4 * Copyright (C) 2002, Linus Torvalds.
5 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
7 * Contains functions related to writing back dirty pages at the
10 * 10Apr2002 Andrew Morton
14 #include <linux/kernel.h>
15 #include <linux/module.h>
16 #include <linux/spinlock.h>
19 #include <linux/swap.h>
20 #include <linux/slab.h>
21 #include <linux/pagemap.h>
22 #include <linux/writeback.h>
23 #include <linux/init.h>
24 #include <linux/backing-dev.h>
25 #include <linux/task_io_accounting_ops.h>
26 #include <linux/blkdev.h>
27 #include <linux/mpage.h>
28 #include <linux/rmap.h>
29 #include <linux/percpu.h>
30 #include <linux/notifier.h>
31 #include <linux/smp.h>
32 #include <linux/sysctl.h>
33 #include <linux/cpu.h>
34 #include <linux/syscalls.h>
35 #include <linux/buffer_head.h>
36 #include <linux/pagevec.h>
37 #include <trace/events/writeback.h>
40 * Sleep at most 200ms at a time in balance_dirty_pages().
42 #define MAX_PAUSE max(HZ/5, 1)
45 * Estimate write bandwidth at 200ms intervals.
47 #define BANDWIDTH_INTERVAL max(HZ/5, 1)
50 * After a CPU has dirtied this many pages, balance_dirty_pages_ratelimited
51 * will look to see if it needs to force writeback or throttling.
53 static long ratelimit_pages = 32;
56 * When balance_dirty_pages decides that the caller needs to perform some
57 * non-background writeback, this is how many pages it will attempt to write.
58 * It should be somewhat larger than dirtied pages to ensure that reasonably
59 * large amounts of I/O are submitted.
61 static inline long sync_writeback_pages(unsigned long dirtied)
63 if (dirtied < ratelimit_pages)
64 dirtied = ratelimit_pages;
66 return dirtied + dirtied / 2;
69 /* The following parameters are exported via /proc/sys/vm */
72 * Start background writeback (via writeback threads) at this percentage
74 int dirty_background_ratio = 10;
77 * dirty_background_bytes starts at 0 (disabled) so that it is a function of
78 * dirty_background_ratio * the amount of dirtyable memory
80 unsigned long dirty_background_bytes;
83 * free highmem will not be subtracted from the total free memory
84 * for calculating free ratios if vm_highmem_is_dirtyable is true
86 int vm_highmem_is_dirtyable;
89 * The generator of dirty data starts writeback at this percentage
91 int vm_dirty_ratio = 20;
94 * vm_dirty_bytes starts at 0 (disabled) so that it is a function of
95 * vm_dirty_ratio * the amount of dirtyable memory
97 unsigned long vm_dirty_bytes;
100 * The interval between `kupdate'-style writebacks
102 unsigned int dirty_writeback_interval = 5 * 100; /* centiseconds */
105 * The longest time for which data is allowed to remain dirty
107 unsigned int dirty_expire_interval = 30 * 100; /* centiseconds */
110 * Flag that makes the machine dump writes/reads and block dirtyings.
115 * Flag that puts the machine in "laptop mode". Doubles as a timeout in jiffies:
116 * a full sync is triggered after this time elapses without any disk activity.
120 EXPORT_SYMBOL(laptop_mode);
122 /* End of sysctl-exported parameters */
124 unsigned long global_dirty_limit;
127 * Scale the writeback cache size proportional to the relative writeout speeds.
129 * We do this by keeping a floating proportion between BDIs, based on page
130 * writeback completions [end_page_writeback()]. Those devices that write out
131 * pages fastest will get the larger share, while the slower will get a smaller
134 * We use page writeout completions because we are interested in getting rid of
135 * dirty pages. Having them written out is the primary goal.
137 * We introduce a concept of time, a period over which we measure these events,
138 * because demand can/will vary over time. The length of this period itself is
139 * measured in page writeback completions.
142 static struct prop_descriptor vm_completions;
143 static struct prop_descriptor vm_dirties;
146 * couple the period to the dirty_ratio:
148 * period/2 ~ roundup_pow_of_two(dirty limit)
150 static int calc_period_shift(void)
152 unsigned long dirty_total;
155 dirty_total = vm_dirty_bytes / PAGE_SIZE;
157 dirty_total = (vm_dirty_ratio * determine_dirtyable_memory()) /
159 return 2 + ilog2(dirty_total - 1);
163 * update the period when the dirty threshold changes.
165 static void update_completion_period(void)
167 int shift = calc_period_shift();
168 prop_change_shift(&vm_completions, shift);
169 prop_change_shift(&vm_dirties, shift);
172 int dirty_background_ratio_handler(struct ctl_table *table, int write,
173 void __user *buffer, size_t *lenp,
178 ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
179 if (ret == 0 && write)
180 dirty_background_bytes = 0;
184 int dirty_background_bytes_handler(struct ctl_table *table, int write,
185 void __user *buffer, size_t *lenp,
190 ret = proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
191 if (ret == 0 && write)
192 dirty_background_ratio = 0;
196 int dirty_ratio_handler(struct ctl_table *table, int write,
197 void __user *buffer, size_t *lenp,
200 int old_ratio = vm_dirty_ratio;
203 ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
204 if (ret == 0 && write && vm_dirty_ratio != old_ratio) {
205 update_completion_period();
212 int dirty_bytes_handler(struct ctl_table *table, int write,
213 void __user *buffer, size_t *lenp,
216 unsigned long old_bytes = vm_dirty_bytes;
219 ret = proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
220 if (ret == 0 && write && vm_dirty_bytes != old_bytes) {
221 update_completion_period();
228 * Increment the BDI's writeout completion count and the global writeout
229 * completion count. Called from test_clear_page_writeback().
