wifi: iwlwifi: dbg_ini: fix structure packing
[platform/kernel/linux-rpi.git] / mm / nommu.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/mm/nommu.c
4  *
5  *  Replacement code for mm functions to support CPU's that don't
6  *  have any form of memory management unit (thus no virtual memory).
7  *
8  *  See Documentation/admin-guide/mm/nommu-mmap.rst
9  *
10  *  Copyright (c) 2004-2008 David Howells <dhowells@redhat.com>
11  *  Copyright (c) 2000-2003 David McCullough <davidm@snapgear.com>
12  *  Copyright (c) 2000-2001 D Jeff Dionne <jeff@uClinux.org>
13  *  Copyright (c) 2002      Greg Ungerer <gerg@snapgear.com>
14  *  Copyright (c) 2007-2010 Paul Mundt <lethal@linux-sh.org>
15  */
16
17 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
18
19 #include <linux/export.h>
20 #include <linux/mm.h>
21 #include <linux/sched/mm.h>
22 #include <linux/mman.h>
23 #include <linux/swap.h>
24 #include <linux/file.h>
25 #include <linux/highmem.h>
26 #include <linux/pagemap.h>
27 #include <linux/slab.h>
28 #include <linux/vmalloc.h>
29 #include <linux/backing-dev.h>
30 #include <linux/compiler.h>
31 #include <linux/mount.h>
32 #include <linux/personality.h>
33 #include <linux/security.h>
34 #include <linux/syscalls.h>
35 #include <linux/audit.h>
36 #include <linux/printk.h>
37
38 #include <linux/uaccess.h>
39 #include <linux/uio.h>
40 #include <asm/tlb.h>
41 #include <asm/tlbflush.h>
42 #include <asm/mmu_context.h>
43 #include "internal.h"
44
45 void *high_memory;
46 EXPORT_SYMBOL(high_memory);
47 struct page *mem_map;
48 unsigned long max_mapnr;
49 EXPORT_SYMBOL(max_mapnr);
50 unsigned long highest_memmap_pfn;
51 int sysctl_nr_trim_pages = CONFIG_NOMMU_INITIAL_TRIM_EXCESS;
52 int heap_stack_gap = 0;
53
54 atomic_long_t mmap_pages_allocated;
55
56 EXPORT_SYMBOL(mem_map);
57
58 /* list of mapped, potentially shareable regions */
59 static struct kmem_cache *vm_region_jar;
60 struct rb_root nommu_region_tree = RB_ROOT;
61 DECLARE_RWSEM(nommu_region_sem);
62
63 const struct vm_operations_struct generic_file_vm_ops = {
64 };
65
66 /*
67  * Return the total memory allocated for this pointer, not
68  * just what the caller asked for.
69  *
70  * Doesn't have to be accurate, i.e. may have races.
71  */
72 unsigned int kobjsize(const void *objp)
73 {
74         struct page *page;
75
76         /*
77          * If the object we have should not have ksize performed on it,
78          * return size of 0
79          */
80         if (!objp || !virt_addr_valid(objp))
81                 return 0;
82
83         page = virt_to_head_page(objp);
84
85         /*
86          * If the allocator sets PageSlab, we know the pointer came from
87          * kmalloc().
88          */
89         if (PageSlab(page))
90                 return ksize(objp);
91
92         /*
93          * If it's not a compound page, see if we have a matching VMA
94          * region. This test is intentionally done in reverse order,
95          * so if there's no VMA, we still fall through and hand back
96          * PAGE_SIZE for 0-order pages.
97          */
98         if (!PageCompound(page)) {
99                 struct vm_area_struct *vma;
100
101                 vma = find_vma(current->mm, (unsigned long)objp);
102                 if (vma)
103                         return vma->vm_end - vma->vm_start;
104         }
105
106         /*
107          * The ksize() function is only guaranteed to work for pointers
108          * returned by kmalloc(). So handle arbitrary pointers here.
109          */
110         return page_size(page);
111 }
112
113 /**
114  * follow_pfn - look up PFN at a user virtual address
115  * @vma: memory mapping
116  * @address: user virtual address
117  * @pfn: location to store found PFN
118  *
119  * Only IO mappings and raw PFN mappings are allowed.
120  *
121  * Returns zero and the pfn at @pfn on success, -ve otherwise.
122  */
123 int follow_pfn(struct vm_area_struct *vma, unsigned long address,
124         unsigned long *pfn)
125 {
126         if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
127                 return -EINVAL;
128
129         *pfn = address >> PAGE_SHIFT;
130         return 0;
131 }
132 EXPORT_SYMBOL(follow_pfn);
133
134 LIST_HEAD(vmap_area_list);
135
136 void vfree(const void *addr)
137 {
138         kfree(addr);
139 }
140 EXPORT_SYMBOL(vfree);
141
142 void *__vmalloc(unsigned long size, gfp_t gfp_mask)
143 {
144         /*
145          *  You can't specify __GFP_HIGHMEM with kmalloc() since kmalloc()
146          * returns only a logical address.
147          */
148         return kmalloc(size, (gfp_mask | __GFP_COMP) & ~__GFP_HIGHMEM);
149 }
150 EXPORT_SYMBOL(__vmalloc);
151
152 void *__vmalloc_node_range(unsigned long size, unsigned long align,
153                 unsigned long start, unsigned long end, gfp_t gfp_mask,
154                 pgprot_t prot, unsigned long vm_flags, int node,
155                 const void *caller)
156 {
157         return __vmalloc(size, gfp_mask);
158 }
159
160 void *__vmalloc_node(unsigned long size, unsigned long align, gfp_t gfp_mask,
161                 int node, const void *caller)
162 {
163         return __vmalloc(size, gfp_mask);
164 }
165
166 static void *__vmalloc_user_flags(unsigned long size, gfp_t flags)
167 {
168         void *ret;
169
170         ret = __vmalloc(size, flags);
171         if (ret) {
172                 struct vm_area_struct *vma;
173
174                 mmap_write_lock(current->mm);
175                 vma = find_vma(current->mm, (unsigned long)ret);
176                 if (vma)
177                         vm_flags_set(vma, VM_USERMAP);
178                 mmap_write_unlock(current->mm);
179         }
180
181         return ret;
182 }
183
184 void *vmalloc_user(unsigned long size)
185 {
186         return __vmalloc_user_flags(size, GFP_KERNEL | __GFP_ZERO);
187 }
188 EXPORT_SYMBOL(vmalloc_user);
189
190 struct page *vmalloc_to_page(const void *addr)
191 {
192         return virt_to_page(addr);
193 }
194 EXPORT_SYMBOL(vmalloc_to_page);
195
196 unsigned long vmalloc_to_pfn(const void *addr)
197 {
198         return page_to_pfn(virt_to_page(addr));
199 }
200 EXPORT_SYMBOL(vmalloc_to_pfn);
201
202 long vread_iter(struct iov_iter *iter, const char *addr, size_t count)
203 {
204         /* Don't allow overflow */
205         if ((unsigned long) addr + count < count)
206                 count = -(unsigned long) addr;
207
208         return copy_to_iter(addr, count, iter);
209 }
210
211 /*
212  *      vmalloc  -  allocate virtually contiguous memory
213  *
214  *      @size:          allocation size
215  *
216  *      Allocate enough pages to cover @size from the page level
217  *      allocator and map them into contiguous kernel virtual space.
218  *
219  *      For tight control over page level allocator and protection flags
220  *      use __vmalloc() instead.
221  */
222 void *vmalloc(unsigned long size)
223 {
224         return __vmalloc(size, GFP_KERNEL);
225 }
226 EXPORT_SYMBOL(vmalloc);
227
228 void *vmalloc_huge(unsigned long size, gfp_t gfp_mask) __weak __alias(__vmalloc);
229
230 /*
231  *      vzalloc - allocate virtually contiguous memory with zero fill
232  *
233  *      @size:          allocation size
234  *
235  *      Allocate enough pages to cover @size from the page level
236  *      allocator and map them into contiguous kernel virtual space.
237  *      The memory allocated is set to zero.
