Merge tag 'kbuild-v6.6' of git://git.kernel.org/pub/scm/linux/kernel/git/masahiroy...
[platform/kernel/linux-starfive.git] / mm / nommu.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/mm/nommu.c
4  *
5  *  Replacement code for mm functions to support CPU's that don't
6  *  have any form of memory management unit (thus no virtual memory).
7  *
8  *  See Documentation/admin-guide/mm/nommu-mmap.rst
9  *
10  *  Copyright (c) 2004-2008 David Howells <dhowells@redhat.com>
11  *  Copyright (c) 2000-2003 David McCullough <davidm@snapgear.com>
12  *  Copyright (c) 2000-2001 D Jeff Dionne <jeff@uClinux.org>
13  *  Copyright (c) 2002      Greg Ungerer <gerg@snapgear.com>
14  *  Copyright (c) 2007-2010 Paul Mundt <lethal@linux-sh.org>
15  */
16
17 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
18
19 #include <linux/export.h>
20 #include <linux/mm.h>
21 #include <linux/sched/mm.h>
22 #include <linux/mman.h>
23 #include <linux/swap.h>
24 #include <linux/file.h>
25 #include <linux/highmem.h>
26 #include <linux/pagemap.h>
27 #include <linux/slab.h>
28 #include <linux/vmalloc.h>
29 #include <linux/backing-dev.h>
30 #include <linux/compiler.h>
31 #include <linux/mount.h>
32 #include <linux/personality.h>
33 #include <linux/security.h>
34 #include <linux/syscalls.h>
35 #include <linux/audit.h>
36 #include <linux/printk.h>
37
38 #include <linux/uaccess.h>
39 #include <linux/uio.h>
40 #include <asm/tlb.h>
41 #include <asm/tlbflush.h>
42 #include <asm/mmu_context.h>
43 #include "internal.h"
44
45 void *high_memory;
46 EXPORT_SYMBOL(high_memory);
47 struct page *mem_map;
48 unsigned long max_mapnr;
49 EXPORT_SYMBOL(max_mapnr);
50 unsigned long highest_memmap_pfn;
51 int sysctl_nr_trim_pages = CONFIG_NOMMU_INITIAL_TRIM_EXCESS;
52 int heap_stack_gap = 0;
53
54 atomic_long_t mmap_pages_allocated;
55
56 EXPORT_SYMBOL(mem_map);
57
58 /* list of mapped, potentially shareable regions */
59 static struct kmem_cache *vm_region_jar;
60 struct rb_root nommu_region_tree = RB_ROOT;
61 DECLARE_RWSEM(nommu_region_sem);
62
63 const struct vm_operations_struct generic_file_vm_ops = {
64 };
65
66 /*
67  * Return the total memory allocated for this pointer, not
68  * just what the caller asked for.
69  *
70  * Doesn't have to be accurate, i.e. may have races.
71  */
72 unsigned int kobjsize(const void *objp)
73 {
74         struct page *page;
75
76         /*
77          * If the object we have should not have ksize performed on it,
78          * return size of 0
79          */
80         if (!objp || !virt_addr_valid(objp))
81                 return 0;
82
83         page = virt_to_head_page(objp);
84
85         /*
86          * If the allocator sets PageSlab, we know the pointer came from
87          * kmalloc().
88          */
89         if (PageSlab(page))
90                 return ksize(objp);
91
92         /*
93          * If it's not a compound page, see if we have a matching VMA
94          * region. This test is intentionally done in reverse order,
95          * so if there's no VMA, we still fall through and hand back
96          * PAGE_SIZE for 0-order pages.
97          */
98         if (!PageCompound(page)) {
99                 struct vm_area_struct *vma;
100
101                 vma = find_vma(current->mm, (unsigned long)objp);
102                 if (vma)
103                         return vma->vm_end - vma->vm_start;
104         }
105
106         /*
107          * The ksize() function is only guaranteed to work for pointers
108          * returned by kmalloc(). So handle arbitrary pointers here.
109          */
110         return page_size(page);
111 }
112
113 /**
114  * follow_pfn - look up PFN at a user virtual address
115  * @vma: memory mapping
116  * @address: user virtual address
117  * @pfn: location to store found PFN
118  *
119  * Only IO mappings and raw PFN mappings are allowed.
120  *
121  * Returns zero and the pfn at @pfn on success, -ve otherwise.
122  */
123 int follow_pfn(struct vm_area_struct *vma, unsigned long address,
124         unsigned long *pfn)
125 {
126         if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
127                 return -EINVAL;
128
129         *pfn = address >> PAGE_SHIFT;
130         return 0;
131 }
132 EXPORT_SYMBOL(follow_pfn);
133
134 LIST_HEAD(vmap_area_list);
135
136 void vfree(const void *addr)
137 {
138         kfree(addr);
139 }
140 EXPORT_SYMBOL(vfree);
141
142 void *__vmalloc(unsigned long size, gfp_t gfp_mask)
143 {
144         /*
145          *  You can't specify __GFP_HIGHMEM with kmalloc() since kmalloc()
146          * returns only a logical address.
147          */
148         return kmalloc(size, (gfp_mask | __GFP_COMP) & ~__GFP_HIGHMEM);
149 }
150 EXPORT_SYMBOL(__vmalloc);
151
152 void *__vmalloc_node_range(unsigned long size, unsigned long align,
153                 unsigned long start, unsigned long end, gfp_t gfp_mask,
154                 pgprot_t prot, unsigned long vm_flags, int node,
155                 const void *caller)
156 {
157         return __vmalloc(size, gfp_mask);
158 }
159
160 void *__vmalloc_node(unsigned long size, unsigned long align, gfp_t gfp_mask,
161                 int node, const void *caller)
162 {
163         return __vmalloc(size, gfp_mask);
164 }
165
166 static void *__vmalloc_user_flags(unsigned long size, gfp_t flags)
167 {
168         void *ret;
169
170         ret = __vmalloc(size, flags);
171         if (ret) {
172                 struct vm_area_struct *vma;
173
174                 mmap_write_lock(current->mm);
175                 vma = find_vma(current->mm, (unsigned long)ret);
176                 if (vma)
177                         vm_flags_set(vma, VM_USERMAP);
178                 mmap_write_unlock(current->mm);
179         }
180
181         return ret;
182 }
183
184 void *vmalloc_user(unsigned long size)
185 {
186         return __vmalloc_user_flags(size, GFP_KERNEL | __GFP_ZERO);
187 }
188 EXPORT_SYMBOL(vmalloc_user);
189
190 struct page *vmalloc_to_page(const void *addr)
191 {
192         return virt_to_page(addr);
193 }
194 EXPORT_SYMBOL(vmalloc_to_page);
195
196 unsigned long vmalloc_to_pfn(const void *addr)
197 {
198         return page_to_pfn(virt_to_page(addr));
199 }
200 EXPORT_SYMBOL(vmalloc_to_pfn);
201
202 long vread_iter(struct iov_iter *iter, const char *addr, size_t count)
203 {
204         /* Don't allow overflow */
205         if ((unsigned long) addr + count < count)
206                 count = -(unsigned long) addr;
207
208         return copy_to_iter(addr, count, iter);
209 }
210
211 /*
212  *      vmalloc  -  allocate virtually contiguous memory
213  *
214  *      @size:          allocation size
215  *
216  *      Allocate enough pages to cover @size from the page level
217  *      allocator and map them into contiguous kernel virtual space.
218  *
219  *      For tight control over page level allocator and protection flags
220  *      use __vmalloc() instead.
221  */
222 void *vmalloc(unsigned long size)
223 {
224         return __vmalloc(size, GFP_KERNEL);
225 }
226 EXPORT_SYMBOL(vmalloc);
227
228 void *vmalloc_huge(unsigned long size, gfp_t gfp_mask) __weak __alias(__vmalloc);
229
230 /*
231  *      vzalloc - allocate virtually contiguous memory with zero fill
232  *
233  *      @size:          allocation size
234  *
235  *      Allocate enough pages to cover @size from the page level
236  *      allocator and map them into contiguous kernel virtual space.
