1 // SPDX-License-Identifier: GPL-2.0
5 * (C) Copyright 1996 Linus Torvalds
7 * Address space accounting code <alan@lxorguk.ukuu.org.uk>
8 * (C) Copyright 2002 Red Hat Inc, All Rights Reserved
12 #include <linux/mm_inline.h>
13 #include <linux/hugetlb.h>
14 #include <linux/shm.h>
15 #include <linux/ksm.h>
16 #include <linux/mman.h>
17 #include <linux/swap.h>
18 #include <linux/capability.h>
20 #include <linux/swapops.h>
21 #include <linux/highmem.h>
22 #include <linux/security.h>
23 #include <linux/syscalls.h>
24 #include <linux/mmu_notifier.h>
25 #include <linux/uaccess.h>
26 #include <linux/userfaultfd_k.h>
27 #include <linux/mempolicy.h>
29 #include <asm/cacheflush.h>
31 #include <asm/pgalloc.h>
35 static pud_t *get_old_pud(struct mm_struct *mm, unsigned long addr)
41 pgd = pgd_offset(mm, addr);
42 if (pgd_none_or_clear_bad(pgd))
45 p4d = p4d_offset(pgd, addr);
46 if (p4d_none_or_clear_bad(p4d))
49 pud = pud_offset(p4d, addr);
50 if (pud_none_or_clear_bad(pud))
56 static pmd_t *get_old_pmd(struct mm_struct *mm, unsigned long addr)
61 pud = get_old_pud(mm, addr);
65 pmd = pmd_offset(pud, addr);
72 static pud_t *alloc_new_pud(struct mm_struct *mm, struct vm_area_struct *vma,
78 pgd = pgd_offset(mm, addr);
79 p4d = p4d_alloc(mm, pgd, addr);
83 return pud_alloc(mm, p4d, addr);
86 static pmd_t *alloc_new_pmd(struct mm_struct *mm, struct vm_area_struct *vma,
92 pud = alloc_new_pud(mm, vma, addr);
96 pmd = pmd_alloc(mm, pud, addr);
100 VM_BUG_ON(pmd_trans_huge(*pmd));
105 static void take_rmap_locks(struct vm_area_struct *vma)
108 i_mmap_lock_write(vma->vm_file->f_mapping);
110 anon_vma_lock_write(vma->anon_vma);
113 static void drop_rmap_locks(struct vm_area_struct *vma)
116 anon_vma_unlock_write(vma->anon_vma);
118 i_mmap_unlock_write(vma->vm_file->f_mapping);
121 static pte_t move_soft_dirty_pte(pte_t pte)
124 * Set soft dirty bit so we can notice
125 * in userspace the ptes were moved.
127 #ifdef CONFIG_MEM_SOFT_DIRTY
128 if (pte_present(pte))
129 pte = pte_mksoft_dirty(pte);
130 else if (is_swap_pte(pte))
131 pte = pte_swp_mksoft_dirty(pte);
136 static void move_ptes(struct vm_area_struct *vma, pmd_t *old_pmd,
137 unsigned long old_addr, unsigned long old_end,
138 struct vm_area_struct *new_vma, pmd_t *new_pmd,
139 unsigned long new_addr, bool need_rmap_locks)
141 struct mm_struct *mm = vma->vm_mm;
142 pte_t *old_pte, *new_pte, pte;
143 spinlock_t *old_ptl, *new_ptl;
144 bool force_flush = false;
145 unsigned long len = old_end - old_addr;
148 * When need_rmap_locks is true, we take the i_mmap_rwsem and anon_vma
149 * locks to ensure that rmap will always observe either the old or the
150 * new ptes. This is the easiest way to avoid races with
151 * truncate_pagecache(), page migration, etc...
153 * When need_rmap_locks is false, we use other ways to avoid
156 * - During exec() shift_arg_pages(), we use a specially tagged vma
157 * which rmap call sites look for using vma_is_temporary_stack().
159 * - During mremap(), new_vma is often known to be placed after vma
160 * in rmap traversal order. This ensures rmap will always observe
161 * either the old pte, or the new pte, or both (the page table locks
162 * serialize access to individual ptes, but only rmap traversal
163 * order guarantees that we won't miss both the old and new ptes).