238  *
239  *      For tight control over page level allocator and protection flags
240  *      use __vmalloc() instead.
241  */
242 void *vzalloc(unsigned long size)
243 {
244         return __vmalloc(size, GFP_KERNEL | __GFP_ZERO);
245 }
246 EXPORT_SYMBOL(vzalloc);
247
248 /**
249  * vmalloc_node - allocate memory on a specific node
250  * @size:       allocation size
251  * @node:       numa node
252  *
253  * Allocate enough pages to cover @size from the page level
254  * allocator and map them into contiguous kernel virtual space.
255  *
256  * For tight control over page level allocator and protection flags
257  * use __vmalloc() instead.
258  */
259 void *vmalloc_node(unsigned long size, int node)
260 {
261         return vmalloc(size);
262 }
263 EXPORT_SYMBOL(vmalloc_node);
264
265 /**
266  * vzalloc_node - allocate memory on a specific node with zero fill
267  * @size:       allocation size
268  * @node:       numa node
269  *
270  * Allocate enough pages to cover @size from the page level
271  * allocator and map them into contiguous kernel virtual space.
272  * The memory allocated is set to zero.
273  *
274  * For tight control over page level allocator and protection flags
275  * use __vmalloc() instead.
276  */
277 void *vzalloc_node(unsigned long size, int node)
278 {
279         return vzalloc(size);
280 }
281 EXPORT_SYMBOL(vzalloc_node);
282
283 /**
284  * vmalloc_32  -  allocate virtually contiguous memory (32bit addressable)
285  *      @size:          allocation size
286  *
287  *      Allocate enough 32bit PA addressable pages to cover @size from the
288  *      page level allocator and map them into contiguous kernel virtual space.
289  */
290 void *vmalloc_32(unsigned long size)
291 {
292         return __vmalloc(size, GFP_KERNEL);
293 }
294 EXPORT_SYMBOL(vmalloc_32);
295
296 /**
297  * vmalloc_32_user - allocate zeroed virtually contiguous 32bit memory
298  *      @size:          allocation size
299  *
300  * The resulting memory area is 32bit addressable and zeroed so it can be
301  * mapped to userspace without leaking data.
302  *
303  * VM_USERMAP is set on the corresponding VMA so that subsequent calls to
304  * remap_vmalloc_range() are permissible.
305  */
306 void *vmalloc_32_user(unsigned long size)
307 {
308         /*
309          * We'll have to sort out the ZONE_DMA bits for 64-bit,
310          * but for now this can simply use vmalloc_user() directly.
311          */
312         return vmalloc_user(size);
313 }
314 EXPORT_SYMBOL(vmalloc_32_user);
315
316 void *vmap(struct page **pages, unsigned int count, unsigned long flags, pgprot_t prot)
317 {
318         BUG();
319         return NULL;
320 }
321 EXPORT_SYMBOL(vmap);
322
323 void vunmap(const void *addr)
324 {
325         BUG();
326 }
327 EXPORT_SYMBOL(vunmap);
328
329 void *vm_map_ram(struct page **pages, unsigned int count, int node)
330 {
331         BUG();
332         return NULL;
333 }
334 EXPORT_SYMBOL(vm_map_ram);
335
336 void vm_unmap_ram(const void *mem, unsigned int count)
337 {
338         BUG();
339 }
340 EXPORT_SYMBOL(vm_unmap_ram);
341
342 void vm_unmap_aliases(void)
343 {
344 }
345 EXPORT_SYMBOL_GPL(vm_unmap_aliases);
346
347 void free_vm_area(struct vm_struct *area)
348 {
349         BUG();
350 }
351 EXPORT_SYMBOL_GPL(free_vm_area);
352
353 int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
354                    struct page *page)
355 {
356         return -EINVAL;
357 }
358 EXPORT_SYMBOL(vm_insert_page);
359
360 int vm_map_pages(struct vm_area_struct *vma, struct page **pages,
361                         unsigned long num)
362 {
363         return -EINVAL;
364 }
365 EXPORT_SYMBOL(vm_map_pages);
366
367 int vm_map_pages_zero(struct vm_area_struct *vma, struct page **pages,
368                                 unsigned long num)
369 {
370         return -EINVAL;
371 }
372 EXPORT_SYMBOL(vm_map_pages_zero);
373
374 /*
375  *  sys_brk() for the most part doesn't need the global kernel
376  *  lock, except when an application is doing something nasty
377  *  like trying to un-brk an area that has already been mapped
378  *  to a regular file.  in this case, the unmapping will need
379  *  to invoke file system routines that need the global lock.
380  */
381 SYSCALL_DEFINE1(brk, unsigned long, brk)
382 {
383         struct mm_struct *mm = current->mm;
384
385         if (brk < mm->start_brk || brk > mm->context.end_brk)
386                 return mm->brk;
387
388         if (mm->brk == brk)
389                 return mm->brk;
390
391         /*
392          * Always allow shrinking brk
393          */
394         if (brk <= mm->brk) {
395                 mm->brk = brk;
396                 return brk;
397         }
398
399         /*
400          * Ok, looks good - let it rip.
401          */
402         flush_icache_user_range(mm->brk, brk);
403         return mm->brk = brk;
404 }
405
406 /*
407  * initialise the percpu counter for VM and region record slabs
408  */
409 void __init mmap_init(void)
410 {
411         int ret;
412
413         ret = percpu_counter_init(&vm_committed_as, 0, GFP_KERNEL);
414         VM_BUG_ON(ret);
415         vm_region_jar = KMEM_CACHE(vm_region, SLAB_PANIC|SLAB_ACCOUNT);
416 }
417
418 /*
419  * validate the region tree
420  * - the caller must hold the region lock
421  */
422 #ifdef CONFIG_DEBUG_NOMMU_REGIONS
423 static noinline void validate_nommu_regions(void)
424 {
425         struct vm_region *region, *last;
426         struct rb_node *p, *lastp;
427
428         lastp = rb_first(&nommu_region_tree);
429         if (!lastp)
430                 return;
431
432         last = rb_entry(lastp, struct vm_region, vm_rb);
433         BUG_ON(last->vm_end <= last->vm_start);
434         BUG_ON(last->vm_top < last->vm_end);
435
436         while ((p = rb_next(lastp))) {
437                 region = rb_entry(p, struct vm_region, vm_rb);
438                 last = rb_entry(lastp, struct vm_region, vm_rb);
439
440                 BUG_ON(region->vm_end <= region->vm_start);
441                 BUG_ON(region->vm_top < region->vm_end);
442                 BUG_ON(region->vm_start < last->vm_top);
443
444                 lastp = p;
445         }
446 }
447 #else
448 static void validate_nommu_regions(void)
449 {
450 }
451 #endif
452
453 /*
454  * add a region into the global tree
455  */
456 static void add_nommu_region(struct vm_region *region)
457 {
458         struct vm_region *pregion;
459         struct rb_node **p, *parent;
460
461         validate_nommu_regions();
462
463         parent = NULL;
464         p = &nommu_region_tree.rb_node;
465         while (*p) {
466                 parent = *p;
467                 pregion = rb_entry(parent, struct vm_region, vm_rb);
468                 if (region->vm_start < pregion->vm_start)
469                         p = &(*p)->rb_left;
470                 else if (region->vm_start > pregion->vm_start)
471                         p = &(*p)->rb_right;
472                 else if (pregion == region)
473                         return;
474                 else
475                         BUG();
476         }
477
478         rb_link_node(&region->vm_rb, parent, p);
479         rb_insert_color(&region->vm_rb, &nommu_region_tree);
480
481         validate_nommu_regions();
482 }
483
484 /*
485  * delete a region from the global tree
486  */
487 static void delete_nommu_region(struct vm_region *region)
488 {
489         BUG_ON(!nommu_region_tree.rb_node);
490
491         validate_nommu_regions();
492         rb_erase(&region->vm_rb, &nommu_region_tree);
493         validate_nommu_regions();
494 }
495
496 /*
497  * free a contiguous series of pages
498  */
499 static void free_page_series(unsigned long from, unsigned long to)
500 {
501         for (; from < to; from += PAGE_SIZE) {
502                 struct page *page = virt_to_page((void *)from);
503
504                 atomic_long_dec(&mmap_pages_allocated);
505                 put_page(page);
506         }
507 }
508
509 /*
510  * release a reference to a region
511  * - the caller must hold the region semaphore for writing, which this releases
512  * - the region may not have been added to the tree yet, in which case vm_top
