Merge tag 'drm-fixes-2022-08-26-1' of git://anongit.freedesktop.org/drm/drm
[platform/kernel/linux-starfive.git] / mm / page-writeback.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * mm/page-writeback.c
4  *
5  * Copyright (C) 2002, Linus Torvalds.
6  * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra
7  *
8  * Contains functions related to writing back dirty pages at the
9  * address_space level.
10  *
11  * 10Apr2002    Andrew Morton
12  *              Initial version
13  */
14
15 #include <linux/kernel.h>
16 #include <linux/export.h>
17 #include <linux/spinlock.h>
18 #include <linux/fs.h>
19 #include <linux/mm.h>
20 #include <linux/swap.h>
21 #include <linux/slab.h>
22 #include <linux/pagemap.h>
23 #include <linux/writeback.h>
24 #include <linux/init.h>
25 #include <linux/backing-dev.h>
26 #include <linux/task_io_accounting_ops.h>
27 #include <linux/blkdev.h>
28 #include <linux/mpage.h>
29 #include <linux/rmap.h>
30 #include <linux/percpu.h>
31 #include <linux/smp.h>
32 #include <linux/sysctl.h>
33 #include <linux/cpu.h>
34 #include <linux/syscalls.h>
35 #include <linux/pagevec.h>
36 #include <linux/timer.h>
37 #include <linux/sched/rt.h>
38 #include <linux/sched/signal.h>
39 #include <linux/mm_inline.h>
40 #include <trace/events/writeback.h>
41
42 #include "internal.h"
43
44 /*
45  * Sleep at most 200ms at a time in balance_dirty_pages().
46  */
47 #define MAX_PAUSE               max(HZ/5, 1)
48
49 /*
50  * Try to keep balance_dirty_pages() call intervals higher than this many pages
51  * by raising pause time to max_pause when falls below it.
52  */
53 #define DIRTY_POLL_THRESH       (128 >> (PAGE_SHIFT - 10))
54
55 /*
56  * Estimate write bandwidth at 200ms intervals.
57  */
58 #define BANDWIDTH_INTERVAL      max(HZ/5, 1)
59
60 #define RATELIMIT_CALC_SHIFT    10
61
62 /*
63  * After a CPU has dirtied this many pages, balance_dirty_pages_ratelimited
64  * will look to see if it needs to force writeback or throttling.
65  */
66 static long ratelimit_pages = 32;
67
68 /* The following parameters are exported via /proc/sys/vm */
69
70 /*
71  * Start background writeback (via writeback threads) at this percentage
72  */
73 static int dirty_background_ratio = 10;
74
75 /*
76  * dirty_background_bytes starts at 0 (disabled) so that it is a function of
77  * dirty_background_ratio * the amount of dirtyable memory
78  */
79 static unsigned long dirty_background_bytes;
80
81 /*
82  * free highmem will not be subtracted from the total free memory
83  * for calculating free ratios if vm_highmem_is_dirtyable is true
84  */
85 static int vm_highmem_is_dirtyable;
86
87 /*
88  * The generator of dirty data starts writeback at this percentage
89  */
90 static int vm_dirty_ratio = 20;
91
92 /*
93  * vm_dirty_bytes starts at 0 (disabled) so that it is a function of
94  * vm_dirty_ratio * the amount of dirtyable memory
95  */
96 static unsigned long vm_dirty_bytes;
97
98 /*
99  * The interval between `kupdate'-style writebacks
100  */
101 unsigned int dirty_writeback_interval = 5 * 100; /* centiseconds */
102
103 EXPORT_SYMBOL_GPL(dirty_writeback_interval);
104
105 /*
106  * The longest time for which data is allowed to remain dirty
107  */
108 unsigned int dirty_expire_interval = 30 * 100; /* centiseconds */
109
110 /*
111  * Flag that puts the machine in "laptop mode". Doubles as a timeout in jiffies:
112  * a full sync is triggered after this time elapses without any disk activity.
113  */
114 int laptop_mode;
115
116 EXPORT_SYMBOL(laptop_mode);
117
118 /* End of sysctl-exported parameters */
119
120 struct wb_domain global_wb_domain;
121
122 /* consolidated parameters for balance_dirty_pages() and its subroutines */
123 struct dirty_throttle_control {
124 #ifdef CONFIG_CGROUP_WRITEBACK
125         struct wb_domain        *dom;
126         struct dirty_throttle_control *gdtc;    /* only set in memcg dtc's */
127 #endif
128         struct bdi_writeback    *wb;
129         struct fprop_local_percpu *wb_completions;
130
131         unsigned long           avail;          /* dirtyable */
132         unsigned long           dirty;          /* file_dirty + write + nfs */
133         unsigned long           thresh;         /* dirty threshold */
134         unsigned long           bg_thresh;      /* dirty background threshold */
135
136         unsigned long           wb_dirty;       /* per-wb counterparts */
137         unsigned long           wb_thresh;
138         unsigned long           wb_bg_thresh;
139
140         unsigned long           pos_ratio;
141 };
142
143 /*
144  * Length of period for aging writeout fractions of bdis. This is an
145  * arbitrarily chosen number. The longer the period, the slower fractions will
146  * reflect changes in current writeout rate.
147  */
148 #define VM_COMPLETIONS_PERIOD_LEN (3*HZ)
149
150 #ifdef CONFIG_CGROUP_WRITEBACK
151
152 #define GDTC_INIT(__wb)         .wb = (__wb),                           \
153                                 .dom = &global_wb_domain,               \
154                                 .wb_completions = &(__wb)->completions
155
156 #define GDTC_INIT_NO_WB         .dom = &global_wb_domain
157
158 #define MDTC_INIT(__wb, __gdtc) .wb = (__wb),                           \
159                                 .dom = mem_cgroup_wb_domain(__wb),      \
160                                 .wb_completions = &(__wb)->memcg_completions, \
161                                 .gdtc = __gdtc
162
163 static bool mdtc_valid(struct dirty_throttle_control *dtc)
164 {
165         return dtc->dom;
166 }
167
168 static struct wb_domain *dtc_dom(struct dirty_throttle_control *dtc)
169 {
170         return dtc->dom;
171 }
172
173 static struct dirty_throttle_control *mdtc_gdtc(struct dirty_throttle_control *mdtc)
174 {
175         return mdtc->gdtc;
176 }
177
178 static struct fprop_local_percpu *wb_memcg_completions(struct bdi_writeback *wb)
179 {
180         return &wb->memcg_completions;
181 }
182
183 static void wb_min_max_ratio(struct bdi_writeback *wb,
184                              unsigned long *minp, unsigned long *maxp)
185 {
186         unsigned long this_bw = READ_ONCE(wb->avg_write_bandwidth);
187         unsigned long tot_bw = atomic_long_read(&wb->bdi->tot_write_bandwidth);
188         unsigned long long min = wb->bdi->min_ratio;
189         unsigned long long max = wb->bdi->max_ratio;
190
191         /*
192          * @wb may already be clean by the time control reaches here and
193          * the total may not include its bw.
194          */
195         if (this_bw < tot_bw) {
196                 if (min) {
197                         min *= this_bw;
198                         min = div64_ul(min, tot_bw);
199                 }
200                 if (max < 100) {
201                         max *= this_bw;
202                         max = div64_ul(max, tot_bw);
203                 }
204         }
205
206         *minp = min;
207         *maxp = max;
208 }
209
210 #else   /* CONFIG_CGROUP_WRITEBACK */
211
212 #define GDTC_INIT(__wb)         .wb = (__wb),                           \
213                                 .wb_completions = &(__wb)->completions
214 #define GDTC_INIT_NO_WB
215 #define MDTC_INIT(__wb, __gdtc)
216
217 static bool mdtc_valid(struct dirty_throttle_control *dtc)
218 {
219         return false;
220 }
221
222 static struct wb_domain *dtc_dom(struct dirty_throttle_control *dtc)
223 {
224         return &global_wb_domain;
225 }
226
227 static struct dirty_throttle_control *mdtc_gdtc(struct dirty_throttle_control *mdtc)
228 {
229         return NULL;
230 }
231
232 static struct fprop_local_percpu *wb_memcg_completions(struct bdi_writeback *wb)
233 {
234         return NULL;
235 }
236
237 static void wb_min_max_ratio(struct bdi_writeback *wb,
238                              unsigned long *minp, unsigned long *maxp)
239 {
240         *minp = wb->bdi->min_ratio;
241         *maxp = wb->bdi->max_ratio;
242 }
243
244 #endif  /* CONFIG_CGROUP_WRITEBACK */
245
246 /*
247  * In a memory zone, there is a certain amount of pages we consider
248  * available for the page cache, which is essentially the number of
249  * free and reclaimable pages, minus some zone reserves to protect
250  * lowmem and the ability to uphold the zone's watermarks without
251  * requiring writeback.
252  *
253  * This number of dirtyable pages is the base value of which the
254  * user-configurable dirty ratio is the effective number of pages that
255  * are allowed to be actually dirtied.  Per individual zone, or
256  * globally by using the sum of dirtyable pages over all zones.
257  *
258  * Because the user is allowed to specify the dirty limit globally as
259  * absolute number of bytes, calculating the per-zone dirty limit can
260  * require translating the configured limit into a percentage of
261  * global dirtyable memory first.
262  */
263
264 /**
265  * node_dirtyable_memory - number of dirtyable pages in a node
266  * @pgdat: the node
267  *
268  * Return: the node's number of pages potentially available for dirty
269  * page cache.  This is the base value for the per-node dirty limits.
270  */
271 static unsigned long node_dirtyable_memory(struct pglist_data *pgdat)
272 {
273         unsigned long nr_pages = 0;
274         int z;
275
276         for (z = 0; z < MAX_NR_ZONES; z++) {
277                 struct zone *zone = pgdat->node_zones + z;
278
279                 if (!populated_zone(zone))
280                         continue;
281
282                 nr_pages += zone_page_state(zone, NR_FREE_PAGES);
283         }
284
285         /*
286          * Pages reserved for the kernel should not be considered
287          * dirtyable, to prevent a situation where reclaim has to
288          * clean pages in order to balance the zones.
289          */
290         nr_pages -= min(nr_pages, pgdat->totalreserve_pages);
291
292         nr_pages += node_page_state(pgdat, NR_INACTIVE_FILE);
293         nr_pages += node_page_state(pgdat, NR_ACTIVE_FILE);
294
295         return nr_pages;
296 }
297
298 static unsigned long highmem_dirtyable_memory(unsigned long total)
299 {
300 #ifdef CONFIG_HIGHMEM
301         int node;
302         unsigned long x = 0;
303         int i;
304
305         for_each_node_state(node, N_HIGH_MEMORY) {
306                 for (i = ZONE_NORMAL + 1; i < MAX_NR_ZONES; i++) {
307                         struct zone *z;
308                         unsigned long nr_pages;
309
310                         if (!is_highmem_idx(i))
311                                 continue;
312
313                         z = &NODE_DATA(node)->node_zones[i];
314                         if (!populated_zone(z))
315                                 continue;
316
317                         nr_pages = zone_page_state(z, NR_FREE_PAGES);
318                         /* watch for underflows */
319                         nr_pages -= min(nr_pages, high_wmark_pages(z));
320                         nr_pages += zone_page_state(z, NR_ZONE_INACTIVE_FILE);
321                         nr_pages += zone_page_state(z, NR_ZONE_ACTIVE_FILE);
322                         x += nr_pages;
323                 }
324         }
325
326         /*
327          * Make sure that the number of highmem pages is never larger
328          * than the number of the total dirtyable memory. This can only
329          * occur in very strange VM situations but we want to make sure
330          * that this does not occur.
331          */
332         return min(x, total);
333 #else
334         return 0;
335 #endif
336 }
337
338 /**
339  * global_dirtyable_memory - number of globally dirtyable pages
340  *
341  * Return: the global number of pages potentially available for dirty
342  * page cache.  This is the base value for the global dirty limits.
343  */
344 static unsigned long global_dirtyable_memory(void)
345 {
346         unsigned long x;
347
348         x = global_zone_page_state(NR_FREE_PAGES);
349         /*
350          * Pages reserved for the kernel should not be considered
351          * dirtyable, to prevent a situation where reclaim has to
352          * clean pages in order to balance the zones.
353          */
354         x -= min(x, totalreserve_pages);
355
356         x += global_node_page_state(NR_INACTIVE_FILE);
357         x += global_node_page_state(NR_ACTIVE_FILE);
358
359         if (!vm_highmem_is_dirtyable)
360                 x -= highmem_dirtyable_memory(x);
361
362         return x + 1;   /* Ensure that we never return 0 */
363 }
364
365 /**
366  * domain_dirty_limits - calculate thresh and bg_thresh for a wb_domain
367  * @dtc: dirty_throttle_control of interest
368  *
369  * Calculate @dtc->thresh and ->bg_thresh considering
370  * vm_dirty_{bytes|ratio} and dirty_background_{bytes|ratio}.  The caller
371  * must ensure that @dtc->avail is set before calling this function.  The
372  * dirty limits will be lifted by 1/4 for real-time tasks.
373  */
374 static void domain_dirty_limits(struct dirty_throttle_control *dtc)
375 {
376         const unsigned long available_memory = dtc->avail;
377         struct dirty_throttle_control *gdtc = mdtc_gdtc(dtc);
378         unsigned long bytes = vm_dirty_bytes;
379         unsigned long bg_bytes = dirty_background_bytes;
380         /* convert ratios to per-PAGE_SIZE for higher precision */
381         unsigned long ratio = (vm_dirty_ratio * PAGE_SIZE) / 100;
382         unsigned long bg_ratio = (dirty_background_ratio * PAGE_SIZE) / 100;
383         unsigned long thresh;
384         unsigned long bg_thresh;
385         struct task_struct *tsk;
386
387         /* gdtc is !NULL iff @dtc is for memcg domain */
388         if (gdtc) {
389                 unsigned long global_avail = gdtc->avail;
390
391                 /*
392                  * The byte settings can't be applied directly to memcg
393                  * domains.  Convert them to ratios by scaling against
394                  * globally available memory.  As the ratios are in
395                  * per-PAGE_SIZE, they can be obtained by dividing bytes by
396                  * number of pages.
397                  */
398                 if (bytes)
399                         ratio = min(DIV_ROUND_UP(bytes, global_avail),
400                                     PAGE_SIZE);
401                 if (bg_bytes)
402                         bg_ratio = min(DIV_ROUND_UP(bg_bytes, global_avail),
403                                        PAGE_SIZE);
404                 bytes = bg_bytes = 0;
405         }
406
407         if (bytes)
408                 thresh = DIV_ROUND_UP(bytes, PAGE_SIZE);
409         else
410                 thresh = (ratio * available_memory) / PAGE_SIZE;
411
412         if (bg_bytes)
413                 bg_thresh = DIV_ROUND_UP(bg_bytes, PAGE_SIZE);
414         else
415                 bg_thresh = (bg_ratio * available_memory) / PAGE_SIZE;
416
417         if (bg_thresh >= thresh)
418                 bg_thresh = thresh / 2;
419         tsk = current;
420         if (rt_task(tsk)) {
421                 bg_thresh += bg_thresh / 4 + global_wb_domain.dirty_limit / 32;
422                 thresh += thresh / 4 + global_wb_domain.dirty_limit / 32;
423         }
424         dtc->thresh = thresh;
425         dtc->bg_thresh = bg_thresh;
426
427         /* we should eventually report the domain in the TP */
428         if (!gdtc)
429                 trace_global_dirty_state(bg_thresh, thresh);
430 }
431
432 /**
433  * global_dirty_limits - background-writeback and dirty-throttling thresholds
434  * @pbackground: out parameter for bg_thresh
435  * @pdirty: out parameter for thresh
436  *
437  * Calculate bg_thresh and thresh for global_wb_domain.  See
438  * domain_dirty_limits() for details.
