1 // SPDX-License-Identifier: GPL-2.0
5 * (C) Copyright 1996 Linus Torvalds
7 * Address space accounting code <alan@lxorguk.ukuu.org.uk>
8 * (C) Copyright 2002 Red Hat Inc, All Rights Reserved
12 #include <linux/mm_inline.h>
13 #include <linux/hugetlb.h>
14 #include <linux/shm.h>
15 #include <linux/ksm.h>
16 #include <linux/mman.h>
17 #include <linux/swap.h>
18 #include <linux/capability.h>
20 #include <linux/swapops.h>
21 #include <linux/highmem.h>
22 #include <linux/security.h>
23 #include <linux/syscalls.h>
24 #include <linux/mmu_notifier.h>
25 #include <linux/uaccess.h>
26 #include <linux/userfaultfd_k.h>
27 #include <linux/mempolicy.h>
29 #include <asm/cacheflush.h>
31 #include <asm/pgalloc.h>
35 static pud_t *get_old_pud(struct mm_struct *mm, unsigned long addr)
41 pgd = pgd_offset(mm, addr);
42 if (pgd_none_or_clear_bad(pgd))
45 p4d = p4d_offset(pgd, addr);
46 if (p4d_none_or_clear_bad(p4d))
49 pud = pud_offset(p4d, addr);
50 if (pud_none_or_clear_bad(pud))
56 static pmd_t *get_old_pmd(struct mm_struct *mm, unsigned long addr)
61 pud = get_old_pud(mm, addr);
65 pmd = pmd_offset(pud, addr);
72 static pud_t *alloc_new_pud(struct mm_struct *mm, struct vm_area_struct *vma,
78 pgd = pgd_offset(mm, addr);
79 p4d = p4d_alloc(mm, pgd, addr);
83 return pud_alloc(mm, p4d, addr);
86 static pmd_t *alloc_new_pmd(struct mm_struct *mm, struct vm_area_struct *vma,
92 pud = alloc_new_pud(mm, vma, addr);
96 pmd = pmd_alloc(mm, pud, addr);
100 VM_BUG_ON(pmd_trans_huge(*pmd));
105 static void take_rmap_locks(struct vm_area_struct *vma)
108 i_mmap_lock_write(vma->vm_file->f_mapping);
110 anon_vma_lock_write(vma->anon_vma);
113 static void drop_rmap_locks(struct vm_area_struct *vma)
116 anon_vma_unlock_write(vma->anon_vma);
118 i_mmap_unlock_write(vma->vm_file->f_mapping);
121 static pte_t move_soft_dirty_pte(pte_t pte)
124 * Set soft dirty bit so we can notice
125 * in userspace the ptes were moved.
127 #ifdef CONFIG_MEM_SOFT_DIRTY
128 if (pte_present(pte))
129 pte = pte_mksoft_dirty(pte);
130 else if (is_swap_pte(pte))
131 pte = pte_swp_mksoft_dirty(pte);
136 static int move_ptes(struct vm_area_struct *vma, pmd_t *old_pmd,
137 unsigned long old_addr, unsigned long old_end,
138 struct vm_area_struct *new_vma, pmd_t *new_pmd,
139 unsigned long new_addr, bool need_rmap_locks)
141 struct mm_struct *mm = vma->vm_mm;
142 pte_t *old_pte, *new_pte, pte;
143 spinlock_t *old_ptl, *new_ptl;
144 bool force_flush = false;
145 unsigned long len = old_end - old_addr;
149 * When need_rmap_locks is true, we take the i_mmap_rwsem and anon_vma
150 * locks to ensure that rmap will always observe either the old or the
151 * new ptes. This is the easiest way to avoid races with
152 * truncate_pagecache(), page migration, etc...
154 * When need_rmap_locks is false, we use other ways to avoid
157 * - During exec() shift_arg_pages(), we use a specially tagged vma
158 * which rmap call sites look for using vma_is_temporary_stack().
160 * - During mremap(), new_vma is often known to be placed after vma
161 * in rmap traversal order. This ensures rmap will always observe
162 * either the old pte, or the new pte, or both (the page table locks
163 * serialize access to individual ptes, but only rmap traversal
164 * order guarantees that we won't miss both the old and new ptes).