513  *   will equal vm_start
514  */
515 static void __put_nommu_region(struct vm_region *region)
516         __releases(nommu_region_sem)
517 {
518         BUG_ON(!nommu_region_tree.rb_node);
519
520         if (--region->vm_usage == 0) {
521                 if (region->vm_top > region->vm_start)
522                         delete_nommu_region(region);
523                 up_write(&nommu_region_sem);
524
525                 if (region->vm_file)
526                         fput(region->vm_file);
527
528                 /* IO memory and memory shared directly out of the pagecache
529                  * from ramfs/tmpfs mustn't be released here */
530                 if (region->vm_flags & VM_MAPPED_COPY)
531                         free_page_series(region->vm_start, region->vm_top);
532                 kmem_cache_free(vm_region_jar, region);
533         } else {
534                 up_write(&nommu_region_sem);
535         }
536 }
537
538 /*
539  * release a reference to a region
540  */
541 static void put_nommu_region(struct vm_region *region)
542 {
543         down_write(&nommu_region_sem);
544         __put_nommu_region(region);
545 }
546
547 static void setup_vma_to_mm(struct vm_area_struct *vma, struct mm_struct *mm)
548 {
549         vma->vm_mm = mm;
550
551         /* add the VMA to the mapping */
552         if (vma->vm_file) {
553                 struct address_space *mapping = vma->vm_file->f_mapping;
554
555                 i_mmap_lock_write(mapping);
556                 flush_dcache_mmap_lock(mapping);
557                 vma_interval_tree_insert(vma, &mapping->i_mmap);
558                 flush_dcache_mmap_unlock(mapping);
559                 i_mmap_unlock_write(mapping);
560         }
561 }
562
563 static void cleanup_vma_from_mm(struct vm_area_struct *vma)
564 {
565         vma->vm_mm->map_count--;
566         /* remove the VMA from the mapping */
567         if (vma->vm_file) {
568                 struct address_space *mapping;
569                 mapping = vma->vm_file->f_mapping;
570
571                 i_mmap_lock_write(mapping);
572                 flush_dcache_mmap_lock(mapping);
573                 vma_interval_tree_remove(vma, &mapping->i_mmap);
574                 flush_dcache_mmap_unlock(mapping);
575                 i_mmap_unlock_write(mapping);
576         }
577 }
578
579 /*
580  * delete a VMA from its owning mm_struct and address space
581  */
582 static int delete_vma_from_mm(struct vm_area_struct *vma)
583 {
584         VMA_ITERATOR(vmi, vma->vm_mm, vma->vm_start);
585
586         if (vma_iter_prealloc(&vmi)) {
587                 pr_warn("Allocation of vma tree for process %d failed\n",
588                        current->pid);
589                 return -ENOMEM;
590         }
591         cleanup_vma_from_mm(vma);
592
593         /* remove from the MM's tree and list */
594         vma_iter_clear(&vmi, vma->vm_start, vma->vm_end);
595         return 0;
596 }
597 /*
598  * destroy a VMA record
599  */
600 static void delete_vma(struct mm_struct *mm, struct vm_area_struct *vma)
601 {
602         if (vma->vm_ops && vma->vm_ops->close)
603                 vma->vm_ops->close(vma);
604         if (vma->vm_file)
605                 fput(vma->vm_file);
606         put_nommu_region(vma->vm_region);
607         vm_area_free(vma);
608 }
609
610 struct vm_area_struct *find_vma_intersection(struct mm_struct *mm,
611                                              unsigned long start_addr,
612                                              unsigned long end_addr)
613 {
614         unsigned long index = start_addr;
615
616         mmap_assert_locked(mm);
617         return mt_find(&mm->mm_mt, &index, end_addr - 1);
618 }
619 EXPORT_SYMBOL(find_vma_intersection);
620
621 /*
622  * look up the first VMA in which addr resides, NULL if none
623  * - should be called with mm->mmap_lock at least held readlocked
624  */
625 struct vm_area_struct *find_vma(struct mm_struct *mm, unsigned long addr)
626 {
627         VMA_ITERATOR(vmi, mm, addr);
628
629         return vma_iter_load(&vmi);
630 }
631 EXPORT_SYMBOL(find_vma);
632
633 /*
634  * At least xtensa ends up having protection faults even with no
635  * MMU.. No stack expansion, at least.
636  */
637 struct vm_area_struct *lock_mm_and_find_vma(struct mm_struct *mm,
638                         unsigned long addr, struct pt_regs *regs)
639 {
640         struct vm_area_struct *vma;
641
642         mmap_read_lock(mm);
643         vma = vma_lookup(mm, addr);
644         if (!vma)
645                 mmap_read_unlock(mm);
646         return vma;
647 }
648
649 /*
650  * expand a stack to a given address
651  * - not supported under NOMMU conditions
652  */
653 int expand_stack_locked(struct vm_area_struct *vma, unsigned long addr)
654 {
655         return -ENOMEM;
656 }
657
658 struct vm_area_struct *expand_stack(struct mm_struct *mm, unsigned long addr)
659 {
660         mmap_read_unlock(mm);
661         return NULL;
662 }
663
664 /*
665  * look up the first VMA exactly that exactly matches addr
666  * - should be called with mm->mmap_lock at least held readlocked
667  */
668 static struct vm_area_struct *find_vma_exact(struct mm_struct *mm,
669                                              unsigned long addr,
670                                              unsigned long len)
671 {
672         struct vm_area_struct *vma;
673         unsigned long end = addr + len;
674         VMA_ITERATOR(vmi, mm, addr);
675
676         vma = vma_iter_load(&vmi);
677         if (!vma)
678                 return NULL;
679         if (vma->vm_start != addr)
680                 return NULL;
681         if (vma->vm_end != end)
682                 return NULL;
683
684         return vma;
685 }
686
687 /*
688  * determine whether a mapping should be permitted and, if so, what sort of
689  * mapping we're capable of supporting
690  */
691 static int validate_mmap_request(struct file *file,
692                                  unsigned long addr,
693                                  unsigned long len,
694                                  unsigned long prot,
695                                  unsigned long flags,
696                                  unsigned long pgoff,
697                                  unsigned long *_capabilities)
698 {
699         unsigned long capabilities, rlen;
700         int ret;
701
702         /* do the simple checks first */
703         if (flags & MAP_FIXED)
704                 return -EINVAL;
705
706         if ((flags & MAP_TYPE) != MAP_PRIVATE &&
707             (flags & MAP_TYPE) != MAP_SHARED)
708                 return -EINVAL;
709
710         if (!len)
711                 return -EINVAL;
712
713         /* Careful about overflows.. */
714         rlen = PAGE_ALIGN(len);
715         if (!rlen || rlen > TASK_SIZE)
716                 return -ENOMEM;
717
718         /* offset overflow? */
719         if ((pgoff + (rlen >> PAGE_SHIFT)) < pgoff)
720                 return -EOVERFLOW;
721
722         if (file) {
723                 /* files must support mmap */
724                 if (!file->f_op->mmap)
725                         return -ENODEV;
726
727                 /* work out if what we've got could possibly be shared
728                  * - we support chardevs that provide their own "memory"
729                  * - we support files/blockdevs that are memory backed
730                  */
731                 if (file->f_op->mmap_capabilities) {
732                         capabilities = file->f_op->mmap_capabilities(file);
733                 } else {
734                         /* no explicit capabilities set, so assume some
735                          * defaults */
736                         switch (file_inode(file)->i_mode & S_IFMT) {
737                         case S_IFREG:
738                         case S_IFBLK:
739                                 capabilities = NOMMU_MAP_COPY;
740                                 break;
741
742                         case S_IFCHR:
743                                 capabilities =
744                                         NOMMU_MAP_DIRECT |