166 take_rmap_locks(vma);
169 * We don't have to worry about the ordering of src and dst
170 * pte locks because exclusive mmap_lock prevents deadlock.
172 old_pte = pte_offset_map_lock(mm, old_pmd, old_addr, &old_ptl);
173 new_pte = pte_offset_map(new_pmd, new_addr);
174 new_ptl = pte_lockptr(mm, new_pmd);
175 if (new_ptl != old_ptl)
176 spin_lock_nested(new_ptl, SINGLE_DEPTH_NESTING);
177 flush_tlb_batched_pending(vma->vm_mm);
178 arch_enter_lazy_mmu_mode();
180 for (; old_addr < old_end; old_pte++, old_addr += PAGE_SIZE,
181 new_pte++, new_addr += PAGE_SIZE) {
182 if (pte_none(*old_pte))
185 pte = ptep_get_and_clear(mm, old_addr, old_pte);
187 * If we are remapping a valid PTE, make sure
188 * to flush TLB before we drop the PTL for the
191 * NOTE! Both old and new PTL matter: the old one
192 * for racing with page_mkclean(), the new one to
193 * make sure the physical page stays valid until
194 * the TLB entry for the old mapping has been
197 if (pte_present(pte))
199 pte = move_pte(pte, new_vma->vm_page_prot, old_addr, new_addr);
200 pte = move_soft_dirty_pte(pte);
201 set_pte_at(mm, new_addr, new_pte, pte);
204 arch_leave_lazy_mmu_mode();
206 flush_tlb_range(vma, old_end - len, old_end);
207 if (new_ptl != old_ptl)
208 spin_unlock(new_ptl);
209 pte_unmap(new_pte - 1);
210 pte_unmap_unlock(old_pte - 1, old_ptl);
212 drop_rmap_locks(vma);
215 #ifndef arch_supports_page_table_move
216 #define arch_supports_page_table_move arch_supports_page_table_move
217 static inline bool arch_supports_page_table_move(void)
219 return IS_ENABLED(CONFIG_HAVE_MOVE_PMD) ||
220 IS_ENABLED(CONFIG_HAVE_MOVE_PUD);
224 #ifdef CONFIG_HAVE_MOVE_PMD
225 static bool move_normal_pmd(struct vm_area_struct *vma, unsigned long old_addr,
226 unsigned long new_addr, pmd_t *old_pmd, pmd_t *new_pmd)
228 spinlock_t *old_ptl, *new_ptl;
229 struct mm_struct *mm = vma->vm_mm;
232 if (!arch_supports_page_table_move())
235 * The destination pmd shouldn't be established, free_pgtables()
236 * should have released it.
238 * However, there's a case during execve() where we use mremap
239 * to move the initial stack, and in that case the target area
240 * may overlap the source area (always moving down).
242 * If everything is PMD-aligned, that works fine, as moving
243 * each pmd down will clear the source pmd. But if we first
244 * have a few 4kB-only pages that get moved down, and then
245 * hit the "now the rest is PMD-aligned, let's do everything
246 * one pmd at a time", we will still have the old (now empty
247 * of any 4kB pages, but still there) PMD in the page table
250 * Warn on it once - because we really should try to figure
251 * out how to do this better - but then say "I won't move
254 * One alternative might be to just unmap the target pmd at
255 * this point, and verify that it really is empty. We'll see.
257 if (WARN_ON_ONCE(!pmd_none(*new_pmd)))
261 * We don't have to worry about the ordering of src and dst
262 * ptlocks because exclusive mmap_lock prevents deadlock.
