Merge tag 'dmaengine-5.7-rc1' of git://git.infradead.org/users/vkoul/slave-dma
[platform/kernel/linux-rpi.git] / mm / nommu.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/mm/nommu.c
4  *
5  *  Replacement code for mm functions to support CPU's that don't
6  *  have any form of memory management unit (thus no virtual memory).
7  *
8  *  See Documentation/nommu-mmap.txt
9  *
10  *  Copyright (c) 2004-2008 David Howells <dhowells@redhat.com>
11  *  Copyright (c) 2000-2003 David McCullough <davidm@snapgear.com>
12  *  Copyright (c) 2000-2001 D Jeff Dionne <jeff@uClinux.org>
13  *  Copyright (c) 2002      Greg Ungerer <gerg@snapgear.com>
14  *  Copyright (c) 2007-2010 Paul Mundt <lethal@linux-sh.org>
15  */
16
17 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
18
19 #include <linux/export.h>
20 #include <linux/mm.h>
21 #include <linux/sched/mm.h>
22 #include <linux/vmacache.h>
23 #include <linux/mman.h>
24 #include <linux/swap.h>
25 #include <linux/file.h>
26 #include <linux/highmem.h>
27 #include <linux/pagemap.h>
28 #include <linux/slab.h>
29 #include <linux/vmalloc.h>
30 #include <linux/blkdev.h>
31 #include <linux/backing-dev.h>
32 #include <linux/compiler.h>
33 #include <linux/mount.h>
34 #include <linux/personality.h>
35 #include <linux/security.h>
36 #include <linux/syscalls.h>
37 #include <linux/audit.h>
38 #include <linux/printk.h>
39
40 #include <linux/uaccess.h>
41 #include <asm/tlb.h>
42 #include <asm/tlbflush.h>
43 #include <asm/mmu_context.h>
44 #include "internal.h"
45
46 void *high_memory;
47 EXPORT_SYMBOL(high_memory);
48 struct page *mem_map;
49 unsigned long max_mapnr;
50 EXPORT_SYMBOL(max_mapnr);
51 unsigned long highest_memmap_pfn;
52 int sysctl_nr_trim_pages = CONFIG_NOMMU_INITIAL_TRIM_EXCESS;
53 int heap_stack_gap = 0;
54
55 atomic_long_t mmap_pages_allocated;
56
57 EXPORT_SYMBOL(mem_map);
58
59 /* list of mapped, potentially shareable regions */
60 static struct kmem_cache *vm_region_jar;
61 struct rb_root nommu_region_tree = RB_ROOT;
62 DECLARE_RWSEM(nommu_region_sem);
63
64 const struct vm_operations_struct generic_file_vm_ops = {
65 };
66
67 /*
68  * Return the total memory allocated for this pointer, not
69  * just what the caller asked for.
70  *
71  * Doesn't have to be accurate, i.e. may have races.
72  */
73 unsigned int kobjsize(const void *objp)
74 {
75         struct page *page;
76
77         /*
78          * If the object we have should not have ksize performed on it,
79          * return size of 0
80          */
81         if (!objp || !virt_addr_valid(objp))
82                 return 0;
83
84         page = virt_to_head_page(objp);
85
86         /*
87          * If the allocator sets PageSlab, we know the pointer came from
88          * kmalloc().
89          */
90         if (PageSlab(page))
91                 return ksize(objp);
92
93         /*
94          * If it's not a compound page, see if we have a matching VMA
95          * region. This test is intentionally done in reverse order,
96          * so if there's no VMA, we still fall through and hand back
97          * PAGE_SIZE for 0-order pages.
98          */
99         if (!PageCompound(page)) {
100                 struct vm_area_struct *vma;
101
102                 vma = find_vma(current->mm, (unsigned long)objp);
103                 if (vma)
104                         return vma->vm_end - vma->vm_start;
105         }
106
107         /*
108          * The ksize() function is only guaranteed to work for pointers
109          * returned by kmalloc(). So handle arbitrary pointers here.
110          */
111         return page_size(page);
112 }
113
114 /**
115  * follow_pfn - look up PFN at a user virtual address
116  * @vma: memory mapping
117  * @address: user virtual address
118  * @pfn: location to store found PFN
119  *
120  * Only IO mappings and raw PFN mappings are allowed.
121  *
122  * Returns zero and the pfn at @pfn on success, -ve otherwise.
123  */
124 int follow_pfn(struct vm_area_struct *vma, unsigned long address,
125         unsigned long *pfn)
126 {
127         if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
128                 return -EINVAL;
129
130         *pfn = address >> PAGE_SHIFT;
131         return 0;
132 }
133 EXPORT_SYMBOL(follow_pfn);
134
135 LIST_HEAD(vmap_area_list);
136
137 void vfree(const void *addr)
138 {
139         kfree(addr);
140 }
141 EXPORT_SYMBOL(vfree);
142
143 void *__vmalloc(unsigned long size, gfp_t gfp_mask, pgprot_t prot)
144 {
145         /*
146          *  You can't specify __GFP_HIGHMEM with kmalloc() since kmalloc()
147          * returns only a logical address.
148          */
149         return kmalloc(size, (gfp_mask | __GFP_COMP) & ~__GFP_HIGHMEM);
150 }
151 EXPORT_SYMBOL(__vmalloc);
152
153 void *__vmalloc_node_flags(unsigned long size, int node, gfp_t flags)
154 {
155         return __vmalloc(size, flags, PAGE_KERNEL);
156 }
157
158 static void *__vmalloc_user_flags(unsigned long size, gfp_t flags)
159 {
160         void *ret;
161
162         ret = __vmalloc(size, flags, PAGE_KERNEL);
163         if (ret) {
164                 struct vm_area_struct *vma;
165
166                 down_write(&current->mm->mmap_sem);
167                 vma = find_vma(current->mm, (unsigned long)ret);
168                 if (vma)
169                         vma->vm_flags |= VM_USERMAP;
170                 up_write(&current->mm->mmap_sem);
171         }
172
173         return ret;
174 }
175
176 void *vmalloc_user(unsigned long size)
177 {
178         return __vmalloc_user_flags(size, GFP_KERNEL | __GFP_ZERO);
179 }
180 EXPORT_SYMBOL(vmalloc_user);
181
182 void *vmalloc_user_node_flags(unsigned long size, int node, gfp_t flags)
183 {
184         return __vmalloc_user_flags(size, flags | __GFP_ZERO);
185 }
186 EXPORT_SYMBOL(vmalloc_user_node_flags);
187
188 struct page *vmalloc_to_page(const void *addr)
189 {
190         return virt_to_page(addr);
191 }
192 EXPORT_SYMBOL(vmalloc_to_page);
193
194 unsigned long vmalloc_to_pfn(const void *addr)
195 {
196         return page_to_pfn(virt_to_page(addr));
197 }
198 EXPORT_SYMBOL(vmalloc_to_pfn);
199
200 long vread(char *buf, char *addr, unsigned long count)
201 {
202         /* Don't allow overflow */
203         if ((unsigned long) buf + count < count)
204                 count = -(unsigned long) buf;
205
206         memcpy(buf, addr, count);
207         return count;
208 }
209
210 long vwrite(char *buf, char *addr, unsigned long count)
211 {
212         /* Don't allow overflow */
213         if ((unsigned long) addr + count < count)
214                 count = -(unsigned long) addr;
215
216         memcpy(addr, buf, count);
217         return count;
218 }
219
220 /*
221  *      vmalloc  -  allocate virtually contiguous memory
222  *
223  *      @size:          allocation size
224  *
225  *      Allocate enough pages to cover @size from the page level
226  *      allocator and map them into contiguous kernel virtual space.
227  *
228  *      For tight control over page level allocator and protection flags
229  *      use __vmalloc() instead.
230  */
231 void *vmalloc(unsigned long size)
232 {
233        return __vmalloc(size, GFP_KERNEL | __GFP_HIGHMEM, PAGE_KERNEL);
234 }
235 EXPORT_SYMBOL(vmalloc);
236
237 /*
238  *      vzalloc - allocate virtually contiguous memory with zero fill
239  *
240  *      @size:          allocation size
241  *
242  *      Allocate enough pages to cover @size from the page level
243  *      allocator and map them into contiguous kernel virtual space.
244  *      The memory allocated is set to zero.