167 take_rmap_locks(vma);
170 * We don't have to worry about the ordering of src and dst
171 * pte locks because exclusive mmap_lock prevents deadlock.
173 old_pte = pte_offset_map_lock(mm, old_pmd, old_addr, &old_ptl);
178 new_pte = pte_offset_map_nolock(mm, new_pmd, new_addr, &new_ptl);
180 pte_unmap_unlock(old_pte, old_ptl);
184 if (new_ptl != old_ptl)
185 spin_lock_nested(new_ptl, SINGLE_DEPTH_NESTING);
186 flush_tlb_batched_pending(vma->vm_mm);
187 arch_enter_lazy_mmu_mode();
189 for (; old_addr < old_end; old_pte++, old_addr += PAGE_SIZE,
190 new_pte++, new_addr += PAGE_SIZE) {
191 if (pte_none(ptep_get(old_pte)))
194 pte = ptep_get_and_clear(mm, old_addr, old_pte);
196 * If we are remapping a valid PTE, make sure
197 * to flush TLB before we drop the PTL for the
200 * NOTE! Both old and new PTL matter: the old one
201 * for racing with page_mkclean(), the new one to
202 * make sure the physical page stays valid until
203 * the TLB entry for the old mapping has been
206 if (pte_present(pte))
208 pte = move_pte(pte, new_vma->vm_page_prot, old_addr, new_addr);
209 pte = move_soft_dirty_pte(pte);
210 set_pte_at(mm, new_addr, new_pte, pte);
213 arch_leave_lazy_mmu_mode();
215 flush_tlb_range(vma, old_end - len, old_end);
216 if (new_ptl != old_ptl)
217 spin_unlock(new_ptl);
218 pte_unmap(new_pte - 1);
219 pte_unmap_unlock(old_pte - 1, old_ptl);
222 drop_rmap_locks(vma);
226 #ifndef arch_supports_page_table_move
227 #define arch_supports_page_table_move arch_supports_page_table_move
228 static inline bool arch_supports_page_table_move(void)
230 return IS_ENABLED(CONFIG_HAVE_MOVE_PMD) ||
231 IS_ENABLED(CONFIG_HAVE_MOVE_PUD);
235 #ifdef CONFIG_HAVE_MOVE_PMD
236 static bool move_normal_pmd(struct vm_area_struct *vma, unsigned long old_addr,
237 unsigned long new_addr, pmd_t *old_pmd, pmd_t *new_pmd)
239 spinlock_t *old_ptl, *new_ptl;
240 struct mm_struct *mm = vma->vm_mm;
243 if (!arch_supports_page_table_move())
246 * The destination pmd shouldn't be established, free_pgtables()
247 * should have released it.
249 * However, there's a case during execve() where we use mremap
250 * to move the initial stack, and in that case the target area
251 * may overlap the source area (always moving down).
253 * If everything is PMD-aligned, that works fine, as moving
254 * each pmd down will clear the source pmd. But if we first
255 * have a few 4kB-only pages that get moved down, and then
256 * hit the "now the rest is PMD-aligned, let's do everything
257 * one pmd at a time", we will still have the old (now empty
258 * of any 4kB pages, but still there) PMD in the page table
261 * Warn on it once - because we really should try to figure
262 * out how to do this better - but then say "I won't move
265 * One alternative might be to just unmap the target pmd at
266 * this point, and verify that it really is empty. We'll see.
268 if (WARN_ON_ONCE(!pmd_none(*new_pmd)))
272 * We don't have to worry about the ordering of src and dst
273 * ptlocks because exclusive mmap_lock prevents deadlock.