439  */
440 void global_dirty_limits(unsigned long *pbackground, unsigned long *pdirty)
441 {
442         struct dirty_throttle_control gdtc = { GDTC_INIT_NO_WB };
443
444         gdtc.avail = global_dirtyable_memory();
445         domain_dirty_limits(&gdtc);
446
447         *pbackground = gdtc.bg_thresh;
448         *pdirty = gdtc.thresh;
449 }
450
451 /**
452  * node_dirty_limit - maximum number of dirty pages allowed in a node
453  * @pgdat: the node
454  *
455  * Return: the maximum number of dirty pages allowed in a node, based
456  * on the node's dirtyable memory.
457  */
458 static unsigned long node_dirty_limit(struct pglist_data *pgdat)
459 {
460         unsigned long node_memory = node_dirtyable_memory(pgdat);
461         struct task_struct *tsk = current;
462         unsigned long dirty;
463
464         if (vm_dirty_bytes)
465                 dirty = DIV_ROUND_UP(vm_dirty_bytes, PAGE_SIZE) *
466                         node_memory / global_dirtyable_memory();
467         else
468                 dirty = vm_dirty_ratio * node_memory / 100;
469
470         if (rt_task(tsk))
471                 dirty += dirty / 4;
472
473         return dirty;
474 }
475
476 /**
477  * node_dirty_ok - tells whether a node is within its dirty limits
478  * @pgdat: the node to check
479  *
480  * Return: %true when the dirty pages in @pgdat are within the node's
481  * dirty limit, %false if the limit is exceeded.
482  */
483 bool node_dirty_ok(struct pglist_data *pgdat)
484 {
485         unsigned long limit = node_dirty_limit(pgdat);
486         unsigned long nr_pages = 0;
487
488         nr_pages += node_page_state(pgdat, NR_FILE_DIRTY);
489         nr_pages += node_page_state(pgdat, NR_WRITEBACK);
490
491         return nr_pages <= limit;
492 }
493
494 #ifdef CONFIG_SYSCTL
495 static int dirty_background_ratio_handler(struct ctl_table *table, int write,
496                 void *buffer, size_t *lenp, loff_t *ppos)
497 {
498         int ret;
499
500         ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
501         if (ret == 0 && write)
502                 dirty_background_bytes = 0;
503         return ret;
504 }
505
506 static int dirty_background_bytes_handler(struct ctl_table *table, int write,
507                 void *buffer, size_t *lenp, loff_t *ppos)
508 {
509         int ret;
510
511         ret = proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
512         if (ret == 0 && write)
513                 dirty_background_ratio = 0;
514         return ret;
515 }
516
517 static int dirty_ratio_handler(struct ctl_table *table, int write, void *buffer,
518                 size_t *lenp, loff_t *ppos)
519 {
520         int old_ratio = vm_dirty_ratio;
521         int ret;
522
523         ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
524         if (ret == 0 && write && vm_dirty_ratio != old_ratio) {
525                 writeback_set_ratelimit();
526                 vm_dirty_bytes = 0;
527         }
528         return ret;
529 }
530
531 static int dirty_bytes_handler(struct ctl_table *table, int write,
532                 void *buffer, size_t *lenp, loff_t *ppos)
533 {
534         unsigned long old_bytes = vm_dirty_bytes;
535         int ret;
536
537         ret = proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
538         if (ret == 0 && write && vm_dirty_bytes != old_bytes) {
539                 writeback_set_ratelimit();
540                 vm_dirty_ratio = 0;
541         }
542         return ret;
543 }
544 #endif
545
546 static unsigned long wp_next_time(unsigned long cur_time)
547 {
548         cur_time += VM_COMPLETIONS_PERIOD_LEN;
549         /* 0 has a special meaning... */
550         if (!cur_time)
551                 return 1;
552         return cur_time;
553 }
554
555 static void wb_domain_writeout_add(struct wb_domain *dom,
556                                    struct fprop_local_percpu *completions,
557                                    unsigned int max_prop_frac, long nr)
558 {
559         __fprop_add_percpu_max(&dom->completions, completions,
560                                max_prop_frac, nr);
561         /* First event after period switching was turned off? */
562         if (unlikely(!dom->period_time)) {
563                 /*
564                  * We can race with other __bdi_writeout_inc calls here but
565                  * it does not cause any harm since the resulting time when
566                  * timer will fire and what is in writeout_period_time will be
567                  * roughly the same.
568                  */
569                 dom->period_time = wp_next_time(jiffies);
570                 mod_timer(&dom->period_timer, dom->period_time);
571         }
572 }
573
574 /*
575  * Increment @wb's writeout completion count and the global writeout
576  * completion count. Called from __folio_end_writeback().
577  */
578 static inline void __wb_writeout_add(struct bdi_writeback *wb, long nr)
579 {
580         struct wb_domain *cgdom;
581
582         wb_stat_mod(wb, WB_WRITTEN, nr);
583         wb_domain_writeout_add(&global_wb_domain, &wb->completions,
584                                wb->bdi->max_prop_frac, nr);
585
586         cgdom = mem_cgroup_wb_domain(wb);
587         if (cgdom)
588                 wb_domain_writeout_add(cgdom, wb_memcg_completions(wb),
589                                        wb->bdi->max_prop_frac, nr);
590 }
591
592 void wb_writeout_inc(struct bdi_writeback *wb)
593 {
594         unsigned long flags;
595
596         local_irq_save(flags);
597         __wb_writeout_add(wb, 1);
598         local_irq_restore(flags);
599 }
600 EXPORT_SYMBOL_GPL(wb_writeout_inc);
601
602 /*
603  * On idle system, we can be called long after we scheduled because we use
604  * deferred timers so count with missed periods.
605  */
606 static void writeout_period(struct timer_list *t)
607 {
608         struct wb_domain *dom = from_timer(dom, t, period_timer);
609         int miss_periods = (jiffies - dom->period_time) /
610                                                  VM_COMPLETIONS_PERIOD_LEN;
611
612         if (fprop_new_period(&dom->completions, miss_periods + 1)) {
613                 dom->period_time = wp_next_time(dom->period_time +
614                                 miss_periods * VM_COMPLETIONS_PERIOD_LEN);
615                 mod_timer(&dom->period_timer, dom->period_time);
616         } else {
617                 /*
618                  * Aging has zeroed all fractions. Stop wasting CPU on period
619                  * updates.
620                  */
621                 dom->period_time = 0;
622         }
623 }
624
625 int wb_domain_init(struct wb_domain *dom, gfp_t gfp)
626 {
627         memset(dom, 0, sizeof(*dom));
628
629         spin_lock_init(&dom->lock);
630
631         timer_setup(&dom->period_timer, writeout_period, TIMER_DEFERRABLE);
632
633         dom->dirty_limit_tstamp = jiffies;
634
635         return fprop_global_init(&dom->completions, gfp);
636 }
637
638 #ifdef CONFIG_CGROUP_WRITEBACK
639 void wb_domain_exit(struct wb_domain *dom)
640 {
641         del_timer_sync(&dom->period_timer);
642         fprop_global_destroy(&dom->completions);
643 }
644 #endif
645
646 /*
647  * bdi_min_ratio keeps the sum of the minimum dirty shares of all
648  * registered backing devices, which, for obvious reasons, can not
649  * exceed 100%.
650  */
651 static unsigned int bdi_min_ratio;
652
653 int bdi_set_min_ratio(struct backing_dev_info *bdi, unsigned int min_ratio)
654 {
655         unsigned int delta;
656         int ret = 0;
657
658         spin_lock_bh(&bdi_lock);
659         if (min_ratio > bdi->max_ratio) {
660                 ret = -EINVAL;
661         } else {
662                 if (min_ratio < bdi->min_ratio) {
663                         delta = bdi->min_ratio - min_ratio;
664                         bdi_min_ratio -= delta;
665                         bdi->min_ratio = min_ratio;
666                 } else {
667                         delta = min_ratio - bdi->min_ratio;
668                         if (bdi_min_ratio + delta < 100) {
669                                 bdi_min_ratio += delta;
670                                 bdi->min_ratio = min_ratio;
671                         } else {
672                                 ret = -EINVAL;
673                         }
674                 }
675         }
676         spin_unlock_bh(&bdi_lock);
677
678         return ret;
679 }
680
681 int bdi_set_max_ratio(struct backing_dev_info *bdi, unsigned max_ratio)
682 {
683         int ret = 0;
684
685         if (max_ratio > 100)
686                 return -EINVAL;
687
688         spin_lock_bh(&bdi_lock);
689         if (bdi->min_ratio > max_ratio) {
690                 ret = -EINVAL;
691         } else {
692                 bdi->max_ratio = max_ratio;
693                 bdi->max_prop_frac = (FPROP_FRAC_BASE * max_ratio) / 100;
694         }
695         spin_unlock_bh(&bdi_lock);
696
697         return ret;
698 }
699 EXPORT_SYMBOL(bdi_set_max_ratio);
700
701 static unsigned long dirty_freerun_ceiling(unsigned long thresh,
702                                            unsigned long bg_thresh)
703 {
704         return (thresh + bg_thresh) / 2;
705 }
706
707 static unsigned long hard_dirty_limit(struct wb_domain *dom,
708                                       unsigned long thresh)
709 {
710         return max(thresh, dom->dirty_limit);
711 }
712
713 /*
714  * Memory which can be further allocated to a memcg domain is capped by
715  * system-wide clean memory excluding the amount being used in the domain.
716  */
717 static void mdtc_calc_avail(struct dirty_throttle_control *mdtc,
718                             unsigned long filepages, unsigned long headroom)
719 {
720         struct dirty_throttle_control *gdtc = mdtc_gdtc(mdtc);
721         unsigned long clean = filepages - min(filepages, mdtc->dirty);
722         unsigned long global_clean = gdtc->avail - min(gdtc->avail, gdtc->dirty);
723         unsigned long other_clean = global_clean - min(global_clean, clean);
724
725         mdtc->avail = filepages + min(headroom, other_clean);
726 }
727
728 /**
729  * __wb_calc_thresh - @wb's share of dirty throttling threshold
730  * @dtc: dirty_throttle_context of interest
731  *
732  * Note that balance_dirty_pages() will only seriously take it as a hard limit
733  * when sleeping max_pause per page is not enough to keep the dirty pages under
734  * control. For example, when the device is completely stalled due to some error
735  * conditions, or when there are 1000 dd tasks writing to a slow 10MB/s USB key.
736  * In the other normal situations, it acts more gently by throttling the tasks
737  * more (rather than completely block them) when the wb dirty pages go high.
738  *
739  * It allocates high/low dirty limits to fast/slow devices, in order to prevent
740  * - starving fast devices
741  * - piling up dirty pages (that will take long time to sync) on slow devices
742  *
743  * The wb's share of dirty limit will be adapting to its throughput and
744  * bounded by the bdi->min_ratio and/or bdi->max_ratio parameters, if set.
745  *
746  * Return: @wb's dirty limit in pages. The term "dirty" in the context of
747  * dirty balancing includes all PG_dirty and PG_writeback pages.
748  */
749 static unsigned long __wb_calc_thresh(struct dirty_throttle_control *dtc)
750 {
751         struct wb_domain *dom = dtc_dom(dtc);
752         unsigned long thresh = dtc->thresh;
753         u64 wb_thresh;
754         unsigned long numerator, denominator;
755         unsigned long wb_min_ratio, wb_max_ratio;
756
757         /*
758          * Calculate this BDI's share of the thresh ratio.
759          */
760         fprop_fraction_percpu(&dom->completions, dtc->wb_completions,
761                               &numerator, &denominator);
762
763         wb_thresh = (thresh * (100 - bdi_min_ratio)) / 100;
764         wb_thresh *= numerator;
765         wb_thresh = div64_ul(wb_thresh, denominator);
766
767         wb_min_max_ratio(dtc->wb, &wb_min_ratio, &wb_max_ratio);
768
769         wb_thresh += (thresh * wb_min_ratio) / 100;
770         if (wb_thresh > (thresh * wb_max_ratio) / 100)
771                 wb_thresh = thresh * wb_max_ratio / 100;
772
773         return wb_thresh;
774 }
775
776 unsigned long wb_calc_thresh(struct bdi_writeback *wb, unsigned long thresh)
777 {
778         struct dirty_throttle_control gdtc = { GDTC_INIT(wb),
779                                                .thresh = thresh };
780         return __wb_calc_thresh(&gdtc);
781 }
782
783 /*
784  *                           setpoint - dirty 3
785  *        f(dirty) := 1.0 + (----------------)
786  *                           limit - setpoint
787  *
788  * it's a 3rd order polynomial that subjects to
789  *
790  * (1) f(freerun)  = 2.0 => rampup dirty_ratelimit reasonably fast
791  * (2) f(setpoint) = 1.0 => the balance point
792  * (3) f(limit)    = 0   => the hard limit
793  * (4) df/dx      <= 0   => negative feedback control
794  * (5) the closer to setpoint, the smaller |df/dx| (and the reverse)
795  *     => fast response on large errors; small oscillation near setpoint
796  */
797 static long long pos_ratio_polynom(unsigned long setpoint,
798                                           unsigned long dirty,
799                                           unsigned long limit)
800 {
801         long long pos_ratio;
802         long x;
803
804         x = div64_s64(((s64)setpoint - (s64)dirty) << RATELIMIT_CALC_SHIFT,
805                       (limit - setpoint) | 1);
806         pos_ratio = x;
807         pos_ratio = pos_ratio * x >> RATELIMIT_CALC_SHIFT;
808         pos_ratio = pos_ratio * x >> RATELIMIT_CALC_SHIFT;
809         pos_ratio += 1 << RATELIMIT_CALC_SHIFT;
810
811         return clamp(pos_ratio, 0LL, 2LL << RATELIMIT_CALC_SHIFT);
812 }
813
814 /*
815  * Dirty position control.
816  *
817  * (o) global/bdi setpoints
818  *
819  * We want the dirty pages be balanced around the global/wb setpoints.
820  * When the number of dirty pages is higher/lower than the setpoint, the
821  * dirty position control ratio (and hence task dirty ratelimit) will be
822  * decreased/increased to bring the dirty pages back to the setpoint.
823  *
824  *     pos_ratio = 1 << RATELIMIT_CALC_SHIFT
825  *
826  *     if (dirty < setpoint) scale up   pos_ratio
827  *     if (dirty > setpoint) scale down pos_ratio
828  *
829  *     if (wb_dirty < wb_setpoint) scale up   pos_ratio
830  *     if (wb_dirty > wb_setpoint) scale down pos_ratio
831  *
832  *     task_ratelimit = dirty_ratelimit * pos_ratio >> RATELIMIT_CALC_SHIFT
833  *
834  * (o) global control line
835  *
836  *     ^ pos_ratio
837  *     |
838  *     |            |<===== global dirty control scope ======>|
839  * 2.0  * * * * * * *
840  *     |            .*
841  *     |            . *
842  *     |            .   *
843  *     |            .     *
844  *     |            .        *
845  *     |            .            *
846  * 1.0 ................................*
847  *     |            .                  .     *
848  *     |            .                  .          *
849  *     |            .                  .              *
850  *     |            .                  .                 *
851  *     |            .                  .                    *
852  *   0 +------------.------------------.----------------------*------------->
853  *           freerun^          setpoint^                 limit^   dirty pages
854  *
855  * (o) wb control line
856  *
857  *     ^ pos_ratio
858  *     |
859  *     |            *
860  *     |              *
861  *     |                *
862  *     |                  *
863  *     |                    * |<=========== span ============>|
864  * 1.0 .......................*
865  *     |                      . *
866  *     |                      .   *
867  *     |                      .     *
868  *     |                      .       *
869  *     |                      .         *
870  *     |                      .           *
871  *     |                      .             *
872  *     |                      .               *
873  *     |                      .                 *
874  *     |                      .                   *
875  *     |                      .                     *
876  * 1/4 ...............................................* * * * * * * * * * * *
877  *     |                      .                         .