245  *
246  *      For tight control over page level allocator and protection flags
247  *      use __vmalloc() instead.
248  */
249 void *vzalloc(unsigned long size)
250 {
251         return __vmalloc(size, GFP_KERNEL | __GFP_HIGHMEM | __GFP_ZERO,
252                         PAGE_KERNEL);
253 }
254 EXPORT_SYMBOL(vzalloc);
255
256 /**
257  * vmalloc_node - allocate memory on a specific node
258  * @size:       allocation size
259  * @node:       numa node
260  *
261  * Allocate enough pages to cover @size from the page level
262  * allocator and map them into contiguous kernel virtual space.
263  *
264  * For tight control over page level allocator and protection flags
265  * use __vmalloc() instead.
266  */
267 void *vmalloc_node(unsigned long size, int node)
268 {
269         return vmalloc(size);
270 }
271 EXPORT_SYMBOL(vmalloc_node);
272
273 /**
274  * vzalloc_node - allocate memory on a specific node with zero fill
275  * @size:       allocation size
276  * @node:       numa node
277  *
278  * Allocate enough pages to cover @size from the page level
279  * allocator and map them into contiguous kernel virtual space.
280  * The memory allocated is set to zero.
281  *
282  * For tight control over page level allocator and protection flags
283  * use __vmalloc() instead.
284  */
285 void *vzalloc_node(unsigned long size, int node)
286 {
287         return vzalloc(size);
288 }
289 EXPORT_SYMBOL(vzalloc_node);
290
291 /**
292  *      vmalloc_exec  -  allocate virtually contiguous, executable memory
293  *      @size:          allocation size
294  *
295  *      Kernel-internal function to allocate enough pages to cover @size
296  *      the page level allocator and map them into contiguous and
297  *      executable kernel virtual space.
298  *
299  *      For tight control over page level allocator and protection flags
300  *      use __vmalloc() instead.
301  */
302
303 void *vmalloc_exec(unsigned long size)
304 {
305         return __vmalloc(size, GFP_KERNEL | __GFP_HIGHMEM, PAGE_KERNEL_EXEC);
306 }
307
308 /**
309  * vmalloc_32  -  allocate virtually contiguous memory (32bit addressable)
310  *      @size:          allocation size
311  *
312  *      Allocate enough 32bit PA addressable pages to cover @size from the
313  *      page level allocator and map them into contiguous kernel virtual space.
314  */
315 void *vmalloc_32(unsigned long size)
316 {
317         return __vmalloc(size, GFP_KERNEL, PAGE_KERNEL);
318 }
319 EXPORT_SYMBOL(vmalloc_32);
320
321 /**
322  * vmalloc_32_user - allocate zeroed virtually contiguous 32bit memory
323  *      @size:          allocation size
324  *
325  * The resulting memory area is 32bit addressable and zeroed so it can be
326  * mapped to userspace without leaking data.
327  *
328  * VM_USERMAP is set on the corresponding VMA so that subsequent calls to
329  * remap_vmalloc_range() are permissible.
330  */
331 void *vmalloc_32_user(unsigned long size)
332 {
333         /*
334          * We'll have to sort out the ZONE_DMA bits for 64-bit,
335          * but for now this can simply use vmalloc_user() directly.
336          */
337         return vmalloc_user(size);
338 }
339 EXPORT_SYMBOL(vmalloc_32_user);
340
341 void *vmap(struct page **pages, unsigned int count, unsigned long flags, pgprot_t prot)
342 {
343         BUG();
344         return NULL;
345 }
346 EXPORT_SYMBOL(vmap);
347
348 void vunmap(const void *addr)
349 {
350         BUG();
351 }
352 EXPORT_SYMBOL(vunmap);
353
354 void *vm_map_ram(struct page **pages, unsigned int count, int node, pgprot_t prot)
355 {
356         BUG();
357         return NULL;
358 }
359 EXPORT_SYMBOL(vm_map_ram);
360
361 void vm_unmap_ram(const void *mem, unsigned int count)
362 {
363         BUG();
364 }
365 EXPORT_SYMBOL(vm_unmap_ram);
366
367 void vm_unmap_aliases(void)
368 {
369 }
370 EXPORT_SYMBOL_GPL(vm_unmap_aliases);
371
372 /*
373  * Implement a stub for vmalloc_sync_[un]mapping() if the architecture
374  * chose not to have one.
375  */
376 void __weak vmalloc_sync_mappings(void)
377 {
378 }
379
380 void __weak vmalloc_sync_unmappings(void)
381 {
382 }
383
384 struct vm_struct *alloc_vm_area(size_t size, pte_t **ptes)
385 {
386         BUG();
387         return NULL;
388 }
389 EXPORT_SYMBOL_GPL(alloc_vm_area);
390
391 void free_vm_area(struct vm_struct *area)
392 {
393         BUG();
394 }
395 EXPORT_SYMBOL_GPL(free_vm_area);
396
397 int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
398                    struct page *page)
399 {
400         return -EINVAL;
401 }
402 EXPORT_SYMBOL(vm_insert_page);
403
404 int vm_map_pages(struct vm_area_struct *vma, struct page **pages,
405                         unsigned long num)
406 {
407         return -EINVAL;
408 }
409 EXPORT_SYMBOL(vm_map_pages);
410
411 int vm_map_pages_zero(struct vm_area_struct *vma, struct page **pages,
412                                 unsigned long num)
413 {
414         return -EINVAL;
415 }
416 EXPORT_SYMBOL(vm_map_pages_zero);
417
418 /*
419  *  sys_brk() for the most part doesn't need the global kernel
420  *  lock, except when an application is doing something nasty
421  *  like trying to un-brk an area that has already been mapped
422  *  to a regular file.  in this case, the unmapping will need
423  *  to invoke file system routines that need the global lock.
424  */
425 SYSCALL_DEFINE1(brk, unsigned long, brk)
426 {
427         struct mm_struct *mm = current->mm;
428
429         if (brk < mm->start_brk || brk > mm->context.end_brk)
430                 return mm->brk;
431
432         if (mm->brk == brk)
433                 return mm->brk;
434
435         /*
436          * Always allow shrinking brk
437          */
438         if (brk <= mm->brk) {
439                 mm->brk = brk;
440                 return brk;
441         }
442
443         /*
444          * Ok, looks good - let it rip.
