798842a22474fb6bfb538cbca1285a1d6f39f64e
[platform/adaptation/renesas_rcar/renesas_kernel.git] / mm / page-writeback.c
1 /*
2  * mm/page-writeback.c
3  *
4  * Copyright (C) 2002, Linus Torvalds.
5  * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
6  *
7  * Contains functions related to writing back dirty pages at the
8  * address_space level.
9  *
10  * 10Apr2002    Andrew Morton
11  *              Initial version
12  */
13
14 #include <linux/kernel.h>
15 #include <linux/module.h>
16 #include <linux/spinlock.h>
17 #include <linux/fs.h>
18 #include <linux/mm.h>
19 #include <linux/swap.h>
20 #include <linux/slab.h>
21 #include <linux/pagemap.h>
22 #include <linux/writeback.h>
23 #include <linux/init.h>
24 #include <linux/backing-dev.h>
25 #include <linux/task_io_accounting_ops.h>
26 #include <linux/blkdev.h>
27 #include <linux/mpage.h>
28 #include <linux/rmap.h>
29 #include <linux/percpu.h>
30 #include <linux/notifier.h>
31 #include <linux/smp.h>
32 #include <linux/sysctl.h>
33 #include <linux/cpu.h>
34 #include <linux/syscalls.h>
35 #include <linux/buffer_head.h>
36 #include <linux/pagevec.h>
37 #include <trace/events/writeback.h>
38
39 /*
40  * Sleep at most 200ms at a time in balance_dirty_pages().
41  */
42 #define MAX_PAUSE               max(HZ/5, 1)
43
44 /*
45  * Estimate write bandwidth at 200ms intervals.
46  */
47 #define BANDWIDTH_INTERVAL      max(HZ/5, 1)
48
49 /*
50  * After a CPU has dirtied this many pages, balance_dirty_pages_ratelimited
51  * will look to see if it needs to force writeback or throttling.
52  */
53 static long ratelimit_pages = 32;
54
55 /*
56  * When balance_dirty_pages decides that the caller needs to perform some
57  * non-background writeback, this is how many pages it will attempt to write.
58  * It should be somewhat larger than dirtied pages to ensure that reasonably
59  * large amounts of I/O are submitted.
60  */
61 static inline long sync_writeback_pages(unsigned long dirtied)
62 {
63         if (dirtied < ratelimit_pages)
64                 dirtied = ratelimit_pages;
65
66         return dirtied + dirtied / 2;
67 }
68
69 /* The following parameters are exported via /proc/sys/vm */
70
71 /*
72  * Start background writeback (via writeback threads) at this percentage
73  */
74 int dirty_background_ratio = 10;
75
76 /*
77  * dirty_background_bytes starts at 0 (disabled) so that it is a function of
78  * dirty_background_ratio * the amount of dirtyable memory
79  */
80 unsigned long dirty_background_bytes;
81
82 /*
83  * free highmem will not be subtracted from the total free memory
84  * for calculating free ratios if vm_highmem_is_dirtyable is true
85  */
86 int vm_highmem_is_dirtyable;
87
88 /*
89  * The generator of dirty data starts writeback at this percentage
90  */
91 int vm_dirty_ratio = 20;
92
93 /*
94  * vm_dirty_bytes starts at 0 (disabled) so that it is a function of
95  * vm_dirty_ratio * the amount of dirtyable memory
96  */
97 unsigned long vm_dirty_bytes;
98
99 /*
100  * The interval between `kupdate'-style writebacks
101  */
102 unsigned int dirty_writeback_interval = 5 * 100; /* centiseconds */
103
104 /*
105  * The longest time for which data is allowed to remain dirty
106  */
107 unsigned int dirty_expire_interval = 30 * 100; /* centiseconds */
108
109 /*
110  * Flag that makes the machine dump writes/reads and block dirtyings.
111  */
112 int block_dump;
113
114 /*
115  * Flag that puts the machine in "laptop mode". Doubles as a timeout in jiffies:
116  * a full sync is triggered after this time elapses without any disk activity.
117  */
118 int laptop_mode;
119
120 EXPORT_SYMBOL(laptop_mode);
121
122 /* End of sysctl-exported parameters */
123
124 unsigned long global_dirty_limit;
125
126 /*
127  * Scale the writeback cache size proportional to the relative writeout speeds.
128  *
129  * We do this by keeping a floating proportion between BDIs, based on page
130  * writeback completions [end_page_writeback()]. Those devices that write out
131  * pages fastest will get the larger share, while the slower will get a smaller
132  * share.
133  *
134  * We use page writeout completions because we are interested in getting rid of
135  * dirty pages. Having them written out is the primary goal.
136  *
137  * We introduce a concept of time, a period over which we measure these events,
138  * because demand can/will vary over time. The length of this period itself is
139  * measured in page writeback completions.
140  *
141  */
142 static struct prop_descriptor vm_completions;
143 static struct prop_descriptor vm_dirties;
144
145 /*
146  * couple the period to the dirty_ratio:
147  *
148  *   period/2 ~ roundup_pow_of_two(dirty limit)
149  */
150 static int calc_period_shift(void)
151 {
152         unsigned long dirty_total;
153
154         if (vm_dirty_bytes)
155                 dirty_total = vm_dirty_bytes / PAGE_SIZE;
156         else
157                 dirty_total = (vm_dirty_ratio * determine_dirtyable_memory()) /
158                                 100;
159         return 2 + ilog2(dirty_total - 1);
160 }
161
162 /*
163  * update the period when the dirty threshold changes.
164  */
165 static void update_completion_period(void)
166 {
167         int shift = calc_period_shift();
168         prop_change_shift(&vm_completions, shift);
169         prop_change_shift(&vm_dirties, shift);
170 }
171
172 int dirty_background_ratio_handler(struct ctl_table *table, int write,
173                 void __user *buffer, size_t *lenp,
174                 loff_t *ppos)
175 {
176         int ret;
177
178         ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
179         if (ret == 0 && write)
180                 dirty_background_bytes = 0;
181         return ret;
182 }
183
184 int dirty_background_bytes_handler(struct ctl_table *table, int write,
185                 void __user *buffer, size_t *lenp,
186                 loff_t *ppos)
187 {
188         int ret;
189
190         ret = proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
191         if (ret == 0 && write)
192                 dirty_background_ratio = 0;
193         return ret;
194 }
195
196 int dirty_ratio_handler(struct ctl_table *table, int write,
197                 void __user *buffer, size_t *lenp,
198                 loff_t *ppos)
199 {
200         int old_ratio = vm_dirty_ratio;
201         int ret;
202
203         ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
204         if (ret == 0 && write && vm_dirty_ratio != old_ratio) {
205                 update_completion_period();
206                 vm_dirty_bytes = 0;
207         }
208         return ret;
209 }
210
211
212 int dirty_bytes_handler(struct ctl_table *table, int write,
213                 void __user *buffer, size_t *lenp,
214                 loff_t *ppos)
215 {
216         unsigned long old_bytes = vm_dirty_bytes;
217         int ret;
218
219         ret = proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
220         if (ret == 0 && write && vm_dirty_bytes != old_bytes) {
221                 update_completion_period();
222                 vm_dirty_ratio = 0;
223         }
224         return ret;
225 }
226
227 /*
228  * Increment the BDI's writeout completion count and the global writeout
229  * completion count. Called from test_clear_page_writeback().