878  *     |                      .                           .
879  *     |                      .                             .
880  *   0 +----------------------.-------------------------------.------------->
881  *                wb_setpoint^                    x_intercept^
882  *
883  * The wb control line won't drop below pos_ratio=1/4, so that wb_dirty can
884  * be smoothly throttled down to normal if it starts high in situations like
885  * - start writing to a slow SD card and a fast disk at the same time. The SD
886  *   card's wb_dirty may rush to many times higher than wb_setpoint.
887  * - the wb dirty thresh drops quickly due to change of JBOD workload
888  */
889 static void wb_position_ratio(struct dirty_throttle_control *dtc)
890 {
891         struct bdi_writeback *wb = dtc->wb;
892         unsigned long write_bw = READ_ONCE(wb->avg_write_bandwidth);
893         unsigned long freerun = dirty_freerun_ceiling(dtc->thresh, dtc->bg_thresh);
894         unsigned long limit = hard_dirty_limit(dtc_dom(dtc), dtc->thresh);
895         unsigned long wb_thresh = dtc->wb_thresh;
896         unsigned long x_intercept;
897         unsigned long setpoint;         /* dirty pages' target balance point */
898         unsigned long wb_setpoint;
899         unsigned long span;
900         long long pos_ratio;            /* for scaling up/down the rate limit */
901         long x;
902
903         dtc->pos_ratio = 0;
904
905         if (unlikely(dtc->dirty >= limit))
906                 return;
907
908         /*
909          * global setpoint
910          *
911          * See comment for pos_ratio_polynom().
912          */
913         setpoint = (freerun + limit) / 2;
914         pos_ratio = pos_ratio_polynom(setpoint, dtc->dirty, limit);
915
916         /*
917          * The strictlimit feature is a tool preventing mistrusted filesystems
918          * from growing a large number of dirty pages before throttling. For
919          * such filesystems balance_dirty_pages always checks wb counters
920          * against wb limits. Even if global "nr_dirty" is under "freerun".
921          * This is especially important for fuse which sets bdi->max_ratio to
922          * 1% by default. Without strictlimit feature, fuse writeback may
923          * consume arbitrary amount of RAM because it is accounted in
924          * NR_WRITEBACK_TEMP which is not involved in calculating "nr_dirty".
925          *
926          * Here, in wb_position_ratio(), we calculate pos_ratio based on
927          * two values: wb_dirty and wb_thresh. Let's consider an example:
928          * total amount of RAM is 16GB, bdi->max_ratio is equal to 1%, global
929          * limits are set by default to 10% and 20% (background and throttle).
930          * Then wb_thresh is 1% of 20% of 16GB. This amounts to ~8K pages.
931          * wb_calc_thresh(wb, bg_thresh) is about ~4K pages. wb_setpoint is
932          * about ~6K pages (as the average of background and throttle wb
933          * limits). The 3rd order polynomial will provide positive feedback if
934          * wb_dirty is under wb_setpoint and vice versa.
935          *
936          * Note, that we cannot use global counters in these calculations
937          * because we want to throttle process writing to a strictlimit wb
938          * much earlier than global "freerun" is reached (~23MB vs. ~2.3GB
939          * in the example above).
940          */
941         if (unlikely(wb->bdi->capabilities & BDI_CAP_STRICTLIMIT)) {
942                 long long wb_pos_ratio;
943
944                 if (dtc->wb_dirty < 8) {
945                         dtc->pos_ratio = min_t(long long, pos_ratio * 2,
946                                            2 << RATELIMIT_CALC_SHIFT);
947                         return;
948                 }
949
950                 if (dtc->wb_dirty >= wb_thresh)
951                         return;
952
953                 wb_setpoint = dirty_freerun_ceiling(wb_thresh,
954                                                     dtc->wb_bg_thresh);
955
956                 if (wb_setpoint == 0 || wb_setpoint == wb_thresh)
957                         return;
958
959                 wb_pos_ratio = pos_ratio_polynom(wb_setpoint, dtc->wb_dirty,
960                                                  wb_thresh);
961
962                 /*
963                  * Typically, for strictlimit case, wb_setpoint << setpoint
964                  * and pos_ratio >> wb_pos_ratio. In the other words global
965                  * state ("dirty") is not limiting factor and we have to
966                  * make decision based on wb counters. But there is an
967                  * important case when global pos_ratio should get precedence:
968                  * global limits are exceeded (e.g. due to activities on other
969                  * wb's) while given strictlimit wb is below limit.
970                  *
971                  * "pos_ratio * wb_pos_ratio" would work for the case above,
972                  * but it would look too non-natural for the case of all
973                  * activity in the system coming from a single strictlimit wb
974                  * with bdi->max_ratio == 100%.
975                  *
976                  * Note that min() below somewhat changes the dynamics of the
977                  * control system. Normally, pos_ratio value can be well over 3
978                  * (when globally we are at freerun and wb is well below wb
979                  * setpoint). Now the maximum pos_ratio in the same situation
980                  * is 2. We might want to tweak this if we observe the control
981                  * system is too slow to adapt.
982                  */
983                 dtc->pos_ratio = min(pos_ratio, wb_pos_ratio);
984                 return;
985         }
986
987         /*
988          * We have computed basic pos_ratio above based on global situation. If
989          * the wb is over/under its share of dirty pages, we want to scale
990          * pos_ratio further down/up. That is done by the following mechanism.
991          */
992
993         /*
994          * wb setpoint
995          *
996          *        f(wb_dirty) := 1.0 + k * (wb_dirty - wb_setpoint)
997          *
998          *                        x_intercept - wb_dirty
999          *                     := --------------------------
1000          *                        x_intercept - wb_setpoint
1001          *
1002          * The main wb control line is a linear function that subjects to
1003          *
1004          * (1) f(wb_setpoint) = 1.0
1005          * (2) k = - 1 / (8 * write_bw)  (in single wb case)
1006          *     or equally: x_intercept = wb_setpoint + 8 * write_bw
1007          *
1008          * For single wb case, the dirty pages are observed to fluctuate
1009          * regularly within range
1010          *        [wb_setpoint - write_bw/2, wb_setpoint + write_bw/2]
1011          * for various filesystems, where (2) can yield in a reasonable 12.5%
1012          * fluctuation range for pos_ratio.
1013          *
1014          * For JBOD case, wb_thresh (not wb_dirty!) could fluctuate up to its
1015          * own size, so move the slope over accordingly and choose a slope that
1016          * yields 100% pos_ratio fluctuation on suddenly doubled wb_thresh.
1017          */
1018         if (unlikely(wb_thresh > dtc->thresh))
1019                 wb_thresh = dtc->thresh;
1020         /*
1021          * It's very possible that wb_thresh is close to 0 not because the
1022          * device is slow, but that it has remained inactive for long time.
1023          * Honour such devices a reasonable good (hopefully IO efficient)
1024          * threshold, so that the occasional writes won't be blocked and active
1025          * writes can rampup the threshold quickly.
1026          */
1027         wb_thresh = max(wb_thresh, (limit - dtc->dirty) / 8);
1028         /*
1029          * scale global setpoint to wb's:
1030          *      wb_setpoint = setpoint * wb_thresh / thresh
1031          */
1032         x = div_u64((u64)wb_thresh << 16, dtc->thresh | 1);
1033         wb_setpoint = setpoint * (u64)x >> 16;
1034         /*
1035          * Use span=(8*write_bw) in single wb case as indicated by
1036          * (thresh - wb_thresh ~= 0) and transit to wb_thresh in JBOD case.
1037          *
1038          *        wb_thresh                    thresh - wb_thresh
1039          * span = --------- * (8 * write_bw) + ------------------ * wb_thresh
1040          *         thresh                           thresh
1041          */
1042         span = (dtc->thresh - wb_thresh + 8 * write_bw) * (u64)x >> 16;
1043         x_intercept = wb_setpoint + span;
1044
1045         if (dtc->wb_dirty < x_intercept - span / 4) {
1046                 pos_ratio = div64_u64(pos_ratio * (x_intercept - dtc->wb_dirty),
1047                                       (x_intercept - wb_setpoint) | 1);
1048         } else
1049                 pos_ratio /= 4;
1050
1051         /*
1052          * wb reserve area, safeguard against dirty pool underrun and disk idle
1053          * It may push the desired control point of global dirty pages higher
1054          * than setpoint.
1055          */
1056         x_intercept = wb_thresh / 2;
1057         if (dtc->wb_dirty < x_intercept) {
1058                 if (dtc->wb_dirty > x_intercept / 8)
1059                         pos_ratio = div_u64(pos_ratio * x_intercept,
1060                                             dtc->wb_dirty);
1061                 else
1062                         pos_ratio *= 8;
1063         }
1064
1065         dtc->pos_ratio = pos_ratio;
1066 }
1067
1068 static void wb_update_write_bandwidth(struct bdi_writeback *wb,
1069                                       unsigned long elapsed,
1070                                       unsigned long written)
1071 {
1072         const unsigned long period = roundup_pow_of_two(3 * HZ);
1073         unsigned long avg = wb->avg_write_bandwidth;
1074         unsigned long old = wb->write_bandwidth;
1075         u64 bw;
1076
1077         /*
1078          * bw = written * HZ / elapsed
1079          *
1080          *                   bw * elapsed + write_bandwidth * (period - elapsed)
1081          * write_bandwidth = ---------------------------------------------------
1082          *                                          period
1083          *
1084          * @written may have decreased due to folio_account_redirty().
1085          * Avoid underflowing @bw calculation.
1086          */
1087         bw = written - min(written, wb->written_stamp);
1088         bw *= HZ;
1089         if (unlikely(elapsed > period)) {
1090                 bw = div64_ul(bw, elapsed);
1091                 avg = bw;
1092                 goto out;
1093         }
1094         bw += (u64)wb->write_bandwidth * (period - elapsed);
1095         bw >>= ilog2(period);
1096
1097         /*
1098          * one more level of smoothing, for filtering out sudden spikes
1099          */
1100         if (avg > old && old >= (unsigned long)bw)
1101                 avg -= (avg - old) >> 3;
1102
1103         if (avg < old && old <= (unsigned long)bw)
1104                 avg += (old - avg) >> 3;
1105
1106 out:
1107         /* keep avg > 0 to guarantee that tot > 0 if there are dirty wbs */
1108         avg = max(avg, 1LU);
1109         if (wb_has_dirty_io(wb)) {
1110                 long delta = avg - wb->avg_write_bandwidth;
1111                 WARN_ON_ONCE(atomic_long_add_return(delta,
1112                                         &wb->bdi->tot_write_bandwidth) <= 0);
1113         }
1114         wb->write_bandwidth = bw;
1115         WRITE_ONCE(wb->avg_write_bandwidth, avg);
1116 }
1117
1118 static void update_dirty_limit(struct dirty_throttle_control *dtc)
1119 {
1120         struct wb_domain *dom = dtc_dom(dtc);
1121         unsigned long thresh = dtc->thresh;
1122         unsigned long limit = dom->dirty_limit;
1123
1124         /*
1125          * Follow up in one step.
1126          */
1127         if (limit < thresh) {
1128                 limit = thresh;
1129                 goto update;
1130         }
1131
1132         /*
1133          * Follow down slowly. Use the higher one as the target, because thresh
1134          * may drop below dirty. This is exactly the reason to introduce
1135          * dom->dirty_limit which is guaranteed to lie above the dirty pages.
1136          */
1137         thresh = max(thresh, dtc->dirty);
1138         if (limit > thresh) {
1139                 limit -= (limit - thresh) >> 5;
1140                 goto update;
1141         }
1142         return;
1143 update:
1144         dom->dirty_limit = limit;
1145 }
1146
1147 static void domain_update_dirty_limit(struct dirty_throttle_control *dtc,
1148                                       unsigned long now)
1149 {
1150         struct wb_domain *dom = dtc_dom(dtc);
1151
1152         /*
1153          * check locklessly first to optimize away locking for the most time
1154          */
1155         if (time_before(now, dom->dirty_limit_tstamp + BANDWIDTH_INTERVAL))
1156                 return;
1157
1158         spin_lock(&dom->lock);
1159         if (time_after_eq(now, dom->dirty_limit_tstamp + BANDWIDTH_INTERVAL)) {
1160                 update_dirty_limit(dtc);
1161                 dom->dirty_limit_tstamp = now;
1162         }
1163         spin_unlock(&dom->lock);
1164 }
1165
1166 /*
1167  * Maintain wb->dirty_ratelimit, the base dirty throttle rate.
1168  *
1169  * Normal wb tasks will be curbed at or below it in long term.
1170  * Obviously it should be around (write_bw / N) when there are N dd tasks.
1171  */
1172 static void wb_update_dirty_ratelimit(struct dirty_throttle_control *dtc,
1173                                       unsigned long dirtied,
1174                                       unsigned long elapsed)
1175 {
1176         struct bdi_writeback *wb = dtc->wb;
1177         unsigned long dirty = dtc->dirty;
1178         unsigned long freerun = dirty_freerun_ceiling(dtc->thresh, dtc->bg_thresh);
1179         unsigned long limit = hard_dirty_limit(dtc_dom(dtc), dtc->thresh);
1180         unsigned long setpoint = (freerun + limit) / 2;
1181         unsigned long write_bw = wb->avg_write_bandwidth;
1182         unsigned long dirty_ratelimit = wb->dirty_ratelimit;
1183         unsigned long dirty_rate;
1184         unsigned long task_ratelimit;
1185         unsigned long balanced_dirty_ratelimit;
1186         unsigned long step;
1187         unsigned long x;
1188         unsigned long shift;
1189
1190         /*
1191          * The dirty rate will match the writeout rate in long term, except
1192          * when dirty pages are truncated by userspace or re-dirtied by FS.
1193          */
1194         dirty_rate = (dirtied - wb->dirtied_stamp) * HZ / elapsed;
1195
1196         /*
1197          * task_ratelimit reflects each dd's dirty rate for the past 200ms.
1198          */
1199         task_ratelimit = (u64)dirty_ratelimit *
1200                                         dtc->pos_ratio >> RATELIMIT_CALC_SHIFT;
1201         task_ratelimit++; /* it helps rampup dirty_ratelimit from tiny values */
1202
1203         /*
1204          * A linear estimation of the "balanced" throttle rate. The theory is,
1205          * if there are N dd tasks, each throttled at task_ratelimit, the wb's
1206          * dirty_rate will be measured to be (N * task_ratelimit). So the below
1207          * formula will yield the balanced rate limit (write_bw / N).
1208          *
1209          * Note that the expanded form is not a pure rate feedback:
1210          *      rate_(i+1) = rate_(i) * (write_bw / dirty_rate)              (1)
1211          * but also takes pos_ratio into account:
1212          *      rate_(i+1) = rate_(i) * (write_bw / dirty_rate) * pos_ratio  (2)
1213          *
1214          * (1) is not realistic because pos_ratio also takes part in balancing
1215          * the dirty rate.  Consider the state
1216          *      pos_ratio = 0.5                                              (3)
1217          *      rate = 2 * (write_bw / N)                                    (4)
1218          * If (1) is used, it will stuck in that state! Because each dd will
1219          * be throttled at
1220          *      task_ratelimit = pos_ratio * rate = (write_bw / N)           (5)
1221          * yielding
1222          *      dirty_rate = N * task_ratelimit = write_bw                   (6)
1223          * put (6) into (1) we get
1224          *      rate_(i+1) = rate_(i)                                        (7)
1225          *
1226          * So we end up using (2) to always keep
1227          *      rate_(i+1) ~= (write_bw / N)                                 (8)
1228          * regardless of the value of pos_ratio. As long as (8) is satisfied,
1229          * pos_ratio is able to drive itself to 1.0, which is not only where
1230          * the dirty count meet the setpoint, but also where the slope of
1231          * pos_ratio is most flat and hence task_ratelimit is least fluctuated.
