4 * Copyright (C) 1998,2000 Rik van Riel
5 * Thanks go out to Claus Fischer for some serious inspiration and
6 * for goading me into coding this file...
7 * Copyright (C) 2010 Google, Inc.
8 * Rewritten by David Rientjes
10 * The routines in this file are used to kill a process when
11 * we're seriously out of memory. This gets called from __alloc_pages()
12 * in mm/page_alloc.c when we really run out of memory.
14 * Since we won't call these routines often (on a well-configured
15 * machine) this file will double as a 'coding guide' and a signpost
16 * for newbie kernel hackers. It features several pointers to major
17 * kernel subsystems and hints as to where to find out what things do.
20 #include <linux/oom.h>
22 #include <linux/err.h>
23 #include <linux/gfp.h>
24 #include <linux/sched.h>
25 #include <linux/sched/mm.h>
26 #include <linux/sched/coredump.h>
27 #include <linux/sched/task.h>
28 #include <linux/swap.h>
29 #include <linux/timex.h>
30 #include <linux/jiffies.h>
31 #include <linux/cpuset.h>
32 #include <linux/export.h>
33 #include <linux/notifier.h>
34 #include <linux/memcontrol.h>
35 #include <linux/mempolicy.h>
36 #include <linux/security.h>
37 #include <linux/ptrace.h>
38 #include <linux/freezer.h>
39 #include <linux/ftrace.h>
40 #include <linux/ratelimit.h>
41 #include <linux/kthread.h>
42 #include <linux/init.h>
43 #include <linux/mmu_notifier.h>
49 #define CREATE_TRACE_POINTS
50 #include <trace/events/oom.h>
52 int sysctl_panic_on_oom;
53 int sysctl_oom_kill_allocating_task;
54 int sysctl_oom_dump_tasks = 1;
57 * Serializes oom killer invocations (out_of_memory()) from all contexts to
58 * prevent from over eager oom killing (e.g. when the oom killer is invoked
59 * from different domains).
61 * oom_killer_disable() relies on this lock to stabilize oom_killer_disabled
64 DEFINE_MUTEX(oom_lock);
68 * has_intersects_mems_allowed() - check task eligiblity for kill
69 * @start: task struct of which task to consider
70 * @mask: nodemask passed to page allocator for mempolicy ooms
72 * Task eligibility is determined by whether or not a candidate task, @tsk,
73 * shares the same mempolicy nodes as current if it is bound by such a policy
74 * and whether or not it has the same set of allowed cpuset nodes.
76 static bool has_intersects_mems_allowed(struct task_struct *start,
77 const nodemask_t *mask)
79 struct task_struct *tsk;
83 for_each_thread(start, tsk) {
86 * If this is a mempolicy constrained oom, tsk's
87 * cpuset is irrelevant. Only return true if its
88 * mempolicy intersects current, otherwise it may be
91 ret = mempolicy_nodemask_intersects(tsk, mask);
94 * This is not a mempolicy constrained oom, so only
95 * check the mems of tsk's cpuset.
97 ret = cpuset_mems_allowed_intersects(current, tsk);
107 static bool has_intersects_mems_allowed(struct task_struct *tsk,
108 const nodemask_t *mask)
112 #endif /* CONFIG_NUMA */
115 * The process p may have detached its own ->mm while exiting or through
116 * use_mm(), but one or more of its subthreads may still have a valid
117 * pointer. Return p, or any of its subthreads with a valid ->mm, with
120 struct task_struct *find_lock_task_mm(struct task_struct *p)
122 struct task_struct *t;
126 for_each_thread(p, t) {
140 * order == -1 means the oom kill is required by sysrq, otherwise only
141 * for display purposes.
