1 // SPDX-License-Identifier: GPL-2.0-only
5 * Copyright (C) 2002, Linus Torvalds.
6 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra
8 * Contains functions related to writing back dirty pages at the
11 * 10Apr2002 Andrew Morton
15 #include <linux/kernel.h>
16 #include <linux/math64.h>
17 #include <linux/export.h>
18 #include <linux/spinlock.h>
21 #include <linux/swap.h>
22 #include <linux/slab.h>
23 #include <linux/pagemap.h>
24 #include <linux/writeback.h>
25 #include <linux/init.h>
26 #include <linux/backing-dev.h>
27 #include <linux/task_io_accounting_ops.h>
28 #include <linux/blkdev.h>
29 #include <linux/mpage.h>
30 #include <linux/rmap.h>
31 #include <linux/percpu.h>
32 #include <linux/smp.h>
33 #include <linux/sysctl.h>
34 #include <linux/cpu.h>
35 #include <linux/syscalls.h>
36 #include <linux/pagevec.h>
37 #include <linux/timer.h>
38 #include <linux/sched/rt.h>
39 #include <linux/sched/signal.h>
40 #include <linux/mm_inline.h>
41 #include <trace/events/writeback.h>
46 * Sleep at most 200ms at a time in balance_dirty_pages().
48 #define MAX_PAUSE max(HZ/5, 1)
51 * Try to keep balance_dirty_pages() call intervals higher than this many pages
52 * by raising pause time to max_pause when falls below it.
54 #define DIRTY_POLL_THRESH (128 >> (PAGE_SHIFT - 10))
57 * Estimate write bandwidth at 200ms intervals.
59 #define BANDWIDTH_INTERVAL max(HZ/5, 1)
61 #define RATELIMIT_CALC_SHIFT 10
64 * After a CPU has dirtied this many pages, balance_dirty_pages_ratelimited
65 * will look to see if it needs to force writeback or throttling.
67 static long ratelimit_pages = 32;
69 /* The following parameters are exported via /proc/sys/vm */
72 * Start background writeback (via writeback threads) at this percentage
74 static int dirty_background_ratio = 10;
77 * dirty_background_bytes starts at 0 (disabled) so that it is a function of
78 * dirty_background_ratio * the amount of dirtyable memory
80 static unsigned long dirty_background_bytes;
83 * free highmem will not be subtracted from the total free memory
84 * for calculating free ratios if vm_highmem_is_dirtyable is true
86 static int vm_highmem_is_dirtyable;
89 * The generator of dirty data starts writeback at this percentage
91 static int vm_dirty_ratio = 20;
94 * vm_dirty_bytes starts at 0 (disabled) so that it is a function of
95 * vm_dirty_ratio * the amount of dirtyable memory
97 static unsigned long vm_dirty_bytes;
100 * The interval between `kupdate'-style writebacks
102 unsigned int dirty_writeback_interval = 5 * 100; /* centiseconds */
104 EXPORT_SYMBOL_GPL(dirty_writeback_interval);
107 * The longest time for which data is allowed to remain dirty
109 unsigned int dirty_expire_interval = 30 * 100; /* centiseconds */
112 * Flag that puts the machine in "laptop mode". Doubles as a timeout in jiffies:
113 * a full sync is triggered after this time elapses without any disk activity.
117 EXPORT_SYMBOL(laptop_mode);
119 /* End of sysctl-exported parameters */
121 struct wb_domain global_wb_domain;
123 /* consolidated parameters for balance_dirty_pages() and its subroutines */
124 struct dirty_throttle_control {
125 #ifdef CONFIG_CGROUP_WRITEBACK
126 struct wb_domain *dom;
127 struct dirty_throttle_control *gdtc; /* only set in memcg dtc's */
129 struct bdi_writeback *wb;
130 struct fprop_local_percpu *wb_completions;
132 unsigned long avail; /* dirtyable */
133 unsigned long dirty; /* file_dirty + write + nfs */
134 unsigned long thresh; /* dirty threshold */
135 unsigned long bg_thresh; /* dirty background threshold */
137 unsigned long wb_dirty; /* per-wb counterparts */
138 unsigned long wb_thresh;
139 unsigned long wb_bg_thresh;
141 unsigned long pos_ratio;
145 * Length of period for aging writeout fractions of bdis. This is an
146 * arbitrarily chosen number. The longer the period, the slower fractions will
147 * reflect changes in current writeout rate.
149 #define VM_COMPLETIONS_PERIOD_LEN (3*HZ)
151 #ifdef CONFIG_CGROUP_WRITEBACK
153 #define GDTC_INIT(__wb) .wb = (__wb), \
154 .dom = &global_wb_domain, \
155 .wb_completions = &(__wb)->completions
157 #define GDTC_INIT_NO_WB .dom = &global_wb_domain
159 #define MDTC_INIT(__wb, __gdtc) .wb = (__wb), \
160 .dom = mem_cgroup_wb_domain(__wb), \
161 .wb_completions = &(__wb)->memcg_completions, \
164 static bool mdtc_valid(struct dirty_throttle_control *dtc)
169 static struct wb_domain *dtc_dom(struct dirty_throttle_control *dtc)
174 static struct dirty_throttle_control *mdtc_gdtc(struct dirty_throttle_control *mdtc)
179 static struct fprop_local_percpu *wb_memcg_completions(struct bdi_writeback *wb)
181 return &wb->memcg_completions;
184 static void wb_min_max_ratio(struct bdi_writeback *wb,
185 unsigned long *minp, unsigned long *maxp)
187 unsigned long this_bw = READ_ONCE(wb->avg_write_bandwidth);
188 unsigned long tot_bw = atomic_long_read(&wb->bdi->tot_write_bandwidth);
189 unsigned long long min = wb->bdi->min_ratio;
190 unsigned long long max = wb->bdi->max_ratio;
193 * @wb may already be clean by the time control reaches here and
194 * the total may not include its bw.
196 if (this_bw < tot_bw) {
199 min = div64_ul(min, tot_bw);
201 if (max < 100 * BDI_RATIO_SCALE) {
203 max = div64_ul(max, tot_bw);
211 #else /* CONFIG_CGROUP_WRITEBACK */
213 #define GDTC_INIT(__wb) .wb = (__wb), \
214 .wb_completions = &(__wb)->completions
215 #define GDTC_INIT_NO_WB
216 #define MDTC_INIT(__wb, __gdtc)
218 static bool mdtc_valid(struct dirty_throttle_control *dtc)
223 static struct wb_domain *dtc_dom(struct dirty_throttle_control *dtc)
225 return &global_wb_domain;
228 static struct dirty_throttle_control *mdtc_gdtc(struct dirty_throttle_control *mdtc)
233 static struct fprop_local_percpu *wb_memcg_completions(struct bdi_writeback *wb)
238 static void wb_min_max_ratio(struct bdi_writeback *wb,
239 unsigned long *minp, unsigned long *maxp)
241 *minp = wb->bdi->min_ratio;
242 *maxp = wb->bdi->max_ratio;
245 #endif /* CONFIG_CGROUP_WRITEBACK */
248 * In a memory zone, there is a certain amount of pages we consider
249 * available for the page cache, which is essentially the number of
250 * free and reclaimable pages, minus some zone reserves to protect
251 * lowmem and the ability to uphold the zone's watermarks without
252 * requiring writeback.
254 * This number of dirtyable pages is the base value of which the
255 * user-configurable dirty ratio is the effective number of pages that
256 * are allowed to be actually dirtied. Per individual zone, or
257 * globally by using the sum of dirtyable pages over all zones.
259 * Because the user is allowed to specify the dirty limit globally as
260 * absolute number of bytes, calculating the per-zone dirty limit can
261 * require translating the configured limit into a percentage of
262 * global dirtyable memory first.
266 * node_dirtyable_memory - number of dirtyable pages in a node
269 * Return: the node's number of pages potentially available for dirty
270 * page cache. This is the base value for the per-node dirty limits.
272 static unsigned long node_dirtyable_memory(struct pglist_data *pgdat)
274 unsigned long nr_pages = 0;
277 for (z = 0; z < MAX_NR_ZONES; z++) {
278 struct zone *zone = pgdat->node_zones + z;
280 if (!populated_zone(zone))
283 nr_pages += zone_page_state(zone, NR_FREE_PAGES);
287 * Pages reserved for the kernel should not be considered
288 * dirtyable, to prevent a situation where reclaim has to
289 * clean pages in order to balance the zones.
291 nr_pages -= min(nr_pages, pgdat->totalreserve_pages);
293 nr_pages += node_page_state(pgdat, NR_INACTIVE_FILE);
294 nr_pages += node_page_state(pgdat, NR_ACTIVE_FILE);
299 static unsigned long highmem_dirtyable_memory(unsigned long total)
301 #ifdef CONFIG_HIGHMEM
306 for_each_node_state(node, N_HIGH_MEMORY) {
307 for (i = ZONE_NORMAL + 1; i < MAX_NR_ZONES; i++) {
309 unsigned long nr_pages;
311 if (!is_highmem_idx(i))
314 z = &NODE_DATA(node)->node_zones[i];
315 if (!populated_zone(z))
318 nr_pages = zone_page_state(z, NR_FREE_PAGES);
319 /* watch for underflows */
320 nr_pages -= min(nr_pages, high_wmark_pages(z));
321 nr_pages += zone_page_state(z, NR_ZONE_INACTIVE_FILE);
322 nr_pages += zone_page_state(z, NR_ZONE_ACTIVE_FILE);
328 * Make sure that the number of highmem pages is never larger
329 * than the number of the total dirtyable memory. This can only
330 * occur in very strange VM situations but we want to make sure
331 * that this does not occur.
333 return min(x, total);
340 * global_dirtyable_memory - number of globally dirtyable pages
342 * Return: the global number of pages potentially available for dirty
343 * page cache. This is the base value for the global dirty limits.
345 static unsigned long global_dirtyable_memory(void)
349 x = global_zone_page_state(NR_FREE_PAGES);
351 * Pages reserved for the kernel should not be considered
352 * dirtyable, to prevent a situation where reclaim has to
353 * clean pages in order to balance the zones.
355 x -= min(x, totalreserve_pages);
357 x += global_node_page_state(NR_INACTIVE_FILE);
358 x += global_node_page_state(NR_ACTIVE_FILE);
360 if (!vm_highmem_is_dirtyable)
361 x -= highmem_dirtyable_memory(x);
363 return x + 1; /* Ensure that we never return 0 */
367 * domain_dirty_limits - calculate thresh and bg_thresh for a wb_domain
368 * @dtc: dirty_throttle_control of interest
370 * Calculate @dtc->thresh and ->bg_thresh considering
371 * vm_dirty_{bytes|ratio} and dirty_background_{bytes|ratio}. The caller
372 * must ensure that @dtc->avail is set before calling this function. The
373 * dirty limits will be lifted by 1/4 for real-time tasks.
375 static void domain_dirty_limits(struct dirty_throttle_control *dtc)
377 const unsigned long available_memory = dtc->avail;
378 struct dirty_throttle_control *gdtc = mdtc_gdtc(dtc);
379 unsigned long bytes = vm_dirty_bytes;
380 unsigned long bg_bytes = dirty_background_bytes;
381 /* convert ratios to per-PAGE_SIZE for higher precision */
382 unsigned long ratio = (vm_dirty_ratio * PAGE_SIZE) / 100;
383 unsigned long bg_ratio = (dirty_background_ratio * PAGE_SIZE) / 100;
384 unsigned long thresh;
385 unsigned long bg_thresh;
386 struct task_struct *tsk;
388 /* gdtc is !NULL iff @dtc is for memcg domain */
390 unsigned long global_avail = gdtc->avail;
393 * The byte settings can't be applied directly to memcg
394 * domains. Convert them to ratios by scaling against
395 * globally available memory. As the ratios are in
396 * per-PAGE_SIZE, they can be obtained by dividing bytes by
400 ratio = min(DIV_ROUND_UP(bytes, global_avail),
403 bg_ratio = min(DIV_ROUND_UP(bg_bytes, global_avail),
405 bytes = bg_bytes = 0;
409 thresh = DIV_ROUND_UP(bytes, PAGE_SIZE);
411 thresh = (ratio * available_memory) / PAGE_SIZE;
414 bg_thresh = DIV_ROUND_UP(bg_bytes, PAGE_SIZE);
416 bg_thresh = (bg_ratio * available_memory) / PAGE_SIZE;
418 if (bg_thresh >= thresh)
419 bg_thresh = thresh / 2;
422 bg_thresh += bg_thresh / 4 + global_wb_domain.dirty_limit / 32;
423 thresh += thresh / 4 + global_wb_domain.dirty_limit / 32;
425 dtc->thresh = thresh;
426 dtc->bg_thresh = bg_thresh;
428 /* we should eventually report the domain in the TP */
430 trace_global_dirty_state(bg_thresh, thresh);
434 * global_dirty_limits - background-writeback and dirty-throttling thresholds
435 * @pbackground: out parameter for bg_thresh
436 * @pdirty: out parameter for thresh
438 * Calculate bg_thresh and thresh for global_wb_domain. See
439 * domain_dirty_limits() for details.