745                                         NOMMU_MAP_READ |
746                                         NOMMU_MAP_WRITE;
747                                 break;
748
749                         default:
750                                 return -EINVAL;
751                         }
752                 }
753
754                 /* eliminate any capabilities that we can't support on this
755                  * device */
756                 if (!file->f_op->get_unmapped_area)
757                         capabilities &= ~NOMMU_MAP_DIRECT;
758                 if (!(file->f_mode & FMODE_CAN_READ))
759                         capabilities &= ~NOMMU_MAP_COPY;
760
761                 /* The file shall have been opened with read permission. */
762                 if (!(file->f_mode & FMODE_READ))
763                         return -EACCES;
764
765                 if (flags & MAP_SHARED) {
766                         /* do checks for writing, appending and locking */
767                         if ((prot & PROT_WRITE) &&
768                             !(file->f_mode & FMODE_WRITE))
769                                 return -EACCES;
770
771                         if (IS_APPEND(file_inode(file)) &&
772                             (file->f_mode & FMODE_WRITE))
773                                 return -EACCES;
774
775                         if (!(capabilities & NOMMU_MAP_DIRECT))
776                                 return -ENODEV;
777
778                         /* we mustn't privatise shared mappings */
779                         capabilities &= ~NOMMU_MAP_COPY;
780                 } else {
781                         /* we're going to read the file into private memory we
782                          * allocate */
783                         if (!(capabilities & NOMMU_MAP_COPY))
784                                 return -ENODEV;
785
786                         /* we don't permit a private writable mapping to be
787                          * shared with the backing device */
788                         if (prot & PROT_WRITE)
789                                 capabilities &= ~NOMMU_MAP_DIRECT;
790                 }
791
792                 if (capabilities & NOMMU_MAP_DIRECT) {
793                         if (((prot & PROT_READ)  && !(capabilities & NOMMU_MAP_READ))  ||
794                             ((prot & PROT_WRITE) && !(capabilities & NOMMU_MAP_WRITE)) ||
795                             ((prot & PROT_EXEC)  && !(capabilities & NOMMU_MAP_EXEC))
796                             ) {
797                                 capabilities &= ~NOMMU_MAP_DIRECT;
798                                 if (flags & MAP_SHARED) {
799                                         pr_warn("MAP_SHARED not completely supported on !MMU\n");
800                                         return -EINVAL;
801                                 }
802                         }
803                 }
804
805                 /* handle executable mappings and implied executable
806                  * mappings */
807                 if (path_noexec(&file->f_path)) {
808                         if (prot & PROT_EXEC)
809                                 return -EPERM;
810                 } else if ((prot & PROT_READ) && !(prot & PROT_EXEC)) {
811                         /* handle implication of PROT_EXEC by PROT_READ */
812                         if (current->personality & READ_IMPLIES_EXEC) {
813                                 if (capabilities & NOMMU_MAP_EXEC)
814                                         prot |= PROT_EXEC;
815                         }
816                 } else if ((prot & PROT_READ) &&
817                          (prot & PROT_EXEC) &&
818                          !(capabilities & NOMMU_MAP_EXEC)
819                          ) {
820                         /* backing file is not executable, try to copy */
821                         capabilities &= ~NOMMU_MAP_DIRECT;
822                 }
823         } else {
824                 /* anonymous mappings are always memory backed and can be
825                  * privately mapped
826                  */
827                 capabilities = NOMMU_MAP_COPY;
828
829                 /* handle PROT_EXEC implication by PROT_READ */
830                 if ((prot & PROT_READ) &&
831                     (current->personality & READ_IMPLIES_EXEC))
832                         prot |= PROT_EXEC;
833         }
834
835         /* allow the security API to have its say */
836         ret = security_mmap_addr(addr);
837         if (ret < 0)
838                 return ret;
839
840         /* looks okay */
841         *_capabilities = capabilities;
842         return 0;
843 }
844
845 /*
846  * we've determined that we can make the mapping, now translate what we
847  * now know into VMA flags
848  */
849 static unsigned long determine_vm_flags(struct file *file,
850                                         unsigned long prot,
851                                         unsigned long flags,
852                                         unsigned long capabilities)
853 {
854         unsigned long vm_flags;
855
856         vm_flags = calc_vm_prot_bits(prot, 0) | calc_vm_flag_bits(flags);
857
858         if (!file) {
859                 /*
860                  * MAP_ANONYMOUS. MAP_SHARED is mapped to MAP_PRIVATE, because
861                  * there is no fork().
862                  */
863                 vm_flags |= VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC;
864         } else if (flags & MAP_PRIVATE) {
865                 /* MAP_PRIVATE file mapping */
866                 if (capabilities & NOMMU_MAP_DIRECT)
867                         vm_flags |= (capabilities & NOMMU_VMFLAGS);
868                 else
869                         vm_flags |= VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC;
870
871                 if (!(prot & PROT_WRITE) && !current->ptrace)
872                         /*
873                          * R/O private file mapping which cannot be used to
874                          * modify memory, especially also not via active ptrace
875                          * (e.g., set breakpoints) or later by upgrading
876                          * permissions (no mprotect()). We can try overlaying
877                          * the file mapping, which will work e.g., on chardevs,
878                          * ramfs/tmpfs/shmfs and romfs/cramf.
879                          */
880                         vm_flags |= VM_MAYOVERLAY;
881         } else {
882                 /* MAP_SHARED file mapping: NOMMU_MAP_DIRECT is set. */
883                 vm_flags |= VM_SHARED | VM_MAYSHARE |
884                             (capabilities & NOMMU_VMFLAGS);
885         }
886
887         return vm_flags;
888 }
889
890 /*
891  * set up a shared mapping on a file (the driver or filesystem provides and
892  * pins the storage)
893  */
894 static int do_mmap_shared_file(struct vm_area_struct *vma)
895 {
896         int ret;
897
898         ret = call_mmap(vma->vm_file, vma);
899         if (ret == 0) {
900                 vma->vm_region->vm_top = vma->vm_region->vm_end;
901                 return 0;
902         }
903         if (ret != -ENOSYS)
904                 return ret;
905
906         /* getting -ENOSYS indicates that direct mmap isn't possible (as
907          * opposed to tried but failed) so we can only give a suitable error as
908          * it's not possible to make a private copy if MAP_SHARED was given */
909         return -ENODEV;
910 }
911
912 /*
913  * set up a private mapping or an anonymous shared mapping
914  */
915 static int do_mmap_private(struct vm_area_struct *vma,
916                            struct vm_region *region,
917                            unsigned long len,
918                            unsigned long capabilities)
919 {
920         unsigned long total, point;
921         void *base;
922         int ret, order;
923
924         /*
925          * Invoke the file's mapping function so that it can keep track of
926          * shared mappings on devices or memory. VM_MAYOVERLAY will be set if
927          * it may attempt to share, which will make is_nommu_shared_mapping()
928          * happy.