230  */
231 static inline void __bdi_writeout_inc(struct backing_dev_info *bdi)
232 {
233         __inc_bdi_stat(bdi, BDI_WRITTEN);
234         __prop_inc_percpu_max(&vm_completions, &bdi->completions,
235                               bdi->max_prop_frac);
236 }
237
238 void bdi_writeout_inc(struct backing_dev_info *bdi)
239 {
240         unsigned long flags;
241
242         local_irq_save(flags);
243         __bdi_writeout_inc(bdi);
244         local_irq_restore(flags);
245 }
246 EXPORT_SYMBOL_GPL(bdi_writeout_inc);
247
248 void task_dirty_inc(struct task_struct *tsk)
249 {
250         prop_inc_single(&vm_dirties, &tsk->dirties);
251 }
252
253 /*
254  * Obtain an accurate fraction of the BDI's portion.
255  */
256 static void bdi_writeout_fraction(struct backing_dev_info *bdi,
257                 long *numerator, long *denominator)
258 {
259         prop_fraction_percpu(&vm_completions, &bdi->completions,
260                                 numerator, denominator);
261 }
262
263 static inline void task_dirties_fraction(struct task_struct *tsk,
264                 long *numerator, long *denominator)
265 {
266         prop_fraction_single(&vm_dirties, &tsk->dirties,
267                                 numerator, denominator);
268 }
269
270 /*
271  * task_dirty_limit - scale down dirty throttling threshold for one task
272  *
273  * task specific dirty limit:
274  *
275  *   dirty -= (dirty/8) * p_{t}
276  *
277  * To protect light/slow dirtying tasks from heavier/fast ones, we start
278  * throttling individual tasks before reaching the bdi dirty limit.
279  * Relatively low thresholds will be allocated to heavy dirtiers. So when
280  * dirty pages grow large, heavy dirtiers will be throttled first, which will
281  * effectively curb the growth of dirty pages. Light dirtiers with high enough
282  * dirty threshold may never get throttled.
283  */
284 static unsigned long task_dirty_limit(struct task_struct *tsk,
285                                        unsigned long bdi_dirty)
286 {
287         long numerator, denominator;
288         unsigned long dirty = bdi_dirty;
289         u64 inv = dirty >> 3;
290
291         task_dirties_fraction(tsk, &numerator, &denominator);
292         inv *= numerator;
293         do_div(inv, denominator);
294
295         dirty -= inv;
296
297         return max(dirty, bdi_dirty/2);
298 }
299
300 /*
301  *
302  */
303 static unsigned int bdi_min_ratio;
304
305 int bdi_set_min_ratio(struct backing_dev_info *bdi, unsigned int min_ratio)
306 {
307         int ret = 0;
308
309         spin_lock_bh(&bdi_lock);
310         if (min_ratio > bdi->max_ratio) {
311                 ret = -EINVAL;
312         } else {
313                 min_ratio -= bdi->min_ratio;
314                 if (bdi_min_ratio + min_ratio < 100) {
315                         bdi_min_ratio += min_ratio;
316                         bdi->min_ratio += min_ratio;
317                 } else {
318                         ret = -EINVAL;
319                 }
320         }
321         spin_unlock_bh(&bdi_lock);
322
323         return ret;
324 }
325
326 int bdi_set_max_ratio(struct backing_dev_info *bdi, unsigned max_ratio)
327 {
328         int ret = 0;
329
330         if (max_ratio > 100)
331                 return -EINVAL;
332
333         spin_lock_bh(&bdi_lock);
334         if (bdi->min_ratio > max_ratio) {
335                 ret = -EINVAL;
336         } else {
337                 bdi->max_ratio = max_ratio;
338                 bdi->max_prop_frac = (PROP_FRAC_BASE * max_ratio) / 100;
339         }
340         spin_unlock_bh(&bdi_lock);
341
342         return ret;
343 }
344 EXPORT_SYMBOL(bdi_set_max_ratio);
345
346 /*
347  * Work out the current dirty-memory clamping and background writeout
348  * thresholds.
349  *
350  * The main aim here is to lower them aggressively if there is a lot of mapped
351  * memory around.  To avoid stressing page reclaim with lots of unreclaimable
352  * pages.  It is better to clamp down on writers than to start swapping, and
353  * performing lots of scanning.
354  *
355  * We only allow 1/2 of the currently-unmapped memory to be dirtied.
356  *
357  * We don't permit the clamping level to fall below 5% - that is getting rather
358  * excessive.
359  *
360  * We make sure that the background writeout level is below the adjusted
361  * clamping level.
362  */
363
364 static unsigned long highmem_dirtyable_memory(unsigned long total)
365 {
366 #ifdef CONFIG_HIGHMEM
367         int node;
368         unsigned long x = 0;
369
370         for_each_node_state(node, N_HIGH_MEMORY) {
371                 struct zone *z =
372                         &NODE_DATA(node)->node_zones[ZONE_HIGHMEM];
373
374                 x += zone_page_state(z, NR_FREE_PAGES) +
375                      zone_reclaimable_pages(z);
376         }
377         /*
378          * Make sure that the number of highmem pages is never larger
379          * than the number of the total dirtyable memory. This can only
380          * occur in very strange VM situations but we want to make sure
381          * that this does not occur.
382          */
383         return min(x, total);
384 #else
385         return 0;
386 #endif
387 }
388
389 /**
390  * determine_dirtyable_memory - amount of memory that may be used
391  *
392  * Returns the numebr of pages that can currently be freed and used
393  * by the kernel for direct mappings.
394  */
395 unsigned long determine_dirtyable_memory(void)
396 {
397         unsigned long x;
398
399         x = global_page_state(NR_FREE_PAGES) + global_reclaimable_pages();
400
401         if (!vm_highmem_is_dirtyable)
402                 x -= highmem_dirtyable_memory(x);
403
404         return x + 1;   /* Ensure that we never return 0 */
405 }
406
407 static unsigned long hard_dirty_limit(unsigned long thresh)
408 {
409         return max(thresh, global_dirty_limit);
410 }
411
412 /*
413  * global_dirty_limits - background-writeback and dirty-throttling thresholds
414  *
415  * Calculate the dirty thresholds based on sysctl parameters
416  * - vm.dirty_background_ratio  or  vm.dirty_background_bytes
417  * - vm.dirty_ratio             or  vm.dirty_bytes
418  * The dirty limits will be lifted by 1/4 for PF_LESS_THROTTLE (ie. nfsd) and
419  * real-time tasks.
420  */
421 void global_dirty_limits(unsigned long *pbackground, unsigned long *pdirty)
422 {
423         unsigned long background;
424         unsigned long dirty;
425         unsigned long uninitialized_var(available_memory);
426         struct task_struct *tsk;
427
428         if (!vm_dirty_bytes || !dirty_background_bytes)
429                 available_memory = determine_dirtyable_memory();
430
431         if (vm_dirty_bytes)
432                 dirty = DIV_ROUND_UP(vm_dirty_bytes, PAGE_SIZE);
433         else
434                 dirty = (vm_dirty_ratio * available_memory) / 100;
435
436         if (dirty_background_bytes)
437                 background = DIV_ROUND_UP(dirty_background_bytes, PAGE_SIZE);
438         else
439                 background = (dirty_background_ratio * available_memory) / 100;
440
441         if (background >= dirty)
442                 background = dirty / 2;
443         tsk = current;
444         if (tsk->flags & PF_LESS_THROTTLE || rt_task(tsk)) {
445                 background += background / 4;
446                 dirty += dirty / 4;
447         }
448         *pbackground = background;
449         *pdirty = dirty;
450 }
451
452 /**
453  * bdi_dirty_limit - @bdi's share of dirty throttling threshold
454  * @bdi: the backing_dev_info to query
455  * @dirty: global dirty limit in pages
456  *
457  * Returns @bdi's dirty limit in pages. The term "dirty" in the context of
458  * dirty balancing includes all PG_dirty, PG_writeback and NFS unstable pages.
