb_dirty);
1780                 min_pause = wb_min_pause(wb, max_pause,
1781                                          task_ratelimit, dirty_ratelimit,
1782                                          &nr_dirtied_pause);
1783
1784                 if (unlikely(task_ratelimit == 0)) {
1785                         period = max_pause;
1786                         pause = max_pause;
1787                         goto pause;
1788                 }
1789                 period = HZ * pages_dirtied / task_ratelimit;
1790                 pause = period;
1791                 if (current->dirty_paused_when)
1792                         pause -= now - current->dirty_paused_when;
1793                 /*
1794                  * For less than 1s think time (ext3/4 may block the dirtier
1795                  * for up to 800ms from time to time on 1-HDD; so does xfs,
1796                  * however at much less frequency), try to compensate it in
1797                  * future periods by updating the virtual time; otherwise just
1798                  * do a reset, as it may be a light dirtier.
1799                  */
1800                 if (pause < min_pause) {
1801                         trace_balance_dirty_pages(wb,
1802                                                   sdtc->thresh,
1803                                                   sdtc->bg_thresh,
1804                                                   sdtc->dirty,
1805                                                   sdtc->wb_thresh,
1806                                                   sdtc->wb_dirty,
1807                                                   dirty_ratelimit,
1808                                                   task_ratelimit,
1809                                                   pages_dirtied,
1810                                                   period,
1811                                                   min(pause, 0L),
1812                                                   start_time);
1813                         if (pause < -HZ) {
1814                                 current->dirty_paused_when = now;
1815                                 current->nr_dirtied = 0;
1816                         } else if (period) {
1817                                 current->dirty_paused_when += period;
1818                                 current->nr_dirtied = 0;
1819                         } else if (current->nr_dirtied_pause <= pages_dirtied)
1820                                 current->nr_dirtied_pause += pages_dirtied;
1821                         break;
1822                 }
1823                 if (unlikely(pause > max_pause)) {
1824                         /* for occasional dropped task_ratelimit */
1825                         now += min(pause - max_pause, max_pause);
1826                         pause = max_pause;
1827                 }
1828
1829 pause:
1830                 trace_balance_dirty_pages(wb,
1831                                           sdtc->thresh,
1832                                           sdtc->bg_thresh,
1833                                           sdtc->dirty,
1834                                           sdtc->wb_thresh,
1835                                           sdtc->wb_dirty,
1836                                           dirty_ratelimit,
1837                                           task_ratelimit,
1838                                           pages_dirtied,
1839                                           period,
1840                                           pause,
1841                                           start_time);
1842                 if (flags & BDP_ASYNC) {
1843                         ret = -EAGAIN;
1844                         break;
1845                 }
1846                 __set_current_state(TASK_KILLABLE);
1847                 wb->dirty_sleep = now;
1848                 io_schedule_timeout(pause);
1849
1850                 current->dirty_paused_when = now + pause;
1851                 current->nr_dirtied = 0;
1852                 current->nr_dirtied_pause = nr_dirtied_pause;
1853
1854                 /*
1855                  * This is typically equal to (dirty < thresh) and can also
1856                  * keep "1000+ dd on a slow USB stick" under control.
1857                  */
1858                 if (task_ratelimit)
1859                         break;
1860
1861                 /*
1862                  * In the case of an unresponsive NFS server and the NFS dirty
1863                  * pages exceeds dirty_thresh, give the other good wb's a pipe
1864                  * to go through, so that tasks on them still remain responsive.
1865                  *
1866                  * In theory 1 page is enough to keep the consumer-producer
1867                  * pipe going: the flusher cleans 1 page => the task dirties 1
1868                  * more page. However wb_dirty has accounting errors.  So use
1869                  * the larger and more IO friendly wb_stat_error.
1870                  */
1871                 if (sdtc->wb_dirty <= wb_stat_error())
1872                         break;
1873
1874                 if (fatal_signal_pending(current))
1875                         break;
1876         }
1877         return ret;
1878 }
1879
1880 static DEFINE_PER_CPU(int, bdp_ratelimits);
1881
1882 /*
1883  * Normal tasks are throttled by
1884  *      loop {
1885  *              dirty tsk->nr_dirtied_pause pages;
1886  *              take a snap in balance_dirty_pages();
1887  *      }
1888  * However there is a worst case. If every task exit immediately when dirtied
1889  * (tsk->nr_dirtied_pause - 1) pages, balance_dirty_pages() will never be
1890  * called to throttle the page dirties. The solution is to save the not yet
1891  * throttled page dirties in dirty_throttle_leaks on task exit and charge them
1892  * randomly into the running tasks. This works well for the above worst case,
1893  * as the new task will pick up and accumulate the old task's leaked dirty
1894  * count and eventually get throttled.
1895  */
1896 DEFINE_PER_CPU(int, dirty_throttle_leaks) = 0;
1897
1898 /**
1899  * balance_dirty_pages_ratelimited_flags - Balance dirty memory state.
1900  * @mapping: address_space which was dirtied.
1901  * @flags: BDP flags.
1902  *
1903  * Processes which are dirtying memory should call in here once for each page
1904  * which was newly dirtied.  The function will periodically check the system's
1905  * dirty state and will initiate writeback if needed.
1906  *
1907  * See balance_dirty_pages_ratelimited() for details.
1908  *
1909  * Return: If @flags contains BDP_ASYNC, it may return -EAGAIN to
1910  * indicate that memory is out of balance and the caller must wait
1911  * for I/O to complete.  Otherwise, it will return 0 to indicate
1912  * that either memory was already in balance, or it was able to sleep
1913  * until the amount of dirty memory returned to balance.
1914  */
1915 int balance_dirty_pages_ratelimited_flags(struct address_space *mapping,
1916                                         unsigned int flags)
1917 {
1918         struct inode *inode = mapping->host;
1919         struct backing_dev_info *bdi = inode_to_bdi(inode);
1920         struct bdi_writeback *wb = NULL;
1921         int ratelimit;
1922         int ret = 0;
1923         int *p;
1924
1925         if (!(bdi->capabilities & BDI_CAP_WRITEBACK))
1926                 return ret;
1927
1928         if (inode_cgwb_enabled(inode))
1929                 wb = wb_get_create_current(bdi, GFP_KERNEL);
1930         if (!wb)
1931                 wb = &bdi->wb;
1932
1933         ratelimit = current->nr_dirtied_pause;
1934         if (wb->dirty_exceeded)
1935                 ratelimit = min(ratelimit, 32 >> (PAGE_SHIFT - 10));
1936
1937         preempt_disable();
1938         /*
1939          * This prevents one CPU to accumulate too many dirtied pages without
1940          * calling into balance_dirty_pages(), which can happen when there are
1941          * 1000+ tasks, all of them start dirtying pages at exactly the same
1942          * time, hence all honoured too large initial task->nr_dirtied_pause.