275 old_ptl = pmd_lock(vma->vm_mm, old_pmd);
276 new_ptl = pmd_lockptr(mm, new_pmd);
277 if (new_ptl != old_ptl)
278 spin_lock_nested(new_ptl, SINGLE_DEPTH_NESTING);
284 VM_BUG_ON(!pmd_none(*new_pmd));
286 pmd_populate(mm, new_pmd, pmd_pgtable(pmd));
287 flush_tlb_range(vma, old_addr, old_addr + PMD_SIZE);
288 if (new_ptl != old_ptl)
289 spin_unlock(new_ptl);
290 spin_unlock(old_ptl);
295 static inline bool move_normal_pmd(struct vm_area_struct *vma,
296 unsigned long old_addr, unsigned long new_addr, pmd_t *old_pmd,
303 #if CONFIG_PGTABLE_LEVELS > 2 && defined(CONFIG_HAVE_MOVE_PUD)
304 static bool move_normal_pud(struct vm_area_struct *vma, unsigned long old_addr,
305 unsigned long new_addr, pud_t *old_pud, pud_t *new_pud)
307 spinlock_t *old_ptl, *new_ptl;
308 struct mm_struct *mm = vma->vm_mm;
311 if (!arch_supports_page_table_move())
314 * The destination pud shouldn't be established, free_pgtables()
315 * should have released it.
317 if (WARN_ON_ONCE(!pud_none(*new_pud)))
321 * We don't have to worry about the ordering of src and dst
322 * ptlocks because exclusive mmap_lock prevents deadlock.
324 old_ptl = pud_lock(vma->vm_mm, old_pud);
325 new_ptl = pud_lockptr(mm, new_pud);
326 if (new_ptl != old_ptl)
327 spin_lock_nested(new_ptl, SINGLE_DEPTH_NESTING);
333 VM_BUG_ON(!pud_none(*new_pud));
335 pud_populate(mm, new_pud, pud_pgtable(pud));
336 flush_tlb_range(vma, old_addr, old_addr + PUD_SIZE);
337 if (new_ptl != old_ptl)
338 spin_unlock(new_ptl);
339 spin_unlock(old_ptl);
344 static inline bool move_normal_pud(struct vm_area_struct *vma,
345 unsigned long old_addr, unsigned long new_addr, pud_t *old_pud,
352 #ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
353 static bool move_huge_pud(struct vm_area_struct *vma, unsigned long old_addr,
354 unsigned long new_addr, pud_t *old_pud, pud_t *new_pud)
356 spinlock_t *old_ptl, *new_ptl;
357 struct mm_struct *mm = vma->vm_mm;
361 * The destination pud shouldn't be established, free_pgtables()
362 * should have released it.
364 if (WARN_ON_ONCE(!pud_none(*new_pud)))
368 * We don't have to worry about the ordering of src and dst
369 * ptlocks because exclusive mmap_lock prevents deadlock.
371 old_ptl = pud_lock(vma->vm_mm, old_pud);
372 new_ptl = pud_lockptr(mm, new_pud);
373 if (new_ptl != old_ptl)
374 spin_lock_nested(new_ptl, SINGLE_DEPTH_NESTING);
380 VM_BUG_ON(!pud_none(*new_pud));
382 /* Set the new pud */
383 /* mark soft_ditry when we add pud level soft dirty support */
384 set_pud_at(mm, new_addr, new_pud, pud);
385 flush_pud_tlb_range(vma, old_addr, old_addr + HPAGE_PUD_SIZE);
386 if (new_ptl != old_ptl)
387 spin_unlock(new_ptl);
388 spin_unlock(old_ptl);
393 static bool move_huge_pud(struct vm_area_struct *vma, unsigned long old_addr,
394 unsigned long new_addr, pud_t *old_pud, pud_t *new_pud)
410 * Returns an extent of the corresponding size for the pgt_entry specified if
411 * valid. Else returns a smaller extent bounded by the end of the source and
412 * destination pgt_entry.
414 static __always_inline unsigned long get_extent(enum pgt_entry entry,
415 unsigned long old_addr, unsigned long old_end,
416 unsigned long new_addr)
418 unsigned long next, extent, mask, size;
436 next = (old_addr + size) & mask;
437 /* even if next overflowed, extent below will be ok */
438 extent = next - old_addr;
439 if (extent > old_end - old_addr)
440 extent = old_end - old_addr;
441 next = (new_addr + size) & mask;
442 if (extent > next - new_addr)
443 extent = next - new_addr;
448 * Attempts to speedup the move by moving entry at the level corresponding to
449 * pgt_entry. Returns true if the move was successful, else false.