459  * And the "limit" in the name is not seriously taken as hard limit in
460  * balance_dirty_pages().
461  *
462  * It allocates high/low dirty limits to fast/slow devices, in order to prevent
463  * - starving fast devices
464  * - piling up dirty pages (that will take long time to sync) on slow devices
465  *
466  * The bdi's share of dirty limit will be adapting to its throughput and
467  * bounded by the bdi->min_ratio and/or bdi->max_ratio parameters, if set.
468  */
469 unsigned long bdi_dirty_limit(struct backing_dev_info *bdi, unsigned long dirty)
470 {
471         u64 bdi_dirty;
472         long numerator, denominator;
473
474         /*
475          * Calculate this BDI's share of the dirty ratio.
476          */
477         bdi_writeout_fraction(bdi, &numerator, &denominator);
478
479         bdi_dirty = (dirty * (100 - bdi_min_ratio)) / 100;
480         bdi_dirty *= numerator;
481         do_div(bdi_dirty, denominator);
482
483         bdi_dirty += (dirty * bdi->min_ratio) / 100;
484         if (bdi_dirty > (dirty * bdi->max_ratio) / 100)
485                 bdi_dirty = dirty * bdi->max_ratio / 100;
486
487         return bdi_dirty;
488 }
489
490 static void bdi_update_write_bandwidth(struct backing_dev_info *bdi,
491                                        unsigned long elapsed,
492                                        unsigned long written)
493 {
494         const unsigned long period = roundup_pow_of_two(3 * HZ);
495         unsigned long avg = bdi->avg_write_bandwidth;
496         unsigned long old = bdi->write_bandwidth;
497         u64 bw;
498
499         /*
500          * bw = written * HZ / elapsed
501          *
502          *                   bw * elapsed + write_bandwidth * (period - elapsed)
503          * write_bandwidth = ---------------------------------------------------
504          *                                          period
505          */
506         bw = written - bdi->written_stamp;
507         bw *= HZ;
508         if (unlikely(elapsed > period)) {
509                 do_div(bw, elapsed);
510                 avg = bw;
511                 goto out;
512         }
513         bw += (u64)bdi->write_bandwidth * (period - elapsed);
514         bw >>= ilog2(period);
515
516         /*
517          * one more level of smoothing, for filtering out sudden spikes
518          */
519         if (avg > old && old >= (unsigned long)bw)
520                 avg -= (avg - old) >> 3;
521
522         if (avg < old && old <= (unsigned long)bw)
523                 avg += (old - avg) >> 3;
524
525 out:
526         bdi->write_bandwidth = bw;
527         bdi->avg_write_bandwidth = avg;
528 }
529
530 /*
531  * The global dirtyable memory and dirty threshold could be suddenly knocked
532  * down by a large amount (eg. on the startup of KVM in a swapless system).
533  * This may throw the system into deep dirty exceeded state and throttle
534  * heavy/light dirtiers alike. To retain good responsiveness, maintain
535  * global_dirty_limit for tracking slowly down to the knocked down dirty
536  * threshold.
537  */
538 static void update_dirty_limit(unsigned long thresh, unsigned long dirty)
539 {
540         unsigned long limit = global_dirty_limit;
541
542         /*
543          * Follow up in one step.
544          */
545         if (limit < thresh) {
546                 limit = thresh;
547                 goto update;
548         }
549
550         /*
551          * Follow down slowly. Use the higher one as the target, because thresh
552          * may drop below dirty. This is exactly the reason to introduce
553          * global_dirty_limit which is guaranteed to lie above the dirty pages.
554          */
555         thresh = max(thresh, dirty);
556         if (limit > thresh) {
557                 limit -= (limit - thresh) >> 5;
558                 goto update;
559         }
560         return;
561 update:
562         global_dirty_limit = limit;
563 }
564
565 static void global_update_bandwidth(unsigned long thresh,
566                                     unsigned long dirty,
567                                     unsigned long now)
568 {
569         static DEFINE_SPINLOCK(dirty_lock);
570         static unsigned long update_time;
571
572         /*
573          * check locklessly first to optimize away locking for the most time
574          */
575         if (time_before(now, update_time + BANDWIDTH_INTERVAL))
576                 return;
577
578         spin_lock(&dirty_lock);
579         if (time_after_eq(now, update_time + BANDWIDTH_INTERVAL)) {
580                 update_dirty_limit(thresh, dirty);
581                 update_time = now;
582         }
583         spin_unlock(&dirty_lock);
584 }
585
586 void __bdi_update_bandwidth(struct backing_dev_info *bdi,
587                             unsigned long thresh,
588                             unsigned long dirty,
589                             unsigned long bdi_thresh,
590                             unsigned long bdi_dirty,
591                             unsigned long start_time)
592 {
593         unsigned long now = jiffies;
594         unsigned long elapsed = now - bdi->bw_time_stamp;
595         unsigned long written;
596
597         /*
598          * rate-limit, only update once every 200ms.
599          */
600         if (elapsed < BANDWIDTH_INTERVAL)
601                 return;
602
603         written = percpu_counter_read(&bdi->bdi_stat[BDI_WRITTEN]);
604
605         /*
606          * Skip quiet periods when disk bandwidth is under-utilized.
607          * (at least 1s idle time between two flusher runs)
608          */
609         if (elapsed > HZ && time_before(bdi->bw_time_stamp, start_time))
610                 goto snapshot;
611
612         if (thresh)
613                 global_update_bandwidth(thresh, dirty, now);
614
615         bdi_update_write_bandwidth(bdi, elapsed, written);
616
617 snapshot:
618         bdi->written_stamp = written;
619         bdi->bw_time_stamp = now;
620 }
621
622 static void bdi_update_bandwidth(struct backing_dev_info *bdi,
623                                  unsigned long thresh,
624                                  unsigned long dirty,
625                                  unsigned long bdi_thresh,
626                                  unsigned long bdi_dirty,
627                                  unsigned long start_time)
628 {
629         if (time_is_after_eq_jiffies(bdi->bw_time_stamp + BANDWIDTH_INTERVAL))
630                 return;
631         spin_lock(&bdi->wb.list_lock);
632         __bdi_update_bandwidth(bdi, thresh, dirty, bdi_thresh, bdi_dirty,
633                                start_time);
634         spin_unlock(&bdi->wb.list_lock);
635 }
636
637 /*
638  * balance_dirty_pages() must be called by processes which are generating dirty
639  * data.  It looks at the number of dirty pages in the machine and will force
640  * the caller to perform writeback if the system is over `vm_dirty_ratio'.
641  * If we're over `background_thresh' then the writeback threads are woken to
642  * perform some writeout.