1943          */
1944         p =  this_cpu_ptr(&bdp_ratelimits);
1945         if (unlikely(current->nr_dirtied >= ratelimit))
1946                 *p = 0;
1947         else if (unlikely(*p >= ratelimit_pages)) {
1948                 *p = 0;
1949                 ratelimit = 0;
1950         }
1951         /*
1952          * Pick up the dirtied pages by the exited tasks. This avoids lots of
1953          * short-lived tasks (eg. gcc invocations in a kernel build) escaping
1954          * the dirty throttling and livelock other long-run dirtiers.
1955          */
1956         p = this_cpu_ptr(&dirty_throttle_leaks);
1957         if (*p > 0 && current->nr_dirtied < ratelimit) {
1958                 unsigned long nr_pages_dirtied;
1959                 nr_pages_dirtied = min(*p, ratelimit - current->nr_dirtied);
1960                 *p -= nr_pages_dirtied;
1961                 current->nr_dirtied += nr_pages_dirtied;
1962         }
1963         preempt_enable();
1964
1965         if (unlikely(current->nr_dirtied >= ratelimit))
1966                 ret = balance_dirty_pages(wb, current->nr_dirtied, flags);
1967
1968         wb_put(wb);
1969         return ret;
1970 }
1971 EXPORT_SYMBOL_GPL(balance_dirty_pages_ratelimited_flags);
1972
1973 /**
1974  * balance_dirty_pages_ratelimited - balance dirty memory state.
1975  * @mapping: address_space which was dirtied.
1976  *
1977  * Processes which are dirtying memory should call in here once for each page
1978  * which was newly dirtied.  The function will periodically check the system's
1979  * dirty state and will initiate writeback if needed.
1980  *
1981  * Once we're over the dirty memory limit we decrease the ratelimiting
1982  * by a lot, to prevent individual processes from overshooting the limit
1983  * by (ratelimit_pages) each.
1984  */
1985 void balance_dirty_pages_ratelimited(struct address_space *mapping)
1986 {
1987         balance_dirty_pages_ratelimited_flags(mapping, 0);
1988 }
1989 EXPORT_SYMBOL(balance_dirty_pages_ratelimited);
1990
1991 /**
1992  * wb_over_bg_thresh - does @wb need to be written back?
1993  * @wb: bdi_writeback of interest
1994  *
1995  * Determines whether background writeback should keep writing @wb or it's
1996  * clean enough.
1997  *
1998  * Return: %true if writeback should continue.
1999  */
2000 bool wb_over_bg_thresh(struct bdi_writeback *wb)
2001 {
2002         struct dirty_throttle_control gdtc_stor = { GDTC_INIT(wb) };
2003         struct dirty_throttle_control mdtc_stor = { MDTC_INIT(wb, &gdtc_stor) };
2004         struct dirty_throttle_control * const gdtc = &gdtc_stor;
2005         struct dirty_throttle_control * const mdtc = mdtc_valid(&mdtc_stor) ?
2006                                                      &mdtc_stor : NULL;
2007         unsigned long reclaimable;
2008         unsigned long thresh;
2009
2010         /*
2011          * Similar to balance_dirty_pages() but ignores pages being written
2012          * as we're trying to decide whether to put more under writeback.
2013          */
2014         gdtc->avail = global_dirtyable_memory();
2015         gdtc->dirty = global_node_page_state(NR_FILE_DIRTY);
2016         domain_dirty_limits(gdtc);
2017
2018         if (gdtc->dirty > gdtc->bg_thresh)
2019                 return true;
2020
2021         thresh = wb_calc_thresh(gdtc->wb, gdtc->bg_thresh);
2022         if (thresh < 2 * wb_stat_error())
2023                 reclaimable = wb_stat_sum(wb, WB_RECLAIMABLE);
2024         else
2025                 reclaimable = wb_stat(wb, WB_RECLAIMABLE);
2026
2027         if (reclaimable > thresh)
2028                 return true;
2029
2030         if (mdtc) {
2031                 unsigned long filepages, headroom, writeback;
2032
2033                 mem_cgroup_wb_stats(wb, &filepages, &headroom, &mdtc->dirty,
2034                                     &writeback);
2035                 mdtc_calc_avail(mdtc, filepages, headroom);
2036                 domain_dirty_limits(mdtc);      /* ditto, ignore writeback */
2037
2038                 if (mdtc->dirty > mdtc->bg_thresh)
2039                         return true;
2040
2041                 thresh = wb_calc_thresh(mdtc->wb, mdtc->bg_thresh);
2042                 if (thresh < 2 * wb_stat_error())
2043                         reclaimable = wb_stat_sum(wb, WB_RECLAIMABLE);
2044                 else
2045                         reclaimable = wb_stat(wb, WB_RECLAIMABLE);
2046
2047                 if (reclaimable > thresh)
2048                         return true;
2049         }
2050
2051         return false;
2052 }
2053
2054 #ifdef CONFIG_SYSCTL
2055 /*
2056  * sysctl handler for /proc/sys/vm/dirty_writeback_centisecs
2057  */
2058 static int dirty_writeback_centisecs_handler(struct ctl_table *table, int write,
2059                 void *buffer, size_t *length, loff_t *ppos)
2060 {
2061         unsigned int old_interval = dirty_writeback_interval;
2062         int ret;
2063
2064         ret = proc_dointvec(table, write, buffer, length, ppos);
2065
2066         /*
2067          * Writing 0 to dirty_writeback_interval will disable periodic writeback
2068          * and a different non-zero value will wakeup the writeback threads.
2069          * wb_wakeup_delayed() would be more appropriate, but it's a pain to
2070          * iterate over all bdis and wbs.
2071          * The reason we do this is to make the change take effect immediately.
2072          */
2073         if (!ret && write && dirty_writeback_interval &&
2074                 dirty_writeback_interval != old_interval)
2075                 wakeup_flusher_threads(WB_REASON_PERIODIC);
2076
2077         return ret;
2078 }
2079 #endif
2080
2081 void laptop_mode_timer_fn(struct timer_list *t)
2082 {
2083         struct backing_dev_info *backing_dev_info =
2084                 from_timer(backing_dev_info, t, laptop_mode_wb_timer);
2085
2086         wakeup_flusher_threads_bdi(backing_dev_info, WB_REASON_LAPTOP_TIMER);
2087 }
2088
2089 /*
2090  * We've spun up the disk and we're in laptop mode: schedule writeback
2091  * of all dirty data a few seconds from now.  If the flush is already scheduled
2092  * then push it back - the user is still using the disk.
2093  */
2094 void laptop_io_completion(struct backing_dev_info *info)
2095 {
2096         mod_timer(&info->laptop_mode_wb_timer, jiffies + laptop_mode);
2097 }
2098
2099 /*
2100  * We're in laptop mode and we've just synced. The sync's writes will have
2101  * caused another writeback to be scheduled by laptop_io_completion.
2102  * Nothing needs to be written back anymore, so we unschedule the writeback.