231 static inline void __bdi_writeout_inc(struct backing_dev_info *bdi)
233 __inc_bdi_stat(bdi, BDI_WRITTEN);
234 __prop_inc_percpu_max(&vm_completions, &bdi->completions,
238 void bdi_writeout_inc(struct backing_dev_info *bdi)
242 local_irq_save(flags);
243 __bdi_writeout_inc(bdi);
244 local_irq_restore(flags);
246 EXPORT_SYMBOL_GPL(bdi_writeout_inc);
248 void task_dirty_inc(struct task_struct *tsk)
250 prop_inc_single(&vm_dirties, &tsk->dirties);
254 * Obtain an accurate fraction of the BDI's portion.
256 static void bdi_writeout_fraction(struct backing_dev_info *bdi,
257 long *numerator, long *denominator)
259 prop_fraction_percpu(&vm_completions, &bdi->completions,
260 numerator, denominator);
263 static inline void task_dirties_fraction(struct task_struct *tsk,
264 long *numerator, long *denominator)
266 prop_fraction_single(&vm_dirties, &tsk->dirties,
267 numerator, denominator);
271 * task_dirty_limit - scale down dirty throttling threshold for one task
273 * task specific dirty limit:
275 * dirty -= (dirty/8) * p_{t}
277 * To protect light/slow dirtying tasks from heavier/fast ones, we start
278 * throttling individual tasks before reaching the bdi dirty limit.
279 * Relatively low thresholds will be allocated to heavy dirtiers. So when
280 * dirty pages grow large, heavy dirtiers will be throttled first, which will
281 * effectively curb the growth of dirty pages. Light dirtiers with high enough
282 * dirty threshold may never get throttled.
284 static unsigned long task_dirty_limit(struct task_struct *tsk,
285 unsigned long bdi_dirty)
287 long numerator, denominator;
288 unsigned long dirty = bdi_dirty;
289 u64 inv = dirty >> 3;
291 task_dirties_fraction(tsk, &numerator, &denominator);
293 do_div(inv, denominator);
297 return max(dirty, bdi_dirty/2);
303 static unsigned int bdi_min_ratio;
305 int bdi_set_min_ratio(struct backing_dev_info *bdi, unsigned int min_ratio)
309 spin_lock_bh(&bdi_lock);
310 if (min_ratio > bdi->max_ratio) {
313 min_ratio -= bdi->min_ratio;
314 if (bdi_min_ratio + min_ratio < 100) {
315 bdi_min_ratio += min_ratio;
316 bdi->min_ratio += min_ratio;
321 spin_unlock_bh(&bdi_lock);
326 int bdi_set_max_ratio(struct backing_dev_info *bdi, unsigned max_ratio)
333 spin_lock_bh(&bdi_lock);
334 if (bdi->min_ratio > max_ratio) {
337 bdi->max_ratio = max_ratio;
338 bdi->max_prop_frac = (PROP_FRAC_BASE * max_ratio) / 100;
340 spin_unlock_bh(&bdi_lock);
344 EXPORT_SYMBOL(bdi_set_max_ratio);
347 * Work out the current dirty-memory clamping and background writeout
350 * The main aim here is to lower them aggressively if there is a lot of mapped
351 * memory around. To avoid stressing page reclaim with lots of unreclaimable
352 * pages. It is better to clamp down on writers than to start swapping, and
353 * performing lots of scanning.
355 * We only allow 1/2 of the currently-unmapped memory to be dirtied.
357 * We don't permit the clamping level to fall below 5% - that is getting rather
360 * We make sure that the background writeout level is below the adjusted
364 static unsigned long highmem_dirtyable_memory(unsigned long total)
366 #ifdef CONFIG_HIGHMEM
370 for_each_node_state(node, N_HIGH_MEMORY) {
372 &NODE_DATA(node)->node_zones[ZONE_HIGHMEM];
374 x += zone_page_state(z, NR_FREE_PAGES) +
375 zone_reclaimable_pages(z);
378 * Make sure that the number of highmem pages is never larger
379 * than the number of the total dirtyable memory. This can only
380 * occur in very strange VM situations but we want to make sure
381 * that this does not occur.
383 return min(x, total);
390 * determine_dirtyable_memory - amount of memory that may be used
392 * Returns the numebr of pages that can currently be freed and used
393 * by the kernel for direct mappings.
395 unsigned long determine_dirtyable_memory(void)
399 x = global_page_state(NR_FREE_PAGES) + global_reclaimable_pages();
401 if (!vm_highmem_is_dirtyable)
402 x -= highmem_dirtyable_memory(x);
404 return x + 1; /* Ensure that we never return 0 */
407 static unsigned long hard_dirty_limit(unsigned long thresh)
409 return max(thresh, global_dirty_limit);
413 * global_dirty_limits - background-writeback and dirty-throttling thresholds
415 * Calculate the dirty thresholds based on sysctl parameters
416 * - vm.dirty_background_ratio or vm.dirty_background_bytes
417 * - vm.dirty_ratio or vm.dirty_bytes
418 * The dirty limits will be lifted by 1/4 for PF_LESS_THROTTLE (ie. nfsd) and
421 void global_dirty_limits(unsigned long *pbackground, unsigned long *pdirty)
423 unsigned long background;
425 unsigned long uninitialized_var(available_memory);
426 struct task_struct *tsk;
428 if (!vm_dirty_bytes || !dirty_background_bytes)
429 available_memory = determine_dirtyable_memory();
432 dirty = DIV_ROUND_UP(vm_dirty_bytes, PAGE_SIZE);
434 dirty = (vm_dirty_ratio * available_memory) / 100;
436 if (dirty_background_bytes)
437 background = DIV_ROUND_UP(dirty_background_bytes, PAGE_SIZE);
439 background = (dirty_background_ratio * available_memory) / 100;
441 if (background >= dirty)
442 background = dirty / 2;
444 if (tsk->flags & PF_LESS_THROTTLE || rt_task(tsk)) {
445 background += background / 4;
448 *pbackground = background;
450 trace_global_dirty_state(background, dirty);
454 * bdi_dirty_limit - @bdi's share of dirty throttling threshold
455 * @bdi: the backing_dev_info to query
456 * @dirty: global dirty limit in pages
458 * Returns @bdi's dirty limit in pages. The term "dirty" in the context of
459 * dirty balancing includes all PG_dirty, PG_writeback and NFS unstable pages.