643  */
644 static void balance_dirty_pages(struct address_space *mapping,
645                                 unsigned long write_chunk)
646 {
647         unsigned long nr_reclaimable, bdi_nr_reclaimable;
648         unsigned long nr_dirty;  /* = file_dirty + writeback + unstable_nfs */
649         unsigned long bdi_dirty;
650         unsigned long background_thresh;
651         unsigned long dirty_thresh;
652         unsigned long bdi_thresh;
653         unsigned long pages_written = 0;
654         unsigned long pause = 1;
655         bool dirty_exceeded = false;
656         struct backing_dev_info *bdi = mapping->backing_dev_info;
657         unsigned long start_time = jiffies;
658
659         for (;;) {
660                 nr_reclaimable = global_page_state(NR_FILE_DIRTY) +
661                                         global_page_state(NR_UNSTABLE_NFS);
662                 nr_dirty = nr_reclaimable + global_page_state(NR_WRITEBACK);
663
664                 global_dirty_limits(&background_thresh, &dirty_thresh);
665
666                 /*
667                  * Throttle it only when the background writeback cannot
668                  * catch-up. This avoids (excessively) small writeouts
669                  * when the bdi limits are ramping up.
670                  */
671                 if (nr_dirty <= (background_thresh + dirty_thresh) / 2)
672                         break;
673
674                 bdi_thresh = bdi_dirty_limit(bdi, dirty_thresh);
675                 bdi_thresh = task_dirty_limit(current, bdi_thresh);
676
677                 /*
678                  * In order to avoid the stacked BDI deadlock we need
679                  * to ensure we accurately count the 'dirty' pages when
680                  * the threshold is low.
681                  *
682                  * Otherwise it would be possible to get thresh+n pages
683                  * reported dirty, even though there are thresh-m pages
684                  * actually dirty; with m+n sitting in the percpu
685                  * deltas.
686                  */
687                 if (bdi_thresh < 2*bdi_stat_error(bdi)) {
688                         bdi_nr_reclaimable = bdi_stat_sum(bdi, BDI_RECLAIMABLE);
689                         bdi_dirty = bdi_nr_reclaimable +
690                                     bdi_stat_sum(bdi, BDI_WRITEBACK);
691                 } else {
692                         bdi_nr_reclaimable = bdi_stat(bdi, BDI_RECLAIMABLE);
693                         bdi_dirty = bdi_nr_reclaimable +
694                                     bdi_stat(bdi, BDI_WRITEBACK);
695                 }
696
697                 /*
698                  * The bdi thresh is somehow "soft" limit derived from the
699                  * global "hard" limit. The former helps to prevent heavy IO
700                  * bdi or process from holding back light ones; The latter is
701                  * the last resort safeguard.
702                  */
703                 dirty_exceeded = (bdi_dirty > bdi_thresh) ||
704                                   (nr_dirty > dirty_thresh);
705
706                 if (!dirty_exceeded)
707                         break;
708
709                 if (!bdi->dirty_exceeded)
710                         bdi->dirty_exceeded = 1;
711
712                 bdi_update_bandwidth(bdi, dirty_thresh, nr_dirty,
713                                      bdi_thresh, bdi_dirty, start_time);
714
715                 /* Note: nr_reclaimable denotes nr_dirty + nr_unstable.
716                  * Unstable writes are a feature of certain networked
717                  * filesystems (i.e. NFS) in which data may have been
718                  * written to the server's write cache, but has not yet
719                  * been flushed to permanent storage.
720                  * Only move pages to writeback if this bdi is over its
721                  * threshold otherwise wait until the disk writes catch
722                  * up.
723                  */
724                 trace_balance_dirty_start(bdi);
725                 if (bdi_nr_reclaimable > bdi_thresh) {
726                         pages_written += writeback_inodes_wb(&bdi->wb,
727                                                              write_chunk);
728                         trace_balance_dirty_written(bdi, pages_written);
729                         if (pages_written >= write_chunk)
730                                 break;          /* We've done our duty */
731                 }
732                 __set_current_state(TASK_UNINTERRUPTIBLE);
733                 io_schedule_timeout(pause);
734                 trace_balance_dirty_wait(bdi);
735
736                 dirty_thresh = hard_dirty_limit(dirty_thresh);
737                 /*
738                  * max-pause area. If dirty exceeded but still within this
739                  * area, no need to sleep for more than 200ms: (a) 8 pages per
740                  * 200ms is typically more than enough to curb heavy dirtiers;
741                  * (b) the pause time limit makes the dirtiers more responsive.
742                  */
743                 if (nr_dirty < dirty_thresh +
744                                dirty_thresh / DIRTY_MAXPAUSE_AREA &&
745                     time_after(jiffies, start_time + MAX_PAUSE))
746                         break;
747                 /*
748                  * pass-good area. When some bdi gets blocked (eg. NFS server
749                  * not responding), or write bandwidth dropped dramatically due
750                  * to concurrent reads, or dirty threshold suddenly dropped and
751                  * the dirty pages cannot be brought down anytime soon (eg. on
752                  * slow USB stick), at least let go of the good bdi's.
753                  */
754                 if (nr_dirty < dirty_thresh +
755                                dirty_thresh / DIRTY_PASSGOOD_AREA &&
756                     bdi_dirty < bdi_thresh)
757                         break;
758
759                 /*
760                  * Increase the delay for each loop, up to our previous
761                  * default of taking a 100ms nap.
762                  */
763                 pause <<= 1;
764                 if (pause > HZ / 10)
765                         pause = HZ / 10;
766         }
767
768         if (!dirty_exceeded && bdi->dirty_exceeded)
769                 bdi->dirty_exceeded = 0;
770
771         if (writeback_in_progress(bdi))
772                 return;
773
774         /*
775          * In laptop mode, we wait until hitting the higher threshold before
776          * starting background writeout, and then write out all the way down
777          * to the lower threshold.  So slow writers cause minimal disk activity.
778          *
779          * In normal mode, we start background writeout at the lower
780          * background_thresh, to keep the amount of dirty memory low.
781          */
782         if ((laptop_mode && pages_written) ||
783             (!laptop_mode && (nr_reclaimable > background_thresh)))
784                 bdi_start_background_writeback(bdi);
785 }
786
787 void set_page_dirty_balance(struct page *page, int page_mkwrite)
788 {
789         if (set_page_dirty(page) || page_mkwrite) {
790                 struct address_space *mapping = page_mapping(page);
791
792                 if (mapping)
793                         balance_dirty_pages_ratelimited(mapping);
794         }
795 }
796
797 static DEFINE_PER_CPU(unsigned long, bdp_ratelimits) = 0;
798
799 /**
800  * balance_dirty_pages_ratelimited_nr - balance dirty memory state
801  * @mapping: address_space which was dirtied
802  * @nr_pages_dirtied: number of pages which the caller has just dirtied
803  *
804  * Processes which are dirtying memory should call in here once for each page
805  * which was newly dirtied.  The function will periodically check the system's
806  * dirty state and will initiate writeback if needed.
807  *
808  * On really big machines, get_writeback_state is expensive, so try to avoid
809  * calling it too often (ratelimiting).  But once we're over the dirty memory
810  * limit we decrease the ratelimiting by a lot, to prevent individual processes
811  * from overshooting the limit by (ratelimit_pages) each.
812  */
813 void balance_dirty_pages_ratelimited_nr(struct address_space *mapping,
814                                         unsigned long nr_pages_dirtied)
815 {
816         struct backing_dev_info *bdi = mapping->backing_dev_info;
817         unsigned long ratelimit;
818         unsigned long *p;
819
820         if (!bdi_cap_account_dirty(bdi))
821                 return;
822
823         ratelimit = ratelimit_pages;
824         if (mapping->backing_dev_info->dirty_exceeded)
825                 ratelimit = 8;
826
827         /*
828          * Check the rate limiting. Also, we do not want to throttle real-time
829          * tasks in balance_dirty_pages(). Period.