143 static inline bool is_sysrq_oom(struct oom_control *oc)
145 return oc->order == -1;
148 static inline bool is_memcg_oom(struct oom_control *oc)
150 return oc->memcg != NULL;
153 /* return true if the task is not adequate as candidate victim task. */
154 static bool oom_unkillable_task(struct task_struct *p,
155 struct mem_cgroup *memcg, const nodemask_t *nodemask)
157 if (is_global_init(p))
159 if (p->flags & PF_KTHREAD)
162 /* When mem_cgroup_out_of_memory() and p is not member of the group */
163 if (memcg && !task_in_mem_cgroup(p, memcg))
166 /* p may not have freeable memory in nodemask */
167 if (!has_intersects_mems_allowed(p, nodemask))
174 * Print out unreclaimble slabs info when unreclaimable slabs amount is greater
175 * than all user memory (LRU pages)
177 static bool is_dump_unreclaim_slabs(void)
179 unsigned long nr_lru;
181 nr_lru = global_node_page_state(NR_ACTIVE_ANON) +
182 global_node_page_state(NR_INACTIVE_ANON) +
183 global_node_page_state(NR_ACTIVE_FILE) +
184 global_node_page_state(NR_INACTIVE_FILE) +
185 global_node_page_state(NR_ISOLATED_ANON) +
186 global_node_page_state(NR_ISOLATED_FILE) +
187 global_node_page_state(NR_UNEVICTABLE);
189 return (global_node_page_state(NR_SLAB_UNRECLAIMABLE) > nr_lru);
193 * oom_badness - heuristic function to determine which candidate task to kill
194 * @p: task struct of which task we should calculate
195 * @totalpages: total present RAM allowed for page allocation
196 * @memcg: task's memory controller, if constrained
197 * @nodemask: nodemask passed to page allocator for mempolicy ooms
199 * The heuristic for determining which task to kill is made to be as simple and
200 * predictable as possible. The goal is to return the highest value for the
201 * task consuming the most memory to avoid subsequent oom failures.
203 unsigned long oom_badness(struct task_struct *p, struct mem_cgroup *memcg,
204 const nodemask_t *nodemask, unsigned long totalpages)
209 if (oom_unkillable_task(p, memcg, nodemask))
212 p = find_lock_task_mm(p);
217 * Do not even consider tasks which are explicitly marked oom
218 * unkillable or have been already oom reaped or the are in
219 * the middle of vfork
221 adj = (long)p->signal->oom_score_adj;
222 if (adj == OOM_SCORE_ADJ_MIN ||
223 test_bit(MMF_OOM_SKIP, &p->mm->flags) ||
230 * The baseline for the badness score is the proportion of RAM that each
231 * task's rss, pagetable and swap space use.
233 points = get_mm_rss(p->mm) + get_mm_counter(p->mm, MM_SWAPENTS) +
234 mm_pgtables_bytes(p->mm) / PAGE_SIZE;
237 /* Normalize to oom_score_adj units */
238 adj *= totalpages / 1000;
242 * Never return 0 for an eligible task regardless of the root bonus and
243 * oom_score_adj (oom_score_adj can't be OOM_SCORE_ADJ_MIN here).
245 return points > 0 ? points : 1;
248 static const char * const oom_constraint_text[] = {
249 [CONSTRAINT_NONE] = "CONSTRAINT_NONE",
250 [CONSTRAINT_CPUSET] = "CONSTRAINT_CPUSET",
251 [CONSTRAINT_MEMORY_POLICY] = "CONSTRAINT_MEMORY_POLICY",
252 [CONSTRAINT_MEMCG] = "CONSTRAINT_MEMCG",
256 * Determine the type of allocation constraint.
258 static enum oom_constraint constrained_alloc(struct oom_control *oc)
262 enum zone_type high_zoneidx = gfp_zone(oc->gfp_mask);
263 bool cpuset_limited = false;
266 if (is_memcg_oom(oc)) {
267 oc->totalpages = mem_cgroup_get_max(oc->memcg) ?: 1;
268 return CONSTRAINT_MEMCG;
271 /* Default to all available memory */
272 oc->totalpages = totalram_pages() + total_swap_pages;
274 if (!IS_ENABLED(CONFIG_NUMA))
275 return CONSTRAINT_NONE;
278 return CONSTRAINT_NONE;
280 * Reach here only when __GFP_NOFAIL is used. So, we should avoid
281 * to kill current.We have to random task kill in this case.
282 * Hopefully, CONSTRAINT_THISNODE...but no way to handle it, now.
284 if (oc->gfp_mask & __GFP_THISNODE)
285 return CONSTRAINT_NONE;
288 * This is not a __GFP_THISNODE allocation, so a truncated nodemask in
289 * the page allocator means a mempolicy is in effect. Cpuset policy
290 * is enforced in get_page_from_freelist().