2103  */
2104 void laptop_sync_completion(void)
2105 {
2106         struct backing_dev_info *bdi;
2107
2108         rcu_read_lock();
2109
2110         list_for_each_entry_rcu(bdi, &bdi_list, bdi_list)
2111                 del_timer(&bdi->laptop_mode_wb_timer);
2112
2113         rcu_read_unlock();
2114 }
2115
2116 /*
2117  * If ratelimit_pages is too high then we can get into dirty-data overload
2118  * if a large number of processes all perform writes at the same time.
2119  *
2120  * Here we set ratelimit_pages to a level which ensures that when all CPUs are
2121  * dirtying in parallel, we cannot go more than 3% (1/32) over the dirty memory
2122  * thresholds.
2123  */
2124
2125 void writeback_set_ratelimit(void)
2126 {
2127         struct wb_domain *dom = &global_wb_domain;
2128         unsigned long background_thresh;
2129         unsigned long dirty_thresh;
2130
2131         global_dirty_limits(&background_thresh, &dirty_thresh);
2132         dom->dirty_limit = dirty_thresh;
2133         ratelimit_pages = dirty_thresh / (num_online_cpus() * 32);
2134         if (ratelimit_pages < 16)
2135                 ratelimit_pages = 16;
2136 }
2137
2138 static int page_writeback_cpu_online(unsigned int cpu)
2139 {
2140         writeback_set_ratelimit();
2141         return 0;
2142 }
2143
2144 #ifdef CONFIG_SYSCTL
2145
2146 /* this is needed for the proc_doulongvec_minmax of vm_dirty_bytes */
2147 static const unsigned long dirty_bytes_min = 2 * PAGE_SIZE;
2148
2149 static struct ctl_table vm_page_writeback_sysctls[] = {
2150         {
2151                 .procname   = "dirty_background_ratio",
2152                 .data       = &dirty_background_ratio,
2153                 .maxlen     = sizeof(dirty_background_ratio),
2154                 .mode       = 0644,
2155                 .proc_handler   = dirty_background_ratio_handler,
2156                 .extra1     = SYSCTL_ZERO,
2157                 .extra2     = SYSCTL_ONE_HUNDRED,
2158         },
2159         {
2160                 .procname   = "dirty_background_bytes",
2161                 .data       = &dirty_background_bytes,
2162                 .maxlen     = sizeof(dirty_background_bytes),
2163                 .mode       = 0644,
2164                 .proc_handler   = dirty_background_bytes_handler,
2165                 .extra1     = SYSCTL_LONG_ONE,
2166         },
2167         {
2168                 .procname   = "dirty_ratio",
2169                 .data       = &vm_dirty_ratio,
2170                 .maxlen     = sizeof(vm_dirty_ratio),
2171                 .mode       = 0644,
2172                 .proc_handler   = dirty_ratio_handler,
2173                 .extra1     = SYSCTL_ZERO,
2174                 .extra2     = SYSCTL_ONE_HUNDRED,
2175         },
2176         {
2177                 .procname   = "dirty_bytes",
2178                 .data       = &vm_dirty_bytes,
2179                 .maxlen     = sizeof(vm_dirty_bytes),
2180                 .mode       = 0644,
2181                 .proc_handler   = dirty_bytes_handler,
2182                 .extra1     = (void *)&dirty_bytes_min,
2183         },
2184         {
2185                 .procname   = "dirty_writeback_centisecs",
2186                 .data       = &dirty_writeback_interval,
2187                 .maxlen     = sizeof(dirty_writeback_interval),
2188                 .mode       = 0644,
2189                 .proc_handler   = dirty_writeback_centisecs_handler,
2190         },
2191         {
2192                 .procname   = "dirty_expire_centisecs",
2193                 .data       = &dirty_expire_interval,
2194                 .maxlen     = sizeof(dirty_expire_interval),
2195                 .mode       = 0644,
2196                 .proc_handler   = proc_dointvec_minmax,
2197                 .extra1     = SYSCTL_ZERO,
2198         },
2199 #ifdef CONFIG_HIGHMEM
2200         {
2201                 .procname       = "highmem_is_dirtyable",
2202                 .data           = &vm_highmem_is_dirtyable,
2203                 .maxlen         = sizeof(vm_highmem_is_dirtyable),
2204                 .mode           = 0644,
2205                 .proc_handler   = proc_dointvec_minmax,
2206                 .extra1         = SYSCTL_ZERO,
2207                 .extra2         = SYSCTL_ONE,
2208         },
2209 #endif
2210         {
2211                 .procname       = "laptop_mode",
2212                 .data           = &laptop_mode,
2213                 .maxlen         = sizeof(laptop_mode),
2214                 .mode           = 0644,
2215                 .proc_handler   = proc_dointvec_jiffies,
2216         },
2217         {}
2218 };
2219 #endif
2220
2221 /*
2222  * Called early on to tune the page writeback dirty limits.
2223  *
2224  * We used to scale dirty pages according to how total memory
2225  * related to pages that could be allocated for buffers.
2226  *
2227  * However, that was when we used "dirty_ratio" to scale with
2228  * all memory, and we don't do that any more. "dirty_ratio"
2229  * is now applied to total non-HIGHPAGE memory, and as such we can't
2230  * get into the old insane situation any more where we had
2231  * large amounts of dirty pages compared to a small amount of
2232  * non-HIGHMEM memory.
2233  *
2234  * But we might still want to scale the dirty_ratio by how
2235  * much memory the box has..
2236  */
2237 void __init page_writeback_init(void)
2238 {
2239         BUG_ON(wb_domain_init(&global_wb_domain, GFP_KERNEL));
2240
2241         cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, "mm/writeback:online",
2242                           page_writeback_cpu_online, NULL);
2243         cpuhp_setup_state(CPUHP_MM_WRITEBACK_DEAD, "mm/writeback:dead", NULL,
2244                           page_writeback_cpu_online);
2245 #ifdef CONFIG_SYSCTL
2246         register_sysctl_init("vm", vm_page_writeback_sysctls);
2247 #endif
2248 }
2249
2250 /**
2251  * tag_pages_for_writeback - tag pages to be written by write_cache_pages
2252  * @mapping: address space structure to write
2253  * @start: starting page index
2254  * @end: ending page index (inclusive)
2255  *
2256  * This function scans the page range from @start to @end (inclusive) and tags
2257  * all pages that have DIRTY tag set with a special TOWRITE tag. The idea is
2258  * that write_cache_pages (or whoever calls this function) will then use
2259  * TOWRITE tag to identify pages eligible for writeback.  This mechanism is
2260  * used to avoid livelocking of writeback by a process steadily creating new
2261  * dirty pages in the file (thus it is important for this function to be quick
2262  * so that it can tag pages faster than a dirtying process can create them).