1232          */
1233         balanced_dirty_ratelimit = div_u64((u64)task_ratelimit * write_bw,
1234                                            dirty_rate | 1);
1235         /*
1236          * balanced_dirty_ratelimit ~= (write_bw / N) <= write_bw
1237          */
1238         if (unlikely(balanced_dirty_ratelimit > write_bw))
1239                 balanced_dirty_ratelimit = write_bw;
1240
1241         /*
1242          * We could safely do this and return immediately:
1243          *
1244          *      wb->dirty_ratelimit = balanced_dirty_ratelimit;
1245          *
1246          * However to get a more stable dirty_ratelimit, the below elaborated
1247          * code makes use of task_ratelimit to filter out singular points and
1248          * limit the step size.
1249          *
1250          * The below code essentially only uses the relative value of
1251          *
1252          *      task_ratelimit - dirty_ratelimit
1253          *      = (pos_ratio - 1) * dirty_ratelimit
1254          *
1255          * which reflects the direction and size of dirty position error.
1256          */
1257
1258         /*
1259          * dirty_ratelimit will follow balanced_dirty_ratelimit iff
1260          * task_ratelimit is on the same side of dirty_ratelimit, too.
1261          * For example, when
1262          * - dirty_ratelimit > balanced_dirty_ratelimit
1263          * - dirty_ratelimit > task_ratelimit (dirty pages are above setpoint)
1264          * lowering dirty_ratelimit will help meet both the position and rate
1265          * control targets. Otherwise, don't update dirty_ratelimit if it will
1266          * only help meet the rate target. After all, what the users ultimately
1267          * feel and care are stable dirty rate and small position error.
1268          *
1269          * |task_ratelimit - dirty_ratelimit| is used to limit the step size
1270          * and filter out the singular points of balanced_dirty_ratelimit. Which
1271          * keeps jumping around randomly and can even leap far away at times
1272          * due to the small 200ms estimation period of dirty_rate (we want to
1273          * keep that period small to reduce time lags).
1274          */
1275         step = 0;
1276
1277         /*
1278          * For strictlimit case, calculations above were based on wb counters
1279          * and limits (starting from pos_ratio = wb_position_ratio() and up to
1280          * balanced_dirty_ratelimit = task_ratelimit * write_bw / dirty_rate).
1281          * Hence, to calculate "step" properly, we have to use wb_dirty as
1282          * "dirty" and wb_setpoint as "setpoint".
1283          *
1284          * We rampup dirty_ratelimit forcibly if wb_dirty is low because
1285          * it's possible that wb_thresh is close to zero due to inactivity
1286          * of backing device.
1287          */
1288         if (unlikely(wb->bdi->capabilities & BDI_CAP_STRICTLIMIT)) {
1289                 dirty = dtc->wb_dirty;
1290                 if (dtc->wb_dirty < 8)
1291                         setpoint = dtc->wb_dirty + 1;
1292                 else
1293                         setpoint = (dtc->wb_thresh + dtc->wb_bg_thresh) / 2;
1294         }
1295
1296         if (dirty < setpoint) {
1297                 x = min3(wb->balanced_dirty_ratelimit,
1298                          balanced_dirty_ratelimit, task_ratelimit);
1299                 if (dirty_ratelimit < x)
1300                         step = x - dirty_ratelimit;
1301         } else {
1302                 x = max3(wb->balanced_dirty_ratelimit,
1303                          balanced_dirty_ratelimit, task_ratelimit);
1304                 if (dirty_ratelimit > x)
1305                         step = dirty_ratelimit - x;
1306         }
1307
1308         /*
1309          * Don't pursue 100% rate matching. It's impossible since the balanced
1310          * rate itself is constantly fluctuating. So decrease the track speed
1311          * when it gets close to the target. Helps eliminate pointless tremors.
1312          */
1313         shift = dirty_ratelimit / (2 * step + 1);
1314         if (shift < BITS_PER_LONG)
1315                 step = DIV_ROUND_UP(step >> shift, 8);
1316         else
1317                 step = 0;
1318
1319         if (dirty_ratelimit < balanced_dirty_ratelimit)
1320                 dirty_ratelimit += step;
1321         else
1322                 dirty_ratelimit -= step;
1323
1324         WRITE_ONCE(wb->dirty_ratelimit, max(dirty_ratelimit, 1UL));
1325         wb->balanced_dirty_ratelimit = balanced_dirty_ratelimit;
1326
1327         trace_bdi_dirty_ratelimit(wb, dirty_rate, task_ratelimit);
1328 }
1329
1330 static void __wb_update_bandwidth(struct dirty_throttle_control *gdtc,
1331                                   struct dirty_throttle_control *mdtc,
1332                                   bool update_ratelimit)
1333 {
1334         struct bdi_writeback *wb = gdtc->wb;
1335         unsigned long now = jiffies;
1336         unsigned long elapsed;
1337         unsigned long dirtied;
1338         unsigned long written;
1339
1340         spin_lock(&wb->list_lock);
1341
1342         /*
1343          * Lockless checks for elapsed time are racy and delayed update after
1344          * IO completion doesn't do it at all (to make sure written pages are
1345          * accounted reasonably quickly). Make sure elapsed >= 1 to avoid
1346          * division errors.
1347          */
1348         elapsed = max(now - wb->bw_time_stamp, 1UL);
1349         dirtied = percpu_counter_read(&wb->stat[WB_DIRTIED]);
1350         written = percpu_counter_read(&wb->stat[WB_WRITTEN]);
1351
1352         if (update_ratelimit) {
1353                 domain_update_dirty_limit(gdtc, now);
1354                 wb_update_dirty_ratelimit(gdtc, dirtied, elapsed);
1355
1356                 /*
1357                  * @mdtc is always NULL if !CGROUP_WRITEBACK but the
1358                  * compiler has no way to figure that out.  Help it.
1359                  */
1360                 if (IS_ENABLED(CONFIG_CGROUP_WRITEBACK) && mdtc) {
1361                         domain_update_dirty_limit(mdtc, now);
1362                         wb_update_dirty_ratelimit(mdtc, dirtied, elapsed);
1363                 }
1364         }
1365         wb_update_write_bandwidth(wb, elapsed, written);
1366
1367         wb->dirtied_stamp = dirtied;
1368         wb->written_stamp = written;
1369         WRITE_ONCE(wb->bw_time_stamp, now);
1370         spin_unlock(&wb->list_lock);
1371 }
1372
1373 void wb_update_bandwidth(struct bdi_writeback *wb)
1374 {
1375         struct dirty_throttle_control gdtc = { GDTC_INIT(wb) };
1376
1377         __wb_update_bandwidth(&gdtc, NULL, false);
1378 }
1379
1380 /* Interval after which we consider wb idle and don't estimate bandwidth */
1381 #define WB_BANDWIDTH_IDLE_JIF (HZ)
1382
1383 static void wb_bandwidth_estimate_start(struct bdi_writeback *wb)
1384 {
1385         unsigned long now = jiffies;
1386         unsigned long elapsed = now - READ_ONCE(wb->bw_time_stamp);
1387
1388         if (elapsed > WB_BANDWIDTH_IDLE_JIF &&
1389             !atomic_read(&wb->writeback_inodes)) {
1390                 spin_lock(&wb->list_lock);
1391                 wb->dirtied_stamp = wb_stat(wb, WB_DIRTIED);
1392                 wb->written_stamp = wb_stat(wb, WB_WRITTEN);
1393                 WRITE_ONCE(wb->bw_time_stamp, now);
1394                 spin_unlock(&wb->list_lock);
1395         }
1396 }
1397
1398 /*
1399  * After a task dirtied this many pages, balance_dirty_pages_ratelimited()
1400  * will look to see if it needs to start dirty throttling.
1401  *
1402  * If dirty_poll_interval is too low, big NUMA machines will call the expensive
1403  * global_zone_page_state() too often. So scale it near-sqrt to the safety margin
1404  * (the number of pages we may dirty without exceeding the dirty limits).
1405  */
1406 static unsigned long dirty_poll_interval(unsigned long dirty,
1407                                          unsigned long thresh)
1408 {
1409         if (thresh > dirty)
1410                 return 1UL << (ilog2(thresh - dirty) >> 1);
1411
1412         return 1;
1413 }
1414
1415 static unsigned long wb_max_pause(struct bdi_writeback *wb,
1416                                   unsigned long wb_dirty)
1417 {
1418         unsigned long bw = READ_ONCE(wb->avg_write_bandwidth);
1419         unsigned long t;
1420
1421         /*
1422          * Limit pause time for small memory systems. If sleeping for too long
1423          * time, a small pool of dirty/writeback pages may go empty and disk go
1424          * idle.
1425          *
1426          * 8 serves as the safety ratio.
1427          */
1428         t = wb_dirty / (1 + bw / roundup_pow_of_two(1 + HZ / 8));
1429         t++;
1430
1431         return min_t(unsigned long, t, MAX_PAUSE);
1432 }
1433
1434 static long wb_min_pause(struct bdi_writeback *wb,
1435                          long max_pause,
1436                          unsigned long task_ratelimit,
1437                          unsigned long dirty_ratelimit,
1438                          int *nr_dirtied_pause)
1439 {
1440         long hi = ilog2(READ_ONCE(wb->avg_write_bandwidth));
1441         long lo = ilog2(READ_ONCE(wb->dirty_ratelimit));
1442         long t;         /* target pause */
1443         long pause;     /* estimated next pause */
1444         int pages;      /* target nr_dirtied_pause */
1445
1446         /* target for 10ms pause on 1-dd case */
1447         t = max(1, HZ / 100);
1448
1449         /*
1450          * Scale up pause time for concurrent dirtiers in order to reduce CPU
1451          * overheads.
1452          *
1453          * (N * 10ms) on 2^N concurrent tasks.
1454          */
1455         if (hi > lo)
1456                 t += (hi - lo) * (10 * HZ) / 1024;
1457
1458         /*
1459          * This is a bit convoluted. We try to base the next nr_dirtied_pause
1460          * on the much more stable dirty_ratelimit. However the next pause time
1461          * will be computed based on task_ratelimit and the two rate limits may
1462          * depart considerably at some time. Especially if task_ratelimit goes
1463          * below dirty_ratelimit/2 and the target pause is max_pause, the next
1464          * pause time will be max_pause*2 _trimmed down_ to max_pause.  As a
1465          * result task_ratelimit won't be executed faithfully, which could
1466          * eventually bring down dirty_ratelimit.
1467          *
1468          * We apply two rules to fix it up:
1469          * 1) try to estimate the next pause time and if necessary, use a lower
1470          *    nr_dirtied_pause so as not to exceed max_pause. When this happens,
1471          *    nr_dirtied_pause will be "dancing" with task_ratelimit.
1472          * 2) limit the target pause time to max_pause/2, so that the normal
1473          *    small fluctuations of task_ratelimit won't trigger rule (1) and
1474          *    nr_dirtied_pause will remain as stable as dirty_ratelimit.
1475          */
1476         t = min(t, 1 + max_pause / 2);
1477         pages = dirty_ratelimit * t / roundup_pow_of_two(HZ);
1478
1479         /*
1480          * Tiny nr_dirtied_pause is found to hurt I/O performance in the test
1481          * case fio-mmap-randwrite-64k, which does 16*{sync read, async write}.
1482          * When the 16 consecutive reads are often interrupted by some dirty
1483          * throttling pause during the async writes, cfq will go into idles
1484          * (deadline is fine). So push nr_dirtied_pause as high as possible
1485          * until reaches DIRTY_POLL_THRESH=32 pages.
1486          */
1487         if (pages < DIRTY_POLL_THRESH) {
1488                 t = max_pause;
1489                 pages = dirty_ratelimit * t / roundup_pow_of_two(HZ);
1490                 if (pages > DIRTY_POLL_THRESH) {
1491                         pages = DIRTY_POLL_THRESH;
1492                         t = HZ * DIRTY_POLL_THRESH / dirty_ratelimit;
1493                 }
1494         }
1495
1496         pause = HZ * pages / (task_ratelimit + 1);
1497         if (pause > max_pause) {
1498                 t = max_pause;
1499                 pages = task_ratelimit * t / roundup_pow_of_two(HZ);
1500         }
1501
1502         *nr_dirtied_pause = pages;
1503         /*
1504          * The minimal pause time will normally be half the target pause time.
1505          */
1506         return pages >= DIRTY_POLL_THRESH ? 1 + t / 2 : t;
1507 }
1508
1509 static inline void wb_dirty_limits(struct dirty_throttle_control *dtc)
1510 {
1511         struct bdi_writeback *wb = dtc->wb;
1512         unsigned long wb_reclaimable;
1513
1514         /*
1515          * wb_thresh is not treated as some limiting factor as
1516          * dirty_thresh, due to reasons
1517          * - in JBOD setup, wb_thresh can fluctuate a lot
1518          * - in a system with HDD and USB key, the USB key may somehow
1519          *   go into state (wb_dirty >> wb_thresh) either because
1520          *   wb_dirty starts high, or because wb_thresh drops low.
1521          *   In this case we don't want to hard throttle the USB key
1522          *   dirtiers for 100 seconds until wb_dirty drops under
1523          *   wb_thresh. Instead the auxiliary wb control line in
1524          *   wb_position_ratio() will let the dirtier task progress
1525          *   at some rate <= (write_bw / 2) for bringing down wb_dirty.
1526          */
1527         dtc->wb_thresh = __wb_calc_thresh(dtc);
1528         dtc->wb_bg_thresh = dtc->thresh ?
1529                 div_u64((u64)dtc->wb_thresh * dtc->bg_thresh, dtc->thresh) : 0;
1530
1531         /*
1532          * In order to avoid the stacked BDI deadlock we need
1533          * to ensure we accurately count the 'dirty' pages when
1534          * the threshold is low.
1535          *
1536          * Otherwise it would be possible to get thresh+n pages
1537          * reported dirty, even though there are thresh-m pages
1538          * actually dirty; with m+n sitting in the percpu
1539          * deltas.
1540          */
1541         if (dtc->wb_thresh < 2 * wb_stat_error()) {
1542                 wb_reclaimable = wb_stat_sum(wb, WB_RECLAIMABLE);
1543                 dtc->wb_dirty = wb_reclaimable + wb_stat_sum(wb, WB_WRITEBACK);
1544         } else {
1545                 wb_reclaimable = wb_stat(wb, WB_RECLAIMABLE);
1546                 dtc->wb_dirty = wb_reclaimable + wb_stat(wb, WB_WRITEBACK);
1547         }
1548 }
1549
1550 /*
1551  * balance_dirty_pages() must be called by processes which are generating dirty
1552  * data.  It looks at the number of dirty pages in the machine and will force
1553  * the caller to wait once crossing the (background_thresh + dirty_thresh) / 2.
1554  * If we're over `background_thresh' then the writeback threads are woken to
1555  * perform some writeout.
