Merge branch 'master' into for-next
[platform/adaptation/renesas_rcar/renesas_kernel.git] / mm / nommu.c
1 /*
2  *  linux/mm/nommu.c
3  *
4  *  Replacement code for mm functions to support CPU's that don't
5  *  have any form of memory management unit (thus no virtual memory).
6  *
7  *  See Documentation/nommu-mmap.txt
8  *
9  *  Copyright (c) 2004-2008 David Howells <dhowells@redhat.com>
10  *  Copyright (c) 2000-2003 David McCullough <davidm@snapgear.com>
11  *  Copyright (c) 2000-2001 D Jeff Dionne <jeff@uClinux.org>
12  *  Copyright (c) 2002      Greg Ungerer <gerg@snapgear.com>
13  *  Copyright (c) 2007-2010 Paul Mundt <lethal@linux-sh.org>
14  */
15
16 #include <linux/export.h>
17 #include <linux/mm.h>
18 #include <linux/mman.h>
19 #include <linux/swap.h>
20 #include <linux/file.h>
21 #include <linux/highmem.h>
22 #include <linux/pagemap.h>
23 #include <linux/slab.h>
24 #include <linux/vmalloc.h>
25 #include <linux/blkdev.h>
26 #include <linux/backing-dev.h>
27 #include <linux/mount.h>
28 #include <linux/personality.h>
29 #include <linux/security.h>
30 #include <linux/syscalls.h>
31 #include <linux/audit.h>
32
33 #include <asm/uaccess.h>
34 #include <asm/tlb.h>
35 #include <asm/tlbflush.h>
36 #include <asm/mmu_context.h>
37 #include "internal.h"
38
39 #if 0
40 #define kenter(FMT, ...) \
41         printk(KERN_DEBUG "==> %s("FMT")\n", __func__, ##__VA_ARGS__)
42 #define kleave(FMT, ...) \
43         printk(KERN_DEBUG "<== %s()"FMT"\n", __func__, ##__VA_ARGS__)
44 #define kdebug(FMT, ...) \
45         printk(KERN_DEBUG "xxx" FMT"yyy\n", ##__VA_ARGS__)
46 #else
47 #define kenter(FMT, ...) \
48         no_printk(KERN_DEBUG "==> %s("FMT")\n", __func__, ##__VA_ARGS__)
49 #define kleave(FMT, ...) \
50         no_printk(KERN_DEBUG "<== %s()"FMT"\n", __func__, ##__VA_ARGS__)
51 #define kdebug(FMT, ...) \
52         no_printk(KERN_DEBUG FMT"\n", ##__VA_ARGS__)
53 #endif
54
55 void *high_memory;
56 struct page *mem_map;
57 unsigned long max_mapnr;
58 unsigned long num_physpages;
59 unsigned long highest_memmap_pfn;
60 struct percpu_counter vm_committed_as;
61 int sysctl_overcommit_memory = OVERCOMMIT_GUESS; /* heuristic overcommit */
62 int sysctl_overcommit_ratio = 50; /* default is 50% */
63 int sysctl_max_map_count = DEFAULT_MAX_MAP_COUNT;
64 int sysctl_nr_trim_pages = CONFIG_NOMMU_INITIAL_TRIM_EXCESS;
65 int heap_stack_gap = 0;
66
67 atomic_long_t mmap_pages_allocated;
68
69 /*
70  * The global memory commitment made in the system can be a metric
71  * that can be used to drive ballooning decisions when Linux is hosted
72  * as a guest. On Hyper-V, the host implements a policy engine for dynamically
73  * balancing memory across competing virtual machines that are hosted.
74  * Several metrics drive this policy engine including the guest reported
75  * memory commitment.
76  */
77 unsigned long vm_memory_committed(void)
78 {
79         return percpu_counter_read_positive(&vm_committed_as);
80 }
81
82 EXPORT_SYMBOL_GPL(vm_memory_committed);
83
84 EXPORT_SYMBOL(mem_map);
85 EXPORT_SYMBOL(num_physpages);
86
87 /* list of mapped, potentially shareable regions */
88 static struct kmem_cache *vm_region_jar;
89 struct rb_root nommu_region_tree = RB_ROOT;
90 DECLARE_RWSEM(nommu_region_sem);
91
92 const struct vm_operations_struct generic_file_vm_ops = {
93 };
94
95 /*
96  * Return the total memory allocated for this pointer, not
97  * just what the caller asked for.
98  *
99  * Doesn't have to be accurate, i.e. may have races.
100  */
101 unsigned int kobjsize(const void *objp)
102 {
103         struct page *page;
104
105         /*
106          * If the object we have should not have ksize performed on it,
107          * return size of 0
108          */
109         if (!objp || !virt_addr_valid(objp))
110                 return 0;
111
112         page = virt_to_head_page(objp);
113
114         /*
115          * If the allocator sets PageSlab, we know the pointer came from
116          * kmalloc().
117          */
118         if (PageSlab(page))
119                 return ksize(objp);
120
121         /*
122          * If it's not a compound page, see if we have a matching VMA
123          * region. This test is intentionally done in reverse order,
124          * so if there's no VMA, we still fall through and hand back
125          * PAGE_SIZE for 0-order pages.
126          */
127         if (!PageCompound(page)) {
128                 struct vm_area_struct *vma;
129
130                 vma = find_vma(current->mm, (unsigned long)objp);
131                 if (vma)
132                         return vma->vm_end - vma->vm_start;
133         }
134
135         /*
136          * The ksize() function is only guaranteed to work for pointers
137          * returned by kmalloc(). So handle arbitrary pointers here.
138          */
139         return PAGE_SIZE << compound_order(page);
140 }
141
142 int __get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
143                      unsigned long start, int nr_pages, unsigned int foll_flags,
144                      struct page **pages, struct vm_area_struct **vmas,
145                      int *retry)
146 {
147         struct vm_area_struct *vma;
148         unsigned long vm_flags;
149         int i;
150
151         /* calculate required read or write permissions.
152          * If FOLL_FORCE is set, we only require the "MAY" flags.
153          */
154         vm_flags  = (foll_flags & FOLL_WRITE) ?
155                         (VM_WRITE | VM_MAYWRITE) : (VM_READ | VM_MAYREAD);
156         vm_flags &= (foll_flags & FOLL_FORCE) ?
157                         (VM_MAYREAD | VM_MAYWRITE) : (VM_READ | VM_WRITE);
158
159         for (i = 0; i < nr_pages; i++) {
160                 vma = find_vma(mm, start);
161                 if (!vma)
162                         goto finish_or_fault;
163
164                 /* protect what we can, including chardevs */
165                 if ((vma->vm_flags & (VM_IO | VM_PFNMAP)) ||
166                     !(vm_flags & vma->vm_flags))
167                         goto finish_or_fault;
168
169                 if (pages) {
170                         pages[i] = virt_to_page(start);
171                         if (pages[i])
172                                 page_cache_get(pages[i]);
173                 }
174                 if (vmas)
175                         vmas[i] = vma;
176                 start = (start + PAGE_SIZE) & PAGE_MASK;
177         }
178
179         return i;
180
181 finish_or_fault:
182         return i ? : -EFAULT;
183 }
184
185 /*
186  * get a list of pages in an address range belonging to the specified process
187  * and indicate the VMA that covers each page
188  * - this is potentially dodgy as we may end incrementing the page count of a
189  *   slab page or a secondary page from a compound page
190  * - don't permit access to VMAs that don't support it, such as I/O mappings
191  */
192 int get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
193         unsigned long start, int nr_pages, int write, int force,
194         struct page **pages, struct vm_area_struct **vmas)
195 {
196         int flags = 0;
197
198         if (write)
199                 flags |= FOLL_WRITE;
200         if (force)
201                 flags |= FOLL_FORCE;
202
203         return __get_user_pages(tsk, mm, start, nr_pages, flags, pages, vmas,
204                                 NULL);
205 }
206 EXPORT_SYMBOL(get_user_pages);
207
208 /**
209  * follow_pfn - look up PFN at a user virtual address
210  * @vma: memory mapping
211  * @address: user virtual address
212  * @pfn: location to store found PFN
213  *
214  * Only IO mappings and raw PFN mappings are allowed.
215  *
216  * Returns zero and the pfn at @pfn on success, -ve otherwise.
217  */
218 int follow_pfn(struct vm_area_struct *vma, unsigned long address,
219         unsigned long *pfn)
220 {
221         if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
222                 return -EINVAL;
223
224         *pfn = address >> PAGE_SHIFT;
225         return 0;
226 }
227 EXPORT_SYMBOL(follow_pfn);
228
229 DEFINE_RWLOCK(vmlist_lock);
230 struct vm_struct *vmlist;
231
232 void vfree(const void *addr)
233 {
234         kfree(addr);
235 }
236 EXPORT_SYMBOL(vfree);
237
238 void *__vmalloc(unsigned long size, gfp_t gfp_mask, pgprot_t prot)
239 {
240         /*
241          *  You can't specify __GFP_HIGHMEM with kmalloc() since kmalloc()
242          * returns only a logical address.