2263  */
2264 void tag_pages_for_writeback(struct address_space *mapping,
2265                              pgoff_t start, pgoff_t end)
2266 {
2267         XA_STATE(xas, &mapping->i_pages, start);
2268         unsigned int tagged = 0;
2269         void *page;
2270
2271         xas_lock_irq(&xas);
2272         xas_for_each_marked(&xas, page, end, PAGECACHE_TAG_DIRTY) {
2273                 xas_set_mark(&xas, PAGECACHE_TAG_TOWRITE);
2274                 if (++tagged % XA_CHECK_SCHED)
2275                         continue;
2276
2277                 xas_pause(&xas);
2278                 xas_unlock_irq(&xas);
2279                 cond_resched();
2280                 xas_lock_irq(&xas);
2281         }
2282         xas_unlock_irq(&xas);
2283 }
2284 EXPORT_SYMBOL(tag_pages_for_writeback);
2285
2286 /**
2287  * write_cache_pages - walk the list of dirty pages of the given address space and write all of them.
2288  * @mapping: address space structure to write
2289  * @wbc: subtract the number of written pages from *@wbc->nr_to_write
2290  * @writepage: function called for each page
2291  * @data: data passed to writepage function
2292  *
2293  * If a page is already under I/O, write_cache_pages() skips it, even
2294  * if it's dirty.  This is desirable behaviour for memory-cleaning writeback,
2295  * but it is INCORRECT for data-integrity system calls such as fsync().  fsync()
2296  * and msync() need to guarantee that all the data which was dirty at the time
2297  * the call was made get new I/O started against them.  If wbc->sync_mode is
2298  * WB_SYNC_ALL then we were called for data integrity and we must wait for
2299  * existing IO to complete.
2300  *
2301  * To avoid livelocks (when other process dirties new pages), we first tag
2302  * pages which should be written back with TOWRITE tag and only then start
2303  * writing them. For data-integrity sync we have to be careful so that we do
2304  * not miss some pages (e.g., because some other process has cleared TOWRITE
2305  * tag we set). The rule we follow is that TOWRITE tag can be cleared only
2306  * by the process clearing the DIRTY tag (and submitting the page for IO).
2307  *
2308  * To avoid deadlocks between range_cyclic writeback and callers that hold
2309  * pages in PageWriteback to aggregate IO until write_cache_pages() returns,
2310  * we do not loop back to the start of the file. Doing so causes a page
2311  * lock/page writeback access order inversion - we should only ever lock
2312  * multiple pages in ascending page->index order, and looping back to the start
2313  * of the file violates that rule and causes deadlocks.
2314  *
2315  * Return: %0 on success, negative error code otherwise
2316  */
2317 int write_cache_pages(struct address_space *mapping,
2318                       struct writeback_control *wbc, writepage_t writepage,
2319                       void *data)
2320 {
2321         int ret = 0;
2322         int done = 0;
2323         int error;
2324         struct pagevec pvec;
2325         int nr_pages;
2326         pgoff_t index;
2327         pgoff_t end;            /* Inclusive */
2328         pgoff_t done_index;
2329         int range_whole = 0;
2330         xa_mark_t tag;
2331
2332         pagevec_init(&pvec);
2333         if (wbc->range_cyclic) {
2334                 index = mapping->writeback_index; /* prev offset */
2335                 end = -1;
2336         } else {
2337                 index = wbc->range_start >> PAGE_SHIFT;
2338                 end = wbc->range_end >> PAGE_SHIFT;
2339                 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2340                         range_whole = 1;
2341         }
2342         if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages) {
2343                 tag_pages_for_writeback(mapping, index, end);
2344                 tag = PAGECACHE_TAG_TOWRITE;
2345         } else {
2346                 tag = PAGECACHE_TAG_DIRTY;
2347         }
2348         done_index = index;
2349         while (!done && (index <= end)) {
2350                 int i;
2351
2352                 nr_pages = pagevec_lookup_range_tag(&pvec, mapping, &index, end,
2353                                 tag);
2354                 if (nr_pages == 0)
2355                         break;
2356
2357                 for (i = 0; i < nr_pages; i++) {
2358                         struct page *page = pvec.pages[i];
2359
2360                         done_index = page->index;
2361
2362                         lock_page(page);
2363
2364                         /*
2365                          * Page truncated or invalidated. We can freely skip it
2366                          * then, even for data integrity operations: the page
2367                          * has disappeared concurrently, so there could be no
2368                          * real expectation of this data integrity operation
2369                          * even if there is now a new, dirty page at the same
2370                          * pagecache address.
2371                          */
2372                         if (unlikely(page->mapping != mapping)) {
2373 continue_unlock:
2374                                 unlock_page(page);
2375                                 continue;
2376                         }
2377
2378                         if (!PageDirty(page)) {
2379                                 /* someone wrote it for us */
2380                                 goto continue_unlock;
2381                         }
2382
2383                         if (PageWriteback(page)) {
2384                                 if (wbc->sync_mode != WB_SYNC_NONE)
2385                                         wait_on_page_writeback(page);
2386                                 else
2387                                         goto continue_unlock;
2388                         }
2389
2390                         BUG_ON(PageWriteback(page));
2391                         if (!clear_page_dirty_for_io(page))
2392                                 goto continue_unlock;
2393
2394                         trace_wbc_writepage(wbc, inode_to_bdi(mapping->host));
2395                         error = (*writepage)(page, wbc, data);
2396                         if (unlikely(error)) {
2397                                 /*
2398                                  * Handle errors according to the type of
2399                                  * writeback. There's no need to continue for
2400                                  * background writeback. Just push done_index
2401                                  * past this page so media errors won't choke
2402                                  * writeout for the entire file. For integrity
2403                                  * writeback, we must process the entire dirty
2404                                  * set regardless of errors because the fs may
2405                                  * still have state to clear for each page. In
2406                                  * that case we continue processing and return
2407                                  * the first error.
2408                                  */
2409                                 if (error == AOP_WRITEPAGE_ACTIVATE) {
2410                                         unlock_page(page);
2411                                         error = 0;
2412                                 } else if (wbc->sync_mode != WB_SYNC_ALL) {
2413                                         ret = error;
2414                                         done_index = page->index + 1;
2415                                         done = 1;
2416                                         break;
2417                                 }
2418                                 if (!ret)
2419                                         ret = error;
2420                         }
2421
2422                         /*
2423                          * We stop writing back only if we are not doing
2424                          * integrity sync. In case of integrity sync we have to
2425                          * keep going until we have written all the pages
2426                          * we tagged for writeback prior to entering this loop.
2427                          */
2428                         if (--wbc->nr_to_write <= 0 &&
2429                             wbc->sync_mode == WB_SYNC_NONE) {
2430                                 done = 1;
2431                                 break;
2432                         }
2433                 }
2434                 pagevec_release(&pvec);
2435                 cond_resched();
2436         }
2437
2438         /*
2439          * If we hit the last page and there is more work to be done: wrap
2440          * back the index back to the start of the file for the next
2441          * time we are called.