445          */
446         flush_icache_range(mm->brk, brk);
447         return mm->brk = brk;
448 }
449
450 /*
451  * initialise the percpu counter for VM and region record slabs
452  */
453 void __init mmap_init(void)
454 {
455         int ret;
456
457         ret = percpu_counter_init(&vm_committed_as, 0, GFP_KERNEL);
458         VM_BUG_ON(ret);
459         vm_region_jar = KMEM_CACHE(vm_region, SLAB_PANIC|SLAB_ACCOUNT);
460 }
461
462 /*
463  * validate the region tree
464  * - the caller must hold the region lock
465  */
466 #ifdef CONFIG_DEBUG_NOMMU_REGIONS
467 static noinline void validate_nommu_regions(void)
468 {
469         struct vm_region *region, *last;
470         struct rb_node *p, *lastp;
471
472         lastp = rb_first(&nommu_region_tree);
473         if (!lastp)
474                 return;
475
476         last = rb_entry(lastp, struct vm_region, vm_rb);
477         BUG_ON(last->vm_end <= last->vm_start);
478         BUG_ON(last->vm_top < last->vm_end);
479
480         while ((p = rb_next(lastp))) {
481                 region = rb_entry(p, struct vm_region, vm_rb);
482                 last = rb_entry(lastp, struct vm_region, vm_rb);
483
484                 BUG_ON(region->vm_end <= region->vm_start);
485                 BUG_ON(region->vm_top < region->vm_end);
486                 BUG_ON(region->vm_start < last->vm_top);
487
488                 lastp = p;
489         }
490 }
491 #else
492 static void validate_nommu_regions(void)
493 {
494 }
495 #endif
496
497 /*
498  * add a region into the global tree
499  */
500 static void add_nommu_region(struct vm_region *region)
501 {
502         struct vm_region *pregion;
503         struct rb_node **p, *parent;
504
505         validate_nommu_regions();
506
507         parent = NULL;
508         p = &nommu_region_tree.rb_node;
509         while (*p) {
510                 parent = *p;
511                 pregion = rb_entry(parent, struct vm_region, vm_rb);
512                 if (region->vm_start < pregion->vm_start)
513                         p = &(*p)->rb_left;
514                 else if (region->vm_start > pregion->vm_start)
515                         p = &(*p)->rb_right;
516                 else if (pregion == region)
517                         return;
518                 else
519                         BUG();
520         }
521
522         rb_link_node(&region->vm_rb, parent, p);
523         rb_insert_color(&region->vm_rb, &nommu_region_tree);
524
525         validate_nommu_regions();
526 }
527
528 /*
529  * delete a region from the global tree
530  */
531 static void delete_nommu_region(struct vm_region *region)
532 {
533         BUG_ON(!nommu_region_tree.rb_node);
534
535         validate_nommu_regions();
536         rb_erase(&region->vm_rb, &nommu_region_tree);
537         validate_nommu_regions();
538 }
539
540 /*
541  * free a contiguous series of pages
542  */
543 static void free_page_series(unsigned long from, unsigned long to)
544 {
545         for (; from < to; from += PAGE_SIZE) {
546                 struct page *page = virt_to_page(from);
547
548                 atomic_long_dec(&mmap_pages_allocated);
549                 put_page(page);
550         }
551 }
552
553 /*
554  * release a reference to a region
555  * - the caller must hold the region semaphore for writing, which this releases
556  * - the region may not have been added to the tree yet, in which case vm_top
557  *   will equal vm_start
558  */
559 static void __put_nommu_region(struct vm_region *region)
560         __releases(nommu_region_sem)
561 {
562         BUG_ON(!nommu_region_tree.rb_node);
563
564         if (--region->vm_usage == 0) {
565                 if (region->vm_top > region->vm_start)
566                         delete_nommu_region(region);
567                 up_write(&nommu_region_sem);
568
569                 if (region->vm_file)
570                         fput(region->vm_file);
571
572                 /* IO memory and memory shared directly out of the pagecache
573                  * from ramfs/tmpfs mustn't be released here */
574                 if (region->vm_flags & VM_MAPPED_COPY)
575                         free_page_series(region->vm_start, region->vm_top);
576                 kmem_cache_free(vm_region_jar, region);
577         } else {
578                 up_write(&nommu_region_sem);
579         }
580 }
581
582 /*
583  * release a reference to a region
584  */
585 static void put_nommu_region(struct vm_region *region)
586 {
587         down_write(&nommu_region_sem);
588         __put_nommu_region(region);
589 }
590
591 /*
592  * add a VMA into a process's mm_struct in the appropriate place in the list
593  * and tree and add to the address space's page tree also if not an anonymous
594  * page
595  * - should be called with mm->mmap_sem held writelocked
596  */
597 static void add_vma_to_mm(struct mm_struct *mm, struct vm_area_struct *vma)
598 {
599         struct vm_area_struct *pvma, *prev;
600         struct address_space *mapping;
601         struct rb_node **p, *parent, *rb_prev;
602
603         BUG_ON(!vma->vm_region);
604
605         mm->map_count++;
606         vma->vm_mm = mm;
607
608         /* add the VMA to the mapping */
609         if (vma->vm_file) {
610                 mapping = vma->vm_file->f_mapping;
611
612                 i_mmap_lock_write(mapping);
613                 flush_dcache_mmap_lock(mapping);
614                 vma_interval_tree_insert(vma, &mapping->i_mmap);
615                 flush_dcache_mmap_unlock(mapping);
616                 i_mmap_unlock_write(mapping);
617         }
618
619         /* add the VMA to the tree */
620         parent = rb_prev = NULL;
621         p = &mm->mm_rb.rb_node;
622         while (*p) {
623                 parent = *p;
624                 pvma = rb_entry(parent, struct vm_area_struct, vm_rb);
625
626                 /* sort by: start addr, end addr, VMA struct addr in that order
627                  * (the latter is necessary as we may get identical VMAs) */
628                 if (vma->vm_start < pvma->vm_start)
629                         p = &(*p)->rb_left;
630                 else if (vma->vm_start > pvma->vm_start) {
631                         rb_prev = parent;
632                         p = &(*p)->rb_right;
633                 } else if (vma->vm_end < pvma->vm_end)
634                         p = &(*p)->rb_left;
635                 else if (vma->vm_end > pvma->vm_end) {
636                         rb_prev = parent;
637                         p = &(*p)->rb_right;
638                 } else if (vma < pvma)
639                         p = &(*p)->rb_left;
640                 else if (vma > pvma) {
641                         rb_prev = parent;
642                         p = &(*p)->rb_right;
643                 } else
644                         BUG();
645         }
646
647         rb_link_node(&vma->vm_rb, parent, p);
648         rb_insert_color(&vma->vm_rb, &mm->mm_rb);
649
650         /* add VMA to the VMA list also */
651         prev = NULL;
652         if (rb_prev)
653                 prev = rb_entry(rb_prev, struct vm_area_struct, vm_rb);
654
655         __vma_link_list(mm, vma, prev);
656 }
657
658 /*
659  * delete a VMA from its owning mm_struct and address space
660  */
661 static void delete_vma_from_mm(struct vm_area_struct *vma)
662 {
663         int i;
664         struct address_space *mapping;
665         struct mm_struct *mm = vma->vm_mm;
666         struct task_struct *curr = current;
667
668         mm->map_count--;
669         for (i = 0; i < VMACACHE_SIZE; i++) {
670                 /* if the vma is cached, invalidate the entire cache */
671                 if (curr->vmacache.vmas[i] == vma) {
672                         vmacache_invalidate(mm);
673                         break;
674                 }
675         }
676
677         /* remove the VMA from the mapping */
678         if (vma->vm_file) {
679                 mapping = vma->vm_file->f_mapping;
680
681                 i_mmap_lock_write(mapping);
682                 flush_dcache_mmap_lock(mapping);
683                 vma_interval_tree_remove(vma, &mapping->i_mmap);
684                 flush_dcache_mmap_unlock(mapping);
685                 i_mmap_unlock_write(mapping);
686         }
687
688         /* remove from the MM's tree and list */
689         rb_erase(&vma->vm_rb, &mm->mm_rb);
690
691         __vma_unlink_list(mm, vma);
692 }
693
694 /*
695  * destroy a VMA record
696  */
697 static void delete_vma(struct mm_struct *mm, struct vm_area_struct *vma)
698 {
699         if (vma->vm_ops && vma->vm_ops->close)
700                 vma->vm_ops->close(vma);
701         if (vma->vm_file)
702                 fput(vma->vm_file);
703         put_nommu_region(vma->vm_region);
704         vm_area_free(vma);
705 }
706
707 /*
708  * look up the first VMA in which addr resides, NULL if none
709  * - should be called with mm->mmap_sem at least held readlocked
710  */
711 struct vm_area_struct *find_vma(struct mm_struct *mm, unsigned long addr)
712 {
713         struct vm_area_struct *vma;
714
715         /* check the cache first */
716         vma = vmacache_find(mm, addr);