237  *      The memory allocated is set to zero.
238  *
239  *      For tight control over page level allocator and protection flags
240  *      use __vmalloc() instead.
241  */
242 void *vzalloc(unsigned long size)
243 {
244         return __vmalloc(size, GFP_KERNEL | __GFP_ZERO);
245 }
246 EXPORT_SYMBOL(vzalloc);
247
248 /**
249  * vmalloc_node - allocate memory on a specific node
250  * @size:       allocation size
251  * @node:       numa node
252  *
253  * Allocate enough pages to cover @size from the page level
254  * allocator and map them into contiguous kernel virtual space.
255  *
256  * For tight control over page level allocator and protection flags
257  * use __vmalloc() instead.
258  */
259 void *vmalloc_node(unsigned long size, int node)
260 {
261         return vmalloc(size);
262 }
263 EXPORT_SYMBOL(vmalloc_node);
264
265 /**
266  * vzalloc_node - allocate memory on a specific node with zero fill
267  * @size:       allocation size
268  * @node:       numa node
269  *
270  * Allocate enough pages to cover @size from the page level
271  * allocator and map them into contiguous kernel virtual space.
272  * The memory allocated is set to zero.
273  *
274  * For tight control over page level allocator and protection flags
275  * use __vmalloc() instead.
276  */
277 void *vzalloc_node(unsigned long size, int node)
278 {
279         return vzalloc(size);
280 }
281 EXPORT_SYMBOL(vzalloc_node);
282
283 /**
284  * vmalloc_32  -  allocate virtually contiguous memory (32bit addressable)
285  *      @size:          allocation size
286  *
287  *      Allocate enough 32bit PA addressable pages to cover @size from the
288  *      page level allocator and map them into contiguous kernel virtual space.
289  */
290 void *vmalloc_32(unsigned long size)
291 {
292         return __vmalloc(size, GFP_KERNEL);
293 }
294 EXPORT_SYMBOL(vmalloc_32);
295
296 /**
297  * vmalloc_32_user - allocate zeroed virtually contiguous 32bit memory
298  *      @size:          allocation size
299  *
300  * The resulting memory area is 32bit addressable and zeroed so it can be
301  * mapped to userspace without leaking data.
302  *
303  * VM_USERMAP is set on the corresponding VMA so that subsequent calls to
304  * remap_vmalloc_range() are permissible.
305  */
306 void *vmalloc_32_user(unsigned long size)
307 {
308         /*
309          * We'll have to sort out the ZONE_DMA bits for 64-bit,
310          * but for now this can simply use vmalloc_user() directly.
311          */
312         return vmalloc_user(size);
313 }
314 EXPORT_SYMBOL(vmalloc_32_user);
315
316 void *vmap(struct page **pages, unsigned int count, unsigned long flags, pgprot_t prot)
317 {
318         BUG();
319         return NULL;
320 }
321 EXPORT_SYMBOL(vmap);
322
323 void vunmap(const void *addr)
324 {
325         BUG();
326 }
327 EXPORT_SYMBOL(vunmap);
328
329 void *vm_map_ram(struct page **pages, unsigned int count, int node)
330 {
331         BUG();
332         return NULL;
333 }
334 EXPORT_SYMBOL(vm_map_ram);
335
336 void vm_unmap_ram(const void *mem, unsigned int count)
337 {
338         BUG();
339 }
340 EXPORT_SYMBOL(vm_unmap_ram);
341
342 void vm_unmap_aliases(void)
343 {
344 }
345 EXPORT_SYMBOL_GPL(vm_unmap_aliases);
346
347 void free_vm_area(struct vm_struct *area)
348 {
349         BUG();
350 }
351 EXPORT_SYMBOL_GPL(free_vm_area);
352
353 int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
354                    struct page *page)
355 {
356         return -EINVAL;
357 }
358 EXPORT_SYMBOL(vm_insert_page);
359
360 int vm_map_pages(struct vm_area_struct *vma, struct page **pages,
361                         unsigned long num)
362 {
363         return -EINVAL;
364 }
365 EXPORT_SYMBOL(vm_map_pages);
366
367 int vm_map_pages_zero(struct vm_area_struct *vma, struct page **pages,
368                                 unsigned long num)
369 {
370         return -EINVAL;
371 }
372 EXPORT_SYMBOL(vm_map_pages_zero);
373
374 /*
375  *  sys_brk() for the most part doesn't need the global kernel
376  *  lock, except when an application is doing something nasty
377  *  like trying to un-brk an area that has already been mapped
378  *  to a regular file.  in this case, the unmapping will need
379  *  to invoke file system routines that need the global lock.
380  */
381 SYSCALL_DEFINE1(brk, unsigned long, brk)
382 {
383         struct mm_struct *mm = current->mm;
384
385         if (brk < mm->start_brk || brk > mm->context.end_brk)
386                 return mm->brk;
387
388         if (mm->brk == brk)
389                 return mm->brk;
390
391         /*
392          * Always allow shrinking brk
393          */
394         if (brk <= mm->brk) {
395                 mm->brk = brk;
396                 return brk;
397         }
398
399         /*
400          * Ok, looks good - let it rip.
401          */
402         flush_icache_user_range(mm->brk, brk);
403         return mm->brk = brk;
404 }
405
406 /*
407  * initialise the percpu counter for VM and region record slabs
408  */
409 void __init mmap_init(void)
410 {
411         int ret;
412
413         ret = percpu_counter_init(&vm_committed_as, 0, GFP_KERNEL);
414         VM_BUG_ON(ret);
415         vm_region_jar = KMEM_CACHE(vm_region, SLAB_PANIC|SLAB_ACCOUNT);
416 }
417
418 /*
419  * validate the region tree
420  * - the caller must hold the region lock
421  */
422 #ifdef CONFIG_DEBUG_NOMMU_REGIONS
423 static noinline void validate_nommu_regions(void)
424 {
425         struct vm_region *region, *last;
426         struct rb_node *p, *lastp;
427
428         lastp = rb_first(&nommu_region_tree);
429         if (!lastp)
430                 return;
431
432         last = rb_entry(lastp, struct vm_region, vm_rb);
433         BUG_ON(last->vm_end <= last->vm_start);
434         BUG_ON(last->vm_top < last->vm_end);
435
436         while ((p = rb_next(lastp))) {
437                 region = rb_entry(p, struct vm_region, vm_rb);
438                 last = rb_entry(lastp, struct vm_region, vm_rb);
439
440                 BUG_ON(region->vm_end <= region->vm_start);
441                 BUG_ON(region->vm_top < region->vm_end);
442                 BUG_ON(region->vm_start < last->vm_top);
443
444                 lastp = p;
445         }
446 }
447 #else
448 static void validate_nommu_regions(void)
449 {
450 }
451 #endif
452
453 /*
454  * add a region into the global tree
455  */
456 static void add_nommu_region(struct vm_region *region)
457 {
458         struct vm_region *pregion;
459         struct rb_node **p, *parent;
460
461         validate_nommu_regions();
462
463         parent = NULL;
464         p = &nommu_region_tree.rb_node;
465         while (*p) {
466                 parent = *p;
467                 pregion = rb_entry(parent, struct vm_region, vm_rb);
468                 if (region->vm_start < pregion->vm_start)
469                         p = &(*p)->rb_left;
470                 else if (region->vm_start > pregion->vm_start)
471                         p = &(*p)->rb_right;
472                 else if (pregion == region)
473                         return;
474                 else
475                         BUG();
476         }
477
478         rb_link_node(&region->vm_rb, parent, p);
479         rb_insert_color(&region->vm_rb, &nommu_region_tree);
480
481         validate_nommu_regions();
482 }
483
484 /*
485  * delete a region from the global tree
486  */
487 static void delete_nommu_region(struct vm_region *region)
488 {
489         BUG_ON(!nommu_region_tree.rb_node);
490
491         validate_nommu_regions();
492         rb_erase(&region->vm_rb, &nommu_region_tree);
493         validate_nommu_regions();
494 }
495
496 /*
497  * free a contiguous series of pages
498  */
499 static void free_page_series(unsigned long from, unsigned long to)
500 {
501         for (; from < to; from += PAGE_SIZE) {
502                 struct page *page = virt_to_page((void *)from);
503
504                 atomic_long_dec(&mmap_pages_allocated);
505                 put_page(page);
506         }
507 }
508
509 /*
510  * release a reference to a region
511  * - the caller must hold the region semaphore for writing, which this releases