264 old_ptl = pmd_lock(vma->vm_mm, old_pmd);
265 new_ptl = pmd_lockptr(mm, new_pmd);
266 if (new_ptl != old_ptl)
267 spin_lock_nested(new_ptl, SINGLE_DEPTH_NESTING);
273 VM_BUG_ON(!pmd_none(*new_pmd));
275 pmd_populate(mm, new_pmd, pmd_pgtable(pmd));
276 flush_tlb_range(vma, old_addr, old_addr + PMD_SIZE);
277 if (new_ptl != old_ptl)
278 spin_unlock(new_ptl);
279 spin_unlock(old_ptl);
284 static inline bool move_normal_pmd(struct vm_area_struct *vma,
285 unsigned long old_addr, unsigned long new_addr, pmd_t *old_pmd,
292 #if CONFIG_PGTABLE_LEVELS > 2 && defined(CONFIG_HAVE_MOVE_PUD)
293 static bool move_normal_pud(struct vm_area_struct *vma, unsigned long old_addr,
294 unsigned long new_addr, pud_t *old_pud, pud_t *new_pud)
296 spinlock_t *old_ptl, *new_ptl;
297 struct mm_struct *mm = vma->vm_mm;
300 if (!arch_supports_page_table_move())
303 * The destination pud shouldn't be established, free_pgtables()
304 * should have released it.
306 if (WARN_ON_ONCE(!pud_none(*new_pud)))
310 * We don't have to worry about the ordering of src and dst
311 * ptlocks because exclusive mmap_lock prevents deadlock.
313 old_ptl = pud_lock(vma->vm_mm, old_pud);
314 new_ptl = pud_lockptr(mm, new_pud);
315 if (new_ptl != old_ptl)
316 spin_lock_nested(new_ptl, SINGLE_DEPTH_NESTING);
322 VM_BUG_ON(!pud_none(*new_pud));
324 pud_populate(mm, new_pud, pud_pgtable(pud));
325 flush_tlb_range(vma, old_addr, old_addr + PUD_SIZE);
326 if (new_ptl != old_ptl)
327 spin_unlock(new_ptl);
328 spin_unlock(old_ptl);
333 static inline bool move_normal_pud(struct vm_area_struct *vma,
334 unsigned long old_addr, unsigned long new_addr, pud_t *old_pud,
341 #ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
342 static bool move_huge_pud(struct vm_area_struct *vma, unsigned long old_addr,
343 unsigned long new_addr, pud_t *old_pud, pud_t *new_pud)
345 spinlock_t *old_ptl, *new_ptl;
346 struct mm_struct *mm = vma->vm_mm;
350 * The destination pud shouldn't be established, free_pgtables()
351 * should have released it.
353 if (WARN_ON_ONCE(!pud_none(*new_pud)))
357 * We don't have to worry about the ordering of src and dst
358 * ptlocks because exclusive mmap_lock prevents deadlock.
360 old_ptl = pud_lock(vma->vm_mm, old_pud);
361 new_ptl = pud_lockptr(mm, new_pud);
362 if (new_ptl != old_ptl)
363 spin_lock_nested(new_ptl, SINGLE_DEPTH_NESTING);
369 VM_BUG_ON(!pud_none(*new_pud));
371 /* Set the new pud */
372 /* mark soft_ditry when we add pud level soft dirty support */
373 set_pud_at(mm, new_addr, new_pud, pud);
374 flush_pud_tlb_range(vma, old_addr, old_addr + HPAGE_PUD_SIZE);
375 if (new_ptl != old_ptl)
376 spin_unlock(new_ptl);
377 spin_unlock(old_ptl);
382 static bool move_huge_pud(struct vm_area_struct *vma, unsigned long old_addr,
383 unsigned long new_addr, pud_t *old_pud, pud_t *new_pud)
399 * Returns an extent of the corresponding size for the pgt_entry specified if
400 * valid. Else returns a smaller extent bounded by the end of the source and
401 * destination pgt_entry.
403 static __always_inline unsigned long get_extent(enum pgt_entry entry,
404 unsigned long old_addr, unsigned long old_end,
405 unsigned long new_addr)
407 unsigned long next, extent, mask, size;
425 next = (old_addr + size) & mask;
426 /* even if next overflowed, extent below will be ok */
427 extent = next - old_addr;
428 if (extent > old_end - old_addr)
429 extent = old_end - old_addr;
430 next = (new_addr + size) & mask;
431 if (extent > next - new_addr)
432 extent = next - new_addr;
437 * Attempts to speedup the move by moving entry at the level corresponding to
438 * pgt_entry. Returns true if the move was successful, else false.