441 void global_dirty_limits(unsigned long *pbackground, unsigned long *pdirty)
443 struct dirty_throttle_control gdtc = { GDTC_INIT_NO_WB };
445 gdtc.avail = global_dirtyable_memory();
446 domain_dirty_limits(&gdtc);
448 *pbackground = gdtc.bg_thresh;
449 *pdirty = gdtc.thresh;
453 * node_dirty_limit - maximum number of dirty pages allowed in a node
456 * Return: the maximum number of dirty pages allowed in a node, based
457 * on the node's dirtyable memory.
459 static unsigned long node_dirty_limit(struct pglist_data *pgdat)
461 unsigned long node_memory = node_dirtyable_memory(pgdat);
462 struct task_struct *tsk = current;
466 dirty = DIV_ROUND_UP(vm_dirty_bytes, PAGE_SIZE) *
467 node_memory / global_dirtyable_memory();
469 dirty = vm_dirty_ratio * node_memory / 100;
478 * node_dirty_ok - tells whether a node is within its dirty limits
479 * @pgdat: the node to check
481 * Return: %true when the dirty pages in @pgdat are within the node's
482 * dirty limit, %false if the limit is exceeded.
484 bool node_dirty_ok(struct pglist_data *pgdat)
486 unsigned long limit = node_dirty_limit(pgdat);
487 unsigned long nr_pages = 0;
489 nr_pages += node_page_state(pgdat, NR_FILE_DIRTY);
490 nr_pages += node_page_state(pgdat, NR_WRITEBACK);
492 return nr_pages <= limit;
496 static int dirty_background_ratio_handler(struct ctl_table *table, int write,
497 void *buffer, size_t *lenp, loff_t *ppos)
501 ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
502 if (ret == 0 && write)
503 dirty_background_bytes = 0;
507 static int dirty_background_bytes_handler(struct ctl_table *table, int write,
508 void *buffer, size_t *lenp, loff_t *ppos)
512 ret = proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
513 if (ret == 0 && write)
514 dirty_background_ratio = 0;
518 static int dirty_ratio_handler(struct ctl_table *table, int write, void *buffer,
519 size_t *lenp, loff_t *ppos)
521 int old_ratio = vm_dirty_ratio;
524 ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
525 if (ret == 0 && write && vm_dirty_ratio != old_ratio) {
526 writeback_set_ratelimit();
532 static int dirty_bytes_handler(struct ctl_table *table, int write,
533 void *buffer, size_t *lenp, loff_t *ppos)
535 unsigned long old_bytes = vm_dirty_bytes;
538 ret = proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
539 if (ret == 0 && write && vm_dirty_bytes != old_bytes) {
540 writeback_set_ratelimit();
547 static unsigned long wp_next_time(unsigned long cur_time)
549 cur_time += VM_COMPLETIONS_PERIOD_LEN;
550 /* 0 has a special meaning... */
556 static void wb_domain_writeout_add(struct wb_domain *dom,
557 struct fprop_local_percpu *completions,
558 unsigned int max_prop_frac, long nr)
560 __fprop_add_percpu_max(&dom->completions, completions,
562 /* First event after period switching was turned off? */
563 if (unlikely(!dom->period_time)) {
565 * We can race with other __bdi_writeout_inc calls here but
566 * it does not cause any harm since the resulting time when
567 * timer will fire and what is in writeout_period_time will be
570 dom->period_time = wp_next_time(jiffies);
571 mod_timer(&dom->period_timer, dom->period_time);
576 * Increment @wb's writeout completion count and the global writeout
577 * completion count. Called from __folio_end_writeback().
579 static inline void __wb_writeout_add(struct bdi_writeback *wb, long nr)
581 struct wb_domain *cgdom;
583 wb_stat_mod(wb, WB_WRITTEN, nr);
584 wb_domain_writeout_add(&global_wb_domain, &wb->completions,
585 wb->bdi->max_prop_frac, nr);
587 cgdom = mem_cgroup_wb_domain(wb);
589 wb_domain_writeout_add(cgdom, wb_memcg_completions(wb),
590 wb->bdi->max_prop_frac, nr);
593 void wb_writeout_inc(struct bdi_writeback *wb)
597 local_irq_save(flags);
598 __wb_writeout_add(wb, 1);
599 local_irq_restore(flags);
601 EXPORT_SYMBOL_GPL(wb_writeout_inc);
604 * On idle system, we can be called long after we scheduled because we use
605 * deferred timers so count with missed periods.
607 static void writeout_period(struct timer_list *t)
609 struct wb_domain *dom = from_timer(dom, t, period_timer);
610 int miss_periods = (jiffies - dom->period_time) /
611 VM_COMPLETIONS_PERIOD_LEN;
613 if (fprop_new_period(&dom->completions, miss_periods + 1)) {
614 dom->period_time = wp_next_time(dom->period_time +
615 miss_periods * VM_COMPLETIONS_PERIOD_LEN);
616 mod_timer(&dom->period_timer, dom->period_time);
619 * Aging has zeroed all fractions. Stop wasting CPU on period
622 dom->period_time = 0;
626 int wb_domain_init(struct wb_domain *dom, gfp_t gfp)
628 memset(dom, 0, sizeof(*dom));
630 spin_lock_init(&dom->lock);
632 timer_setup(&dom->period_timer, writeout_period, TIMER_DEFERRABLE);
634 dom->dirty_limit_tstamp = jiffies;
636 return fprop_global_init(&dom->completions, gfp);
639 #ifdef CONFIG_CGROUP_WRITEBACK
640 void wb_domain_exit(struct wb_domain *dom)
642 del_timer_sync(&dom->period_timer);
643 fprop_global_destroy(&dom->completions);
648 * bdi_min_ratio keeps the sum of the minimum dirty shares of all
649 * registered backing devices, which, for obvious reasons, can not
652 static unsigned int bdi_min_ratio;
654 static int bdi_check_pages_limit(unsigned long pages)
656 unsigned long max_dirty_pages = global_dirtyable_memory();
658 if (pages > max_dirty_pages)
664 static unsigned long bdi_ratio_from_pages(unsigned long pages)
666 unsigned long background_thresh;
667 unsigned long dirty_thresh;
670 global_dirty_limits(&background_thresh, &dirty_thresh);
671 ratio = div64_u64(pages * 100ULL * BDI_RATIO_SCALE, dirty_thresh);
676 static u64 bdi_get_bytes(unsigned int ratio)
678 unsigned long background_thresh;
679 unsigned long dirty_thresh;
682 global_dirty_limits(&background_thresh, &dirty_thresh);
683 bytes = (dirty_thresh * PAGE_SIZE * ratio) / BDI_RATIO_SCALE / 100;
688 static int __bdi_set_min_ratio(struct backing_dev_info *bdi, unsigned int min_ratio)
693 if (min_ratio > 100 * BDI_RATIO_SCALE)
695 min_ratio *= BDI_RATIO_SCALE;
697 spin_lock_bh(&bdi_lock);
698 if (min_ratio > bdi->max_ratio) {
701 if (min_ratio < bdi->min_ratio) {
702 delta = bdi->min_ratio - min_ratio;
703 bdi_min_ratio -= delta;
704 bdi->min_ratio = min_ratio;
706 delta = min_ratio - bdi->min_ratio;
707 if (bdi_min_ratio + delta < 100 * BDI_RATIO_SCALE) {
708 bdi_min_ratio += delta;
709 bdi->min_ratio = min_ratio;
715 spin_unlock_bh(&bdi_lock);
720 static int __bdi_set_max_ratio(struct backing_dev_info *bdi, unsigned int max_ratio)
724 if (max_ratio > 100 * BDI_RATIO_SCALE)
727 spin_lock_bh(&bdi_lock);
728 if (bdi->min_ratio > max_ratio) {
731 bdi->max_ratio = max_ratio;
732 bdi->max_prop_frac = (FPROP_FRAC_BASE * max_ratio) / 100;
734 spin_unlock_bh(&bdi_lock);
739 int bdi_set_min_ratio_no_scale(struct backing_dev_info *bdi, unsigned int min_ratio)
741 return __bdi_set_min_ratio(bdi, min_ratio);
744 int bdi_set_max_ratio_no_scale(struct backing_dev_info *bdi, unsigned int max_ratio)
746 return __bdi_set_max_ratio(bdi, max_ratio);
749 int bdi_set_min_ratio(struct backing_dev_info *bdi, unsigned int min_ratio)
751 return __bdi_set_min_ratio(bdi, min_ratio * BDI_RATIO_SCALE);
754 int bdi_set_max_ratio(struct backing_dev_info *bdi, unsigned int max_ratio)
756 return __bdi_set_max_ratio(bdi, max_ratio * BDI_RATIO_SCALE);
758 EXPORT_SYMBOL(bdi_set_max_ratio);
760 u64 bdi_get_min_bytes(struct backing_dev_info *bdi)
762 return bdi_get_bytes(bdi->min_ratio);
765 int bdi_set_min_bytes(struct backing_dev_info *bdi, u64 min_bytes)
768 unsigned long pages = min_bytes >> PAGE_SHIFT;
769 unsigned long min_ratio;
771 ret = bdi_check_pages_limit(pages);
775 min_ratio = bdi_ratio_from_pages(pages);
776 return __bdi_set_min_ratio(bdi, min_ratio);
779 u64 bdi_get_max_bytes(struct backing_dev_info *bdi)
781 return bdi_get_bytes(bdi->max_ratio);
784 int bdi_set_max_bytes(struct backing_dev_info *bdi, u64 max_bytes)
787 unsigned long pages = max_bytes >> PAGE_SHIFT;
788 unsigned long max_ratio;
790 ret = bdi_check_pages_limit(pages);
794 max_ratio = bdi_ratio_from_pages(pages);
795 return __bdi_set_max_ratio(bdi, max_ratio);
798 int bdi_set_strict_limit(struct backing_dev_info *bdi, unsigned int strict_limit)
800 if (strict_limit > 1)
803 spin_lock_bh(&bdi_lock);
805 bdi->capabilities |= BDI_CAP_STRICTLIMIT;
807 bdi->capabilities &= ~BDI_CAP_STRICTLIMIT;
808 spin_unlock_bh(&bdi_lock);
813 static unsigned long dirty_freerun_ceiling(unsigned long thresh,
814 unsigned long bg_thresh)
816 return (thresh + bg_thresh) / 2;
819 static unsigned long hard_dirty_limit(struct wb_domain *dom,
820 unsigned long thresh)
822 return max(thresh, dom->dirty_limit);
826 * Memory which can be further allocated to a memcg domain is capped by
827 * system-wide clean memory excluding the amount being used in the domain.
829 static void mdtc_calc_avail(struct dirty_throttle_control *mdtc,
830 unsigned long filepages, unsigned long headroom)
832 struct dirty_throttle_control *gdtc = mdtc_gdtc(mdtc);
833 unsigned long clean = filepages - min(filepages, mdtc->dirty);
834 unsigned long global_clean = gdtc->avail - min(gdtc->avail, gdtc->dirty);
835 unsigned long other_clean = global_clean - min(global_clean, clean);
837 mdtc->avail = filepages + min(headroom, other_clean);
841 * __wb_calc_thresh - @wb's share of dirty throttling threshold
842 * @dtc: dirty_throttle_context of interest
844 * Note that balance_dirty_pages() will only seriously take it as a hard limit
845 * when sleeping max_pause per page is not enough to keep the dirty pages under
846 * control. For example, when the device is completely stalled due to some error
847 * conditions, or when there are 1000 dd tasks writing to a slow 10MB/s USB key.
848 * In the other normal situations, it acts more gently by throttling the tasks
849 * more (rather than completely block them) when the wb dirty pages go high.
851 * It allocates high/low dirty limits to fast/slow devices, in order to prevent
852 * - starving fast devices
853 * - piling up dirty pages (that will take long time to sync) on slow devices
855 * The wb's share of dirty limit will be adapting to its throughput and
856 * bounded by the bdi->min_ratio and/or bdi->max_ratio parameters, if set.
858 * Return: @wb's dirty limit in pages. The term "dirty" in the context of
859 * dirty balancing includes all PG_dirty and PG_writeback pages.
861 static unsigned long __wb_calc_thresh(struct dirty_throttle_control *dtc)
863 struct wb_domain *dom = dtc_dom(dtc);
864 unsigned long thresh = dtc->thresh;
866 unsigned long numerator, denominator;
867 unsigned long wb_min_ratio, wb_max_ratio;
870 * Calculate this BDI's share of the thresh ratio.