717         if (likely(vma))
718                 return vma;
719
720         /* trawl the list (there may be multiple mappings in which addr
721          * resides) */
722         for (vma = mm->mmap; vma; vma = vma->vm_next) {
723                 if (vma->vm_start > addr)
724                         return NULL;
725                 if (vma->vm_end > addr) {
726                         vmacache_update(addr, vma);
727                         return vma;
728                 }
729         }
730
731         return NULL;
732 }
733 EXPORT_SYMBOL(find_vma);
734
735 /*
736  * find a VMA
737  * - we don't extend stack VMAs under NOMMU conditions
738  */
739 struct vm_area_struct *find_extend_vma(struct mm_struct *mm, unsigned long addr)
740 {
741         return find_vma(mm, addr);
742 }
743
744 /*
745  * expand a stack to a given address
746  * - not supported under NOMMU conditions
747  */
748 int expand_stack(struct vm_area_struct *vma, unsigned long address)
749 {
750         return -ENOMEM;
751 }
752
753 /*
754  * look up the first VMA exactly that exactly matches addr
755  * - should be called with mm->mmap_sem at least held readlocked
756  */
757 static struct vm_area_struct *find_vma_exact(struct mm_struct *mm,
758                                              unsigned long addr,
759                                              unsigned long len)
760 {
761         struct vm_area_struct *vma;
762         unsigned long end = addr + len;
763
764         /* check the cache first */
765         vma = vmacache_find_exact(mm, addr, end);
766         if (vma)
767                 return vma;
768
769         /* trawl the list (there may be multiple mappings in which addr
770          * resides) */
771         for (vma = mm->mmap; vma; vma = vma->vm_next) {
772                 if (vma->vm_start < addr)
773                         continue;
774                 if (vma->vm_start > addr)
775                         return NULL;
776                 if (vma->vm_end == end) {
777                         vmacache_update(addr, vma);
778                         return vma;
779                 }
780         }
781
782         return NULL;
783 }
784
785 /*
786  * determine whether a mapping should be permitted and, if so, what sort of
787  * mapping we're capable of supporting
788  */
789 static int validate_mmap_request(struct file *file,
790                                  unsigned long addr,
791                                  unsigned long len,
792                                  unsigned long prot,
793                                  unsigned long flags,
794                                  unsigned long pgoff,
795                                  unsigned long *_capabilities)
796 {
797         unsigned long capabilities, rlen;
798         int ret;
799
800         /* do the simple checks first */
801         if (flags & MAP_FIXED)
802                 return -EINVAL;
803
804         if ((flags & MAP_TYPE) != MAP_PRIVATE &&
805             (flags & MAP_TYPE) != MAP_SHARED)
806                 return -EINVAL;
807
808         if (!len)
809                 return -EINVAL;
810
811         /* Careful about overflows.. */
812         rlen = PAGE_ALIGN(len);
813         if (!rlen || rlen > TASK_SIZE)
814                 return -ENOMEM;
815
816         /* offset overflow? */
817         if ((pgoff + (rlen >> PAGE_SHIFT)) < pgoff)
818                 return -EOVERFLOW;
819
820         if (file) {
821                 /* files must support mmap */
822                 if (!file->f_op->mmap)
823                         return -ENODEV;
824
825                 /* work out if what we've got could possibly be shared
826                  * - we support chardevs that provide their own "memory"
827                  * - we support files/blockdevs that are memory backed
828                  */
829                 if (file->f_op->mmap_capabilities) {
830                         capabilities = file->f_op->mmap_capabilities(file);
831                 } else {
832                         /* no explicit capabilities set, so assume some
833                          * defaults */
834                         switch (file_inode(file)->i_mode & S_IFMT) {
835                         case S_IFREG:
836                         case S_IFBLK:
837                                 capabilities = NOMMU_MAP_COPY;
838                                 break;
839
840                         case S_IFCHR:
841                                 capabilities =
842                                         NOMMU_MAP_DIRECT |
843                                         NOMMU_MAP_READ |
844                                         NOMMU_MAP_WRITE;
845                                 break;
846
847                         default:
848                                 return -EINVAL;
849                         }
850                 }
851
852                 /* eliminate any capabilities that we can't support on this
853                  * device */
854                 if (!file->f_op->get_unmapped_area)
855                         capabilities &= ~NOMMU_MAP_DIRECT;
856                 if (!(file->f_mode & FMODE_CAN_READ))
857                         capabilities &= ~NOMMU_MAP_COPY;
858
859                 /* The file shall have been opened with read permission. */
860                 if (!(file->f_mode & FMODE_READ))
861                         return -EACCES;
862
863                 if (flags & MAP_SHARED) {
864                         /* do checks for writing, appending and locking */
865                         if ((prot & PROT_WRITE) &&
866                             !(file->f_mode & FMODE_WRITE))
867                                 return -EACCES;
868
869                         if (IS_APPEND(file_inode(file)) &&
870                             (file->f_mode & FMODE_WRITE))
871                                 return -EACCES;
872
873                         if (locks_verify_locked(file))
874                                 return -EAGAIN;
875
876                         if (!(capabilities & NOMMU_MAP_DIRECT))
877                                 return -ENODEV;
878
879                         /* we mustn't privatise shared mappings */
880                         capabilities &= ~NOMMU_MAP_COPY;
881                 } else {
882                         /* we're going to read the file into private memory we
883                          * allocate */
884                         if (!(capabilities & NOMMU_MAP_COPY))
885                                 return -ENODEV;
886
887                         /* we don't permit a private writable mapping to be
888                          * shared with the backing device */
889                         if (prot & PROT_WRITE)
890                                 capabilities &= ~NOMMU_MAP_DIRECT;
891                 }
892
893                 if (capabilities & NOMMU_MAP_DIRECT) {
894                         if (((prot & PROT_READ)  && !(capabilities & NOMMU_MAP_READ))  ||
895                             ((prot & PROT_WRITE) && !(capabilities & NOMMU_MAP_WRITE)) ||
896                             ((prot & PROT_EXEC)  && !(capabilities & NOMMU_MAP_EXEC))
897                             ) {
898                                 capabilities &= ~NOMMU_MAP_DIRECT;
899                                 if (flags & MAP_SHARED) {
900                                         pr_warn("MAP_SHARED not completely supported on !MMU\n");
901                                         return -EINVAL;
902                                 }
903                         }
904                 }
905
906                 /* handle executable mappings and implied executable
907                  * mappings */
908                 if (path_noexec(&file->f_path)) {
909                         if (prot & PROT_EXEC)
910                                 return -EPERM;
911                 } else if ((prot & PROT_READ) && !(prot & PROT_EXEC)) {
912                         /* handle implication of PROT_EXEC by PROT_READ */
913                         if (current->personality & READ_IMPLIES_EXEC) {
914                                 if (capabilities & NOMMU_MAP_EXEC)
915                                         prot |= PROT_EXEC;
916                         }
917                 } else if ((prot & PROT_READ) &&
918                          (prot & PROT_EXEC) &&
919                          !(capabilities & NOMMU_MAP_EXEC)
920                          ) {
921                         /* backing file is not executable, try to copy */
922                         capabilities &= ~NOMMU_MAP_DIRECT;
923                 }
924         } else {
925                 /* anonymous mappings are always memory backed and can be
926                  * privately mapped
927                  */
928                 capabilities = NOMMU_MAP_COPY;
929
930                 /* handle PROT_EXEC implication by PROT_READ */
931                 if ((prot & PROT_READ) &&
932                     (current->personality & READ_IMPLIES_EXEC))
933                         prot |= PROT_EXEC;
934         }
935
936         /* allow the security API to have its say */