2442          */
2443         if (wbc->range_cyclic && !done)
2444                 done_index = 0;
2445         if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
2446                 mapping->writeback_index = done_index;
2447
2448         return ret;
2449 }
2450 EXPORT_SYMBOL(write_cache_pages);
2451
2452 /*
2453  * Function used by generic_writepages to call the real writepage
2454  * function and set the mapping flags on error
2455  */
2456 static int __writepage(struct page *page, struct writeback_control *wbc,
2457                        void *data)
2458 {
2459         struct address_space *mapping = data;
2460         int ret = mapping->a_ops->writepage(page, wbc);
2461         mapping_set_error(mapping, ret);
2462         return ret;
2463 }
2464
2465 /**
2466  * generic_writepages - walk the list of dirty pages of the given address space and writepage() all of them.
2467  * @mapping: address space structure to write
2468  * @wbc: subtract the number of written pages from *@wbc->nr_to_write
2469  *
2470  * This is a library function, which implements the writepages()
2471  * address_space_operation.
2472  *
2473  * Return: %0 on success, negative error code otherwise
2474  */
2475 int generic_writepages(struct address_space *mapping,
2476                        struct writeback_control *wbc)
2477 {
2478         struct blk_plug plug;
2479         int ret;
2480
2481         /* deal with chardevs and other special file */
2482         if (!mapping->a_ops->writepage)
2483                 return 0;
2484
2485         blk_start_plug(&plug);
2486         ret = write_cache_pages(mapping, wbc, __writepage, mapping);
2487         blk_finish_plug(&plug);
2488         return ret;
2489 }
2490
2491 EXPORT_SYMBOL(generic_writepages);
2492
2493 int do_writepages(struct address_space *mapping, struct writeback_control *wbc)
2494 {
2495         int ret;
2496         struct bdi_writeback *wb;
2497
2498         if (wbc->nr_to_write <= 0)
2499                 return 0;
2500         wb = inode_to_wb_wbc(mapping->host, wbc);
2501         wb_bandwidth_estimate_start(wb);
2502         while (1) {
2503                 if (mapping->a_ops->writepages)
2504                         ret = mapping->a_ops->writepages(mapping, wbc);
2505                 else
2506                         ret = generic_writepages(mapping, wbc);
2507                 if ((ret != -ENOMEM) || (wbc->sync_mode != WB_SYNC_ALL))
2508                         break;
2509
2510                 /*
2511                  * Lacking an allocation context or the locality or writeback
2512                  * state of any of the inode's pages, throttle based on
2513                  * writeback activity on the local node. It's as good a
2514                  * guess as any.
2515                  */
2516                 reclaim_throttle(NODE_DATA(numa_node_id()),
2517                         VMSCAN_THROTTLE_WRITEBACK);
2518         }
2519         /*
2520          * Usually few pages are written by now from those we've just submitted
2521          * but if there's constant writeback being submitted, this makes sure
2522          * writeback bandwidth is updated once in a while.
2523          */
2524         if (time_is_before_jiffies(READ_ONCE(wb->bw_time_stamp) +
2525                                    BANDWIDTH_INTERVAL))
2526                 wb_update_bandwidth(wb);
2527         return ret;
2528 }
2529
2530 /**
2531  * folio_write_one - write out a single folio and wait on I/O.
2532  * @folio: The folio to write.
2533  *
2534  * The folio must be locked by the caller and will be unlocked upon return.
2535  *
2536  * Note that the mapping's AS_EIO/AS_ENOSPC flags will be cleared when this
2537  * function returns.
2538  *
2539  * Return: %0 on success, negative error code otherwise
2540  */
2541 int folio_write_one(struct folio *folio)
2542 {
2543         struct address_space *mapping = folio->mapping;
2544         int ret = 0;
2545         struct writeback_control wbc = {
2546                 .sync_mode = WB_SYNC_ALL,
2547                 .nr_to_write = folio_nr_pages(folio),
2548         };
2549
2550         BUG_ON(!folio_test_locked(folio));
2551
2552         folio_wait_writeback(folio);
2553
2554         if (folio_clear_dirty_for_io(folio)) {
2555                 folio_get(folio);
2556                 ret = mapping->a_ops->writepage(&folio->page, &wbc);
2557                 if (ret == 0)
2558                         folio_wait_writeback(folio);
2559                 folio_put(folio);
2560         } else {
2561                 folio_unlock(folio);
2562         }
2563
2564         if (!ret)
2565                 ret = filemap_check_errors(mapping);
2566         return ret;
2567 }
2568 EXPORT_SYMBOL(folio_write_one);
2569
2570 /*
2571  * For address_spaces which do not use buffers nor write back.
2572  */
2573 bool noop_dirty_folio(struct address_space *mapping, struct folio *folio)
2574 {
2575         if (!folio_test_dirty(folio))
2576                 return !folio_test_set_dirty(folio);
2577         return false;
2578 }
2579 EXPORT_SYMBOL(noop_dirty_folio);
2580
2581 /*
2582  * Helper function for set_page_dirty family.
2583  *
2584  * Caller must hold lock_page_memcg().
2585  *
2586  * NOTE: This relies on being atomic wrt interrupts.
2587  */
2588 static void folio_account_dirtied(struct folio *folio,
2589                 struct address_space *mapping)
2590 {
2591         struct inode *inode = mapping->host;
2592
2593         trace_writeback_dirty_folio(folio, mapping);
2594
2595         if (mapping_can_writeback(mapping)) {
2596                 struct bdi_writeback *wb;
2597                 long nr = folio_nr_pages(folio);
2598
2599                 inode_attach_wb(inode, &folio->page);
2600                 wb = inode_to_wb(inode);
2601
2602                 __lruvec_stat_mod_folio(folio, NR_FILE_DIRTY, nr);
2603                 __zone_stat_mod_folio(folio, NR_ZONE_WRITE_PENDING, nr);
2604                 __node_stat_mod_folio(folio, NR_DIRTIED, nr);
2605                 wb_stat_mod(wb, WB_RECLAIMABLE, nr);
2606                 wb_stat_mod(wb, WB_DIRTIED, nr);
2607                 task_io_account_write(nr * PAGE_SIZE);
2608                 current->nr_dirtied += nr;
2609                 __this_cpu_add(bdp_ratelimits, nr);
2610
2611                 mem_cgroup_track_foreign_dirty(folio, wb);
2612         }
2613 }
2614
2615 /*
2616  * Helper function for deaccounting dirty page without writeback.
2617  *
2618  * Caller must hold lock_page_memcg().
2619  */
2620 void folio_account_cleaned(struct folio *folio, struct bdi_writeback *wb)
2621 {
2622         long nr = folio_nr_pages(folio);
2623
2624         lruvec_stat_mod_folio(folio, NR_FILE_DIRTY, -nr);
2625         zone_stat_mod_folio(folio, NR_ZONE_WRITE_PENDING, -nr);
2626         wb_stat_mod(wb, WB_RECLAIMABLE, -nr);
2627         task_io_account_cancelled_write(nr * PAGE_SIZE);
2628 }
2629
2630 /*
2631  * Mark the folio dirty, and set it dirty in the page cache, and mark
2632  * the inode dirty.
2633  *
2634  * If warn is true, then emit a warning if the folio is not uptodate and has
2635  * not been truncated.