243          */
244         return kmalloc(size, (gfp_mask | __GFP_COMP) & ~__GFP_HIGHMEM);
245 }
246 EXPORT_SYMBOL(__vmalloc);
247
248 void *vmalloc_user(unsigned long size)
249 {
250         void *ret;
251
252         ret = __vmalloc(size, GFP_KERNEL | __GFP_HIGHMEM | __GFP_ZERO,
253                         PAGE_KERNEL);
254         if (ret) {
255                 struct vm_area_struct *vma;
256
257                 down_write(&current->mm->mmap_sem);
258                 vma = find_vma(current->mm, (unsigned long)ret);
259                 if (vma)
260                         vma->vm_flags |= VM_USERMAP;
261                 up_write(&current->mm->mmap_sem);
262         }
263
264         return ret;
265 }
266 EXPORT_SYMBOL(vmalloc_user);
267
268 struct page *vmalloc_to_page(const void *addr)
269 {
270         return virt_to_page(addr);
271 }
272 EXPORT_SYMBOL(vmalloc_to_page);
273
274 unsigned long vmalloc_to_pfn(const void *addr)
275 {
276         return page_to_pfn(virt_to_page(addr));
277 }
278 EXPORT_SYMBOL(vmalloc_to_pfn);
279
280 long vread(char *buf, char *addr, unsigned long count)
281 {
282         memcpy(buf, addr, count);
283         return count;
284 }
285
286 long vwrite(char *buf, char *addr, unsigned long count)
287 {
288         /* Don't allow overflow */
289         if ((unsigned long) addr + count < count)
290                 count = -(unsigned long) addr;
291
292         memcpy(addr, buf, count);
293         return(count);
294 }
295
296 /*
297  *      vmalloc  -  allocate virtually continguos memory
298  *
299  *      @size:          allocation size
300  *
301  *      Allocate enough pages to cover @size from the page level
302  *      allocator and map them into continguos kernel virtual space.
303  *
304  *      For tight control over page level allocator and protection flags
305  *      use __vmalloc() instead.
306  */
307 void *vmalloc(unsigned long size)
308 {
309        return __vmalloc(size, GFP_KERNEL | __GFP_HIGHMEM, PAGE_KERNEL);
310 }
311 EXPORT_SYMBOL(vmalloc);
312
313 /*
314  *      vzalloc - allocate virtually continguos memory with zero fill
315  *
316  *      @size:          allocation size
317  *
318  *      Allocate enough pages to cover @size from the page level
319  *      allocator and map them into continguos kernel virtual space.
320  *      The memory allocated is set to zero.
321  *
322  *      For tight control over page level allocator and protection flags
323  *      use __vmalloc() instead.
324  */
325 void *vzalloc(unsigned long size)
326 {
327         return __vmalloc(size, GFP_KERNEL | __GFP_HIGHMEM | __GFP_ZERO,
328                         PAGE_KERNEL);
329 }
330 EXPORT_SYMBOL(vzalloc);
331
332 /**
333  * vmalloc_node - allocate memory on a specific node
334  * @size:       allocation size
335  * @node:       numa node
336  *
337  * Allocate enough pages to cover @size from the page level
338  * allocator and map them into contiguous kernel virtual space.
339  *
340  * For tight control over page level allocator and protection flags
341  * use __vmalloc() instead.
342  */
343 void *vmalloc_node(unsigned long size, int node)
344 {
345         return vmalloc(size);
346 }
347 EXPORT_SYMBOL(vmalloc_node);
348
349 /**
350  * vzalloc_node - allocate memory on a specific node with zero fill
351  * @size:       allocation size
352  * @node:       numa node
353  *
354  * Allocate enough pages to cover @size from the page level
355  * allocator and map them into contiguous kernel virtual space.
356  * The memory allocated is set to zero.
357  *
358  * For tight control over page level allocator and protection flags
359  * use __vmalloc() instead.
360  */
361 void *vzalloc_node(unsigned long size, int node)
362 {
363         return vzalloc(size);
364 }
365 EXPORT_SYMBOL(vzalloc_node);
366
367 #ifndef PAGE_KERNEL_EXEC
368 # define PAGE_KERNEL_EXEC PAGE_KERNEL
369 #endif
370
371 /**
372  *      vmalloc_exec  -  allocate virtually contiguous, executable memory
373  *      @size:          allocation size
374  *
375  *      Kernel-internal function to allocate enough pages to cover @size
376  *      the page level allocator and map them into contiguous and
377  *      executable kernel virtual space.
378  *
379  *      For tight control over page level allocator and protection flags
380  *      use __vmalloc() instead.
381  */
382
383 void *vmalloc_exec(unsigned long size)
384 {
385         return __vmalloc(size, GFP_KERNEL | __GFP_HIGHMEM, PAGE_KERNEL_EXEC);
386 }
387
388 /**
389  * vmalloc_32  -  allocate virtually contiguous memory (32bit addressable)
390  *      @size:          allocation size
391  *
392  *      Allocate enough 32bit PA addressable pages to cover @size from the
393  *      page level allocator and map them into continguos kernel virtual space.
394  */
395 void *vmalloc_32(unsigned long size)
396 {
397         return __vmalloc(size, GFP_KERNEL, PAGE_KERNEL);
398 }
399 EXPORT_SYMBOL(vmalloc_32);
400
401 /**
402  * vmalloc_32_user - allocate zeroed virtually contiguous 32bit memory
403  *      @size:          allocation size
404  *
405  * The resulting memory area is 32bit addressable and zeroed so it can be
406  * mapped to userspace without leaking data.
407  *
408  * VM_USERMAP is set on the corresponding VMA so that subsequent calls to
409  * remap_vmalloc_range() are permissible.
410  */
411 void *vmalloc_32_user(unsigned long size)
412 {
413         /*
414          * We'll have to sort out the ZONE_DMA bits for 64-bit,
415          * but for now this can simply use vmalloc_user() directly.
416          */
417         return vmalloc_user(size);
418 }
419 EXPORT_SYMBOL(vmalloc_32_user);
420
421 void *vmap(struct page **pages, unsigned int count, unsigned long flags, pgprot_t prot)
422 {
423         BUG();
424         return NULL;
425 }
426 EXPORT_SYMBOL(vmap);
427
428 void vunmap(const void *addr)
429 {
430         BUG();
431 }
432 EXPORT_SYMBOL(vunmap);
433
434 void *vm_map_ram(struct page **pages, unsigned int count, int node, pgprot_t prot)
435 {
436         BUG();
437         return NULL;
438 }
439 EXPORT_SYMBOL(vm_map_ram);
440
441 void vm_unmap_ram(const void *mem, unsigned int count)
442 {
443         BUG();
444 }
445 EXPORT_SYMBOL(vm_unmap_ram);
446
447 void vm_unmap_aliases(void)
448 {
449 }
450 EXPORT_SYMBOL_GPL(vm_unmap_aliases);
451
452 /*
453  * Implement a stub for vmalloc_sync_all() if the architecture chose not to
454  * have one.
455  */
456 void  __attribute__((weak)) vmalloc_sync_all(void)
457 {
458 }
459
460 /**
461  *      alloc_vm_area - allocate a range of kernel address space
462  *      @size:          size of the area
463  *
464  *      Returns:        NULL on failure, vm_struct on success
465  *
466  *      This function reserves a range of kernel address space, and
467  *      allocates pagetables to map that range.  No actual mappings
468  *      are created.  If the kernel address space is not shared
469  *      between processes, it syncs the pagetable across all
470  *      processes.
471  */
472 struct vm_struct *alloc_vm_area(size_t size, pte_t **ptes)
473 {
474         BUG();
475         return NULL;
476 }
477 EXPORT_SYMBOL_GPL(alloc_vm_area);
478
479 void free_vm_area(struct vm_struct *area)
480 {
481         BUG();
482 }
483 EXPORT_SYMBOL_GPL(free_vm_area);
484
485 int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
486                    struct page *page)
487 {
488         return -EINVAL;
489 }
490 EXPORT_SYMBOL(vm_insert_page);
491
492 /*
493  *  sys_brk() for the most part doesn't need the global kernel
494  *  lock, except when an application is doing something nasty
495  *  like trying to un-brk an area that has already been mapped
496  *  to a regular file.  in this case, the unmapping will need
497  *  to invoke file system routines that need the global lock.
498  */
499 SYSCALL_DEFINE1(brk, unsigned long, brk)
500 {
501         struct mm_struct *mm = current->mm;
502
503         if (brk < mm->start_brk || brk > mm->context.end_brk)
504                 return mm->brk;
505
506         if (mm->brk == brk)
507                 return mm->brk;
508
509         /*
510          * Always allow shrinking brk
511          */
512         if (brk <= mm->brk) {
513                 mm->brk = brk;
514                 return brk;
515         }
516
517         /*
518          * Ok, looks good - let it rip.