872 fprop_fraction_percpu(&dom->completions, dtc->wb_completions,
873 &numerator, &denominator);
875 wb_thresh = (thresh * (100 * BDI_RATIO_SCALE - bdi_min_ratio)) / (100 * BDI_RATIO_SCALE);
876 wb_thresh *= numerator;
877 wb_thresh = div64_ul(wb_thresh, denominator);
879 wb_min_max_ratio(dtc->wb, &wb_min_ratio, &wb_max_ratio);
881 wb_thresh += (thresh * wb_min_ratio) / (100 * BDI_RATIO_SCALE);
882 if (wb_thresh > (thresh * wb_max_ratio) / (100 * BDI_RATIO_SCALE))
883 wb_thresh = thresh * wb_max_ratio / (100 * BDI_RATIO_SCALE);
888 unsigned long wb_calc_thresh(struct bdi_writeback *wb, unsigned long thresh)
890 struct dirty_throttle_control gdtc = { GDTC_INIT(wb),
892 return __wb_calc_thresh(&gdtc);
897 * f(dirty) := 1.0 + (----------------)
900 * it's a 3rd order polynomial that subjects to
902 * (1) f(freerun) = 2.0 => rampup dirty_ratelimit reasonably fast
903 * (2) f(setpoint) = 1.0 => the balance point
904 * (3) f(limit) = 0 => the hard limit
905 * (4) df/dx <= 0 => negative feedback control
906 * (5) the closer to setpoint, the smaller |df/dx| (and the reverse)
907 * => fast response on large errors; small oscillation near setpoint
909 static long long pos_ratio_polynom(unsigned long setpoint,
916 x = div64_s64(((s64)setpoint - (s64)dirty) << RATELIMIT_CALC_SHIFT,
917 (limit - setpoint) | 1);
919 pos_ratio = pos_ratio * x >> RATELIMIT_CALC_SHIFT;
920 pos_ratio = pos_ratio * x >> RATELIMIT_CALC_SHIFT;
921 pos_ratio += 1 << RATELIMIT_CALC_SHIFT;
923 return clamp(pos_ratio, 0LL, 2LL << RATELIMIT_CALC_SHIFT);
927 * Dirty position control.
929 * (o) global/bdi setpoints
931 * We want the dirty pages be balanced around the global/wb setpoints.
932 * When the number of dirty pages is higher/lower than the setpoint, the
933 * dirty position control ratio (and hence task dirty ratelimit) will be
934 * decreased/increased to bring the dirty pages back to the setpoint.
936 * pos_ratio = 1 << RATELIMIT_CALC_SHIFT
938 * if (dirty < setpoint) scale up pos_ratio
939 * if (dirty > setpoint) scale down pos_ratio
941 * if (wb_dirty < wb_setpoint) scale up pos_ratio
942 * if (wb_dirty > wb_setpoint) scale down pos_ratio
944 * task_ratelimit = dirty_ratelimit * pos_ratio >> RATELIMIT_CALC_SHIFT
946 * (o) global control line
950 * | |<===== global dirty control scope ======>|
958 * 1.0 ................................*
964 * 0 +------------.------------------.----------------------*------------->
965 * freerun^ setpoint^ limit^ dirty pages
967 * (o) wb control line
975 * | * |<=========== span ============>|
976 * 1.0 .......................*
988 * 1/4 ...............................................* * * * * * * * * * * *
992 * 0 +----------------------.-------------------------------.------------->
993 * wb_setpoint^ x_intercept^
995 * The wb control line won't drop below pos_ratio=1/4, so that wb_dirty can
996 * be smoothly throttled down to normal if it starts high in situations like
997 * - start writing to a slow SD card and a fast disk at the same time. The SD
998 * card's wb_dirty may rush to many times higher than wb_setpoint.
999 * - the wb dirty thresh drops quickly due to change of JBOD workload
1001 static void wb_position_ratio(struct dirty_throttle_control *dtc)
1003 struct bdi_writeback *wb = dtc->wb;
1004 unsigned long write_bw = READ_ONCE(wb->avg_write_bandwidth);
1005 unsigned long freerun = dirty_freerun_ceiling(dtc->thresh, dtc->bg_thresh);
1006 unsigned long limit = hard_dirty_limit(dtc_dom(dtc), dtc->thresh);
1007 unsigned long wb_thresh = dtc->wb_thresh;
1008 unsigned long x_intercept;
1009 unsigned long setpoint; /* dirty pages' target balance point */
1010 unsigned long wb_setpoint;
1012 long long pos_ratio; /* for scaling up/down the rate limit */
1017 if (unlikely(dtc->dirty >= limit))
1023 * See comment for pos_ratio_polynom().
1025 setpoint = (freerun + limit) / 2;
1026 pos_ratio = pos_ratio_polynom(setpoint, dtc->dirty, limit);
1029 * The strictlimit feature is a tool preventing mistrusted filesystems
1030 * from growing a large number of dirty pages before throttling. For
1031 * such filesystems balance_dirty_pages always checks wb counters
1032 * against wb limits. Even if global "nr_dirty" is under "freerun".
1033 * This is especially important for fuse which sets bdi->max_ratio to
1034 * 1% by default. Without strictlimit feature, fuse writeback may
1035 * consume arbitrary amount of RAM because it is accounted in
1036 * NR_WRITEBACK_TEMP which is not involved in calculating "nr_dirty".
1038 * Here, in wb_position_ratio(), we calculate pos_ratio based on
1039 * two values: wb_dirty and wb_thresh. Let's consider an example:
1040 * total amount of RAM is 16GB, bdi->max_ratio is equal to 1%, global
1041 * limits are set by default to 10% and 20% (background and throttle).
1042 * Then wb_thresh is 1% of 20% of 16GB. This amounts to ~8K pages.
1043 * wb_calc_thresh(wb, bg_thresh) is about ~4K pages. wb_setpoint is
1044 * about ~6K pages (as the average of background and throttle wb
1045 * limits). The 3rd order polynomial will provide positive feedback if
1046 * wb_dirty is under wb_setpoint and vice versa.
1048 * Note, that we cannot use global counters in these calculations
1049 * because we want to throttle process writing to a strictlimit wb
1050 * much earlier than global "freerun" is reached (~23MB vs. ~2.3GB
1051 * in the example above).
1053 if (unlikely(wb->bdi->capabilities & BDI_CAP_STRICTLIMIT)) {
1054 long long wb_pos_ratio;
1056 if (dtc->wb_dirty < 8) {
1057 dtc->pos_ratio = min_t(long long, pos_ratio * 2,
1058 2 << RATELIMIT_CALC_SHIFT);
1062 if (dtc->wb_dirty >= wb_thresh)
1065 wb_setpoint = dirty_freerun_ceiling(wb_thresh,
1068 if (wb_setpoint == 0 || wb_setpoint == wb_thresh)
1071 wb_pos_ratio = pos_ratio_polynom(wb_setpoint, dtc->wb_dirty,
1075 * Typically, for strictlimit case, wb_setpoint << setpoint
1076 * and pos_ratio >> wb_pos_ratio. In the other words global
1077 * state ("dirty") is not limiting factor and we have to
1078 * make decision based on wb counters. But there is an
1079 * important case when global pos_ratio should get precedence:
1080 * global limits are exceeded (e.g. due to activities on other
1081 * wb's) while given strictlimit wb is below limit.
1083 * "pos_ratio * wb_pos_ratio" would work for the case above,
1084 * but it would look too non-natural for the case of all
1085 * activity in the system coming from a single strictlimit wb
1086 * with bdi->max_ratio == 100%.
1088 * Note that min() below somewhat changes the dynamics of the
1089 * control system. Normally, pos_ratio value can be well over 3
1090 * (when globally we are at freerun and wb is well below wb
1091 * setpoint). Now the maximum pos_ratio in the same situation
1092 * is 2. We might want to tweak this if we observe the control
1093 * system is too slow to adapt.
1095 dtc->pos_ratio = min(pos_ratio, wb_pos_ratio);
1100 * We have computed basic pos_ratio above based on global situation. If
1101 * the wb is over/under its share of dirty pages, we want to scale
1102 * pos_ratio further down/up. That is done by the following mechanism.
1108 * f(wb_dirty) := 1.0 + k * (wb_dirty - wb_setpoint)
1110 * x_intercept - wb_dirty
1111 * := --------------------------
1112 * x_intercept - wb_setpoint
1114 * The main wb control line is a linear function that subjects to
1116 * (1) f(wb_setpoint) = 1.0
1117 * (2) k = - 1 / (8 * write_bw) (in single wb case)
1118 * or equally: x_intercept = wb_setpoint + 8 * write_bw
1120 * For single wb case, the dirty pages are observed to fluctuate
1121 * regularly within range
1122 * [wb_setpoint - write_bw/2, wb_setpoint + write_bw/2]
1123 * for various filesystems, where (2) can yield in a reasonable 12.5%
1124 * fluctuation range for pos_ratio.
1126 * For JBOD case, wb_thresh (not wb_dirty!) could fluctuate up to its
1127 * own size, so move the slope over accordingly and choose a slope that
1128 * yields 100% pos_ratio fluctuation on suddenly doubled wb_thresh.
1130 if (unlikely(wb_thresh > dtc->thresh))
1131 wb_thresh = dtc->thresh;
1133 * It's very possible that wb_thresh is close to 0 not because the
1134 * device is slow, but that it has remained inactive for long time.
1135 * Honour such devices a reasonable good (hopefully IO efficient)
1136 * threshold, so that the occasional writes won't be blocked and active
1137 * writes can rampup the threshold quickly.
1139 wb_thresh = max(wb_thresh, (limit - dtc->dirty) / 8);
1141 * scale global setpoint to wb's:
1142 * wb_setpoint = setpoint * wb_thresh / thresh
1144 x = div_u64((u64)wb_thresh << 16, dtc->thresh | 1);
1145 wb_setpoint = setpoint * (u64)x >> 16;
1147 * Use span=(8*write_bw) in single wb case as indicated by
1148 * (thresh - wb_thresh ~= 0) and transit to wb_thresh in JBOD case.
1150 * wb_thresh thresh - wb_thresh
1151 * span = --------- * (8 * write_bw) + ------------------ * wb_thresh
1154 span = (dtc->thresh - wb_thresh + 8 * write_bw) * (u64)x >> 16;
1155 x_intercept = wb_setpoint + span;
1157 if (dtc->wb_dirty < x_intercept - span / 4) {
1158 pos_ratio = div64_u64(pos_ratio * (x_intercept - dtc->wb_dirty),
1159 (x_intercept - wb_setpoint) | 1);
1164 * wb reserve area, safeguard against dirty pool underrun and disk idle
1165 * It may push the desired control point of global dirty pages higher
1168 x_intercept = wb_thresh / 2;
1169 if (dtc->wb_dirty < x_intercept) {
1170 if (dtc->wb_dirty > x_intercept / 8)
1171 pos_ratio = div_u64(pos_ratio * x_intercept,
1177 dtc->pos_ratio = pos_ratio;
1180 static void wb_update_write_bandwidth(struct bdi_writeback *wb,
1181 unsigned long elapsed,
1182 unsigned long written)
1184 const unsigned long period = roundup_pow_of_two(3 * HZ);
1185 unsigned long avg = wb->avg_write_bandwidth;
1186 unsigned long old = wb->write_bandwidth;
1190 * bw = written * HZ / elapsed
1192 * bw * elapsed + write_bandwidth * (period - elapsed)
1193 * write_bandwidth = ---------------------------------------------------
1196 * @written may have decreased due to folio_account_redirty().
1197 * Avoid underflowing @bw calculation.
1199 bw = written - min(written, wb->written_stamp);
1201 if (unlikely(elapsed > period)) {
1202 bw = div64_ul(bw, elapsed);
1206 bw += (u64)wb->write_bandwidth * (period - elapsed);
1207 bw >>= ilog2(period);
1210 * one more level of smoothing, for filtering out sudden spikes
1212 if (avg > old && old >= (unsigned long)bw)
1213 avg -= (avg - old) >> 3;
1215 if (avg < old && old <= (unsigned long)bw)
1216 avg += (old - avg) >> 3;
1219 /* keep avg > 0 to guarantee that tot > 0 if there are dirty wbs */
1220 avg = max(avg, 1LU);
1221 if (wb_has_dirty_io(wb)) {
1222 long delta = avg - wb->avg_write_bandwidth;
1223 WARN_ON_ONCE(atomic_long_add_return(delta,
1224 &wb->bdi->tot_write_bandwidth) <= 0);
1226 wb->write_bandwidth = bw;
1227 WRITE_ONCE(wb->avg_write_bandwidth, avg);
1230 static void update_dirty_limit(struct dirty_throttle_control *dtc)
1232 struct wb_domain *dom = dtc_dom(dtc);
1233 unsigned long thresh = dtc->thresh;
1234 unsigned long limit = dom->dirty_limit;
1237 * Follow up in one step.
1239 if (limit < thresh) {
1245 * Follow down slowly. Use the higher one as the target, because thresh
1246 * may drop below dirty. This is exactly the reason to introduce
1247 * dom->dirty_limit which is guaranteed to lie above the dirty pages.
1249 thresh = max(thresh, dtc->dirty);
1250 if (limit > thresh) {
1251 limit -= (limit - thresh) >> 5;
1256 dom->dirty_limit = limit;
1259 static void domain_update_dirty_limit(struct dirty_throttle_control *dtc,
1262 struct wb_domain *dom = dtc_dom(dtc);
1265 * check locklessly first to optimize away locking for the most time
1267 if (time_before(now, dom->dirty_limit_tstamp + BANDWIDTH_INTERVAL))
1270 spin_lock(&dom->lock);
1271 if (time_after_eq(now, dom->dirty_limit_tstamp + BANDWIDTH_INTERVAL)) {
1272 update_dirty_limit(dtc);
1273 dom->dirty_limit_tstamp = now;
1275 spin_unlock(&dom->lock);
1279 * Maintain wb->dirty_ratelimit, the base dirty throttle rate.
1281 * Normal wb tasks will be curbed at or below it in long term.
1282 * Obviously it should be around (write_bw / N) when there are N dd tasks.