830          */
831         preempt_disable();
832         p =  &__get_cpu_var(bdp_ratelimits);
833         *p += nr_pages_dirtied;
834         if (unlikely(*p >= ratelimit)) {
835                 ratelimit = sync_writeback_pages(*p);
836                 *p = 0;
837                 preempt_enable();
838                 balance_dirty_pages(mapping, ratelimit);
839                 return;
840         }
841         preempt_enable();
842 }
843 EXPORT_SYMBOL(balance_dirty_pages_ratelimited_nr);
844
845 void throttle_vm_writeout(gfp_t gfp_mask)
846 {
847         unsigned long background_thresh;
848         unsigned long dirty_thresh;
849
850         for ( ; ; ) {
851                 global_dirty_limits(&background_thresh, &dirty_thresh);
852
853                 /*
854                  * Boost the allowable dirty threshold a bit for page
855                  * allocators so they don't get DoS'ed by heavy writers
856                  */
857                 dirty_thresh += dirty_thresh / 10;      /* wheeee... */
858
859                 if (global_page_state(NR_UNSTABLE_NFS) +
860                         global_page_state(NR_WRITEBACK) <= dirty_thresh)
861                                 break;
862                 congestion_wait(BLK_RW_ASYNC, HZ/10);
863
864                 /*
865                  * The caller might hold locks which can prevent IO completion
866                  * or progress in the filesystem.  So we cannot just sit here
867                  * waiting for IO to complete.
868                  */
869                 if ((gfp_mask & (__GFP_FS|__GFP_IO)) != (__GFP_FS|__GFP_IO))
870                         break;
871         }
872 }
873
874 /*
875  * sysctl handler for /proc/sys/vm/dirty_writeback_centisecs
876  */
877 int dirty_writeback_centisecs_handler(ctl_table *table, int write,
878         void __user *buffer, size_t *length, loff_t *ppos)
879 {
880         proc_dointvec(table, write, buffer, length, ppos);
881         bdi_arm_supers_timer();
882         return 0;
883 }
884
885 #ifdef CONFIG_BLOCK
886 void laptop_mode_timer_fn(unsigned long data)
887 {
888         struct request_queue *q = (struct request_queue *)data;
889         int nr_pages = global_page_state(NR_FILE_DIRTY) +
890                 global_page_state(NR_UNSTABLE_NFS);
891
892         /*
893          * We want to write everything out, not just down to the dirty
894          * threshold
895          */
896         if (bdi_has_dirty_io(&q->backing_dev_info))
897                 bdi_start_writeback(&q->backing_dev_info, nr_pages);
898 }
899
900 /*
901  * We've spun up the disk and we're in laptop mode: schedule writeback
902  * of all dirty data a few seconds from now.  If the flush is already scheduled
903  * then push it back - the user is still using the disk.
904  */
905 void laptop_io_completion(struct backing_dev_info *info)
906 {
907         mod_timer(&info->laptop_mode_wb_timer, jiffies + laptop_mode);
908 }
909
910 /*
911  * We're in laptop mode and we've just synced. The sync's writes will have
912  * caused another writeback to be scheduled by laptop_io_completion.
913  * Nothing needs to be written back anymore, so we unschedule the writeback.
914  */
915 void laptop_sync_completion(void)
916 {
917         struct backing_dev_info *bdi;
918
919         rcu_read_lock();
920
921         list_for_each_entry_rcu(bdi, &bdi_list, bdi_list)
922                 del_timer(&bdi->laptop_mode_wb_timer);
923
924         rcu_read_unlock();
925 }
926 #endif
927
928 /*
929  * If ratelimit_pages is too high then we can get into dirty-data overload
930  * if a large number of processes all perform writes at the same time.
931  * If it is too low then SMP machines will call the (expensive)
932  * get_writeback_state too often.
933  *
934  * Here we set ratelimit_pages to a level which ensures that when all CPUs are
935  * dirtying in parallel, we cannot go more than 3% (1/32) over the dirty memory
936  * thresholds before writeback cuts in.
937  *
938  * But the limit should not be set too high.  Because it also controls the
939  * amount of memory which the balance_dirty_pages() caller has to write back.
940  * If this is too large then the caller will block on the IO queue all the
941  * time.  So limit it to four megabytes - the balance_dirty_pages() caller
942  * will write six megabyte chunks, max.
943  */
944
945 void writeback_set_ratelimit(void)
946 {
947         ratelimit_pages = vm_total_pages / (num_online_cpus() * 32);
948         if (ratelimit_pages < 16)
949                 ratelimit_pages = 16;
950         if (ratelimit_pages * PAGE_CACHE_SIZE > 4096 * 1024)
951                 ratelimit_pages = (4096 * 1024) / PAGE_CACHE_SIZE;
952 }
953
954 static int __cpuinit
955 ratelimit_handler(struct notifier_block *self, unsigned long u, void *v)
956 {
957         writeback_set_ratelimit();
958         return NOTIFY_DONE;
959 }
960
961 static struct notifier_block __cpuinitdata ratelimit_nb = {
962         .notifier_call  = ratelimit_handler,
963         .next           = NULL,
964 };
965
966 /*
967  * Called early on to tune the page writeback dirty limits.
968  *
969  * We used to scale dirty pages according to how total memory
970  * related to pages that could be allocated for buffers (by
971  * comparing nr_free_buffer_pages() to vm_total_pages.
972  *
973  * However, that was when we used "dirty_ratio" to scale with
974  * all memory, and we don't do that any more. "dirty_ratio"
975  * is now applied to total non-HIGHPAGE memory (by subtracting
976  * totalhigh_pages from vm_total_pages), and as such we can't
977  * get into the old insane situation any more where we had
978  * large amounts of dirty pages compared to a small amount of
979  * non-HIGHMEM memory.
980  *
981  * But we might still want to scale the dirty_ratio by how
982  * much memory the box has..
983  */
984 void __init page_writeback_init(void)
985 {
986         int shift;
987
988         writeback_set_ratelimit();
989         register_cpu_notifier(&ratelimit_nb);
990
991         shift = calc_period_shift();
992         prop_descriptor_init(&vm_completions, shift);
993         prop_descriptor_init(&vm_dirties, shift);
994 }
995
996 /**
997  * tag_pages_for_writeback - tag pages to be written by write_cache_pages
998  * @mapping: address space structure to write
999  * @start: starting page index
1000  * @end: ending page index (inclusive)
1001  *
1002  * This function scans the page range from @start to @end (inclusive) and tags
1003  * all pages that have DIRTY tag set with a special TOWRITE tag. The idea is
1004  * that write_cache_pages (or whoever calls this function) will then use
1005  * TOWRITE tag to identify pages eligible for writeback.  This mechanism is
1006  * used to avoid livelocking of writeback by a process steadily creating new
1007  * dirty pages in the file (thus it is important for this function to be quick
1008  * so that it can tag pages faster than a dirtying process can create them).
1009  */
1010 /*
1011  * We tag pages in batches of WRITEBACK_TAG_BATCH to reduce tree_lock latency.