519          */
520         flush_icache_range(mm->brk, brk);
521         return mm->brk = brk;
522 }
523
524 /*
525  * initialise the VMA and region record slabs
526  */
527 void __init mmap_init(void)
528 {
529         int ret;
530
531         ret = percpu_counter_init(&vm_committed_as, 0);
532         VM_BUG_ON(ret);
533         vm_region_jar = KMEM_CACHE(vm_region, SLAB_PANIC);
534 }
535
536 /*
537  * validate the region tree
538  * - the caller must hold the region lock
539  */
540 #ifdef CONFIG_DEBUG_NOMMU_REGIONS
541 static noinline void validate_nommu_regions(void)
542 {
543         struct vm_region *region, *last;
544         struct rb_node *p, *lastp;
545
546         lastp = rb_first(&nommu_region_tree);
547         if (!lastp)
548                 return;
549
550         last = rb_entry(lastp, struct vm_region, vm_rb);
551         BUG_ON(unlikely(last->vm_end <= last->vm_start));
552         BUG_ON(unlikely(last->vm_top < last->vm_end));
553
554         while ((p = rb_next(lastp))) {
555                 region = rb_entry(p, struct vm_region, vm_rb);
556                 last = rb_entry(lastp, struct vm_region, vm_rb);
557
558                 BUG_ON(unlikely(region->vm_end <= region->vm_start));
559                 BUG_ON(unlikely(region->vm_top < region->vm_end));
560                 BUG_ON(unlikely(region->vm_start < last->vm_top));
561
562                 lastp = p;
563         }
564 }
565 #else
566 static void validate_nommu_regions(void)
567 {
568 }
569 #endif
570
571 /*
572  * add a region into the global tree
573  */
574 static void add_nommu_region(struct vm_region *region)
575 {
576         struct vm_region *pregion;
577         struct rb_node **p, *parent;
578
579         validate_nommu_regions();
580
581         parent = NULL;
582         p = &nommu_region_tree.rb_node;
583         while (*p) {
584                 parent = *p;
585                 pregion = rb_entry(parent, struct vm_region, vm_rb);
586                 if (region->vm_start < pregion->vm_start)
587                         p = &(*p)->rb_left;
588                 else if (region->vm_start > pregion->vm_start)
589                         p = &(*p)->rb_right;
590                 else if (pregion == region)
591                         return;
592                 else
593                         BUG();
594         }
595
596         rb_link_node(&region->vm_rb, parent, p);
597         rb_insert_color(&region->vm_rb, &nommu_region_tree);
598
599         validate_nommu_regions();
600 }
601
602 /*
603  * delete a region from the global tree
604  */
605 static void delete_nommu_region(struct vm_region *region)
606 {
607         BUG_ON(!nommu_region_tree.rb_node);
608
609         validate_nommu_regions();
610         rb_erase(&region->vm_rb, &nommu_region_tree);
611         validate_nommu_regions();
612 }
613
614 /*
615  * free a contiguous series of pages
616  */
617 static void free_page_series(unsigned long from, unsigned long to)
618 {
619         for (; from < to; from += PAGE_SIZE) {
620                 struct page *page = virt_to_page(from);
621
622                 kdebug("- free %lx", from);
623                 atomic_long_dec(&mmap_pages_allocated);
624                 if (page_count(page) != 1)
625                         kdebug("free page %p: refcount not one: %d",
626                                page, page_count(page));
627                 put_page(page);
628         }
629 }
630
631 /*
632  * release a reference to a region
633  * - the caller must hold the region semaphore for writing, which this releases
634  * - the region may not have been added to the tree yet, in which case vm_top
635  *   will equal vm_start
636  */
637 static void __put_nommu_region(struct vm_region *region)
638         __releases(nommu_region_sem)
639 {
640         kenter("%p{%d}", region, region->vm_usage);
641
642         BUG_ON(!nommu_region_tree.rb_node);
643
644         if (--region->vm_usage == 0) {
645                 if (region->vm_top > region->vm_start)
646                         delete_nommu_region(region);
647                 up_write(&nommu_region_sem);
648
649                 if (region->vm_file)
650                         fput(region->vm_file);
651
652                 /* IO memory and memory shared directly out of the pagecache
653                  * from ramfs/tmpfs mustn't be released here */
654                 if (region->vm_flags & VM_MAPPED_COPY) {
655                         kdebug("free series");
656                         free_page_series(region->vm_start, region->vm_top);
657                 }
658                 kmem_cache_free(vm_region_jar, region);
659         } else {
660                 up_write(&nommu_region_sem);
661         }
662 }
663
664 /*
665  * release a reference to a region
666  */
667 static void put_nommu_region(struct vm_region *region)
668 {
669         down_write(&nommu_region_sem);
670         __put_nommu_region(region);
671 }
672
673 /*
674  * update protection on a vma
675  */
676 static void protect_vma(struct vm_area_struct *vma, unsigned long flags)
677 {
678 #ifdef CONFIG_MPU
679         struct mm_struct *mm = vma->vm_mm;
680         long start = vma->vm_start & PAGE_MASK;
681         while (start < vma->vm_end) {
682                 protect_page(mm, start, flags);
683                 start += PAGE_SIZE;
684         }
685         update_protections(mm);
686 #endif
687 }
688
689 /*
690  * add a VMA into a process's mm_struct in the appropriate place in the list
691  * and tree and add to the address space's page tree also if not an anonymous
692  * page
693  * - should be called with mm->mmap_sem held writelocked
694  */
695 static void add_vma_to_mm(struct mm_struct *mm, struct vm_area_struct *vma)
696 {
697         struct vm_area_struct *pvma, *prev;
698         struct address_space *mapping;
699         struct rb_node **p, *parent, *rb_prev;
700
701         kenter(",%p", vma);
702
703         BUG_ON(!vma->vm_region);
704
705         mm->map_count++;
706         vma->vm_mm = mm;
707
708         protect_vma(vma, vma->vm_flags);
709
710         /* add the VMA to the mapping */
711         if (vma->vm_file) {
712                 mapping = vma->vm_file->f_mapping;
713
714                 mutex_lock(&mapping->i_mmap_mutex);
715                 flush_dcache_mmap_lock(mapping);
716                 vma_interval_tree_insert(vma, &mapping->i_mmap);
717                 flush_dcache_mmap_unlock(mapping);
718                 mutex_unlock(&mapping->i_mmap_mutex);
719         }
720
721         /* add the VMA to the tree */
722         parent = rb_prev = NULL;
723         p = &mm->mm_rb.rb_node;
724         while (*p) {
725                 parent = *p;
726                 pvma = rb_entry(parent, struct vm_area_struct, vm_rb);
727
728                 /* sort by: start addr, end addr, VMA struct addr in that order
729                  * (the latter is necessary as we may get identical VMAs) */
730                 if (vma->vm_start < pvma->vm_start)
731                         p = &(*p)->rb_left;
732                 else if (vma->vm_start > pvma->vm_start) {
733                         rb_prev = parent;
734                         p = &(*p)->rb_right;
735                 } else if (vma->vm_end < pvma->vm_end)
736                         p = &(*p)->rb_left;
737                 else if (vma->vm_end > pvma->vm_end) {
738                         rb_prev = parent;
739                         p = &(*p)->rb_right;
740                 } else if (vma < pvma)
741                         p = &(*p)->rb_left;
742                 else if (vma > pvma) {
743                         rb_prev = parent;
744                         p = &(*p)->rb_right;
745                 } else
746                         BUG();
747         }
748
749         rb_link_node(&vma->vm_rb, parent, p);
750         rb_insert_color(&vma->vm_rb, &mm->mm_rb);
751
752         /* add VMA to the VMA list also */
753         prev = NULL;
754         if (rb_prev)
755                 prev = rb_entry(rb_prev, struct vm_area_struct, vm_rb);
756
757         __vma_link_list(mm, vma, prev, parent);
758 }
759
760 /*
761  * delete a VMA from its owning mm_struct and address space
762  */
763 static void delete_vma_from_mm(struct vm_area_struct *vma)
764 {
765         struct address_space *mapping;
766         struct mm_struct *mm = vma->vm_mm;
767
768         kenter("%p", vma);
769
770         protect_vma(vma, 0);
771
772         mm->map_count--;
773         if (mm->mmap_cache == vma)
774                 mm->mmap_cache = NULL;
775
776         /* remove the VMA from the mapping */
777         if (vma->vm_file) {
778                 mapping = vma->vm_file->f_mapping;
779
780                 mutex_lock(&mapping->i_mmap_mutex);
781                 flush_dcache_mmap_lock(mapping);
782                 vma_interval_tree_remove(vma, &mapping->i_mmap);
783                 flush_dcache_mmap_unlock(mapping);
784                 mutex_unlock(&mapping->i_mmap_mutex);
785         }
786
787         /* remove from the MM's tree and list */
788         rb_erase(&vma->vm_rb, &mm->mm_rb);
789
790         if (vma->vm_prev)
791                 vma->vm_prev->vm_next = vma->vm_next;
792         else
793                 mm->mmap = vma->vm_next;
794
795         if (vma->vm_next)
796                 vma->vm_next->vm_prev = vma->vm_prev;
797 }
798
799 /*
800  * destroy a VMA record
801  */
802 static void delete_vma(struct mm_struct *mm, struct vm_area_struct *vma)
803 {
804         kenter("%p", vma);
805         if (vma->vm_ops && vma->vm_ops->close)
806                 vma->vm_ops->close(vma);
807         if (vma->vm_file)
808                 fput(vma->vm_file);
809         put_nommu_region(vma->vm_region);
810         kmem_cache_free(vm_area_cachep, vma);
811 }
812
813 /*
814  * look up the first VMA in which addr resides, NULL if none