460 * And the "limit" in the name is not seriously taken as hard limit in
461 * balance_dirty_pages().
463 * It allocates high/low dirty limits to fast/slow devices, in order to prevent
464 * - starving fast devices
465 * - piling up dirty pages (that will take long time to sync) on slow devices
467 * The bdi's share of dirty limit will be adapting to its throughput and
468 * bounded by the bdi->min_ratio and/or bdi->max_ratio parameters, if set.
470 unsigned long bdi_dirty_limit(struct backing_dev_info *bdi, unsigned long dirty)
473 long numerator, denominator;
476 * Calculate this BDI's share of the dirty ratio.
478 bdi_writeout_fraction(bdi, &numerator, &denominator);
480 bdi_dirty = (dirty * (100 - bdi_min_ratio)) / 100;
481 bdi_dirty *= numerator;
482 do_div(bdi_dirty, denominator);
484 bdi_dirty += (dirty * bdi->min_ratio) / 100;
485 if (bdi_dirty > (dirty * bdi->max_ratio) / 100)
486 bdi_dirty = dirty * bdi->max_ratio / 100;
491 static void bdi_update_write_bandwidth(struct backing_dev_info *bdi,
492 unsigned long elapsed,
493 unsigned long written)
495 const unsigned long period = roundup_pow_of_two(3 * HZ);
496 unsigned long avg = bdi->avg_write_bandwidth;
497 unsigned long old = bdi->write_bandwidth;
501 * bw = written * HZ / elapsed
503 * bw * elapsed + write_bandwidth * (period - elapsed)
504 * write_bandwidth = ---------------------------------------------------
507 bw = written - bdi->written_stamp;
509 if (unlikely(elapsed > period)) {
514 bw += (u64)bdi->write_bandwidth * (period - elapsed);
515 bw >>= ilog2(period);
518 * one more level of smoothing, for filtering out sudden spikes
520 if (avg > old && old >= (unsigned long)bw)
521 avg -= (avg - old) >> 3;
523 if (avg < old && old <= (unsigned long)bw)
524 avg += (old - avg) >> 3;
527 bdi->write_bandwidth = bw;
528 bdi->avg_write_bandwidth = avg;
532 * The global dirtyable memory and dirty threshold could be suddenly knocked
533 * down by a large amount (eg. on the startup of KVM in a swapless system).
534 * This may throw the system into deep dirty exceeded state and throttle
535 * heavy/light dirtiers alike. To retain good responsiveness, maintain
536 * global_dirty_limit for tracking slowly down to the knocked down dirty
539 static void update_dirty_limit(unsigned long thresh, unsigned long dirty)
541 unsigned long limit = global_dirty_limit;
544 * Follow up in one step.
546 if (limit < thresh) {
552 * Follow down slowly. Use the higher one as the target, because thresh
553 * may drop below dirty. This is exactly the reason to introduce
554 * global_dirty_limit which is guaranteed to lie above the dirty pages.
556 thresh = max(thresh, dirty);
557 if (limit > thresh) {
558 limit -= (limit - thresh) >> 5;
563 global_dirty_limit = limit;
566 static void global_update_bandwidth(unsigned long thresh,
570 static DEFINE_SPINLOCK(dirty_lock);
571 static unsigned long update_time;
574 * check locklessly first to optimize away locking for the most time
576 if (time_before(now, update_time + BANDWIDTH_INTERVAL))
579 spin_lock(&dirty_lock);
580 if (time_after_eq(now, update_time + BANDWIDTH_INTERVAL)) {
581 update_dirty_limit(thresh, dirty);
584 spin_unlock(&dirty_lock);
587 void __bdi_update_bandwidth(struct backing_dev_info *bdi,
588 unsigned long thresh,
590 unsigned long bdi_thresh,
591 unsigned long bdi_dirty,
592 unsigned long start_time)
594 unsigned long now = jiffies;
595 unsigned long elapsed = now - bdi->bw_time_stamp;
596 unsigned long written;
599 * rate-limit, only update once every 200ms.
601 if (elapsed < BANDWIDTH_INTERVAL)
604 written = percpu_counter_read(&bdi->bdi_stat[BDI_WRITTEN]);
607 * Skip quiet periods when disk bandwidth is under-utilized.
608 * (at least 1s idle time between two flusher runs)
610 if (elapsed > HZ && time_before(bdi->bw_time_stamp, start_time))
614 global_update_bandwidth(thresh, dirty, now);
616 bdi_update_write_bandwidth(bdi, elapsed, written);
619 bdi->written_stamp = written;
620 bdi->bw_time_stamp = now;
623 static void bdi_update_bandwidth(struct backing_dev_info *bdi,
624 unsigned long thresh,
626 unsigned long bdi_thresh,
627 unsigned long bdi_dirty,
628 unsigned long start_time)
630 if (time_is_after_eq_jiffies(bdi->bw_time_stamp + BANDWIDTH_INTERVAL))
632 spin_lock(&bdi->wb.list_lock);
633 __bdi_update_bandwidth(bdi, thresh, dirty, bdi_thresh, bdi_dirty,
635 spin_unlock(&bdi->wb.list_lock);
639 * balance_dirty_pages() must be called by processes which are generating dirty
640 * data. It looks at the number of dirty pages in the machine and will force
641 * the caller to perform writeback if the system is over `vm_dirty_ratio'.
642 * If we're over `background_thresh' then the writeback threads are woken to
643 * perform some writeout.