451 static bool move_pgt_entry(enum pgt_entry entry, struct vm_area_struct *vma,
452 unsigned long old_addr, unsigned long new_addr,
453 void *old_entry, void *new_entry, bool need_rmap_locks)
457 /* See comment in move_ptes() */
459 take_rmap_locks(vma);
463 moved = move_normal_pmd(vma, old_addr, new_addr, old_entry,
467 moved = move_normal_pud(vma, old_addr, new_addr, old_entry,
471 moved = IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) &&
472 move_huge_pmd(vma, old_addr, new_addr, old_entry,
476 moved = IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) &&
477 move_huge_pud(vma, old_addr, new_addr, old_entry,
487 drop_rmap_locks(vma);
492 unsigned long move_page_tables(struct vm_area_struct *vma,
493 unsigned long old_addr, struct vm_area_struct *new_vma,
494 unsigned long new_addr, unsigned long len,
495 bool need_rmap_locks)
497 unsigned long extent, old_end;
498 struct mmu_notifier_range range;
499 pmd_t *old_pmd, *new_pmd;
500 pud_t *old_pud, *new_pud;
505 old_end = old_addr + len;
507 if (is_vm_hugetlb_page(vma))
508 return move_hugetlb_page_tables(vma, new_vma, old_addr,
511 flush_cache_range(vma, old_addr, old_end);
512 mmu_notifier_range_init(&range, MMU_NOTIFY_UNMAP, 0, vma->vm_mm,
514 mmu_notifier_invalidate_range_start(&range);
516 for (; old_addr < old_end; old_addr += extent, new_addr += extent) {
519 * If extent is PUD-sized try to speed up the move by moving at the
520 * PUD level if possible.
522 extent = get_extent(NORMAL_PUD, old_addr, old_end, new_addr);
524 old_pud = get_old_pud(vma->vm_mm, old_addr);
527 new_pud = alloc_new_pud(vma->vm_mm, vma, new_addr);
530 if (pud_trans_huge(*old_pud) || pud_devmap(*old_pud)) {
531 if (extent == HPAGE_PUD_SIZE) {
532 move_pgt_entry(HPAGE_PUD, vma, old_addr, new_addr,
533 old_pud, new_pud, need_rmap_locks);
534 /* We ignore and continue on error? */
537 } else if (IS_ENABLED(CONFIG_HAVE_MOVE_PUD) && extent == PUD_SIZE) {
539 if (move_pgt_entry(NORMAL_PUD, vma, old_addr, new_addr,
540 old_pud, new_pud, true))
544 extent = get_extent(NORMAL_PMD, old_addr, old_end, new_addr);
545 old_pmd = get_old_pmd(vma->vm_mm, old_addr);
548 new_pmd = alloc_new_pmd(vma->vm_mm, vma, new_addr);
552 if (is_swap_pmd(*old_pmd) || pmd_trans_huge(*old_pmd) ||
553 pmd_devmap(*old_pmd)) {
554 if (extent == HPAGE_PMD_SIZE &&
555 move_pgt_entry(HPAGE_PMD, vma, old_addr, new_addr,
556 old_pmd, new_pmd, need_rmap_locks))
558 split_huge_pmd(vma, old_pmd, old_addr);
559 } else if (IS_ENABLED(CONFIG_HAVE_MOVE_PMD) &&
560 extent == PMD_SIZE) {
562 * If the extent is PMD-sized, try to speed the move by
563 * moving at the PMD level if possible.
565 if (move_pgt_entry(NORMAL_PMD, vma, old_addr, new_addr,
566 old_pmd, new_pmd, true))
569 if (pmd_none(*old_pmd))
571 if (pte_alloc(new_vma->vm_mm, new_pmd))
573 if (move_ptes(vma, old_pmd, old_addr, old_addr + extent,
574 new_vma, new_pmd, new_addr, need_rmap_locks) < 0)
578 mmu_notifier_invalidate_range_end(&range);
580 return len + old_addr - old_end; /* how much done */
583 static unsigned long move_vma(struct vm_area_struct *vma,
584 unsigned long old_addr, unsigned long old_len,
585 unsigned long new_len, unsigned long new_addr,
586 bool *locked, unsigned long flags,
587 struct vm_userfaultfd_ctx *uf, struct list_head *uf_unmap)
589 long to_account = new_len - old_len;
590 struct mm_struct *mm = vma->vm_mm;
591 struct vm_area_struct *new_vma;
592 unsigned long vm_flags = vma->vm_flags;
593 unsigned long new_pgoff;
594 unsigned long moved_len;
595 unsigned long account_start = 0;
596 unsigned long account_end = 0;
597 unsigned long hiwater_vm;
599 bool need_rmap_locks;
600 struct vma_iterator vmi;
603 * We'd prefer to avoid failure later on in do_munmap:
604 * which may split one vma into three before unmapping.