1556  */
1557 static int balance_dirty_pages(struct bdi_writeback *wb,
1558                                unsigned long pages_dirtied, unsigned int flags)
1559 {
1560         struct dirty_throttle_control gdtc_stor = { GDTC_INIT(wb) };
1561         struct dirty_throttle_control mdtc_stor = { MDTC_INIT(wb, &gdtc_stor) };
1562         struct dirty_throttle_control * const gdtc = &gdtc_stor;
1563         struct dirty_throttle_control * const mdtc = mdtc_valid(&mdtc_stor) ?
1564                                                      &mdtc_stor : NULL;
1565         struct dirty_throttle_control *sdtc;
1566         unsigned long nr_reclaimable;   /* = file_dirty */
1567         long period;
1568         long pause;
1569         long max_pause;
1570         long min_pause;
1571         int nr_dirtied_pause;
1572         bool dirty_exceeded = false;
1573         unsigned long task_ratelimit;
1574         unsigned long dirty_ratelimit;
1575         struct backing_dev_info *bdi = wb->bdi;
1576         bool strictlimit = bdi->capabilities & BDI_CAP_STRICTLIMIT;
1577         unsigned long start_time = jiffies;
1578         int ret = 0;
1579
1580         for (;;) {
1581                 unsigned long now = jiffies;
1582                 unsigned long dirty, thresh, bg_thresh;
1583                 unsigned long m_dirty = 0;      /* stop bogus uninit warnings */
1584                 unsigned long m_thresh = 0;
1585                 unsigned long m_bg_thresh = 0;
1586
1587                 nr_reclaimable = global_node_page_state(NR_FILE_DIRTY);
1588                 gdtc->avail = global_dirtyable_memory();
1589                 gdtc->dirty = nr_reclaimable + global_node_page_state(NR_WRITEBACK);
1590
1591                 domain_dirty_limits(gdtc);
1592
1593                 if (unlikely(strictlimit)) {
1594                         wb_dirty_limits(gdtc);
1595
1596                         dirty = gdtc->wb_dirty;
1597                         thresh = gdtc->wb_thresh;
1598                         bg_thresh = gdtc->wb_bg_thresh;
1599                 } else {
1600                         dirty = gdtc->dirty;
1601                         thresh = gdtc->thresh;
1602                         bg_thresh = gdtc->bg_thresh;
1603                 }
1604
1605                 if (mdtc) {
1606                         unsigned long filepages, headroom, writeback;
1607
1608                         /*
1609                          * If @wb belongs to !root memcg, repeat the same
1610                          * basic calculations for the memcg domain.
1611                          */
1612                         mem_cgroup_wb_stats(wb, &filepages, &headroom,
1613                                             &mdtc->dirty, &writeback);
1614                         mdtc->dirty += writeback;
1615                         mdtc_calc_avail(mdtc, filepages, headroom);
1616
1617                         domain_dirty_limits(mdtc);
1618
1619                         if (unlikely(strictlimit)) {
1620                                 wb_dirty_limits(mdtc);
1621                                 m_dirty = mdtc->wb_dirty;
1622                                 m_thresh = mdtc->wb_thresh;
1623                                 m_bg_thresh = mdtc->wb_bg_thresh;
1624                         } else {
1625                                 m_dirty = mdtc->dirty;
1626                                 m_thresh = mdtc->thresh;
1627                                 m_bg_thresh = mdtc->bg_thresh;
1628                         }
1629                 }
1630
1631                 /*
1632                  * In laptop mode, we wait until hitting the higher threshold
1633                  * before starting background writeout, and then write out all
1634                  * the way down to the lower threshold.  So slow writers cause
1635                  * minimal disk activity.
1636                  *
1637                  * In normal mode, we start background writeout at the lower
1638                  * background_thresh, to keep the amount of dirty memory low.
1639                  */
1640                 if (!laptop_mode && nr_reclaimable > gdtc->bg_thresh &&
1641                     !writeback_in_progress(wb))
1642                         wb_start_background_writeback(wb);
1643
1644                 /*
1645                  * Throttle it only when the background writeback cannot
1646                  * catch-up. This avoids (excessively) small writeouts
1647                  * when the wb limits are ramping up in case of !strictlimit.
1648                  *
1649                  * In strictlimit case make decision based on the wb counters
1650                  * and limits. Small writeouts when the wb limits are ramping
1651                  * up are the price we consciously pay for strictlimit-ing.
1652                  *
1653                  * If memcg domain is in effect, @dirty should be under
1654                  * both global and memcg freerun ceilings.
1655                  */
1656                 if (dirty <= dirty_freerun_ceiling(thresh, bg_thresh) &&
1657                     (!mdtc ||
1658                      m_dirty <= dirty_freerun_ceiling(m_thresh, m_bg_thresh))) {
1659                         unsigned long intv;
1660                         unsigned long m_intv;
1661
1662 free_running:
1663                         intv = dirty_poll_interval(dirty, thresh);
1664                         m_intv = ULONG_MAX;
1665
1666                         current->dirty_paused_when = now;
1667                         current->nr_dirtied = 0;
1668                         if (mdtc)
1669                                 m_intv = dirty_poll_interval(m_dirty, m_thresh);
1670                         current->nr_dirtied_pause = min(intv, m_intv);
1671                         break;
1672                 }
1673
1674                 /* Start writeback even when in laptop mode */
1675                 if (unlikely(!writeback_in_progress(wb)))
1676                         wb_start_background_writeback(wb);
1677
1678                 mem_cgroup_flush_foreign(wb);
1679
1680                 /*
1681                  * Calculate global domain's pos_ratio and select the
1682                  * global dtc by default.
1683                  */
1684                 if (!strictlimit) {
1685                         wb_dirty_limits(gdtc);
1686
1687                         if ((current->flags & PF_LOCAL_THROTTLE) &&
1688                             gdtc->wb_dirty <
1689                             dirty_freerun_ceiling(gdtc->wb_thresh,
1690                                                   gdtc->wb_bg_thresh))
1691                                 /*
1692                                  * LOCAL_THROTTLE tasks must not be throttled
1693                                  * when below the per-wb freerun ceiling.
1694                                  */
1695                                 goto free_running;
1696                 }
1697
1698                 dirty_exceeded = (gdtc->wb_dirty > gdtc->wb_thresh) &&
1699                         ((gdtc->dirty > gdtc->thresh) || strictlimit);
1700
1701                 wb_position_ratio(gdtc);
1702                 sdtc = gdtc;
1703
1704                 if (mdtc) {
1705                         /*
1706                          * If memcg domain is in effect, calculate its
1707                          * pos_ratio.  @wb should satisfy constraints from
1708                          * both global and memcg domains.  Choose the one
1709                          * w/ lower pos_ratio.
1710                          */
1711                         if (!strictlimit) {
1712                                 wb_dirty_limits(mdtc);
1713
1714                                 if ((current->flags & PF_LOCAL_THROTTLE) &&
1715                                     mdtc->wb_dirty <
1716                                     dirty_freerun_ceiling(mdtc->wb_thresh,
1717                                                           mdtc->wb_bg_thresh))
1718                                         /*
1719                                          * LOCAL_THROTTLE tasks must not be
1720                                          * throttled when below the per-wb
1721                                          * freerun ceiling.
1722                                          */
1723                                         goto free_running;
1724                         }
1725                         dirty_exceeded |= (mdtc->wb_dirty > mdtc->wb_thresh) &&
1726                                 ((mdtc->dirty > mdtc->thresh) || strictlimit);
1727
1728                         wb_position_ratio(mdtc);
1729                         if (mdtc->pos_ratio < gdtc->pos_ratio)
1730                                 sdtc = mdtc;
1731                 }
1732
1733                 if (dirty_exceeded != wb->dirty_exceeded)
1734                         wb->dirty_exceeded = dirty_exceeded;
1735
1736                 if (time_is_before_jiffies(READ_ONCE(wb->bw_time_stamp) +
1737                                            BANDWIDTH_INTERVAL))
1738                         __wb_update_bandwidth(gdtc, mdtc, true);
1739
1740                 /* throttle according to the chosen dtc */
1741                 dirty_ratelimit = READ_ONCE(wb->dirty_ratelimit);
1742                 task_ratelimit = ((u64)dirty_ratelimit * sdtc->pos_ratio) >>
1743                                                         RATELIMIT_CALC_SHIFT;
1744                 max_pause = wb_max_pause(wb, sdtc->wb_dirty);
1745                 min_pause = wb_min_pause(wb, max_pause,
1746                                          task_ratelimit, dirty_ratelimit,
1747                                          &nr_dirtied_pause);
1748
1749                 if (unlikely(task_ratelimit == 0)) {
1750                         period = max_pause;
1751                         pause = max_pause;
1752                         goto pause;
1753                 }
1754                 period = HZ * pages_dirtied / task_ratelimit;
1755                 pause = period;
1756                 if (current->dirty_paused_when)
1757                         pause -= now - current->dirty_paused_when;
1758                 /*
1759                  * For less than 1s think time (ext3/4 may block the dirtier
1760                  * for up to 800ms from time to time on 1-HDD; so does xfs,
1761                  * however at much less frequency), try to compensate it in
1762                  * future periods by updating the virtual time; otherwise just
1763                  * do a reset, as it may be a light dirtier.
1764                  */
1765                 if (pause < min_pause) {
1766                         trace_balance_dirty_pages(wb,
1767                                                   sdtc->thresh,
1768                                                   sdtc->bg_thresh,
1769                                                   sdtc->dirty,
1770                                                   sdtc->wb_thresh,
1771                                                   sdtc->wb_dirty,
1772                                                   dirty_ratelimit,
1773                                                   task_ratelimit,
1774                                                   pages_dirtied,
1775                                                   period,
1776                                                   min(pause, 0L),
1777                                                   start_time);
1778                         if (pause < -HZ) {
1779                                 current->dirty_paused_when = now;
1780                                 current->nr_dirtied = 0;
1781                         } else if (period) {
1782                                 current->dirty_paused_when += period;
1783                                 current->nr_dirtied = 0;
1784                         } else if (current->nr_dirtied_pause <= pages_dirtied)
1785                                 current->nr_dirtied_pause += pages_dirtied;
1786                         break;
1787                 }
1788                 if (unlikely(pause > max_pause)) {
1789                         /* for occasional dropped task_ratelimit */
1790                         now += min(pause - max_pause, max_pause);
1791                         pause = max_pause;
1792                 }
1793
1794 pause:
1795                 trace_balance_dirty_pages(wb,
1796                                           sdtc->thresh,
1797                                           sdtc->bg_thresh,
1798                                           sdtc->dirty,
1799                                           sdtc->wb_thresh,
1800                                           sdtc->wb_dirty,
1801                                           dirty_ratelimit,
1802                                           task_ratelimit,
1803                                           pages_dirtied,
1804                                           period,
1805                                           pause,
1806                                           start_time);
1807                 if (flags & BDP_ASYNC) {
1808                         ret = -EAGAIN;
1809                         break;
1810                 }
1811                 __set_current_state(TASK_KILLABLE);
1812                 wb->dirty_sleep = now;
1813                 io_schedule_timeout(pause);
1814
1815                 current->dirty_paused_when = now + pause;
1816                 current->nr_dirtied = 0;
1817                 current->nr_dirtied_pause = nr_dirtied_pause;
1818
1819                 /*
1820                  * This is typically equal to (dirty < thresh) and can also
1821                  * keep "1000+ dd on a slow USB stick" under control.
1822                  */
1823                 if (task_ratelimit)
1824                         break;
1825
1826                 /*
1827                  * In the case of an unresponsive NFS server and the NFS dirty
1828                  * pages exceeds dirty_thresh, give the other good wb's a pipe
1829                  * to go through, so that tasks on them still remain responsive.
1830                  *
1831                  * In theory 1 page is enough to keep the consumer-producer
1832                  * pipe going: the flusher cleans 1 page => the task dirties 1
1833                  * more page. However wb_dirty has accounting errors.  So use
1834                  * the larger and more IO friendly wb_stat_error.
1835                  */
1836                 if (sdtc->wb_dirty <= wb_stat_error())
1837                         break;
1838
1839                 if (fatal_signal_pending(current))
1840                         break;
1841         }
1842         return ret;
1843 }
1844
1845 static DEFINE_PER_CPU(int, bdp_ratelimits);
1846
1847 /*
1848  * Normal tasks are throttled by
1849  *      loop {
1850  *              dirty tsk->nr_dirtied_pause pages;
1851  *              take a snap in balance_dirty_pages();
1852  *      }
1853  * However there is a worst case. If every task exit immediately when dirtied
1854  * (tsk->nr_dirtied_pause - 1) pages, balance_dirty_pages() will never be
1855  * called to throttle the page dirties. The solution is to save the not yet
1856  * throttled page dirties in dirty_throttle_leaks on task exit and charge them
1857  * randomly into the running tasks. This works well for the above worst case,
1858  * as the new task will pick up and accumulate the old task's leaked dirty
1859  * count and eventually get throttled.
1860  */
1861 DEFINE_PER_CPU(int, dirty_throttle_leaks) = 0;
1862
1863 /**
1864  * balance_dirty_pages_ratelimited_flags - Balance dirty memory state.
1865  * @mapping: address_space which was dirtied.
1866  * @flags: BDP flags.
1867  *
1868  * Processes which are dirtying memory should call in here once for each page
1869  * which was newly dirtied.  The function will periodically check the system's
1870  * dirty state and will initiate writeback if needed.
1871  *
1872  * See balance_dirty_pages_ratelimited() for details.
1873  *
1874  * Return: If @flags contains BDP_ASYNC, it may return -EAGAIN to
1875  * indicate that memory is out of balance and the caller must wait
1876  * for I/O to complete.  Otherwise, it will return 0 to indicate
1877  * that either memory was already in balance, or it was able to sleep
1878  * until the amount of dirty memory returned to balance.
1879  */
1880 int balance_dirty_pages_ratelimited_flags(struct address_space *mapping,
1881                                         unsigned int flags)
1882 {
1883         struct inode *inode = mapping->host;
1884         struct backing_dev_info *bdi = inode_to_bdi(inode);
1885         struct bdi_writeback *wb = NULL;
1886         int ratelimit;
1887         int ret = 0;
1888         int *p;
1889
1890         if (!(bdi->capabilities & BDI_CAP_WRITEBACK))
1891                 return ret;
1892
1893         if (inode_cgwb_enabled(inode))
1894                 wb = wb_get_create_current(bdi, GFP_KERNEL);
1895         if (!wb)
1896                 wb = &bdi->wb;
1897
1898         ratelimit = current->nr_dirtied_pause;
1899         if (wb->dirty_exceeded)
1900                 ratelimit = min(ratelimit, 32 >> (PAGE_SHIFT - 10));
1901
1902         preempt_disable();
1903         /*
1904          * This prevents one CPU to accumulate too many dirtied pages without
1905          * calling into balance_dirty_pages(), which can happen when there are
1906          * 1000+ tasks, all of them start dirtying pages at exactly the same
1907          * time, hence all honoured too large initial task->nr_dirtied_pause.
1908          */
1909         p =  this_cpu_ptr(&bdp_ratelimits);
1910         if (unlikely(current->nr_dirtied >= ratelimit))
1911                 *p = 0;
1912         else if (unlikely(*p >= ratelimit_pages)) {
1913                 *p = 0;
1914                 ratelimit = 0;
1915         }
1916         /*
1917          * Pick up the dirtied pages by the exited tasks. This avoids lots of
1918          * short-lived tasks (eg. gcc invocations in a kernel build) escaping
1919          * the dirty throttling and livelock other long-run dirtiers.