645 static void balance_dirty_pages(struct address_space *mapping,
646 unsigned long write_chunk)
648 unsigned long nr_reclaimable, bdi_nr_reclaimable;
649 unsigned long nr_dirty; /* = file_dirty + writeback + unstable_nfs */
650 unsigned long bdi_dirty;
651 unsigned long background_thresh;
652 unsigned long dirty_thresh;
653 unsigned long bdi_thresh;
654 unsigned long pages_written = 0;
655 unsigned long pause = 1;
656 bool dirty_exceeded = false;
657 struct backing_dev_info *bdi = mapping->backing_dev_info;
658 unsigned long start_time = jiffies;
661 nr_reclaimable = global_page_state(NR_FILE_DIRTY) +
662 global_page_state(NR_UNSTABLE_NFS);
663 nr_dirty = nr_reclaimable + global_page_state(NR_WRITEBACK);
665 global_dirty_limits(&background_thresh, &dirty_thresh);
668 * Throttle it only when the background writeback cannot
669 * catch-up. This avoids (excessively) small writeouts
670 * when the bdi limits are ramping up.
672 if (nr_dirty <= (background_thresh + dirty_thresh) / 2)
675 bdi_thresh = bdi_dirty_limit(bdi, dirty_thresh);
676 bdi_thresh = task_dirty_limit(current, bdi_thresh);
679 * In order to avoid the stacked BDI deadlock we need
680 * to ensure we accurately count the 'dirty' pages when
681 * the threshold is low.
683 * Otherwise it would be possible to get thresh+n pages
684 * reported dirty, even though there are thresh-m pages
685 * actually dirty; with m+n sitting in the percpu
688 if (bdi_thresh < 2*bdi_stat_error(bdi)) {
689 bdi_nr_reclaimable = bdi_stat_sum(bdi, BDI_RECLAIMABLE);
690 bdi_dirty = bdi_nr_reclaimable +
691 bdi_stat_sum(bdi, BDI_WRITEBACK);
693 bdi_nr_reclaimable = bdi_stat(bdi, BDI_RECLAIMABLE);
694 bdi_dirty = bdi_nr_reclaimable +
695 bdi_stat(bdi, BDI_WRITEBACK);
699 * The bdi thresh is somehow "soft" limit derived from the
700 * global "hard" limit. The former helps to prevent heavy IO
701 * bdi or process from holding back light ones; The latter is
702 * the last resort safeguard.
704 dirty_exceeded = (bdi_dirty > bdi_thresh) ||
705 (nr_dirty > dirty_thresh);
710 if (!bdi->dirty_exceeded)
711 bdi->dirty_exceeded = 1;
713 bdi_update_bandwidth(bdi, dirty_thresh, nr_dirty,
714 bdi_thresh, bdi_dirty, start_time);
716 /* Note: nr_reclaimable denotes nr_dirty + nr_unstable.
717 * Unstable writes are a feature of certain networked
718 * filesystems (i.e. NFS) in which data may have been
719 * written to the server's write cache, but has not yet
720 * been flushed to permanent storage.
721 * Only move pages to writeback if this bdi is over its
722 * threshold otherwise wait until the disk writes catch
725 trace_balance_dirty_start(bdi);
726 if (bdi_nr_reclaimable > bdi_thresh) {
727 pages_written += writeback_inodes_wb(&bdi->wb,
729 trace_balance_dirty_written(bdi, pages_written);
730 if (pages_written >= write_chunk)
731 break; /* We've done our duty */
733 __set_current_state(TASK_UNINTERRUPTIBLE);
734 io_schedule_timeout(pause);
735 trace_balance_dirty_wait(bdi);
737 dirty_thresh = hard_dirty_limit(dirty_thresh);
739 * max-pause area. If dirty exceeded but still within this
740 * area, no need to sleep for more than 200ms: (a) 8 pages per
741 * 200ms is typically more than enough to curb heavy dirtiers;
742 * (b) the pause time limit makes the dirtiers more responsive.
744 if (nr_dirty < dirty_thresh +
745 dirty_thresh / DIRTY_MAXPAUSE_AREA &&
746 time_after(jiffies, start_time + MAX_PAUSE))
749 * pass-good area. When some bdi gets blocked (eg. NFS server
750 * not responding), or write bandwidth dropped dramatically due
751 * to concurrent reads, or dirty threshold suddenly dropped and
752 * the dirty pages cannot be brought down anytime soon (eg. on
753 * slow USB stick), at least let go of the good bdi's.
755 if (nr_dirty < dirty_thresh +
756 dirty_thresh / DIRTY_PASSGOOD_AREA &&
757 bdi_dirty < bdi_thresh)
761 * Increase the delay for each loop, up to our previous
762 * default of taking a 100ms nap.
769 if (!dirty_exceeded && bdi->dirty_exceeded)
770 bdi->dirty_exceeded = 0;
772 if (writeback_in_progress(bdi))
776 * In laptop mode, we wait until hitting the higher threshold before
777 * starting background writeout, and then write out all the way down
778 * to the lower threshold. So slow writers cause minimal disk activity.
780 * In normal mode, we start background writeout at the lower
781 * background_thresh, to keep the amount of dirty memory low.
783 if ((laptop_mode && pages_written) ||
784 (!laptop_mode && (nr_reclaimable > background_thresh)))
785 bdi_start_background_writeback(bdi);
788 void set_page_dirty_balance(struct page *page, int page_mkwrite)
790 if (set_page_dirty(page) || page_mkwrite) {
791 struct address_space *mapping = page_mapping(page);
794 balance_dirty_pages_ratelimited(mapping);
798 static DEFINE_PER_CPU(unsigned long, bdp_ratelimits) = 0;
801 * balance_dirty_pages_ratelimited_nr - balance dirty memory state
802 * @mapping: address_space which was dirtied
803 * @nr_pages_dirtied: number of pages which the caller has just dirtied
805 * Processes which are dirtying memory should call in here once for each page
806 * which was newly dirtied. The function will periodically check the system's
807 * dirty state and will initiate writeback if needed.
809 * On really big machines, get_writeback_state is expensive, so try to avoid
810 * calling it too often (ratelimiting). But once we're over the dirty memory
811 * limit we decrease the ratelimiting by a lot, to prevent individual processes
812 * from overshooting the limit by (ratelimit_pages) each.