606 if (mm->map_count >= sysctl_max_map_count - 3)
609 if (unlikely(flags & MREMAP_DONTUNMAP))
610 to_account = new_len;
612 if (vma->vm_ops && vma->vm_ops->may_split) {
613 if (vma->vm_start != old_addr)
614 err = vma->vm_ops->may_split(vma, old_addr);
615 if (!err && vma->vm_end != old_addr + old_len)
616 err = vma->vm_ops->may_split(vma, old_addr + old_len);
622 * Advise KSM to break any KSM pages in the area to be moved:
623 * it would be confusing if they were to turn up at the new
624 * location, where they happen to coincide with different KSM
625 * pages recently unmapped. But leave vma->vm_flags as it was,
626 * so KSM can come around to merge on vma and new_vma afterwards.
628 err = ksm_madvise(vma, old_addr, old_addr + old_len,
629 MADV_UNMERGEABLE, &vm_flags);
633 if (vm_flags & VM_ACCOUNT) {
634 if (security_vm_enough_memory_mm(mm, to_account >> PAGE_SHIFT))
638 vma_start_write(vma);
639 new_pgoff = vma->vm_pgoff + ((old_addr - vma->vm_start) >> PAGE_SHIFT);
640 new_vma = copy_vma(&vma, new_addr, new_len, new_pgoff,
643 if (vm_flags & VM_ACCOUNT)
644 vm_unacct_memory(to_account >> PAGE_SHIFT);
648 moved_len = move_page_tables(vma, old_addr, new_vma, new_addr, old_len,
650 if (moved_len < old_len) {
652 } else if (vma->vm_ops && vma->vm_ops->mremap) {
653 err = vma->vm_ops->mremap(new_vma);
658 * On error, move entries back from new area to old,
659 * which will succeed since page tables still there,
660 * and then proceed to unmap new area instead of old.
662 move_page_tables(new_vma, new_addr, vma, old_addr, moved_len,
669 mremap_userfaultfd_prep(new_vma, uf);
672 if (is_vm_hugetlb_page(vma)) {
673 clear_vma_resv_huge_pages(vma);
676 /* Conceal VM_ACCOUNT so old reservation is not undone */
677 if (vm_flags & VM_ACCOUNT && !(flags & MREMAP_DONTUNMAP)) {
678 vm_flags_clear(vma, VM_ACCOUNT);
679 if (vma->vm_start < old_addr)
680 account_start = vma->vm_start;
681 if (vma->vm_end > old_addr + old_len)
682 account_end = vma->vm_end;
686 * If we failed to move page tables we still do total_vm increment
687 * since do_munmap() will decrement it by old_len == new_len.
689 * Since total_vm is about to be raised artificially high for a
690 * moment, we need to restore high watermark afterwards: if stats
691 * are taken meanwhile, total_vm and hiwater_vm appear too high.
692 * If this were a serious issue, we'd add a flag to do_munmap().
694 hiwater_vm = mm->hiwater_vm;
695 vm_stat_account(mm, vma->vm_flags, new_len >> PAGE_SHIFT);
697 /* Tell pfnmap has moved from this vma */
698 if (unlikely(vma->vm_flags & VM_PFNMAP))
699 untrack_pfn_clear(vma);
701 if (unlikely(!err && (flags & MREMAP_DONTUNMAP))) {
702 /* We always clear VM_LOCKED[ONFAULT] on the old vma */
703 vm_flags_clear(vma, VM_LOCKED_MASK);
706 * anon_vma links of the old vma is no longer needed after its page
707 * table has been moved.