1012  */
1013 void tag_pages_for_writeback(struct address_space *mapping,
1014                              pgoff_t start, pgoff_t end)
1015 {
1016 #define WRITEBACK_TAG_BATCH 4096
1017         unsigned long tagged;
1018
1019         do {
1020                 spin_lock_irq(&mapping->tree_lock);
1021                 tagged = radix_tree_range_tag_if_tagged(&mapping->page_tree,
1022                                 &start, end, WRITEBACK_TAG_BATCH,
1023                                 PAGECACHE_TAG_DIRTY, PAGECACHE_TAG_TOWRITE);
1024                 spin_unlock_irq(&mapping->tree_lock);
1025                 WARN_ON_ONCE(tagged > WRITEBACK_TAG_BATCH);
1026                 cond_resched();
1027                 /* We check 'start' to handle wrapping when end == ~0UL */
1028         } while (tagged >= WRITEBACK_TAG_BATCH && start);
1029 }
1030 EXPORT_SYMBOL(tag_pages_for_writeback);
1031
1032 /**
1033  * write_cache_pages - walk the list of dirty pages of the given address space and write all of them.
1034  * @mapping: address space structure to write
1035  * @wbc: subtract the number of written pages from *@wbc->nr_to_write
1036  * @writepage: function called for each page
1037  * @data: data passed to writepage function
1038  *
1039  * If a page is already under I/O, write_cache_pages() skips it, even
1040  * if it's dirty.  This is desirable behaviour for memory-cleaning writeback,
1041  * but it is INCORRECT for data-integrity system calls such as fsync().  fsync()
1042  * and msync() need to guarantee that all the data which was dirty at the time
1043  * the call was made get new I/O started against them.  If wbc->sync_mode is
1044  * WB_SYNC_ALL then we were called for data integrity and we must wait for
1045  * existing IO to complete.
1046  *
1047  * To avoid livelocks (when other process dirties new pages), we first tag
1048  * pages which should be written back with TOWRITE tag and only then start
1049  * writing them. For data-integrity sync we have to be careful so that we do
1050  * not miss some pages (e.g., because some other process has cleared TOWRITE
1051  * tag we set). The rule we follow is that TOWRITE tag can be cleared only
1052  * by the process clearing the DIRTY tag (and submitting the page for IO).
1053  */
1054 int write_cache_pages(struct address_space *mapping,
1055                       struct writeback_control *wbc, writepage_t writepage,
1056                       void *data)
1057 {
1058         int ret = 0;
1059         int done = 0;
1060         struct pagevec pvec;
1061         int nr_pages;
1062         pgoff_t uninitialized_var(writeback_index);
1063         pgoff_t index;
1064         pgoff_t end;            /* Inclusive */
1065         pgoff_t done_index;
1066         int cycled;
1067         int range_whole = 0;
1068         int tag;
1069
1070         pagevec_init(&pvec, 0);
1071         if (wbc->range_cyclic) {
1072                 writeback_index = mapping->writeback_index; /* prev offset */
1073                 index = writeback_index;
1074                 if (index == 0)
1075                         cycled = 1;
1076                 else
1077                         cycled = 0;
1078                 end = -1;
1079         } else {
1080                 index = wbc->range_start >> PAGE_CACHE_SHIFT;
1081                 end = wbc->range_end >> PAGE_CACHE_SHIFT;
1082                 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
1083                         range_whole = 1;
1084                 cycled = 1; /* ignore range_cyclic tests */
1085         }
1086         if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
1087                 tag = PAGECACHE_TAG_TOWRITE;
1088         else
1089                 tag = PAGECACHE_TAG_DIRTY;
1090 retry:
1091         if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
1092                 tag_pages_for_writeback(mapping, index, end);
1093         done_index = index;
1094         while (!done && (index <= end)) {
1095                 int i;
1096
1097                 nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
1098                               min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
1099                 if (nr_pages == 0)
1100                         break;
1101
1102                 for (i = 0; i < nr_pages; i++) {
1103                         struct page *page = pvec.pages[i];
1104
1105                         /*
1106                          * At this point, the page may be truncated or
1107                          * invalidated (changing page->mapping to NULL), or
1108                          * even swizzled back from swapper_space to tmpfs file
1109                          * mapping. However, page->index will not change
1110                          * because we have a reference on the page.
1111                          */
1112                         if (page->index > end) {
1113                                 /*
1114                                  * can't be range_cyclic (1st pass) because
1115                                  * end == -1 in that case.
1116                                  */
1117                                 done = 1;
1118                                 break;
1119                         }
1120
1121                         done_index = page->index;
1122
1123                         lock_page(page);
1124
1125                         /*
1126                          * Page truncated or invalidated. We can freely skip it
1127                          * then, even for data integrity operations: the page
1128                          * has disappeared concurrently, so there could be no
1129                          * real expectation of this data interity operation
1130                          * even if there is now a new, dirty page at the same
1131                          * pagecache address.
1132                          */
1133                         if (unlikely(page->mapping != mapping)) {
1134 continue_unlock:
1135                                 unlock_page(page);
1136                                 continue;
1137                         }
1138
1139                         if (!PageDirty(page)) {
1140                                 /* someone wrote it for us */
1141                                 goto continue_unlock;
1142                         }
1143
1144                         if (PageWriteback(page)) {
1145                                 if (wbc->sync_mode != WB_SYNC_NONE)
1146                                         wait_on_page_writeback(page);
1147                                 else
1148                                         goto continue_unlock;
1149                         }
1150
1151                         BUG_ON(PageWriteback(page));
1152                         if (!clear_page_dirty_for_io(page))
1153                                 goto continue_unlock;
1154
1155                         trace_wbc_writepage(wbc, mapping->backing_dev_info);
1156                         ret = (*writepage)(page, wbc, data);
1157                         if (unlikely(ret)) {
1158                                 if (ret == AOP_WRITEPAGE_ACTIVATE) {
1159                                         unlock_page(page);
1160                                         ret = 0;
1161                                 } else {
1162                                         /*
1163                                          * done_index is set past this page,
1164                                          * so media errors will not choke
1165                                          * background writeout for the entire
1166                                          * file. This has consequences for
1167                                          * range_cyclic semantics (ie. it may
1168                                          * not be suitable for data integrity
1169                                          * writeout).
1170                                          */
1171                                         done_index = page->index + 1;
1172                                         done = 1;
1173                                         break;
1174                                 }
1175                         }
1176
1177                         /*
1178                          * We stop writing back only if we are not doing
1179                          * integrity sync. In case of integrity sync we have to
1180                          * keep going until we have written all the pages
1181                          * we tagged for writeback prior to entering this loop.
1182                          */
1183                         if (--wbc->nr_to_write <= 0 &&
1184                             wbc->sync_mode == WB_SYNC_NONE) {
1185                                 done = 1;
1186                                 break;
1187                         }
1188                 }
1189                 pagevec_release(&pvec);
1190                 cond_resched();
1191         }
1192         if (!cycled && !done) {
1193                 /*
1194                  * range_cyclic:
1195                  * We hit the last page and there is more work to be done: wrap
1196                  * back to the start of the file
1197                  */
1198                 cycled = 1;
1199                 index = 0;
1200                 end = writeback_index - 1;
1201                 goto retry;
1202         }
1203         if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
1204                 mapping->writeback_index = done_index;
1205
1206         return ret;
1207 }
1208 EXPORT_SYMBOL(write_cache_pages);
1209
1210 /*
1211  * Function used by generic_writepages to call the real writepage
1212  * function and set the mapping flags on error
1213  */
1214 static int __writepage(struct page *page, struct writeback_control *wbc,
1215                        void *data)
1216 {
1217         struct address_space *mapping = data;
1218         int ret = mapping->a_ops->writepage(page, wbc);
1219         mapping_set_error(mapping, ret);
1220         return ret;
1221 }
1222
1223 /**
1224  * generic_writepages - walk the list of dirty pages of the given address space and writepage() all of them.