815  * - should be called with mm->mmap_sem at least held readlocked
816  */
817 struct vm_area_struct *find_vma(struct mm_struct *mm, unsigned long addr)
818 {
819         struct vm_area_struct *vma;
820
821         /* check the cache first */
822         vma = mm->mmap_cache;
823         if (vma && vma->vm_start <= addr && vma->vm_end > addr)
824                 return vma;
825
826         /* trawl the list (there may be multiple mappings in which addr
827          * resides) */
828         for (vma = mm->mmap; vma; vma = vma->vm_next) {
829                 if (vma->vm_start > addr)
830                         return NULL;
831                 if (vma->vm_end > addr) {
832                         mm->mmap_cache = vma;
833                         return vma;
834                 }
835         }
836
837         return NULL;
838 }
839 EXPORT_SYMBOL(find_vma);
840
841 /*
842  * find a VMA
843  * - we don't extend stack VMAs under NOMMU conditions
844  */
845 struct vm_area_struct *find_extend_vma(struct mm_struct *mm, unsigned long addr)
846 {
847         return find_vma(mm, addr);
848 }
849
850 /*
851  * expand a stack to a given address
852  * - not supported under NOMMU conditions
853  */
854 int expand_stack(struct vm_area_struct *vma, unsigned long address)
855 {
856         return -ENOMEM;
857 }
858
859 /*
860  * look up the first VMA exactly that exactly matches addr
861  * - should be called with mm->mmap_sem at least held readlocked
862  */
863 static struct vm_area_struct *find_vma_exact(struct mm_struct *mm,
864                                              unsigned long addr,
865                                              unsigned long len)
866 {
867         struct vm_area_struct *vma;
868         unsigned long end = addr + len;
869
870         /* check the cache first */
871         vma = mm->mmap_cache;
872         if (vma && vma->vm_start == addr && vma->vm_end == end)
873                 return vma;
874
875         /* trawl the list (there may be multiple mappings in which addr
876          * resides) */
877         for (vma = mm->mmap; vma; vma = vma->vm_next) {
878                 if (vma->vm_start < addr)
879                         continue;
880                 if (vma->vm_start > addr)
881                         return NULL;
882                 if (vma->vm_end == end) {
883                         mm->mmap_cache = vma;
884                         return vma;
885                 }
886         }
887
888         return NULL;
889 }
890
891 /*
892  * determine whether a mapping should be permitted and, if so, what sort of
893  * mapping we're capable of supporting
894  */
895 static int validate_mmap_request(struct file *file,
896                                  unsigned long addr,
897                                  unsigned long len,
898                                  unsigned long prot,
899                                  unsigned long flags,
900                                  unsigned long pgoff,
901                                  unsigned long *_capabilities)
902 {
903         unsigned long capabilities, rlen;
904         int ret;
905
906         /* do the simple checks first */
907         if (flags & MAP_FIXED) {
908                 printk(KERN_DEBUG
909                        "%d: Can't do fixed-address/overlay mmap of RAM\n",
910                        current->pid);
911                 return -EINVAL;
912         }
913
914         if ((flags & MAP_TYPE) != MAP_PRIVATE &&
915             (flags & MAP_TYPE) != MAP_SHARED)
916                 return -EINVAL;
917
918         if (!len)
919                 return -EINVAL;
920
921         /* Careful about overflows.. */
922         rlen = PAGE_ALIGN(len);
923         if (!rlen || rlen > TASK_SIZE)
924                 return -ENOMEM;
925
926         /* offset overflow? */
927         if ((pgoff + (rlen >> PAGE_SHIFT)) < pgoff)
928                 return -EOVERFLOW;
929
930         if (file) {
931                 /* validate file mapping requests */
932                 struct address_space *mapping;
933
934                 /* files must support mmap */
935                 if (!file->f_op || !file->f_op->mmap)
936                         return -ENODEV;
937
938                 /* work out if what we've got could possibly be shared
939                  * - we support chardevs that provide their own "memory"
940                  * - we support files/blockdevs that are memory backed
941                  */
942                 mapping = file->f_mapping;
943                 if (!mapping)
944                         mapping = file->f_path.dentry->d_inode->i_mapping;
945
946                 capabilities = 0;
947                 if (mapping && mapping->backing_dev_info)
948                         capabilities = mapping->backing_dev_info->capabilities;
949
950                 if (!capabilities) {
951                         /* no explicit capabilities set, so assume some
952                          * defaults */
953                         switch (file->f_path.dentry->d_inode->i_mode & S_IFMT) {
954                         case S_IFREG:
955                         case S_IFBLK:
956                                 capabilities = BDI_CAP_MAP_COPY;
957                                 break;
958
959                         case S_IFCHR:
960                                 capabilities =
961                                         BDI_CAP_MAP_DIRECT |
962                                         BDI_CAP_READ_MAP |
963                                         BDI_CAP_WRITE_MAP;
964                                 break;
965
966                         default:
967                                 return -EINVAL;
968                         }
969                 }
970
971                 /* eliminate any capabilities that we can't support on this
972                  * device */
973                 if (!file->f_op->get_unmapped_area)
974                         capabilities &= ~BDI_CAP_MAP_DIRECT;
975                 if (!file->f_op->read)
976                         capabilities &= ~BDI_CAP_MAP_COPY;
977
978                 /* The file shall have been opened with read permission. */
979                 if (!(file->f_mode & FMODE_READ))
980                         return -EACCES;
981
982                 if (flags & MAP_SHARED) {
983                         /* do checks for writing, appending and locking */
984                         if ((prot & PROT_WRITE) &&
985                             !(file->f_mode & FMODE_WRITE))
986                                 return -EACCES;
987
988                         if (IS_APPEND(file->f_path.dentry->d_inode) &&
989                             (file->f_mode & FMODE_WRITE))
990                                 return -EACCES;
991
992                         if (locks_verify_locked(file->f_path.dentry->d_inode))
993                                 return -EAGAIN;
994
995                         if (!(capabilities & BDI_CAP_MAP_DIRECT))
996                                 return -ENODEV;
997
998                         /* we mustn't privatise shared mappings */
999                         capabilities &= ~BDI_CAP_MAP_COPY;
1000                 }
1001                 else {
1002                         /* we're going to read the file into private memory we
1003                          * allocate */
1004                         if (!(capabilities & BDI_CAP_MAP_COPY))
1005                                 return -ENODEV;
1006
1007                         /* we don't permit a private writable mapping to be
1008                          * shared with the backing device */
1009                         if (prot & PROT_WRITE)
1010                                 capabilities &= ~BDI_CAP_MAP_DIRECT;
1011                 }
1012
1013                 if (capabilities & BDI_CAP_MAP_DIRECT) {
1014                         if (((prot & PROT_READ)  && !(capabilities & BDI_CAP_READ_MAP))  ||
1015                             ((prot & PROT_WRITE) && !(capabilities & BDI_CAP_WRITE_MAP)) ||
1016                             ((prot & PROT_EXEC)  && !(capabilities & BDI_CAP_EXEC_MAP))
1017                             ) {
1018                                 capabilities &= ~BDI_CAP_MAP_DIRECT;
1019                                 if (flags & MAP_SHARED) {
1020                                         printk(KERN_WARNING
1021                                                "MAP_SHARED not completely supported on !MMU\n");
1022                                         return -EINVAL;
1023                                 }
1024                         }
1025                 }
1026
1027                 /* handle executable mappings and implied executable
1028                  * mappings */
1029                 if (file->f_path.mnt->mnt_flags & MNT_NOEXEC) {
1030                         if (prot & PROT_EXEC)
1031                                 return -EPERM;
1032                 }
1033                 else if ((prot & PROT_READ) && !(prot & PROT_EXEC)) {
1034                         /* handle implication of PROT_EXEC by PROT_READ */
1035                         if (current->personality & READ_IMPLIES_EXEC) {
1036                                 if (capabilities & BDI_CAP_EXEC_MAP)
1037                                         prot |= PROT_EXEC;
1038                         }
1039                 }
1040                 else if ((prot & PROT_READ) &&
1041                          (prot & PROT_EXEC) &&
1042                          !(capabilities & BDI_CAP_EXEC_MAP)
1043                          ) {
1044                         /* backing file is not executable, try to copy */
1045                         capabilities &= ~BDI_CAP_MAP_DIRECT;
1046                 }
1047         }
1048         else {
1049                 /* anonymous mappings are always memory backed and can be