709 if (new_vma != vma && vma->vm_start == old_addr &&
710 vma->vm_end == (old_addr + old_len))
711 unlink_anon_vmas(vma);
713 /* Because we won't unmap we don't need to touch locked_vm */
717 vma_iter_init(&vmi, mm, old_addr);
718 if (!do_vmi_munmap(&vmi, mm, old_addr, old_len, uf_unmap, false)) {
719 /* OOM: unable to split vma, just get accounts right */
720 if (vm_flags & VM_ACCOUNT && !(flags & MREMAP_DONTUNMAP))
721 vm_acct_memory(old_len >> PAGE_SHIFT);
722 account_start = account_end = 0;
725 if (vm_flags & VM_LOCKED) {
726 mm->locked_vm += new_len >> PAGE_SHIFT;
730 mm->hiwater_vm = hiwater_vm;
732 /* Restore VM_ACCOUNT if one or two pieces of vma left */
734 vma = vma_prev(&vmi);
735 vm_flags_set(vma, VM_ACCOUNT);
739 vma = vma_next(&vmi);
740 vm_flags_set(vma, VM_ACCOUNT);
746 static struct vm_area_struct *vma_to_resize(unsigned long addr,
747 unsigned long old_len, unsigned long new_len, unsigned long flags)
749 struct mm_struct *mm = current->mm;
750 struct vm_area_struct *vma;
753 vma = vma_lookup(mm, addr);
755 return ERR_PTR(-EFAULT);
758 * !old_len is a special case where an attempt is made to 'duplicate'
759 * a mapping. This makes no sense for private mappings as it will
760 * instead create a fresh/new mapping unrelated to the original. This
761 * is contrary to the basic idea of mremap which creates new mappings
762 * based on the original. There are no known use cases for this
763 * behavior. As a result, fail such attempts.
765 if (!old_len && !(vma->vm_flags & (VM_SHARED | VM_MAYSHARE))) {
766 pr_warn_once("%s (%d): attempted to duplicate a private mapping with mremap. This is not supported.\n", current->comm, current->pid);
767 return ERR_PTR(-EINVAL);
770 if ((flags & MREMAP_DONTUNMAP) &&
771 (vma->vm_flags & (VM_DONTEXPAND | VM_PFNMAP)))
772 return ERR_PTR(-EINVAL);
774 /* We can't remap across vm area boundaries */
775 if (old_len > vma->vm_end - addr)
776 return ERR_PTR(-EFAULT);
778 if (new_len == old_len)
781 /* Need to be careful about a growing mapping */
782 pgoff = (addr - vma->vm_start) >> PAGE_SHIFT;
783 pgoff += vma->vm_pgoff;
784 if (pgoff + (new_len >> PAGE_SHIFT) < pgoff)
785 return ERR_PTR(-EINVAL);
787 if (vma->vm_flags & (VM_DONTEXPAND | VM_PFNMAP))
788 return ERR_PTR(-EFAULT);
790 if (!mlock_future_ok(mm, vma->vm_flags, new_len - old_len))
791 return ERR_PTR(-EAGAIN);
793 if (!may_expand_vm(mm, vma->vm_flags,
794 (new_len - old_len) >> PAGE_SHIFT))
795 return ERR_PTR(-ENOMEM);
800 static unsigned long mremap_to(unsigned long addr, unsigned long old_len,
801 unsigned long new_addr, unsigned long new_len, bool *locked,
802 unsigned long flags, struct vm_userfaultfd_ctx *uf,
803 struct list_head *uf_unmap_early,
804 struct list_head *uf_unmap)
806 struct mm_struct *mm = current->mm;
807 struct vm_area_struct *vma;
808 unsigned long ret = -EINVAL;
809 unsigned long map_flags = 0;
811 if (offset_in_page(new_addr))
814 if (new_len > TASK_SIZE || new_addr > TASK_SIZE - new_len)
817 /* Ensure the old/new locations do not overlap */
818 if (addr + old_len > new_addr && new_addr + new_len > addr)
822 * move_vma() need us to stay 4 maps below the threshold, otherwise
823 * it will bail out at the very beginning.
