1 // SPDX-License-Identifier: GPL-2.0
5 * (C) Copyright 1996 Linus Torvalds
7 * Address space accounting code <alan@lxorguk.ukuu.org.uk>
8 * (C) Copyright 2002 Red Hat Inc, All Rights Reserved
12 #include <linux/hugetlb.h>
13 #include <linux/shm.h>
14 #include <linux/ksm.h>
15 #include <linux/mman.h>
16 #include <linux/swap.h>
17 #include <linux/capability.h>
19 #include <linux/swapops.h>
20 #include <linux/highmem.h>
21 #include <linux/security.h>
22 #include <linux/syscalls.h>
23 #include <linux/mmu_notifier.h>
24 #include <linux/uaccess.h>
25 #include <linux/userfaultfd_k.h>
27 #include <asm/cacheflush.h>
29 #include <asm/pgalloc.h>
33 static pud_t *get_old_pud(struct mm_struct *mm, unsigned long addr)
39 pgd = pgd_offset(mm, addr);
40 if (pgd_none_or_clear_bad(pgd))
43 p4d = p4d_offset(pgd, addr);
44 if (p4d_none_or_clear_bad(p4d))
47 pud = pud_offset(p4d, addr);
48 if (pud_none_or_clear_bad(pud))
54 static pmd_t *get_old_pmd(struct mm_struct *mm, unsigned long addr)
59 pud = get_old_pud(mm, addr);
63 pmd = pmd_offset(pud, addr);
70 static pud_t *alloc_new_pud(struct mm_struct *mm, struct vm_area_struct *vma,
76 pgd = pgd_offset(mm, addr);
77 p4d = p4d_alloc(mm, pgd, addr);
81 return pud_alloc(mm, p4d, addr);
84 static pmd_t *alloc_new_pmd(struct mm_struct *mm, struct vm_area_struct *vma,
90 pud = alloc_new_pud(mm, vma, addr);
94 pmd = pmd_alloc(mm, pud, addr);
98 VM_BUG_ON(pmd_trans_huge(*pmd));
103 static void take_rmap_locks(struct vm_area_struct *vma)
106 i_mmap_lock_write(vma->vm_file->f_mapping);
108 anon_vma_lock_write(vma->anon_vma);
111 static void drop_rmap_locks(struct vm_area_struct *vma)
114 anon_vma_unlock_write(vma->anon_vma);
116 i_mmap_unlock_write(vma->vm_file->f_mapping);
119 static pte_t move_soft_dirty_pte(pte_t pte)
122 * Set soft dirty bit so we can notice
123 * in userspace the ptes were moved.
125 #ifdef CONFIG_MEM_SOFT_DIRTY
126 if (pte_present(pte))
127 pte = pte_mksoft_dirty(pte);
128 else if (is_swap_pte(pte))
129 pte = pte_swp_mksoft_dirty(pte);
134 static void move_ptes(struct vm_area_struct *vma, pmd_t *old_pmd,
135 unsigned long old_addr, unsigned long old_end,
136 struct vm_area_struct *new_vma, pmd_t *new_pmd,
137 unsigned long new_addr, bool need_rmap_locks)
139 struct mm_struct *mm = vma->vm_mm;
140 pte_t *old_pte, *new_pte, pte;
141 spinlock_t *old_ptl, *new_ptl;
142 bool force_flush = false;
143 unsigned long len = old_end - old_addr;
146 * When need_rmap_locks is true, we take the i_mmap_rwsem and anon_vma
147 * locks to ensure that rmap will always observe either the old or the
148 * new ptes. This is the easiest way to avoid races with
149 * truncate_pagecache(), page migration, etc...
151 * When need_rmap_locks is false, we use other ways to avoid
154 * - During exec() shift_arg_pages(), we use a specially tagged vma
155 * which rmap call sites look for using vma_is_temporary_stack().
157 * - During mremap(), new_vma is often known to be placed after vma
158 * in rmap traversal order. This ensures rmap will always observe
159 * either the old pte, or the new pte, or both (the page table locks
160 * serialize access to individual ptes, but only rmap traversal
161 * order guarantees that we won't miss both the old and new ptes).