293 !nodes_subset(node_states[N_MEMORY], *oc->nodemask)) {
294 oc->totalpages = total_swap_pages;
295 for_each_node_mask(nid, *oc->nodemask)
296 oc->totalpages += node_spanned_pages(nid);
297 return CONSTRAINT_MEMORY_POLICY;
300 /* Check this allocation failure is caused by cpuset's wall function */
301 for_each_zone_zonelist_nodemask(zone, z, oc->zonelist,
302 high_zoneidx, oc->nodemask)
303 if (!cpuset_zone_allowed(zone, oc->gfp_mask))
304 cpuset_limited = true;
306 if (cpuset_limited) {
307 oc->totalpages = total_swap_pages;
308 for_each_node_mask(nid, cpuset_current_mems_allowed)
309 oc->totalpages += node_spanned_pages(nid);
310 return CONSTRAINT_CPUSET;
312 return CONSTRAINT_NONE;
315 static int oom_evaluate_task(struct task_struct *task, void *arg)
317 struct oom_control *oc = arg;
318 unsigned long points;
320 if (oom_unkillable_task(task, NULL, oc->nodemask))
324 * This task already has access to memory reserves and is being killed.
325 * Don't allow any other task to have access to the reserves unless
326 * the task has MMF_OOM_SKIP because chances that it would release
327 * any memory is quite low.
329 if (!is_sysrq_oom(oc) && tsk_is_oom_victim(task)) {
330 if (test_bit(MMF_OOM_SKIP, &task->signal->oom_mm->flags))
336 * If task is allocating a lot of memory and has been marked to be
337 * killed first if it triggers an oom, then select it.
339 if (oom_task_origin(task)) {
344 points = oom_badness(task, NULL, oc->nodemask, oc->totalpages);
345 if (!points || points < oc->chosen_points)
348 /* Prefer thread group leaders for display purposes */
349 if (points == oc->chosen_points && thread_group_leader(oc->chosen))
353 put_task_struct(oc->chosen);
354 get_task_struct(task);
356 oc->chosen_points = points;
361 put_task_struct(oc->chosen);
362 oc->chosen = (void *)-1UL;
367 * Simple selection loop. We choose the process with the highest number of
368 * 'points'. In case scan was aborted, oc->chosen is set to -1.
370 static void select_bad_process(struct oom_control *oc)
372 if (is_memcg_oom(oc))
373 mem_cgroup_scan_tasks(oc->memcg, oom_evaluate_task, oc);
375 struct task_struct *p;
379 if (oom_evaluate_task(p, oc))
384 oc->chosen_points = oc->chosen_points * 1000 / oc->totalpages;
388 * dump_tasks - dump current memory state of all system tasks
389 * @memcg: current's memory controller, if constrained
390 * @nodemask: nodemask passed to page allocator for mempolicy ooms
392 * Dumps the current memory state of all eligible tasks. Tasks not in the same
393 * memcg, not in the same cpuset, or bound to a disjoint set of mempolicy nodes
395 * State information includes task's pid, uid, tgid, vm size, rss,
396 * pgtables_bytes, swapents, oom_score_adj value, and name.
398 static void dump_tasks(struct mem_cgroup *memcg, const nodemask_t *nodemask)
400 struct task_struct *p;
401 struct task_struct *task;
403 pr_info("Tasks state (memory values in pages):\n");
404 pr_info("[ pid ] uid tgid total_vm rss pgtables_bytes swapents oom_score_adj name\n");
406 for_each_process(p) {
407 if (oom_unkillable_task(p, memcg, nodemask))
410 task = find_lock_task_mm(p);
413 * This is a kthread or all of p's threads have already
414 * detached their mm's. There's no need to report
415 * them; they can't be oom killed anyway.