1284 static void wb_update_dirty_ratelimit(struct dirty_throttle_control *dtc,
1285 unsigned long dirtied,
1286 unsigned long elapsed)
1288 struct bdi_writeback *wb = dtc->wb;
1289 unsigned long dirty = dtc->dirty;
1290 unsigned long freerun = dirty_freerun_ceiling(dtc->thresh, dtc->bg_thresh);
1291 unsigned long limit = hard_dirty_limit(dtc_dom(dtc), dtc->thresh);
1292 unsigned long setpoint = (freerun + limit) / 2;
1293 unsigned long write_bw = wb->avg_write_bandwidth;
1294 unsigned long dirty_ratelimit = wb->dirty_ratelimit;
1295 unsigned long dirty_rate;
1296 unsigned long task_ratelimit;
1297 unsigned long balanced_dirty_ratelimit;
1300 unsigned long shift;
1303 * The dirty rate will match the writeout rate in long term, except
1304 * when dirty pages are truncated by userspace or re-dirtied by FS.
1306 dirty_rate = (dirtied - wb->dirtied_stamp) * HZ / elapsed;
1309 * task_ratelimit reflects each dd's dirty rate for the past 200ms.
1311 task_ratelimit = (u64)dirty_ratelimit *
1312 dtc->pos_ratio >> RATELIMIT_CALC_SHIFT;
1313 task_ratelimit++; /* it helps rampup dirty_ratelimit from tiny values */
1316 * A linear estimation of the "balanced" throttle rate. The theory is,
1317 * if there are N dd tasks, each throttled at task_ratelimit, the wb's
1318 * dirty_rate will be measured to be (N * task_ratelimit). So the below
1319 * formula will yield the balanced rate limit (write_bw / N).
1321 * Note that the expanded form is not a pure rate feedback:
1322 * rate_(i+1) = rate_(i) * (write_bw / dirty_rate) (1)
1323 * but also takes pos_ratio into account:
1324 * rate_(i+1) = rate_(i) * (write_bw / dirty_rate) * pos_ratio (2)
1326 * (1) is not realistic because pos_ratio also takes part in balancing
1327 * the dirty rate. Consider the state
1328 * pos_ratio = 0.5 (3)
1329 * rate = 2 * (write_bw / N) (4)
1330 * If (1) is used, it will stuck in that state! Because each dd will
1332 * task_ratelimit = pos_ratio * rate = (write_bw / N) (5)
1334 * dirty_rate = N * task_ratelimit = write_bw (6)
1335 * put (6) into (1) we get
1336 * rate_(i+1) = rate_(i) (7)
1338 * So we end up using (2) to always keep
1339 * rate_(i+1) ~= (write_bw / N) (8)
1340 * regardless of the value of pos_ratio. As long as (8) is satisfied,
1341 * pos_ratio is able to drive itself to 1.0, which is not only where
1342 * the dirty count meet the setpoint, but also where the slope of
1343 * pos_ratio is most flat and hence task_ratelimit is least fluctuated.
1345 balanced_dirty_ratelimit = div_u64((u64)task_ratelimit * write_bw,
1348 * balanced_dirty_ratelimit ~= (write_bw / N) <= write_bw
1350 if (unlikely(balanced_dirty_ratelimit > write_bw))
1351 balanced_dirty_ratelimit = write_bw;
1354 * We could safely do this and return immediately:
1356 * wb->dirty_ratelimit = balanced_dirty_ratelimit;
1358 * However to get a more stable dirty_ratelimit, the below elaborated
1359 * code makes use of task_ratelimit to filter out singular points and
1360 * limit the step size.
1362 * The below code essentially only uses the relative value of
1364 * task_ratelimit - dirty_ratelimit
1365 * = (pos_ratio - 1) * dirty_ratelimit
1367 * which reflects the direction and size of dirty position error.
1371 * dirty_ratelimit will follow balanced_dirty_ratelimit iff
1372 * task_ratelimit is on the same side of dirty_ratelimit, too.
1374 * - dirty_ratelimit > balanced_dirty_ratelimit
1375 * - dirty_ratelimit > task_ratelimit (dirty pages are above setpoint)
1376 * lowering dirty_ratelimit will help meet both the position and rate
1377 * control targets. Otherwise, don't update dirty_ratelimit if it will
1378 * only help meet the rate target. After all, what the users ultimately
1379 * feel and care are stable dirty rate and small position error.
1381 * |task_ratelimit - dirty_ratelimit| is used to limit the step size
1382 * and filter out the singular points of balanced_dirty_ratelimit. Which
1383 * keeps jumping around randomly and can even leap far away at times
1384 * due to the small 200ms estimation period of dirty_rate (we want to
1385 * keep that period small to reduce time lags).
1390 * For strictlimit case, calculations above were based on wb counters
1391 * and limits (starting from pos_ratio = wb_position_ratio() and up to
1392 * balanced_dirty_ratelimit = task_ratelimit * write_bw / dirty_rate).
1393 * Hence, to calculate "step" properly, we have to use wb_dirty as
1394 * "dirty" and wb_setpoint as "setpoint".
1396 * We rampup dirty_ratelimit forcibly if wb_dirty is low because
1397 * it's possible that wb_thresh is close to zero due to inactivity
1398 * of backing device.
1400 if (unlikely(wb->bdi->capabilities & BDI_CAP_STRICTLIMIT)) {
1401 dirty = dtc->wb_dirty;
1402 if (dtc->wb_dirty < 8)
1403 setpoint = dtc->wb_dirty + 1;
1405 setpoint = (dtc->wb_thresh + dtc->wb_bg_thresh) / 2;
1408 if (dirty < setpoint) {
1409 x = min3(wb->balanced_dirty_ratelimit,
1410 balanced_dirty_ratelimit, task_ratelimit);
1411 if (dirty_ratelimit < x)
1412 step = x - dirty_ratelimit;
1414 x = max3(wb->balanced_dirty_ratelimit,
1415 balanced_dirty_ratelimit, task_ratelimit);
1416 if (dirty_ratelimit > x)
1417 step = dirty_ratelimit - x;
1421 * Don't pursue 100% rate matching. It's impossible since the balanced
1422 * rate itself is constantly fluctuating. So decrease the track speed
1423 * when it gets close to the target. Helps eliminate pointless tremors.
1425 shift = dirty_ratelimit / (2 * step + 1);
1426 if (shift < BITS_PER_LONG)
1427 step = DIV_ROUND_UP(step >> shift, 8);
1431 if (dirty_ratelimit < balanced_dirty_ratelimit)
1432 dirty_ratelimit += step;
1434 dirty_ratelimit -= step;
1436 WRITE_ONCE(wb->dirty_ratelimit, max(dirty_ratelimit, 1UL));
1437 wb->balanced_dirty_ratelimit = balanced_dirty_ratelimit;
1439 trace_bdi_dirty_ratelimit(wb, dirty_rate, task_ratelimit);
1442 static void __wb_update_bandwidth(struct dirty_throttle_control *gdtc,
1443 struct dirty_throttle_control *mdtc,
1444 bool update_ratelimit)
1446 struct bdi_writeback *wb = gdtc->wb;
1447 unsigned long now = jiffies;
1448 unsigned long elapsed;
1449 unsigned long dirtied;
1450 unsigned long written;
1452 spin_lock(&wb->list_lock);
1455 * Lockless checks for elapsed time are racy and delayed update after
1456 * IO completion doesn't do it at all (to make sure written pages are
1457 * accounted reasonably quickly). Make sure elapsed >= 1 to avoid
1460 elapsed = max(now - wb->bw_time_stamp, 1UL);
1461 dirtied = percpu_counter_read(&wb->stat[WB_DIRTIED]);
1462 written = percpu_counter_read(&wb->stat[WB_WRITTEN]);
1464 if (update_ratelimit) {
1465 domain_update_dirty_limit(gdtc, now);
1466 wb_update_dirty_ratelimit(gdtc, dirtied, elapsed);
1469 * @mdtc is always NULL if !CGROUP_WRITEBACK but the
1470 * compiler has no way to figure that out. Help it.
1472 if (IS_ENABLED(CONFIG_CGROUP_WRITEBACK) && mdtc) {
1473 domain_update_dirty_limit(mdtc, now);
1474 wb_update_dirty_ratelimit(mdtc, dirtied, elapsed);
1477 wb_update_write_bandwidth(wb, elapsed, written);
1479 wb->dirtied_stamp = dirtied;
1480 wb->written_stamp = written;
1481 WRITE_ONCE(wb->bw_time_stamp, now);
1482 spin_unlock(&wb->list_lock);
1485 void wb_update_bandwidth(struct bdi_writeback *wb)
1487 struct dirty_throttle_control gdtc = { GDTC_INIT(wb) };
1489 __wb_update_bandwidth(&gdtc, NULL, false);
1492 /* Interval after which we consider wb idle and don't estimate bandwidth */
1493 #define WB_BANDWIDTH_IDLE_JIF (HZ)
1495 static void wb_bandwidth_estimate_start(struct bdi_writeback *wb)
1497 unsigned long now = jiffies;
1498 unsigned long elapsed = now - READ_ONCE(wb->bw_time_stamp);
1500 if (elapsed > WB_BANDWIDTH_IDLE_JIF &&
1501 !atomic_read(&wb->writeback_inodes)) {
1502 spin_lock(&wb->list_lock);
1503 wb->dirtied_stamp = wb_stat(wb, WB_DIRTIED);
1504 wb->written_stamp = wb_stat(wb, WB_WRITTEN);
1505 WRITE_ONCE(wb->bw_time_stamp, now);
1506 spin_unlock(&wb->list_lock);
1511 * After a task dirtied this many pages, balance_dirty_pages_ratelimited()
1512 * will look to see if it needs to start dirty throttling.
1514 * If dirty_poll_interval is too low, big NUMA machines will call the expensive
1515 * global_zone_page_state() too often. So scale it near-sqrt to the safety margin
1516 * (the number of pages we may dirty without exceeding the dirty limits).
1518 static unsigned long dirty_poll_interval(unsigned long dirty,
1519 unsigned long thresh)
1522 return 1UL << (ilog2(thresh - dirty) >> 1);
1527 static unsigned long wb_max_pause(struct bdi_writeback *wb,
1528 unsigned long wb_dirty)
1530 unsigned long bw = READ_ONCE(wb->avg_write_bandwidth);
1534 * Limit pause time for small memory systems. If sleeping for too long
1535 * time, a small pool of dirty/writeback pages may go empty and disk go
1538 * 8 serves as the safety ratio.
1540 t = wb_dirty / (1 + bw / roundup_pow_of_two(1 + HZ / 8));
1543 return min_t(unsigned long, t, MAX_PAUSE);
1546 static long wb_min_pause(struct bdi_writeback *wb,
1548 unsigned long task_ratelimit,
1549 unsigned long dirty_ratelimit,
1550 int *nr_dirtied_pause)
1552 long hi = ilog2(READ_ONCE(wb->avg_write_bandwidth));
1553 long lo = ilog2(READ_ONCE(wb->dirty_ratelimit));
1554 long t; /* target pause */
1555 long pause; /* estimated next pause */
1556 int pages; /* target nr_dirtied_pause */
1558 /* target for 10ms pause on 1-dd case */
1559 t = max(1, HZ / 100);
1562 * Scale up pause time for concurrent dirtiers in order to reduce CPU
1565 * (N * 10ms) on 2^N concurrent tasks.
1568 t += (hi - lo) * (10 * HZ) / 1024;
1571 * This is a bit convoluted. We try to base the next nr_dirtied_pause
1572 * on the much more stable dirty_ratelimit. However the next pause time
1573 * will be computed based on task_ratelimit and the two rate limits may
1574 * depart considerably at some time. Especially if task_ratelimit goes
1575 * below dirty_ratelimit/2 and the target pause is max_pause, the next
1576 * pause time will be max_pause*2 _trimmed down_ to max_pause. As a
1577 * result task_ratelimit won't be executed faithfully, which could
1578 * eventually bring down dirty_ratelimit.
1580 * We apply two rules to fix it up:
1581 * 1) try to estimate the next pause time and if necessary, use a lower
1582 * nr_dirtied_pause so as not to exceed max_pause. When this happens,
1583 * nr_dirtied_pause will be "dancing" with task_ratelimit.
1584 * 2) limit the target pause time to max_pause/2, so that the normal
1585 * small fluctuations of task_ratelimit won't trigger rule (1) and
1586 * nr_dirtied_pause will remain as stable as dirty_ratelimit.
1588 t = min(t, 1 + max_pause / 2);
1589 pages = dirty_ratelimit * t / roundup_pow_of_two(HZ);
1592 * Tiny nr_dirtied_pause is found to hurt I/O performance in the test
1593 * case fio-mmap-randwrite-64k, which does 16*{sync read, async write}.
1594 * When the 16 consecutive reads are often interrupted by some dirty
1595 * throttling pause during the async writes, cfq will go into idles
1596 * (deadline is fine). So push nr_dirtied_pause as high as possible
1597 * until reaches DIRTY_POLL_THRESH=32 pages.
1599 if (pages < DIRTY_POLL_THRESH) {
1601 pages = dirty_ratelimit * t / roundup_pow_of_two(HZ);
1602 if (pages > DIRTY_POLL_THRESH) {
1603 pages = DIRTY_POLL_THRESH;
1604 t = HZ * DIRTY_POLL_THRESH / dirty_ratelimit;
1608 pause = HZ * pages / (task_ratelimit + 1);
1609 if (pause > max_pause) {
1611 pages = task_ratelimit * t / roundup_pow_of_two(HZ);
1614 *nr_dirtied_pause = pages;
1616 * The minimal pause time will normally be half the target pause time.