164 take_rmap_locks(vma);
167 * We don't have to worry about the ordering of src and dst
168 * pte locks because exclusive mmap_lock prevents deadlock.
170 old_pte = pte_offset_map_lock(mm, old_pmd, old_addr, &old_ptl);
171 new_pte = pte_offset_map(new_pmd, new_addr);
172 new_ptl = pte_lockptr(mm, new_pmd);
173 if (new_ptl != old_ptl)
174 spin_lock_nested(new_ptl, SINGLE_DEPTH_NESTING);
175 flush_tlb_batched_pending(vma->vm_mm);
176 arch_enter_lazy_mmu_mode();
178 for (; old_addr < old_end; old_pte++, old_addr += PAGE_SIZE,
179 new_pte++, new_addr += PAGE_SIZE) {
180 if (pte_none(*old_pte))
183 pte = ptep_get_and_clear(mm, old_addr, old_pte);
185 * If we are remapping a valid PTE, make sure
186 * to flush TLB before we drop the PTL for the
189 * NOTE! Both old and new PTL matter: the old one
190 * for racing with page_mkclean(), the new one to
191 * make sure the physical page stays valid until
192 * the TLB entry for the old mapping has been
195 if (pte_present(pte))
197 pte = move_pte(pte, new_vma->vm_page_prot, old_addr, new_addr);
198 pte = move_soft_dirty_pte(pte);
199 set_pte_at(mm, new_addr, new_pte, pte);
202 arch_leave_lazy_mmu_mode();
204 flush_tlb_range(vma, old_end - len, old_end);
205 if (new_ptl != old_ptl)
206 spin_unlock(new_ptl);
207 pte_unmap(new_pte - 1);
208 pte_unmap_unlock(old_pte - 1, old_ptl);
210 drop_rmap_locks(vma);
213 #ifndef arch_supports_page_table_move
214 #define arch_supports_page_table_move arch_supports_page_table_move
215 static inline bool arch_supports_page_table_move(void)
217 return IS_ENABLED(CONFIG_HAVE_MOVE_PMD) ||
218 IS_ENABLED(CONFIG_HAVE_MOVE_PUD);
222 #ifdef CONFIG_HAVE_MOVE_PMD
223 static bool move_normal_pmd(struct vm_area_struct *vma, unsigned long old_addr,
224 unsigned long new_addr, pmd_t *old_pmd, pmd_t *new_pmd)
226 spinlock_t *old_ptl, *new_ptl;
227 struct mm_struct *mm = vma->vm_mm;
230 if (!arch_supports_page_table_move())
233 * The destination pmd shouldn't be established, free_pgtables()
234 * should have released it.
236 * However, there's a case during execve() where we use mremap
237 * to move the initial stack, and in that case the target area
238 * may overlap the source area (always moving down).
240 * If everything is PMD-aligned, that works fine, as moving
241 * each pmd down will clear the source pmd. But if we first
242 * have a few 4kB-only pages that get moved down, and then
243 * hit the "now the rest is PMD-aligned, let's do everything
244 * one pmd at a time", we will still have the old (now empty
245 * of any 4kB pages, but still there) PMD in the page table
248 * Warn on it once - because we really should try to figure
249 * out how to do this better - but then say "I won't move
252 * One alternative might be to just unmap the target pmd at
253 * this point, and verify that it really is empty. We'll see.
255 if (WARN_ON_ONCE(!pmd_none(*new_pmd)))
259 * We don't have to worry about the ordering of src and dst
260 * ptlocks because exclusive mmap_lock prevents deadlock.