440 static bool move_pgt_entry(enum pgt_entry entry, struct vm_area_struct *vma,
441 unsigned long old_addr, unsigned long new_addr,
442 void *old_entry, void *new_entry, bool need_rmap_locks)
446 /* See comment in move_ptes() */
448 take_rmap_locks(vma);
452 moved = move_normal_pmd(vma, old_addr, new_addr, old_entry,
456 moved = move_normal_pud(vma, old_addr, new_addr, old_entry,
460 moved = IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) &&
461 move_huge_pmd(vma, old_addr, new_addr, old_entry,
465 moved = IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) &&
466 move_huge_pud(vma, old_addr, new_addr, old_entry,
476 drop_rmap_locks(vma);
481 unsigned long move_page_tables(struct vm_area_struct *vma,
482 unsigned long old_addr, struct vm_area_struct *new_vma,
483 unsigned long new_addr, unsigned long len,
484 bool need_rmap_locks)
486 unsigned long extent, old_end;
487 struct mmu_notifier_range range;
488 pmd_t *old_pmd, *new_pmd;
489 pud_t *old_pud, *new_pud;
494 old_end = old_addr + len;
496 if (is_vm_hugetlb_page(vma))
497 return move_hugetlb_page_tables(vma, new_vma, old_addr,
500 flush_cache_range(vma, old_addr, old_end);
501 mmu_notifier_range_init(&range, MMU_NOTIFY_UNMAP, 0, vma, vma->vm_mm,
503 mmu_notifier_invalidate_range_start(&range);
505 for (; old_addr < old_end; old_addr += extent, new_addr += extent) {
508 * If extent is PUD-sized try to speed up the move by moving at the
509 * PUD level if possible.
511 extent = get_extent(NORMAL_PUD, old_addr, old_end, new_addr);
513 old_pud = get_old_pud(vma->vm_mm, old_addr);
516 new_pud = alloc_new_pud(vma->vm_mm, vma, new_addr);
519 if (pud_trans_huge(*old_pud) || pud_devmap(*old_pud)) {
520 if (extent == HPAGE_PUD_SIZE) {
521 move_pgt_entry(HPAGE_PUD, vma, old_addr, new_addr,
522 old_pud, new_pud, need_rmap_locks);
523 /* We ignore and continue on error? */
526 } else if (IS_ENABLED(CONFIG_HAVE_MOVE_PUD) && extent == PUD_SIZE) {
528 if (move_pgt_entry(NORMAL_PUD, vma, old_addr, new_addr,
529 old_pud, new_pud, true))
533 extent = get_extent(NORMAL_PMD, old_addr, old_end, new_addr);
534 old_pmd = get_old_pmd(vma->vm_mm, old_addr);
537 new_pmd = alloc_new_pmd(vma->vm_mm, vma, new_addr);
540 if (is_swap_pmd(*old_pmd) || pmd_trans_huge(*old_pmd) ||
541 pmd_devmap(*old_pmd)) {
542 if (extent == HPAGE_PMD_SIZE &&
543 move_pgt_entry(HPAGE_PMD, vma, old_addr, new_addr,
544 old_pmd, new_pmd, need_rmap_locks))
546 split_huge_pmd(vma, old_pmd, old_addr);
547 if (pmd_trans_unstable(old_pmd))
549 } else if (IS_ENABLED(CONFIG_HAVE_MOVE_PMD) &&
550 extent == PMD_SIZE) {
552 * If the extent is PMD-sized, try to speed the move by
553 * moving at the PMD level if possible.
555 if (move_pgt_entry(NORMAL_PMD, vma, old_addr, new_addr,
556 old_pmd, new_pmd, true))
560 if (pte_alloc(new_vma->vm_mm, new_pmd))
562 move_ptes(vma, old_pmd, old_addr, old_addr + extent, new_vma,
563 new_pmd, new_addr, need_rmap_locks);
566 mmu_notifier_invalidate_range_end(&range);
568 return len + old_addr - old_end; /* how much done */
571 static unsigned long move_vma(struct vm_area_struct *vma,
572 unsigned long old_addr, unsigned long old_len,
573 unsigned long new_len, unsigned long new_addr,
574 bool *locked, unsigned long flags,
575 struct vm_userfaultfd_ctx *uf, struct list_head *uf_unmap)
577 long to_account = new_len - old_len;
578 struct mm_struct *mm = vma->vm_mm;
579 struct vm_area_struct *new_vma;
580 unsigned long vm_flags = vma->vm_flags;
581 unsigned long new_pgoff;
582 unsigned long moved_len;
583 unsigned long excess = 0;
584 unsigned long hiwater_vm;
587 bool need_rmap_locks;
590 * We'd prefer to avoid failure later on in do_munmap:
591 * which may split one vma into three before unmapping.
