1 // SPDX-License-Identifier: GPL-2.0
5 * (C) Copyright 1994 Linus Torvalds
6 * (C) Copyright 2002 Christoph Hellwig
8 * Address space accounting code <alan@lxorguk.ukuu.org.uk>
9 * (C) Copyright 2002 Red Hat Inc, All Rights Reserved
12 #include <linux/pagewalk.h>
13 #include <linux/hugetlb.h>
14 #include <linux/shm.h>
15 #include <linux/mman.h>
17 #include <linux/highmem.h>
18 #include <linux/security.h>
19 #include <linux/mempolicy.h>
20 #include <linux/personality.h>
21 #include <linux/syscalls.h>
22 #include <linux/swap.h>
23 #include <linux/swapops.h>
24 #include <linux/mmu_notifier.h>
25 #include <linux/migrate.h>
26 #include <linux/perf_event.h>
27 #include <linux/pkeys.h>
28 #include <linux/ksm.h>
29 #include <linux/uaccess.h>
30 #include <linux/mm_inline.h>
31 #include <linux/pgtable.h>
32 #include <linux/sched/sysctl.h>
33 #include <linux/userfaultfd_k.h>
34 #include <linux/memory-tiers.h>
35 #include <asm/cacheflush.h>
36 #include <asm/mmu_context.h>
37 #include <asm/tlbflush.h>
42 bool can_change_pte_writable(struct vm_area_struct *vma, unsigned long addr,
47 if (WARN_ON_ONCE(!(vma->vm_flags & VM_WRITE)))
50 /* Don't touch entries that are not even readable. */
51 if (pte_protnone(pte))
54 /* Do we need write faults for softdirty tracking? */
55 if (vma_soft_dirty_enabled(vma) && !pte_soft_dirty(pte))
58 /* Do we need write faults for uffd-wp tracking? */
59 if (userfaultfd_pte_wp(vma, pte))
62 if (!(vma->vm_flags & VM_SHARED)) {
64 * Writable MAP_PRIVATE mapping: We can only special-case on
65 * exclusive anonymous pages, because we know that our
66 * write-fault handler similarly would map them writable without
67 * any additional checks while holding the PT lock.
69 page = vm_normal_page(vma, addr, pte);
70 return page && PageAnon(page) && PageAnonExclusive(page);
74 * Writable MAP_SHARED mapping: "clean" might indicate that the FS still
75 * needs a real write-fault for writenotify
76 * (see vma_wants_writenotify()). If "dirty", the assumption is that the
77 * FS was already notified and we can simply mark the PTE writable
78 * just like the write-fault handler would do.
80 return pte_dirty(pte);
83 static long change_pte_range(struct mmu_gather *tlb,
84 struct vm_area_struct *vma, pmd_t *pmd, unsigned long addr,
85 unsigned long end, pgprot_t newprot, unsigned long cp_flags)
90 int target_node = NUMA_NO_NODE;
91 bool prot_numa = cp_flags & MM_CP_PROT_NUMA;
92 bool uffd_wp = cp_flags & MM_CP_UFFD_WP;
93 bool uffd_wp_resolve = cp_flags & MM_CP_UFFD_WP_RESOLVE;
95 tlb_change_page_size(tlb, PAGE_SIZE);
96 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
100 /* Get target node for single threaded private VMAs */
101 if (prot_numa && !(vma->vm_flags & VM_SHARED) &&
102 atomic_read(&vma->vm_mm->mm_users) == 1)
103 target_node = numa_node_id();
105 flush_tlb_batched_pending(vma->vm_mm);
106 arch_enter_lazy_mmu_mode();
108 oldpte = ptep_get(pte);
109 if (pte_present(oldpte)) {
113 * Avoid trapping faults against the zero or KSM
114 * pages. See similar comment in change_huge_pmd.