1225  * @mapping: address space structure to write
1226  * @wbc: subtract the number of written pages from *@wbc->nr_to_write
1227  *
1228  * This is a library function, which implements the writepages()
1229  * address_space_operation.
1230  */
1231 int generic_writepages(struct address_space *mapping,
1232                        struct writeback_control *wbc)
1233 {
1234         struct blk_plug plug;
1235         int ret;
1236
1237         /* deal with chardevs and other special file */
1238         if (!mapping->a_ops->writepage)
1239                 return 0;
1240
1241         blk_start_plug(&plug);
1242         ret = write_cache_pages(mapping, wbc, __writepage, mapping);
1243         blk_finish_plug(&plug);
1244         return ret;
1245 }
1246
1247 EXPORT_SYMBOL(generic_writepages);
1248
1249 int do_writepages(struct address_space *mapping, struct writeback_control *wbc)
1250 {
1251         int ret;
1252
1253         if (wbc->nr_to_write <= 0)
1254                 return 0;
1255         if (mapping->a_ops->writepages)
1256                 ret = mapping->a_ops->writepages(mapping, wbc);
1257         else
1258                 ret = generic_writepages(mapping, wbc);
1259         return ret;
1260 }
1261
1262 /**
1263  * write_one_page - write out a single page and optionally wait on I/O
1264  * @page: the page to write
1265  * @wait: if true, wait on writeout
1266  *
1267  * The page must be locked by the caller and will be unlocked upon return.
1268  *
1269  * write_one_page() returns a negative error code if I/O failed.
1270  */
1271 int write_one_page(struct page *page, int wait)
1272 {
1273         struct address_space *mapping = page->mapping;
1274         int ret = 0;
1275         struct writeback_control wbc = {
1276                 .sync_mode = WB_SYNC_ALL,
1277                 .nr_to_write = 1,
1278         };
1279
1280         BUG_ON(!PageLocked(page));
1281
1282         if (wait)
1283                 wait_on_page_writeback(page);
1284
1285         if (clear_page_dirty_for_io(page)) {
1286                 page_cache_get(page);
1287                 ret = mapping->a_ops->writepage(page, &wbc);
1288                 if (ret == 0 && wait) {
1289                         wait_on_page_writeback(page);
1290                         if (PageError(page))
1291                                 ret = -EIO;
1292                 }
1293                 page_cache_release(page);
1294         } else {
1295                 unlock_page(page);
1296         }
1297         return ret;
1298 }
1299 EXPORT_SYMBOL(write_one_page);
1300
1301 /*
1302  * For address_spaces which do not use buffers nor write back.
1303  */
1304 int __set_page_dirty_no_writeback(struct page *page)
1305 {
1306         if (!PageDirty(page))
1307                 return !TestSetPageDirty(page);
1308         return 0;
1309 }
1310
1311 /*
1312  * Helper function for set_page_dirty family.
1313  * NOTE: This relies on being atomic wrt interrupts.
1314  */
1315 void account_page_dirtied(struct page *page, struct address_space *mapping)
1316 {
1317         if (mapping_cap_account_dirty(mapping)) {
1318                 __inc_zone_page_state(page, NR_FILE_DIRTY);
1319                 __inc_zone_page_state(page, NR_DIRTIED);
1320                 __inc_bdi_stat(mapping->backing_dev_info, BDI_RECLAIMABLE);
1321                 task_dirty_inc(current);
1322                 task_io_account_write(PAGE_CACHE_SIZE);
1323         }
1324 }
1325 EXPORT_SYMBOL(account_page_dirtied);
1326
1327 /*
1328  * Helper function for set_page_writeback family.
1329  * NOTE: Unlike account_page_dirtied this does not rely on being atomic
1330  * wrt interrupts.
1331  */
1332 void account_page_writeback(struct page *page)
1333 {
1334         inc_zone_page_state(page, NR_WRITEBACK);
1335         inc_zone_page_state(page, NR_WRITTEN);
1336 }
1337 EXPORT_SYMBOL(account_page_writeback);
1338
1339 /*
1340  * For address_spaces which do not use buffers.  Just tag the page as dirty in
1341  * its radix tree.
1342  *
1343  * This is also used when a single buffer is being dirtied: we want to set the
1344  * page dirty in that case, but not all the buffers.  This is a "bottom-up"
1345  * dirtying, whereas __set_page_dirty_buffers() is a "top-down" dirtying.
1346  *
1347  * Most callers have locked the page, which pins the address_space in memory.
1348  * But zap_pte_range() does not lock the page, however in that case the
1349  * mapping is pinned by the vma's ->vm_file reference.
1350  *
1351  * We take care to handle the case where the page was truncated from the
1352  * mapping by re-checking page_mapping() inside tree_lock.
1353  */
1354 int __set_page_dirty_nobuffers(struct page *page)
1355 {
1356         if (!TestSetPageDirty(page)) {
1357                 struct address_space *mapping = page_mapping(page);
1358                 struct address_space *mapping2;
1359
1360                 if (!mapping)
1361                         return 1;
1362
1363                 spin_lock_irq(&mapping->tree_lock);
1364                 mapping2 = page_mapping(page);
1365                 if (mapping2) { /* Race with truncate? */
1366                         BUG_ON(mapping2 != mapping);
1367                         WARN_ON_ONCE(!PagePrivate(page) && !PageUptodate(page));
1368                         account_page_dirtied(page, mapping);
1369                         radix_tree_tag_set(&mapping->page_tree,
1370                                 page_index(page), PAGECACHE_TAG_DIRTY);
1371                 }
1372                 spin_unlock_irq(&mapping->tree_lock);
1373                 if (mapping->host) {
1374                         /* !PageAnon && !swapper_space */
1375                         __mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
1376                 }
1377                 return 1;
1378         }
1379         return 0;
1380 }
1381 EXPORT_SYMBOL(__set_page_dirty_nobuffers);
1382
1383 /*
1384  * When a writepage implementation decides that it doesn't want to write this
1385  * page for some reason, it should redirty the locked page via
1386  * redirty_page_for_writepage() and it should then unlock the page and return 0
1387  */
1388 int redirty_page_for_writepage(struct writeback_control *wbc, struct page *page)
1389 {
1390         wbc->pages_skipped++;
1391         return __set_page_dirty_nobuffers(page);
1392 }
1393 EXPORT_SYMBOL(redirty_page_for_writepage);
1394
1395 /*
1396  * Dirty a page.
1397  *
1398  * For pages with a mapping this should be done under the page lock
1399  * for the benefit of asynchronous memory errors who prefer a consistent
1400  * dirty state. This rule can be broken in some special cases,
1401  * but should be better not to.
1402  *
1403  * If the mapping doesn't provide a set_page_dirty a_op, then
1404  * just fall through and assume that it wants buffer_heads.
1405  */
1406 int set_page_dirty(struct page *page)
1407 {
1408         struct address_space *mapping = page_mapping(page);
1409
1410         if (likely(mapping)) {
1411                 int (*spd)(struct page *) = mapping->a_ops->set_page_dirty;
1412                 /*
1413                  * readahead/lru_deactivate_page could remain
1414                  * PG_readahead/PG_reclaim due to race with end_page_writeback
1415                  * About readahead, if the page is written, the flags would be
1416                  * reset. So no problem.