1618 return pages >= DIRTY_POLL_THRESH ? 1 + t / 2 : t;
1621 static inline void wb_dirty_limits(struct dirty_throttle_control *dtc)
1623 struct bdi_writeback *wb = dtc->wb;
1624 unsigned long wb_reclaimable;
1627 * wb_thresh is not treated as some limiting factor as
1628 * dirty_thresh, due to reasons
1629 * - in JBOD setup, wb_thresh can fluctuate a lot
1630 * - in a system with HDD and USB key, the USB key may somehow
1631 * go into state (wb_dirty >> wb_thresh) either because
1632 * wb_dirty starts high, or because wb_thresh drops low.
1633 * In this case we don't want to hard throttle the USB key
1634 * dirtiers for 100 seconds until wb_dirty drops under
1635 * wb_thresh. Instead the auxiliary wb control line in
1636 * wb_position_ratio() will let the dirtier task progress
1637 * at some rate <= (write_bw / 2) for bringing down wb_dirty.
1639 dtc->wb_thresh = __wb_calc_thresh(dtc);
1640 dtc->wb_bg_thresh = dtc->thresh ?
1641 div_u64((u64)dtc->wb_thresh * dtc->bg_thresh, dtc->thresh) : 0;
1644 * In order to avoid the stacked BDI deadlock we need
1645 * to ensure we accurately count the 'dirty' pages when
1646 * the threshold is low.
1648 * Otherwise it would be possible to get thresh+n pages
1649 * reported dirty, even though there are thresh-m pages
1650 * actually dirty; with m+n sitting in the percpu
1653 if (dtc->wb_thresh < 2 * wb_stat_error()) {
1654 wb_reclaimable = wb_stat_sum(wb, WB_RECLAIMABLE);
1655 dtc->wb_dirty = wb_reclaimable + wb_stat_sum(wb, WB_WRITEBACK);
1657 wb_reclaimable = wb_stat(wb, WB_RECLAIMABLE);
1658 dtc->wb_dirty = wb_reclaimable + wb_stat(wb, WB_WRITEBACK);
1663 * balance_dirty_pages() must be called by processes which are generating dirty
1664 * data. It looks at the number of dirty pages in the machine and will force
1665 * the caller to wait once crossing the (background_thresh + dirty_thresh) / 2.
1666 * If we're over `background_thresh' then the writeback threads are woken to
1667 * perform some writeout.
1669 static int balance_dirty_pages(struct bdi_writeback *wb,
1670 unsigned long pages_dirtied, unsigned int flags)
1672 struct dirty_throttle_control gdtc_stor = { GDTC_INIT(wb) };
1673 struct dirty_throttle_control mdtc_stor = { MDTC_INIT(wb, &gdtc_stor) };
1674 struct dirty_throttle_control * const gdtc = &gdtc_stor;
1675 struct dirty_throttle_control * const mdtc = mdtc_valid(&mdtc_stor) ?
1677 struct dirty_throttle_control *sdtc;
1678 unsigned long nr_reclaimable; /* = file_dirty */
1683 int nr_dirtied_pause;
1684 bool dirty_exceeded = false;
1685 unsigned long task_ratelimit;
1686 unsigned long dirty_ratelimit;
1687 struct backing_dev_info *bdi = wb->bdi;
1688 bool strictlimit = bdi->capabilities & BDI_CAP_STRICTLIMIT;
1689 unsigned long start_time = jiffies;
1693 unsigned long now = jiffies;
1694 unsigned long dirty, thresh, bg_thresh;
1695 unsigned long m_dirty = 0; /* stop bogus uninit warnings */
1696 unsigned long m_thresh = 0;
1697 unsigned long m_bg_thresh = 0;
1699 nr_reclaimable = global_node_page_state(NR_FILE_DIRTY);
1700 gdtc->avail = global_dirtyable_memory();
1701 gdtc->dirty = nr_reclaimable + global_node_page_state(NR_WRITEBACK);
1703 domain_dirty_limits(gdtc);
1705 if (unlikely(strictlimit)) {
1706 wb_dirty_limits(gdtc);
1708 dirty = gdtc->wb_dirty;
1709 thresh = gdtc->wb_thresh;
1710 bg_thresh = gdtc->wb_bg_thresh;
1712 dirty = gdtc->dirty;
1713 thresh = gdtc->thresh;
1714 bg_thresh = gdtc->bg_thresh;
1718 unsigned long filepages, headroom, writeback;
1721 * If @wb belongs to !root memcg, repeat the same
1722 * basic calculations for the memcg domain.
1724 mem_cgroup_wb_stats(wb, &filepages, &headroom,
1725 &mdtc->dirty, &writeback);
1726 mdtc->dirty += writeback;
1727 mdtc_calc_avail(mdtc, filepages, headroom);
1729 domain_dirty_limits(mdtc);
1731 if (unlikely(strictlimit)) {
1732 wb_dirty_limits(mdtc);
1733 m_dirty = mdtc->wb_dirty;
1734 m_thresh = mdtc->wb_thresh;
1735 m_bg_thresh = mdtc->wb_bg_thresh;
1737 m_dirty = mdtc->dirty;
1738 m_thresh = mdtc->thresh;
1739 m_bg_thresh = mdtc->bg_thresh;
1744 * In laptop mode, we wait until hitting the higher threshold
1745 * before starting background writeout, and then write out all
1746 * the way down to the lower threshold. So slow writers cause
1747 * minimal disk activity.
1749 * In normal mode, we start background writeout at the lower
1750 * background_thresh, to keep the amount of dirty memory low.
1752 if (!laptop_mode && nr_reclaimable > gdtc->bg_thresh &&
1753 !writeback_in_progress(wb))
1754 wb_start_background_writeback(wb);
1757 * Throttle it only when the background writeback cannot
1758 * catch-up. This avoids (excessively) small writeouts
1759 * when the wb limits are ramping up in case of !strictlimit.
1761 * In strictlimit case make decision based on the wb counters
1762 * and limits. Small writeouts when the wb limits are ramping
1763 * up are the price we consciously pay for strictlimit-ing.
1765 * If memcg domain is in effect, @dirty should be under
1766 * both global and memcg freerun ceilings.
1768 if (dirty <= dirty_freerun_ceiling(thresh, bg_thresh) &&
1770 m_dirty <= dirty_freerun_ceiling(m_thresh, m_bg_thresh))) {
1772 unsigned long m_intv;
1775 intv = dirty_poll_interval(dirty, thresh);
1778 current->dirty_paused_when = now;
1779 current->nr_dirtied = 0;
1781 m_intv = dirty_poll_interval(m_dirty, m_thresh);
1782 current->nr_dirtied_pause = min(intv, m_intv);
1786 /* Start writeback even when in laptop mode */
1787 if (unlikely(!writeback_in_progress(wb)))
1788 wb_start_background_writeback(wb);
1790 mem_cgroup_flush_foreign(wb);
1793 * Calculate global domain's pos_ratio and select the
1794 * global dtc by default.
1797 wb_dirty_limits(gdtc);
1799 if ((current->flags & PF_LOCAL_THROTTLE) &&
1801 dirty_freerun_ceiling(gdtc->wb_thresh,
1802 gdtc->wb_bg_thresh))
1804 * LOCAL_THROTTLE tasks must not be throttled
1805 * when below the per-wb freerun ceiling.
1810 dirty_exceeded = (gdtc->wb_dirty > gdtc->wb_thresh) &&
1811 ((gdtc->dirty > gdtc->thresh) || strictlimit);
1813 wb_position_ratio(gdtc);
1818 * If memcg domain is in effect, calculate its
1819 * pos_ratio. @wb should satisfy constraints from
1820 * both global and memcg domains. Choose the one
1821 * w/ lower pos_ratio.
1824 wb_dirty_limits(mdtc);
1826 if ((current->flags & PF_LOCAL_THROTTLE) &&
1828 dirty_freerun_ceiling(mdtc->wb_thresh,
1829 mdtc->wb_bg_thresh))
1831 * LOCAL_THROTTLE tasks must not be
1832 * throttled when below the per-wb
1837 dirty_exceeded |= (mdtc->wb_dirty > mdtc->wb_thresh) &&
1838 ((mdtc->dirty > mdtc->thresh) || strictlimit);
1840 wb_position_ratio(mdtc);
1841 if (mdtc->pos_ratio < gdtc->pos_ratio)
1845 if (dirty_exceeded != wb->dirty_exceeded)
1846 wb->dirty_exceeded = dirty_exceeded;
1848 if (time_is_before_jiffies(READ_ONCE(wb->bw_time_stamp) +
1849 BANDWIDTH_INTERVAL))
1850 __wb_update_bandwidth(gdtc, mdtc, true);
1852 /* throttle according to the chosen dtc */
1853 dirty_ratelimit = READ_ONCE(wb->dirty_ratelimit);
1854 task_ratelimit = ((u64)dirty_ratelimit * sdtc->pos_ratio) >>
1855 RATELIMIT_CALC_SHIFT;
1856 max_pause = wb_max_pause(wb, sdtc->wb_dirty);
1857 min_pause = wb_min_pause(wb, max_pause,
1858 task_ratelimit, dirty_ratelimit,
1861 if (unlikely(task_ratelimit == 0)) {
1866 period = HZ * pages_dirtied / task_ratelimit;
1868 if (current->dirty_paused_when)
1869 pause -= now - current->dirty_paused_when;
1871 * For less than 1s think time (ext3/4 may block the dirtier
1872 * for up to 800ms from time to time on 1-HDD; so does xfs,
1873 * however at much less frequency), try to compensate it in
1874 * future periods by updating the virtual time; otherwise just
1875 * do a reset, as it may be a light dirtier.
1877 if (pause < min_pause) {
1878 trace_balance_dirty_pages(wb,
1891 current->dirty_paused_when = now;
1892 current->nr_dirtied = 0;
1893 } else if (period) {
1894 current->dirty_paused_when += period;
1895 current->nr_dirtied = 0;
1896 } else if (current->nr_dirtied_pause <= pages_dirtied)
1897 current->nr_dirtied_pause += pages_dirtied;
1900 if (unlikely(pause > max_pause)) {
1901 /* for occasional dropped task_ratelimit */
1902 now += min(pause - max_pause, max_pause);
1907 trace_balance_dirty_pages(wb,
1919 if (flags & BDP_ASYNC) {
1923 __set_current_state(TASK_KILLABLE);
1924 wb->dirty_sleep = now;
1925 io_schedule_timeout(pause);
1927 current->dirty_paused_when = now + pause;
1928 current->nr_dirtied = 0;
1929 current->nr_dirtied_pause = nr_dirtied_pause;
1932 * This is typically equal to (dirty < thresh) and can also
1933 * keep "1000+ dd on a slow USB stick" under control.
1939 * In the case of an unresponsive NFS server and the NFS dirty
1940 * pages exceeds dirty_thresh, give the other good wb's a pipe
1941 * to go through, so that tasks on them still remain responsive.
1943 * In theory 1 page is enough to keep the consumer-producer
1944 * pipe going: the flusher cleans 1 page => the task dirties 1
1945 * more page. However wb_dirty has accounting errors. So use
1946 * the larger and more IO friendly wb_stat_error.
1948 if (sdtc->wb_dirty <= wb_stat_error())
1951 if (fatal_signal_pending(current))
1957 static DEFINE_PER_CPU(int, bdp_ratelimits);
1960 * Normal tasks are throttled by
1962 * dirty tsk->nr_dirtied_pause pages;
1963 * take a snap in balance_dirty_pages();
1965 * However there is a worst case. If every task exit immediately when dirtied
1966 * (tsk->nr_dirtied_pause - 1) pages, balance_dirty_pages() will never be
1967 * called to throttle the page dirties. The solution is to save the not yet
1968 * throttled page dirties in dirty_throttle_leaks on task exit and charge them
1969 * randomly into the running tasks. This works well for the above worst case,
1970 * as the new task will pick up and accumulate the old task's leaked dirty
1971 * count and eventually get throttled.
1973 DEFINE_PER_CPU(int, dirty_throttle_leaks) = 0;
1976 * balance_dirty_pages_ratelimited_flags - Balance dirty memory state.
1977 * @mapping: address_space which was dirtied.
1978 * @flags: BDP flags.
1980 * Processes which are dirtying memory should call in here once for each page
1981 * which was newly dirtied. The function will periodically check the system's
1982 * dirty state and will initiate writeback if needed.
1984 * See balance_dirty_pages_ratelimited() for details.
1986 * Return: If @flags contains BDP_ASYNC, it may return -EAGAIN to
1987 * indicate that memory is out of balance and the caller must wait
1988 * for I/O to complete. Otherwise, it will return 0 to indicate
1989 * that either memory was already in balance, or it was able to sleep
1990 * until the amount of dirty memory returned to balance.