1050                  * privately mapped
1051                  */
1052                 capabilities = BDI_CAP_MAP_COPY;
1053
1054                 /* handle PROT_EXEC implication by PROT_READ */
1055                 if ((prot & PROT_READ) &&
1056                     (current->personality & READ_IMPLIES_EXEC))
1057                         prot |= PROT_EXEC;
1058         }
1059
1060         /* allow the security API to have its say */
1061         ret = security_mmap_addr(addr);
1062         if (ret < 0)
1063                 return ret;
1064
1065         /* looks okay */
1066         *_capabilities = capabilities;
1067         return 0;
1068 }
1069
1070 /*
1071  * we've determined that we can make the mapping, now translate what we
1072  * now know into VMA flags
1073  */
1074 static unsigned long determine_vm_flags(struct file *file,
1075                                         unsigned long prot,
1076                                         unsigned long flags,
1077                                         unsigned long capabilities)
1078 {
1079         unsigned long vm_flags;
1080
1081         vm_flags = calc_vm_prot_bits(prot) | calc_vm_flag_bits(flags);
1082         /* vm_flags |= mm->def_flags; */
1083
1084         if (!(capabilities & BDI_CAP_MAP_DIRECT)) {
1085                 /* attempt to share read-only copies of mapped file chunks */
1086                 vm_flags |= VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC;
1087                 if (file && !(prot & PROT_WRITE))
1088                         vm_flags |= VM_MAYSHARE;
1089         } else {
1090                 /* overlay a shareable mapping on the backing device or inode
1091                  * if possible - used for chardevs, ramfs/tmpfs/shmfs and
1092                  * romfs/cramfs */
1093                 vm_flags |= VM_MAYSHARE | (capabilities & BDI_CAP_VMFLAGS);
1094                 if (flags & MAP_SHARED)
1095                         vm_flags |= VM_SHARED;
1096         }
1097
1098         /* refuse to let anyone share private mappings with this process if
1099          * it's being traced - otherwise breakpoints set in it may interfere
1100          * with another untraced process
1101          */
1102         if ((flags & MAP_PRIVATE) && current->ptrace)
1103                 vm_flags &= ~VM_MAYSHARE;
1104
1105         return vm_flags;
1106 }
1107
1108 /*
1109  * set up a shared mapping on a file (the driver or filesystem provides and
1110  * pins the storage)
1111  */
1112 static int do_mmap_shared_file(struct vm_area_struct *vma)
1113 {
1114         int ret;
1115
1116         ret = vma->vm_file->f_op->mmap(vma->vm_file, vma);
1117         if (ret == 0) {
1118                 vma->vm_region->vm_top = vma->vm_region->vm_end;
1119                 return 0;
1120         }
1121         if (ret != -ENOSYS)
1122                 return ret;
1123
1124         /* getting -ENOSYS indicates that direct mmap isn't possible (as
1125          * opposed to tried but failed) so we can only give a suitable error as
1126          * it's not possible to make a private copy if MAP_SHARED was given */
1127         return -ENODEV;
1128 }
1129
1130 /*
1131  * set up a private mapping or an anonymous shared mapping
1132  */
1133 static int do_mmap_private(struct vm_area_struct *vma,
1134                            struct vm_region *region,
1135                            unsigned long len,
1136                            unsigned long capabilities)
1137 {
1138         struct page *pages;
1139         unsigned long total, point, n;
1140         void *base;
1141         int ret, order;
1142
1143         /* invoke the file's mapping function so that it can keep track of
1144          * shared mappings on devices or memory
1145          * - VM_MAYSHARE will be set if it may attempt to share
1146          */
1147         if (capabilities & BDI_CAP_MAP_DIRECT) {
1148                 ret = vma->vm_file->f_op->mmap(vma->vm_file, vma);
1149                 if (ret == 0) {
1150                         /* shouldn't return success if we're not sharing */
1151                         BUG_ON(!(vma->vm_flags & VM_MAYSHARE));
1152                         vma->vm_region->vm_top = vma->vm_region->vm_end;
1153                         return 0;
1154                 }
1155                 if (ret != -ENOSYS)
1156                         return ret;
1157
1158                 /* getting an ENOSYS error indicates that direct mmap isn't
1159                  * possible (as opposed to tried but failed) so we'll try to
1160                  * make a private copy of the data and map that instead */
1161         }
1162
1163
1164         /* allocate some memory to hold the mapping
1165          * - note that this may not return a page-aligned address if the object
1166          *   we're allocating is smaller than a page
1167          */
1168         order = get_order(len);
1169         kdebug("alloc order %d for %lx", order, len);
1170
1171         pages = alloc_pages(GFP_KERNEL, order);
1172         if (!pages)
1173                 goto enomem;
1174
1175         total = 1 << order;
1176         atomic_long_add(total, &mmap_pages_allocated);
1177
1178         point = len >> PAGE_SHIFT;
1179
1180         /* we allocated a power-of-2 sized page set, so we may want to trim off
1181          * the excess */
1182         if (sysctl_nr_trim_pages && total - point >= sysctl_nr_trim_pages) {
1183                 while (total > point) {
1184                         order = ilog2(total - point);
1185                         n = 1 << order;
1186                         kdebug("shave %lu/%lu @%lu", n, total - point, total);
1187                         atomic_long_sub(n, &mmap_pages_allocated);
1188                         total -= n;
1189                         set_page_refcounted(pages + total);
1190                         __free_pages(pages + total, order);
1191                 }
1192         }
1193
1194         for (point = 1; point < total; point++)
1195                 set_page_refcounted(&pages[point]);
1196
1197         base = page_address(pages);
1198         region->vm_flags = vma->vm_flags |= VM_MAPPED_COPY;
1199         region->vm_start = (unsigned long) base;
1200         region->vm_end   = region->vm_start + len;
1201         region->vm_top   = region->vm_start + (total << PAGE_SHIFT);
1202
1203         vma->vm_start = region->vm_start;
1204         vma->vm_end   = region->vm_start + len;
1205
1206         if (vma->vm_file) {
1207                 /* read the contents of a file into the copy */
1208                 mm_segment_t old_fs;
1209                 loff_t fpos;
1210
1211                 fpos = vma->vm_pgoff;
1212                 fpos <<= PAGE_SHIFT;
1213
1214                 old_fs = get_fs();
1215                 set_fs(KERNEL_DS);
1216                 ret = vma->vm_file->f_op->read(vma->vm_file, base, len, &fpos);
1217                 set_fs(old_fs);
1218
1219                 if (ret < 0)
1220                         goto error_free;
1221
1222                 /* clear the last little bit */
1223                 if (ret < len)
1224                         memset(base + ret, 0, len - ret);
1225
1226         }
1227
1228         return 0;
1229
1230 error_free:
1231         free_page_series(region->vm_start, region->vm_top);
1232         region->vm_start = vma->vm_start = 0;
1233         region->vm_end   = vma->vm_end = 0;
1234         region->vm_top   = 0;
1235         return ret;
1236
1237 enomem:
1238         printk("Allocation of length %lu from process %d (%s) failed\n",
1239                len, current->pid, current->comm);
1240         show_free_areas(0);
1241         return -ENOMEM;
1242 }
1243
1244 /*
1245  * handle mapping creation for uClinux
1246  */
1247 unsigned long do_mmap_pgoff(struct file *file,
1248                             unsigned long addr,
1249                             unsigned long len,
1250                             unsigned long prot,
1251                             unsigned long flags,
1252                             unsigned long pgoff)
1253 {
1254         struct vm_area_struct *vma;
1255         struct vm_region *region;
1256         struct rb_node *rb;
1257         unsigned long capabilities, vm_flags, result;
1258         int ret;
1259
1260         kenter(",%lx,%lx,%lx,%lx,%lx", addr, len, prot, flags, pgoff);
1261
1262         /* decide whether we should attempt the mapping, and if so what sort of
1263          * mapping */
1264         ret = validate_mmap_request(file, addr, len, prot, flags, pgoff,
1265                                     &capabilities);
1266         if (ret < 0) {
1267                 kleave(" = %d [val]", ret);
1268                 return ret;
1269         }
1270
1271         /* we ignore the address hint */
1272         addr = 0;
1273         len = PAGE_ALIGN(len);
1274
1275         /* we've determined that we can make the mapping, now translate what we
1276          * now know into VMA flags */
1277         vm_flags = determine_vm_flags(file, prot, flags, capabilities);
1278
1279         /* we're going to need to record the mapping */
1280         region = kmem_cache_zalloc(vm_region_jar, GFP_KERNEL);
1281         if (!region)
1282                 goto error_getting_region;
1283
1284         vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
1285         if (!vma)
1286                 goto error_getting_vma;
1287
1288         region->vm_usage = 1;
1289         region->vm_flags = vm_flags;
1290         region->vm_pgoff = pgoff;
1291
1292         INIT_LIST_HEAD(&vma->anon_vma_chain);
1293         vma->vm_flags = vm_flags;
1294         vma->vm_pgoff = pgoff;
1295
1296         if (file) {
1297                 region->vm_file = get_file(file);
1298                 vma->vm_file = get_file(file);
1299         }