929          */
930         if (capabilities & NOMMU_MAP_DIRECT) {
931                 ret = call_mmap(vma->vm_file, vma);
932                 /* shouldn't return success if we're not sharing */
933                 if (WARN_ON_ONCE(!is_nommu_shared_mapping(vma->vm_flags)))
934                         ret = -ENOSYS;
935                 if (ret == 0) {
936                         vma->vm_region->vm_top = vma->vm_region->vm_end;
937                         return 0;
938                 }
939                 if (ret != -ENOSYS)
940                         return ret;
941
942                 /* getting an ENOSYS error indicates that direct mmap isn't
943                  * possible (as opposed to tried but failed) so we'll try to
944                  * make a private copy of the data and map that instead */
945         }
946
947
948         /* allocate some memory to hold the mapping
949          * - note that this may not return a page-aligned address if the object
950          *   we're allocating is smaller than a page
951          */
952         order = get_order(len);
953         total = 1 << order;
954         point = len >> PAGE_SHIFT;
955
956         /* we don't want to allocate a power-of-2 sized page set */
957         if (sysctl_nr_trim_pages && total - point >= sysctl_nr_trim_pages)
958                 total = point;
959
960         base = alloc_pages_exact(total << PAGE_SHIFT, GFP_KERNEL);
961         if (!base)
962                 goto enomem;
963
964         atomic_long_add(total, &mmap_pages_allocated);
965
966         vm_flags_set(vma, VM_MAPPED_COPY);
967         region->vm_flags = vma->vm_flags;
968         region->vm_start = (unsigned long) base;
969         region->vm_end   = region->vm_start + len;
970         region->vm_top   = region->vm_start + (total << PAGE_SHIFT);
971
972         vma->vm_start = region->vm_start;
973         vma->vm_end   = region->vm_start + len;
974
975         if (vma->vm_file) {
976                 /* read the contents of a file into the copy */
977                 loff_t fpos;
978
979                 fpos = vma->vm_pgoff;
980                 fpos <<= PAGE_SHIFT;
981
982                 ret = kernel_read(vma->vm_file, base, len, &fpos);
983                 if (ret < 0)
984                         goto error_free;
985
986                 /* clear the last little bit */
987                 if (ret < len)
988                         memset(base + ret, 0, len - ret);
989
990         } else {
991                 vma_set_anonymous(vma);
992         }
993
994         return 0;
995
996 error_free:
997         free_page_series(region->vm_start, region->vm_top);
998         region->vm_start = vma->vm_start = 0;
999         region->vm_end   = vma->vm_end = 0;
1000         region->vm_top   = 0;
1001         return ret;
1002
1003 enomem:
1004         pr_err("Allocation of length %lu from process %d (%s) failed\n",
1005                len, current->pid, current->comm);
1006         show_free_areas(0, NULL);
1007         return -ENOMEM;
1008 }
1009
1010 /*
1011  * handle mapping creation for uClinux
1012  */
1013 unsigned long do_mmap(struct file *file,
1014                         unsigned long addr,
1015                         unsigned long len,
1016                         unsigned long prot,
1017                         unsigned long flags,
1018                         unsigned long pgoff,
1019                         unsigned long *populate,
1020                         struct list_head *uf)
1021 {
1022         struct vm_area_struct *vma;
1023         struct vm_region *region;
1024         struct rb_node *rb;
1025         vm_flags_t vm_flags;
1026         unsigned long capabilities, result;
1027         int ret;
1028         VMA_ITERATOR(vmi, current->mm, 0);
1029
1030         *populate = 0;
1031
1032         /* decide whether we should attempt the mapping, and if so what sort of
1033          * mapping */
1034         ret = validate_mmap_request(file, addr, len, prot, flags, pgoff,
1035                                     &capabilities);
1036         if (ret < 0)
1037                 return ret;
1038
1039         /* we ignore the address hint */
1040         addr = 0;
1041         len = PAGE_ALIGN(len);
1042
1043         /* we've determined that we can make the mapping, now translate what we
1044          * now know into VMA flags */
1045         vm_flags = determine_vm_flags(file, prot, flags, capabilities);
1046
1047
1048         /* we're going to need to record the mapping */
1049         region = kmem_cache_zalloc(vm_region_jar, GFP_KERNEL);
1050         if (!region)
1051                 goto error_getting_region;
1052
1053         vma = vm_area_alloc(current->mm);
1054         if (!vma)
1055                 goto error_getting_vma;
1056
1057         if (vma_iter_prealloc(&vmi))
1058                 goto error_vma_iter_prealloc;
1059
1060         region->vm_usage = 1;
1061         region->vm_flags = vm_flags;
1062         region->vm_pgoff = pgoff;
1063
1064         vm_flags_init(vma, vm_flags);
1065         vma->vm_pgoff = pgoff;
1066
1067         if (file) {
1068                 region->vm_file = get_file(file);
1069                 vma->vm_file = get_file(file);
1070         }
1071
1072         down_write(&nommu_region_sem);
1073
1074         /* if we want to share, we need to check for regions created by other
1075          * mmap() calls that overlap with our proposed mapping
1076          * - we can only share with a superset match on most regular files
1077          * - shared mappings on character devices and memory backed files are
1078          *   permitted to overlap inexactly as far as we are concerned for in
1079          *   these cases, sharing is handled in the driver or filesystem rather
1080          *   than here
1081          */
1082         if (is_nommu_shared_mapping(vm_flags)) {
1083                 struct vm_region *pregion;
1084                 unsigned long pglen, rpglen, pgend, rpgend, start;
1085
1086                 pglen = (len + PAGE_SIZE - 1) >> PAGE_SHIFT;
1087                 pgend = pgoff + pglen;
1088
1089                 for (rb = rb_first(&nommu_region_tree); rb; rb = rb_next(rb)) {
1090                         pregion = rb_entry(rb, struct vm_region, vm_rb);
1091
1092                         if (!is_nommu_shared_mapping(pregion->vm_flags))
1093                                 continue;
1094
1095                         /* search for overlapping mappings on the same file */
1096                         if (file_inode(pregion->vm_file) !=
1097                             file_inode(file))
1098                                 continue;
1099
1100                         if (pregion->vm_pgoff >= pgend)
1101                                 continue;
1102
1103                         rpglen = pregion->vm_end - pregion->vm_start;
1104                         rpglen = (rpglen + PAGE_SIZE - 1) >> PAGE_SHIFT;
1105                         rpgend = pregion->vm_pgoff + rpglen;
1106                         if (pgoff >= rpgend)
1107                                 continue;
1108
1109                         /* handle inexactly overlapping matches between
1110                          * mappings */
1111                         if ((pregion->vm_pgoff != pgoff || rpglen != pglen) &&
1112                             !(pgoff >= pregion->vm_pgoff && pgend <= rpgend)) {
1113                                 /* new mapping is not a subset of the region */
1114                                 if (!(capabilities & NOMMU_MAP_DIRECT))
1115                                         goto sharing_violation;
1116                                 continue;
1117                         }
1118
1119                         /* we've found a region we can share */
1120                         pregion->vm_usage++;
1121                         vma->vm_region = pregion;
1122                         start = pregion->vm_start;
1123                         start += (pgoff - pregion->vm_pgoff) << PAGE_SHIFT;
1124                         vma->vm_start = start;
1125                         vma->vm_end = start + len;
1126
1127                         if (pregion->vm_flags & VM_MAPPED_COPY)
1128                                 vm_flags_set(vma, VM_MAPPED_COPY);
1129                         else {
1130                                 ret = do_mmap_shared_file(vma);
1131                                 if (ret < 0) {
1132                                         vma->vm_region = NULL;
1133                                         vma->vm_start = 0;
1134                                         vma->vm_end = 0;
1135                                         pregion->vm_usage--;