121 /* Avoid TLB flush if possible */
122 if (pte_protnone(oldpte))
125 page = vm_normal_page(vma, addr, oldpte);
126 if (!page || is_zone_device_page(page) || PageKsm(page))
129 /* Also skip shared copy-on-write pages */
130 if (is_cow_mapping(vma->vm_flags) &&
131 page_count(page) != 1)
135 * While migration can move some dirty pages,
136 * it cannot move them all from MIGRATE_ASYNC
139 if (page_is_file_lru(page) && PageDirty(page))
143 * Don't mess with PTEs if page is already on the node
144 * a single-threaded process is running on.
146 nid = page_to_nid(page);
147 if (target_node == nid)
149 toptier = node_is_toptier(nid);
152 * Skip scanning top tier node if normal numa
153 * balancing is disabled
155 if (!(sysctl_numa_balancing_mode & NUMA_BALANCING_NORMAL) &&
158 if (sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING &&
160 xchg_page_access_time(page,
161 jiffies_to_msecs(jiffies));
164 oldpte = ptep_modify_prot_start(vma, addr, pte);
165 ptent = pte_modify(oldpte, newprot);
168 ptent = pte_mkuffd_wp(ptent);
169 else if (uffd_wp_resolve)
170 ptent = pte_clear_uffd_wp(ptent);
173 * In some writable, shared mappings, we might want
174 * to catch actual write access -- see
175 * vma_wants_writenotify().
177 * In all writable, private mappings, we have to
178 * properly handle COW.
180 * In both cases, we can sometimes still change PTEs
181 * writable and avoid the write-fault handler, for
182 * example, if a PTE is already dirty and no other
183 * COW or special handling is required.
185 if ((cp_flags & MM_CP_TRY_CHANGE_WRITABLE) &&
187 can_change_pte_writable(vma, addr, ptent))
188 ptent = pte_mkwrite(ptent);
190 ptep_modify_prot_commit(vma, addr, pte, oldpte, ptent);
191 if (pte_needs_flush(oldpte, ptent))
192 tlb_flush_pte_range(tlb, addr, PAGE_SIZE);
194 } else if (is_swap_pte(oldpte)) {
195 swp_entry_t entry = pte_to_swp_entry(oldpte);
198 if (is_writable_migration_entry(entry)) {
199 struct page *page = pfn_swap_entry_to_page(entry);
202 * A protection check is difficult so
203 * just be safe and disable write
206 entry = make_readable_exclusive_migration_entry(
209 entry = make_readable_migration_entry(swp_offset(entry));
210 newpte = swp_entry_to_pte(entry);
211 if (pte_swp_soft_dirty(oldpte))
212 newpte = pte_swp_mksoft_dirty(newpte);
213 } else if (is_writable_device_private_entry(entry)) {
215 * We do not preserve soft-dirtiness. See
216 * copy_one_pte() for explanation.
218 entry = make_readable_device_private_entry(
220 newpte = swp_entry_to_pte(entry);
221 if (pte_swp_uffd_wp(oldpte))
222 newpte = pte_swp_mkuffd_wp(newpte);
223 } else if (is_writable_device_exclusive_entry(entry)) {
224 entry = make_readable_device_exclusive_entry(
226 newpte = swp_entry_to_pte(entry);
227 if (pte_swp_soft_dirty(oldpte))
228 newpte = pte_swp_mksoft_dirty(newpte);
229 if (pte_swp_uffd_wp(oldpte))
230 newpte = pte_swp_mkuffd_wp(newpte);
231 } else if (is_pte_marker_entry(entry)) {
233 * Ignore swapin errors unconditionally,
234 * because any access should sigbus anyway.
236 if (is_swapin_error_entry(entry))
239 * If this is uffd-wp pte marker and we'd like
240 * to unprotect it, drop it; the next page
241 * fault will trigger without uffd trapping.
243 if (uffd_wp_resolve) {
244 pte_clear(vma->vm_mm, addr, pte);
253 newpte = pte_swp_mkuffd_wp(newpte);
254 else if (uffd_wp_resolve)
255 newpte = pte_swp_clear_uffd_wp(newpte);
257 if (!pte_same(oldpte, newpte)) {
258 set_pte_at(vma->vm_mm, addr, pte, newpte);
262 /* It must be an none page, or what else?.. */
263 WARN_ON_ONCE(!pte_none(oldpte));
266 * Nobody plays with any none ptes besides
267 * userfaultfd when applying the protections.