1300
1301         down_write(&nommu_region_sem);
1302
1303         /* if we want to share, we need to check for regions created by other
1304          * mmap() calls that overlap with our proposed mapping
1305          * - we can only share with a superset match on most regular files
1306          * - shared mappings on character devices and memory backed files are
1307          *   permitted to overlap inexactly as far as we are concerned for in
1308          *   these cases, sharing is handled in the driver or filesystem rather
1309          *   than here
1310          */
1311         if (vm_flags & VM_MAYSHARE) {
1312                 struct vm_region *pregion;
1313                 unsigned long pglen, rpglen, pgend, rpgend, start;
1314
1315                 pglen = (len + PAGE_SIZE - 1) >> PAGE_SHIFT;
1316                 pgend = pgoff + pglen;
1317
1318                 for (rb = rb_first(&nommu_region_tree); rb; rb = rb_next(rb)) {
1319                         pregion = rb_entry(rb, struct vm_region, vm_rb);
1320
1321                         if (!(pregion->vm_flags & VM_MAYSHARE))
1322                                 continue;
1323
1324                         /* search for overlapping mappings on the same file */
1325                         if (pregion->vm_file->f_path.dentry->d_inode !=
1326                             file->f_path.dentry->d_inode)
1327                                 continue;
1328
1329                         if (pregion->vm_pgoff >= pgend)
1330                                 continue;
1331
1332                         rpglen = pregion->vm_end - pregion->vm_start;
1333                         rpglen = (rpglen + PAGE_SIZE - 1) >> PAGE_SHIFT;
1334                         rpgend = pregion->vm_pgoff + rpglen;
1335                         if (pgoff >= rpgend)
1336                                 continue;
1337
1338                         /* handle inexactly overlapping matches between
1339                          * mappings */
1340                         if ((pregion->vm_pgoff != pgoff || rpglen != pglen) &&
1341                             !(pgoff >= pregion->vm_pgoff && pgend <= rpgend)) {
1342                                 /* new mapping is not a subset of the region */
1343                                 if (!(capabilities & BDI_CAP_MAP_DIRECT))
1344                                         goto sharing_violation;
1345                                 continue;
1346                         }
1347
1348                         /* we've found a region we can share */
1349                         pregion->vm_usage++;
1350                         vma->vm_region = pregion;
1351                         start = pregion->vm_start;
1352                         start += (pgoff - pregion->vm_pgoff) << PAGE_SHIFT;
1353                         vma->vm_start = start;
1354                         vma->vm_end = start + len;
1355
1356                         if (pregion->vm_flags & VM_MAPPED_COPY) {
1357                                 kdebug("share copy");
1358                                 vma->vm_flags |= VM_MAPPED_COPY;
1359                         } else {
1360                                 kdebug("share mmap");
1361                                 ret = do_mmap_shared_file(vma);
1362                                 if (ret < 0) {
1363                                         vma->vm_region = NULL;
1364                                         vma->vm_start = 0;
1365                                         vma->vm_end = 0;
1366                                         pregion->vm_usage--;
1367                                         pregion = NULL;
1368                                         goto error_just_free;
1369                                 }
1370                         }
1371                         fput(region->vm_file);
1372                         kmem_cache_free(vm_region_jar, region);
1373                         region = pregion;
1374                         result = start;
1375                         goto share;
1376                 }
1377
1378                 /* obtain the address at which to make a shared mapping
1379                  * - this is the hook for quasi-memory character devices to
1380                  *   tell us the location of a shared mapping
1381                  */
1382                 if (capabilities & BDI_CAP_MAP_DIRECT) {
1383                         addr = file->f_op->get_unmapped_area(file, addr, len,
1384                                                              pgoff, flags);
1385                         if (IS_ERR_VALUE(addr)) {
1386                                 ret = addr;
1387                                 if (ret != -ENOSYS)
1388                                         goto error_just_free;
1389
1390                                 /* the driver refused to tell us where to site
1391                                  * the mapping so we'll have to attempt to copy
1392                                  * it */
1393                                 ret = -ENODEV;
1394                                 if (!(capabilities & BDI_CAP_MAP_COPY))
1395                                         goto error_just_free;
1396
1397                                 capabilities &= ~BDI_CAP_MAP_DIRECT;
1398                         } else {
1399                                 vma->vm_start = region->vm_start = addr;
1400                                 vma->vm_end = region->vm_end = addr + len;
1401                         }
1402                 }
1403         }
1404
1405         vma->vm_region = region;
1406
1407         /* set up the mapping
1408          * - the region is filled in if BDI_CAP_MAP_DIRECT is still set
1409          */
1410         if (file && vma->vm_flags & VM_SHARED)
1411                 ret = do_mmap_shared_file(vma);
1412         else
1413                 ret = do_mmap_private(vma, region, len, capabilities);
1414         if (ret < 0)
1415                 goto error_just_free;
1416         add_nommu_region(region);
1417
1418         /* clear anonymous mappings that don't ask for uninitialized data */
1419         if (!vma->vm_file && !(flags & MAP_UNINITIALIZED))
1420                 memset((void *)region->vm_start, 0,
1421                        region->vm_end - region->vm_start);
1422
1423         /* okay... we have a mapping; now we have to register it */
1424         result = vma->vm_start;
1425
1426         current->mm->total_vm += len >> PAGE_SHIFT;
1427
1428 share:
1429         add_vma_to_mm(current->mm, vma);
1430
1431         /* we flush the region from the icache only when the first executable
1432          * mapping of it is made  */
1433         if (vma->vm_flags & VM_EXEC && !region->vm_icache_flushed) {
1434                 flush_icache_range(region->vm_start, region->vm_end);
1435                 region->vm_icache_flushed = true;
1436         }
1437
1438         up_write(&nommu_region_sem);
1439
1440         kleave(" = %lx", result);
1441         return result;
1442
1443 error_just_free:
1444         up_write(&nommu_region_sem);
1445 error:
1446         if (region->vm_file)
1447                 fput(region->vm_file);
1448         kmem_cache_free(vm_region_jar, region);
1449         if (vma->vm_file)
1450                 fput(vma->vm_file);
1451         kmem_cache_free(vm_area_cachep, vma);
1452         kleave(" = %d", ret);
1453         return ret;
1454
1455 sharing_violation:
1456         up_write(&nommu_region_sem);
1457         printk(KERN_WARNING "Attempt to share mismatched mappings\n");
1458         ret = -EINVAL;
1459         goto error;
1460
1461 error_getting_vma:
1462         kmem_cache_free(vm_region_jar, region);
1463         printk(KERN_WARNING "Allocation of vma for %lu byte allocation"
1464                " from process %d failed\n",
1465                len, current->pid);
1466         show_free_areas(0);
1467         return -ENOMEM;
1468
1469 error_getting_region:
1470         printk(KERN_WARNING "Allocation of vm region for %lu byte allocation"
1471                " from process %d failed\n",
1472                len, current->pid);
1473         show_free_areas(0);
1474         return -ENOMEM;
1475 }
1476
1477 SYSCALL_DEFINE6(mmap_pgoff, unsigned long, addr, unsigned long, len,
1478                 unsigned long, prot, unsigned long, flags,
1479                 unsigned long, fd, unsigned long, pgoff)
1480 {
1481         struct file *file = NULL;
1482         unsigned long retval = -EBADF;
1483
1484         audit_mmap_fd(fd, flags);
1485         if (!(flags & MAP_ANONYMOUS)) {
1486                 file = fget(fd);
1487                 if (!file)
1488                         goto out;
1489         }
1490
1491         flags &= ~(MAP_EXECUTABLE | MAP_DENYWRITE);
1492
1493         retval = vm_mmap_pgoff(file, addr, len, prot, flags, pgoff);
1494
1495         if (file)
1496                 fput(file);
1497 out:
1498         return retval;
1499 }
1500
1501 #ifdef __ARCH_WANT_SYS_OLD_MMAP
1502 struct mmap_arg_struct {
1503         unsigned long addr;
1504         unsigned long len;
1505         unsigned long prot;
1506         unsigned long flags;
1507         unsigned long fd;
1508         unsigned long offset;
1509 };
1510
1511 SYSCALL_DEFINE1(old_mmap, struct mmap_arg_struct __user *, arg)
1512 {
1513         struct mmap_arg_struct a;
1514
1515         if (copy_from_user(&a, arg, sizeof(a)))
1516                 return -EFAULT;
1517         if (a.offset & ~PAGE_MASK)
1518                 return -EINVAL;
1519
1520         return sys_mmap_pgoff(a.addr, a.len, a.prot, a.flags, a.fd,
1521                               a.offset >> PAGE_SHIFT);
1522 }
1523 #endif /* __ARCH_WANT_SYS_OLD_MMAP */
1524
1525 /*
1526  * split a vma into two pieces at address 'addr', a new vma is allocated either
1527  * for the first part or the tail.