262 old_ptl = pmd_lock(vma->vm_mm, old_pmd);
263 new_ptl = pmd_lockptr(mm, new_pmd);
264 if (new_ptl != old_ptl)
265 spin_lock_nested(new_ptl, SINGLE_DEPTH_NESTING);
271 VM_BUG_ON(!pmd_none(*new_pmd));
273 pmd_populate(mm, new_pmd, pmd_pgtable(pmd));
274 flush_tlb_range(vma, old_addr, old_addr + PMD_SIZE);
275 if (new_ptl != old_ptl)
276 spin_unlock(new_ptl);
277 spin_unlock(old_ptl);
282 static inline bool move_normal_pmd(struct vm_area_struct *vma,
283 unsigned long old_addr, unsigned long new_addr, pmd_t *old_pmd,
290 #if CONFIG_PGTABLE_LEVELS > 2 && defined(CONFIG_HAVE_MOVE_PUD)
291 static bool move_normal_pud(struct vm_area_struct *vma, unsigned long old_addr,
292 unsigned long new_addr, pud_t *old_pud, pud_t *new_pud)
294 spinlock_t *old_ptl, *new_ptl;
295 struct mm_struct *mm = vma->vm_mm;
298 if (!arch_supports_page_table_move())
301 * The destination pud shouldn't be established, free_pgtables()
302 * should have released it.
304 if (WARN_ON_ONCE(!pud_none(*new_pud)))
308 * We don't have to worry about the ordering of src and dst
309 * ptlocks because exclusive mmap_lock prevents deadlock.
311 old_ptl = pud_lock(vma->vm_mm, old_pud);
312 new_ptl = pud_lockptr(mm, new_pud);
313 if (new_ptl != old_ptl)
314 spin_lock_nested(new_ptl, SINGLE_DEPTH_NESTING);
320 VM_BUG_ON(!pud_none(*new_pud));
322 pud_populate(mm, new_pud, pud_pgtable(pud));
323 flush_tlb_range(vma, old_addr, old_addr + PUD_SIZE);
324 if (new_ptl != old_ptl)
325 spin_unlock(new_ptl);
326 spin_unlock(old_ptl);
331 static inline bool move_normal_pud(struct vm_area_struct *vma,
332 unsigned long old_addr, unsigned long new_addr, pud_t *old_pud,
339 #ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
340 static bool move_huge_pud(struct vm_area_struct *vma, unsigned long old_addr,
341 unsigned long new_addr, pud_t *old_pud, pud_t *new_pud)
343 spinlock_t *old_ptl, *new_ptl;
344 struct mm_struct *mm = vma->vm_mm;
348 * The destination pud shouldn't be established, free_pgtables()
349 * should have released it.
351 if (WARN_ON_ONCE(!pud_none(*new_pud)))
355 * We don't have to worry about the ordering of src and dst
356 * ptlocks because exclusive mmap_lock prevents deadlock.
358 old_ptl = pud_lock(vma->vm_mm, old_pud);
359 new_ptl = pud_lockptr(mm, new_pud);
360 if (new_ptl != old_ptl)
361 spin_lock_nested(new_ptl, SINGLE_DEPTH_NESTING);
367 VM_BUG_ON(!pud_none(*new_pud));
369 /* Set the new pud */
370 /* mark soft_ditry when we add pud level soft dirty support */
371 set_pud_at(mm, new_addr, new_pud, pud);
372 flush_pud_tlb_range(vma, old_addr, old_addr + HPAGE_PUD_SIZE);
373 if (new_ptl != old_ptl)
374 spin_unlock(new_ptl);
375 spin_unlock(old_ptl);
380 static bool move_huge_pud(struct vm_area_struct *vma, unsigned long old_addr,
381 unsigned long new_addr, pud_t *old_pud, pud_t *new_pud)
397 * Returns an extent of the corresponding size for the pgt_entry specified if
398 * valid. Else returns a smaller extent bounded by the end of the source and
399 * destination pgt_entry.
401 static __always_inline unsigned long get_extent(enum pgt_entry entry,
402 unsigned long old_addr, unsigned long old_end,
403 unsigned long new_addr)
405 unsigned long next, extent, mask, size;
423 next = (old_addr + size) & mask;
424 /* even if next overflowed, extent below will be ok */
425 extent = next - old_addr;
426 if (extent > old_end - old_addr)
427 extent = old_end - old_addr;
428 next = (new_addr + size) & mask;
429 if (extent > next - new_addr)
430 extent = next - new_addr;
435 * Attempts to speedup the move by moving entry at the level corresponding to
436 * pgt_entry. Returns true if the move was successful, else false.