814 void balance_dirty_pages_ratelimited_nr(struct address_space *mapping,
815 unsigned long nr_pages_dirtied)
817 struct backing_dev_info *bdi = mapping->backing_dev_info;
818 unsigned long ratelimit;
821 if (!bdi_cap_account_dirty(bdi))
824 ratelimit = ratelimit_pages;
825 if (mapping->backing_dev_info->dirty_exceeded)
829 * Check the rate limiting. Also, we do not want to throttle real-time
830 * tasks in balance_dirty_pages(). Period.
833 p = &__get_cpu_var(bdp_ratelimits);
834 *p += nr_pages_dirtied;
835 if (unlikely(*p >= ratelimit)) {
836 ratelimit = sync_writeback_pages(*p);
839 balance_dirty_pages(mapping, ratelimit);
844 EXPORT_SYMBOL(balance_dirty_pages_ratelimited_nr);
846 void throttle_vm_writeout(gfp_t gfp_mask)
848 unsigned long background_thresh;
849 unsigned long dirty_thresh;
852 global_dirty_limits(&background_thresh, &dirty_thresh);
855 * Boost the allowable dirty threshold a bit for page
856 * allocators so they don't get DoS'ed by heavy writers
858 dirty_thresh += dirty_thresh / 10; /* wheeee... */
860 if (global_page_state(NR_UNSTABLE_NFS) +
861 global_page_state(NR_WRITEBACK) <= dirty_thresh)
863 congestion_wait(BLK_RW_ASYNC, HZ/10);
866 * The caller might hold locks which can prevent IO completion
867 * or progress in the filesystem. So we cannot just sit here
868 * waiting for IO to complete.
870 if ((gfp_mask & (__GFP_FS|__GFP_IO)) != (__GFP_FS|__GFP_IO))
876 * sysctl handler for /proc/sys/vm/dirty_writeback_centisecs
878 int dirty_writeback_centisecs_handler(ctl_table *table, int write,
879 void __user *buffer, size_t *length, loff_t *ppos)
881 proc_dointvec(table, write, buffer, length, ppos);
882 bdi_arm_supers_timer();
887 void laptop_mode_timer_fn(unsigned long data)
889 struct request_queue *q = (struct request_queue *)data;
890 int nr_pages = global_page_state(NR_FILE_DIRTY) +
891 global_page_state(NR_UNSTABLE_NFS);
894 * We want to write everything out, not just down to the dirty
897 if (bdi_has_dirty_io(&q->backing_dev_info))
898 bdi_start_writeback(&q->backing_dev_info, nr_pages);
902 * We've spun up the disk and we're in laptop mode: schedule writeback
903 * of all dirty data a few seconds from now. If the flush is already scheduled
904 * then push it back - the user is still using the disk.
906 void laptop_io_completion(struct backing_dev_info *info)
908 mod_timer(&info->laptop_mode_wb_timer, jiffies + laptop_mode);
912 * We're in laptop mode and we've just synced. The sync's writes will have
913 * caused another writeback to be scheduled by laptop_io_completion.
914 * Nothing needs to be written back anymore, so we unschedule the writeback.
916 void laptop_sync_completion(void)
918 struct backing_dev_info *bdi;
922 list_for_each_entry_rcu(bdi, &bdi_list, bdi_list)
923 del_timer(&bdi->laptop_mode_wb_timer);
930 * If ratelimit_pages is too high then we can get into dirty-data overload
931 * if a large number of processes all perform writes at the same time.
932 * If it is too low then SMP machines will call the (expensive)
933 * get_writeback_state too often.
935 * Here we set ratelimit_pages to a level which ensures that when all CPUs are
936 * dirtying in parallel, we cannot go more than 3% (1/32) over the dirty memory
937 * thresholds before writeback cuts in.
939 * But the limit should not be set too high. Because it also controls the
940 * amount of memory which the balance_dirty_pages() caller has to write back.
941 * If this is too large then the caller will block on the IO queue all the
942 * time. So limit it to four megabytes - the balance_dirty_pages() caller
943 * will write six megabyte chunks, max.
946 void writeback_set_ratelimit(void)
948 ratelimit_pages = vm_total_pages / (num_online_cpus() * 32);
949 if (ratelimit_pages < 16)
950 ratelimit_pages = 16;
951 if (ratelimit_pages * PAGE_CACHE_SIZE > 4096 * 1024)
952 ratelimit_pages = (4096 * 1024) / PAGE_CACHE_SIZE;
956 ratelimit_handler(struct notifier_block *self, unsigned long u, void *v)
958 writeback_set_ratelimit();
962 static struct notifier_block __cpuinitdata ratelimit_nb = {
963 .notifier_call = ratelimit_handler,
968 * Called early on to tune the page writeback dirty limits.
970 * We used to scale dirty pages according to how total memory
971 * related to pages that could be allocated for buffers (by
972 * comparing nr_free_buffer_pages() to vm_total_pages.
974 * However, that was when we used "dirty_ratio" to scale with
975 * all memory, and we don't do that any more. "dirty_ratio"
976 * is now applied to total non-HIGHPAGE memory (by subtracting
977 * totalhigh_pages from vm_total_pages), and as such we can't
978 * get into the old insane situation any more where we had
979 * large amounts of dirty pages compared to a small amount of
980 * non-HIGHMEM memory.
982 * But we might still want to scale the dirty_ratio by how
983 * much memory the box has..
985 void __init page_writeback_init(void)
989 writeback_set_ratelimit();
990 register_cpu_notifier(&ratelimit_nb);
992 shift = calc_period_shift();
993 prop_descriptor_init(&vm_completions, shift);
994 prop_descriptor_init(&vm_dirties, shift);
998 * tag_pages_for_writeback - tag pages to be written by write_cache_pages
999 * @mapping: address space structure to write
1000 * @start: starting page index
1001 * @end: ending page index (inclusive)
1003 * This function scans the page range from @start to @end (inclusive) and tags
1004 * all pages that have DIRTY tag set with a special TOWRITE tag. The idea is
1005 * that write_cache_pages (or whoever calls this function) will then use
1006 * TOWRITE tag to identify pages eligible for writeback. This mechanism is
1007 * used to avoid livelocking of writeback by a process steadily creating new
1008 * dirty pages in the file (thus it is important for this function to be quick
1009 * so that it can tag pages faster than a dirtying process can create them).