937         ret = security_mmap_addr(addr);
938         if (ret < 0)
939                 return ret;
940
941         /* looks okay */
942         *_capabilities = capabilities;
943         return 0;
944 }
945
946 /*
947  * we've determined that we can make the mapping, now translate what we
948  * now know into VMA flags
949  */
950 static unsigned long determine_vm_flags(struct file *file,
951                                         unsigned long prot,
952                                         unsigned long flags,
953                                         unsigned long capabilities)
954 {
955         unsigned long vm_flags;
956
957         vm_flags = calc_vm_prot_bits(prot, 0) | calc_vm_flag_bits(flags);
958         /* vm_flags |= mm->def_flags; */
959
960         if (!(capabilities & NOMMU_MAP_DIRECT)) {
961                 /* attempt to share read-only copies of mapped file chunks */
962                 vm_flags |= VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC;
963                 if (file && !(prot & PROT_WRITE))
964                         vm_flags |= VM_MAYSHARE;
965         } else {
966                 /* overlay a shareable mapping on the backing device or inode
967                  * if possible - used for chardevs, ramfs/tmpfs/shmfs and
968                  * romfs/cramfs */
969                 vm_flags |= VM_MAYSHARE | (capabilities & NOMMU_VMFLAGS);
970                 if (flags & MAP_SHARED)
971                         vm_flags |= VM_SHARED;
972         }
973
974         /* refuse to let anyone share private mappings with this process if
975          * it's being traced - otherwise breakpoints set in it may interfere
976          * with another untraced process
977          */
978         if ((flags & MAP_PRIVATE) && current->ptrace)
979                 vm_flags &= ~VM_MAYSHARE;
980
981         return vm_flags;
982 }
983
984 /*
985  * set up a shared mapping on a file (the driver or filesystem provides and
986  * pins the storage)
987  */
988 static int do_mmap_shared_file(struct vm_area_struct *vma)
989 {
990         int ret;
991
992         ret = call_mmap(vma->vm_file, vma);
993         if (ret == 0) {
994                 vma->vm_region->vm_top = vma->vm_region->vm_end;
995                 return 0;
996         }
997         if (ret != -ENOSYS)
998                 return ret;
999
1000         /* getting -ENOSYS indicates that direct mmap isn't possible (as
1001          * opposed to tried but failed) so we can only give a suitable error as
1002          * it's not possible to make a private copy if MAP_SHARED was given */
1003         return -ENODEV;
1004 }
1005
1006 /*
1007  * set up a private mapping or an anonymous shared mapping
1008  */
1009 static int do_mmap_private(struct vm_area_struct *vma,
1010                            struct vm_region *region,
1011                            unsigned long len,
1012                            unsigned long capabilities)
1013 {
1014         unsigned long total, point;
1015         void *base;
1016         int ret, order;
1017
1018         /* invoke the file's mapping function so that it can keep track of
1019          * shared mappings on devices or memory
1020          * - VM_MAYSHARE will be set if it may attempt to share
1021          */
1022         if (capabilities & NOMMU_MAP_DIRECT) {
1023                 ret = call_mmap(vma->vm_file, vma);
1024                 if (ret == 0) {
1025                         /* shouldn't return success if we're not sharing */
1026                         BUG_ON(!(vma->vm_flags & VM_MAYSHARE));
1027                         vma->vm_region->vm_top = vma->vm_region->vm_end;
1028                         return 0;
1029                 }
1030                 if (ret != -ENOSYS)
1031                         return ret;
1032
1033                 /* getting an ENOSYS error indicates that direct mmap isn't
1034                  * possible (as opposed to tried but failed) so we'll try to
1035                  * make a private copy of the data and map that instead */
1036         }
1037
1038
1039         /* allocate some memory to hold the mapping
1040          * - note that this may not return a page-aligned address if the object
1041          *   we're allocating is smaller than a page
1042          */
1043         order = get_order(len);
1044         total = 1 << order;
1045         point = len >> PAGE_SHIFT;
1046
1047         /* we don't want to allocate a power-of-2 sized page set */
1048         if (sysctl_nr_trim_pages && total - point >= sysctl_nr_trim_pages)
1049                 total = point;
1050
1051         base = alloc_pages_exact(total << PAGE_SHIFT, GFP_KERNEL);
1052         if (!base)
1053                 goto enomem;
1054
1055         atomic_long_add(total, &mmap_pages_allocated);
1056
1057         region->vm_flags = vma->vm_flags |= VM_MAPPED_COPY;
1058         region->vm_start = (unsigned long) base;
1059         region->vm_end   = region->vm_start + len;
1060         region->vm_top   = region->vm_start + (total << PAGE_SHIFT);
1061
1062         vma->vm_start = region->vm_start;
1063         vma->vm_end   = region->vm_start + len;
1064
1065         if (vma->vm_file) {
1066                 /* read the contents of a file into the copy */
1067                 loff_t fpos;
1068
1069                 fpos = vma->vm_pgoff;
1070                 fpos <<= PAGE_SHIFT;
1071
1072                 ret = kernel_read(vma->vm_file, base, len, &fpos);
1073                 if (ret < 0)
1074                         goto error_free;
1075
1076                 /* clear the last little bit */
1077                 if (ret < len)
1078                         memset(base + ret, 0, len - ret);
1079
1080         } else {
1081                 vma_set_anonymous(vma);
1082         }
1083
1084         return 0;
1085
1086 error_free:
1087         free_page_series(region->vm_start, region->vm_top);
1088         region->vm_start = vma->vm_start = 0;
1089         region->vm_end   = vma->vm_end = 0;
1090         region->vm_top   = 0;
1091         return ret;
1092
1093 enomem:
1094         pr_err("Allocation of length %lu from process %d (%s) failed\n",
1095                len, current->pid, current->comm);
1096         show_free_areas(0, NULL);
1097         return -ENOMEM;
1098 }
1099
1100 /*
1101  * handle mapping creation for uClinux
1102  */
1103 unsigned long do_mmap(struct file *file,
1104                         unsigned long addr,
1105                         unsigned long len,
1106                         unsigned long prot,
1107                         unsigned long flags,
1108                         vm_flags_t vm_flags,
1109                         unsigned long pgoff,
1110                         unsigned long *populate,
1111                         struct list_head *uf)
1112 {
1113         struct vm_area_struct *vma;
1114         struct vm_region *region;
1115         struct rb_node *rb;
1116         unsigned long capabilities, result;
1117         int ret;
1118
1119         *populate = 0;
1120
1121         /* decide whether we should attempt the mapping, and if so what sort of
1122          * mapping */
1123         ret = validate_mmap_request(file, addr, len, prot, flags, pgoff,
1124                                     &capabilities);
1125         if (ret < 0)
1126                 return ret;
1127
1128         /* we ignore the address hint */
1129         addr = 0;
1130         len = PAGE_ALIGN(len);
1131
1132         /* we've determined that we can make the mapping, now translate what we
1133          * now know into VMA flags */
1134         vm_flags |= determine_vm_flags(file, prot, flags, capabilities);
1135
1136         /* we're going to need to record the mapping */
1137         region = kmem_cache_zalloc(vm_region_jar, GFP_KERNEL);
1138         if (!region)
1139                 goto error_getting_region;
1140
1141         vma = vm_area_alloc(current->mm);
1142         if (!vma)
1143                 goto error_getting_vma;
1144
1145         region->vm_usage = 1;
1146         region->vm_flags = vm_flags;
1147         region->vm_pgoff = pgoff;
1148
1149         vma->vm_flags = vm_flags;
1150         vma->vm_pgoff = pgoff;
1151
1152         if (file) {
1153                 region->vm_file = get_file(file);
1154                 vma->vm_file = get_file(file);
1155         }
1156
1157         down_write(&nommu_region_sem);
1158
1159         /* if we want to share, we need to check for regions created by other
1160          * mmap() calls that overlap with our proposed mapping
1161          * - we can only share with a superset match on most regular files
1162          * - shared mappings on character devices and memory backed files are
1163          *   permitted to overlap inexactly as far as we are concerned for in
1164          *   these cases, sharing is handled in the driver or filesystem rather
1165          *   than here
1166          */
1167         if (vm_flags & VM_MAYSHARE) {
1168                 struct vm_region *pregion;
1169                 unsigned long pglen, rpglen, pgend, rpgend, start;
1170
1171                 pglen = (len + PAGE_SIZE - 1) >> PAGE_SHIFT;