438 static bool move_pgt_entry(enum pgt_entry entry, struct vm_area_struct *vma,
439 unsigned long old_addr, unsigned long new_addr,
440 void *old_entry, void *new_entry, bool need_rmap_locks)
444 /* See comment in move_ptes() */
446 take_rmap_locks(vma);
450 moved = move_normal_pmd(vma, old_addr, new_addr, old_entry,
454 moved = move_normal_pud(vma, old_addr, new_addr, old_entry,
458 moved = IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) &&
459 move_huge_pmd(vma, old_addr, new_addr, old_entry,
463 moved = IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) &&
464 move_huge_pud(vma, old_addr, new_addr, old_entry,
474 drop_rmap_locks(vma);
479 unsigned long move_page_tables(struct vm_area_struct *vma,
480 unsigned long old_addr, struct vm_area_struct *new_vma,
481 unsigned long new_addr, unsigned long len,
482 bool need_rmap_locks)
484 unsigned long extent, old_end;
485 struct mmu_notifier_range range;
486 pmd_t *old_pmd, *new_pmd;
487 pud_t *old_pud, *new_pud;
492 old_end = old_addr + len;
494 if (is_vm_hugetlb_page(vma))
495 return move_hugetlb_page_tables(vma, new_vma, old_addr,
498 flush_cache_range(vma, old_addr, old_end);
499 mmu_notifier_range_init(&range, MMU_NOTIFY_UNMAP, 0, vma, vma->vm_mm,
501 mmu_notifier_invalidate_range_start(&range);
503 for (; old_addr < old_end; old_addr += extent, new_addr += extent) {
506 * If extent is PUD-sized try to speed up the move by moving at the
507 * PUD level if possible.
509 extent = get_extent(NORMAL_PUD, old_addr, old_end, new_addr);
511 old_pud = get_old_pud(vma->vm_mm, old_addr);
514 new_pud = alloc_new_pud(vma->vm_mm, vma, new_addr);
517 if (pud_trans_huge(*old_pud) || pud_devmap(*old_pud)) {
518 if (extent == HPAGE_PUD_SIZE) {
519 move_pgt_entry(HPAGE_PUD, vma, old_addr, new_addr,
520 old_pud, new_pud, need_rmap_locks);
521 /* We ignore and continue on error? */
524 } else if (IS_ENABLED(CONFIG_HAVE_MOVE_PUD) && extent == PUD_SIZE) {
526 if (move_pgt_entry(NORMAL_PUD, vma, old_addr, new_addr,
527 old_pud, new_pud, true))
531 extent = get_extent(NORMAL_PMD, old_addr, old_end, new_addr);
532 old_pmd = get_old_pmd(vma->vm_mm, old_addr);
535 new_pmd = alloc_new_pmd(vma->vm_mm, vma, new_addr);
538 if (is_swap_pmd(*old_pmd) || pmd_trans_huge(*old_pmd) ||
539 pmd_devmap(*old_pmd)) {
540 if (extent == HPAGE_PMD_SIZE &&
541 move_pgt_entry(HPAGE_PMD, vma, old_addr, new_addr,
542 old_pmd, new_pmd, need_rmap_locks))
544 split_huge_pmd(vma, old_pmd, old_addr);
545 if (pmd_trans_unstable(old_pmd))
547 } else if (IS_ENABLED(CONFIG_HAVE_MOVE_PMD) &&
548 extent == PMD_SIZE) {
550 * If the extent is PMD-sized, try to speed the move by
551 * moving at the PMD level if possible.