593 if (mm->map_count >= sysctl_max_map_count - 3)
596 if (unlikely(flags & MREMAP_DONTUNMAP))
597 to_account = new_len;
599 if (vma->vm_ops && vma->vm_ops->may_split) {
600 if (vma->vm_start != old_addr)
601 err = vma->vm_ops->may_split(vma, old_addr);
602 if (!err && vma->vm_end != old_addr + old_len)
603 err = vma->vm_ops->may_split(vma, old_addr + old_len);
609 * Advise KSM to break any KSM pages in the area to be moved:
610 * it would be confusing if they were to turn up at the new
611 * location, where they happen to coincide with different KSM
612 * pages recently unmapped. But leave vma->vm_flags as it was,
613 * so KSM can come around to merge on vma and new_vma afterwards.
615 err = ksm_madvise(vma, old_addr, old_addr + old_len,
616 MADV_UNMERGEABLE, &vm_flags);
620 if (vm_flags & VM_ACCOUNT) {
621 if (security_vm_enough_memory_mm(mm, to_account >> PAGE_SHIFT))
625 new_pgoff = vma->vm_pgoff + ((old_addr - vma->vm_start) >> PAGE_SHIFT);
626 new_vma = copy_vma(&vma, new_addr, new_len, new_pgoff,
629 if (vm_flags & VM_ACCOUNT)
630 vm_unacct_memory(to_account >> PAGE_SHIFT);
634 moved_len = move_page_tables(vma, old_addr, new_vma, new_addr, old_len,
636 if (moved_len < old_len) {
638 } else if (vma->vm_ops && vma->vm_ops->mremap) {
639 err = vma->vm_ops->mremap(new_vma);
644 * On error, move entries back from new area to old,
645 * which will succeed since page tables still there,
646 * and then proceed to unmap new area instead of old.
648 move_page_tables(new_vma, new_addr, vma, old_addr, moved_len,
655 mremap_userfaultfd_prep(new_vma, uf);
658 if (is_vm_hugetlb_page(vma)) {
659 clear_vma_resv_huge_pages(vma);
662 /* Conceal VM_ACCOUNT so old reservation is not undone */
663 if (vm_flags & VM_ACCOUNT && !(flags & MREMAP_DONTUNMAP)) {
664 vma->vm_flags &= ~VM_ACCOUNT;
665 excess = vma->vm_end - vma->vm_start - old_len;
666 if (old_addr > vma->vm_start &&
667 old_addr + old_len < vma->vm_end)
672 * If we failed to move page tables we still do total_vm increment
673 * since do_munmap() will decrement it by old_len == new_len.
675 * Since total_vm is about to be raised artificially high for a
676 * moment, we need to restore high watermark afterwards: if stats
677 * are taken meanwhile, total_vm and hiwater_vm appear too high.
678 * If this were a serious issue, we'd add a flag to do_munmap().
680 hiwater_vm = mm->hiwater_vm;
681 vm_stat_account(mm, vma->vm_flags, new_len >> PAGE_SHIFT);
683 /* Tell pfnmap has moved from this vma */
684 if (unlikely(vma->vm_flags & VM_PFNMAP))
685 untrack_pfn_moved(vma);
687 if (unlikely(!err && (flags & MREMAP_DONTUNMAP))) {
688 /* We always clear VM_LOCKED[ONFAULT] on the old vma */
689 vma->vm_flags &= VM_LOCKED_CLEAR_MASK;
692 * anon_vma links of the old vma is no longer needed after its page
693 * table has been moved.