1172                 pgend = pgoff + pglen;
1173
1174                 for (rb = rb_first(&nommu_region_tree); rb; rb = rb_next(rb)) {
1175                         pregion = rb_entry(rb, struct vm_region, vm_rb);
1176
1177                         if (!(pregion->vm_flags & VM_MAYSHARE))
1178                                 continue;
1179
1180                         /* search for overlapping mappings on the same file */
1181                         if (file_inode(pregion->vm_file) !=
1182                             file_inode(file))
1183                                 continue;
1184
1185                         if (pregion->vm_pgoff >= pgend)
1186                                 continue;
1187
1188                         rpglen = pregion->vm_end - pregion->vm_start;
1189                         rpglen = (rpglen + PAGE_SIZE - 1) >> PAGE_SHIFT;
1190                         rpgend = pregion->vm_pgoff + rpglen;
1191                         if (pgoff >= rpgend)
1192                                 continue;
1193
1194                         /* handle inexactly overlapping matches between
1195                          * mappings */
1196                         if ((pregion->vm_pgoff != pgoff || rpglen != pglen) &&
1197                             !(pgoff >= pregion->vm_pgoff && pgend <= rpgend)) {
1198                                 /* new mapping is not a subset of the region */
1199                                 if (!(capabilities & NOMMU_MAP_DIRECT))
1200                                         goto sharing_violation;
1201                                 continue;
1202                         }
1203
1204                         /* we've found a region we can share */
1205                         pregion->vm_usage++;
1206                         vma->vm_region = pregion;
1207                         start = pregion->vm_start;
1208                         start += (pgoff - pregion->vm_pgoff) << PAGE_SHIFT;
1209                         vma->vm_start = start;
1210                         vma->vm_end = start + len;
1211
1212                         if (pregion->vm_flags & VM_MAPPED_COPY)
1213                                 vma->vm_flags |= VM_MAPPED_COPY;
1214                         else {
1215                                 ret = do_mmap_shared_file(vma);
1216                                 if (ret < 0) {
1217                                         vma->vm_region = NULL;
1218                                         vma->vm_start = 0;
1219                                         vma->vm_end = 0;
1220                                         pregion->vm_usage--;
1221                                         pregion = NULL;
1222                                         goto error_just_free;
1223                                 }
1224                         }
1225                         fput(region->vm_file);
1226                         kmem_cache_free(vm_region_jar, region);
1227                         region = pregion;
1228                         result = start;
1229                         goto share;
1230                 }
1231
1232                 /* obtain the address at which to make a shared mapping
1233                  * - this is the hook for quasi-memory character devices to
1234                  *   tell us the location of a shared mapping
1235                  */
1236                 if (capabilities & NOMMU_MAP_DIRECT) {
1237                         addr = file->f_op->get_unmapped_area(file, addr, len,
1238                                                              pgoff, flags);
1239                         if (IS_ERR_VALUE(addr)) {
1240                                 ret = addr;
1241                                 if (ret != -ENOSYS)
1242                                         goto error_just_free;
1243
1244                                 /* the driver refused to tell us where to site
1245                                  * the mapping so we'll have to attempt to copy
1246                                  * it */
1247                                 ret = -ENODEV;
1248                                 if (!(capabilities & NOMMU_MAP_COPY))
1249                                         goto error_just_free;
1250
1251                                 capabilities &= ~NOMMU_MAP_DIRECT;
1252                         } else {
1253                                 vma->vm_start = region->vm_start = addr;
1254                                 vma->vm_end = region->vm_end = addr + len;
1255                         }
1256                 }
1257         }
1258
1259         vma->vm_region = region;
1260
1261         /* set up the mapping
1262          * - the region is filled in if NOMMU_MAP_DIRECT is still set
1263          */
1264         if (file && vma->vm_flags & VM_SHARED)
1265                 ret = do_mmap_shared_file(vma);
1266         else
1267                 ret = do_mmap_private(vma, region, len, capabilities);
1268         if (ret < 0)
1269                 goto error_just_free;
1270         add_nommu_region(region);
1271
1272         /* clear anonymous mappings that don't ask for uninitialized data */
1273         if (!vma->vm_file &&
1274             (!IS_ENABLED(CONFIG_MMAP_ALLOW_UNINITIALIZED) ||
1275              !(flags & MAP_UNINITIALIZED)))
1276                 memset((void *)region->vm_start, 0,
1277                        region->vm_end - region->vm_start);
1278
1279         /* okay... we have a mapping; now we have to register it */
1280         result = vma->vm_start;
1281
1282         current->mm->total_vm += len >> PAGE_SHIFT;
1283
1284 share:
1285         add_vma_to_mm(current->mm, vma);
1286
1287         /* we flush the region from the icache only when the first executable
1288          * mapping of it is made  */
1289         if (vma->vm_flags & VM_EXEC && !region->vm_icache_flushed) {
1290                 flush_icache_range(region->vm_start, region->vm_end);
1291                 region->vm_icache_flushed = true;
1292         }
1293
1294         up_write(&nommu_region_sem);
1295
1296         return result;
1297
1298 error_just_free:
1299         up_write(&nommu_region_sem);
1300 error:
1301         if (region->vm_file)
1302                 fput(region->vm_file);
1303         kmem_cache_free(vm_region_jar, region);
1304         if (vma->vm_file)
1305                 fput(vma->vm_file);
1306         vm_area_free(vma);
1307         return ret;
1308
1309 sharing_violation:
1310         up_write(&nommu_region_sem);
1311         pr_warn("Attempt to share mismatched mappings\n");
1312         ret = -EINVAL;
1313         goto error;
1314
1315 error_getting_vma:
1316         kmem_cache_free(vm_region_jar, region);
1317         pr_warn("Allocation of vma for %lu byte allocation from process %d failed\n",
1318                         len, current->pid);
1319         show_free_areas(0, NULL);
1320         return -ENOMEM;
1321
1322 error_getting_region:
1323         pr_warn("Allocation of vm region for %lu byte allocation from process %d failed\n",
1324                         len, current->pid);
1325         show_free_areas(0, NULL);
1326         return -ENOMEM;
1327 }
1328
1329 unsigned long ksys_mmap_pgoff(unsigned long addr, unsigned long len,
1330                               unsigned long prot, unsigned long flags,
1331                               unsigned long fd, unsigned long pgoff)
1332 {
1333         struct file *file = NULL;
1334         unsigned long retval = -EBADF;
1335
1336         audit_mmap_fd(fd, flags);
1337         if (!(flags & MAP_ANONYMOUS)) {
1338                 file = fget(fd);
1339                 if (!file)
1340                         goto out;
1341         }
1342
1343         flags &= ~(MAP_EXECUTABLE | MAP_DENYWRITE);
1344
1345         retval = vm_mmap_pgoff(file, addr, len, prot, flags, pgoff);
1346
1347         if (file)
1348                 fput(file);
1349 out:
1350         return retval;
1351 }
1352
1353 SYSCALL_DEFINE6(mmap_pgoff, unsigned long, addr, unsigned long, len,
1354                 unsigned long, prot, unsigned long, flags,
1355                 unsigned long, fd, unsigned long, pgoff)
1356 {
1357         return ksys_mmap_pgoff(addr, len, prot, flags, fd, pgoff);
1358 }
1359
1360 #ifdef __ARCH_WANT_SYS_OLD_MMAP
1361 struct mmap_arg_struct {
1362         unsigned long addr;
1363         unsigned long len;
1364         unsigned long prot;
1365         unsigned long flags;
1366         unsigned long fd;
1367         unsigned long offset;
1368 };
1369
1370 SYSCALL_DEFINE1(old_mmap, struct mmap_arg_struct __user *, arg)
1371 {
1372         struct mmap_arg_struct a;
1373
1374         if (copy_from_user(&a, arg, sizeof(a)))
1375                 return -EFAULT;
1376         if (offset_in_page(a.offset))
1377                 return -EINVAL;
1378
1379         return ksys_mmap_pgoff(a.addr, a.len, a.prot, a.flags, a.fd,
1380                                a.offset >> PAGE_SHIFT);
1381 }
1382 #endif /* __ARCH_WANT_SYS_OLD_MMAP */
1383
1384 /*
1385  * split a vma into two pieces at address 'addr', a new vma is allocated either
1386  * for the first part or the tail.