420 pr_info("[%7d] %5d %5d %8lu %8lu %8ld %8lu %5hd %s\n",
421 task->pid, from_kuid(&init_user_ns, task_uid(task)),
422 task->tgid, task->mm->total_vm, get_mm_rss(task->mm),
423 mm_pgtables_bytes(task->mm),
424 get_mm_counter(task->mm, MM_SWAPENTS),
425 task->signal->oom_score_adj, task->comm);
431 static void dump_oom_summary(struct oom_control *oc, struct task_struct *victim)
433 /* one line summary of the oom killer context. */
434 pr_info("oom-kill:constraint=%s,nodemask=%*pbl",
435 oom_constraint_text[oc->constraint],
436 nodemask_pr_args(oc->nodemask));
437 cpuset_print_current_mems_allowed();
438 mem_cgroup_print_oom_context(oc->memcg, victim);
439 pr_cont(",task=%s,pid=%d,uid=%d\n", victim->comm, victim->pid,
440 from_kuid(&init_user_ns, task_uid(victim)));
443 static void dump_header(struct oom_control *oc, struct task_struct *p)
445 pr_warn("%s invoked oom-killer: gfp_mask=%#x(%pGg), order=%d, oom_score_adj=%hd\n",
446 current->comm, oc->gfp_mask, &oc->gfp_mask, oc->order,
447 current->signal->oom_score_adj);
448 if (!IS_ENABLED(CONFIG_COMPACTION) && oc->order)
449 pr_warn("COMPACTION is disabled!!!\n");
452 if (is_memcg_oom(oc))
453 mem_cgroup_print_oom_meminfo(oc->memcg);
455 show_mem(SHOW_MEM_FILTER_NODES, oc->nodemask);
456 if (is_dump_unreclaim_slabs())
457 dump_unreclaimable_slab();
459 if (sysctl_oom_dump_tasks)
460 dump_tasks(oc->memcg, oc->nodemask);
462 dump_oom_summary(oc, p);
466 * Number of OOM victims in flight
468 static atomic_t oom_victims = ATOMIC_INIT(0);
469 static DECLARE_WAIT_QUEUE_HEAD(oom_victims_wait);
471 static bool oom_killer_disabled __read_mostly;
473 #define K(x) ((x) << (PAGE_SHIFT-10))
476 * task->mm can be NULL if the task is the exited group leader. So to
477 * determine whether the task is using a particular mm, we examine all the
478 * task's threads: if one of those is using this mm then this task was also
481 bool process_shares_mm(struct task_struct *p, struct mm_struct *mm)
483 struct task_struct *t;
485 for_each_thread(p, t) {
486 struct mm_struct *t_mm = READ_ONCE(t->mm);
495 * OOM Reaper kernel thread which tries to reap the memory used by the OOM
496 * victim (if that is possible) to help the OOM killer to move on.
498 static struct task_struct *oom_reaper_th;
499 static DECLARE_WAIT_QUEUE_HEAD(oom_reaper_wait);
500 static struct task_struct *oom_reaper_list;
501 static DEFINE_SPINLOCK(oom_reaper_lock);
503 bool __oom_reap_task_mm(struct mm_struct *mm)
505 struct vm_area_struct *vma;
509 * Tell all users of get_user/copy_from_user etc... that the content
510 * is no longer stable. No barriers really needed because unmapping
511 * should imply barriers already and the reader would hit a page fault
512 * if it stumbled over a reaped memory.
514 set_bit(MMF_UNSTABLE, &mm->flags);
516 for (vma = mm->mmap ; vma; vma = vma->vm_next) {
517 if (!can_madv_dontneed_vma(vma))
521 * Only anonymous pages have a good chance to be dropped
522 * without additional steps which we cannot afford as we
525 * We do not even care about fs backed pages because all
526 * which are reclaimable have already been reclaimed and
527 * we do not want to block exit_mmap by keeping mm ref
528 * count elevated without a good reason.
530 if (vma_is_anonymous(vma) || !(vma->vm_flags & VM_SHARED)) {
531 struct mmu_notifier_range range;
532 struct mmu_gather tlb;
534 mmu_notifier_range_init(&range, MMU_NOTIFY_UNMAP, 0,
535 vma, mm, vma->vm_start,
537 tlb_gather_mmu(&tlb, mm, range.start, range.end);
538 if (mmu_notifier_invalidate_range_start_nonblock(&range)) {
539 tlb_finish_mmu(&tlb, range.start, range.end);
543 unmap_page_range(&tlb, vma, range.start, range.end, NULL);
544 mmu_notifier_invalidate_range_end(&range);
545 tlb_finish_mmu(&tlb, range.start, range.end);
553 * Reaps the address space of the give task.