1012 * We tag pages in batches of WRITEBACK_TAG_BATCH to reduce tree_lock latency.
1014 void tag_pages_for_writeback(struct address_space *mapping,
1015 pgoff_t start, pgoff_t end)
1017 #define WRITEBACK_TAG_BATCH 4096
1018 unsigned long tagged;
1021 spin_lock_irq(&mapping->tree_lock);
1022 tagged = radix_tree_range_tag_if_tagged(&mapping->page_tree,
1023 &start, end, WRITEBACK_TAG_BATCH,
1024 PAGECACHE_TAG_DIRTY, PAGECACHE_TAG_TOWRITE);
1025 spin_unlock_irq(&mapping->tree_lock);
1026 WARN_ON_ONCE(tagged > WRITEBACK_TAG_BATCH);
1028 /* We check 'start' to handle wrapping when end == ~0UL */
1029 } while (tagged >= WRITEBACK_TAG_BATCH && start);
1031 EXPORT_SYMBOL(tag_pages_for_writeback);
1034 * write_cache_pages - walk the list of dirty pages of the given address space and write all of them.
1035 * @mapping: address space structure to write
1036 * @wbc: subtract the number of written pages from *@wbc->nr_to_write
1037 * @writepage: function called for each page
1038 * @data: data passed to writepage function
1040 * If a page is already under I/O, write_cache_pages() skips it, even
1041 * if it's dirty. This is desirable behaviour for memory-cleaning writeback,
1042 * but it is INCORRECT for data-integrity system calls such as fsync(). fsync()
1043 * and msync() need to guarantee that all the data which was dirty at the time
1044 * the call was made get new I/O started against them. If wbc->sync_mode is
1045 * WB_SYNC_ALL then we were called for data integrity and we must wait for
1046 * existing IO to complete.
1048 * To avoid livelocks (when other process dirties new pages), we first tag
1049 * pages which should be written back with TOWRITE tag and only then start
1050 * writing them. For data-integrity sync we have to be careful so that we do
1051 * not miss some pages (e.g., because some other process has cleared TOWRITE
1052 * tag we set). The rule we follow is that TOWRITE tag can be cleared only
1053 * by the process clearing the DIRTY tag (and submitting the page for IO).
1055 int write_cache_pages(struct address_space *mapping,
1056 struct writeback_control *wbc, writepage_t writepage,
1061 struct pagevec pvec;
1063 pgoff_t uninitialized_var(writeback_index);
1065 pgoff_t end; /* Inclusive */
1068 int range_whole = 0;
1071 pagevec_init(&pvec, 0);
1072 if (wbc->range_cyclic) {
1073 writeback_index = mapping->writeback_index; /* prev offset */
1074 index = writeback_index;
1081 index = wbc->range_start >> PAGE_CACHE_SHIFT;
1082 end = wbc->range_end >> PAGE_CACHE_SHIFT;
1083 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
1085 cycled = 1; /* ignore range_cyclic tests */
1087 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
1088 tag = PAGECACHE_TAG_TOWRITE;
1090 tag = PAGECACHE_TAG_DIRTY;
1092 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
1093 tag_pages_for_writeback(mapping, index, end);
1095 while (!done && (index <= end)) {
1098 nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
1099 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
1103 for (i = 0; i < nr_pages; i++) {
1104 struct page *page = pvec.pages[i];
1107 * At this point, the page may be truncated or
1108 * invalidated (changing page->mapping to NULL), or
1109 * even swizzled back from swapper_space to tmpfs file
1110 * mapping. However, page->index will not change
1111 * because we have a reference on the page.
1113 if (page->index > end) {
1115 * can't be range_cyclic (1st pass) because
1116 * end == -1 in that case.
1122 done_index = page->index;
1127 * Page truncated or invalidated. We can freely skip it
1128 * then, even for data integrity operations: the page
1129 * has disappeared concurrently, so there could be no
1130 * real expectation of this data interity operation
1131 * even if there is now a new, dirty page at the same
1132 * pagecache address.
1134 if (unlikely(page->mapping != mapping)) {
1140 if (!PageDirty(page)) {
1141 /* someone wrote it for us */
1142 goto continue_unlock;
1145 if (PageWriteback(page)) {
1146 if (wbc->sync_mode != WB_SYNC_NONE)
1147 wait_on_page_writeback(page);
1149 goto continue_unlock;
1152 BUG_ON(PageWriteback(page));
1153 if (!clear_page_dirty_for_io(page))
1154 goto continue_unlock;
1156 trace_wbc_writepage(wbc, mapping->backing_dev_info);
1157 ret = (*writepage)(page, wbc, data);
1158 if (unlikely(ret)) {
1159 if (ret == AOP_WRITEPAGE_ACTIVATE) {
1164 * done_index is set past this page,
1165 * so media errors will not choke
1166 * background writeout for the entire
1167 * file. This has consequences for
1168 * range_cyclic semantics (ie. it may
1169 * not be suitable for data integrity
1172 done_index = page->index + 1;
1179 * We stop writing back only if we are not doing
1180 * integrity sync. In case of integrity sync we have to
1181 * keep going until we have written all the pages
1182 * we tagged for writeback prior to entering this loop.
1184 if (--wbc->nr_to_write <= 0 &&
1185 wbc->sync_mode == WB_SYNC_NONE) {
1190 pagevec_release(&pvec);
1193 if (!cycled && !done) {
1196 * We hit the last page and there is more work to be done: wrap
1197 * back to the start of the file
1201 end = writeback_index - 1;
1204 if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
1205 mapping->writeback_index = done_index;
1209 EXPORT_SYMBOL(write_cache_pages);
1212 * Function used by generic_writepages to call the real writepage
1213 * function and set the mapping flags on error
1215 static int __writepage(struct page *page, struct writeback_control *wbc,
1218 struct address_space *mapping = data;
1219 int ret = mapping->a_ops->writepage(page, wbc);
1220 mapping_set_error(mapping, ret);
1225 * generic_writepages - walk the list of dirty pages of the given address space and writepage() all of them.