1387  */
1388 int split_vma(struct mm_struct *mm, struct vm_area_struct *vma,
1389               unsigned long addr, int new_below)
1390 {
1391         struct vm_area_struct *new;
1392         struct vm_region *region;
1393         unsigned long npages;
1394
1395         /* we're only permitted to split anonymous regions (these should have
1396          * only a single usage on the region) */
1397         if (vma->vm_file)
1398                 return -ENOMEM;
1399
1400         if (mm->map_count >= sysctl_max_map_count)
1401                 return -ENOMEM;
1402
1403         region = kmem_cache_alloc(vm_region_jar, GFP_KERNEL);
1404         if (!region)
1405                 return -ENOMEM;
1406
1407         new = vm_area_dup(vma);
1408         if (!new) {
1409                 kmem_cache_free(vm_region_jar, region);
1410                 return -ENOMEM;
1411         }
1412
1413         /* most fields are the same, copy all, and then fixup */
1414         *region = *vma->vm_region;
1415         new->vm_region = region;
1416
1417         npages = (addr - vma->vm_start) >> PAGE_SHIFT;
1418
1419         if (new_below) {
1420                 region->vm_top = region->vm_end = new->vm_end = addr;
1421         } else {
1422                 region->vm_start = new->vm_start = addr;
1423                 region->vm_pgoff = new->vm_pgoff += npages;
1424         }
1425
1426         if (new->vm_ops && new->vm_ops->open)
1427                 new->vm_ops->open(new);
1428
1429         delete_vma_from_mm(vma);
1430         down_write(&nommu_region_sem);
1431         delete_nommu_region(vma->vm_region);
1432         if (new_below) {
1433                 vma->vm_region->vm_start = vma->vm_start = addr;
1434                 vma->vm_region->vm_pgoff = vma->vm_pgoff += npages;
1435         } else {
1436                 vma->vm_region->vm_end = vma->vm_end = addr;
1437                 vma->vm_region->vm_top = addr;
1438         }
1439         add_nommu_region(vma->vm_region);
1440         add_nommu_region(new->vm_region);
1441         up_write(&nommu_region_sem);
1442         add_vma_to_mm(mm, vma);
1443         add_vma_to_mm(mm, new);
1444         return 0;
1445 }
1446
1447 /*
1448  * shrink a VMA by removing the specified chunk from either the beginning or
1449  * the end
1450  */
1451 static int shrink_vma(struct mm_struct *mm,
1452                       struct vm_area_struct *vma,
1453                       unsigned long from, unsigned long to)
1454 {
1455         struct vm_region *region;
1456
1457         /* adjust the VMA's pointers, which may reposition it in the MM's tree
1458          * and list */
1459         delete_vma_from_mm(vma);
1460         if (from > vma->vm_start)
1461                 vma->vm_end = from;
1462         else
1463                 vma->vm_start = to;
1464         add_vma_to_mm(mm, vma);
1465
1466         /* cut the backing region down to size */
1467         region = vma->vm_region;
1468         BUG_ON(region->vm_usage != 1);
1469
1470         down_write(&nommu_region_sem);
1471         delete_nommu_region(region);
1472         if (from > region->vm_start) {
1473                 to = region->vm_top;
1474                 region->vm_top = region->vm_end = from;
1475         } else {
1476                 region->vm_start = to;
1477         }
1478         add_nommu_region(region);
1479         up_write(&nommu_region_sem);
1480
1481         free_page_series(from, to);
1482         return 0;
1483 }
1484
1485 /*
1486  * release a mapping
1487  * - under NOMMU conditions the chunk to be unmapped must be backed by a single
1488  *   VMA, though it need not cover the whole VMA
1489  */
1490 int do_munmap(struct mm_struct *mm, unsigned long start, size_t len, struct list_head *uf)
1491 {
1492         struct vm_area_struct *vma;
1493         unsigned long end;
1494         int ret;
1495
1496         len = PAGE_ALIGN(len);
1497         if (len == 0)
1498                 return -EINVAL;
1499
1500         end = start + len;
1501
1502         /* find the first potentially overlapping VMA */
1503         vma = find_vma(mm, start);
1504         if (!vma) {
1505                 static int limit;
1506                 if (limit < 5) {
1507                         pr_warn("munmap of memory not mmapped by process %d (%s): 0x%lx-0x%lx\n",
1508                                         current->pid, current->comm,
1509                                         start, start + len - 1);
1510                         limit++;
1511                 }
1512                 return -EINVAL;
1513         }
1514
1515         /* we're allowed to split an anonymous VMA but not a file-backed one */
1516         if (vma->vm_file) {
1517                 do {
1518                         if (start > vma->vm_start)
1519                                 return -EINVAL;
1520                         if (end == vma->vm_end)
1521                                 goto erase_whole_vma;
1522                         vma = vma->vm_next;
1523                 } while (vma);
1524                 return -EINVAL;
1525         } else {
1526                 /* the chunk must be a subset of the VMA found */
1527                 if (start == vma->vm_start && end == vma->vm_end)
1528                         goto erase_whole_vma;
1529                 if (start < vma->vm_start || end > vma->vm_end)
1530                         return -EINVAL;
1531                 if (offset_in_page(start))
1532                         return -EINVAL;
1533                 if (end != vma->vm_end && offset_in_page(end))
1534                         return -EINVAL;
1535                 if (start != vma->vm_start && end != vma->vm_end) {
1536                         ret = split_vma(mm, vma, start, 1);
1537                         if (ret < 0)
1538                                 return ret;
1539                 }
1540                 return shrink_vma(mm, vma, start, end);
1541         }
1542
1543 erase_whole_vma:
1544         delete_vma_from_mm(vma);
1545         delete_vma(mm, vma);
1546         return 0;
1547 }
1548 EXPORT_SYMBOL(do_munmap);
1549
1550 int vm_munmap(unsigned long addr, size_t len)
1551 {
1552         struct mm_struct *mm = current->mm;
1553         int ret;
1554
1555         down_write(&mm->mmap_sem);
1556         ret = do_munmap(mm, addr, len, NULL);
1557         up_write(&mm->mmap_sem);
1558         return ret;
1559 }
1560 EXPORT_SYMBOL(vm_munmap);
1561
1562 SYSCALL_DEFINE2(munmap, unsigned long, addr, size_t, len)
1563 {
1564         return vm_munmap(addr, len);
1565 }
1566
1567 /*
1568  * release all the mappings made in a process's VM space
1569  */
1570 void exit_mmap(struct mm_struct *mm)
1571 {
1572         struct vm_area_struct *vma;
1573
1574         if (!mm)
1575                 return;
1576
1577         mm->total_vm = 0;
1578
1579         while ((vma = mm->mmap)) {
1580                 mm->mmap = vma->vm_next;
1581                 delete_vma_from_mm(vma);
1582                 delete_vma(mm, vma);
1583                 cond_resched();
1584         }
1585 }
1586
1587 int vm_brk(unsigned long addr, unsigned long len)
1588 {
1589         return -ENOMEM;
1590 }
1591
1592 /*
1593  * expand (or shrink) an existing mapping, potentially moving it at the same
1594  * time (controlled by the MREMAP_MAYMOVE flag and available VM space)
1595  *
1596  * under NOMMU conditions, we only permit changing a mapping's size, and only
1597  * as long as it stays within the region allocated by do_mmap_private() and the
1598  * block is not shareable
1599  *
1600  * MREMAP_FIXED is not supported under NOMMU conditions
1601  */
1602 static unsigned long do_mremap(unsigned long addr,
1603                         unsigned long old_len, unsigned long new_len,
1604                         unsigned long flags, unsigned long new_addr)
1605 {
1606         struct vm_area_struct *vma;
1607
1608         /* insanity checks first */
1609         old_len = PAGE_ALIGN(old_len);
1610         new_len = PAGE_ALIGN(new_len);
1611         if (old_len == 0 || new_len == 0)
1612                 return (unsigned long) -EINVAL;
1613
1614         if (offset_in_page(addr))
1615                 return -EINVAL;
1616
1617         if (flags & MREMAP_FIXED && new_addr != addr)
1618                 return (unsigned long) -EINVAL;
1619
1620         vma = find_vma_exact(current->mm, addr, old_len);
1621         if (!vma)
1622                 return (unsigned long) -EINVAL;
1623
1624         if (vma->vm_end != vma->vm_start + old_len)
1625                 return (unsigned long) -EFAULT;
1626
1627         if (vma->vm_flags & VM_MAYSHARE)
1628                 return (unsigned long) -EPERM;
1629
1630         if (new_len > vma->vm_region->vm_end - vma->vm_region->vm_start)
1631                 return (unsigned long) -ENOMEM;
1632
1633         /* all checks complete - do it */
1634         vma->vm_end = vma->vm_start + new_len;
1635         return vma->vm_start;
1636 }
1637
1638 SYSCALL_DEFINE5(mremap, unsigned long, addr, unsigned long, old_len,
1639                 unsigned long, new_len, unsigned long, flags,