555 * Returns true on success and false if none or part of the address space
556 * has been reclaimed and the caller should retry later.
558 static bool oom_reap_task_mm(struct task_struct *tsk, struct mm_struct *mm)
562 if (!down_read_trylock(&mm->mmap_sem)) {
563 trace_skip_task_reaping(tsk->pid);
568 * MMF_OOM_SKIP is set by exit_mmap when the OOM reaper can't
569 * work on the mm anymore. The check for MMF_OOM_SKIP must run
570 * under mmap_sem for reading because it serializes against the
571 * down_write();up_write() cycle in exit_mmap().
573 if (test_bit(MMF_OOM_SKIP, &mm->flags)) {
574 trace_skip_task_reaping(tsk->pid);
578 trace_start_task_reaping(tsk->pid);
580 /* failed to reap part of the address space. Try again later */
581 ret = __oom_reap_task_mm(mm);
585 pr_info("oom_reaper: reaped process %d (%s), now anon-rss:%lukB, file-rss:%lukB, shmem-rss:%lukB\n",
586 task_pid_nr(tsk), tsk->comm,
587 K(get_mm_counter(mm, MM_ANONPAGES)),
588 K(get_mm_counter(mm, MM_FILEPAGES)),
589 K(get_mm_counter(mm, MM_SHMEMPAGES)));
591 trace_finish_task_reaping(tsk->pid);
593 up_read(&mm->mmap_sem);
598 #define MAX_OOM_REAP_RETRIES 10
599 static void oom_reap_task(struct task_struct *tsk)
602 struct mm_struct *mm = tsk->signal->oom_mm;
604 /* Retry the down_read_trylock(mmap_sem) a few times */
605 while (attempts++ < MAX_OOM_REAP_RETRIES && !oom_reap_task_mm(tsk, mm))
606 schedule_timeout_idle(HZ/10);
608 if (attempts <= MAX_OOM_REAP_RETRIES ||
609 test_bit(MMF_OOM_SKIP, &mm->flags))
612 pr_info("oom_reaper: unable to reap pid:%d (%s)\n",
613 task_pid_nr(tsk), tsk->comm);
614 debug_show_all_locks();
617 tsk->oom_reaper_list = NULL;
620 * Hide this mm from OOM killer because it has been either reaped or
621 * somebody can't call up_write(mmap_sem).
623 set_bit(MMF_OOM_SKIP, &mm->flags);
625 /* Drop a reference taken by wake_oom_reaper */
626 put_task_struct(tsk);
629 static int oom_reaper(void *unused)
632 struct task_struct *tsk = NULL;
634 wait_event_freezable(oom_reaper_wait, oom_reaper_list != NULL);
635 spin_lock(&oom_reaper_lock);
636 if (oom_reaper_list != NULL) {
637 tsk = oom_reaper_list;
638 oom_reaper_list = tsk->oom_reaper_list;
640 spin_unlock(&oom_reaper_lock);
649 static void wake_oom_reaper(struct task_struct *tsk)
651 /* mm is already queued? */
652 if (test_and_set_bit(MMF_OOM_REAP_QUEUED, &tsk->signal->oom_mm->flags))
655 get_task_struct(tsk);
657 spin_lock(&oom_reaper_lock);
658 tsk->oom_reaper_list = oom_reaper_list;
659 oom_reaper_list = tsk;
660 spin_unlock(&oom_reaper_lock);
661 trace_wake_reaper(tsk->pid);
662 wake_up(&oom_reaper_wait);
665 static int __init oom_init(void)
667 oom_reaper_th = kthread_run(oom_reaper, NULL, "oom_reaper");
670 subsys_initcall(oom_init)
672 static inline void wake_oom_reaper(struct task_struct *tsk)
675 #endif /* CONFIG_MMU */
678 * mark_oom_victim - mark the given task as OOM victim
681 * Has to be called with oom_lock held and never after
682 * oom has been disabled already.
684 * tsk->mm has to be non NULL and caller has to guarantee it is stable (either
685 * under task_lock or operate on the current).