695 if (new_vma != vma && vma->vm_start == old_addr &&
696 vma->vm_end == (old_addr + old_len))
697 unlink_anon_vmas(vma);
699 /* Because we won't unmap we don't need to touch locked_vm */
703 if (do_munmap(mm, old_addr, old_len, uf_unmap) < 0) {
704 /* OOM: unable to split vma, just get accounts right */
705 if (vm_flags & VM_ACCOUNT && !(flags & MREMAP_DONTUNMAP))
706 vm_acct_memory(old_len >> PAGE_SHIFT);
710 if (vm_flags & VM_LOCKED) {
711 mm->locked_vm += new_len >> PAGE_SHIFT;
715 mm->hiwater_vm = hiwater_vm;
717 /* Restore VM_ACCOUNT if one or two pieces of vma left */
719 vma->vm_flags |= VM_ACCOUNT;
721 find_vma(mm, vma->vm_end)->vm_flags |= VM_ACCOUNT;
727 static struct vm_area_struct *vma_to_resize(unsigned long addr,
728 unsigned long old_len, unsigned long new_len, unsigned long flags)
730 struct mm_struct *mm = current->mm;
731 struct vm_area_struct *vma;
734 vma = vma_lookup(mm, addr);
736 return ERR_PTR(-EFAULT);
739 * !old_len is a special case where an attempt is made to 'duplicate'
740 * a mapping. This makes no sense for private mappings as it will
741 * instead create a fresh/new mapping unrelated to the original. This
742 * is contrary to the basic idea of mremap which creates new mappings
743 * based on the original. There are no known use cases for this
744 * behavior. As a result, fail such attempts.
746 if (!old_len && !(vma->vm_flags & (VM_SHARED | VM_MAYSHARE))) {
747 pr_warn_once("%s (%d): attempted to duplicate a private mapping with mremap. This is not supported.\n", current->comm, current->pid);
748 return ERR_PTR(-EINVAL);
751 if ((flags & MREMAP_DONTUNMAP) &&
752 (vma->vm_flags & (VM_DONTEXPAND | VM_PFNMAP)))
753 return ERR_PTR(-EINVAL);
755 /* We can't remap across vm area boundaries */
756 if (old_len > vma->vm_end - addr)
757 return ERR_PTR(-EFAULT);
759 if (new_len == old_len)
762 /* Need to be careful about a growing mapping */
763 pgoff = (addr - vma->vm_start) >> PAGE_SHIFT;
764 pgoff += vma->vm_pgoff;
765 if (pgoff + (new_len >> PAGE_SHIFT) < pgoff)
766 return ERR_PTR(-EINVAL);
768 if (vma->vm_flags & (VM_DONTEXPAND | VM_PFNMAP))
769 return ERR_PTR(-EFAULT);
771 if (mlock_future_check(mm, vma->vm_flags, new_len - old_len))
772 return ERR_PTR(-EAGAIN);
774 if (!may_expand_vm(mm, vma->vm_flags,
775 (new_len - old_len) >> PAGE_SHIFT))
776 return ERR_PTR(-ENOMEM);
781 static unsigned long mremap_to(unsigned long addr, unsigned long old_len,
782 unsigned long new_addr, unsigned long new_len, bool *locked,
783 unsigned long flags, struct vm_userfaultfd_ctx *uf,
784 struct list_head *uf_unmap_early,
785 struct list_head *uf_unmap)
787 struct mm_struct *mm = current->mm;
788 struct vm_area_struct *vma;
789 unsigned long ret = -EINVAL;
790 unsigned long map_flags = 0;
792 if (offset_in_page(new_addr))
795 if (new_len > TASK_SIZE || new_addr > TASK_SIZE - new_len)
798 /* Ensure the old/new locations do not overlap */
799 if (addr + old_len > new_addr && new_addr + new_len > addr)
803 * move_vma() need us to stay 4 maps below the threshold, otherwise
804 * it will bail out at the very beginning.
805 * That is a problem if we have already unmaped the regions here
806 * (new_addr, and old_addr), because userspace will not know the
807 * state of the vma's after it gets -ENOMEM.
808 * So, to avoid such scenario we can pre-compute if the whole
809 * operation has high chances to success map-wise.
810 * Worst-scenario case is when both vma's (new_addr and old_addr) get
811 * split in 3 before unmapping it.
812 * That means 2 more maps (1 for each) to the ones we already hold.
813 * Check whether current map count plus 2 still leads us to 4 maps below
814 * the threshold, otherwise return -ENOMEM here to be more safe.