824 * That is a problem if we have already unmaped the regions here
825 * (new_addr, and old_addr), because userspace will not know the
826 * state of the vma's after it gets -ENOMEM.
827 * So, to avoid such scenario we can pre-compute if the whole
828 * operation has high chances to success map-wise.
829 * Worst-scenario case is when both vma's (new_addr and old_addr) get
830 * split in 3 before unmapping it.
831 * That means 2 more maps (1 for each) to the ones we already hold.
832 * Check whether current map count plus 2 still leads us to 4 maps below
833 * the threshold, otherwise return -ENOMEM here to be more safe.
835 if ((mm->map_count + 2) >= sysctl_max_map_count - 3)
838 if (flags & MREMAP_FIXED) {
839 ret = do_munmap(mm, new_addr, new_len, uf_unmap_early);
844 if (old_len > new_len) {
845 ret = do_munmap(mm, addr+new_len, old_len - new_len, uf_unmap);
851 vma = vma_to_resize(addr, old_len, new_len, flags);
857 /* MREMAP_DONTUNMAP expands by old_len since old_len == new_len */
858 if (flags & MREMAP_DONTUNMAP &&
859 !may_expand_vm(mm, vma->vm_flags, old_len >> PAGE_SHIFT)) {
864 if (flags & MREMAP_FIXED)
865 map_flags |= MAP_FIXED;
867 if (vma->vm_flags & VM_MAYSHARE)
868 map_flags |= MAP_SHARED;
870 ret = get_unmapped_area(vma->vm_file, new_addr, new_len, vma->vm_pgoff +
871 ((addr - vma->vm_start) >> PAGE_SHIFT),
873 if (IS_ERR_VALUE(ret))
876 /* We got a new mapping */
877 if (!(flags & MREMAP_FIXED))
880 ret = move_vma(vma, addr, old_len, new_len, new_addr, locked, flags, uf,
887 static int vma_expandable(struct vm_area_struct *vma, unsigned long delta)
889 unsigned long end = vma->vm_end + delta;
891 if (end < vma->vm_end) /* overflow */
893 if (find_vma_intersection(vma->vm_mm, vma->vm_end, end))
895 if (get_unmapped_area(NULL, vma->vm_start, end - vma->vm_start,
896 0, MAP_FIXED) & ~PAGE_MASK)
902 * Expand (or shrink) an existing mapping, potentially moving it at the
903 * same time (controlled by the MREMAP_MAYMOVE flag and available VM space)
905 * MREMAP_FIXED option added 5-Dec-1999 by Benjamin LaHaise
906 * This option implies MREMAP_MAYMOVE.
908 SYSCALL_DEFINE5(mremap, unsigned long, addr, unsigned long, old_len,
909 unsigned long, new_len, unsigned long, flags,
910 unsigned long, new_addr)
912 struct mm_struct *mm = current->mm;
913 struct vm_area_struct *vma;
914 unsigned long ret = -EINVAL;
916 struct vm_userfaultfd_ctx uf = NULL_VM_UFFD_CTX;
917 LIST_HEAD(uf_unmap_early);
921 * There is a deliberate asymmetry here: we strip the pointer tag
922 * from the old address but leave the new address alone. This is
923 * for consistency with mmap(), where we prevent the creation of
924 * aliasing mappings in userspace by leaving the tag bits of the
925 * mapping address intact. A non-zero tag will cause the subsequent
926 * range checks to reject the address as invalid.
928 * See Documentation/arch/arm64/tagged-address-abi.rst for more
931 addr = untagged_addr(addr);
933 if (flags & ~(MREMAP_FIXED | MREMAP_MAYMOVE | MREMAP_DONTUNMAP))
936 if (flags & MREMAP_FIXED && !(flags & MREMAP_MAYMOVE))
940 * MREMAP_DONTUNMAP is always a move and it does not allow resizing
943 if (flags & MREMAP_DONTUNMAP &&
944 (!(flags & MREMAP_MAYMOVE) || old_len != new_len))
948 if (offset_in_page(addr))
951 old_len = PAGE_ALIGN(old_len);
952 new_len = PAGE_ALIGN(new_len);
955 * We allow a zero old-len as a special case
956 * for DOS-emu "duplicate shm area" thing. But
957 * a zero new-len is nonsensical.