1992 int balance_dirty_pages_ratelimited_flags(struct address_space *mapping,
1995 struct inode *inode = mapping->host;
1996 struct backing_dev_info *bdi = inode_to_bdi(inode);
1997 struct bdi_writeback *wb = NULL;
2002 if (!(bdi->capabilities & BDI_CAP_WRITEBACK))
2005 if (inode_cgwb_enabled(inode))
2006 wb = wb_get_create_current(bdi, GFP_KERNEL);
2010 ratelimit = current->nr_dirtied_pause;
2011 if (wb->dirty_exceeded)
2012 ratelimit = min(ratelimit, 32 >> (PAGE_SHIFT - 10));
2016 * This prevents one CPU to accumulate too many dirtied pages without
2017 * calling into balance_dirty_pages(), which can happen when there are
2018 * 1000+ tasks, all of them start dirtying pages at exactly the same
2019 * time, hence all honoured too large initial task->nr_dirtied_pause.
2021 p = this_cpu_ptr(&bdp_ratelimits);
2022 if (unlikely(current->nr_dirtied >= ratelimit))
2024 else if (unlikely(*p >= ratelimit_pages)) {
2029 * Pick up the dirtied pages by the exited tasks. This avoids lots of
2030 * short-lived tasks (eg. gcc invocations in a kernel build) escaping
2031 * the dirty throttling and livelock other long-run dirtiers.
2033 p = this_cpu_ptr(&dirty_throttle_leaks);
2034 if (*p > 0 && current->nr_dirtied < ratelimit) {
2035 unsigned long nr_pages_dirtied;
2036 nr_pages_dirtied = min(*p, ratelimit - current->nr_dirtied);
2037 *p -= nr_pages_dirtied;
2038 current->nr_dirtied += nr_pages_dirtied;
2042 if (unlikely(current->nr_dirtied >= ratelimit))
2043 ret = balance_dirty_pages(wb, current->nr_dirtied, flags);
2048 EXPORT_SYMBOL_GPL(balance_dirty_pages_ratelimited_flags);
2051 * balance_dirty_pages_ratelimited - balance dirty memory state.
2052 * @mapping: address_space which was dirtied.
2054 * Processes which are dirtying memory should call in here once for each page
2055 * which was newly dirtied. The function will periodically check the system's
2056 * dirty state and will initiate writeback if needed.
2058 * Once we're over the dirty memory limit we decrease the ratelimiting
2059 * by a lot, to prevent individual processes from overshooting the limit
2060 * by (ratelimit_pages) each.
2062 void balance_dirty_pages_ratelimited(struct address_space *mapping)
2064 balance_dirty_pages_ratelimited_flags(mapping, 0);
2066 EXPORT_SYMBOL(balance_dirty_pages_ratelimited);
2069 * wb_over_bg_thresh - does @wb need to be written back?
2070 * @wb: bdi_writeback of interest
2072 * Determines whether background writeback should keep writing @wb or it's
2075 * Return: %true if writeback should continue.
2077 bool wb_over_bg_thresh(struct bdi_writeback *wb)
2079 struct dirty_throttle_control gdtc_stor = { GDTC_INIT(wb) };
2080 struct dirty_throttle_control mdtc_stor = { MDTC_INIT(wb, &gdtc_stor) };
2081 struct dirty_throttle_control * const gdtc = &gdtc_stor;
2082 struct dirty_throttle_control * const mdtc = mdtc_valid(&mdtc_stor) ?
2084 unsigned long reclaimable;
2085 unsigned long thresh;
2088 * Similar to balance_dirty_pages() but ignores pages being written
2089 * as we're trying to decide whether to put more under writeback.
2091 gdtc->avail = global_dirtyable_memory();
2092 gdtc->dirty = global_node_page_state(NR_FILE_DIRTY);
2093 domain_dirty_limits(gdtc);
2095 if (gdtc->dirty > gdtc->bg_thresh)
2098 thresh = wb_calc_thresh(gdtc->wb, gdtc->bg_thresh);
2099 if (thresh < 2 * wb_stat_error())
2100 reclaimable = wb_stat_sum(wb, WB_RECLAIMABLE);
2102 reclaimable = wb_stat(wb, WB_RECLAIMABLE);
2104 if (reclaimable > thresh)
2108 unsigned long filepages, headroom, writeback;
2110 mem_cgroup_wb_stats(wb, &filepages, &headroom, &mdtc->dirty,
2112 mdtc_calc_avail(mdtc, filepages, headroom);
2113 domain_dirty_limits(mdtc); /* ditto, ignore writeback */
2115 if (mdtc->dirty > mdtc->bg_thresh)
2118 thresh = wb_calc_thresh(mdtc->wb, mdtc->bg_thresh);
2119 if (thresh < 2 * wb_stat_error())
2120 reclaimable = wb_stat_sum(wb, WB_RECLAIMABLE);
2122 reclaimable = wb_stat(wb, WB_RECLAIMABLE);
2124 if (reclaimable > thresh)
2131 #ifdef CONFIG_SYSCTL
2133 * sysctl handler for /proc/sys/vm/dirty_writeback_centisecs
2135 static int dirty_writeback_centisecs_handler(struct ctl_table *table, int write,
2136 void *buffer, size_t *length, loff_t *ppos)
2138 unsigned int old_interval = dirty_writeback_interval;
2141 ret = proc_dointvec(table, write, buffer, length, ppos);
2144 * Writing 0 to dirty_writeback_interval will disable periodic writeback
2145 * and a different non-zero value will wakeup the writeback threads.
2146 * wb_wakeup_delayed() would be more appropriate, but it's a pain to
2147 * iterate over all bdis and wbs.
2148 * The reason we do this is to make the change take effect immediately.
2150 if (!ret && write && dirty_writeback_interval &&
2151 dirty_writeback_interval != old_interval)
2152 wakeup_flusher_threads(WB_REASON_PERIODIC);
2158 void laptop_mode_timer_fn(struct timer_list *t)
2160 struct backing_dev_info *backing_dev_info =
2161 from_timer(backing_dev_info, t, laptop_mode_wb_timer);
2163 wakeup_flusher_threads_bdi(backing_dev_info, WB_REASON_LAPTOP_TIMER);
2167 * We've spun up the disk and we're in laptop mode: schedule writeback
2168 * of all dirty data a few seconds from now. If the flush is already scheduled
2169 * then push it back - the user is still using the disk.
2171 void laptop_io_completion(struct backing_dev_info *info)
2173 mod_timer(&info->laptop_mode_wb_timer, jiffies + laptop_mode);
2177 * We're in laptop mode and we've just synced. The sync's writes will have
2178 * caused another writeback to be scheduled by laptop_io_completion.
2179 * Nothing needs to be written back anymore, so we unschedule the writeback.
2181 void laptop_sync_completion(void)
2183 struct backing_dev_info *bdi;
2187 list_for_each_entry_rcu(bdi, &bdi_list, bdi_list)
2188 del_timer(&bdi->laptop_mode_wb_timer);
2194 * If ratelimit_pages is too high then we can get into dirty-data overload
2195 * if a large number of processes all perform writes at the same time.
2197 * Here we set ratelimit_pages to a level which ensures that when all CPUs are
2198 * dirtying in parallel, we cannot go more than 3% (1/32) over the dirty memory
2202 void writeback_set_ratelimit(void)
2204 struct wb_domain *dom = &global_wb_domain;
2205 unsigned long background_thresh;
2206 unsigned long dirty_thresh;
2208 global_dirty_limits(&background_thresh, &dirty_thresh);
2209 dom->dirty_limit = dirty_thresh;
2210 ratelimit_pages = dirty_thresh / (num_online_cpus() * 32);
2211 if (ratelimit_pages < 16)
2212 ratelimit_pages = 16;
2215 static int page_writeback_cpu_online(unsigned int cpu)
2217 writeback_set_ratelimit();
2221 #ifdef CONFIG_SYSCTL
2223 /* this is needed for the proc_doulongvec_minmax of vm_dirty_bytes */
2224 static const unsigned long dirty_bytes_min = 2 * PAGE_SIZE;
2226 static struct ctl_table vm_page_writeback_sysctls[] = {
2228 .procname = "dirty_background_ratio",
2229 .data = &dirty_background_ratio,
2230 .maxlen = sizeof(dirty_background_ratio),
2232 .proc_handler = dirty_background_ratio_handler,
2233 .extra1 = SYSCTL_ZERO,
2234 .extra2 = SYSCTL_ONE_HUNDRED,
2237 .procname = "dirty_background_bytes",
2238 .data = &dirty_background_bytes,
2239 .maxlen = sizeof(dirty_background_bytes),
2241 .proc_handler = dirty_background_bytes_handler,
2242 .extra1 = SYSCTL_LONG_ONE,
2245 .procname = "dirty_ratio",
2246 .data = &vm_dirty_ratio,
2247 .maxlen = sizeof(vm_dirty_ratio),
2249 .proc_handler = dirty_ratio_handler,
2250 .extra1 = SYSCTL_ZERO,
2251 .extra2 = SYSCTL_ONE_HUNDRED,
2254 .procname = "dirty_bytes",
2255 .data = &vm_dirty_bytes,
2256 .maxlen = sizeof(vm_dirty_bytes),
2258 .proc_handler = dirty_bytes_handler,
2259 .extra1 = (void *)&dirty_bytes_min,
2262 .procname = "dirty_writeback_centisecs",
2263 .data = &dirty_writeback_interval,
2264 .maxlen = sizeof(dirty_writeback_interval),
2266 .proc_handler = dirty_writeback_centisecs_handler,
2269 .procname = "dirty_expire_centisecs",
2270 .data = &dirty_expire_interval,
2271 .maxlen = sizeof(dirty_expire_interval),
2273 .proc_handler = proc_dointvec_minmax,
2274 .extra1 = SYSCTL_ZERO,
2276 #ifdef CONFIG_HIGHMEM
2278 .procname = "highmem_is_dirtyable",
2279 .data = &vm_highmem_is_dirtyable,
2280 .maxlen = sizeof(vm_highmem_is_dirtyable),
2282 .proc_handler = proc_dointvec_minmax,
2283 .extra1 = SYSCTL_ZERO,
2284 .extra2 = SYSCTL_ONE,
2288 .procname = "laptop_mode",
2289 .data = &laptop_mode,
2290 .maxlen = sizeof(laptop_mode),
2292 .proc_handler = proc_dointvec_jiffies,
2299 * Called early on to tune the page writeback dirty limits.
2301 * We used to scale dirty pages according to how total memory
2302 * related to pages that could be allocated for buffers.
2304 * However, that was when we used "dirty_ratio" to scale with
2305 * all memory, and we don't do that any more. "dirty_ratio"
2306 * is now applied to total non-HIGHPAGE memory, and as such we can't
2307 * get into the old insane situation any more where we had
2308 * large amounts of dirty pages compared to a small amount of
2309 * non-HIGHMEM memory.
2311 * But we might still want to scale the dirty_ratio by how
2312 * much memory the box has..
2314 void __init page_writeback_init(void)
2316 BUG_ON(wb_domain_init(&global_wb_domain, GFP_KERNEL));
2318 cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, "mm/writeback:online",
2319 page_writeback_cpu_online, NULL);
2320 cpuhp_setup_state(CPUHP_MM_WRITEBACK_DEAD, "mm/writeback:dead", NULL,
2321 page_writeback_cpu_online);
2322 #ifdef CONFIG_SYSCTL
2323 register_sysctl_init("vm", vm_page_writeback_sysctls);
2328 * tag_pages_for_writeback - tag pages to be written by write_cache_pages
2329 * @mapping: address space structure to write
2330 * @start: starting page index
2331 * @end: ending page index (inclusive)
2333 * This function scans the page range from @start to @end (inclusive) and tags
2334 * all pages that have DIRTY tag set with a special TOWRITE tag. The idea is
2335 * that write_cache_pages (or whoever calls this function) will then use
2336 * TOWRITE tag to identify pages eligible for writeback. This mechanism is
2337 * used to avoid livelocking of writeback by a process steadily creating new
2338 * dirty pages in the file (thus it is important for this function to be quick
2339 * so that it can tag pages faster than a dirtying process can create them).
2341 void tag_pages_for_writeback(struct address_space *mapping,
2342 pgoff_t start, pgoff_t end)
2344 XA_STATE(xas, &mapping->i_pages, start);
2345 unsigned int tagged = 0;
2349 xas_for_each_marked(&xas, page, end, PAGECACHE_TAG_DIRTY) {
2350 xas_set_mark(&xas, PAGECACHE_TAG_TOWRITE);
2351 if (++tagged % XA_CHECK_SCHED)
2355 xas_unlock_irq(&xas);
2359 xas_unlock_irq(&xas);
2361 EXPORT_SYMBOL(tag_pages_for_writeback);
2364 * write_cache_pages - walk the list of dirty pages of the given address space and write all of them.
2365 * @mapping: address space structure to write
2366 * @wbc: subtract the number of written pages from *@wbc->nr_to_write
2367 * @writepage: function called for each page
2368 * @data: data passed to writepage function
2370 * If a page is already under I/O, write_cache_pages() skips it, even
2371 * if it's dirty. This is desirable behaviour for memory-cleaning writeback,
2372 * but it is INCORRECT for data-integrity system calls such as fsync(). fsync()
2373 * and msync() need to guarantee that all the data which was dirty at the time
2374 * the call was made get new I/O started against them. If wbc->sync_mode is
2375 * WB_SYNC_ALL then we were called for data integrity and we must wait for
2376 * existing IO to complete.