687 static void mark_oom_victim(struct task_struct *tsk)
689 struct mm_struct *mm = tsk->mm;
691 WARN_ON(oom_killer_disabled);
692 /* OOM killer might race with memcg OOM */
693 if (test_and_set_tsk_thread_flag(tsk, TIF_MEMDIE))
696 /* oom_mm is bound to the signal struct life time. */
697 if (!cmpxchg(&tsk->signal->oom_mm, NULL, mm)) {
698 mmgrab(tsk->signal->oom_mm);
699 set_bit(MMF_OOM_VICTIM, &mm->flags);
703 * Make sure that the task is woken up from uninterruptible sleep
704 * if it is frozen because OOM killer wouldn't be able to free
705 * any memory and livelock. freezing_slow_path will tell the freezer
706 * that TIF_MEMDIE tasks should be ignored.
709 atomic_inc(&oom_victims);
710 trace_mark_victim(tsk->pid);
714 * exit_oom_victim - note the exit of an OOM victim
716 void exit_oom_victim(void)
718 clear_thread_flag(TIF_MEMDIE);
720 if (!atomic_dec_return(&oom_victims))
721 wake_up_all(&oom_victims_wait);
725 * oom_killer_enable - enable OOM killer
727 void oom_killer_enable(void)
729 oom_killer_disabled = false;
730 pr_info("OOM killer enabled.\n");
734 * oom_killer_disable - disable OOM killer
735 * @timeout: maximum timeout to wait for oom victims in jiffies
737 * Forces all page allocations to fail rather than trigger OOM killer.
738 * Will block and wait until all OOM victims are killed or the given
741 * The function cannot be called when there are runnable user tasks because
742 * the userspace would see unexpected allocation failures as a result. Any
743 * new usage of this function should be consulted with MM people.
745 * Returns true if successful and false if the OOM killer cannot be
748 bool oom_killer_disable(signed long timeout)
753 * Make sure to not race with an ongoing OOM killer. Check that the
754 * current is not killed (possibly due to sharing the victim's memory).
756 if (mutex_lock_killable(&oom_lock))
758 oom_killer_disabled = true;
759 mutex_unlock(&oom_lock);
761 ret = wait_event_interruptible_timeout(oom_victims_wait,
762 !atomic_read(&oom_victims), timeout);
767 pr_info("OOM killer disabled.\n");
772 static inline bool __task_will_free_mem(struct task_struct *task)
774 struct signal_struct *sig = task->signal;
777 * A coredumping process may sleep for an extended period in exit_mm(),
778 * so the oom killer cannot assume that the process will promptly exit
779 * and release memory.
781 if (sig->flags & SIGNAL_GROUP_COREDUMP)
784 if (sig->flags & SIGNAL_GROUP_EXIT)
787 if (thread_group_empty(task) && (task->flags & PF_EXITING))
794 * Checks whether the given task is dying or exiting and likely to
795 * release its address space. This means that all threads and processes
796 * sharing the same mm have to be killed or exiting.
797 * Caller has to make sure that task->mm is stable (hold task_lock or
798 * it operates on the current).
800 static bool task_will_free_mem(struct task_struct *task)
802 struct mm_struct *mm = task->mm;
803 struct task_struct *p;
807 * Skip tasks without mm because it might have passed its exit_mm and
808 * exit_oom_victim. oom_reaper could have rescued that but do not rely
809 * on that for now. We can consider find_lock_task_mm in future.
814 if (!__task_will_free_mem(task))
818 * This task has already been drained by the oom reaper so there are
819 * only small chances it will free some more
821 if (test_bit(MMF_OOM_SKIP, &mm->flags))
824 if (atomic_read(&mm->mm_users) <= 1)
828 * Make sure that all tasks which share the mm with the given tasks
829 * are dying as well to make sure that a) nobody pins its mm and
830 * b) the task is also reapable by the oom reaper.
833 for_each_process(p) {
834 if (!process_shares_mm(p, mm))
836 if (same_thread_group(task, p))
838 ret = __task_will_free_mem(p);
847 static void __oom_kill_process(struct task_struct *victim, const char *message)
849 struct task_struct *p;
850 struct mm_struct *mm;
851 bool can_oom_reap = true;
853 p = find_lock_task_mm(victim);
855 put_task_struct(victim);
857 } else if (victim != p) {
859 put_task_struct(victim);
863 /* Get a reference to safely compare mm after task_unlock(victim) */
867 /* Raise event before sending signal: task reaper must see this */
868 count_vm_event(OOM_KILL);
869 memcg_memory_event_mm(mm, MEMCG_OOM_KILL);
872 * We should send SIGKILL before granting access to memory reserves
873 * in order to prevent the OOM victim from depleting the memory
874 * reserves from the user space under its control.