1136                                         pregion = NULL;
1137                                         goto error_just_free;
1138                                 }
1139                         }
1140                         fput(region->vm_file);
1141                         kmem_cache_free(vm_region_jar, region);
1142                         region = pregion;
1143                         result = start;
1144                         goto share;
1145                 }
1146
1147                 /* obtain the address at which to make a shared mapping
1148                  * - this is the hook for quasi-memory character devices to
1149                  *   tell us the location of a shared mapping
1150                  */
1151                 if (capabilities & NOMMU_MAP_DIRECT) {
1152                         addr = file->f_op->get_unmapped_area(file, addr, len,
1153                                                              pgoff, flags);
1154                         if (IS_ERR_VALUE(addr)) {
1155                                 ret = addr;
1156                                 if (ret != -ENOSYS)
1157                                         goto error_just_free;
1158
1159                                 /* the driver refused to tell us where to site
1160                                  * the mapping so we'll have to attempt to copy
1161                                  * it */
1162                                 ret = -ENODEV;
1163                                 if (!(capabilities & NOMMU_MAP_COPY))
1164                                         goto error_just_free;
1165
1166                                 capabilities &= ~NOMMU_MAP_DIRECT;
1167                         } else {
1168                                 vma->vm_start = region->vm_start = addr;
1169                                 vma->vm_end = region->vm_end = addr + len;
1170                         }
1171                 }
1172         }
1173
1174         vma->vm_region = region;
1175
1176         /* set up the mapping
1177          * - the region is filled in if NOMMU_MAP_DIRECT is still set
1178          */
1179         if (file && vma->vm_flags & VM_SHARED)
1180                 ret = do_mmap_shared_file(vma);
1181         else
1182                 ret = do_mmap_private(vma, region, len, capabilities);
1183         if (ret < 0)
1184                 goto error_just_free;
1185         add_nommu_region(region);
1186
1187         /* clear anonymous mappings that don't ask for uninitialized data */
1188         if (!vma->vm_file &&
1189             (!IS_ENABLED(CONFIG_MMAP_ALLOW_UNINITIALIZED) ||
1190              !(flags & MAP_UNINITIALIZED)))
1191                 memset((void *)region->vm_start, 0,
1192                        region->vm_end - region->vm_start);
1193
1194         /* okay... we have a mapping; now we have to register it */
1195         result = vma->vm_start;
1196
1197         current->mm->total_vm += len >> PAGE_SHIFT;
1198
1199 share:
1200         BUG_ON(!vma->vm_region);
1201         setup_vma_to_mm(vma, current->mm);
1202         current->mm->map_count++;
1203         /* add the VMA to the tree */
1204         vma_iter_store(&vmi, vma);
1205
1206         /* we flush the region from the icache only when the first executable
1207          * mapping of it is made  */
1208         if (vma->vm_flags & VM_EXEC && !region->vm_icache_flushed) {
1209                 flush_icache_user_range(region->vm_start, region->vm_end);
1210                 region->vm_icache_flushed = true;
1211         }
1212
1213         up_write(&nommu_region_sem);
1214
1215         return result;
1216
1217 error_just_free:
1218         up_write(&nommu_region_sem);
1219 error:
1220         vma_iter_free(&vmi);
1221         if (region->vm_file)
1222                 fput(region->vm_file);
1223         kmem_cache_free(vm_region_jar, region);
1224         if (vma->vm_file)
1225                 fput(vma->vm_file);
1226         vm_area_free(vma);
1227         return ret;
1228
1229 sharing_violation:
1230         up_write(&nommu_region_sem);
1231         pr_warn("Attempt to share mismatched mappings\n");
1232         ret = -EINVAL;
1233         goto error;
1234
1235 error_getting_vma:
1236         kmem_cache_free(vm_region_jar, region);
1237         pr_warn("Allocation of vma for %lu byte allocation from process %d failed\n",
1238                         len, current->pid);
1239         show_free_areas(0, NULL);
1240         return -ENOMEM;
1241
1242 error_getting_region:
1243         pr_warn("Allocation of vm region for %lu byte allocation from process %d failed\n",
1244                         len, current->pid);
1245         show_free_areas(0, NULL);
1246         return -ENOMEM;
1247
1248 error_vma_iter_prealloc:
1249         kmem_cache_free(vm_region_jar, region);
1250         vm_area_free(vma);
1251         pr_warn("Allocation of vma tree for process %d failed\n", current->pid);
1252         show_free_areas(0, NULL);
1253         return -ENOMEM;
1254
1255 }
1256
1257 unsigned long ksys_mmap_pgoff(unsigned long addr, unsigned long len,
1258                               unsigned long prot, unsigned long flags,
1259                               unsigned long fd, unsigned long pgoff)
1260 {
1261         struct file *file = NULL;
1262         unsigned long retval = -EBADF;
1263
1264         audit_mmap_fd(fd, flags);
1265         if (!(flags & MAP_ANONYMOUS)) {
1266                 file = fget(fd);
1267                 if (!file)
1268                         goto out;
1269         }
1270
1271         retval = vm_mmap_pgoff(file, addr, len, prot, flags, pgoff);
1272
1273         if (file)
1274                 fput(file);
1275 out:
1276         return retval;
1277 }
1278
1279 SYSCALL_DEFINE6(mmap_pgoff, unsigned long, addr, unsigned long, len,
1280                 unsigned long, prot, unsigned long, flags,
1281                 unsigned long, fd, unsigned long, pgoff)
1282 {
1283         return ksys_mmap_pgoff(addr, len, prot, flags, fd, pgoff);
1284 }
1285
1286 #ifdef __ARCH_WANT_SYS_OLD_MMAP
1287 struct mmap_arg_struct {
1288         unsigned long addr;
1289         unsigned long len;
1290         unsigned long prot;
1291         unsigned long flags;
1292         unsigned long fd;
1293         unsigned long offset;
1294 };
1295
1296 SYSCALL_DEFINE1(old_mmap, struct mmap_arg_struct __user *, arg)
1297 {
1298         struct mmap_arg_struct a;
1299
1300         if (copy_from_user(&a, arg, sizeof(a)))
1301                 return -EFAULT;
1302         if (offset_in_page(a.offset))
1303                 return -EINVAL;
1304
1305         return ksys_mmap_pgoff(a.addr, a.len, a.prot, a.flags, a.fd,
1306                                a.offset >> PAGE_SHIFT);
1307 }
1308 #endif /* __ARCH_WANT_SYS_OLD_MMAP */
1309
1310 /*
1311  * split a vma into two pieces at address 'addr', a new vma is allocated either
1312  * for the first part or the tail.
1313  */
1314 int split_vma(struct vma_iterator *vmi, struct vm_area_struct *vma,
1315               unsigned long addr, int new_below)
1316 {
1317         struct vm_area_struct *new;
1318         struct vm_region *region;
1319         unsigned long npages;
1320         struct mm_struct *mm;
1321
1322         /* we're only permitted to split anonymous regions (these should have
1323          * only a single usage on the region) */
1324         if (vma->vm_file)
1325                 return -ENOMEM;
1326
1327         mm = vma->vm_mm;
1328         if (mm->map_count >= sysctl_max_map_count)
1329                 return -ENOMEM;
1330
1331         region = kmem_cache_alloc(vm_region_jar, GFP_KERNEL);
1332         if (!region)
1333                 return -ENOMEM;
1334
1335         new = vm_area_dup(vma);
1336         if (!new)
1337                 goto err_vma_dup;
1338
1339         if (vma_iter_prealloc(vmi)) {
1340                 pr_warn("Allocation of vma tree for process %d failed\n",
1341                         current->pid);
1342                 goto err_vmi_preallocate;
1343         }
1344
1345         /* most fields are the same, copy all, and then fixup */
1346         *region = *vma->vm_region;
1347         new->vm_region = region;
1348
1349         npages = (addr - vma->vm_start) >> PAGE_SHIFT;
1350
1351         if (new_below) {
1352                 region->vm_top = region->vm_end = new->vm_end = addr;
1353         } else {
1354                 region->vm_start = new->vm_start = addr;
1355                 region->vm_pgoff = new->vm_pgoff += npages;
1356         }
1357
1358         if (new->vm_ops && new->vm_ops->open)
1359                 new->vm_ops->open(new);
1360