553 if (move_pgt_entry(NORMAL_PMD, vma, old_addr, new_addr,
554 old_pmd, new_pmd, true))
558 if (pte_alloc(new_vma->vm_mm, new_pmd))
560 move_ptes(vma, old_pmd, old_addr, old_addr + extent, new_vma,
561 new_pmd, new_addr, need_rmap_locks);
564 mmu_notifier_invalidate_range_end(&range);
566 return len + old_addr - old_end; /* how much done */
569 static unsigned long move_vma(struct vm_area_struct *vma,
570 unsigned long old_addr, unsigned long old_len,
571 unsigned long new_len, unsigned long new_addr,
572 bool *locked, unsigned long flags,
573 struct vm_userfaultfd_ctx *uf, struct list_head *uf_unmap)
575 long to_account = new_len - old_len;
576 struct mm_struct *mm = vma->vm_mm;
577 struct vm_area_struct *new_vma;
578 unsigned long vm_flags = vma->vm_flags;
579 unsigned long new_pgoff;
580 unsigned long moved_len;
581 unsigned long excess = 0;
582 unsigned long hiwater_vm;
585 bool need_rmap_locks;
588 * We'd prefer to avoid failure later on in do_munmap:
589 * which may split one vma into three before unmapping.
591 if (mm->map_count >= sysctl_max_map_count - 3)
594 if (unlikely(flags & MREMAP_DONTUNMAP))
595 to_account = new_len;
597 if (vma->vm_ops && vma->vm_ops->may_split) {
598 if (vma->vm_start != old_addr)
599 err = vma->vm_ops->may_split(vma, old_addr);
600 if (!err && vma->vm_end != old_addr + old_len)
601 err = vma->vm_ops->may_split(vma, old_addr + old_len);
607 * Advise KSM to break any KSM pages in the area to be moved:
608 * it would be confusing if they were to turn up at the new
609 * location, where they happen to coincide with different KSM
610 * pages recently unmapped. But leave vma->vm_flags as it was,
611 * so KSM can come around to merge on vma and new_vma afterwards.
613 err = ksm_madvise(vma, old_addr, old_addr + old_len,
614 MADV_UNMERGEABLE, &vm_flags);
618 if (vm_flags & VM_ACCOUNT) {
619 if (security_vm_enough_memory_mm(mm, to_account >> PAGE_SHIFT))
623 new_pgoff = vma->vm_pgoff + ((old_addr - vma->vm_start) >> PAGE_SHIFT);
624 new_vma = copy_vma(&vma, new_addr, new_len, new_pgoff,
627 if (vm_flags & VM_ACCOUNT)
628 vm_unacct_memory(to_account >> PAGE_SHIFT);
632 moved_len = move_page_tables(vma, old_addr, new_vma, new_addr, old_len,
634 if (moved_len < old_len) {
636 } else if (vma->vm_ops && vma->vm_ops->mremap) {
637 err = vma->vm_ops->mremap(new_vma);
642 * On error, move entries back from new area to old,
643 * which will succeed since page tables still there,
644 * and then proceed to unmap new area instead of old.
646 move_page_tables(new_vma, new_addr, vma, old_addr, moved_len,
653 mremap_userfaultfd_prep(new_vma, uf);
656 if (is_vm_hugetlb_page(vma)) {
657 clear_vma_resv_huge_pages(vma);
660 /* Conceal VM_ACCOUNT so old reservation is not undone */
661 if (vm_flags & VM_ACCOUNT && !(flags & MREMAP_DONTUNMAP)) {
662 vma->vm_flags &= ~VM_ACCOUNT;
663 excess = vma->vm_end - vma->vm_start - old_len;
664 if (old_addr > vma->vm_start &&
665 old_addr + old_len < vma->vm_end)
670 * If we failed to move page tables we still do total_vm increment
671 * since do_munmap() will decrement it by old_len == new_len.
673 * Since total_vm is about to be raised artificially high for a
674 * moment, we need to restore high watermark afterwards: if stats
675 * are taken meanwhile, total_vm and hiwater_vm appear too high.
676 * If this were a serious issue, we'd add a flag to do_munmap().