876 do_send_sig_info(SIGKILL, SEND_SIG_PRIV, victim, PIDTYPE_TGID);
877 mark_oom_victim(victim);
878 pr_err("%s: Killed process %d (%s) total-vm:%lukB, anon-rss:%lukB, file-rss:%lukB, shmem-rss:%lukB\n",
879 message, task_pid_nr(victim), victim->comm,
880 K(victim->mm->total_vm),
881 K(get_mm_counter(victim->mm, MM_ANONPAGES)),
882 K(get_mm_counter(victim->mm, MM_FILEPAGES)),
883 K(get_mm_counter(victim->mm, MM_SHMEMPAGES)));
887 * Kill all user processes sharing victim->mm in other thread groups, if
888 * any. They don't get access to memory reserves, though, to avoid
889 * depletion of all memory. This prevents mm->mmap_sem livelock when an
890 * oom killed thread cannot exit because it requires the semaphore and
891 * its contended by another thread trying to allocate memory itself.
892 * That thread will now get access to memory reserves since it has a
893 * pending fatal signal.
896 for_each_process(p) {
897 if (!process_shares_mm(p, mm))
899 if (same_thread_group(p, victim))
901 if (is_global_init(p)) {
902 can_oom_reap = false;
903 set_bit(MMF_OOM_SKIP, &mm->flags);
904 pr_info("oom killer %d (%s) has mm pinned by %d (%s)\n",
905 task_pid_nr(victim), victim->comm,
906 task_pid_nr(p), p->comm);
910 * No use_mm() user needs to read from the userspace so we are
913 if (unlikely(p->flags & PF_KTHREAD))
915 do_send_sig_info(SIGKILL, SEND_SIG_PRIV, p, PIDTYPE_TGID);
920 wake_oom_reaper(victim);
923 put_task_struct(victim);
928 * Kill provided task unless it's secured by setting
929 * oom_score_adj to OOM_SCORE_ADJ_MIN.
931 static int oom_kill_memcg_member(struct task_struct *task, void *message)
933 if (task->signal->oom_score_adj != OOM_SCORE_ADJ_MIN &&
934 !is_global_init(task)) {
935 get_task_struct(task);
936 __oom_kill_process(task, message);
941 static void oom_kill_process(struct oom_control *oc, const char *message)
943 struct task_struct *victim = oc->chosen;
944 struct mem_cgroup *oom_group;
945 static DEFINE_RATELIMIT_STATE(oom_rs, DEFAULT_RATELIMIT_INTERVAL,
946 DEFAULT_RATELIMIT_BURST);
949 * If the task is already exiting, don't alarm the sysadmin or kill
950 * its children or threads, just give it access to memory reserves
951 * so it can die quickly
954 if (task_will_free_mem(victim)) {
955 mark_oom_victim(victim);
956 wake_oom_reaper(victim);
958 put_task_struct(victim);
963 if (__ratelimit(&oom_rs))
964 dump_header(oc, victim);
967 * Do we need to kill the entire memory cgroup?
968 * Or even one of the ancestor memory cgroups?
969 * Check this out before killing the victim task.
971 oom_group = mem_cgroup_get_oom_group(victim, oc->memcg);
973 __oom_kill_process(victim, message);
976 * If necessary, kill all tasks in the selected memory cgroup.
979 mem_cgroup_print_oom_group(oom_group);
980 mem_cgroup_scan_tasks(oom_group, oom_kill_memcg_member,
982 mem_cgroup_put(oom_group);
987 * Determines whether the kernel must panic because of the panic_on_oom sysctl.