816 if ((mm->map_count + 2) >= sysctl_max_map_count - 3)
819 if (flags & MREMAP_FIXED) {
820 ret = do_munmap(mm, new_addr, new_len, uf_unmap_early);
825 if (old_len > new_len) {
826 ret = do_munmap(mm, addr+new_len, old_len - new_len, uf_unmap);
832 vma = vma_to_resize(addr, old_len, new_len, flags);
838 /* MREMAP_DONTUNMAP expands by old_len since old_len == new_len */
839 if (flags & MREMAP_DONTUNMAP &&
840 !may_expand_vm(mm, vma->vm_flags, old_len >> PAGE_SHIFT)) {
845 if (flags & MREMAP_FIXED)
846 map_flags |= MAP_FIXED;
848 if (vma->vm_flags & VM_MAYSHARE)
849 map_flags |= MAP_SHARED;
851 ret = get_unmapped_area(vma->vm_file, new_addr, new_len, vma->vm_pgoff +
852 ((addr - vma->vm_start) >> PAGE_SHIFT),
854 if (IS_ERR_VALUE(ret))
857 /* We got a new mapping */
858 if (!(flags & MREMAP_FIXED))
861 ret = move_vma(vma, addr, old_len, new_len, new_addr, locked, flags, uf,
868 static int vma_expandable(struct vm_area_struct *vma, unsigned long delta)
870 unsigned long end = vma->vm_end + delta;
872 if (end < vma->vm_end) /* overflow */
874 if (find_vma_intersection(vma->vm_mm, vma->vm_end, end))
876 if (get_unmapped_area(NULL, vma->vm_start, end - vma->vm_start,
877 0, MAP_FIXED) & ~PAGE_MASK)
883 * Expand (or shrink) an existing mapping, potentially moving it at the
884 * same time (controlled by the MREMAP_MAYMOVE flag and available VM space)
886 * MREMAP_FIXED option added 5-Dec-1999 by Benjamin LaHaise
887 * This option implies MREMAP_MAYMOVE.
889 SYSCALL_DEFINE5(mremap, unsigned long, addr, unsigned long, old_len,
890 unsigned long, new_len, unsigned long, flags,
891 unsigned long, new_addr)
893 struct mm_struct *mm = current->mm;
894 struct vm_area_struct *vma;
895 unsigned long ret = -EINVAL;
897 bool downgraded = false;
898 struct vm_userfaultfd_ctx uf = NULL_VM_UFFD_CTX;
899 LIST_HEAD(uf_unmap_early);
903 * There is a deliberate asymmetry here: we strip the pointer tag
904 * from the old address but leave the new address alone. This is
905 * for consistency with mmap(), where we prevent the creation of
906 * aliasing mappings in userspace by leaving the tag bits of the
907 * mapping address intact. A non-zero tag will cause the subsequent
908 * range checks to reject the address as invalid.
910 * See Documentation/arm64/tagged-address-abi.rst for more information.
912 addr = untagged_addr(addr);
914 if (flags & ~(MREMAP_FIXED | MREMAP_MAYMOVE | MREMAP_DONTUNMAP))
917 if (flags & MREMAP_FIXED && !(flags & MREMAP_MAYMOVE))
921 * MREMAP_DONTUNMAP is always a move and it does not allow resizing
924 if (flags & MREMAP_DONTUNMAP &&
925 (!(flags & MREMAP_MAYMOVE) || old_len != new_len))
929 if (offset_in_page(addr))
932 old_len = PAGE_ALIGN(old_len);
933 new_len = PAGE_ALIGN(new_len);
936 * We allow a zero old-len as a special case
937 * for DOS-emu "duplicate shm area" thing. But
938 * a zero new-len is nonsensical.
943 if (mmap_write_lock_killable(current->mm))
945 vma = vma_lookup(mm, addr);
951 if (is_vm_hugetlb_page(vma)) {
952 struct hstate *h __maybe_unused = hstate_vma(vma);
954 old_len = ALIGN(old_len, huge_page_size(h));
955 new_len = ALIGN(new_len, huge_page_size(h));
957 /* addrs must be huge page aligned */
958 if (addr & ~huge_page_mask(h))
960 if (new_addr & ~huge_page_mask(h))
964 * Don't allow remap expansion, because the underlying hugetlb
965 * reservation is not yet capable to handle split reservation.