1920          */
1921         p = this_cpu_ptr(&dirty_throttle_leaks);
1922         if (*p > 0 && current->nr_dirtied < ratelimit) {
1923                 unsigned long nr_pages_dirtied;
1924                 nr_pages_dirtied = min(*p, ratelimit - current->nr_dirtied);
1925                 *p -= nr_pages_dirtied;
1926                 current->nr_dirtied += nr_pages_dirtied;
1927         }
1928         preempt_enable();
1929
1930         if (unlikely(current->nr_dirtied >= ratelimit))
1931                 ret = balance_dirty_pages(wb, current->nr_dirtied, flags);
1932
1933         wb_put(wb);
1934         return ret;
1935 }
1936
1937 /**
1938  * balance_dirty_pages_ratelimited - balance dirty memory state.
1939  * @mapping: address_space which was dirtied.
1940  *
1941  * Processes which are dirtying memory should call in here once for each page
1942  * which was newly dirtied.  The function will periodically check the system's
1943  * dirty state and will initiate writeback if needed.
1944  *
1945  * Once we're over the dirty memory limit we decrease the ratelimiting
1946  * by a lot, to prevent individual processes from overshooting the limit
1947  * by (ratelimit_pages) each.
1948  */
1949 void balance_dirty_pages_ratelimited(struct address_space *mapping)
1950 {
1951         balance_dirty_pages_ratelimited_flags(mapping, 0);
1952 }
1953 EXPORT_SYMBOL(balance_dirty_pages_ratelimited);
1954
1955 /**
1956  * wb_over_bg_thresh - does @wb need to be written back?
1957  * @wb: bdi_writeback of interest
1958  *
1959  * Determines whether background writeback should keep writing @wb or it's
1960  * clean enough.
1961  *
1962  * Return: %true if writeback should continue.
1963  */
1964 bool wb_over_bg_thresh(struct bdi_writeback *wb)
1965 {
1966         struct dirty_throttle_control gdtc_stor = { GDTC_INIT(wb) };
1967         struct dirty_throttle_control mdtc_stor = { MDTC_INIT(wb, &gdtc_stor) };
1968         struct dirty_throttle_control * const gdtc = &gdtc_stor;
1969         struct dirty_throttle_control * const mdtc = mdtc_valid(&mdtc_stor) ?
1970                                                      &mdtc_stor : NULL;
1971         unsigned long reclaimable;
1972         unsigned long thresh;
1973
1974         /*
1975          * Similar to balance_dirty_pages() but ignores pages being written
1976          * as we're trying to decide whether to put more under writeback.
1977          */
1978         gdtc->avail = global_dirtyable_memory();
1979         gdtc->dirty = global_node_page_state(NR_FILE_DIRTY);
1980         domain_dirty_limits(gdtc);
1981
1982         if (gdtc->dirty > gdtc->bg_thresh)
1983                 return true;
1984
1985         thresh = wb_calc_thresh(gdtc->wb, gdtc->bg_thresh);
1986         if (thresh < 2 * wb_stat_error())
1987                 reclaimable = wb_stat_sum(wb, WB_RECLAIMABLE);
1988         else
1989                 reclaimable = wb_stat(wb, WB_RECLAIMABLE);
1990
1991         if (reclaimable > thresh)
1992                 return true;
1993
1994         if (mdtc) {
1995                 unsigned long filepages, headroom, writeback;
1996
1997                 mem_cgroup_wb_stats(wb, &filepages, &headroom, &mdtc->dirty,
1998                                     &writeback);
1999                 mdtc_calc_avail(mdtc, filepages, headroom);
2000                 domain_dirty_limits(mdtc);      /* ditto, ignore writeback */
2001
2002                 if (mdtc->dirty > mdtc->bg_thresh)
2003                         return true;
2004
2005                 thresh = wb_calc_thresh(mdtc->wb, mdtc->bg_thresh);
2006                 if (thresh < 2 * wb_stat_error())
2007                         reclaimable = wb_stat_sum(wb, WB_RECLAIMABLE);
2008                 else
2009                         reclaimable = wb_stat(wb, WB_RECLAIMABLE);
2010
2011                 if (reclaimable > thresh)
2012                         return true;
2013         }
2014
2015         return false;
2016 }
2017
2018 #ifdef CONFIG_SYSCTL
2019 /*
2020  * sysctl handler for /proc/sys/vm/dirty_writeback_centisecs
2021  */
2022 static int dirty_writeback_centisecs_handler(struct ctl_table *table, int write,
2023                 void *buffer, size_t *length, loff_t *ppos)
2024 {
2025         unsigned int old_interval = dirty_writeback_interval;
2026         int ret;
2027
2028         ret = proc_dointvec(table, write, buffer, length, ppos);
2029
2030         /*
2031          * Writing 0 to dirty_writeback_interval will disable periodic writeback
2032          * and a different non-zero value will wakeup the writeback threads.
2033          * wb_wakeup_delayed() would be more appropriate, but it's a pain to
2034          * iterate over all bdis and wbs.
2035          * The reason we do this is to make the change take effect immediately.
2036          */
2037         if (!ret && write && dirty_writeback_interval &&
2038                 dirty_writeback_interval != old_interval)
2039                 wakeup_flusher_threads(WB_REASON_PERIODIC);
2040
2041         return ret;
2042 }
2043 #endif
2044
2045 void laptop_mode_timer_fn(struct timer_list *t)
2046 {
2047         struct backing_dev_info *backing_dev_info =
2048                 from_timer(backing_dev_info, t, laptop_mode_wb_timer);
2049
2050         wakeup_flusher_threads_bdi(backing_dev_info, WB_REASON_LAPTOP_TIMER);
2051 }
2052
2053 /*
2054  * We've spun up the disk and we're in laptop mode: schedule writeback
2055  * of all dirty data a few seconds from now.  If the flush is already scheduled
2056  * then push it back - the user is still using the disk.
2057  */
2058 void laptop_io_completion(struct backing_dev_info *info)
2059 {
2060         mod_timer(&info->laptop_mode_wb_timer, jiffies + laptop_mode);
2061 }
2062
2063 /*
2064  * We're in laptop mode and we've just synced. The sync's writes will have
2065  * caused another writeback to be scheduled by laptop_io_completion.
2066  * Nothing needs to be written back anymore, so we unschedule the writeback.
2067  */
2068 void laptop_sync_completion(void)
2069 {
2070         struct backing_dev_info *bdi;
2071
2072         rcu_read_lock();
2073
2074         list_for_each_entry_rcu(bdi, &bdi_list, bdi_list)
2075                 del_timer(&bdi->laptop_mode_wb_timer);
2076
2077         rcu_read_unlock();
2078 }
2079
2080 /*
2081  * If ratelimit_pages is too high then we can get into dirty-data overload
2082  * if a large number of processes all perform writes at the same time.
2083  *
2084  * Here we set ratelimit_pages to a level which ensures that when all CPUs are
2085  * dirtying in parallel, we cannot go more than 3% (1/32) over the dirty memory
2086  * thresholds.
2087  */
2088
2089 void writeback_set_ratelimit(void)
2090 {
2091         struct wb_domain *dom = &global_wb_domain;
2092         unsigned long background_thresh;
2093         unsigned long dirty_thresh;
2094
2095         global_dirty_limits(&background_thresh, &dirty_thresh);
2096         dom->dirty_limit = dirty_thresh;
2097         ratelimit_pages = dirty_thresh / (num_online_cpus() * 32);
2098         if (ratelimit_pages < 16)
2099                 ratelimit_pages = 16;
2100 }
2101
2102 static int page_writeback_cpu_online(unsigned int cpu)
2103 {
2104         writeback_set_ratelimit();
2105         return 0;
2106 }
2107
2108 #ifdef CONFIG_SYSCTL
2109
2110 /* this is needed for the proc_doulongvec_minmax of vm_dirty_bytes */
2111 static const unsigned long dirty_bytes_min = 2 * PAGE_SIZE;
2112
2113 static struct ctl_table vm_page_writeback_sysctls[] = {
2114         {
2115                 .procname   = "dirty_background_ratio",
2116                 .data       = &dirty_background_ratio,
2117                 .maxlen     = sizeof(dirty_background_ratio),
2118                 .mode       = 0644,
2119                 .proc_handler   = dirty_background_ratio_handler,
2120                 .extra1     = SYSCTL_ZERO,
2121                 .extra2     = SYSCTL_ONE_HUNDRED,
2122         },
2123         {
2124                 .procname   = "dirty_background_bytes",
2125                 .data       = &dirty_background_bytes,
2126                 .maxlen     = sizeof(dirty_background_bytes),
2127                 .mode       = 0644,
2128                 .proc_handler   = dirty_background_bytes_handler,
2129                 .extra1     = SYSCTL_LONG_ONE,
2130         },
2131         {
2132                 .procname   = "dirty_ratio",
2133                 .data       = &vm_dirty_ratio,
2134                 .maxlen     = sizeof(vm_dirty_ratio),
2135                 .mode       = 0644,
2136                 .proc_handler   = dirty_ratio_handler,
2137                 .extra1     = SYSCTL_ZERO,
2138                 .extra2     = SYSCTL_ONE_HUNDRED,
2139         },
2140         {
2141                 .procname   = "dirty_bytes",
2142                 .data       = &vm_dirty_bytes,
2143                 .maxlen     = sizeof(vm_dirty_bytes),
2144                 .mode       = 0644,
2145                 .proc_handler   = dirty_bytes_handler,
2146                 .extra1     = (void *)&dirty_bytes_min,
2147         },
2148         {
2149                 .procname   = "dirty_writeback_centisecs",
2150                 .data       = &dirty_writeback_interval,
2151                 .maxlen     = sizeof(dirty_writeback_interval),
2152                 .mode       = 0644,
2153                 .proc_handler   = dirty_writeback_centisecs_handler,
2154         },
2155         {
2156                 .procname   = "dirty_expire_centisecs",
2157                 .data       = &dirty_expire_interval,
2158                 .maxlen     = sizeof(dirty_expire_interval),
2159                 .mode       = 0644,
2160                 .proc_handler   = proc_dointvec_minmax,
2161                 .extra1     = SYSCTL_ZERO,
2162         },
2163 #ifdef CONFIG_HIGHMEM
2164         {
2165                 .procname       = "highmem_is_dirtyable",
2166                 .data           = &vm_highmem_is_dirtyable,
2167                 .maxlen         = sizeof(vm_highmem_is_dirtyable),
2168                 .mode           = 0644,
2169                 .proc_handler   = proc_dointvec_minmax,
2170                 .extra1         = SYSCTL_ZERO,
2171                 .extra2         = SYSCTL_ONE,
2172         },
2173 #endif
2174         {
2175                 .procname       = "laptop_mode",
2176                 .data           = &laptop_mode,
2177                 .maxlen         = sizeof(laptop_mode),
2178                 .mode           = 0644,
2179                 .proc_handler   = proc_dointvec_jiffies,
2180         },
2181         {}
2182 };
2183 #endif
2184
2185 /*
2186  * Called early on to tune the page writeback dirty limits.
2187  *
2188  * We used to scale dirty pages according to how total memory
2189  * related to pages that could be allocated for buffers.
2190  *
2191  * However, that was when we used "dirty_ratio" to scale with
2192  * all memory, and we don't do that any more. "dirty_ratio"
2193  * is now applied to total non-HIGHPAGE memory, and as such we can't
2194  * get into the old insane situation any more where we had
2195  * large amounts of dirty pages compared to a small amount of
2196  * non-HIGHMEM memory.
2197  *
2198  * But we might still want to scale the dirty_ratio by how
2199  * much memory the box has..
2200  */
2201 void __init page_writeback_init(void)
2202 {
2203         BUG_ON(wb_domain_init(&global_wb_domain, GFP_KERNEL));
2204
2205         cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, "mm/writeback:online",
2206                           page_writeback_cpu_online, NULL);
2207         cpuhp_setup_state(CPUHP_MM_WRITEBACK_DEAD, "mm/writeback:dead", NULL,
2208                           page_writeback_cpu_online);
2209 #ifdef CONFIG_SYSCTL
2210         register_sysctl_init("vm", vm_page_writeback_sysctls);
2211 #endif
2212 }
2213
2214 /**
2215  * tag_pages_for_writeback - tag pages to be written by write_cache_pages
2216  * @mapping: address space structure to write
2217  * @start: starting page index
2218  * @end: ending page index (inclusive)
2219  *
2220  * This function scans the page range from @start to @end (inclusive) and tags
2221  * all pages that have DIRTY tag set with a special TOWRITE tag. The idea is
2222  * that write_cache_pages (or whoever calls this function) will then use
2223  * TOWRITE tag to identify pages eligible for writeback.  This mechanism is
2224  * used to avoid livelocking of writeback by a process steadily creating new
2225  * dirty pages in the file (thus it is important for this function to be quick
2226  * so that it can tag pages faster than a dirtying process can create them).
2227  */
2228 void tag_pages_for_writeback(struct address_space *mapping,
2229                              pgoff_t start, pgoff_t end)
2230 {
2231         XA_STATE(xas, &mapping->i_pages, start);
2232         unsigned int tagged = 0;
2233         void *page;
2234
2235         xas_lock_irq(&xas);
2236         xas_for_each_marked(&xas, page, end, PAGECACHE_TAG_DIRTY) {
2237                 xas_set_mark(&xas, PAGECACHE_TAG_TOWRITE);
2238                 if (++tagged % XA_CHECK_SCHED)
2239                         continue;
2240
2241                 xas_pause(&xas);
2242                 xas_unlock_irq(&xas);
2243                 cond_resched();
2244                 xas_lock_irq(&xas);
2245         }
2246         xas_unlock_irq(&xas);
2247 }
2248 EXPORT_SYMBOL(tag_pages_for_writeback);
2249
2250 /**
2251  * write_cache_pages - walk the list of dirty pages of the given address space and write all of them.
2252  * @mapping: address space structure to write
2253  * @wbc: subtract the number of written pages from *@wbc->nr_to_write
2254  * @writepage: function called for each page
2255  * @data: data passed to writepage function
2256  *
2257  * If a page is already under I/O, write_cache_pages() skips it, even
2258  * if it's dirty.  This is desirable behaviour for memory-cleaning writeback,
2259  * but it is INCORRECT for data-integrity system calls such as fsync().  fsync()
2260  * and msync() need to guarantee that all the data which was dirty at the time
2261  * the call was made get new I/O started against them.  If wbc->sync_mode is
2262  * WB_SYNC_ALL then we were called for data integrity and we must wait for
2263  * existing IO to complete.
2264  *
2265  * To avoid livelocks (when other process dirties new pages), we first tag
2266  * pages which should be written back with TOWRITE tag and only then start
2267  * writing them. For data-integrity sync we have to be careful so that we do
2268  * not miss some pages (e.g., because some other process has cleared TOWRITE
2269  * tag we set). The rule we follow is that TOWRITE tag can be cleared only
2270  * by the process clearing the DIRTY tag (and submitting the page for IO).
2271  *
2272  * To avoid deadlocks between range_cyclic writeback and callers that hold
2273  * pages in PageWriteback to aggregate IO until write_cache_pages() returns,
2274  * we do not loop back to the start of the file. Doing so causes a page
2275  * lock/page writeback access order inversion - we should only ever lock
2276  * multiple pages in ascending page->index order, and looping back to the start
2277  * of the file violates that rule and causes deadlocks.