2636  *
2637  * The caller must hold lock_page_memcg().  Most callers have the folio
2638  * locked.  A few have the folio blocked from truncation through other
2639  * means (eg zap_page_range() has it mapped and is holding the page table
2640  * lock).  This can also be called from mark_buffer_dirty(), which I
2641  * cannot prove is always protected against truncate.
2642  */
2643 void __folio_mark_dirty(struct folio *folio, struct address_space *mapping,
2644                              int warn)
2645 {
2646         unsigned long flags;
2647
2648         xa_lock_irqsave(&mapping->i_pages, flags);
2649         if (folio->mapping) {   /* Race with truncate? */
2650                 WARN_ON_ONCE(warn && !folio_test_uptodate(folio));
2651                 folio_account_dirtied(folio, mapping);
2652                 __xa_set_mark(&mapping->i_pages, folio_index(folio),
2653                                 PAGECACHE_TAG_DIRTY);
2654         }
2655         xa_unlock_irqrestore(&mapping->i_pages, flags);
2656 }
2657
2658 /**
2659  * filemap_dirty_folio - Mark a folio dirty for filesystems which do not use buffer_heads.
2660  * @mapping: Address space this folio belongs to.
2661  * @folio: Folio to be marked as dirty.
2662  *
2663  * Filesystems which do not use buffer heads should call this function
2664  * from their set_page_dirty address space operation.  It ignores the
2665  * contents of folio_get_private(), so if the filesystem marks individual
2666  * blocks as dirty, the filesystem should handle that itself.
2667  *
2668  * This is also sometimes used by filesystems which use buffer_heads when
2669  * a single buffer is being dirtied: we want to set the folio dirty in
2670  * that case, but not all the buffers.  This is a "bottom-up" dirtying,
2671  * whereas block_dirty_folio() is a "top-down" dirtying.
2672  *
2673  * The caller must ensure this doesn't race with truncation.  Most will
2674  * simply hold the folio lock, but e.g. zap_pte_range() calls with the
2675  * folio mapped and the pte lock held, which also locks out truncation.
2676  */
2677 bool filemap_dirty_folio(struct address_space *mapping, struct folio *folio)
2678 {
2679         folio_memcg_lock(folio);
2680         if (folio_test_set_dirty(folio)) {
2681                 folio_memcg_unlock(folio);
2682                 return false;
2683         }
2684
2685         __folio_mark_dirty(folio, mapping, !folio_test_private(folio));
2686         folio_memcg_unlock(folio);
2687
2688         if (mapping->host) {
2689                 /* !PageAnon && !swapper_space */
2690                 __mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
2691         }
2692         return true;
2693 }
2694 EXPORT_SYMBOL(filemap_dirty_folio);
2695
2696 /**
2697  * folio_account_redirty - Manually account for redirtying a page.
2698  * @folio: The folio which is being redirtied.
2699  *
2700  * Most filesystems should call folio_redirty_for_writepage() instead
2701  * of this fuction.  If your filesystem is doing writeback outside the
2702  * context of a writeback_control(), it can call this when redirtying
2703  * a folio, to de-account the dirty counters (NR_DIRTIED, WB_DIRTIED,
2704  * tsk->nr_dirtied), so that they match the written counters (NR_WRITTEN,
2705  * WB_WRITTEN) in long term. The mismatches will lead to systematic errors
2706  * in balanced_dirty_ratelimit and the dirty pages position control.
2707  */
2708 void folio_account_redirty(struct folio *folio)
2709 {
2710         struct address_space *mapping = folio->mapping;
2711
2712         if (mapping && mapping_can_writeback(mapping)) {
2713                 struct inode *inode = mapping->host;
2714                 struct bdi_writeback *wb;
2715                 struct wb_lock_cookie cookie = {};
2716                 long nr = folio_nr_pages(folio);
2717
2718                 wb = unlocked_inode_to_wb_begin(inode, &cookie);
2719                 current->nr_dirtied -= nr;
2720                 node_stat_mod_folio(folio, NR_DIRTIED, -nr);
2721                 wb_stat_mod(wb, WB_DIRTIED, -nr);
2722                 unlocked_inode_to_wb_end(inode, &cookie);
2723         }
2724 }
2725 EXPORT_SYMBOL(folio_account_redirty);
2726
2727 /**
2728  * folio_redirty_for_writepage - Decline to write a dirty folio.
2729  * @wbc: The writeback control.
2730  * @folio: The folio.
2731  *
2732  * When a writepage implementation decides that it doesn't want to write
2733  * @folio for some reason, it should call this function, unlock @folio and
2734  * return 0.
2735  *
2736  * Return: True if we redirtied the folio.  False if someone else dirtied
2737  * it first.
2738  */
2739 bool folio_redirty_for_writepage(struct writeback_control *wbc,
2740                 struct folio *folio)
2741 {
2742         bool ret;
2743         long nr = folio_nr_pages(folio);
2744
2745         wbc->pages_skipped += nr;
2746         ret = filemap_dirty_folio(folio->mapping, folio);
2747         folio_account_redirty(folio);
2748
2749         return ret;
2750 }
2751 EXPORT_SYMBOL(folio_redirty_for_writepage);
2752
2753 /**
2754  * folio_mark_dirty - Mark a folio as being modified.
2755  * @folio: The folio.
2756  *
2757  * The folio may not be truncated while this function is running.
2758  * Holding the folio lock is sufficient to prevent truncation, but some
2759  * callers cannot acquire a sleeping lock.  These callers instead hold
2760  * the page table lock for a page table which contains at least one page
2761  * in this folio.  Truncation will block on the page table lock as it
2762  * unmaps pages before removing the folio from its mapping.
2763  *
2764  * Return: True if the folio was newly dirtied, false if it was already dirty.
2765  */
2766 bool folio_mark_dirty(struct folio *folio)
2767 {
2768         struct address_space *mapping = folio_mapping(folio);
2769
2770         if (likely(mapping)) {
2771                 /*
2772                  * readahead/lru_deactivate_page could remain
2773                  * PG_readahead/PG_reclaim due to race with folio_end_writeback
2774                  * About readahead, if the folio is written, the flags would be
2775                  * reset. So no problem.
2776                  * About lru_deactivate_page, if the folio is redirtied,
2777                  * the flag will be reset. So no problem. but if the
2778                  * folio is used by readahead it will confuse readahead
2779                  * and make it restart the size rampup process. But it's
2780                  * a trivial problem.
2781                  */
2782                 if (folio_test_reclaim(folio))
2783                         folio_clear_reclaim(folio);
2784                 return mapping->a_ops->dirty_folio(mapping, folio);
2785         }
2786
2787         return noop_dirty_folio(mapping, folio);
2788 }
2789 EXPORT_SYMBOL(folio_mark_dirty);
2790
2791 /*
2792  * set_page_dirty() is racy if the caller has no reference against
2793  * page->mapping->host, and if the page is unlocked.  This is because another
2794  * CPU could truncate the page off the mapping and then free the mapping.