989 static void check_panic_on_oom(struct oom_control *oc,
990 enum oom_constraint constraint)
992 if (likely(!sysctl_panic_on_oom))
994 if (sysctl_panic_on_oom != 2) {
996 * panic_on_oom == 1 only affects CONSTRAINT_NONE, the kernel
997 * does not panic for cpuset, mempolicy, or memcg allocation
1000 if (constraint != CONSTRAINT_NONE)
1003 /* Do not panic for oom kills triggered by sysrq */
1004 if (is_sysrq_oom(oc))
1006 dump_header(oc, NULL);
1007 panic("Out of memory: %s panic_on_oom is enabled\n",
1008 sysctl_panic_on_oom == 2 ? "compulsory" : "system-wide");
1011 static BLOCKING_NOTIFIER_HEAD(oom_notify_list);
1013 int register_oom_notifier(struct notifier_block *nb)
1015 return blocking_notifier_chain_register(&oom_notify_list, nb);
1017 EXPORT_SYMBOL_GPL(register_oom_notifier);
1019 int unregister_oom_notifier(struct notifier_block *nb)
1021 return blocking_notifier_chain_unregister(&oom_notify_list, nb);
1023 EXPORT_SYMBOL_GPL(unregister_oom_notifier);
1026 * out_of_memory - kill the "best" process when we run out of memory
1027 * @oc: pointer to struct oom_control
1029 * If we run out of memory, we have the choice between either
1030 * killing a random task (bad), letting the system crash (worse)
1031 * OR try to be smart about which process to kill. Note that we
1032 * don't have to be perfect here, we just have to be good.
1034 bool out_of_memory(struct oom_control *oc)
1036 unsigned long freed = 0;
1037 enum oom_constraint constraint = CONSTRAINT_NONE;
1039 if (oom_killer_disabled)
1042 if (!is_memcg_oom(oc)) {
1043 blocking_notifier_call_chain(&oom_notify_list, 0, &freed);
1045 /* Got some memory back in the last second. */
1050 * If current has a pending SIGKILL or is exiting, then automatically
1051 * select it. The goal is to allow it to allocate so that it may
1052 * quickly exit and free its memory.
1054 if (task_will_free_mem(current)) {
1055 mark_oom_victim(current);
1056 wake_oom_reaper(current);
1061 * The OOM killer does not compensate for IO-less reclaim.
1062 * pagefault_out_of_memory lost its gfp context so we have to
1063 * make sure exclude 0 mask - all other users should have at least
1064 * ___GFP_DIRECT_RECLAIM to get here.
1066 if (oc->gfp_mask && !(oc->gfp_mask & __GFP_FS))
1070 * Check if there were limitations on the allocation (only relevant for
1071 * NUMA and memcg) that may require different handling.
1073 constraint = constrained_alloc(oc);
1074 if (constraint != CONSTRAINT_MEMORY_POLICY)
1075 oc->nodemask = NULL;
1076 check_panic_on_oom(oc, constraint);
1078 if (!is_memcg_oom(oc) && sysctl_oom_kill_allocating_task &&
1079 current->mm && !oom_unkillable_task(current, NULL, oc->nodemask) &&
1080 current->signal->oom_score_adj != OOM_SCORE_ADJ_MIN) {
1081 get_task_struct(current);
1082 oc->chosen = current;
1083 oom_kill_process(oc, "Out of memory (oom_kill_allocating_task)");
1087 select_bad_process(oc);
1088 /* Found nothing?!?! */
1090 dump_header(oc, NULL);
1091 pr_warn("Out of memory and no killable processes...\n");
1093 * If we got here due to an actual allocation at the
1094 * system level, we cannot survive this and will enter
1095 * an endless loop in the allocator. Bail out now.
1097 if (!is_sysrq_oom(oc) && !is_memcg_oom(oc))
1098 panic("System is deadlocked on memory\n");
1100 if (oc->chosen && oc->chosen != (void *)-1UL)
1101 oom_kill_process(oc, !is_memcg_oom(oc) ? "Out of memory" :
1102 "Memory cgroup out of memory");
1103 return !!oc->chosen;
1107 * The pagefault handler calls here because it is out of memory, so kill a
1108 * memory-hogging task. If oom_lock is held by somebody else, a parallel oom
1109 * killing is already in progress so do nothing.
1111 void pagefault_out_of_memory(void)
1113 struct oom_control oc = {
1121 if (mem_cgroup_oom_synchronize(true))
1124 if (!mutex_trylock(&oom_lock))
1127 mutex_unlock(&oom_lock);