1417                  * About lru_deactivate_page, if the page is redirty, the flag
1418                  * will be reset. So no problem. but if the page is used by readahead
1419                  * it will confuse readahead and make it restart the size rampup
1420                  * process. But it's a trivial problem.
1421                  */
1422                 ClearPageReclaim(page);
1423 #ifdef CONFIG_BLOCK
1424                 if (!spd)
1425                         spd = __set_page_dirty_buffers;
1426 #endif
1427                 return (*spd)(page);
1428         }
1429         if (!PageDirty(page)) {
1430                 if (!TestSetPageDirty(page))
1431                         return 1;
1432         }
1433         return 0;
1434 }
1435 EXPORT_SYMBOL(set_page_dirty);
1436
1437 /*
1438  * set_page_dirty() is racy if the caller has no reference against
1439  * page->mapping->host, and if the page is unlocked.  This is because another
1440  * CPU could truncate the page off the mapping and then free the mapping.
1441  *
1442  * Usually, the page _is_ locked, or the caller is a user-space process which
1443  * holds a reference on the inode by having an open file.
1444  *
1445  * In other cases, the page should be locked before running set_page_dirty().
1446  */
1447 int set_page_dirty_lock(struct page *page)
1448 {
1449         int ret;
1450
1451         lock_page(page);
1452         ret = set_page_dirty(page);
1453         unlock_page(page);
1454         return ret;
1455 }
1456 EXPORT_SYMBOL(set_page_dirty_lock);
1457
1458 /*
1459  * Clear a page's dirty flag, while caring for dirty memory accounting.
1460  * Returns true if the page was previously dirty.
1461  *
1462  * This is for preparing to put the page under writeout.  We leave the page
1463  * tagged as dirty in the radix tree so that a concurrent write-for-sync
1464  * can discover it via a PAGECACHE_TAG_DIRTY walk.  The ->writepage
1465  * implementation will run either set_page_writeback() or set_page_dirty(),
1466  * at which stage we bring the page's dirty flag and radix-tree dirty tag
1467  * back into sync.
1468  *
1469  * This incoherency between the page's dirty flag and radix-tree tag is
1470  * unfortunate, but it only exists while the page is locked.
1471  */
1472 int clear_page_dirty_for_io(struct page *page)
1473 {
1474         struct address_space *mapping = page_mapping(page);
1475
1476         BUG_ON(!PageLocked(page));
1477
1478         if (mapping && mapping_cap_account_dirty(mapping)) {
1479                 /*
1480                  * Yes, Virginia, this is indeed insane.
1481                  *
1482                  * We use this sequence to make sure that
1483                  *  (a) we account for dirty stats properly
1484                  *  (b) we tell the low-level filesystem to
1485                  *      mark the whole page dirty if it was
1486                  *      dirty in a pagetable. Only to then
1487                  *  (c) clean the page again and return 1 to
1488                  *      cause the writeback.
1489                  *
1490                  * This way we avoid all nasty races with the
1491                  * dirty bit in multiple places and clearing
1492                  * them concurrently from different threads.
1493                  *
1494                  * Note! Normally the "set_page_dirty(page)"
1495                  * has no effect on the actual dirty bit - since
1496                  * that will already usually be set. But we
1497                  * need the side effects, and it can help us
1498                  * avoid races.
1499                  *
1500                  * We basically use the page "master dirty bit"
1501                  * as a serialization point for all the different
1502                  * threads doing their things.
1503                  */
1504                 if (page_mkclean(page))
1505                         set_page_dirty(page);
1506                 /*
1507                  * We carefully synchronise fault handlers against
1508                  * installing a dirty pte and marking the page dirty
1509                  * at this point. We do this by having them hold the
1510                  * page lock at some point after installing their
1511                  * pte, but before marking the page dirty.
1512                  * Pages are always locked coming in here, so we get
1513                  * the desired exclusion. See mm/memory.c:do_wp_page()
1514                  * for more comments.
1515                  */
1516                 if (TestClearPageDirty(page)) {
1517                         dec_zone_page_state(page, NR_FILE_DIRTY);
1518                         dec_bdi_stat(mapping->backing_dev_info,
1519                                         BDI_RECLAIMABLE);
1520                         return 1;
1521                 }
1522                 return 0;
1523         }
1524         return TestClearPageDirty(page);
1525 }
1526 EXPORT_SYMBOL(clear_page_dirty_for_io);
1527
1528 int test_clear_page_writeback(struct page *page)
1529 {
1530         struct address_space *mapping = page_mapping(page);
1531         int ret;
1532
1533         if (mapping) {
1534                 struct backing_dev_info *bdi = mapping->backing_dev_info;
1535                 unsigned long flags;
1536
1537                 spin_lock_irqsave(&mapping->tree_lock, flags);
1538                 ret = TestClearPageWriteback(page);
1539                 if (ret) {
1540                         radix_tree_tag_clear(&mapping->page_tree,
1541                                                 page_index(page),
1542                                                 PAGECACHE_TAG_WRITEBACK);
1543                         if (bdi_cap_account_writeback(bdi)) {
1544                                 __dec_bdi_stat(bdi, BDI_WRITEBACK);
1545                                 __bdi_writeout_inc(bdi);
1546                         }
1547                 }
1548                 spin_unlock_irqrestore(&mapping->tree_lock, flags);
1549         } else {
1550                 ret = TestClearPageWriteback(page);
1551         }
1552         if (ret)
1553                 dec_zone_page_state(page, NR_WRITEBACK);
1554         return ret;
1555 }
1556
1557 int test_set_page_writeback(struct page *page)
1558 {
1559         struct address_space *mapping = page_mapping(page);
1560         int ret;
1561
1562         if (mapping) {
1563                 struct backing_dev_info *bdi = mapping->backing_dev_info;
1564                 unsigned long flags;
1565
1566                 spin_lock_irqsave(&mapping->tree_lock, flags);
1567                 ret = TestSetPageWriteback(page);
1568                 if (!ret) {
1569                         radix_tree_tag_set(&mapping->page_tree,
1570                                                 page_index(page),
1571                                                 PAGECACHE_TAG_WRITEBACK);
1572                         if (bdi_cap_account_writeback(bdi))
1573                                 __inc_bdi_stat(bdi, BDI_WRITEBACK);
1574                 }
1575                 if (!PageDirty(page))
1576                         radix_tree_tag_clear(&mapping->page_tree,
1577                                                 page_index(page),
1578                                                 PAGECACHE_TAG_DIRTY);
1579                 radix_tree_tag_clear(&mapping->page_tree,
1580                                      page_index(page),
1581                                      PAGECACHE_TAG_TOWRITE);
1582                 spin_unlock_irqrestore(&mapping->tree_lock, flags);
1583         } else {
1584                 ret = TestSetPageWriteback(page);
1585         }
1586         if (!ret)
1587                 account_page_writeback(page);
1588         return ret;
1589
1590 }
1591 EXPORT_SYMBOL(test_set_page_writeback);
1592
1593 /*
1594  * Return true if any of the pages in the mapping are marked with the
1595  * passed tag.
1596  */
1597 int mapping_tagged(struct address_space *mapping, int tag)
1598 {
1599         int ret;
1600         rcu_read_lock();
1601         ret = radix_tree_tagged(&mapping->page_tree, tag);
1602         rcu_read_unlock();
1603         return ret;
1604 }
1605 EXPORT_SYMBOL(mapping_tagged);