2795  *
2796  * Usually, the page _is_ locked, or the caller is a user-space process which
2797  * holds a reference on the inode by having an open file.
2798  *
2799  * In other cases, the page should be locked before running set_page_dirty().
2800  */
2801 int set_page_dirty_lock(struct page *page)
2802 {
2803         int ret;
2804
2805         lock_page(page);
2806         ret = set_page_dirty(page);
2807         unlock_page(page);
2808         return ret;
2809 }
2810 EXPORT_SYMBOL(set_page_dirty_lock);
2811
2812 /*
2813  * This cancels just the dirty bit on the kernel page itself, it does NOT
2814  * actually remove dirty bits on any mmap's that may be around. It also
2815  * leaves the page tagged dirty, so any sync activity will still find it on
2816  * the dirty lists, and in particular, clear_page_dirty_for_io() will still
2817  * look at the dirty bits in the VM.
2818  *
2819  * Doing this should *normally* only ever be done when a page is truncated,
2820  * and is not actually mapped anywhere at all. However, fs/buffer.c does
2821  * this when it notices that somebody has cleaned out all the buffers on a
2822  * page without actually doing it through the VM. Can you say "ext3 is
2823  * horribly ugly"? Thought you could.
2824  */
2825 void __folio_cancel_dirty(struct folio *folio)
2826 {
2827         struct address_space *mapping = folio_mapping(folio);
2828
2829         if (mapping_can_writeback(mapping)) {
2830                 struct inode *inode = mapping->host;
2831                 struct bdi_writeback *wb;
2832                 struct wb_lock_cookie cookie = {};
2833
2834                 folio_memcg_lock(folio);
2835                 wb = unlocked_inode_to_wb_begin(inode, &cookie);
2836
2837                 if (folio_test_clear_dirty(folio))
2838                         folio_account_cleaned(folio, wb);
2839
2840                 unlocked_inode_to_wb_end(inode, &cookie);
2841                 folio_memcg_unlock(folio);
2842         } else {
2843                 folio_clear_dirty(folio);
2844         }
2845 }
2846 EXPORT_SYMBOL(__folio_cancel_dirty);
2847
2848 /*
2849  * Clear a folio's dirty flag, while caring for dirty memory accounting.
2850  * Returns true if the folio was previously dirty.
2851  *
2852  * This is for preparing to put the folio under writeout.  We leave
2853  * the folio tagged as dirty in the xarray so that a concurrent
2854  * write-for-sync can discover it via a PAGECACHE_TAG_DIRTY walk.
2855  * The ->writepage implementation will run either folio_start_writeback()
2856  * or folio_mark_dirty(), at which stage we bring the folio's dirty flag
2857  * and xarray dirty tag back into sync.
2858  *
2859  * This incoherency between the folio's dirty flag and xarray tag is
2860  * unfortunate, but it only exists while the folio is locked.
2861  */
2862 bool folio_clear_dirty_for_io(struct folio *folio)
2863 {
2864         struct address_space *mapping = folio_mapping(folio);
2865         bool ret = false;
2866
2867         VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
2868
2869         if (mapping && mapping_can_writeback(mapping)) {
2870                 struct inode *inode = mapping->host;
2871                 struct bdi_writeback *wb;
2872                 struct wb_lock_cookie cookie = {};
2873
2874                 /*
2875                  * Yes, Virginia, this is indeed insane.
2876                  *
2877                  * We use this sequence to make sure that
2878                  *  (a) we account for dirty stats properly
2879                  *  (b) we tell the low-level filesystem to
2880                  *      mark the whole folio dirty if it was
2881                  *      dirty in a pagetable. Only to then
2882                  *  (c) clean the folio again and return 1 to
2883                  *      cause the writeback.
2884                  *
2885                  * This way we avoid all nasty races with the
2886                  * dirty bit in multiple places and clearing
2887                  * them concurrently from different threads.
2888                  *
2889                  * Note! Normally the "folio_mark_dirty(folio)"
2890                  * has no effect on the actual dirty bit - since
2891                  * that will already usually be set. But we
2892                  * need the side effects, and it can help us
2893                  * avoid races.
2894                  *
2895                  * We basically use the folio "master dirty bit"
2896                  * as a serialization point for all the different
2897                  * threads doing their things.
2898                  */
2899                 if (folio_mkclean(folio))
2900                         folio_mark_dirty(folio);
2901                 /*
2902                  * We carefully synchronise fault handlers against
2903                  * installing a dirty pte and marking the folio dirty
2904                  * at this point.  We do this by having them hold the
2905                  * page lock while dirtying the folio, and folios are
2906                  * always locked coming in here, so we get the desired
2907                  * exclusion.
2908                  */
2909                 wb = unlocked_inode_to_wb_begin(inode, &cookie);
2910                 if (folio_test_clear_dirty(folio)) {
2911                         long nr = folio_nr_pages(folio);
2912                         lruvec_stat_mod_folio(folio, NR_FILE_DIRTY, -nr);
2913                         zone_stat_mod_folio(folio, NR_ZONE_WRITE_PENDING, -nr);
2914                         wb_stat_mod(wb, WB_RECLAIMABLE, -nr);
2915                         ret = true;
2916                 }
2917                 unlocked_inode_to_wb_end(inode, &cookie);
2918                 return ret;
2919         }
2920         return folio_test_clear_dirty(folio);
2921 }
2922 EXPORT_SYMBOL(folio_clear_dirty_for_io);
2923
2924 static void wb_inode_writeback_start(struct bdi_writeback *wb)
2925 {
2926         atomic_inc(&wb->writeback_inodes);
2927 }
2928
2929 static void wb_inode_writeback_end(struct bdi_writeback *wb)
2930 {
2931         unsigned long flags;
2932         atomic_dec(&wb->writeback_inodes);
2933         /*
2934          * Make sure estimate of writeback throughput gets updated after
2935          * writeback completed. We delay the update by BANDWIDTH_INTERVAL
2936          * (which is the interval other bandwidth updates use for batching) so
2937          * that if multiple inodes end writeback at a similar time, they get
2938          * batched into one bandwidth update.