512  * - the region may not have been added to the tree yet, in which case vm_top
513  *   will equal vm_start
514  */
515 static void __put_nommu_region(struct vm_region *region)
516         __releases(nommu_region_sem)
517 {
518         BUG_ON(!nommu_region_tree.rb_node);
519
520         if (--region->vm_usage == 0) {
521                 if (region->vm_top > region->vm_start)
522                         delete_nommu_region(region);
523                 up_write(&nommu_region_sem);
524
525                 if (region->vm_file)
526                         fput(region->vm_file);
527
528                 /* IO memory and memory shared directly out of the pagecache
529                  * from ramfs/tmpfs mustn't be released here */
530                 if (region->vm_flags & VM_MAPPED_COPY)
531                         free_page_series(region->vm_start, region->vm_top);
532                 kmem_cache_free(vm_region_jar, region);
533         } else {
534                 up_write(&nommu_region_sem);
535         }
536 }
537
538 /*
539  * release a reference to a region
540  */
541 static void put_nommu_region(struct vm_region *region)
542 {
543         down_write(&nommu_region_sem);
544         __put_nommu_region(region);
545 }
546
547 static void setup_vma_to_mm(struct vm_area_struct *vma, struct mm_struct *mm)
548 {
549         vma->vm_mm = mm;
550
551         /* add the VMA to the mapping */
552         if (vma->vm_file) {
553                 struct address_space *mapping = vma->vm_file->f_mapping;
554
555                 i_mmap_lock_write(mapping);
556                 flush_dcache_mmap_lock(mapping);
557                 vma_interval_tree_insert(vma, &mapping->i_mmap);
558                 flush_dcache_mmap_unlock(mapping);
559                 i_mmap_unlock_write(mapping);
560         }
561 }
562
563 static void cleanup_vma_from_mm(struct vm_area_struct *vma)
564 {
565         vma->vm_mm->map_count--;
566         /* remove the VMA from the mapping */
567         if (vma->vm_file) {
568                 struct address_space *mapping;
569                 mapping = vma->vm_file->f_mapping;
570
571                 i_mmap_lock_write(mapping);
572                 flush_dcache_mmap_lock(mapping);
573                 vma_interval_tree_remove(vma, &mapping->i_mmap);
574                 flush_dcache_mmap_unlock(mapping);
575                 i_mmap_unlock_write(mapping);
576         }
577 }
578
579 /*
580  * delete a VMA from its owning mm_struct and address space
581  */
582 static int delete_vma_from_mm(struct vm_area_struct *vma)
583 {
584         VMA_ITERATOR(vmi, vma->vm_mm, vma->vm_start);
585
586         vma_iter_config(&vmi, vma->vm_start, vma->vm_end);
587         if (vma_iter_prealloc(&vmi, vma)) {
588                 pr_warn("Allocation of vma tree for process %d failed\n",
589                        current->pid);
590                 return -ENOMEM;
591         }
592         cleanup_vma_from_mm(vma);
593
594         /* remove from the MM's tree and list */
595         vma_iter_clear(&vmi);
596         return 0;
597 }
598 /*
599  * destroy a VMA record
600  */
601 static void delete_vma(struct mm_struct *mm, struct vm_area_struct *vma)
602 {
603         if (vma->vm_ops && vma->vm_ops->close)
604                 vma->vm_ops->close(vma);
605         if (vma->vm_file)
606                 fput(vma->vm_file);
607         put_nommu_region(vma->vm_region);
608         vm_area_free(vma);
609 }
610
611 struct vm_area_struct *find_vma_intersection(struct mm_struct *mm,
612                                              unsigned long start_addr,
613                                              unsigned long end_addr)
614 {
615         unsigned long index = start_addr;
616
617         mmap_assert_locked(mm);
618         return mt_find(&mm->mm_mt, &index, end_addr - 1);
619 }
620 EXPORT_SYMBOL(find_vma_intersection);
621
622 /*
623  * look up the first VMA in which addr resides, NULL if none
624  * - should be called with mm->mmap_lock at least held readlocked
625  */
626 struct vm_area_struct *find_vma(struct mm_struct *mm, unsigned long addr)
627 {
628         VMA_ITERATOR(vmi, mm, addr);
629
630         return vma_iter_load(&vmi);
631 }
632 EXPORT_SYMBOL(find_vma);
633
634 /*
635  * At least xtensa ends up having protection faults even with no
636  * MMU.. No stack expansion, at least.
637  */
638 struct vm_area_struct *lock_mm_and_find_vma(struct mm_struct *mm,
639                         unsigned long addr, struct pt_regs *regs)
640 {
641         struct vm_area_struct *vma;
642
643         mmap_read_lock(mm);
644         vma = vma_lookup(mm, addr);
645         if (!vma)
646                 mmap_read_unlock(mm);
647         return vma;
648 }
649
650 /*
651  * expand a stack to a given address
652  * - not supported under NOMMU conditions
653  */
654 int expand_stack_locked(struct vm_area_struct *vma, unsigned long addr)
655 {
656         return -ENOMEM;
657 }
658
659 struct vm_area_struct *expand_stack(struct mm_struct *mm, unsigned long addr)
660 {
661         mmap_read_unlock(mm);
662         return NULL;
663 }
664
665 /*
666  * look up the first VMA exactly that exactly matches addr
667  * - should be called with mm->mmap_lock at least held readlocked
668  */
669 static struct vm_area_struct *find_vma_exact(struct mm_struct *mm,
670                                              unsigned long addr,
671                                              unsigned long len)
672 {
673         struct vm_area_struct *vma;
674         unsigned long end = addr + len;
675         VMA_ITERATOR(vmi, mm, addr);
676
677         vma = vma_iter_load(&vmi);
678         if (!vma)
679                 return NULL;
680         if (vma->vm_start != addr)
681                 return NULL;
682         if (vma->vm_end != end)
683                 return NULL;
684
685         return vma;
686 }
687
688 /*
689  * determine whether a mapping should be permitted and, if so, what sort of
690  * mapping we're capable of supporting
691  */
692 static int validate_mmap_request(struct file *file,
693                                  unsigned long addr,
694                                  unsigned long len,
695                                  unsigned long prot,
696                                  unsigned long flags,
697                                  unsigned long pgoff,
698                                  unsigned long *_capabilities)
699 {
700         unsigned long capabilities, rlen;
701         int ret;
702
703         /* do the simple checks first */
704         if (flags & MAP_FIXED)
705                 return -EINVAL;
706
707         if ((flags & MAP_TYPE) != MAP_PRIVATE &&
708             (flags & MAP_TYPE) != MAP_SHARED)
709                 return -EINVAL;
710
711         if (!len)
712                 return -EINVAL;
713
714         /* Careful about overflows.. */
715         rlen = PAGE_ALIGN(len);
716         if (!rlen || rlen > TASK_SIZE)
717                 return -ENOMEM;
718
719         /* offset overflow? */
720         if ((pgoff + (rlen >> PAGE_SHIFT)) < pgoff)
721                 return -EOVERFLOW;
722
723         if (file) {
724                 /* files must support mmap */
725                 if (!file->f_op->mmap)
726                         return -ENODEV;
727
728                 /* work out if what we've got could possibly be shared
729                  * - we support chardevs that provide their own "memory"
730                  * - we support files/blockdevs that are memory backed
731                  */
732                 if (file->f_op->mmap_capabilities) {
733                         capabilities = file->f_op->mmap_capabilities(file);
734                 } else {
735                         /* no explicit capabilities set, so assume some
736                          * defaults */
737                         switch (file_inode(file)->i_mode & S_IFMT) {
738                         case S_IFREG:
739                         case S_IFBLK:
740                                 capabilities = NOMMU_MAP_COPY;
741                                 break;
742
743                         case S_IFCHR:
744                                 capabilities =
745                                         NOMMU_MAP_DIRECT |