678 hiwater_vm = mm->hiwater_vm;
679 vm_stat_account(mm, vma->vm_flags, new_len >> PAGE_SHIFT);
681 /* Tell pfnmap has moved from this vma */
682 if (unlikely(vma->vm_flags & VM_PFNMAP))
683 untrack_pfn_moved(vma);
685 if (unlikely(!err && (flags & MREMAP_DONTUNMAP))) {
686 /* We always clear VM_LOCKED[ONFAULT] on the old vma */
687 vma->vm_flags &= VM_LOCKED_CLEAR_MASK;
690 * anon_vma links of the old vma is no longer needed after its page
691 * table has been moved.
693 if (new_vma != vma && vma->vm_start == old_addr &&
694 vma->vm_end == (old_addr + old_len))
695 unlink_anon_vmas(vma);
697 /* Because we won't unmap we don't need to touch locked_vm */
701 if (do_munmap(mm, old_addr, old_len, uf_unmap) < 0) {
702 /* OOM: unable to split vma, just get accounts right */
703 if (vm_flags & VM_ACCOUNT && !(flags & MREMAP_DONTUNMAP))
704 vm_acct_memory(old_len >> PAGE_SHIFT);
708 if (vm_flags & VM_LOCKED) {
709 mm->locked_vm += new_len >> PAGE_SHIFT;
713 mm->hiwater_vm = hiwater_vm;
715 /* Restore VM_ACCOUNT if one or two pieces of vma left */
717 vma->vm_flags |= VM_ACCOUNT;
719 vma->vm_next->vm_flags |= VM_ACCOUNT;
725 static struct vm_area_struct *vma_to_resize(unsigned long addr,
726 unsigned long old_len, unsigned long new_len, unsigned long flags)
728 struct mm_struct *mm = current->mm;
729 struct vm_area_struct *vma;
732 vma = vma_lookup(mm, addr);
734 return ERR_PTR(-EFAULT);
737 * !old_len is a special case where an attempt is made to 'duplicate'
738 * a mapping. This makes no sense for private mappings as it will
739 * instead create a fresh/new mapping unrelated to the original. This
740 * is contrary to the basic idea of mremap which creates new mappings
741 * based on the original. There are no known use cases for this
742 * behavior. As a result, fail such attempts.
744 if (!old_len && !(vma->vm_flags & (VM_SHARED | VM_MAYSHARE))) {
745 pr_warn_once("%s (%d): attempted to duplicate a private mapping with mremap. This is not supported.\n", current->comm, current->pid);
746 return ERR_PTR(-EINVAL);
749 if ((flags & MREMAP_DONTUNMAP) &&
750 (vma->vm_flags & (VM_DONTEXPAND | VM_PFNMAP)))
751 return ERR_PTR(-EINVAL);
753 /* We can't remap across vm area boundaries */
754 if (old_len > vma->vm_end - addr)
755 return ERR_PTR(-EFAULT);
757 if (new_len == old_len)
760 /* Need to be careful about a growing mapping */
761 pgoff = (addr - vma->vm_start) >> PAGE_SHIFT;
762 pgoff += vma->vm_pgoff;
763 if (pgoff + (new_len >> PAGE_SHIFT) < pgoff)
764 return ERR_PTR(-EINVAL);
766 if (vma->vm_flags & (VM_DONTEXPAND | VM_PFNMAP))
767 return ERR_PTR(-EFAULT);
769 if (mlock_future_check(mm, vma->vm_flags, new_len - old_len))
770 return ERR_PTR(-EAGAIN);
772 if (!may_expand_vm(mm, vma->vm_flags,
773 (new_len - old_len) >> PAGE_SHIFT))
774 return ERR_PTR(-ENOMEM);
779 static unsigned long mremap_to(unsigned long addr, unsigned long old_len,
780 unsigned long new_addr, unsigned long new_len, bool *locked,
781 unsigned long flags, struct vm_userfaultfd_ctx *uf,
782 struct list_head *uf_unmap_early,
783 struct list_head *uf_unmap)
785 struct mm_struct *mm = current->mm;
786 struct vm_area_struct *vma;
787 unsigned long ret = -EINVAL;
788 unsigned long map_flags = 0;
790 if (offset_in_page(new_addr))
793 if (new_len > TASK_SIZE || new_addr > TASK_SIZE - new_len)
796 /* Ensure the old/new locations do not overlap */
797 if (addr + old_len > new_addr && new_addr + new_len > addr)
801 * move_vma() need us to stay 4 maps below the threshold, otherwise
802 * it will bail out at the very beginning.