2378 * To avoid livelocks (when other process dirties new pages), we first tag
2379 * pages which should be written back with TOWRITE tag and only then start
2380 * writing them. For data-integrity sync we have to be careful so that we do
2381 * not miss some pages (e.g., because some other process has cleared TOWRITE
2382 * tag we set). The rule we follow is that TOWRITE tag can be cleared only
2383 * by the process clearing the DIRTY tag (and submitting the page for IO).
2385 * To avoid deadlocks between range_cyclic writeback and callers that hold
2386 * pages in PageWriteback to aggregate IO until write_cache_pages() returns,
2387 * we do not loop back to the start of the file. Doing so causes a page
2388 * lock/page writeback access order inversion - we should only ever lock
2389 * multiple pages in ascending page->index order, and looping back to the start
2390 * of the file violates that rule and causes deadlocks.
2392 * Return: %0 on success, negative error code otherwise
2394 int write_cache_pages(struct address_space *mapping,
2395 struct writeback_control *wbc, writepage_t writepage,
2401 struct folio_batch fbatch;
2404 pgoff_t end; /* Inclusive */
2406 int range_whole = 0;
2409 folio_batch_init(&fbatch);
2410 if (wbc->range_cyclic) {
2411 index = mapping->writeback_index; /* prev offset */
2414 index = wbc->range_start >> PAGE_SHIFT;
2415 end = wbc->range_end >> PAGE_SHIFT;
2416 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2419 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages) {
2420 tag_pages_for_writeback(mapping, index, end);
2421 tag = PAGECACHE_TAG_TOWRITE;
2423 tag = PAGECACHE_TAG_DIRTY;
2426 while (!done && (index <= end)) {
2429 nr_folios = filemap_get_folios_tag(mapping, &index, end,
2435 for (i = 0; i < nr_folios; i++) {
2436 struct folio *folio = fbatch.folios[i];
2438 done_index = folio->index;
2443 * Page truncated or invalidated. We can freely skip it
2444 * then, even for data integrity operations: the page
2445 * has disappeared concurrently, so there could be no
2446 * real expectation of this data integrity operation
2447 * even if there is now a new, dirty page at the same
2448 * pagecache address.
2450 if (unlikely(folio->mapping != mapping)) {
2452 folio_unlock(folio);
2456 if (!folio_test_dirty(folio)) {
2457 /* someone wrote it for us */
2458 goto continue_unlock;
2461 if (folio_test_writeback(folio)) {
2462 if (wbc->sync_mode != WB_SYNC_NONE)
2463 folio_wait_writeback(folio);
2465 goto continue_unlock;
2468 BUG_ON(folio_test_writeback(folio));
2469 if (!folio_clear_dirty_for_io(folio))
2470 goto continue_unlock;
2472 trace_wbc_writepage(wbc, inode_to_bdi(mapping->host));
2473 error = writepage(folio, wbc, data);
2474 if (unlikely(error)) {
2476 * Handle errors according to the type of
2477 * writeback. There's no need to continue for
2478 * background writeback. Just push done_index
2479 * past this page so media errors won't choke
2480 * writeout for the entire file. For integrity
2481 * writeback, we must process the entire dirty
2482 * set regardless of errors because the fs may
2483 * still have state to clear for each page. In
2484 * that case we continue processing and return
2487 if (error == AOP_WRITEPAGE_ACTIVATE) {
2488 folio_unlock(folio);
2490 } else if (wbc->sync_mode != WB_SYNC_ALL) {
2492 done_index = folio->index +
2493 folio_nr_pages(folio);
2502 * We stop writing back only if we are not doing
2503 * integrity sync. In case of integrity sync we have to
2504 * keep going until we have written all the pages
2505 * we tagged for writeback prior to entering this loop.
2507 if (--wbc->nr_to_write <= 0 &&
2508 wbc->sync_mode == WB_SYNC_NONE) {
2513 folio_batch_release(&fbatch);
2518 * If we hit the last page and there is more work to be done: wrap
2519 * back the index back to the start of the file for the next
2520 * time we are called.
2522 if (wbc->range_cyclic && !done)
2524 if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
2525 mapping->writeback_index = done_index;
2529 EXPORT_SYMBOL(write_cache_pages);
2531 static int writepage_cb(struct folio *folio, struct writeback_control *wbc,
2534 struct address_space *mapping = data;
2535 int ret = mapping->a_ops->writepage(&folio->page, wbc);
2536 mapping_set_error(mapping, ret);
2540 int do_writepages(struct address_space *mapping, struct writeback_control *wbc)
2543 struct bdi_writeback *wb;
2545 if (wbc->nr_to_write <= 0)
2547 wb = inode_to_wb_wbc(mapping->host, wbc);
2548 wb_bandwidth_estimate_start(wb);
2550 if (mapping->a_ops->writepages) {
2551 ret = mapping->a_ops->writepages(mapping, wbc);
2552 } else if (mapping->a_ops->writepage) {
2553 struct blk_plug plug;
2555 blk_start_plug(&plug);
2556 ret = write_cache_pages(mapping, wbc, writepage_cb,
2558 blk_finish_plug(&plug);
2560 /* deal with chardevs and other special files */
2563 if (ret != -ENOMEM || wbc->sync_mode != WB_SYNC_ALL)
2567 * Lacking an allocation context or the locality or writeback
2568 * state of any of the inode's pages, throttle based on
2569 * writeback activity on the local node. It's as good a
2572 reclaim_throttle(NODE_DATA(numa_node_id()),
2573 VMSCAN_THROTTLE_WRITEBACK);
2576 * Usually few pages are written by now from those we've just submitted
2577 * but if there's constant writeback being submitted, this makes sure
2578 * writeback bandwidth is updated once in a while.
2580 if (time_is_before_jiffies(READ_ONCE(wb->bw_time_stamp) +
2581 BANDWIDTH_INTERVAL))
2582 wb_update_bandwidth(wb);
2587 * folio_write_one - write out a single folio and wait on I/O.
2588 * @folio: The folio to write.
2590 * The folio must be locked by the caller and will be unlocked upon return.
2592 * Note that the mapping's AS_EIO/AS_ENOSPC flags will be cleared when this
2595 * Return: %0 on success, negative error code otherwise
2597 int folio_write_one(struct folio *folio)
2599 struct address_space *mapping = folio->mapping;
2601 struct writeback_control wbc = {
2602 .sync_mode = WB_SYNC_ALL,
2603 .nr_to_write = folio_nr_pages(folio),
2606 BUG_ON(!folio_test_locked(folio));
2608 folio_wait_writeback(folio);
2610 if (folio_clear_dirty_for_io(folio)) {
2612 ret = mapping->a_ops->writepage(&folio->page, &wbc);
2614 folio_wait_writeback(folio);
2617 folio_unlock(folio);
2621 ret = filemap_check_errors(mapping);
2624 EXPORT_SYMBOL(folio_write_one);
2627 * For address_spaces which do not use buffers nor write back.
2629 bool noop_dirty_folio(struct address_space *mapping, struct folio *folio)
2631 if (!folio_test_dirty(folio))
2632 return !folio_test_set_dirty(folio);
2635 EXPORT_SYMBOL(noop_dirty_folio);
2638 * Helper function for set_page_dirty family.
2640 * Caller must hold lock_page_memcg().
2642 * NOTE: This relies on being atomic wrt interrupts.
2644 static void folio_account_dirtied(struct folio *folio,
2645 struct address_space *mapping)
2647 struct inode *inode = mapping->host;
2649 trace_writeback_dirty_folio(folio, mapping);
2651 if (mapping_can_writeback(mapping)) {
2652 struct bdi_writeback *wb;
2653 long nr = folio_nr_pages(folio);
2655 inode_attach_wb(inode, folio);
2656 wb = inode_to_wb(inode);
2658 __lruvec_stat_mod_folio(folio, NR_FILE_DIRTY, nr);
2659 __zone_stat_mod_folio(folio, NR_ZONE_WRITE_PENDING, nr);
2660 __node_stat_mod_folio(folio, NR_DIRTIED, nr);
2661 wb_stat_mod(wb, WB_RECLAIMABLE, nr);
2662 wb_stat_mod(wb, WB_DIRTIED, nr);
2663 task_io_account_write(nr * PAGE_SIZE);
2664 current->nr_dirtied += nr;
2665 __this_cpu_add(bdp_ratelimits, nr);
2667 mem_cgroup_track_foreign_dirty(folio, wb);
2672 * Helper function for deaccounting dirty page without writeback.
2674 * Caller must hold lock_page_memcg().
2676 void folio_account_cleaned(struct folio *folio, struct bdi_writeback *wb)
2678 long nr = folio_nr_pages(folio);
2680 lruvec_stat_mod_folio(folio, NR_FILE_DIRTY, -nr);
2681 zone_stat_mod_folio(folio, NR_ZONE_WRITE_PENDING, -nr);
2682 wb_stat_mod(wb, WB_RECLAIMABLE, -nr);
2683 task_io_account_cancelled_write(nr * PAGE_SIZE);
2687 * Mark the folio dirty, and set it dirty in the page cache, and mark
2690 * If warn is true, then emit a warning if the folio is not uptodate and has
2691 * not been truncated.
2693 * The caller must hold lock_page_memcg(). Most callers have the folio
2694 * locked. A few have the folio blocked from truncation through other
2695 * means (eg zap_vma_pages() has it mapped and is holding the page table
2696 * lock). This can also be called from mark_buffer_dirty(), which I
2697 * cannot prove is always protected against truncate.
2699 void __folio_mark_dirty(struct folio *folio, struct address_space *mapping,
2702 unsigned long flags;
2704 xa_lock_irqsave(&mapping->i_pages, flags);
2705 if (folio->mapping) { /* Race with truncate? */
2706 WARN_ON_ONCE(warn && !folio_test_uptodate(folio));
2707 folio_account_dirtied(folio, mapping);
2708 __xa_set_mark(&mapping->i_pages, folio_index(folio),
2709 PAGECACHE_TAG_DIRTY);
2711 xa_unlock_irqrestore(&mapping->i_pages, flags);
2715 * filemap_dirty_folio - Mark a folio dirty for filesystems which do not use buffer_heads.
2716 * @mapping: Address space this folio belongs to.
2717 * @folio: Folio to be marked as dirty.
2719 * Filesystems which do not use buffer heads should call this function
2720 * from their set_page_dirty address space operation. It ignores the
2721 * contents of folio_get_private(), so if the filesystem marks individual
2722 * blocks as dirty, the filesystem should handle that itself.
2724 * This is also sometimes used by filesystems which use buffer_heads when
2725 * a single buffer is being dirtied: we want to set the folio dirty in
2726 * that case, but not all the buffers. This is a "bottom-up" dirtying,
2727 * whereas block_dirty_folio() is a "top-down" dirtying.
2729 * The caller must ensure this doesn't race with truncation. Most will
2730 * simply hold the folio lock, but e.g. zap_pte_range() calls with the
2731 * folio mapped and the pte lock held, which also locks out truncation.
2733 bool filemap_dirty_folio(struct address_space *mapping, struct folio *folio)
2735 folio_memcg_lock(folio);
2736 if (folio_test_set_dirty(folio)) {
2737 folio_memcg_unlock(folio);
2741 __folio_mark_dirty(folio, mapping, !folio_test_private(folio));
2742 folio_memcg_unlock(folio);
2744 if (mapping->host) {
2745 /* !PageAnon && !swapper_space */
2746 __mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
2750 EXPORT_SYMBOL(filemap_dirty_folio);
2753 * folio_account_redirty - Manually account for redirtying a page.
2754 * @folio: The folio which is being redirtied.
2756 * Most filesystems should call folio_redirty_for_writepage() instead
2757 * of this fuction. If your filesystem is doing writeback outside the
2758 * context of a writeback_control(), it can call this when redirtying
2759 * a folio, to de-account the dirty counters (NR_DIRTIED, WB_DIRTIED,
2760 * tsk->nr_dirtied), so that they match the written counters (NR_WRITTEN,
2761 * WB_WRITTEN) in long term. The mismatches will lead to systematic errors
2762 * in balanced_dirty_ratelimit and the dirty pages position control.
2764 void folio_account_redirty(struct folio *folio)
2766 struct address_space *mapping = folio->mapping;
2768 if (mapping && mapping_can_writeback(mapping)) {
2769 struct inode *inode = mapping->host;
2770 struct bdi_writeback *wb;
2771 struct wb_lock_cookie cookie = {};
2772 long nr = folio_nr_pages(folio);
2774 wb = unlocked_inode_to_wb_begin(inode, &cookie);
2775 current->nr_dirtied -= nr;
2776 node_stat_mod_folio(folio, NR_DIRTIED, -nr);
2777 wb_stat_mod(wb, WB_DIRTIED, -nr);
2778 unlocked_inode_to_wb_end(inode, &cookie);
2781 EXPORT_SYMBOL(folio_account_redirty);
2784 * folio_redirty_for_writepage - Decline to write a dirty folio.
2785 * @wbc: The writeback control.
2786 * @folio: The folio.
2788 * When a writepage implementation decides that it doesn't want to write
2789 * @folio for some reason, it should call this function, unlock @folio and
2792 * Return: True if we redirtied the folio. False if someone else dirtied
2795 bool folio_redirty_for_writepage(struct writeback_control *wbc,
2796 struct folio *folio)
2799 long nr = folio_nr_pages(folio);
2801 wbc->pages_skipped += nr;
2802 ret = filemap_dirty_folio(folio->mapping, folio);
2803 folio_account_redirty(folio);
2807 EXPORT_SYMBOL(folio_redirty_for_writepage);
2810 * folio_mark_dirty - Mark a folio as being modified.