1361         down_write(&nommu_region_sem);
1362         delete_nommu_region(vma->vm_region);
1363         if (new_below) {
1364                 vma->vm_region->vm_start = vma->vm_start = addr;
1365                 vma->vm_region->vm_pgoff = vma->vm_pgoff += npages;
1366         } else {
1367                 vma->vm_region->vm_end = vma->vm_end = addr;
1368                 vma->vm_region->vm_top = addr;
1369         }
1370         add_nommu_region(vma->vm_region);
1371         add_nommu_region(new->vm_region);
1372         up_write(&nommu_region_sem);
1373
1374         setup_vma_to_mm(vma, mm);
1375         setup_vma_to_mm(new, mm);
1376         vma_iter_store(vmi, new);
1377         mm->map_count++;
1378         return 0;
1379
1380 err_vmi_preallocate:
1381         vm_area_free(new);
1382 err_vma_dup:
1383         kmem_cache_free(vm_region_jar, region);
1384         return -ENOMEM;
1385 }
1386
1387 /*
1388  * shrink a VMA by removing the specified chunk from either the beginning or
1389  * the end
1390  */
1391 static int vmi_shrink_vma(struct vma_iterator *vmi,
1392                       struct vm_area_struct *vma,
1393                       unsigned long from, unsigned long to)
1394 {
1395         struct vm_region *region;
1396
1397         /* adjust the VMA's pointers, which may reposition it in the MM's tree
1398          * and list */
1399         if (vma_iter_prealloc(vmi)) {
1400                 pr_warn("Allocation of vma tree for process %d failed\n",
1401                        current->pid);
1402                 return -ENOMEM;
1403         }
1404
1405         if (from > vma->vm_start) {
1406                 vma_iter_clear(vmi, from, vma->vm_end);
1407                 vma->vm_end = from;
1408         } else {
1409                 vma_iter_clear(vmi, vma->vm_start, to);
1410                 vma->vm_start = to;
1411         }
1412
1413         /* cut the backing region down to size */
1414         region = vma->vm_region;
1415         BUG_ON(region->vm_usage != 1);
1416
1417         down_write(&nommu_region_sem);
1418         delete_nommu_region(region);
1419         if (from > region->vm_start) {
1420                 to = region->vm_top;
1421                 region->vm_top = region->vm_end = from;
1422         } else {
1423                 region->vm_start = to;
1424         }
1425         add_nommu_region(region);
1426         up_write(&nommu_region_sem);
1427
1428         free_page_series(from, to);
1429         return 0;
1430 }
1431
1432 /*
1433  * release a mapping
1434  * - under NOMMU conditions the chunk to be unmapped must be backed by a single
1435  *   VMA, though it need not cover the whole VMA
1436  */
1437 int do_munmap(struct mm_struct *mm, unsigned long start, size_t len, struct list_head *uf)
1438 {
1439         VMA_ITERATOR(vmi, mm, start);
1440         struct vm_area_struct *vma;
1441         unsigned long end;
1442         int ret = 0;
1443
1444         len = PAGE_ALIGN(len);
1445         if (len == 0)
1446                 return -EINVAL;
1447
1448         end = start + len;
1449
1450         /* find the first potentially overlapping VMA */
1451         vma = vma_find(&vmi, end);
1452         if (!vma) {
1453                 static int limit;
1454                 if (limit < 5) {
1455                         pr_warn("munmap of memory not mmapped by process %d (%s): 0x%lx-0x%lx\n",
1456                                         current->pid, current->comm,
1457                                         start, start + len - 1);
1458                         limit++;
1459                 }
1460                 return -EINVAL;
1461         }
1462
1463         /* we're allowed to split an anonymous VMA but not a file-backed one */
1464         if (vma->vm_file) {
1465                 do {
1466                         if (start > vma->vm_start)
1467                                 return -EINVAL;
1468                         if (end == vma->vm_end)
1469                                 goto erase_whole_vma;
1470                         vma = vma_find(&vmi, end);
1471                 } while (vma);
1472                 return -EINVAL;
1473         } else {
1474                 /* the chunk must be a subset of the VMA found */
1475                 if (start == vma->vm_start && end == vma->vm_end)
1476                         goto erase_whole_vma;
1477                 if (start < vma->vm_start || end > vma->vm_end)
1478                         return -EINVAL;
1479                 if (offset_in_page(start))
1480                         return -EINVAL;
1481                 if (end != vma->vm_end && offset_in_page(end))
1482                         return -EINVAL;
1483                 if (start != vma->vm_start && end != vma->vm_end) {
1484                         ret = split_vma(&vmi, vma, start, 1);
1485                         if (ret < 0)
1486                                 return ret;
1487                 }
1488                 return vmi_shrink_vma(&vmi, vma, start, end);
1489         }
1490
1491 erase_whole_vma:
1492         if (delete_vma_from_mm(vma))
1493                 ret = -ENOMEM;
1494         else
1495                 delete_vma(mm, vma);
1496         return ret;
1497 }
1498
1499 int vm_munmap(unsigned long addr, size_t len)
1500 {
1501         struct mm_struct *mm = current->mm;
1502         int ret;
1503
1504         mmap_write_lock(mm);
1505         ret = do_munmap(mm, addr, len, NULL);
1506         mmap_write_unlock(mm);
1507         return ret;
1508 }
1509 EXPORT_SYMBOL(vm_munmap);
1510
1511 SYSCALL_DEFINE2(munmap, unsigned long, addr, size_t, len)
1512 {
1513         return vm_munmap(addr, len);
1514 }
1515
1516 /*
1517  * release all the mappings made in a process's VM space
1518  */
1519 void exit_mmap(struct mm_struct *mm)
1520 {
1521         VMA_ITERATOR(vmi, mm, 0);
1522         struct vm_area_struct *vma;
1523
1524         if (!mm)
1525                 return;
1526
1527         mm->total_vm = 0;
1528
1529         /*
1530          * Lock the mm to avoid assert complaining even though this is the only
1531          * user of the mm
1532          */
1533         mmap_write_lock(mm);
1534         for_each_vma(vmi, vma) {
1535                 cleanup_vma_from_mm(vma);
1536                 delete_vma(mm, vma);
1537                 cond_resched();
1538         }
1539         __mt_destroy(&mm->mm_mt);
1540         mmap_write_unlock(mm);
1541 }
1542
1543 int vm_brk(unsigned long addr, unsigned long len)
1544 {
1545         return -ENOMEM;
1546 }
1547
1548 /*
1549  * expand (or shrink) an existing mapping, potentially moving it at the same
1550  * time (controlled by the MREMAP_MAYMOVE flag and available VM space)
1551  *
1552  * under NOMMU conditions, we only permit changing a mapping's size, and only
1553  * as long as it stays within the region allocated by do_mmap_private() and the
1554  * block is not shareable
1555  *
1556  * MREMAP_FIXED is not supported under NOMMU conditions
1557  */
1558 static unsigned long do_mremap(unsigned long addr,
1559                         unsigned long old_len, unsigned long new_len,
1560                         unsigned long flags, unsigned long new_addr)
1561 {
1562         struct vm_area_struct *vma;
1563
1564         /* insanity checks first */
1565         old_len = PAGE_ALIGN(old_len);
1566         new_len = PAGE_ALIGN(new_len);
1567         if (old_len == 0 || new_len == 0)
1568                 return (unsigned long) -EINVAL;
1569
1570         if (offset_in_page(addr))
1571                 return -EINVAL;
1572
1573         if (flags & MREMAP_FIXED && new_addr != addr)
1574                 return (unsigned long) -EINVAL;
1575
1576         vma = find_vma_exact(current->mm, addr, old_len);
1577         if (!vma)
1578                 return (unsigned long) -EINVAL;
1579
1580         if (vma->vm_end != vma->vm_start + old_len)
1581                 return (unsigned long) -EFAULT;
1582
1583         if (is_nommu_shared_mapping(vma->vm_flags))
1584                 return (unsigned long) -EPERM;
1585
1586         if (new_len > vma->vm_region->vm_end - vma->vm_region->vm_start)
1587                 return (unsigned long) -ENOMEM;
1588
1589         /* all checks complete - do it */
1590         vma->vm_end = vma->vm_start + new_len;
1591         return vma->vm_start;
1592 }
1593
1594 SYSCALL_DEFINE5(mremap, unsigned long, addr, unsigned long, old_len,
1595                 unsigned long, new_len, unsigned long, flags,
1596                 unsigned long, new_addr)
1597 {
1598         unsigned long ret;
1599
1600         mmap_write_lock(current->mm);
1601         ret = do_mremap(addr, old_len, new_len, flags, new_addr);