803 * That is a problem if we have already unmaped the regions here
804 * (new_addr, and old_addr), because userspace will not know the
805 * state of the vma's after it gets -ENOMEM.
806 * So, to avoid such scenario we can pre-compute if the whole
807 * operation has high chances to success map-wise.
808 * Worst-scenario case is when both vma's (new_addr and old_addr) get
809 * split in 3 before unmapping it.
810 * That means 2 more maps (1 for each) to the ones we already hold.
811 * Check whether current map count plus 2 still leads us to 4 maps below
812 * the threshold, otherwise return -ENOMEM here to be more safe.
814 if ((mm->map_count + 2) >= sysctl_max_map_count - 3)
817 if (flags & MREMAP_FIXED) {
818 ret = do_munmap(mm, new_addr, new_len, uf_unmap_early);
823 if (old_len > new_len) {
824 ret = do_munmap(mm, addr+new_len, old_len - new_len, uf_unmap);
830 vma = vma_to_resize(addr, old_len, new_len, flags);
836 /* MREMAP_DONTUNMAP expands by old_len since old_len == new_len */
837 if (flags & MREMAP_DONTUNMAP &&
838 !may_expand_vm(mm, vma->vm_flags, old_len >> PAGE_SHIFT)) {
843 if (flags & MREMAP_FIXED)
844 map_flags |= MAP_FIXED;
846 if (vma->vm_flags & VM_MAYSHARE)
847 map_flags |= MAP_SHARED;
849 ret = get_unmapped_area(vma->vm_file, new_addr, new_len, vma->vm_pgoff +
850 ((addr - vma->vm_start) >> PAGE_SHIFT),
852 if (IS_ERR_VALUE(ret))
855 /* We got a new mapping */
856 if (!(flags & MREMAP_FIXED))
859 ret = move_vma(vma, addr, old_len, new_len, new_addr, locked, flags, uf,
866 static int vma_expandable(struct vm_area_struct *vma, unsigned long delta)
868 unsigned long end = vma->vm_end + delta;
869 if (end < vma->vm_end) /* overflow */
871 if (vma->vm_next && vma->vm_next->vm_start < end) /* intersection */
873 if (get_unmapped_area(NULL, vma->vm_start, end - vma->vm_start,
874 0, MAP_FIXED) & ~PAGE_MASK)
880 * Expand (or shrink) an existing mapping, potentially moving it at the
881 * same time (controlled by the MREMAP_MAYMOVE flag and available VM space)
883 * MREMAP_FIXED option added 5-Dec-1999 by Benjamin LaHaise
884 * This option implies MREMAP_MAYMOVE.
886 SYSCALL_DEFINE5(mremap, unsigned long, addr, unsigned long, old_len,
887 unsigned long, new_len, unsigned long, flags,
888 unsigned long, new_addr)
890 struct mm_struct *mm = current->mm;
891 struct vm_area_struct *vma;
892 unsigned long ret = -EINVAL;
894 bool downgraded = false;
895 struct vm_userfaultfd_ctx uf = NULL_VM_UFFD_CTX;
896 LIST_HEAD(uf_unmap_early);
900 * There is a deliberate asymmetry here: we strip the pointer tag
901 * from the old address but leave the new address alone. This is
902 * for consistency with mmap(), where we prevent the creation of
903 * aliasing mappings in userspace by leaving the tag bits of the
904 * mapping address intact. A non-zero tag will cause the subsequent
905 * range checks to reject the address as invalid.
907 * See Documentation/arm64/tagged-address-abi.rst for more information.