2939          */
2940         spin_lock_irqsave(&wb->work_lock, flags);
2941         if (test_bit(WB_registered, &wb->state))
2942                 queue_delayed_work(bdi_wq, &wb->bw_dwork, BANDWIDTH_INTERVAL);
2943         spin_unlock_irqrestore(&wb->work_lock, flags);
2944 }
2945
2946 bool __folio_end_writeback(struct folio *folio)
2947 {
2948         long nr = folio_nr_pages(folio);
2949         struct address_space *mapping = folio_mapping(folio);
2950         bool ret;
2951
2952         folio_memcg_lock(folio);
2953         if (mapping && mapping_use_writeback_tags(mapping)) {
2954                 struct inode *inode = mapping->host;
2955                 struct backing_dev_info *bdi = inode_to_bdi(inode);
2956                 unsigned long flags;
2957
2958                 xa_lock_irqsave(&mapping->i_pages, flags);
2959                 ret = folio_test_clear_writeback(folio);
2960                 if (ret) {
2961                         __xa_clear_mark(&mapping->i_pages, folio_index(folio),
2962                                                 PAGECACHE_TAG_WRITEBACK);
2963                         if (bdi->capabilities & BDI_CAP_WRITEBACK_ACCT) {
2964                                 struct bdi_writeback *wb = inode_to_wb(inode);
2965
2966                                 wb_stat_mod(wb, WB_WRITEBACK, -nr);
2967                                 __wb_writeout_add(wb, nr);
2968                                 if (!mapping_tagged(mapping,
2969                                                     PAGECACHE_TAG_WRITEBACK))
2970                                         wb_inode_writeback_end(wb);
2971                         }
2972                 }
2973
2974                 if (mapping->host && !mapping_tagged(mapping,
2975                                                      PAGECACHE_TAG_WRITEBACK))
2976                         sb_clear_inode_writeback(mapping->host);
2977
2978                 xa_unlock_irqrestore(&mapping->i_pages, flags);
2979         } else {
2980                 ret = folio_test_clear_writeback(folio);
2981         }
2982         if (ret) {
2983                 lruvec_stat_mod_folio(folio, NR_WRITEBACK, -nr);
2984                 zone_stat_mod_folio(folio, NR_ZONE_WRITE_PENDING, -nr);
2985                 node_stat_mod_folio(folio, NR_WRITTEN, nr);
2986         }
2987         folio_memcg_unlock(folio);
2988         return ret;
2989 }
2990
2991 bool __folio_start_writeback(struct folio *folio, bool keep_write)
2992 {
2993         long nr = folio_nr_pages(folio);
2994         struct address_space *mapping = folio_mapping(folio);
2995         bool ret;
2996         int access_ret;
2997
2998         folio_memcg_lock(folio);
2999         if (mapping && mapping_use_writeback_tags(mapping)) {
3000                 XA_STATE(xas, &mapping->i_pages, folio_index(folio));
3001                 struct inode *inode = mapping->host;
3002                 struct backing_dev_info *bdi = inode_to_bdi(inode);
3003                 unsigned long flags;
3004
3005                 xas_lock_irqsave(&xas, flags);
3006                 xas_load(&xas);
3007                 ret = folio_test_set_writeback(folio);
3008                 if (!ret) {
3009                         bool on_wblist;
3010
3011                         on_wblist = mapping_tagged(mapping,
3012                                                    PAGECACHE_TAG_WRITEBACK);
3013
3014                         xas_set_mark(&xas, PAGECACHE_TAG_WRITEBACK);
3015                         if (bdi->capabilities & BDI_CAP_WRITEBACK_ACCT) {
3016                                 struct bdi_writeback *wb = inode_to_wb(inode);
3017
3018                                 wb_stat_mod(wb, WB_WRITEBACK, nr);
3019                                 if (!on_wblist)
3020                                         wb_inode_writeback_start(wb);
3021                         }
3022
3023                         /*
3024                          * We can come through here when swapping
3025                          * anonymous folios, so we don't necessarily
3026                          * have an inode to track for sync.
3027                          */
3028                         if (mapping->host && !on_wblist)
3029                                 sb_mark_inode_writeback(mapping->host);
3030                 }
3031                 if (!folio_test_dirty(folio))
3032                         xas_clear_mark(&xas, PAGECACHE_TAG_DIRTY);
3033                 if (!keep_write)
3034                         xas_clear_mark(&xas, PAGECACHE_TAG_TOWRITE);
3035                 xas_unlock_irqrestore(&xas, flags);
3036         } else {
3037                 ret = folio_test_set_writeback(folio);
3038         }
3039         if (!ret) {
3040                 lruvec_stat_mod_folio(folio, NR_WRITEBACK, nr);
3041                 zone_stat_mod_folio(folio, NR_ZONE_WRITE_PENDING, nr);
3042         }
3043         folio_memcg_unlock(folio);
3044         access_ret = arch_make_folio_accessible(folio);
3045         /*
3046          * If writeback has been triggered on a page that cannot be made
3047          * accessible, it is too late to recover here.
3048          */
3049         VM_BUG_ON_FOLIO(access_ret != 0, folio);
3050
3051         return ret;
3052 }
3053 EXPORT_SYMBOL(__folio_start_writeback);
3054
3055 /**
3056  * folio_wait_writeback - Wait for a folio to finish writeback.
3057  * @folio: The folio to wait for.
3058  *
3059  * If the folio is currently being written back to storage, wait for the
3060  * I/O to complete.
3061  *
3062  * Context: Sleeps.  Must be called in process context and with
3063  * no spinlocks held.  Caller should hold a reference on the folio.
3064  * If the folio is not locked, writeback may start again after writeback
3065  * has finished.
3066  */
3067 void folio_wait_writeback(struct folio *folio)
3068 {
3069         while (folio_test_writeback(folio)) {
3070                 trace_folio_wait_writeback(folio, folio_mapping(folio));
3071                 folio_wait_bit(folio, PG_writeback);
3072         }
3073 }
3074 EXPORT_SYMBOL_GPL(folio_wait_writeback);
3075
3076 /**
3077  * folio_wait_writeback_killable - Wait for a folio to finish writeback.
3078  * @folio: The folio to wait for.
3079  *
3080  * If the folio is currently being written back to storage, wait for the
3081  * I/O to complete or a fatal signal to arrive.
3082  *
3083  * Context: Sleeps.  Must be called in process context and with
3084  * no spinlocks held.  Caller should hold a reference on the folio.
3085  * If the folio is not locked, writeback may start again after writeback
3086  * has finished.
3087  * Return: 0 on success, -EINTR if we get a fatal signal while waiting.
3088  */
3089 int folio_wait_writeback_killable(struct folio *folio)
3090 {
3091         while (folio_test_writeback(folio)) {
3092                 trace_folio_wait_writeback(folio, folio_mapping(folio));
3093                 if (folio_wait_bit_killable(folio, PG_writeback))
3094                         return -EINTR;
3095         }
3096
3097         return 0;
3098 }
3099 EXPORT_SYMBOL_GPL(folio_wait_writeback_killable);
3100
3101 /**
3102  * folio_wait_stable() - wait for writeback to finish, if necessary.
3103  * @folio: The folio to wait on.
3104  *
3105  * This function determines if the given folio is related to a backing
3106  * device that requires folio contents to be held stable during writeback.
3107  * If so, then it will wait for any pending writeback to complete.
3108  *
3109  * Context: Sleeps.  Must be called in process context and with
3110  * no spinlocks held.  Caller should hold a reference on the folio.
3111  * If the folio is not locked, writeback may start again after writeback
3112  * has finished.
3113  */
3114 void folio_wait_stable(struct folio *folio)
3115 {
3116         if (folio_inode(folio)->i_sb->s_iflags & SB_I_STABLE_WRITES)
3117                 folio_wait_writeback(folio);
3118 }
3119 EXPORT_SYMBOL_GPL(folio_wait_stable);