2278  *
2279  * Return: %0 on success, negative error code otherwise
2280  */
2281 int write_cache_pages(struct address_space *mapping,
2282                       struct writeback_control *wbc, writepage_t writepage,
2283                       void *data)
2284 {
2285         int ret = 0;
2286         int done = 0;
2287         int error;
2288         struct pagevec pvec;
2289         int nr_pages;
2290         pgoff_t index;
2291         pgoff_t end;            /* Inclusive */
2292         pgoff_t done_index;
2293         int range_whole = 0;
2294         xa_mark_t tag;
2295
2296         pagevec_init(&pvec);
2297         if (wbc->range_cyclic) {
2298                 index = mapping->writeback_index; /* prev offset */
2299                 end = -1;
2300         } else {
2301                 index = wbc->range_start >> PAGE_SHIFT;
2302                 end = wbc->range_end >> PAGE_SHIFT;
2303                 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2304                         range_whole = 1;
2305         }
2306         if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages) {
2307                 tag_pages_for_writeback(mapping, index, end);
2308                 tag = PAGECACHE_TAG_TOWRITE;
2309         } else {
2310                 tag = PAGECACHE_TAG_DIRTY;
2311         }
2312         done_index = index;
2313         while (!done && (index <= end)) {
2314                 int i;
2315
2316                 nr_pages = pagevec_lookup_range_tag(&pvec, mapping, &index, end,
2317                                 tag);
2318                 if (nr_pages == 0)
2319                         break;
2320
2321                 for (i = 0; i < nr_pages; i++) {
2322                         struct page *page = pvec.pages[i];
2323
2324                         done_index = page->index;
2325
2326                         lock_page(page);
2327
2328                         /*
2329                          * Page truncated or invalidated. We can freely skip it
2330                          * then, even for data integrity operations: the page
2331                          * has disappeared concurrently, so there could be no
2332                          * real expectation of this data integrity operation
2333                          * even if there is now a new, dirty page at the same
2334                          * pagecache address.
2335                          */
2336                         if (unlikely(page->mapping != mapping)) {
2337 continue_unlock:
2338                                 unlock_page(page);
2339                                 continue;
2340                         }
2341
2342                         if (!PageDirty(page)) {
2343                                 /* someone wrote it for us */
2344                                 goto continue_unlock;
2345                         }
2346
2347                         if (PageWriteback(page)) {
2348                                 if (wbc->sync_mode != WB_SYNC_NONE)
2349                                         wait_on_page_writeback(page);
2350                                 else
2351                                         goto continue_unlock;
2352                         }
2353
2354                         BUG_ON(PageWriteback(page));
2355                         if (!clear_page_dirty_for_io(page))
2356                                 goto continue_unlock;
2357
2358                         trace_wbc_writepage(wbc, inode_to_bdi(mapping->host));
2359                         error = (*writepage)(page, wbc, data);
2360                         if (unlikely(error)) {
2361                                 /*
2362                                  * Handle errors according to the type of
2363                                  * writeback. There's no need to continue for
2364                                  * background writeback. Just push done_index
2365                                  * past this page so media errors won't choke
2366                                  * writeout for the entire file. For integrity
2367                                  * writeback, we must process the entire dirty
2368                                  * set regardless of errors because the fs may
2369                                  * still have state to clear for each page. In
2370                                  * that case we continue processing and return
2371                                  * the first error.
2372                                  */
2373                                 if (error == AOP_WRITEPAGE_ACTIVATE) {
2374                                         unlock_page(page);
2375                                         error = 0;
2376                                 } else if (wbc->sync_mode != WB_SYNC_ALL) {
2377                                         ret = error;
2378                                         done_index = page->index + 1;
2379                                         done = 1;
2380                                         break;
2381                                 }
2382                                 if (!ret)
2383                                         ret = error;
2384                         }
2385
2386                         /*
2387                          * We stop writing back only if we are not doing
2388                          * integrity sync. In case of integrity sync we have to
2389                          * keep going until we have written all the pages
2390                          * we tagged for writeback prior to entering this loop.
2391                          */
2392                         if (--wbc->nr_to_write <= 0 &&
2393                             wbc->sync_mode == WB_SYNC_NONE) {
2394                                 done = 1;
2395                                 break;
2396                         }
2397                 }
2398                 pagevec_release(&pvec);
2399                 cond_resched();
2400         }
2401
2402         /*
2403          * If we hit the last page and there is more work to be done: wrap
2404          * back the index back to the start of the file for the next
2405          * time we are called.
2406          */
2407         if (wbc->range_cyclic && !done)
2408                 done_index = 0;
2409         if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
2410                 mapping->writeback_index = done_index;
2411
2412         return ret;
2413 }
2414 EXPORT_SYMBOL(write_cache_pages);
2415
2416 /*
2417  * Function used by generic_writepages to call the real writepage
2418  * function and set the mapping flags on error
2419  */
2420 static int __writepage(struct page *page, struct writeback_control *wbc,
2421                        void *data)
2422 {
2423         struct address_space *mapping = data;
2424         int ret = mapping->a_ops->writepage(page, wbc);
2425         mapping_set_error(mapping, ret);
2426         return ret;
2427 }
2428
2429 /**
2430  * generic_writepages - walk the list of dirty pages of the given address space and writepage() all of them.
2431  * @mapping: address space structure to write
2432  * @wbc: subtract the number of written pages from *@wbc->nr_to_write
2433  *
2434  * This is a library function, which implements the writepages()
2435  * address_space_operation.
2436  *
2437  * Return: %0 on success, negative error code otherwise
2438  */
2439 int generic_writepages(struct address_space *mapping,
2440                        struct writeback_control *wbc)
2441 {
2442         struct blk_plug plug;
2443         int ret;
2444
2445         /* deal with chardevs and other special file */
2446         if (!mapping->a_ops->writepage)
2447                 return 0;
2448
2449         blk_start_plug(&plug);
2450         ret = write_cache_pages(mapping, wbc, __writepage, mapping);
2451         blk_finish_plug(&plug);
2452         return ret;
2453 }
2454
2455 EXPORT_SYMBOL(generic_writepages);
2456
2457 int do_writepages(struct address_space *mapping, struct writeback_control *wbc)
2458 {
2459         int ret;
2460         struct bdi_writeback *wb;
2461
2462         if (wbc->nr_to_write <= 0)
2463                 return 0;
2464         wb = inode_to_wb_wbc(mapping->host, wbc);
2465         wb_bandwidth_estimate_start(wb);
2466         while (1) {
2467                 if (mapping->a_ops->writepages)
2468                         ret = mapping->a_ops->writepages(mapping, wbc);
2469                 else
2470                         ret = generic_writepages(mapping, wbc);
2471                 if ((ret != -ENOMEM) || (wbc->sync_mode != WB_SYNC_ALL))
2472                         break;
2473
2474                 /*
2475                  * Lacking an allocation context or the locality or writeback
2476                  * state of any of the inode's pages, throttle based on
2477                  * writeback activity on the local node. It's as good a
2478                  * guess as any.
2479                  */
2480                 reclaim_throttle(NODE_DATA(numa_node_id()),
2481                         VMSCAN_THROTTLE_WRITEBACK);
2482         }
2483         /*
2484          * Usually few pages are written by now from those we've just submitted
2485          * but if there's constant writeback being submitted, this makes sure
2486          * writeback bandwidth is updated once in a while.
2487          */
2488         if (time_is_before_jiffies(READ_ONCE(wb->bw_time_stamp) +
2489                                    BANDWIDTH_INTERVAL))
2490                 wb_update_bandwidth(wb);
2491         return ret;
2492 }
2493
2494 /**
2495  * folio_write_one - write out a single folio and wait on I/O.
2496  * @folio: The folio to write.
2497  *
2498  * The folio must be locked by the caller and will be unlocked upon return.
2499  *
2500  * Note that the mapping's AS_EIO/AS_ENOSPC flags will be cleared when this
2501  * function returns.
2502  *
2503  * Return: %0 on success, negative error code otherwise
2504  */
2505 int folio_write_one(struct folio *folio)
2506 {
2507         struct address_space *mapping = folio->mapping;
2508         int ret = 0;
2509         struct writeback_control wbc = {
2510                 .sync_mode = WB_SYNC_ALL,
2511                 .nr_to_write = folio_nr_pages(folio),
2512         };
2513
2514         BUG_ON(!folio_test_locked(folio));
2515
2516         folio_wait_writeback(folio);
2517
2518         if (folio_clear_dirty_for_io(folio)) {
2519                 folio_get(folio);
2520                 ret = mapping->a_ops->writepage(&folio->page, &wbc);
2521                 if (ret == 0)
2522                         folio_wait_writeback(folio);
2523                 folio_put(folio);
2524         } else {
2525                 folio_unlock(folio);
2526         }
2527
2528         if (!ret)
2529                 ret = filemap_check_errors(mapping);
2530         return ret;
2531 }
2532 EXPORT_SYMBOL(folio_write_one);
2533
2534 /*
2535  * For address_spaces which do not use buffers nor write back.
2536  */
2537 bool noop_dirty_folio(struct address_space *mapping, struct folio *folio)
2538 {
2539         if (!folio_test_dirty(folio))
2540                 return !folio_test_set_dirty(folio);
2541         return false;
2542 }
2543 EXPORT_SYMBOL(noop_dirty_folio);
2544
2545 /*
2546  * Helper function for set_page_dirty family.
2547  *
2548  * Caller must hold lock_page_memcg().
2549  *
2550  * NOTE: This relies on being atomic wrt interrupts.
2551  */
2552 static void folio_account_dirtied(struct folio *folio,
2553                 struct address_space *mapping)
2554 {
2555         struct inode *inode = mapping->host;
2556
2557         trace_writeback_dirty_folio(folio, mapping);
2558
2559         if (mapping_can_writeback(mapping)) {
2560                 struct bdi_writeback *wb;
2561                 long nr = folio_nr_pages(folio);
2562
2563                 inode_attach_wb(inode, &folio->page);
2564                 wb = inode_to_wb(inode);
2565
2566                 __lruvec_stat_mod_folio(folio, NR_FILE_DIRTY, nr);
2567                 __zone_stat_mod_folio(folio, NR_ZONE_WRITE_PENDING, nr);
2568                 __node_stat_mod_folio(folio, NR_DIRTIED, nr);
2569                 wb_stat_mod(wb, WB_RECLAIMABLE, nr);
2570                 wb_stat_mod(wb, WB_DIRTIED, nr);
2571                 task_io_account_write(nr * PAGE_SIZE);
2572                 current->nr_dirtied += nr;
2573                 __this_cpu_add(bdp_ratelimits, nr);
2574
2575                 mem_cgroup_track_foreign_dirty(folio, wb);
2576         }
2577 }
2578
2579 /*
2580  * Helper function for deaccounting dirty page without writeback.
2581  *
2582  * Caller must hold lock_page_memcg().
2583  */
2584 void folio_account_cleaned(struct folio *folio, struct bdi_writeback *wb)
2585 {
2586         long nr = folio_nr_pages(folio);
2587
2588         lruvec_stat_mod_folio(folio, NR_FILE_DIRTY, -nr);
2589         zone_stat_mod_folio(folio, NR_ZONE_WRITE_PENDING, -nr);
2590         wb_stat_mod(wb, WB_RECLAIMABLE, -nr);
2591         task_io_account_cancelled_write(nr * PAGE_SIZE);
2592 }
2593
2594 /*
2595  * Mark the folio dirty, and set it dirty in the page cache, and mark
2596  * the inode dirty.
2597  *
2598  * If warn is true, then emit a warning if the folio is not uptodate and has
2599  * not been truncated.
2600  *
2601  * The caller must hold lock_page_memcg().  Most callers have the folio
2602  * locked.  A few have the folio blocked from truncation through other
2603  * means (eg zap_page_range() has it mapped and is holding the page table
2604  * lock).  This can also be called from mark_buffer_dirty(), which I
2605  * cannot prove is always protected against truncate.
2606  */
2607 void __folio_mark_dirty(struct folio *folio, struct address_space *mapping,
2608                              int warn)
2609 {
2610         unsigned long flags;
2611
2612         xa_lock_irqsave(&mapping->i_pages, flags);
2613         if (folio->mapping) {   /* Race with truncate? */
2614                 WARN_ON_ONCE(warn && !folio_test_uptodate(folio));
2615                 folio_account_dirtied(folio, mapping);
2616                 __xa_set_mark(&mapping->i_pages, folio_index(folio),
2617                                 PAGECACHE_TAG_DIRTY);
2618         }
2619         xa_unlock_irqrestore(&mapping->i_pages, flags);
2620 }
2621
2622 /**
2623  * filemap_dirty_folio - Mark a folio dirty for filesystems which do not use buffer_heads.
2624  * @mapping: Address space this folio belongs to.
2625  * @folio: Folio to be marked as dirty.
2626  *
2627  * Filesystems which do not use buffer heads should call this function
2628  * from their set_page_dirty address space operation.  It ignores the
2629  * contents of folio_get_private(), so if the filesystem marks individual
2630  * blocks as dirty, the filesystem should handle that itself.
2631  *
2632  * This is also sometimes used by filesystems which use buffer_heads when
2633  * a single buffer is being dirtied: we want to set the folio dirty in
2634  * that case, but not all the buffers.  This is a "bottom-up" dirtying,
2635  * whereas block_dirty_folio() is a "top-down" dirtying.
2636  *
2637  * The caller must ensure this doesn't race with truncation.  Most will
2638  * simply hold the folio lock, but e.g. zap_pte_range() calls with the
2639  * folio mapped and the pte lock held, which also locks out truncation.
2640  */
2641 bool filemap_dirty_folio(struct address_space *mapping, struct folio *folio)
2642 {
2643         folio_memcg_lock(folio);
2644         if (folio_test_set_dirty(folio)) {
2645                 folio_memcg_unlock(folio);
2646                 return false;
2647         }
2648
2649         __folio_mark_dirty(folio, mapping, !folio_test_private(folio));
2650         folio_memcg_unlock(folio);
2651
2652         if (mapping->host) {
2653                 /* !PageAnon && !swapper_space */
2654                 __mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
2655         }
2656         return true;
2657 }
2658 EXPORT_SYMBOL(filemap_dirty_folio);
2659
2660 /**
2661  * folio_account_redirty - Manually account for redirtying a page.
2662  * @folio: The folio which is being redirtied.
2663  *
2664  * Most filesystems should call folio_redirty_for_writepage() instead
2665  * of this fuction.  If your filesystem is doing writeback outside the
2666  * context of a writeback_control(), it can call this when redirtying
2667  * a folio, to de-account the dirty counters (NR_DIRTIED, WB_DIRTIED,
2668  * tsk->nr_dirtied), so that they match the written counters (NR_WRITTEN,
2669  * WB_WRITTEN) in long term. The mismatches will lead to systematic errors
2670  * in balanced_dirty_ratelimit and the dirty pages position control.
2671  */
2672 void folio_account_redirty(struct folio *folio)
2673 {
2674         struct address_space *mapping = folio->mapping;
2675
2676         if (mapping && mapping_can_writeback(mapping)) {
2677                 struct inode *inode = mapping->host;
2678                 struct bdi_writeback *wb;
2679                 struct wb_lock_cookie cookie = {};
2680                 long nr = folio_nr_pages(folio);
2681
2682                 wb = unlocked_inode_to_wb_begin(inode, &cookie);
2683                 current->nr_dirtied -= nr;
2684                 node_stat_mod_folio(folio, NR_DIRTIED, -nr);
2685                 wb_stat_mod(wb, WB_DIRTIED, -nr);
2686                 unlocked_inode_to_wb_end(inode, &cookie);
2687         }
2688 }
2689 EXPORT_SYMBOL(folio_account_redirty);
2690
2691 /**
2692  * folio_redirty_for_writepage - Decline to write a dirty folio.
2693  * @wbc: The writeback control.
2694  * @folio: The folio.
2695  *
2696  * When a writepage implementation decides that it doesn't want to write
2697  * @folio for some reason, it should call this function, unlock @folio and
2698  * return 0.
2699  *
2700  * Return: True if we redirtied the folio.  False if someone else dirtied
2701  * it first.