967 if (new_len > old_len)
971 if (flags & (MREMAP_FIXED | MREMAP_DONTUNMAP)) {
972 ret = mremap_to(addr, old_len, new_addr, new_len,
973 &locked, flags, &uf, &uf_unmap_early,
979 * Always allow a shrinking remap: that just unmaps
980 * the unnecessary pages..
981 * do_mas_munmap does all the needed commit accounting, and
982 * downgrades mmap_lock to read if so directed.
984 if (old_len >= new_len) {
986 MA_STATE(mas, &mm->mm_mt, addr + new_len, addr + new_len);
988 retval = do_mas_munmap(&mas, mm, addr + new_len,
989 old_len - new_len, &uf_unmap, true);
990 /* Returning 1 indicates mmap_lock is downgraded to read. */
993 } else if (retval < 0 && old_len != new_len) {
1003 * Ok, we need to grow..
1005 vma = vma_to_resize(addr, old_len, new_len, flags);
1011 /* old_len exactly to the end of the area..
1013 if (old_len == vma->vm_end - addr) {
1014 /* can we just expand the current mapping? */
1015 if (vma_expandable(vma, new_len - old_len)) {
1016 long pages = (new_len - old_len) >> PAGE_SHIFT;
1017 unsigned long extension_start = addr + old_len;
1018 unsigned long extension_end = addr + new_len;
1019 pgoff_t extension_pgoff = vma->vm_pgoff +
1020 ((extension_start - vma->vm_start) >> PAGE_SHIFT);
1022 if (vma->vm_flags & VM_ACCOUNT) {
1023 if (security_vm_enough_memory_mm(mm, pages)) {
1030 * Function vma_merge() is called on the extension we
1031 * are adding to the already existing vma, vma_merge()
1032 * will merge this extension with the already existing
1033 * vma (expand operation itself) and possibly also with
1034 * the next vma if it becomes adjacent to the expanded
1035 * vma and otherwise compatible.
1037 * However, vma_merge() can currently fail due to
1038 * is_mergeable_vma() check for vm_ops->close (see the
1039 * comment there). Yet this should not prevent vma
1040 * expanding, so perform a simple expand for such vma.
1041 * Ideally the check for close op should be only done
1042 * when a vma would be actually removed due to a merge.
1044 if (!vma->vm_ops || !vma->vm_ops->close) {
1045 vma = vma_merge(mm, vma, extension_start, extension_end,
1046 vma->vm_flags, vma->anon_vma, vma->vm_file,
1047 extension_pgoff, vma_policy(vma),
1048 vma->vm_userfaultfd_ctx, anon_vma_name(vma));
1049 } else if (vma_adjust(vma, vma->vm_start, addr + new_len,
1050 vma->vm_pgoff, NULL)) {
1054 vm_unacct_memory(pages);
1059 vm_stat_account(mm, vma->vm_flags, pages);
1060 if (vma->vm_flags & VM_LOCKED) {
1061 mm->locked_vm += pages;
1071 * We weren't able to just expand or shrink the area,
1072 * we need to create a new one and move it..
1075 if (flags & MREMAP_MAYMOVE) {
1076 unsigned long map_flags = 0;
1077 if (vma->vm_flags & VM_MAYSHARE)
1078 map_flags |= MAP_SHARED;
1080 new_addr = get_unmapped_area(vma->vm_file, 0, new_len,
1082 ((addr - vma->vm_start) >> PAGE_SHIFT),
1084 if (IS_ERR_VALUE(new_addr)) {
1089 ret = move_vma(vma, addr, old_len, new_len, new_addr,
1090 &locked, flags, &uf, &uf_unmap);
1093 if (offset_in_page(ret))
1096 mmap_read_unlock(current->mm);
1098 mmap_write_unlock(current->mm);
1099 if (locked && new_len > old_len)
1100 mm_populate(new_addr + old_len, new_len - old_len);
1101 userfaultfd_unmap_complete(mm, &uf_unmap_early);
1102 mremap_userfaultfd_complete(&uf, addr, ret, old_len);
1103 userfaultfd_unmap_complete(mm, &uf_unmap);