1226 * @mapping: address space structure to write
1227 * @wbc: subtract the number of written pages from *@wbc->nr_to_write
1229 * This is a library function, which implements the writepages()
1230 * address_space_operation.
1232 int generic_writepages(struct address_space *mapping,
1233 struct writeback_control *wbc)
1235 struct blk_plug plug;
1238 /* deal with chardevs and other special file */
1239 if (!mapping->a_ops->writepage)
1242 blk_start_plug(&plug);
1243 ret = write_cache_pages(mapping, wbc, __writepage, mapping);
1244 blk_finish_plug(&plug);
1248 EXPORT_SYMBOL(generic_writepages);
1250 int do_writepages(struct address_space *mapping, struct writeback_control *wbc)
1254 if (wbc->nr_to_write <= 0)
1256 if (mapping->a_ops->writepages)
1257 ret = mapping->a_ops->writepages(mapping, wbc);
1259 ret = generic_writepages(mapping, wbc);
1264 * write_one_page - write out a single page and optionally wait on I/O
1265 * @page: the page to write
1266 * @wait: if true, wait on writeout
1268 * The page must be locked by the caller and will be unlocked upon return.
1270 * write_one_page() returns a negative error code if I/O failed.
1272 int write_one_page(struct page *page, int wait)
1274 struct address_space *mapping = page->mapping;
1276 struct writeback_control wbc = {
1277 .sync_mode = WB_SYNC_ALL,
1281 BUG_ON(!PageLocked(page));
1284 wait_on_page_writeback(page);
1286 if (clear_page_dirty_for_io(page)) {
1287 page_cache_get(page);
1288 ret = mapping->a_ops->writepage(page, &wbc);
1289 if (ret == 0 && wait) {
1290 wait_on_page_writeback(page);
1291 if (PageError(page))
1294 page_cache_release(page);
1300 EXPORT_SYMBOL(write_one_page);
1303 * For address_spaces which do not use buffers nor write back.
1305 int __set_page_dirty_no_writeback(struct page *page)
1307 if (!PageDirty(page))
1308 return !TestSetPageDirty(page);
1313 * Helper function for set_page_dirty family.
1314 * NOTE: This relies on being atomic wrt interrupts.
1316 void account_page_dirtied(struct page *page, struct address_space *mapping)
1318 if (mapping_cap_account_dirty(mapping)) {
1319 __inc_zone_page_state(page, NR_FILE_DIRTY);
1320 __inc_zone_page_state(page, NR_DIRTIED);
1321 __inc_bdi_stat(mapping->backing_dev_info, BDI_RECLAIMABLE);
1322 task_dirty_inc(current);
1323 task_io_account_write(PAGE_CACHE_SIZE);
1326 EXPORT_SYMBOL(account_page_dirtied);
1329 * Helper function for set_page_writeback family.
1330 * NOTE: Unlike account_page_dirtied this does not rely on being atomic
1333 void account_page_writeback(struct page *page)
1335 inc_zone_page_state(page, NR_WRITEBACK);
1336 inc_zone_page_state(page, NR_WRITTEN);
1338 EXPORT_SYMBOL(account_page_writeback);
1341 * For address_spaces which do not use buffers. Just tag the page as dirty in
1344 * This is also used when a single buffer is being dirtied: we want to set the
1345 * page dirty in that case, but not all the buffers. This is a "bottom-up"
1346 * dirtying, whereas __set_page_dirty_buffers() is a "top-down" dirtying.
1348 * Most callers have locked the page, which pins the address_space in memory.
1349 * But zap_pte_range() does not lock the page, however in that case the
1350 * mapping is pinned by the vma's ->vm_file reference.
1352 * We take care to handle the case where the page was truncated from the
1353 * mapping by re-checking page_mapping() inside tree_lock.
1355 int __set_page_dirty_nobuffers(struct page *page)
1357 if (!TestSetPageDirty(page)) {
1358 struct address_space *mapping = page_mapping(page);
1359 struct address_space *mapping2;
1364 spin_lock_irq(&mapping->tree_lock);
1365 mapping2 = page_mapping(page);
1366 if (mapping2) { /* Race with truncate? */
1367 BUG_ON(mapping2 != mapping);
1368 WARN_ON_ONCE(!PagePrivate(page) && !PageUptodate(page));
1369 account_page_dirtied(page, mapping);
1370 radix_tree_tag_set(&mapping->page_tree,
1371 page_index(page), PAGECACHE_TAG_DIRTY);
1373 spin_unlock_irq(&mapping->tree_lock);
1374 if (mapping->host) {
1375 /* !PageAnon && !swapper_space */
1376 __mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
1382 EXPORT_SYMBOL(__set_page_dirty_nobuffers);
1385 * When a writepage implementation decides that it doesn't want to write this
1386 * page for some reason, it should redirty the locked page via
1387 * redirty_page_for_writepage() and it should then unlock the page and return 0
1389 int redirty_page_for_writepage(struct writeback_control *wbc, struct page *page)
1391 wbc->pages_skipped++;
1392 return __set_page_dirty_nobuffers(page);
1394 EXPORT_SYMBOL(redirty_page_for_writepage);
1399 * For pages with a mapping this should be done under the page lock
1400 * for the benefit of asynchronous memory errors who prefer a consistent
1401 * dirty state. This rule can be broken in some special cases,
1402 * but should be better not to.
1404 * If the mapping doesn't provide a set_page_dirty a_op, then
1405 * just fall through and assume that it wants buffer_heads.