746                                         NOMMU_MAP_READ |
747                                         NOMMU_MAP_WRITE;
748                                 break;
749
750                         default:
751                                 return -EINVAL;
752                         }
753                 }
754
755                 /* eliminate any capabilities that we can't support on this
756                  * device */
757                 if (!file->f_op->get_unmapped_area)
758                         capabilities &= ~NOMMU_MAP_DIRECT;
759                 if (!(file->f_mode & FMODE_CAN_READ))
760                         capabilities &= ~NOMMU_MAP_COPY;
761
762                 /* The file shall have been opened with read permission. */
763                 if (!(file->f_mode & FMODE_READ))
764                         return -EACCES;
765
766                 if (flags & MAP_SHARED) {
767                         /* do checks for writing, appending and locking */
768                         if ((prot & PROT_WRITE) &&
769                             !(file->f_mode & FMODE_WRITE))
770                                 return -EACCES;
771
772                         if (IS_APPEND(file_inode(file)) &&
773                             (file->f_mode & FMODE_WRITE))
774                                 return -EACCES;
775
776                         if (!(capabilities & NOMMU_MAP_DIRECT))
777                                 return -ENODEV;
778
779                         /* we mustn't privatise shared mappings */
780                         capabilities &= ~NOMMU_MAP_COPY;
781                 } else {
782                         /* we're going to read the file into private memory we
783                          * allocate */
784                         if (!(capabilities & NOMMU_MAP_COPY))
785                                 return -ENODEV;
786
787                         /* we don't permit a private writable mapping to be
788                          * shared with the backing device */
789                         if (prot & PROT_WRITE)
790                                 capabilities &= ~NOMMU_MAP_DIRECT;
791                 }
792
793                 if (capabilities & NOMMU_MAP_DIRECT) {
794                         if (((prot & PROT_READ)  && !(capabilities & NOMMU_MAP_READ))  ||
795                             ((prot & PROT_WRITE) && !(capabilities & NOMMU_MAP_WRITE)) ||
796                             ((prot & PROT_EXEC)  && !(capabilities & NOMMU_MAP_EXEC))
797                             ) {
798                                 capabilities &= ~NOMMU_MAP_DIRECT;
799                                 if (flags & MAP_SHARED) {
800                                         pr_warn("MAP_SHARED not completely supported on !MMU\n");
801                                         return -EINVAL;
802                                 }
803                         }
804                 }
805
806                 /* handle executable mappings and implied executable
807                  * mappings */
808                 if (path_noexec(&file->f_path)) {
809                         if (prot & PROT_EXEC)
810                                 return -EPERM;
811                 } else if ((prot & PROT_READ) && !(prot & PROT_EXEC)) {
812                         /* handle implication of PROT_EXEC by PROT_READ */
813                         if (current->personality & READ_IMPLIES_EXEC) {
814                                 if (capabilities & NOMMU_MAP_EXEC)
815                                         prot |= PROT_EXEC;
816                         }
817                 } else if ((prot & PROT_READ) &&
818                          (prot & PROT_EXEC) &&
819                          !(capabilities & NOMMU_MAP_EXEC)
820                          ) {
821                         /* backing file is not executable, try to copy */
822                         capabilities &= ~NOMMU_MAP_DIRECT;
823                 }
824         } else {
825                 /* anonymous mappings are always memory backed and can be
826                  * privately mapped
827                  */
828                 capabilities = NOMMU_MAP_COPY;
829
830                 /* handle PROT_EXEC implication by PROT_READ */
831                 if ((prot & PROT_READ) &&
832                     (current->personality & READ_IMPLIES_EXEC))
833                         prot |= PROT_EXEC;
834         }
835
836         /* allow the security API to have its say */
837         ret = security_mmap_addr(addr);
838         if (ret < 0)
839                 return ret;
840
841         /* looks okay */
842         *_capabilities = capabilities;
843         return 0;
844 }
845
846 /*
847  * we've determined that we can make the mapping, now translate what we
848  * now know into VMA flags
849  */
850 static unsigned long determine_vm_flags(struct file *file,
851                                         unsigned long prot,
852                                         unsigned long flags,
853                                         unsigned long capabilities)
854 {
855         unsigned long vm_flags;
856
857         vm_flags = calc_vm_prot_bits(prot, 0) | calc_vm_flag_bits(flags);
858
859         if (!file) {
860                 /*
861                  * MAP_ANONYMOUS. MAP_SHARED is mapped to MAP_PRIVATE, because
862                  * there is no fork().
863                  */
864                 vm_flags |= VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC;
865         } else if (flags & MAP_PRIVATE) {
866                 /* MAP_PRIVATE file mapping */
867                 if (capabilities & NOMMU_MAP_DIRECT)
868                         vm_flags |= (capabilities & NOMMU_VMFLAGS);
869                 else
870                         vm_flags |= VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC;
871
872                 if (!(prot & PROT_WRITE) && !current->ptrace)
873                         /*
874                          * R/O private file mapping which cannot be used to
875                          * modify memory, especially also not via active ptrace
876                          * (e.g., set breakpoints) or later by upgrading
877                          * permissions (no mprotect()). We can try overlaying
878                          * the file mapping, which will work e.g., on chardevs,
879                          * ramfs/tmpfs/shmfs and romfs/cramf.
880                          */
881                         vm_flags |= VM_MAYOVERLAY;
882         } else {
883                 /* MAP_SHARED file mapping: NOMMU_MAP_DIRECT is set. */
884                 vm_flags |= VM_SHARED | VM_MAYSHARE |
885                             (capabilities & NOMMU_VMFLAGS);
886         }
887
888         return vm_flags;
889 }
890
891 /*
892  * set up a shared mapping on a file (the driver or filesystem provides and
893  * pins the storage)
894  */
895 static int do_mmap_shared_file(struct vm_area_struct *vma)
896 {
897         int ret;
898
899         ret = call_mmap(vma->vm_file, vma);
900         if (ret == 0) {
901                 vma->vm_region->vm_top = vma->vm_region->vm_end;
902                 return 0;
903         }
904         if (ret != -ENOSYS)
905                 return ret;
906
907         /* getting -ENOSYS indicates that direct mmap isn't possible (as
908          * opposed to tried but failed) so we can only give a suitable error as
909          * it's not possible to make a private copy if MAP_SHARED was given */
910         return -ENODEV;
911 }
912
913 /*
914  * set up a private mapping or an anonymous shared mapping
915  */
916 static int do_mmap_private(struct vm_area_struct *vma,
917                            struct vm_region *region,
918                            unsigned long len,
919                            unsigned long capabilities)
920 {
921         unsigned long total, point;
922         void *base;
923         int ret, order;
924
925         /*
926          * Invoke the file's mapping function so that it can keep track of
927          * shared mappings on devices or memory. VM_MAYOVERLAY will be set if
928          * it may attempt to share, which will make is_nommu_shared_mapping()
929          * happy.