2811 * @folio: The folio.
2813 * The folio may not be truncated while this function is running.
2814 * Holding the folio lock is sufficient to prevent truncation, but some
2815 * callers cannot acquire a sleeping lock. These callers instead hold
2816 * the page table lock for a page table which contains at least one page
2817 * in this folio. Truncation will block on the page table lock as it
2818 * unmaps pages before removing the folio from its mapping.
2820 * Return: True if the folio was newly dirtied, false if it was already dirty.
2822 bool folio_mark_dirty(struct folio *folio)
2824 struct address_space *mapping = folio_mapping(folio);
2826 if (likely(mapping)) {
2828 * readahead/folio_deactivate could remain
2829 * PG_readahead/PG_reclaim due to race with folio_end_writeback
2830 * About readahead, if the folio is written, the flags would be
2831 * reset. So no problem.
2832 * About folio_deactivate, if the folio is redirtied,
2833 * the flag will be reset. So no problem. but if the
2834 * folio is used by readahead it will confuse readahead
2835 * and make it restart the size rampup process. But it's
2836 * a trivial problem.
2838 if (folio_test_reclaim(folio))
2839 folio_clear_reclaim(folio);
2840 return mapping->a_ops->dirty_folio(mapping, folio);
2843 return noop_dirty_folio(mapping, folio);
2845 EXPORT_SYMBOL(folio_mark_dirty);
2848 * set_page_dirty() is racy if the caller has no reference against
2849 * page->mapping->host, and if the page is unlocked. This is because another
2850 * CPU could truncate the page off the mapping and then free the mapping.
2852 * Usually, the page _is_ locked, or the caller is a user-space process which
2853 * holds a reference on the inode by having an open file.
2855 * In other cases, the page should be locked before running set_page_dirty().
2857 int set_page_dirty_lock(struct page *page)
2862 ret = set_page_dirty(page);
2866 EXPORT_SYMBOL(set_page_dirty_lock);
2869 * This cancels just the dirty bit on the kernel page itself, it does NOT
2870 * actually remove dirty bits on any mmap's that may be around. It also
2871 * leaves the page tagged dirty, so any sync activity will still find it on
2872 * the dirty lists, and in particular, clear_page_dirty_for_io() will still
2873 * look at the dirty bits in the VM.
2875 * Doing this should *normally* only ever be done when a page is truncated,
2876 * and is not actually mapped anywhere at all. However, fs/buffer.c does
2877 * this when it notices that somebody has cleaned out all the buffers on a
2878 * page without actually doing it through the VM. Can you say "ext3 is
2879 * horribly ugly"? Thought you could.
2881 void __folio_cancel_dirty(struct folio *folio)
2883 struct address_space *mapping = folio_mapping(folio);
2885 if (mapping_can_writeback(mapping)) {
2886 struct inode *inode = mapping->host;
2887 struct bdi_writeback *wb;
2888 struct wb_lock_cookie cookie = {};
2890 folio_memcg_lock(folio);
2891 wb = unlocked_inode_to_wb_begin(inode, &cookie);
2893 if (folio_test_clear_dirty(folio))
2894 folio_account_cleaned(folio, wb);
2896 unlocked_inode_to_wb_end(inode, &cookie);
2897 folio_memcg_unlock(folio);
2899 folio_clear_dirty(folio);
2902 EXPORT_SYMBOL(__folio_cancel_dirty);
2905 * Clear a folio's dirty flag, while caring for dirty memory accounting.
2906 * Returns true if the folio was previously dirty.
2908 * This is for preparing to put the folio under writeout. We leave
2909 * the folio tagged as dirty in the xarray so that a concurrent
2910 * write-for-sync can discover it via a PAGECACHE_TAG_DIRTY walk.
2911 * The ->writepage implementation will run either folio_start_writeback()
2912 * or folio_mark_dirty(), at which stage we bring the folio's dirty flag
2913 * and xarray dirty tag back into sync.
2915 * This incoherency between the folio's dirty flag and xarray tag is
2916 * unfortunate, but it only exists while the folio is locked.
2918 bool folio_clear_dirty_for_io(struct folio *folio)
2920 struct address_space *mapping = folio_mapping(folio);
2923 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
2925 if (mapping && mapping_can_writeback(mapping)) {
2926 struct inode *inode = mapping->host;
2927 struct bdi_writeback *wb;
2928 struct wb_lock_cookie cookie = {};
2931 * Yes, Virginia, this is indeed insane.
2933 * We use this sequence to make sure that
2934 * (a) we account for dirty stats properly
2935 * (b) we tell the low-level filesystem to
2936 * mark the whole folio dirty if it was
2937 * dirty in a pagetable. Only to then
2938 * (c) clean the folio again and return 1 to
2939 * cause the writeback.
2941 * This way we avoid all nasty races with the
2942 * dirty bit in multiple places and clearing
2943 * them concurrently from different threads.
2945 * Note! Normally the "folio_mark_dirty(folio)"
2946 * has no effect on the actual dirty bit - since
2947 * that will already usually be set. But we
2948 * need the side effects, and it can help us
2951 * We basically use the folio "master dirty bit"
2952 * as a serialization point for all the different
2953 * threads doing their things.
2955 if (folio_mkclean(folio))
2956 folio_mark_dirty(folio);
2958 * We carefully synchronise fault handlers against
2959 * installing a dirty pte and marking the folio dirty
2960 * at this point. We do this by having them hold the
2961 * page lock while dirtying the folio, and folios are
2962 * always locked coming in here, so we get the desired
2965 wb = unlocked_inode_to_wb_begin(inode, &cookie);
2966 if (folio_test_clear_dirty(folio)) {
2967 long nr = folio_nr_pages(folio);
2968 lruvec_stat_mod_folio(folio, NR_FILE_DIRTY, -nr);
2969 zone_stat_mod_folio(folio, NR_ZONE_WRITE_PENDING, -nr);
2970 wb_stat_mod(wb, WB_RECLAIMABLE, -nr);
2973 unlocked_inode_to_wb_end(inode, &cookie);
2976 return folio_test_clear_dirty(folio);
2978 EXPORT_SYMBOL(folio_clear_dirty_for_io);
2980 static void wb_inode_writeback_start(struct bdi_writeback *wb)
2982 atomic_inc(&wb->writeback_inodes);
2985 static void wb_inode_writeback_end(struct bdi_writeback *wb)
2987 unsigned long flags;
2988 atomic_dec(&wb->writeback_inodes);
2990 * Make sure estimate of writeback throughput gets updated after
2991 * writeback completed. We delay the update by BANDWIDTH_INTERVAL
2992 * (which is the interval other bandwidth updates use for batching) so
2993 * that if multiple inodes end writeback at a similar time, they get
2994 * batched into one bandwidth update.
2996 spin_lock_irqsave(&wb->work_lock, flags);
2997 if (test_bit(WB_registered, &wb->state))
2998 queue_delayed_work(bdi_wq, &wb->bw_dwork, BANDWIDTH_INTERVAL);
2999 spin_unlock_irqrestore(&wb->work_lock, flags);
3002 bool __folio_end_writeback(struct folio *folio)
3004 long nr = folio_nr_pages(folio);
3005 struct address_space *mapping = folio_mapping(folio);
3008 folio_memcg_lock(folio);
3009 if (mapping && mapping_use_writeback_tags(mapping)) {
3010 struct inode *inode = mapping->host;
3011 struct backing_dev_info *bdi = inode_to_bdi(inode);
3012 unsigned long flags;
3014 xa_lock_irqsave(&mapping->i_pages, flags);
3015 ret = folio_test_clear_writeback(folio);
3017 __xa_clear_mark(&mapping->i_pages, folio_index(folio),
3018 PAGECACHE_TAG_WRITEBACK);
3019 if (bdi->capabilities & BDI_CAP_WRITEBACK_ACCT) {
3020 struct bdi_writeback *wb = inode_to_wb(inode);
3022 wb_stat_mod(wb, WB_WRITEBACK, -nr);
3023 __wb_writeout_add(wb, nr);
3024 if (!mapping_tagged(mapping,
3025 PAGECACHE_TAG_WRITEBACK))
3026 wb_inode_writeback_end(wb);
3030 if (mapping->host && !mapping_tagged(mapping,
3031 PAGECACHE_TAG_WRITEBACK))
3032 sb_clear_inode_writeback(mapping->host);
3034 xa_unlock_irqrestore(&mapping->i_pages, flags);
3036 ret = folio_test_clear_writeback(folio);
3039 lruvec_stat_mod_folio(folio, NR_WRITEBACK, -nr);
3040 zone_stat_mod_folio(folio, NR_ZONE_WRITE_PENDING, -nr);
3041 node_stat_mod_folio(folio, NR_WRITTEN, nr);
3043 folio_memcg_unlock(folio);
3047 bool __folio_start_writeback(struct folio *folio, bool keep_write)
3049 long nr = folio_nr_pages(folio);
3050 struct address_space *mapping = folio_mapping(folio);
3054 folio_memcg_lock(folio);
3055 if (mapping && mapping_use_writeback_tags(mapping)) {
3056 XA_STATE(xas, &mapping->i_pages, folio_index(folio));
3057 struct inode *inode = mapping->host;
3058 struct backing_dev_info *bdi = inode_to_bdi(inode);
3059 unsigned long flags;
3061 xas_lock_irqsave(&xas, flags);
3063 ret = folio_test_set_writeback(folio);
3067 on_wblist = mapping_tagged(mapping,
3068 PAGECACHE_TAG_WRITEBACK);
3070 xas_set_mark(&xas, PAGECACHE_TAG_WRITEBACK);
3071 if (bdi->capabilities & BDI_CAP_WRITEBACK_ACCT) {
3072 struct bdi_writeback *wb = inode_to_wb(inode);
3074 wb_stat_mod(wb, WB_WRITEBACK, nr);
3076 wb_inode_writeback_start(wb);
3080 * We can come through here when swapping
3081 * anonymous folios, so we don't necessarily
3082 * have an inode to track for sync.
3084 if (mapping->host && !on_wblist)
3085 sb_mark_inode_writeback(mapping->host);
3087 if (!folio_test_dirty(folio))
3088 xas_clear_mark(&xas, PAGECACHE_TAG_DIRTY);
3090 xas_clear_mark(&xas, PAGECACHE_TAG_TOWRITE);
3091 xas_unlock_irqrestore(&xas, flags);
3093 ret = folio_test_set_writeback(folio);
3096 lruvec_stat_mod_folio(folio, NR_WRITEBACK, nr);
3097 zone_stat_mod_folio(folio, NR_ZONE_WRITE_PENDING, nr);
3099 folio_memcg_unlock(folio);
3100 access_ret = arch_make_folio_accessible(folio);
3102 * If writeback has been triggered on a page that cannot be made
3103 * accessible, it is too late to recover here.
3105 VM_BUG_ON_FOLIO(access_ret != 0, folio);
3109 EXPORT_SYMBOL(__folio_start_writeback);
3112 * folio_wait_writeback - Wait for a folio to finish writeback.
3113 * @folio: The folio to wait for.
3115 * If the folio is currently being written back to storage, wait for the
3118 * Context: Sleeps. Must be called in process context and with
3119 * no spinlocks held. Caller should hold a reference on the folio.
3120 * If the folio is not locked, writeback may start again after writeback
3123 void folio_wait_writeback(struct folio *folio)
3125 while (folio_test_writeback(folio)) {
3126 trace_folio_wait_writeback(folio, folio_mapping(folio));
3127 folio_wait_bit(folio, PG_writeback);
3130 EXPORT_SYMBOL_GPL(folio_wait_writeback);
3133 * folio_wait_writeback_killable - Wait for a folio to finish writeback.
3134 * @folio: The folio to wait for.
3136 * If the folio is currently being written back to storage, wait for the
3137 * I/O to complete or a fatal signal to arrive.
3139 * Context: Sleeps. Must be called in process context and with
3140 * no spinlocks held. Caller should hold a reference on the folio.
3141 * If the folio is not locked, writeback may start again after writeback
3143 * Return: 0 on success, -EINTR if we get a fatal signal while waiting.
3145 int folio_wait_writeback_killable(struct folio *folio)
3147 while (folio_test_writeback(folio)) {
3148 trace_folio_wait_writeback(folio, folio_mapping(folio));
3149 if (folio_wait_bit_killable(folio, PG_writeback))
3155 EXPORT_SYMBOL_GPL(folio_wait_writeback_killable);
3158 * folio_wait_stable() - wait for writeback to finish, if necessary.
3159 * @folio: The folio to wait on.
3161 * This function determines if the given folio is related to a backing
3162 * device that requires folio contents to be held stable during writeback.
3163 * If so, then it will wait for any pending writeback to complete.
3165 * Context: Sleeps. Must be called in process context and with
3166 * no spinlocks held. Caller should hold a reference on the folio.
3167 * If the folio is not locked, writeback may start again after writeback
3170 void folio_wait_stable(struct folio *folio)
3172 if (folio_inode(folio)->i_sb->s_iflags & SB_I_STABLE_WRITES)
3173 folio_wait_writeback(folio);
3175 EXPORT_SYMBOL_GPL(folio_wait_stable);