1528  */
1529 int split_vma(struct mm_struct *mm, struct vm_area_struct *vma,
1530               unsigned long addr, int new_below)
1531 {
1532         struct vm_area_struct *new;
1533         struct vm_region *region;
1534         unsigned long npages;
1535
1536         kenter("");
1537
1538         /* we're only permitted to split anonymous regions (these should have
1539          * only a single usage on the region) */
1540         if (vma->vm_file)
1541                 return -ENOMEM;
1542
1543         if (mm->map_count >= sysctl_max_map_count)
1544                 return -ENOMEM;
1545
1546         region = kmem_cache_alloc(vm_region_jar, GFP_KERNEL);
1547         if (!region)
1548                 return -ENOMEM;
1549
1550         new = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
1551         if (!new) {
1552                 kmem_cache_free(vm_region_jar, region);
1553                 return -ENOMEM;
1554         }
1555
1556         /* most fields are the same, copy all, and then fixup */
1557         *new = *vma;
1558         *region = *vma->vm_region;
1559         new->vm_region = region;
1560
1561         npages = (addr - vma->vm_start) >> PAGE_SHIFT;
1562
1563         if (new_below) {
1564                 region->vm_top = region->vm_end = new->vm_end = addr;
1565         } else {
1566                 region->vm_start = new->vm_start = addr;
1567                 region->vm_pgoff = new->vm_pgoff += npages;
1568         }
1569
1570         if (new->vm_ops && new->vm_ops->open)
1571                 new->vm_ops->open(new);
1572
1573         delete_vma_from_mm(vma);
1574         down_write(&nommu_region_sem);
1575         delete_nommu_region(vma->vm_region);
1576         if (new_below) {
1577                 vma->vm_region->vm_start = vma->vm_start = addr;
1578                 vma->vm_region->vm_pgoff = vma->vm_pgoff += npages;
1579         } else {
1580                 vma->vm_region->vm_end = vma->vm_end = addr;
1581                 vma->vm_region->vm_top = addr;
1582         }
1583         add_nommu_region(vma->vm_region);
1584         add_nommu_region(new->vm_region);
1585         up_write(&nommu_region_sem);
1586         add_vma_to_mm(mm, vma);
1587         add_vma_to_mm(mm, new);
1588         return 0;
1589 }
1590
1591 /*
1592  * shrink a VMA by removing the specified chunk from either the beginning or
1593  * the end
1594  */
1595 static int shrink_vma(struct mm_struct *mm,
1596                       struct vm_area_struct *vma,
1597                       unsigned long from, unsigned long to)
1598 {
1599         struct vm_region *region;
1600
1601         kenter("");
1602
1603         /* adjust the VMA's pointers, which may reposition it in the MM's tree
1604          * and list */
1605         delete_vma_from_mm(vma);
1606         if (from > vma->vm_start)
1607                 vma->vm_end = from;
1608         else
1609                 vma->vm_start = to;
1610         add_vma_to_mm(mm, vma);
1611
1612         /* cut the backing region down to size */
1613         region = vma->vm_region;
1614         BUG_ON(region->vm_usage != 1);
1615
1616         down_write(&nommu_region_sem);
1617         delete_nommu_region(region);
1618         if (from > region->vm_start) {
1619                 to = region->vm_top;
1620                 region->vm_top = region->vm_end = from;
1621         } else {
1622                 region->vm_start = to;
1623         }
1624         add_nommu_region(region);
1625         up_write(&nommu_region_sem);
1626
1627         free_page_series(from, to);
1628         return 0;
1629 }
1630
1631 /*
1632  * release a mapping
1633  * - under NOMMU conditions the chunk to be unmapped must be backed by a single
1634  *   VMA, though it need not cover the whole VMA
1635  */
1636 int do_munmap(struct mm_struct *mm, unsigned long start, size_t len)
1637 {
1638         struct vm_area_struct *vma;
1639         unsigned long end;
1640         int ret;
1641
1642         kenter(",%lx,%zx", start, len);
1643
1644         len = PAGE_ALIGN(len);
1645         if (len == 0)
1646                 return -EINVAL;
1647
1648         end = start + len;
1649
1650         /* find the first potentially overlapping VMA */
1651         vma = find_vma(mm, start);
1652         if (!vma) {
1653                 static int limit = 0;
1654                 if (limit < 5) {
1655                         printk(KERN_WARNING
1656                                "munmap of memory not mmapped by process %d"
1657                                " (%s): 0x%lx-0x%lx\n",
1658                                current->pid, current->comm,
1659                                start, start + len - 1);
1660                         limit++;
1661                 }
1662                 return -EINVAL;
1663         }
1664
1665         /* we're allowed to split an anonymous VMA but not a file-backed one */
1666         if (vma->vm_file) {
1667                 do {
1668                         if (start > vma->vm_start) {
1669                                 kleave(" = -EINVAL [miss]");
1670                                 return -EINVAL;
1671                         }
1672                         if (end == vma->vm_end)
1673                                 goto erase_whole_vma;
1674                         vma = vma->vm_next;
1675                 } while (vma);
1676                 kleave(" = -EINVAL [split file]");
1677                 return -EINVAL;
1678         } else {
1679                 /* the chunk must be a subset of the VMA found */
1680                 if (start == vma->vm_start && end == vma->vm_end)
1681                         goto erase_whole_vma;
1682                 if (start < vma->vm_start || end > vma->vm_end) {
1683                         kleave(" = -EINVAL [superset]");
1684                         return -EINVAL;
1685                 }
1686                 if (start & ~PAGE_MASK) {
1687                         kleave(" = -EINVAL [unaligned start]");
1688                         return -EINVAL;
1689                 }
1690                 if (end != vma->vm_end && end & ~PAGE_MASK) {
1691                         kleave(" = -EINVAL [unaligned split]");
1692                         return -EINVAL;
1693                 }
1694                 if (start != vma->vm_start && end != vma->vm_end) {
1695                         ret = split_vma(mm, vma, start, 1);
1696                         if (ret < 0) {
1697                                 kleave(" = %d [split]", ret);
1698                                 return ret;
1699                         }
1700                 }
1701                 return shrink_vma(mm, vma, start, end);
1702         }
1703
1704 erase_whole_vma:
1705         delete_vma_from_mm(vma);
1706         delete_vma(mm, vma);
1707         kleave(" = 0");
1708         return 0;
1709 }
1710 EXPORT_SYMBOL(do_munmap);
1711
1712 int vm_munmap(unsigned long addr, size_t len)
1713 {
1714         struct mm_struct *mm = current->mm;
1715         int ret;
1716
1717         down_write(&mm->mmap_sem);
1718         ret = do_munmap(mm, addr, len);
1719         up_write(&mm->mmap_sem);
1720         return ret;
1721 }
1722 EXPORT_SYMBOL(vm_munmap);
1723
1724 SYSCALL_DEFINE2(munmap, unsigned long, addr, size_t, len)
1725 {
1726         return vm_munmap(addr, len);
1727 }
1728
1729 /*
1730  * release all the mappings made in a process's VM space
1731  */
1732 void exit_mmap(struct mm_struct *mm)
1733 {
1734         struct vm_area_struct *vma;
1735
1736         if (!mm)
1737                 return;
1738
1739         kenter("");
1740
1741         mm->total_vm = 0;
1742
1743         while ((vma = mm->mmap)) {
1744                 mm->mmap = vma->vm_next;
1745                 delete_vma_from_mm(vma);
1746                 delete_vma(mm, vma);
1747                 cond_resched();
1748         }
1749
1750         kleave("");
1751 }
1752
1753 unsigned long vm_brk(unsigned long addr, unsigned long len)
1754 {
1755         return -ENOMEM;
1756 }
1757
1758 /*
1759  * expand (or shrink) an existing mapping, potentially moving it at the same
1760  * time (controlled by the MREMAP_MAYMOVE flag and available VM space)
1761  *
1762  * under NOMMU conditions, we only permit changing a mapping's size, and only
1763  * as long as it stays within the region allocated by do_mmap_private() and the
1764  * block is not shareable
1765  *
1766  * MREMAP_FIXED is not supported under NOMMU conditions
1767  */
1768 unsigned long do_mremap(unsigned long addr,
1769                         unsigned long old_len, unsigned long new_len,
1770                         unsigned long flags, unsigned long new_addr)
1771 {
1772         struct vm_area_struct *vma;
1773
1774         /* insanity checks first */
1775         old_len = PAGE_ALIGN(old_len);
1776         new_len = PAGE_ALIGN(new_len);
1777         if (old_len == 0 || new_len == 0)
1778                 return (unsigned long) -EINVAL;
1779
1780         if (addr & ~PAGE_MASK)
1781                 return -EINVAL;
1782
1783         if (flags & MREMAP_FIXED && new_addr != addr)
1784                 return (unsigned long) -EINVAL;
1785
1786         vma = find_vma_exact(current->mm, addr, old_len);
1787         if (!vma)
1788                 return (unsigned long) -EINVAL;
1789
1790         if (vma->vm_end != vma->vm_start + old_len)
1791                 return (unsigned long) -EFAULT;
1792
1793         if (vma->vm_flags & VM_MAYSHARE)
1794                 return (unsigned long) -EPERM;
1795
1796         if (new_len > vma->vm_region->vm_end - vma->vm_region->vm_start)
1797                 return (unsigned long) -ENOMEM;
1798
1799         /* all checks complete - do it */
1800         vma->vm_end = vma->vm_start + new_len;
1801         return vma->vm_start;
1802 }
1803 EXPORT_SYMBOL(do_mremap);
1804
1805 SYSCALL_DEFINE5(mremap, unsigned long, addr, unsigned long, old_len,
1806                 unsigned long, new_len, unsigned long, flags,
1807                 unsigned long, new_addr)
1808 {
1809         unsigned long ret;
1810
1811         down_write(&current->mm->mmap_sem);
1812         ret = do_mremap(addr, old_len, new_len, flags, new_addr);
1813         up_write(&current->mm->mmap_sem);
1814         return ret;
1815 }
1816
1817 struct page *follow_page(struct vm_area_struct *vma, unsigned long address,
1818                         unsigned int foll_flags)
1819 {
1820         return NULL;
1821 }
1822
1823 int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
1824                 unsigned long pfn, unsigned long size, pgprot_t prot)
1825 {
1826         if (addr != (pfn << PAGE_SHIFT))
1827                 return -EINVAL;
1828
1829         vma->vm_flags |= VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP;
1830         return 0;
1831 }
1832 EXPORT_SYMBOL(remap_pfn_range);
1833
1834 int remap_vmalloc_range(struct vm_area_struct *vma, void *addr,
1835                         unsigned long pgoff)
1836 {
1837         unsigned int size = vma->vm_end - vma->vm_start;
1838
1839         if (!(vma->vm_flags & VM_USERMAP))
1840                 return -EINVAL;
1841
1842         vma->vm_start = (unsigned long)(addr + (pgoff << PAGE_SHIFT));
1843         vma->vm_end = vma->vm_start + size;
1844
1845         return 0;
1846 }
1847 EXPORT_SYMBOL(remap_vmalloc_range);
1848
1849 unsigned long arch_get_unmapped_area(struct file *file, unsigned long addr,
1850         unsigned long len, unsigned long pgoff, unsigned long flags)
1851 {
1852         return -ENOMEM;
1853 }
1854
1855 void arch_unmap_area(struct mm_struct *mm, unsigned long addr)
1856 {
1857 }
1858
1859 void unmap_mapping_range(struct address_space *mapping,
1860                          loff_t const holebegin, loff_t const holelen,
1861                          int even_cows)
1862 {
1863 }
1864 EXPORT_SYMBOL(unmap_mapping_range);
1865
1866 /*
1867  * Check that a process has enough memory to allocate a new virtual
1868  * mapping. 0 means there is enough memory for the allocation to
1869  * succeed and -ENOMEM implies there is not.