1407 int set_page_dirty(struct page *page)
1409 struct address_space *mapping = page_mapping(page);
1411 if (likely(mapping)) {
1412 int (*spd)(struct page *) = mapping->a_ops->set_page_dirty;
1414 * readahead/lru_deactivate_page could remain
1415 * PG_readahead/PG_reclaim due to race with end_page_writeback
1416 * About readahead, if the page is written, the flags would be
1417 * reset. So no problem.
1418 * About lru_deactivate_page, if the page is redirty, the flag
1419 * will be reset. So no problem. but if the page is used by readahead
1420 * it will confuse readahead and make it restart the size rampup
1421 * process. But it's a trivial problem.
1423 ClearPageReclaim(page);
1426 spd = __set_page_dirty_buffers;
1428 return (*spd)(page);
1430 if (!PageDirty(page)) {
1431 if (!TestSetPageDirty(page))
1436 EXPORT_SYMBOL(set_page_dirty);
1439 * set_page_dirty() is racy if the caller has no reference against
1440 * page->mapping->host, and if the page is unlocked. This is because another
1441 * CPU could truncate the page off the mapping and then free the mapping.
1443 * Usually, the page _is_ locked, or the caller is a user-space process which
1444 * holds a reference on the inode by having an open file.
1446 * In other cases, the page should be locked before running set_page_dirty().
1448 int set_page_dirty_lock(struct page *page)
1453 ret = set_page_dirty(page);
1457 EXPORT_SYMBOL(set_page_dirty_lock);
1460 * Clear a page's dirty flag, while caring for dirty memory accounting.
1461 * Returns true if the page was previously dirty.
1463 * This is for preparing to put the page under writeout. We leave the page
1464 * tagged as dirty in the radix tree so that a concurrent write-for-sync
1465 * can discover it via a PAGECACHE_TAG_DIRTY walk. The ->writepage
1466 * implementation will run either set_page_writeback() or set_page_dirty(),
1467 * at which stage we bring the page's dirty flag and radix-tree dirty tag
1470 * This incoherency between the page's dirty flag and radix-tree tag is
1471 * unfortunate, but it only exists while the page is locked.
1473 int clear_page_dirty_for_io(struct page *page)
1475 struct address_space *mapping = page_mapping(page);
1477 BUG_ON(!PageLocked(page));
1479 if (mapping && mapping_cap_account_dirty(mapping)) {
1481 * Yes, Virginia, this is indeed insane.
1483 * We use this sequence to make sure that
1484 * (a) we account for dirty stats properly
1485 * (b) we tell the low-level filesystem to
1486 * mark the whole page dirty if it was
1487 * dirty in a pagetable. Only to then
1488 * (c) clean the page again and return 1 to
1489 * cause the writeback.
1491 * This way we avoid all nasty races with the
1492 * dirty bit in multiple places and clearing
1493 * them concurrently from different threads.
1495 * Note! Normally the "set_page_dirty(page)"
1496 * has no effect on the actual dirty bit - since
1497 * that will already usually be set. But we
1498 * need the side effects, and it can help us
1501 * We basically use the page "master dirty bit"
1502 * as a serialization point for all the different
1503 * threads doing their things.
1505 if (page_mkclean(page))
1506 set_page_dirty(page);
1508 * We carefully synchronise fault handlers against
1509 * installing a dirty pte and marking the page dirty
1510 * at this point. We do this by having them hold the
1511 * page lock at some point after installing their
1512 * pte, but before marking the page dirty.
1513 * Pages are always locked coming in here, so we get
1514 * the desired exclusion. See mm/memory.c:do_wp_page()
1515 * for more comments.
1517 if (TestClearPageDirty(page)) {
1518 dec_zone_page_state(page, NR_FILE_DIRTY);
1519 dec_bdi_stat(mapping->backing_dev_info,
1525 return TestClearPageDirty(page);
1527 EXPORT_SYMBOL(clear_page_dirty_for_io);
1529 int test_clear_page_writeback(struct page *page)
1531 struct address_space *mapping = page_mapping(page);
1535 struct backing_dev_info *bdi = mapping->backing_dev_info;
1536 unsigned long flags;
1538 spin_lock_irqsave(&mapping->tree_lock, flags);
1539 ret = TestClearPageWriteback(page);
1541 radix_tree_tag_clear(&mapping->page_tree,
1543 PAGECACHE_TAG_WRITEBACK);
1544 if (bdi_cap_account_writeback(bdi)) {
1545 __dec_bdi_stat(bdi, BDI_WRITEBACK);
1546 __bdi_writeout_inc(bdi);
1549 spin_unlock_irqrestore(&mapping->tree_lock, flags);
1551 ret = TestClearPageWriteback(page);
1554 dec_zone_page_state(page, NR_WRITEBACK);
1558 int test_set_page_writeback(struct page *page)
1560 struct address_space *mapping = page_mapping(page);
1564 struct backing_dev_info *bdi = mapping->backing_dev_info;
1565 unsigned long flags;
1567 spin_lock_irqsave(&mapping->tree_lock, flags);
1568 ret = TestSetPageWriteback(page);
1570 radix_tree_tag_set(&mapping->page_tree,
1572 PAGECACHE_TAG_WRITEBACK);
1573 if (bdi_cap_account_writeback(bdi))
1574 __inc_bdi_stat(bdi, BDI_WRITEBACK);
1576 if (!PageDirty(page))
1577 radix_tree_tag_clear(&mapping->page_tree,
1579 PAGECACHE_TAG_DIRTY);
1580 radix_tree_tag_clear(&mapping->page_tree,
1582 PAGECACHE_TAG_TOWRITE);
1583 spin_unlock_irqrestore(&mapping->tree_lock, flags);
1585 ret = TestSetPageWriteback(page);
1588 account_page_writeback(page);
1592 EXPORT_SYMBOL(test_set_page_writeback);
1595 * Return true if any of the pages in the mapping are marked with the
1598 int mapping_tagged(struct address_space *mapping, int tag)
1602 ret = radix_tree_tagged(&mapping->page_tree, tag);
1606 EXPORT_SYMBOL(mapping_tagged);