930          */
931         if (capabilities & NOMMU_MAP_DIRECT) {
932                 ret = call_mmap(vma->vm_file, vma);
933                 /* shouldn't return success if we're not sharing */
934                 if (WARN_ON_ONCE(!is_nommu_shared_mapping(vma->vm_flags)))
935                         ret = -ENOSYS;
936                 if (ret == 0) {
937                         vma->vm_region->vm_top = vma->vm_region->vm_end;
938                         return 0;
939                 }
940                 if (ret != -ENOSYS)
941                         return ret;
942
943                 /* getting an ENOSYS error indicates that direct mmap isn't
944                  * possible (as opposed to tried but failed) so we'll try to
945                  * make a private copy of the data and map that instead */
946         }
947
948
949         /* allocate some memory to hold the mapping
950          * - note that this may not return a page-aligned address if the object
951          *   we're allocating is smaller than a page
952          */
953         order = get_order(len);
954         total = 1 << order;
955         point = len >> PAGE_SHIFT;
956
957         /* we don't want to allocate a power-of-2 sized page set */
958         if (sysctl_nr_trim_pages && total - point >= sysctl_nr_trim_pages)
959                 total = point;
960
961         base = alloc_pages_exact(total << PAGE_SHIFT, GFP_KERNEL);
962         if (!base)
963                 goto enomem;
964
965         atomic_long_add(total, &mmap_pages_allocated);
966
967         vm_flags_set(vma, VM_MAPPED_COPY);
968         region->vm_flags = vma->vm_flags;
969         region->vm_start = (unsigned long) base;
970         region->vm_end   = region->vm_start + len;
971         region->vm_top   = region->vm_start + (total << PAGE_SHIFT);
972
973         vma->vm_start = region->vm_start;
974         vma->vm_end   = region->vm_start + len;
975
976         if (vma->vm_file) {
977                 /* read the contents of a file into the copy */
978                 loff_t fpos;
979
980                 fpos = vma->vm_pgoff;
981                 fpos <<= PAGE_SHIFT;
982
983                 ret = kernel_read(vma->vm_file, base, len, &fpos);
984                 if (ret < 0)
985                         goto error_free;
986
987                 /* clear the last little bit */
988                 if (ret < len)
989                         memset(base + ret, 0, len - ret);
990
991         } else {
992                 vma_set_anonymous(vma);
993         }
994
995         return 0;
996
997 error_free:
998         free_page_series(region->vm_start, region->vm_top);
999         region->vm_start = vma->vm_start = 0;
1000         region->vm_end   = vma->vm_end = 0;
1001         region->vm_top   = 0;
1002         return ret;
1003
1004 enomem:
1005         pr_err("Allocation of length %lu from process %d (%s) failed\n",
1006                len, current->pid, current->comm);
1007         show_mem();
1008         return -ENOMEM;
1009 }
1010
1011 /*
1012  * handle mapping creation for uClinux
1013  */
1014 unsigned long do_mmap(struct file *file,
1015                         unsigned long addr,
1016                         unsigned long len,
1017                         unsigned long prot,
1018                         unsigned long flags,
1019                         vm_flags_t vm_flags,
1020                         unsigned long pgoff,
1021                         unsigned long *populate,
1022                         struct list_head *uf)
1023 {
1024         struct vm_area_struct *vma;
1025         struct vm_region *region;
1026         struct rb_node *rb;
1027         unsigned long capabilities, result;
1028         int ret;
1029         VMA_ITERATOR(vmi, current->mm, 0);
1030
1031         *populate = 0;
1032
1033         /* decide whether we should attempt the mapping, and if so what sort of
1034          * mapping */
1035         ret = validate_mmap_request(file, addr, len, prot, flags, pgoff,
1036                                     &capabilities);
1037         if (ret < 0)
1038                 return ret;
1039
1040         /* we ignore the address hint */
1041         addr = 0;
1042         len = PAGE_ALIGN(len);
1043
1044         /* we've determined that we can make the mapping, now translate what we
1045          * now know into VMA flags */
1046         vm_flags |= determine_vm_flags(file, prot, flags, capabilities);
1047
1048
1049         /* we're going to need to record the mapping */
1050         region = kmem_cache_zalloc(vm_region_jar, GFP_KERNEL);
1051         if (!region)
1052                 goto error_getting_region;
1053
1054         vma = vm_area_alloc(current->mm);
1055         if (!vma)
1056                 goto error_getting_vma;
1057
1058         region->vm_usage = 1;
1059         region->vm_flags = vm_flags;
1060         region->vm_pgoff = pgoff;
1061
1062         vm_flags_init(vma, vm_flags);
1063         vma->vm_pgoff = pgoff;
1064
1065         if (file) {
1066                 region->vm_file = get_file(file);
1067                 vma->vm_file = get_file(file);
1068         }
1069
1070         down_write(&nommu_region_sem);
1071
1072         /* if we want to share, we need to check for regions created by other
1073          * mmap() calls that overlap with our proposed mapping
1074          * - we can only share with a superset match on most regular files
1075          * - shared mappings on character devices and memory backed files are
1076          *   permitted to overlap inexactly as far as we are concerned for in
1077          *   these cases, sharing is handled in the driver or filesystem rather
1078          *   than here
1079          */
1080         if (is_nommu_shared_mapping(vm_flags)) {
1081                 struct vm_region *pregion;
1082                 unsigned long pglen, rpglen, pgend, rpgend, start;
1083
1084                 pglen = (len + PAGE_SIZE - 1) >> PAGE_SHIFT;
1085                 pgend = pgoff + pglen;
1086
1087                 for (rb = rb_first(&nommu_region_tree); rb; rb = rb_next(rb)) {
1088                         pregion = rb_entry(rb, struct vm_region, vm_rb);
1089
1090                         if (!is_nommu_shared_mapping(pregion->vm_flags))
1091                                 continue;
1092
1093                         /* search for overlapping mappings on the same file */
1094                         if (file_inode(pregion->vm_file) !=
1095                             file_inode(file))
1096                                 continue;
1097
1098                         if (pregion->vm_pgoff >= pgend)
1099                                 continue;
1100
1101                         rpglen = pregion->vm_end - pregion->vm_start;
1102                         rpglen = (rpglen + PAGE_SIZE - 1) >> PAGE_SHIFT;
1103                         rpgend = pregion->vm_pgoff + rpglen;
1104                         if (pgoff >= rpgend)
1105                                 continue;
1106
1107                         /* handle inexactly overlapping matches between
1108                          * mappings */
1109                         if ((pregion->vm_pgoff != pgoff || rpglen != pglen) &&
1110                             !(pgoff >= pregion->vm_pgoff && pgend <= rpgend)) {
1111                                 /* new mapping is not a subset of the region */
1112                                 if (!(capabilities & NOMMU_MAP_DIRECT))
1113                                         goto sharing_violation;
1114                                 continue;
1115                         }
1116
1117                         /* we've found a region we can share */
1118                         pregion->vm_usage++;
1119                         vma->vm_region = pregion;
1120                         start = pregion->vm_start;
1121                         start += (pgoff - pregion->vm_pgoff) << PAGE_SHIFT;
1122                         vma->vm_start = start;
1123                         vma->vm_end = start + len;
1124
1125                         if (pregion->vm_flags & VM_MAPPED_COPY)
1126                                 vm_flags_set(vma, VM_MAPPED_COPY);
1127                         else {
1128                                 ret = do_mmap_shared_file(vma);
1129                                 if (ret < 0) {
1130                                         vma->vm_region = NULL;
1131                                         vma->vm_start = 0;
1132                                         vma->vm_end = 0;
1133                                         pregion->vm_usage--;