1870  *
1871  * We currently support three overcommit policies, which are set via the
1872  * vm.overcommit_memory sysctl.  See Documentation/vm/overcommit-accounting
1873  *
1874  * Strict overcommit modes added 2002 Feb 26 by Alan Cox.
1875  * Additional code 2002 Jul 20 by Robert Love.
1876  *
1877  * cap_sys_admin is 1 if the process has admin privileges, 0 otherwise.
1878  *
1879  * Note this is a helper function intended to be used by LSMs which
1880  * wish to use this logic.
1881  */
1882 int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin)
1883 {
1884         unsigned long free, allowed;
1885
1886         vm_acct_memory(pages);
1887
1888         /*
1889          * Sometimes we want to use more memory than we have
1890          */
1891         if (sysctl_overcommit_memory == OVERCOMMIT_ALWAYS)
1892                 return 0;
1893
1894         if (sysctl_overcommit_memory == OVERCOMMIT_GUESS) {
1895                 free = global_page_state(NR_FREE_PAGES);
1896                 free += global_page_state(NR_FILE_PAGES);
1897
1898                 /*
1899                  * shmem pages shouldn't be counted as free in this
1900                  * case, they can't be purged, only swapped out, and
1901                  * that won't affect the overall amount of available
1902                  * memory in the system.
1903                  */
1904                 free -= global_page_state(NR_SHMEM);
1905
1906                 free += nr_swap_pages;
1907
1908                 /*
1909                  * Any slabs which are created with the
1910                  * SLAB_RECLAIM_ACCOUNT flag claim to have contents
1911                  * which are reclaimable, under pressure.  The dentry
1912                  * cache and most inode caches should fall into this
1913                  */
1914                 free += global_page_state(NR_SLAB_RECLAIMABLE);
1915
1916                 /*
1917                  * Leave reserved pages. The pages are not for anonymous pages.
1918                  */
1919                 if (free <= totalreserve_pages)
1920                         goto error;
1921                 else
1922                         free -= totalreserve_pages;
1923
1924                 /*
1925                  * Leave the last 3% for root
1926                  */
1927                 if (!cap_sys_admin)
1928                         free -= free / 32;
1929
1930                 if (free > pages)
1931                         return 0;
1932
1933                 goto error;
1934         }
1935
1936         allowed = totalram_pages * sysctl_overcommit_ratio / 100;
1937         /*
1938          * Leave the last 3% for root
1939          */
1940         if (!cap_sys_admin)
1941                 allowed -= allowed / 32;
1942         allowed += total_swap_pages;
1943
1944         /* Don't let a single process grow too big:
1945            leave 3% of the size of this process for other processes */
1946         if (mm)
1947                 allowed -= mm->total_vm / 32;
1948
1949         if (percpu_counter_read_positive(&vm_committed_as) < allowed)
1950                 return 0;
1951
1952 error:
1953         vm_unacct_memory(pages);
1954
1955         return -ENOMEM;
1956 }
1957
1958 int in_gate_area_no_mm(unsigned long addr)
1959 {
1960         return 0;
1961 }
1962
1963 int filemap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1964 {
1965         BUG();
1966         return 0;
1967 }
1968 EXPORT_SYMBOL(filemap_fault);
1969
1970 int generic_file_remap_pages(struct vm_area_struct *vma, unsigned long addr,
1971                              unsigned long size, pgoff_t pgoff)
1972 {
1973         BUG();
1974         return 0;
1975 }
1976 EXPORT_SYMBOL(generic_file_remap_pages);
1977
1978 static int __access_remote_vm(struct task_struct *tsk, struct mm_struct *mm,
1979                 unsigned long addr, void *buf, int len, int write)
1980 {
1981         struct vm_area_struct *vma;
1982
1983         down_read(&mm->mmap_sem);
1984
1985         /* the access must start within one of the target process's mappings */
1986         vma = find_vma(mm, addr);
1987         if (vma) {
1988                 /* don't overrun this mapping */
1989                 if (addr + len >= vma->vm_end)
1990                         len = vma->vm_end - addr;
1991
1992                 /* only read or write mappings where it is permitted */
1993                 if (write && vma->vm_flags & VM_MAYWRITE)
1994                         copy_to_user_page(vma, NULL, addr,
1995                                          (void *) addr, buf, len);
1996                 else if (!write && vma->vm_flags & VM_MAYREAD)
1997                         copy_from_user_page(vma, NULL, addr,
1998                                             buf, (void *) addr, len);
1999                 else
2000                         len = 0;
2001         } else {
2002                 len = 0;
2003         }
2004
2005         up_read(&mm->mmap_sem);
2006
2007         return len;
2008 }
2009
2010 /**
2011  * @access_remote_vm - access another process' address space
2012  * @mm:         the mm_struct of the target address space
2013  * @addr:       start address to access
2014  * @buf:        source or destination buffer
2015  * @len:        number of bytes to transfer
2016  * @write:      whether the access is a write
2017  *
2018  * The caller must hold a reference on @mm.
2019  */
2020 int access_remote_vm(struct mm_struct *mm, unsigned long addr,
2021                 void *buf, int len, int write)
2022 {
2023         return __access_remote_vm(NULL, mm, addr, buf, len, write);
2024 }
2025
2026 /*
2027  * Access another process' address space.
2028  * - source/target buffer must be kernel space
2029  */
2030 int access_process_vm(struct task_struct *tsk, unsigned long addr, void *buf, int len, int write)
2031 {
2032         struct mm_struct *mm;
2033
2034         if (addr + len < addr)
2035                 return 0;
2036
2037         mm = get_task_mm(tsk);
2038         if (!mm)
2039                 return 0;
2040
2041         len = __access_remote_vm(tsk, mm, addr, buf, len, write);
2042
2043         mmput(mm);
2044         return len;
2045 }
2046
2047 /**
2048  * nommu_shrink_inode_mappings - Shrink the shared mappings on an inode
2049  * @inode: The inode to check
2050  * @size: The current filesize of the inode
2051  * @newsize: The proposed filesize of the inode
2052  *
2053  * Check the shared mappings on an inode on behalf of a shrinking truncate to
2054  * make sure that that any outstanding VMAs aren't broken and then shrink the
2055  * vm_regions that extend that beyond so that do_mmap_pgoff() doesn't
2056  * automatically grant mappings that are too large.
2057  */
2058 int nommu_shrink_inode_mappings(struct inode *inode, size_t size,
2059                                 size_t newsize)
2060 {
2061         struct vm_area_struct *vma;
2062         struct vm_region *region;
2063         pgoff_t low, high;
2064         size_t r_size, r_top;
2065
2066         low = newsize >> PAGE_SHIFT;
2067         high = (size + PAGE_SIZE - 1) >> PAGE_SHIFT;
2068
2069         down_write(&nommu_region_sem);
2070         mutex_lock(&inode->i_mapping->i_mmap_mutex);
2071
2072         /* search for VMAs that fall within the dead zone */
2073         vma_interval_tree_foreach(vma, &inode->i_mapping->i_mmap, low, high) {
2074                 /* found one - only interested if it's shared out of the page
2075                  * cache */
2076                 if (vma->vm_flags & VM_SHARED) {
2077                         mutex_unlock(&inode->i_mapping->i_mmap_mutex);
2078                         up_write(&nommu_region_sem);
2079                         return -ETXTBSY; /* not quite true, but near enough */
2080                 }
2081         }
2082
2083         /* reduce any regions that overlap the dead zone - if in existence,
2084          * these will be pointed to by VMAs that don't overlap the dead zone
2085          *
2086          * we don't check for any regions that start beyond the EOF as there
2087          * shouldn't be any
2088          */
2089         vma_interval_tree_foreach(vma, &inode->i_mapping->i_mmap,
2090                                   0, ULONG_MAX) {
2091                 if (!(vma->vm_flags & VM_SHARED))
2092                         continue;
2093
2094                 region = vma->vm_region;
2095                 r_size = region->vm_top - region->vm_start;
2096                 r_top = (region->vm_pgoff << PAGE_SHIFT) + r_size;
2097
2098                 if (r_top > newsize) {
2099                         region->vm_top -= r_top - newsize;
2100                         if (region->vm_end > region->vm_top)
2101                                 region->vm_end = region->vm_top;
2102                 }
2103         }
2104
2105         mutex_unlock(&inode->i_mapping->i_mmap_mutex);
2106         up_write(&nommu_region_sem);
2107         return 0;
2108 }