269 if (likely(!uffd_wp))
272 if (userfaultfd_wp_use_markers(vma)) {
274 * For file-backed mem, we need to be able to
275 * wr-protect a none pte, because even if the
276 * pte is none, the page/swap cache could
277 * exist. Doing that by install a marker.
279 set_pte_at(vma->vm_mm, addr, pte,
280 make_pte_marker(PTE_MARKER_UFFD_WP));
284 } while (pte++, addr += PAGE_SIZE, addr != end);
285 arch_leave_lazy_mmu_mode();
286 pte_unmap_unlock(pte - 1, ptl);
292 * Return true if we want to split THPs into PTE mappings in change
293 * protection procedure, false otherwise.
296 pgtable_split_needed(struct vm_area_struct *vma, unsigned long cp_flags)
299 * pte markers only resides in pte level, if we need pte markers,
300 * we need to split. We cannot wr-protect shmem thp because file
301 * thp is handled differently when split by erasing the pmd so far.
303 return (cp_flags & MM_CP_UFFD_WP) && !vma_is_anonymous(vma);
307 * Return true if we want to populate pgtables in change protection
308 * procedure, false otherwise
311 pgtable_populate_needed(struct vm_area_struct *vma, unsigned long cp_flags)
313 /* If not within ioctl(UFFDIO_WRITEPROTECT), then don't bother */
314 if (!(cp_flags & MM_CP_UFFD_WP))
317 /* Populate if the userfaultfd mode requires pte markers */
318 return userfaultfd_wp_use_markers(vma);
322 * Populate the pgtable underneath for whatever reason if requested.
323 * When {pte|pmd|...}_alloc() failed we treat it the same way as pgtable
324 * allocation failures during page faults by kicking OOM and returning
327 #define change_pmd_prepare(vma, pmd, cp_flags) \
330 if (unlikely(pgtable_populate_needed(vma, cp_flags))) { \
331 if (pte_alloc(vma->vm_mm, pmd)) \
338 * This is the general pud/p4d/pgd version of change_pmd_prepare(). We need to
339 * have separate change_pmd_prepare() because pte_alloc() returns 0 on success,
340 * while {pmd|pud|p4d}_alloc() returns the valid pointer on success.
342 #define change_prepare(vma, high, low, addr, cp_flags) \
345 if (unlikely(pgtable_populate_needed(vma, cp_flags))) { \
346 low##_t *p = low##_alloc(vma->vm_mm, high, addr); \
353 static inline long change_pmd_range(struct mmu_gather *tlb,
354 struct vm_area_struct *vma, pud_t *pud, unsigned long addr,
355 unsigned long end, pgprot_t newprot, unsigned long cp_flags)
360 unsigned long nr_huge_updates = 0;
361 struct mmu_notifier_range range;
365 pmd = pmd_offset(pud, addr);
370 next = pmd_addr_end(addr, end);
372 ret = change_pmd_prepare(vma, pmd, cp_flags);
381 /* invoke the mmu notifier if the pmd is populated */
383 mmu_notifier_range_init(&range,
384 MMU_NOTIFY_PROTECTION_VMA, 0,
385 vma->vm_mm, addr, end);
386 mmu_notifier_invalidate_range_start(&range);
389 _pmd = pmdp_get_lockless(pmd);
390 if (is_swap_pmd(_pmd) || pmd_trans_huge(_pmd) || pmd_devmap(_pmd)) {
391 if ((next - addr != HPAGE_PMD_SIZE) ||
392 pgtable_split_needed(vma, cp_flags)) {
393 __split_huge_pmd(vma, pmd, addr, false, NULL);
395 * For file-backed, the pmd could have been
396 * cleared; make sure pmd populated if
397 * necessary, then fall-through to pte level.