1602         mmap_write_unlock(current->mm);
1603         return ret;
1604 }
1605
1606 struct page *follow_page(struct vm_area_struct *vma, unsigned long address,
1607                          unsigned int foll_flags)
1608 {
1609         return NULL;
1610 }
1611
1612 int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
1613                 unsigned long pfn, unsigned long size, pgprot_t prot)
1614 {
1615         if (addr != (pfn << PAGE_SHIFT))
1616                 return -EINVAL;
1617
1618         vm_flags_set(vma, VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP);
1619         return 0;
1620 }
1621 EXPORT_SYMBOL(remap_pfn_range);
1622
1623 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len)
1624 {
1625         unsigned long pfn = start >> PAGE_SHIFT;
1626         unsigned long vm_len = vma->vm_end - vma->vm_start;
1627
1628         pfn += vma->vm_pgoff;
1629         return io_remap_pfn_range(vma, vma->vm_start, pfn, vm_len, vma->vm_page_prot);
1630 }
1631 EXPORT_SYMBOL(vm_iomap_memory);
1632
1633 int remap_vmalloc_range(struct vm_area_struct *vma, void *addr,
1634                         unsigned long pgoff)
1635 {
1636         unsigned int size = vma->vm_end - vma->vm_start;
1637
1638         if (!(vma->vm_flags & VM_USERMAP))
1639                 return -EINVAL;
1640
1641         vma->vm_start = (unsigned long)(addr + (pgoff << PAGE_SHIFT));
1642         vma->vm_end = vma->vm_start + size;
1643
1644         return 0;
1645 }
1646 EXPORT_SYMBOL(remap_vmalloc_range);
1647
1648 vm_fault_t filemap_fault(struct vm_fault *vmf)
1649 {
1650         BUG();
1651         return 0;
1652 }
1653 EXPORT_SYMBOL(filemap_fault);
1654
1655 vm_fault_t filemap_map_pages(struct vm_fault *vmf,
1656                 pgoff_t start_pgoff, pgoff_t end_pgoff)
1657 {
1658         BUG();
1659         return 0;
1660 }
1661 EXPORT_SYMBOL(filemap_map_pages);
1662
1663 int __access_remote_vm(struct mm_struct *mm, unsigned long addr, void *buf,
1664                        int len, unsigned int gup_flags)
1665 {
1666         struct vm_area_struct *vma;
1667         int write = gup_flags & FOLL_WRITE;
1668
1669         if (mmap_read_lock_killable(mm))
1670                 return 0;
1671
1672         /* the access must start within one of the target process's mappings */
1673         vma = find_vma(mm, addr);
1674         if (vma) {
1675                 /* don't overrun this mapping */
1676                 if (addr + len >= vma->vm_end)
1677                         len = vma->vm_end - addr;
1678
1679                 /* only read or write mappings where it is permitted */
1680                 if (write && vma->vm_flags & VM_MAYWRITE)
1681                         copy_to_user_page(vma, NULL, addr,
1682                                          (void *) addr, buf, len);
1683                 else if (!write && vma->vm_flags & VM_MAYREAD)
1684                         copy_from_user_page(vma, NULL, addr,
1685                                             buf, (void *) addr, len);
1686                 else
1687                         len = 0;
1688         } else {
1689                 len = 0;
1690         }
1691
1692         mmap_read_unlock(mm);
1693
1694         return len;
1695 }
1696
1697 /**
1698  * access_remote_vm - access another process' address space
1699  * @mm:         the mm_struct of the target address space
1700  * @addr:       start address to access
1701  * @buf:        source or destination buffer
1702  * @len:        number of bytes to transfer
1703  * @gup_flags:  flags modifying lookup behaviour
1704  *
1705  * The caller must hold a reference on @mm.
1706  */
1707 int access_remote_vm(struct mm_struct *mm, unsigned long addr,
1708                 void *buf, int len, unsigned int gup_flags)
1709 {
1710         return __access_remote_vm(mm, addr, buf, len, gup_flags);
1711 }
1712
1713 /*
1714  * Access another process' address space.
1715  * - source/target buffer must be kernel space
1716  */
1717 int access_process_vm(struct task_struct *tsk, unsigned long addr, void *buf, int len,
1718                 unsigned int gup_flags)
1719 {
1720         struct mm_struct *mm;
1721
1722         if (addr + len < addr)
1723                 return 0;
1724
1725         mm = get_task_mm(tsk);
1726         if (!mm)
1727                 return 0;
1728
1729         len = __access_remote_vm(mm, addr, buf, len, gup_flags);
1730
1731         mmput(mm);
1732         return len;
1733 }
1734 EXPORT_SYMBOL_GPL(access_process_vm);
1735
1736 /**
1737  * nommu_shrink_inode_mappings - Shrink the shared mappings on an inode
1738  * @inode: The inode to check
1739  * @size: The current filesize of the inode
1740  * @newsize: The proposed filesize of the inode
1741  *
1742  * Check the shared mappings on an inode on behalf of a shrinking truncate to
1743  * make sure that any outstanding VMAs aren't broken and then shrink the
1744  * vm_regions that extend beyond so that do_mmap() doesn't
1745  * automatically grant mappings that are too large.
1746  */
1747 int nommu_shrink_inode_mappings(struct inode *inode, size_t size,
1748                                 size_t newsize)
1749 {
1750         struct vm_area_struct *vma;
1751         struct vm_region *region;
1752         pgoff_t low, high;
1753         size_t r_size, r_top;
1754
1755         low = newsize >> PAGE_SHIFT;
1756         high = (size + PAGE_SIZE - 1) >> PAGE_SHIFT;
1757
1758         down_write(&nommu_region_sem);
1759         i_mmap_lock_read(inode->i_mapping);
1760
1761         /* search for VMAs that fall within the dead zone */
1762         vma_interval_tree_foreach(vma, &inode->i_mapping->i_mmap, low, high) {
1763                 /* found one - only interested if it's shared out of the page
1764                  * cache */
1765                 if (vma->vm_flags & VM_SHARED) {
1766                         i_mmap_unlock_read(inode->i_mapping);
1767                         up_write(&nommu_region_sem);
1768                         return -ETXTBSY; /* not quite true, but near enough */
1769                 }
1770         }
1771
1772         /* reduce any regions that overlap the dead zone - if in existence,
1773          * these will be pointed to by VMAs that don't overlap the dead zone
1774          *
1775          * we don't check for any regions that start beyond the EOF as there
1776          * shouldn't be any
1777          */
1778         vma_interval_tree_foreach(vma, &inode->i_mapping->i_mmap, 0, ULONG_MAX) {
1779                 if (!(vma->vm_flags & VM_SHARED))
1780                         continue;
1781
1782                 region = vma->vm_region;
1783                 r_size = region->vm_top - region->vm_start;
1784                 r_top = (region->vm_pgoff << PAGE_SHIFT) + r_size;
1785
1786                 if (r_top > newsize) {
1787                         region->vm_top -= r_top - newsize;
1788                         if (region->vm_end > region->vm_top)
1789                                 region->vm_end = region->vm_top;
1790                 }
1791         }
1792
1793         i_mmap_unlock_read(inode->i_mapping);
1794         up_write(&nommu_region_sem);
1795         return 0;
1796 }
1797
1798 /*
1799  * Initialise sysctl_user_reserve_kbytes.
1800  *
1801  * This is intended to prevent a user from starting a single memory hogging
1802  * process, such that they cannot recover (kill the hog) in OVERCOMMIT_NEVER
1803  * mode.
1804  *
1805  * The default value is min(3% of free memory, 128MB)
1806  * 128MB is enough to recover with sshd/login, bash, and top/kill.
1807  */
1808 static int __meminit init_user_reserve(void)
1809 {
1810         unsigned long free_kbytes;
1811
1812         free_kbytes = global_zone_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
1813
1814         sysctl_user_reserve_kbytes = min(free_kbytes / 32, 1UL << 17);
1815         return 0;
1816 }
1817 subsys_initcall(init_user_reserve);
1818
1819 /*
1820  * Initialise sysctl_admin_reserve_kbytes.
1821  *
1822  * The purpose of sysctl_admin_reserve_kbytes is to allow the sys admin
1823  * to log in and kill a memory hogging process.
1824  *
1825  * Systems with more than 256MB will reserve 8MB, enough to recover
1826  * with sshd, bash, and top in OVERCOMMIT_GUESS. Smaller systems will
1827  * only reserve 3% of free pages by default.
1828  */
1829 static int __meminit init_admin_reserve(void)
1830 {
1831         unsigned long free_kbytes;
1832
1833         free_kbytes = global_zone_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
1834
1835         sysctl_admin_reserve_kbytes = min(free_kbytes / 32, 1UL << 13);
1836         return 0;
1837 }
1838 subsys_initcall(init_admin_reserve);