1134                                         pregion = NULL;
1135                                         goto error_just_free;
1136                                 }
1137                         }
1138                         fput(region->vm_file);
1139                         kmem_cache_free(vm_region_jar, region);
1140                         region = pregion;
1141                         result = start;
1142                         goto share;
1143                 }
1144
1145                 /* obtain the address at which to make a shared mapping
1146                  * - this is the hook for quasi-memory character devices to
1147                  *   tell us the location of a shared mapping
1148                  */
1149                 if (capabilities & NOMMU_MAP_DIRECT) {
1150                         addr = file->f_op->get_unmapped_area(file, addr, len,
1151                                                              pgoff, flags);
1152                         if (IS_ERR_VALUE(addr)) {
1153                                 ret = addr;
1154                                 if (ret != -ENOSYS)
1155                                         goto error_just_free;
1156
1157                                 /* the driver refused to tell us where to site
1158                                  * the mapping so we'll have to attempt to copy
1159                                  * it */
1160                                 ret = -ENODEV;
1161                                 if (!(capabilities & NOMMU_MAP_COPY))
1162                                         goto error_just_free;
1163
1164                                 capabilities &= ~NOMMU_MAP_DIRECT;
1165                         } else {
1166                                 vma->vm_start = region->vm_start = addr;
1167                                 vma->vm_end = region->vm_end = addr + len;
1168                         }
1169                 }
1170         }
1171
1172         vma->vm_region = region;
1173
1174         /* set up the mapping
1175          * - the region is filled in if NOMMU_MAP_DIRECT is still set
1176          */
1177         if (file && vma->vm_flags & VM_SHARED)
1178                 ret = do_mmap_shared_file(vma);
1179         else
1180                 ret = do_mmap_private(vma, region, len, capabilities);
1181         if (ret < 0)
1182                 goto error_just_free;
1183         add_nommu_region(region);
1184
1185         /* clear anonymous mappings that don't ask for uninitialized data */
1186         if (!vma->vm_file &&
1187             (!IS_ENABLED(CONFIG_MMAP_ALLOW_UNINITIALIZED) ||
1188              !(flags & MAP_UNINITIALIZED)))
1189                 memset((void *)region->vm_start, 0,
1190                        region->vm_end - region->vm_start);
1191
1192         /* okay... we have a mapping; now we have to register it */
1193         result = vma->vm_start;
1194
1195         current->mm->total_vm += len >> PAGE_SHIFT;
1196
1197 share:
1198         BUG_ON(!vma->vm_region);
1199         vma_iter_config(&vmi, vma->vm_start, vma->vm_end);
1200         if (vma_iter_prealloc(&vmi, vma))
1201                 goto error_just_free;
1202
1203         setup_vma_to_mm(vma, current->mm);
1204         current->mm->map_count++;
1205         /* add the VMA to the tree */
1206         vma_iter_store(&vmi, vma);
1207
1208         /* we flush the region from the icache only when the first executable
1209          * mapping of it is made  */
1210         if (vma->vm_flags & VM_EXEC && !region->vm_icache_flushed) {
1211                 flush_icache_user_range(region->vm_start, region->vm_end);
1212                 region->vm_icache_flushed = true;
1213         }
1214
1215         up_write(&nommu_region_sem);
1216
1217         return result;
1218
1219 error_just_free:
1220         up_write(&nommu_region_sem);
1221 error:
1222         vma_iter_free(&vmi);
1223         if (region->vm_file)
1224                 fput(region->vm_file);
1225         kmem_cache_free(vm_region_jar, region);
1226         if (vma->vm_file)
1227                 fput(vma->vm_file);
1228         vm_area_free(vma);
1229         return ret;
1230
1231 sharing_violation:
1232         up_write(&nommu_region_sem);
1233         pr_warn("Attempt to share mismatched mappings\n");
1234         ret = -EINVAL;
1235         goto error;
1236
1237 error_getting_vma:
1238         kmem_cache_free(vm_region_jar, region);
1239         pr_warn("Allocation of vma for %lu byte allocation from process %d failed\n",
1240                         len, current->pid);
1241         show_mem();
1242         return -ENOMEM;
1243
1244 error_getting_region:
1245         pr_warn("Allocation of vm region for %lu byte allocation from process %d failed\n",
1246                         len, current->pid);
1247         show_mem();
1248         return -ENOMEM;
1249 }
1250
1251 unsigned long ksys_mmap_pgoff(unsigned long addr, unsigned long len,
1252                               unsigned long prot, unsigned long flags,
1253                               unsigned long fd, unsigned long pgoff)
1254 {
1255         struct file *file = NULL;
1256         unsigned long retval = -EBADF;
1257
1258         audit_mmap_fd(fd, flags);
1259         if (!(flags & MAP_ANONYMOUS)) {
1260                 file = fget(fd);
1261                 if (!file)
1262                         goto out;
1263         }
1264
1265         retval = vm_mmap_pgoff(file, addr, len, prot, flags, pgoff);
1266
1267         if (file)
1268                 fput(file);
1269 out:
1270         return retval;
1271 }
1272
1273 SYSCALL_DEFINE6(mmap_pgoff, unsigned long, addr, unsigned long, len,
1274                 unsigned long, prot, unsigned long, flags,
1275                 unsigned long, fd, unsigned long, pgoff)
1276 {
1277         return ksys_mmap_pgoff(addr, len, prot, flags, fd, pgoff);
1278 }
1279
1280 #ifdef __ARCH_WANT_SYS_OLD_MMAP
1281 struct mmap_arg_struct {
1282         unsigned long addr;
1283         unsigned long len;
1284         unsigned long prot;
1285         unsigned long flags;
1286         unsigned long fd;
1287         unsigned long offset;
1288 };
1289
1290 SYSCALL_DEFINE1(old_mmap, struct mmap_arg_struct __user *, arg)
1291 {
1292         struct mmap_arg_struct a;
1293
1294         if (copy_from_user(&a, arg, sizeof(a)))
1295                 return -EFAULT;
1296         if (offset_in_page(a.offset))
1297                 return -EINVAL;
1298
1299         return ksys_mmap_pgoff(a.addr, a.len, a.prot, a.flags, a.fd,
1300                                a.offset >> PAGE_SHIFT);
1301 }
1302 #endif /* __ARCH_WANT_SYS_OLD_MMAP */
1303
1304 /*
1305  * split a vma into two pieces at address 'addr', a new vma is allocated either
1306  * for the first part or the tail.
1307  */
1308 int split_vma(struct vma_iterator *vmi, struct vm_area_struct *vma,
1309               unsigned long addr, int new_below)
1310 {
1311         struct vm_area_struct *new;
1312         struct vm_region *region;
1313         unsigned long npages;
1314         struct mm_struct *mm;
1315
1316         /* we're only permitted to split anonymous regions (these should have
1317          * only a single usage on the region) */
1318         if (vma->vm_file)
1319                 return -ENOMEM;
1320
1321         mm = vma->vm_mm;
1322         if (mm->map_count >= sysctl_max_map_count)
1323                 return -ENOMEM;
1324
1325         region = kmem_cache_alloc(vm_region_jar, GFP_KERNEL);
1326         if (!region)
1327                 return -ENOMEM;
1328
1329         new = vm_area_dup(vma);
1330         if (!new)
1331                 goto err_vma_dup;
1332
1333         /* most fields are the same, copy all, and then fixup */
1334         *region = *vma->vm_region;
1335         new->vm_region = region;
1336
1337         npages = (addr - vma->vm_start) >> PAGE_SHIFT;
1338
1339         if (new_below) {
1340                 region->vm_top = region->vm_end = new->vm_end = addr;
1341         } else {
1342                 region->vm_start = new->vm_start = addr;
1343                 region->vm_pgoff = new->vm_pgoff += npages;
1344         }
1345
1346         vma_iter_config(vmi, new->vm_start, new->vm_end);
1347         if (vma_iter_prealloc(vmi, vma)) {
1348                 pr_warn("Allocation of vma tree for process %d failed\n",
1349                         current->pid);
1350                 goto err_vmi_preallocate;
1351         }
1352
1353         if (new->vm_ops && new->vm_ops->open)
1354                 new->vm_ops->open(new);
1355
1356         down_write(&nommu_region_sem);