909 addr = untagged_addr(addr);
911 if (flags & ~(MREMAP_FIXED | MREMAP_MAYMOVE | MREMAP_DONTUNMAP))
914 if (flags & MREMAP_FIXED && !(flags & MREMAP_MAYMOVE))
918 * MREMAP_DONTUNMAP is always a move and it does not allow resizing
921 if (flags & MREMAP_DONTUNMAP &&
922 (!(flags & MREMAP_MAYMOVE) || old_len != new_len))
926 if (offset_in_page(addr))
929 old_len = PAGE_ALIGN(old_len);
930 new_len = PAGE_ALIGN(new_len);
933 * We allow a zero old-len as a special case
934 * for DOS-emu "duplicate shm area" thing. But
935 * a zero new-len is nonsensical.
940 if (mmap_write_lock_killable(current->mm))
942 vma = vma_lookup(mm, addr);
948 if (is_vm_hugetlb_page(vma)) {
949 struct hstate *h __maybe_unused = hstate_vma(vma);
951 old_len = ALIGN(old_len, huge_page_size(h));
952 new_len = ALIGN(new_len, huge_page_size(h));
954 /* addrs must be huge page aligned */
955 if (addr & ~huge_page_mask(h))
957 if (new_addr & ~huge_page_mask(h))
961 * Don't allow remap expansion, because the underlying hugetlb
962 * reservation is not yet capable to handle split reservation.
964 if (new_len > old_len)
968 if (flags & (MREMAP_FIXED | MREMAP_DONTUNMAP)) {
969 ret = mremap_to(addr, old_len, new_addr, new_len,
970 &locked, flags, &uf, &uf_unmap_early,
976 * Always allow a shrinking remap: that just unmaps
977 * the unnecessary pages..
978 * __do_munmap does all the needed commit accounting, and
979 * downgrades mmap_lock to read if so directed.
981 if (old_len >= new_len) {
984 retval = __do_munmap(mm, addr+new_len, old_len - new_len,
986 if (retval < 0 && old_len != new_len) {
989 /* Returning 1 indicates mmap_lock is downgraded to read. */
990 } else if (retval == 1)
997 * Ok, we need to grow..
999 vma = vma_to_resize(addr, old_len, new_len, flags);
1005 /* old_len exactly to the end of the area..
1007 if (old_len == vma->vm_end - addr) {
1008 /* can we just expand the current mapping? */
1009 if (vma_expandable(vma, new_len - old_len)) {
1010 long pages = (new_len - old_len) >> PAGE_SHIFT;
1012 if (vma->vm_flags & VM_ACCOUNT) {
1013 if (security_vm_enough_memory_mm(mm, pages)) {
1019 if (vma_adjust(vma, vma->vm_start, addr + new_len,
1020 vma->vm_pgoff, NULL)) {
1021 vm_unacct_memory(pages);
1026 vm_stat_account(mm, vma->vm_flags, pages);
1027 if (vma->vm_flags & VM_LOCKED) {
1028 mm->locked_vm += pages;
1038 * We weren't able to just expand or shrink the area,
1039 * we need to create a new one and move it..
1042 if (flags & MREMAP_MAYMOVE) {
1043 unsigned long map_flags = 0;
1044 if (vma->vm_flags & VM_MAYSHARE)
1045 map_flags |= MAP_SHARED;
1047 new_addr = get_unmapped_area(vma->vm_file, 0, new_len,
1049 ((addr - vma->vm_start) >> PAGE_SHIFT),
1051 if (IS_ERR_VALUE(new_addr)) {
1056 ret = move_vma(vma, addr, old_len, new_len, new_addr,
1057 &locked, flags, &uf, &uf_unmap);
1060 if (offset_in_page(ret))
1063 mmap_read_unlock(current->mm);
1065 mmap_write_unlock(current->mm);
1066 if (locked && new_len > old_len)
1067 mm_populate(new_addr + old_len, new_len - old_len);
1068 userfaultfd_unmap_complete(mm, &uf_unmap_early);
1069 mremap_userfaultfd_complete(&uf, addr, ret, old_len);
1070 userfaultfd_unmap_complete(mm, &uf_unmap);