1640                 unsigned long, new_addr)
1641 {
1642         unsigned long ret;
1643
1644         down_write(&current->mm->mmap_sem);
1645         ret = do_mremap(addr, old_len, new_len, flags, new_addr);
1646         up_write(&current->mm->mmap_sem);
1647         return ret;
1648 }
1649
1650 struct page *follow_page(struct vm_area_struct *vma, unsigned long address,
1651                          unsigned int foll_flags)
1652 {
1653         return NULL;
1654 }
1655
1656 int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
1657                 unsigned long pfn, unsigned long size, pgprot_t prot)
1658 {
1659         if (addr != (pfn << PAGE_SHIFT))
1660                 return -EINVAL;
1661
1662         vma->vm_flags |= VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP;
1663         return 0;
1664 }
1665 EXPORT_SYMBOL(remap_pfn_range);
1666
1667 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len)
1668 {
1669         unsigned long pfn = start >> PAGE_SHIFT;
1670         unsigned long vm_len = vma->vm_end - vma->vm_start;
1671
1672         pfn += vma->vm_pgoff;
1673         return io_remap_pfn_range(vma, vma->vm_start, pfn, vm_len, vma->vm_page_prot);
1674 }
1675 EXPORT_SYMBOL(vm_iomap_memory);
1676
1677 int remap_vmalloc_range(struct vm_area_struct *vma, void *addr,
1678                         unsigned long pgoff)
1679 {
1680         unsigned int size = vma->vm_end - vma->vm_start;
1681
1682         if (!(vma->vm_flags & VM_USERMAP))
1683                 return -EINVAL;
1684
1685         vma->vm_start = (unsigned long)(addr + (pgoff << PAGE_SHIFT));
1686         vma->vm_end = vma->vm_start + size;
1687
1688         return 0;
1689 }
1690 EXPORT_SYMBOL(remap_vmalloc_range);
1691
1692 unsigned long arch_get_unmapped_area(struct file *file, unsigned long addr,
1693         unsigned long len, unsigned long pgoff, unsigned long flags)
1694 {
1695         return -ENOMEM;
1696 }
1697
1698 vm_fault_t filemap_fault(struct vm_fault *vmf)
1699 {
1700         BUG();
1701         return 0;
1702 }
1703 EXPORT_SYMBOL(filemap_fault);
1704
1705 void filemap_map_pages(struct vm_fault *vmf,
1706                 pgoff_t start_pgoff, pgoff_t end_pgoff)
1707 {
1708         BUG();
1709 }
1710 EXPORT_SYMBOL(filemap_map_pages);
1711
1712 int __access_remote_vm(struct task_struct *tsk, struct mm_struct *mm,
1713                 unsigned long addr, void *buf, int len, unsigned int gup_flags)
1714 {
1715         struct vm_area_struct *vma;
1716         int write = gup_flags & FOLL_WRITE;
1717
1718         if (down_read_killable(&mm->mmap_sem))
1719                 return 0;
1720
1721         /* the access must start within one of the target process's mappings */
1722         vma = find_vma(mm, addr);
1723         if (vma) {
1724                 /* don't overrun this mapping */
1725                 if (addr + len >= vma->vm_end)
1726                         len = vma->vm_end - addr;
1727
1728                 /* only read or write mappings where it is permitted */
1729                 if (write && vma->vm_flags & VM_MAYWRITE)
1730                         copy_to_user_page(vma, NULL, addr,
1731                                          (void *) addr, buf, len);
1732                 else if (!write && vma->vm_flags & VM_MAYREAD)
1733                         copy_from_user_page(vma, NULL, addr,
1734                                             buf, (void *) addr, len);
1735                 else
1736                         len = 0;
1737         } else {
1738                 len = 0;
1739         }
1740
1741         up_read(&mm->mmap_sem);
1742
1743         return len;
1744 }
1745
1746 /**
1747  * access_remote_vm - access another process' address space
1748  * @mm:         the mm_struct of the target address space
1749  * @addr:       start address to access
1750  * @buf:        source or destination buffer
1751  * @len:        number of bytes to transfer
1752  * @gup_flags:  flags modifying lookup behaviour
1753  *
1754  * The caller must hold a reference on @mm.
1755  */
1756 int access_remote_vm(struct mm_struct *mm, unsigned long addr,
1757                 void *buf, int len, unsigned int gup_flags)
1758 {
1759         return __access_remote_vm(NULL, mm, addr, buf, len, gup_flags);
1760 }
1761
1762 /*
1763  * Access another process' address space.
1764  * - source/target buffer must be kernel space
1765  */
1766 int access_process_vm(struct task_struct *tsk, unsigned long addr, void *buf, int len,
1767                 unsigned int gup_flags)
1768 {
1769         struct mm_struct *mm;
1770
1771         if (addr + len < addr)
1772                 return 0;
1773
1774         mm = get_task_mm(tsk);
1775         if (!mm)
1776                 return 0;
1777
1778         len = __access_remote_vm(tsk, mm, addr, buf, len, gup_flags);
1779
1780         mmput(mm);
1781         return len;
1782 }
1783 EXPORT_SYMBOL_GPL(access_process_vm);
1784
1785 /**
1786  * nommu_shrink_inode_mappings - Shrink the shared mappings on an inode
1787  * @inode: The inode to check
1788  * @size: The current filesize of the inode
1789  * @newsize: The proposed filesize of the inode
1790  *
1791  * Check the shared mappings on an inode on behalf of a shrinking truncate to
1792  * make sure that that any outstanding VMAs aren't broken and then shrink the
1793  * vm_regions that extend that beyond so that do_mmap_pgoff() doesn't
1794  * automatically grant mappings that are too large.
1795  */
1796 int nommu_shrink_inode_mappings(struct inode *inode, size_t size,
1797                                 size_t newsize)
1798 {
1799         struct vm_area_struct *vma;
1800         struct vm_region *region;
1801         pgoff_t low, high;
1802         size_t r_size, r_top;
1803
1804         low = newsize >> PAGE_SHIFT;
1805         high = (size + PAGE_SIZE - 1) >> PAGE_SHIFT;
1806
1807         down_write(&nommu_region_sem);
1808         i_mmap_lock_read(inode->i_mapping);
1809
1810         /* search for VMAs that fall within the dead zone */
1811         vma_interval_tree_foreach(vma, &inode->i_mapping->i_mmap, low, high) {
1812                 /* found one - only interested if it's shared out of the page
1813                  * cache */
1814                 if (vma->vm_flags & VM_SHARED) {
1815                         i_mmap_unlock_read(inode->i_mapping);
1816                         up_write(&nommu_region_sem);
1817                         return -ETXTBSY; /* not quite true, but near enough */
1818                 }
1819         }
1820
1821         /* reduce any regions that overlap the dead zone - if in existence,
1822          * these will be pointed to by VMAs that don't overlap the dead zone
1823          *
1824          * we don't check for any regions that start beyond the EOF as there
1825          * shouldn't be any
1826          */
1827         vma_interval_tree_foreach(vma, &inode->i_mapping->i_mmap, 0, ULONG_MAX) {
1828                 if (!(vma->vm_flags & VM_SHARED))
1829                         continue;
1830
1831                 region = vma->vm_region;
1832                 r_size = region->vm_top - region->vm_start;
1833                 r_top = (region->vm_pgoff << PAGE_SHIFT) + r_size;
1834
1835                 if (r_top > newsize) {
1836                         region->vm_top -= r_top - newsize;
1837                         if (region->vm_end > region->vm_top)
1838                                 region->vm_end = region->vm_top;
1839                 }
1840         }
1841
1842         i_mmap_unlock_read(inode->i_mapping);
1843         up_write(&nommu_region_sem);
1844         return 0;
1845 }
1846
1847 /*
1848  * Initialise sysctl_user_reserve_kbytes.
1849  *
1850  * This is intended to prevent a user from starting a single memory hogging
1851  * process, such that they cannot recover (kill the hog) in OVERCOMMIT_NEVER
1852  * mode.
1853  *
1854  * The default value is min(3% of free memory, 128MB)
1855  * 128MB is enough to recover with sshd/login, bash, and top/kill.
1856  */
1857 static int __meminit init_user_reserve(void)
1858 {
1859         unsigned long free_kbytes;
1860
1861         free_kbytes = global_zone_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
1862
1863         sysctl_user_reserve_kbytes = min(free_kbytes / 32, 1UL << 17);
1864         return 0;
1865 }
1866 subsys_initcall(init_user_reserve);
1867
1868 /*
1869  * Initialise sysctl_admin_reserve_kbytes.
1870  *
1871  * The purpose of sysctl_admin_reserve_kbytes is to allow the sys admin
1872  * to log in and kill a memory hogging process.
1873  *
1874  * Systems with more than 256MB will reserve 8MB, enough to recover
1875  * with sshd, bash, and top in OVERCOMMIT_GUESS. Smaller systems will
1876  * only reserve 3% of free pages by default.
1877  */
1878 static int __meminit init_admin_reserve(void)
1879 {
1880         unsigned long free_kbytes;
1881
1882         free_kbytes = global_zone_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
1883
1884         sysctl_admin_reserve_kbytes = min(free_kbytes / 32, 1UL << 13);
1885         return 0;
1886 }
1887 subsys_initcall(init_admin_reserve);