1357         delete_nommu_region(vma->vm_region);
1358         if (new_below) {
1359                 vma->vm_region->vm_start = vma->vm_start = addr;
1360                 vma->vm_region->vm_pgoff = vma->vm_pgoff += npages;
1361         } else {
1362                 vma->vm_region->vm_end = vma->vm_end = addr;
1363                 vma->vm_region->vm_top = addr;
1364         }
1365         add_nommu_region(vma->vm_region);
1366         add_nommu_region(new->vm_region);
1367         up_write(&nommu_region_sem);
1368
1369         setup_vma_to_mm(vma, mm);
1370         setup_vma_to_mm(new, mm);
1371         vma_iter_store(vmi, new);
1372         mm->map_count++;
1373         return 0;
1374
1375 err_vmi_preallocate:
1376         vm_area_free(new);
1377 err_vma_dup:
1378         kmem_cache_free(vm_region_jar, region);
1379         return -ENOMEM;
1380 }
1381
1382 /*
1383  * shrink a VMA by removing the specified chunk from either the beginning or
1384  * the end
1385  */
1386 static int vmi_shrink_vma(struct vma_iterator *vmi,
1387                       struct vm_area_struct *vma,
1388                       unsigned long from, unsigned long to)
1389 {
1390         struct vm_region *region;
1391
1392         /* adjust the VMA's pointers, which may reposition it in the MM's tree
1393          * and list */
1394         if (from > vma->vm_start) {
1395                 if (vma_iter_clear_gfp(vmi, from, vma->vm_end, GFP_KERNEL))
1396                         return -ENOMEM;
1397                 vma->vm_end = from;
1398         } else {
1399                 if (vma_iter_clear_gfp(vmi, vma->vm_start, to, GFP_KERNEL))
1400                         return -ENOMEM;
1401                 vma->vm_start = to;
1402         }
1403
1404         /* cut the backing region down to size */
1405         region = vma->vm_region;
1406         BUG_ON(region->vm_usage != 1);
1407
1408         down_write(&nommu_region_sem);
1409         delete_nommu_region(region);
1410         if (from > region->vm_start) {
1411                 to = region->vm_top;
1412                 region->vm_top = region->vm_end = from;
1413         } else {
1414                 region->vm_start = to;
1415         }
1416         add_nommu_region(region);
1417         up_write(&nommu_region_sem);
1418
1419         free_page_series(from, to);
1420         return 0;
1421 }
1422
1423 /*
1424  * release a mapping
1425  * - under NOMMU conditions the chunk to be unmapped must be backed by a single
1426  *   VMA, though it need not cover the whole VMA
1427  */
1428 int do_munmap(struct mm_struct *mm, unsigned long start, size_t len, struct list_head *uf)
1429 {
1430         VMA_ITERATOR(vmi, mm, start);
1431         struct vm_area_struct *vma;
1432         unsigned long end;
1433         int ret = 0;
1434
1435         len = PAGE_ALIGN(len);
1436         if (len == 0)
1437                 return -EINVAL;
1438
1439         end = start + len;
1440
1441         /* find the first potentially overlapping VMA */
1442         vma = vma_find(&vmi, end);
1443         if (!vma) {
1444                 static int limit;
1445                 if (limit < 5) {
1446                         pr_warn("munmap of memory not mmapped by process %d (%s): 0x%lx-0x%lx\n",
1447                                         current->pid, current->comm,
1448                                         start, start + len - 1);
1449                         limit++;
1450                 }
1451                 return -EINVAL;
1452         }
1453
1454         /* we're allowed to split an anonymous VMA but not a file-backed one */
1455         if (vma->vm_file) {
1456                 do {
1457                         if (start > vma->vm_start)
1458                                 return -EINVAL;
1459                         if (end == vma->vm_end)
1460                                 goto erase_whole_vma;
1461                         vma = vma_find(&vmi, end);
1462                 } while (vma);
1463                 return -EINVAL;
1464         } else {
1465                 /* the chunk must be a subset of the VMA found */
1466                 if (start == vma->vm_start && end == vma->vm_end)
1467                         goto erase_whole_vma;
1468                 if (start < vma->vm_start || end > vma->vm_end)
1469                         return -EINVAL;
1470                 if (offset_in_page(start))
1471                         return -EINVAL;
1472                 if (end != vma->vm_end && offset_in_page(end))
1473                         return -EINVAL;
1474                 if (start != vma->vm_start && end != vma->vm_end) {
1475                         ret = split_vma(&vmi, vma, start, 1);
1476                         if (ret < 0)
1477                                 return ret;
1478                 }
1479                 return vmi_shrink_vma(&vmi, vma, start, end);
1480         }
1481
1482 erase_whole_vma:
1483         if (delete_vma_from_mm(vma))
1484                 ret = -ENOMEM;
1485         else
1486                 delete_vma(mm, vma);
1487         return ret;
1488 }
1489
1490 int vm_munmap(unsigned long addr, size_t len)
1491 {
1492         struct mm_struct *mm = current->mm;
1493         int ret;
1494
1495         mmap_write_lock(mm);
1496         ret = do_munmap(mm, addr, len, NULL);
1497         mmap_write_unlock(mm);
1498         return ret;
1499 }
1500 EXPORT_SYMBOL(vm_munmap);
1501
1502 SYSCALL_DEFINE2(munmap, unsigned long, addr, size_t, len)
1503 {
1504         return vm_munmap(addr, len);
1505 }
1506
1507 /*
1508  * release all the mappings made in a process's VM space
1509  */
1510 void exit_mmap(struct mm_struct *mm)
1511 {
1512         VMA_ITERATOR(vmi, mm, 0);
1513         struct vm_area_struct *vma;
1514
1515         if (!mm)
1516                 return;
1517
1518         mm->total_vm = 0;
1519
1520         /*
1521          * Lock the mm to avoid assert complaining even though this is the only
1522          * user of the mm
1523          */
1524         mmap_write_lock(mm);
1525         for_each_vma(vmi, vma) {
1526                 cleanup_vma_from_mm(vma);
1527                 delete_vma(mm, vma);
1528                 cond_resched();
1529         }
1530         __mt_destroy(&mm->mm_mt);
1531         mmap_write_unlock(mm);
1532 }
1533
1534 int vm_brk(unsigned long addr, unsigned long len)
1535 {
1536         return -ENOMEM;
1537 }
1538
1539 /*
1540  * expand (or shrink) an existing mapping, potentially moving it at the same
1541  * time (controlled by the MREMAP_MAYMOVE flag and available VM space)
1542  *
1543  * under NOMMU conditions, we only permit changing a mapping's size, and only
1544  * as long as it stays within the region allocated by do_mmap_private() and the
1545  * block is not shareable
1546  *
1547  * MREMAP_FIXED is not supported under NOMMU conditions
1548  */
1549 static unsigned long do_mremap(unsigned long addr,
1550                         unsigned long old_len, unsigned long new_len,
1551                         unsigned long flags, unsigned long new_addr)
1552 {
1553         struct vm_area_struct *vma;
1554
1555         /* insanity checks first */
1556         old_len = PAGE_ALIGN(old_len);
1557         new_len = PAGE_ALIGN(new_len);
1558         if (old_len == 0 || new_len == 0)
1559                 return (unsigned long) -EINVAL;
1560
1561         if (offset_in_page(addr))
1562                 return -EINVAL;
1563
1564         if (flags & MREMAP_FIXED && new_addr != addr)
1565                 return (unsigned long) -EINVAL;
1566
1567         vma = find_vma_exact(current->mm, addr, old_len);
1568         if (!vma)
1569                 return (unsigned long) -EINVAL;
1570
1571         if (vma->vm_end != vma->vm_start + old_len)
1572                 return (unsigned long) -EFAULT;
1573
1574         if (is_nommu_shared_mapping(vma->vm_flags))
1575                 return (unsigned long) -EPERM;
1576
1577         if (new_len > vma->vm_region->vm_end - vma->vm_region->vm_start)
1578                 return (unsigned long) -ENOMEM;
1579
1580         /* all checks complete - do it */
1581         vma->vm_end = vma->vm_start + new_len;
1582         return vma->vm_start;
1583 }
1584
1585 SYSCALL_DEFINE5(mremap, unsigned long, addr, unsigned long, old_len,
1586                 unsigned long, new_len, unsigned long, flags,
1587                 unsigned long, new_addr)
1588 {
1589         unsigned long ret;
1590
1591         mmap_write_lock(current->mm);
1592         ret = do_mremap(addr, old_len, new_len, flags, new_addr);
1593         mmap_write_unlock(current->mm);