399 ret = change_pmd_prepare(vma, pmd, cp_flags);
405 ret = change_huge_pmd(tlb, vma, pmd,
406 addr, newprot, cp_flags);
408 if (ret == HPAGE_PMD_NR) {
409 pages += HPAGE_PMD_NR;
413 /* huge pmd was handled */
417 /* fall through, the trans huge pmd just split */
420 ret = change_pte_range(tlb, vma, pmd, addr, next, newprot,
427 } while (pmd++, addr = next, addr != end);
430 mmu_notifier_invalidate_range_end(&range);
433 count_vm_numa_events(NUMA_HUGE_PTE_UPDATES, nr_huge_updates);
437 static inline long change_pud_range(struct mmu_gather *tlb,
438 struct vm_area_struct *vma, p4d_t *p4d, unsigned long addr,
439 unsigned long end, pgprot_t newprot, unsigned long cp_flags)
445 pud = pud_offset(p4d, addr);
447 next = pud_addr_end(addr, end);
448 ret = change_prepare(vma, pud, pmd, addr, cp_flags);
451 if (pud_none_or_clear_bad(pud))
453 pages += change_pmd_range(tlb, vma, pud, addr, next, newprot,
455 } while (pud++, addr = next, addr != end);
460 static inline long change_p4d_range(struct mmu_gather *tlb,
461 struct vm_area_struct *vma, pgd_t *pgd, unsigned long addr,
462 unsigned long end, pgprot_t newprot, unsigned long cp_flags)
468 p4d = p4d_offset(pgd, addr);
470 next = p4d_addr_end(addr, end);
471 ret = change_prepare(vma, p4d, pud, addr, cp_flags);
474 if (p4d_none_or_clear_bad(p4d))
476 pages += change_pud_range(tlb, vma, p4d, addr, next, newprot,
478 } while (p4d++, addr = next, addr != end);
483 static long change_protection_range(struct mmu_gather *tlb,
484 struct vm_area_struct *vma, unsigned long addr,
485 unsigned long end, pgprot_t newprot, unsigned long cp_flags)
487 struct mm_struct *mm = vma->vm_mm;
493 pgd = pgd_offset(mm, addr);
494 tlb_start_vma(tlb, vma);
496 next = pgd_addr_end(addr, end);
497 ret = change_prepare(vma, pgd, p4d, addr, cp_flags);
502 if (pgd_none_or_clear_bad(pgd))
504 pages += change_p4d_range(tlb, vma, pgd, addr, next, newprot,
506 } while (pgd++, addr = next, addr != end);
508 tlb_end_vma(tlb, vma);
513 long change_protection(struct mmu_gather *tlb,
514 struct vm_area_struct *vma, unsigned long start,
515 unsigned long end, unsigned long cp_flags)
517 pgprot_t newprot = vma->vm_page_prot;
520 BUG_ON((cp_flags & MM_CP_UFFD_WP_ALL) == MM_CP_UFFD_WP_ALL);
522 #ifdef CONFIG_NUMA_BALANCING
524 * Ordinary protection updates (mprotect, uffd-wp, softdirty tracking)
525 * are expected to reflect their requirements via VMA flags such that
526 * vma_set_page_prot() will adjust vma->vm_page_prot accordingly.
528 if (cp_flags & MM_CP_PROT_NUMA)
531 WARN_ON_ONCE(cp_flags & MM_CP_PROT_NUMA);
534 if (is_vm_hugetlb_page(vma))
535 pages = hugetlb_change_protection(vma, start, end, newprot,
538 pages = change_protection_range(tlb, vma, start, end, newprot,
544 static int prot_none_pte_entry(pte_t *pte, unsigned long addr,
545 unsigned long next, struct mm_walk *walk)
547 return pfn_modify_allowed(pte_pfn(ptep_get(pte)),
548 *(pgprot_t *)(walk->private)) ?
552 static int prot_none_hugetlb_entry(pte_t *pte, unsigned long hmask,
553 unsigned long addr, unsigned long next,
554 struct mm_walk *walk)
556 return pfn_modify_allowed(pte_pfn(ptep_get(pte)),
557 *(pgprot_t *)(walk->private)) ?