2702  */
2703 bool folio_redirty_for_writepage(struct writeback_control *wbc,
2704                 struct folio *folio)
2705 {
2706         bool ret;
2707         long nr = folio_nr_pages(folio);
2708
2709         wbc->pages_skipped += nr;
2710         ret = filemap_dirty_folio(folio->mapping, folio);
2711         folio_account_redirty(folio);
2712
2713         return ret;
2714 }
2715 EXPORT_SYMBOL(folio_redirty_for_writepage);
2716
2717 /**
2718  * folio_mark_dirty - Mark a folio as being modified.
2719  * @folio: The folio.
2720  *
2721  * The folio may not be truncated while this function is running.
2722  * Holding the folio lock is sufficient to prevent truncation, but some
2723  * callers cannot acquire a sleeping lock.  These callers instead hold
2724  * the page table lock for a page table which contains at least one page
2725  * in this folio.  Truncation will block on the page table lock as it
2726  * unmaps pages before removing the folio from its mapping.
2727  *
2728  * Return: True if the folio was newly dirtied, false if it was already dirty.
2729  */
2730 bool folio_mark_dirty(struct folio *folio)
2731 {
2732         struct address_space *mapping = folio_mapping(folio);
2733
2734         if (likely(mapping)) {
2735                 /*
2736                  * readahead/lru_deactivate_page could remain
2737                  * PG_readahead/PG_reclaim due to race with folio_end_writeback
2738                  * About readahead, if the folio is written, the flags would be
2739                  * reset. So no problem.
2740                  * About lru_deactivate_page, if the folio is redirtied,
2741                  * the flag will be reset. So no problem. but if the
2742                  * folio is used by readahead it will confuse readahead
2743                  * and make it restart the size rampup process. But it's
2744                  * a trivial problem.
2745                  */
2746                 if (folio_test_reclaim(folio))
2747                         folio_clear_reclaim(folio);
2748                 return mapping->a_ops->dirty_folio(mapping, folio);
2749         }
2750
2751         return noop_dirty_folio(mapping, folio);
2752 }
2753 EXPORT_SYMBOL(folio_mark_dirty);
2754
2755 /*
2756  * set_page_dirty() is racy if the caller has no reference against
2757  * page->mapping->host, and if the page is unlocked.  This is because another
2758  * CPU could truncate the page off the mapping and then free the mapping.
2759  *
2760  * Usually, the page _is_ locked, or the caller is a user-space process which
2761  * holds a reference on the inode by having an open file.
2762  *
2763  * In other cases, the page should be locked before running set_page_dirty().
2764  */
2765 int set_page_dirty_lock(struct page *page)
2766 {
2767         int ret;
2768
2769         lock_page(page);
2770         ret = set_page_dirty(page);
2771         unlock_page(page);
2772         return ret;
2773 }
2774 EXPORT_SYMBOL(set_page_dirty_lock);
2775
2776 /*
2777  * This cancels just the dirty bit on the kernel page itself, it does NOT
2778  * actually remove dirty bits on any mmap's that may be around. It also
2779  * leaves the page tagged dirty, so any sync activity will still find it on
2780  * the dirty lists, and in particular, clear_page_dirty_for_io() will still
2781  * look at the dirty bits in the VM.
2782  *
2783  * Doing this should *normally* only ever be done when a page is truncated,
2784  * and is not actually mapped anywhere at all. However, fs/buffer.c does
2785  * this when it notices that somebody has cleaned out all the buffers on a
2786  * page without actually doing it through the VM. Can you say "ext3 is
2787  * horribly ugly"? Thought you could.
2788  */
2789 void __folio_cancel_dirty(struct folio *folio)
2790 {
2791         struct address_space *mapping = folio_mapping(folio);
2792
2793         if (mapping_can_writeback(mapping)) {
2794                 struct inode *inode = mapping->host;
2795                 struct bdi_writeback *wb;
2796                 struct wb_lock_cookie cookie = {};
2797
2798                 folio_memcg_lock(folio);
2799                 wb = unlocked_inode_to_wb_begin(inode, &cookie);
2800
2801                 if (folio_test_clear_dirty(folio))
2802                         folio_account_cleaned(folio, wb);
2803
2804                 unlocked_inode_to_wb_end(inode, &cookie);
2805                 folio_memcg_unlock(folio);
2806         } else {
2807                 folio_clear_dirty(folio);
2808         }
2809 }
2810 EXPORT_SYMBOL(__folio_cancel_dirty);
2811
2812 /*
2813  * Clear a folio's dirty flag, while caring for dirty memory accounting.
2814  * Returns true if the folio was previously dirty.
2815  *
2816  * This is for preparing to put the folio under writeout.  We leave
2817  * the folio tagged as dirty in the xarray so that a concurrent
2818  * write-for-sync can discover it via a PAGECACHE_TAG_DIRTY walk.
2819  * The ->writepage implementation will run either folio_start_writeback()
2820  * or folio_mark_dirty(), at which stage we bring the folio's dirty flag
2821  * and xarray dirty tag back into sync.
2822  *
2823  * This incoherency between the folio's dirty flag and xarray tag is
2824  * unfortunate, but it only exists while the folio is locked.
2825  */
2826 bool folio_clear_dirty_for_io(struct folio *folio)
2827 {
2828         struct address_space *mapping = folio_mapping(folio);
2829         bool ret = false;
2830
2831         VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
2832
2833         if (mapping && mapping_can_writeback(mapping)) {
2834                 struct inode *inode = mapping->host;
2835                 struct bdi_writeback *wb;
2836                 struct wb_lock_cookie cookie = {};
2837
2838                 /*
2839                  * Yes, Virginia, this is indeed insane.
2840                  *
2841                  * We use this sequence to make sure that
2842                  *  (a) we account for dirty stats properly
2843                  *  (b) we tell the low-level filesystem to
2844                  *      mark the whole folio dirty if it was
2845                  *      dirty in a pagetable. Only to then
2846                  *  (c) clean the folio again and return 1 to
2847                  *      cause the writeback.
2848                  *
2849                  * This way we avoid all nasty races with the
2850                  * dirty bit in multiple places and clearing
2851                  * them concurrently from different threads.
2852                  *
2853                  * Note! Normally the "folio_mark_dirty(folio)"
2854                  * has no effect on the actual dirty bit - since
2855                  * that will already usually be set. But we
2856                  * need the side effects, and it can help us
2857                  * avoid races.
2858                  *
2859                  * We basically use the folio "master dirty bit"
2860                  * as a serialization point for all the different
2861                  * threads doing their things.
2862                  */
2863                 if (folio_mkclean(folio))
2864                         folio_mark_dirty(folio);
2865                 /*
2866                  * We carefully synchronise fault handlers against
2867                  * installing a dirty pte and marking the folio dirty
2868                  * at this point.  We do this by having them hold the
2869                  * page lock while dirtying the folio, and folios are
2870                  * always locked coming in here, so we get the desired
2871                  * exclusion.
2872                  */
2873                 wb = unlocked_inode_to_wb_begin(inode, &cookie);
2874                 if (folio_test_clear_dirty(folio)) {
2875                         long nr = folio_nr_pages(folio);
2876                         lruvec_stat_mod_folio(folio, NR_FILE_DIRTY, -nr);
2877                         zone_stat_mod_folio(folio, NR_ZONE_WRITE_PENDING, -nr);
2878                         wb_stat_mod(wb, WB_RECLAIMABLE, -nr);
2879                         ret = true;
2880                 }
2881                 unlocked_inode_to_wb_end(inode, &cookie);
2882                 return ret;
2883         }
2884         return folio_test_clear_dirty(folio);
2885 }
2886 EXPORT_SYMBOL(folio_clear_dirty_for_io);
2887
2888 static void wb_inode_writeback_start(struct bdi_writeback *wb)
2889 {
2890         atomic_inc(&wb->writeback_inodes);
2891 }
2892
2893 static void wb_inode_writeback_end(struct bdi_writeback *wb)
2894 {
2895         atomic_dec(&wb->writeback_inodes);
2896         /*
2897          * Make sure estimate of writeback throughput gets updated after
2898          * writeback completed. We delay the update by BANDWIDTH_INTERVAL
2899          * (which is the interval other bandwidth updates use for batching) so
2900          * that if multiple inodes end writeback at a similar time, they get
2901          * batched into one bandwidth update.
2902          */
2903         queue_delayed_work(bdi_wq, &wb->bw_dwork, BANDWIDTH_INTERVAL);
2904 }
2905
2906 bool __folio_end_writeback(struct folio *folio)
2907 {
2908         long nr = folio_nr_pages(folio);
2909         struct address_space *mapping = folio_mapping(folio);
2910         bool ret;
2911
2912         folio_memcg_lock(folio);
2913         if (mapping && mapping_use_writeback_tags(mapping)) {
2914                 struct inode *inode = mapping->host;
2915                 struct backing_dev_info *bdi = inode_to_bdi(inode);
2916                 unsigned long flags;
2917
2918                 xa_lock_irqsave(&mapping->i_pages, flags);
2919                 ret = folio_test_clear_writeback(folio);
2920                 if (ret) {
2921                         __xa_clear_mark(&mapping->i_pages, folio_index(folio),
2922                                                 PAGECACHE_TAG_WRITEBACK);
2923                         if (bdi->capabilities & BDI_CAP_WRITEBACK_ACCT) {
2924                                 struct bdi_writeback *wb = inode_to_wb(inode);
2925
2926                                 wb_stat_mod(wb, WB_WRITEBACK, -nr);
2927                                 __wb_writeout_add(wb, nr);
2928                                 if (!mapping_tagged(mapping,
2929                                                     PAGECACHE_TAG_WRITEBACK))
2930                                         wb_inode_writeback_end(wb);
2931                         }
2932                 }
2933
2934                 if (mapping->host && !mapping_tagged(mapping,
2935                                                      PAGECACHE_TAG_WRITEBACK))
2936                         sb_clear_inode_writeback(mapping->host);
2937
2938                 xa_unlock_irqrestore(&mapping->i_pages, flags);
2939         } else {
2940                 ret = folio_test_clear_writeback(folio);
2941         }
2942         if (ret) {
2943                 lruvec_stat_mod_folio(folio, NR_WRITEBACK, -nr);
2944                 zone_stat_mod_folio(folio, NR_ZONE_WRITE_PENDING, -nr);
2945                 node_stat_mod_folio(folio, NR_WRITTEN, nr);
2946         }
2947         folio_memcg_unlock(folio);
2948         return ret;
2949 }
2950
2951 bool __folio_start_writeback(struct folio *folio, bool keep_write)
2952 {
2953         long nr = folio_nr_pages(folio);
2954         struct address_space *mapping = folio_mapping(folio);
2955         bool ret;
2956         int access_ret;
2957
2958         folio_memcg_lock(folio);
2959         if (mapping && mapping_use_writeback_tags(mapping)) {
2960                 XA_STATE(xas, &mapping->i_pages, folio_index(folio));
2961                 struct inode *inode = mapping->host;
2962                 struct backing_dev_info *bdi = inode_to_bdi(inode);
2963                 unsigned long flags;
2964
2965                 xas_lock_irqsave(&xas, flags);
2966                 xas_load(&xas);
2967                 ret = folio_test_set_writeback(folio);
2968                 if (!ret) {
2969                         bool on_wblist;
2970
2971                         on_wblist = mapping_tagged(mapping,
2972                                                    PAGECACHE_TAG_WRITEBACK);
2973
2974                         xas_set_mark(&xas, PAGECACHE_TAG_WRITEBACK);
2975                         if (bdi->capabilities & BDI_CAP_WRITEBACK_ACCT) {
2976                                 struct bdi_writeback *wb = inode_to_wb(inode);
2977
2978                                 wb_stat_mod(wb, WB_WRITEBACK, nr);
2979                                 if (!on_wblist)
2980                                         wb_inode_writeback_start(wb);
2981                         }
2982
2983                         /*
2984                          * We can come through here when swapping
2985                          * anonymous folios, so we don't necessarily
2986                          * have an inode to track for sync.
2987                          */
2988                         if (mapping->host && !on_wblist)
2989                                 sb_mark_inode_writeback(mapping->host);
2990                 }
2991                 if (!folio_test_dirty(folio))
2992                         xas_clear_mark(&xas, PAGECACHE_TAG_DIRTY);
2993                 if (!keep_write)
2994                         xas_clear_mark(&xas, PAGECACHE_TAG_TOWRITE);
2995                 xas_unlock_irqrestore(&xas, flags);
2996         } else {
2997                 ret = folio_test_set_writeback(folio);
2998         }
2999         if (!ret) {
3000                 lruvec_stat_mod_folio(folio, NR_WRITEBACK, nr);
3001                 zone_stat_mod_folio(folio, NR_ZONE_WRITE_PENDING, nr);
3002         }
3003         folio_memcg_unlock(folio);
3004         access_ret = arch_make_folio_accessible(folio);
3005         /*
3006          * If writeback has been triggered on a page that cannot be made
3007          * accessible, it is too late to recover here.
3008          */
3009         VM_BUG_ON_FOLIO(access_ret != 0, folio);
3010
3011         return ret;
3012 }
3013 EXPORT_SYMBOL(__folio_start_writeback);
3014
3015 /**
3016  * folio_wait_writeback - Wait for a folio to finish writeback.
3017  * @folio: The folio to wait for.
3018  *
3019  * If the folio is currently being written back to storage, wait for the
3020  * I/O to complete.
3021  *
3022  * Context: Sleeps.  Must be called in process context and with
3023  * no spinlocks held.  Caller should hold a reference on the folio.
3024  * If the folio is not locked, writeback may start again after writeback
3025  * has finished.
3026  */
3027 void folio_wait_writeback(struct folio *folio)
3028 {
3029         while (folio_test_writeback(folio)) {
3030                 trace_folio_wait_writeback(folio, folio_mapping(folio));
3031                 folio_wait_bit(folio, PG_writeback);
3032         }
3033 }
3034 EXPORT_SYMBOL_GPL(folio_wait_writeback);
3035
3036 /**
3037  * folio_wait_writeback_killable - Wait for a folio to finish writeback.
3038  * @folio: The folio to wait for.
3039  *
3040  * If the folio is currently being written back to storage, wait for the
3041  * I/O to complete or a fatal signal to arrive.
3042  *
3043  * Context: Sleeps.  Must be called in process context and with
3044  * no spinlocks held.  Caller should hold a reference on the folio.
3045  * If the folio is not locked, writeback may start again after writeback
3046  * has finished.
3047  * Return: 0 on success, -EINTR if we get a fatal signal while waiting.
3048  */
3049 int folio_wait_writeback_killable(struct folio *folio)
3050 {
3051         while (folio_test_writeback(folio)) {
3052                 trace_folio_wait_writeback(folio, folio_mapping(folio));
3053                 if (folio_wait_bit_killable(folio, PG_writeback))
3054                         return -EINTR;
3055         }
3056
3057         return 0;
3058 }
3059 EXPORT_SYMBOL_GPL(folio_wait_writeback_killable);
3060
3061 /**
3062  * folio_wait_stable() - wait for writeback to finish, if necessary.
3063  * @folio: The folio to wait on.
3064  *
3065  * This function determines if the given folio is related to a backing
3066  * device that requires folio contents to be held stable during writeback.
3067  * If so, then it will wait for any pending writeback to complete.
3068  *
3069  * Context: Sleeps.  Must be called in process context and with
3070  * no spinlocks held.  Caller should hold a reference on the folio.
3071  * If the folio is not locked, writeback may start again after writeback
3072  * has finished.
3073  */
3074 void folio_wait_stable(struct folio *folio)
3075 {
3076         if (folio_inode(folio)->i_sb->s_iflags & SB_I_STABLE_WRITES)
3077                 folio_wait_writeback(folio);
3078 }
3079 EXPORT_SYMBOL_GPL(folio_wait_stable);