1594         return ret;
1595 }
1596
1597 struct page *follow_page(struct vm_area_struct *vma, unsigned long address,
1598                          unsigned int foll_flags)
1599 {
1600         return NULL;
1601 }
1602
1603 int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
1604                 unsigned long pfn, unsigned long size, pgprot_t prot)
1605 {
1606         if (addr != (pfn << PAGE_SHIFT))
1607                 return -EINVAL;
1608
1609         vm_flags_set(vma, VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP);
1610         return 0;
1611 }
1612 EXPORT_SYMBOL(remap_pfn_range);
1613
1614 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len)
1615 {
1616         unsigned long pfn = start >> PAGE_SHIFT;
1617         unsigned long vm_len = vma->vm_end - vma->vm_start;
1618
1619         pfn += vma->vm_pgoff;
1620         return io_remap_pfn_range(vma, vma->vm_start, pfn, vm_len, vma->vm_page_prot);
1621 }
1622 EXPORT_SYMBOL(vm_iomap_memory);
1623
1624 int remap_vmalloc_range(struct vm_area_struct *vma, void *addr,
1625                         unsigned long pgoff)
1626 {
1627         unsigned int size = vma->vm_end - vma->vm_start;
1628
1629         if (!(vma->vm_flags & VM_USERMAP))
1630                 return -EINVAL;
1631
1632         vma->vm_start = (unsigned long)(addr + (pgoff << PAGE_SHIFT));
1633         vma->vm_end = vma->vm_start + size;
1634
1635         return 0;
1636 }
1637 EXPORT_SYMBOL(remap_vmalloc_range);
1638
1639 vm_fault_t filemap_fault(struct vm_fault *vmf)
1640 {
1641         BUG();
1642         return 0;
1643 }
1644 EXPORT_SYMBOL(filemap_fault);
1645
1646 vm_fault_t filemap_map_pages(struct vm_fault *vmf,
1647                 pgoff_t start_pgoff, pgoff_t end_pgoff)
1648 {
1649         BUG();
1650         return 0;
1651 }
1652 EXPORT_SYMBOL(filemap_map_pages);
1653
1654 int __access_remote_vm(struct mm_struct *mm, unsigned long addr, void *buf,
1655                        int len, unsigned int gup_flags)
1656 {
1657         struct vm_area_struct *vma;
1658         int write = gup_flags & FOLL_WRITE;
1659
1660         if (mmap_read_lock_killable(mm))
1661                 return 0;
1662
1663         /* the access must start within one of the target process's mappings */
1664         vma = find_vma(mm, addr);
1665         if (vma) {
1666                 /* don't overrun this mapping */
1667                 if (addr + len >= vma->vm_end)
1668                         len = vma->vm_end - addr;
1669
1670                 /* only read or write mappings where it is permitted */
1671                 if (write && vma->vm_flags & VM_MAYWRITE)
1672                         copy_to_user_page(vma, NULL, addr,
1673                                          (void *) addr, buf, len);
1674                 else if (!write && vma->vm_flags & VM_MAYREAD)
1675                         copy_from_user_page(vma, NULL, addr,
1676                                             buf, (void *) addr, len);
1677                 else
1678                         len = 0;
1679         } else {
1680                 len = 0;
1681         }
1682
1683         mmap_read_unlock(mm);
1684
1685         return len;
1686 }
1687
1688 /**
1689  * access_remote_vm - access another process' address space
1690  * @mm:         the mm_struct of the target address space
1691  * @addr:       start address to access
1692  * @buf:        source or destination buffer
1693  * @len:        number of bytes to transfer
1694  * @gup_flags:  flags modifying lookup behaviour
1695  *
1696  * The caller must hold a reference on @mm.
1697  */
1698 int access_remote_vm(struct mm_struct *mm, unsigned long addr,
1699                 void *buf, int len, unsigned int gup_flags)
1700 {
1701         return __access_remote_vm(mm, addr, buf, len, gup_flags);
1702 }
1703
1704 /*
1705  * Access another process' address space.
1706  * - source/target buffer must be kernel space
1707  */
1708 int access_process_vm(struct task_struct *tsk, unsigned long addr, void *buf, int len,
1709                 unsigned int gup_flags)
1710 {
1711         struct mm_struct *mm;
1712
1713         if (addr + len < addr)
1714                 return 0;
1715
1716         mm = get_task_mm(tsk);
1717         if (!mm)
1718                 return 0;
1719
1720         len = __access_remote_vm(mm, addr, buf, len, gup_flags);
1721
1722         mmput(mm);
1723         return len;
1724 }
1725 EXPORT_SYMBOL_GPL(access_process_vm);
1726
1727 /**
1728  * nommu_shrink_inode_mappings - Shrink the shared mappings on an inode
1729  * @inode: The inode to check
1730  * @size: The current filesize of the inode
1731  * @newsize: The proposed filesize of the inode
1732  *
1733  * Check the shared mappings on an inode on behalf of a shrinking truncate to
1734  * make sure that any outstanding VMAs aren't broken and then shrink the
1735  * vm_regions that extend beyond so that do_mmap() doesn't
1736  * automatically grant mappings that are too large.
1737  */
1738 int nommu_shrink_inode_mappings(struct inode *inode, size_t size,
1739                                 size_t newsize)
1740 {
1741         struct vm_area_struct *vma;
1742         struct vm_region *region;
1743         pgoff_t low, high;
1744         size_t r_size, r_top;
1745
1746         low = newsize >> PAGE_SHIFT;
1747         high = (size + PAGE_SIZE - 1) >> PAGE_SHIFT;
1748
1749         down_write(&nommu_region_sem);
1750         i_mmap_lock_read(inode->i_mapping);
1751
1752         /* search for VMAs that fall within the dead zone */
1753         vma_interval_tree_foreach(vma, &inode->i_mapping->i_mmap, low, high) {
1754                 /* found one - only interested if it's shared out of the page
1755                  * cache */
1756                 if (vma->vm_flags & VM_SHARED) {
1757                         i_mmap_unlock_read(inode->i_mapping);
1758                         up_write(&nommu_region_sem);
1759                         return -ETXTBSY; /* not quite true, but near enough */
1760                 }
1761         }
1762
1763         /* reduce any regions that overlap the dead zone - if in existence,
1764          * these will be pointed to by VMAs that don't overlap the dead zone
1765          *
1766          * we don't check for any regions that start beyond the EOF as there
1767          * shouldn't be any
1768          */
1769         vma_interval_tree_foreach(vma, &inode->i_mapping->i_mmap, 0, ULONG_MAX) {
1770                 if (!(vma->vm_flags & VM_SHARED))
1771                         continue;
1772
1773                 region = vma->vm_region;
1774                 r_size = region->vm_top - region->vm_start;
1775                 r_top = (region->vm_pgoff << PAGE_SHIFT) + r_size;
1776
1777                 if (r_top > newsize) {
1778                         region->vm_top -= r_top - newsize;
1779                         if (region->vm_end > region->vm_top)
1780                                 region->vm_end = region->vm_top;
1781                 }
1782         }
1783
1784         i_mmap_unlock_read(inode->i_mapping);
1785         up_write(&nommu_region_sem);
1786         return 0;
1787 }
1788
1789 /*
1790  * Initialise sysctl_user_reserve_kbytes.
1791  *
1792  * This is intended to prevent a user from starting a single memory hogging
1793  * process, such that they cannot recover (kill the hog) in OVERCOMMIT_NEVER
1794  * mode.
1795  *
1796  * The default value is min(3% of free memory, 128MB)
1797  * 128MB is enough to recover with sshd/login, bash, and top/kill.
1798  */
1799 static int __meminit init_user_reserve(void)
1800 {
1801         unsigned long free_kbytes;
1802
1803         free_kbytes = K(global_zone_page_state(NR_FREE_PAGES));
1804
1805         sysctl_user_reserve_kbytes = min(free_kbytes / 32, 1UL << 17);
1806         return 0;
1807 }
1808 subsys_initcall(init_user_reserve);
1809
1810 /*
1811  * Initialise sysctl_admin_reserve_kbytes.
1812  *
1813  * The purpose of sysctl_admin_reserve_kbytes is to allow the sys admin
1814  * to log in and kill a memory hogging process.
1815  *
1816  * Systems with more than 256MB will reserve 8MB, enough to recover
1817  * with sshd, bash, and top in OVERCOMMIT_GUESS. Smaller systems will
1818  * only reserve 3% of free pages by default.
1819  */
1820 static int __meminit init_admin_reserve(void)
1821 {
1822         unsigned long free_kbytes;
1823
1824         free_kbytes = K(global_zone_page_state(NR_FREE_PAGES));
1825
1826         sysctl_admin_reserve_kbytes = min(free_kbytes / 32, 1UL << 13);
1827         return 0;
1828 }
1829 subsys_initcall(init_admin_reserve);