561 static int prot_none_test(unsigned long addr, unsigned long next,
562 struct mm_walk *walk)
567 static const struct mm_walk_ops prot_none_walk_ops = {
568 .pte_entry = prot_none_pte_entry,
569 .hugetlb_entry = prot_none_hugetlb_entry,
570 .test_walk = prot_none_test,
574 mprotect_fixup(struct vma_iterator *vmi, struct mmu_gather *tlb,
575 struct vm_area_struct *vma, struct vm_area_struct **pprev,
576 unsigned long start, unsigned long end, unsigned long newflags)
578 struct mm_struct *mm = vma->vm_mm;
579 unsigned long oldflags = vma->vm_flags;
580 long nrpages = (end - start) >> PAGE_SHIFT;
581 unsigned int mm_cp_flags = 0;
582 unsigned long charged = 0;
586 if (newflags == oldflags) {
592 * Do PROT_NONE PFN permission checks here when we can still
593 * bail out without undoing a lot of state. This is a rather
594 * uncommon case, so doesn't need to be very optimized.
596 if (arch_has_pfn_modify_check() &&
597 (vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) &&
598 (newflags & VM_ACCESS_FLAGS) == 0) {
599 pgprot_t new_pgprot = vm_get_page_prot(newflags);
601 error = walk_page_range(current->mm, start, end,
602 &prot_none_walk_ops, &new_pgprot);
608 * If we make a private mapping writable we increase our commit;
609 * but (without finer accounting) cannot reduce our commit if we
610 * make it unwritable again. hugetlb mapping were accounted for
611 * even if read-only so there is no need to account for them here
613 if (newflags & VM_WRITE) {
614 /* Check space limits when area turns into data. */
615 if (!may_expand_vm(mm, newflags, nrpages) &&
616 may_expand_vm(mm, oldflags, nrpages))
618 if (!(oldflags & (VM_ACCOUNT|VM_WRITE|VM_HUGETLB|
619 VM_SHARED|VM_NORESERVE))) {
621 if (security_vm_enough_memory_mm(mm, charged))
623 newflags |= VM_ACCOUNT;
628 * First try to merge with previous and/or next vma.
630 pgoff = vma->vm_pgoff + ((start - vma->vm_start) >> PAGE_SHIFT);
631 *pprev = vma_merge(vmi, mm, *pprev, start, end, newflags,
632 vma->anon_vma, vma->vm_file, pgoff, vma_policy(vma),
633 vma->vm_userfaultfd_ctx, anon_vma_name(vma));
636 VM_WARN_ON((vma->vm_flags ^ newflags) & ~VM_SOFTDIRTY);
642 if (start != vma->vm_start) {
643 error = split_vma(vmi, vma, start, 1);
648 if (end != vma->vm_end) {
649 error = split_vma(vmi, vma, end, 0);
656 * vm_flags and vm_page_prot are protected by the mmap_lock
657 * held in write mode.
659 vm_flags_reset(vma, newflags);
660 if (vma_wants_manual_pte_write_upgrade(vma))
661 mm_cp_flags |= MM_CP_TRY_CHANGE_WRITABLE;
662 vma_set_page_prot(vma);
664 change_protection(tlb, vma, start, end, mm_cp_flags);
667 * Private VM_LOCKED VMA becoming writable: trigger COW to avoid major
670 if ((oldflags & (VM_WRITE | VM_SHARED | VM_LOCKED)) == VM_LOCKED &&
671 (newflags & VM_WRITE)) {
672 populate_vma_page_range(vma, start, end, NULL);
675 vm_stat_account(mm, oldflags, -nrpages);
676 vm_stat_account(mm, newflags, nrpages);
677 perf_event_mmap(vma);
681 vm_unacct_memory(charged);
686 * pkey==-1 when doing a legacy mprotect()
688 static int do_mprotect_pkey(unsigned long start, size_t len,
689 unsigned long prot, int pkey)
691 unsigned long nstart, end, tmp, reqprot;
692 struct vm_area_struct *vma, *prev;
694 const int grows = prot & (PROT_GROWSDOWN|PROT_GROWSUP);