962 if (mmap_write_lock_killable(current->mm))
964 vma = vma_lookup(mm, addr);
970 if (is_vm_hugetlb_page(vma)) {
971 struct hstate *h __maybe_unused = hstate_vma(vma);
973 old_len = ALIGN(old_len, huge_page_size(h));
974 new_len = ALIGN(new_len, huge_page_size(h));
976 /* addrs must be huge page aligned */
977 if (addr & ~huge_page_mask(h))
979 if (new_addr & ~huge_page_mask(h))
983 * Don't allow remap expansion, because the underlying hugetlb
984 * reservation is not yet capable to handle split reservation.
986 if (new_len > old_len)
990 if (flags & (MREMAP_FIXED | MREMAP_DONTUNMAP)) {
991 ret = mremap_to(addr, old_len, new_addr, new_len,
992 &locked, flags, &uf, &uf_unmap_early,
998 * Always allow a shrinking remap: that just unmaps
999 * the unnecessary pages..
1000 * do_vmi_munmap does all the needed commit accounting, and
1001 * unlocks the mmap_lock if so directed.
1003 if (old_len >= new_len) {
1004 VMA_ITERATOR(vmi, mm, addr + new_len);
1006 if (old_len == new_len) {
1011 ret = do_vmi_munmap(&vmi, mm, addr + new_len, old_len - new_len,
1021 * Ok, we need to grow..
1023 vma = vma_to_resize(addr, old_len, new_len, flags);
1029 /* old_len exactly to the end of the area..
1031 if (old_len == vma->vm_end - addr) {
1032 /* can we just expand the current mapping? */
1033 if (vma_expandable(vma, new_len - old_len)) {
1034 long pages = (new_len - old_len) >> PAGE_SHIFT;
1035 unsigned long extension_start = addr + old_len;
1036 unsigned long extension_end = addr + new_len;
1037 pgoff_t extension_pgoff = vma->vm_pgoff +
1038 ((extension_start - vma->vm_start) >> PAGE_SHIFT);
1039 VMA_ITERATOR(vmi, mm, extension_start);
1041 if (vma->vm_flags & VM_ACCOUNT) {
1042 if (security_vm_enough_memory_mm(mm, pages)) {
1049 * Function vma_merge() is called on the extension we
1050 * are adding to the already existing vma, vma_merge()
1051 * will merge this extension with the already existing
1052 * vma (expand operation itself) and possibly also with
1053 * the next vma if it becomes adjacent to the expanded
1054 * vma and otherwise compatible.
1056 vma = vma_merge(&vmi, mm, vma, extension_start,
1057 extension_end, vma->vm_flags, vma->anon_vma,
1058 vma->vm_file, extension_pgoff, vma_policy(vma),
1059 vma->vm_userfaultfd_ctx, anon_vma_name(vma));
1061 vm_unacct_memory(pages);
1066 vm_stat_account(mm, vma->vm_flags, pages);
1067 if (vma->vm_flags & VM_LOCKED) {
1068 mm->locked_vm += pages;
1078 * We weren't able to just expand or shrink the area,
1079 * we need to create a new one and move it..
1082 if (flags & MREMAP_MAYMOVE) {
1083 unsigned long map_flags = 0;
1084 if (vma->vm_flags & VM_MAYSHARE)
1085 map_flags |= MAP_SHARED;
1087 new_addr = get_unmapped_area(vma->vm_file, 0, new_len,
1089 ((addr - vma->vm_start) >> PAGE_SHIFT),
1091 if (IS_ERR_VALUE(new_addr)) {
1096 ret = move_vma(vma, addr, old_len, new_len, new_addr,
1097 &locked, flags, &uf, &uf_unmap);
1100 if (offset_in_page(ret))
1102 mmap_write_unlock(current->mm);
1103 if (locked && new_len > old_len)
1104 mm_populate(new_addr + old_len, new_len - old_len);
1106 userfaultfd_unmap_complete(mm, &uf_unmap_early);
1107 mremap_userfaultfd_complete(&uf, addr, ret, old_len);
1108 userfaultfd_unmap_complete(mm, &uf_unmap);