695 const bool rier = (current->personality & READ_IMPLIES_EXEC) &&
697 struct mmu_gather tlb;
698 struct vma_iterator vmi;
700 start = untagged_addr(start);
702 prot &= ~(PROT_GROWSDOWN|PROT_GROWSUP);
703 if (grows == (PROT_GROWSDOWN|PROT_GROWSUP)) /* can't be both */
706 if (start & ~PAGE_MASK)
710 len = PAGE_ALIGN(len);
714 if (!arch_validate_prot(prot, start))
719 if (mmap_write_lock_killable(current->mm))
723 * If userspace did not allocate the pkey, do not let
727 if ((pkey != -1) && !mm_pkey_is_allocated(current->mm, pkey))
730 vma_iter_init(&vmi, current->mm, start);
731 vma = vma_find(&vmi, end);
736 if (unlikely(grows & PROT_GROWSDOWN)) {
737 if (vma->vm_start >= end)
739 start = vma->vm_start;
741 if (!(vma->vm_flags & VM_GROWSDOWN))
744 if (vma->vm_start > start)
746 if (unlikely(grows & PROT_GROWSUP)) {
749 if (!(vma->vm_flags & VM_GROWSUP))
754 prev = vma_prev(&vmi);
755 if (start > vma->vm_start)
758 tlb_gather_mmu(&tlb, current->mm);
761 for_each_vma_range(vmi, vma, end) {
762 unsigned long mask_off_old_flags;
763 unsigned long newflags;
766 if (vma->vm_start != tmp) {
771 /* Does the application expect PROT_READ to imply PROT_EXEC */
772 if (rier && (vma->vm_flags & VM_MAYEXEC))
776 * Each mprotect() call explicitly passes r/w/x permissions.
777 * If a permission is not passed to mprotect(), it must be
778 * cleared from the VMA.
780 mask_off_old_flags = VM_ACCESS_FLAGS | VM_FLAGS_CLEAR;
782 new_vma_pkey = arch_override_mprotect_pkey(vma, prot, pkey);
783 newflags = calc_vm_prot_bits(prot, new_vma_pkey);
784 newflags |= (vma->vm_flags & ~mask_off_old_flags);
786 /* newflags >> 4 shift VM_MAY% in place of VM_% */
787 if ((newflags & ~(newflags >> 4)) & VM_ACCESS_FLAGS) {
792 if (map_deny_write_exec(vma, newflags)) {
797 /* Allow architectures to sanity-check the new flags */
798 if (!arch_validate_flags(newflags)) {
803 error = security_file_mprotect(vma, reqprot, prot);
811 if (vma->vm_ops && vma->vm_ops->mprotect) {
812 error = vma->vm_ops->mprotect(vma, nstart, tmp, newflags);
817 error = mprotect_fixup(&vmi, &tlb, vma, &prev, nstart, tmp, newflags);
821 tmp = vma_iter_end(&vmi);
825 tlb_finish_mmu(&tlb);
827 if (!error && tmp < end)
831 mmap_write_unlock(current->mm);
835 SYSCALL_DEFINE3(mprotect, unsigned long, start, size_t, len,
838 return do_mprotect_pkey(start, len, prot, -1);
841 #ifdef CONFIG_ARCH_HAS_PKEYS
843 SYSCALL_DEFINE4(pkey_mprotect, unsigned long, start, size_t, len,
844 unsigned long, prot, int, pkey)
846 return do_mprotect_pkey(start, len, prot, pkey);
849 SYSCALL_DEFINE2(pkey_alloc, unsigned long, flags, unsigned long, init_val)
854 /* No flags supported yet. */
857 /* check for unsupported init values */
858 if (init_val & ~PKEY_ACCESS_MASK)
861 mmap_write_lock(current->mm);
862 pkey = mm_pkey_alloc(current->mm);
868 ret = arch_set_user_pkey_access(current, pkey, init_val);
870 mm_pkey_free(current->mm, pkey);
875 mmap_write_unlock(current->mm);
879 SYSCALL_DEFINE1(pkey_free, int, pkey)
883 mmap_write_lock(current->mm);
884 ret = mm_pkey_free(current->mm, pkey);
885 mmap_write_unlock(current->mm);
888 * We could provide warnings or errors if any VMA still
889 * has the pkey set here.
894 #endif /* CONFIG_ARCH_HAS_PKEYS */