mm: kill vma flag VM_EXECUTABLE and mm->num_exe_file_vmas
[platform/adaptation/renesas_rcar/renesas_kernel.git] / mm / mmap.c
1 /*
2  * mm/mmap.c
3  *
4  * Written by obz.
5  *
6  * Address space accounting code        <alan@lxorguk.ukuu.org.uk>
7  */
8
9 #include <linux/slab.h>
10 #include <linux/backing-dev.h>
11 #include <linux/mm.h>
12 #include <linux/shm.h>
13 #include <linux/mman.h>
14 #include <linux/pagemap.h>
15 #include <linux/swap.h>
16 #include <linux/syscalls.h>
17 #include <linux/capability.h>
18 #include <linux/init.h>
19 #include <linux/file.h>
20 #include <linux/fs.h>
21 #include <linux/personality.h>
22 #include <linux/security.h>
23 #include <linux/hugetlb.h>
24 #include <linux/profile.h>
25 #include <linux/export.h>
26 #include <linux/mount.h>
27 #include <linux/mempolicy.h>
28 #include <linux/rmap.h>
29 #include <linux/mmu_notifier.h>
30 #include <linux/perf_event.h>
31 #include <linux/audit.h>
32 #include <linux/khugepaged.h>
33 #include <linux/uprobes.h>
34
35 #include <asm/uaccess.h>
36 #include <asm/cacheflush.h>
37 #include <asm/tlb.h>
38 #include <asm/mmu_context.h>
39
40 #include "internal.h"
41
42 #ifndef arch_mmap_check
43 #define arch_mmap_check(addr, len, flags)       (0)
44 #endif
45
46 #ifndef arch_rebalance_pgtables
47 #define arch_rebalance_pgtables(addr, len)              (addr)
48 #endif
49
50 static void unmap_region(struct mm_struct *mm,
51                 struct vm_area_struct *vma, struct vm_area_struct *prev,
52                 unsigned long start, unsigned long end);
53
54 /*
55  * WARNING: the debugging will use recursive algorithms so never enable this
56  * unless you know what you are doing.
57  */
58 #undef DEBUG_MM_RB
59
60 /* description of effects of mapping type and prot in current implementation.
61  * this is due to the limited x86 page protection hardware.  The expected
62  * behavior is in parens:
63  *
64  * map_type     prot
65  *              PROT_NONE       PROT_READ       PROT_WRITE      PROT_EXEC
66  * MAP_SHARED   r: (no) no      r: (yes) yes    r: (no) yes     r: (no) yes
67  *              w: (no) no      w: (no) no      w: (yes) yes    w: (no) no
68  *              x: (no) no      x: (no) yes     x: (no) yes     x: (yes) yes
69  *              
70  * MAP_PRIVATE  r: (no) no      r: (yes) yes    r: (no) yes     r: (no) yes
71  *              w: (no) no      w: (no) no      w: (copy) copy  w: (no) no
72  *              x: (no) no      x: (no) yes     x: (no) yes     x: (yes) yes
73  *
74  */
75 pgprot_t protection_map[16] = {
76         __P000, __P001, __P010, __P011, __P100, __P101, __P110, __P111,
77         __S000, __S001, __S010, __S011, __S100, __S101, __S110, __S111
78 };
79
80 pgprot_t vm_get_page_prot(unsigned long vm_flags)
81 {
82         return __pgprot(pgprot_val(protection_map[vm_flags &
83                                 (VM_READ|VM_WRITE|VM_EXEC|VM_SHARED)]) |
84                         pgprot_val(arch_vm_get_page_prot(vm_flags)));
85 }
86 EXPORT_SYMBOL(vm_get_page_prot);
87
88 int sysctl_overcommit_memory __read_mostly = OVERCOMMIT_GUESS;  /* heuristic overcommit */
89 int sysctl_overcommit_ratio __read_mostly = 50; /* default is 50% */
90 int sysctl_max_map_count __read_mostly = DEFAULT_MAX_MAP_COUNT;
91 /*
92  * Make sure vm_committed_as in one cacheline and not cacheline shared with
93  * other variables. It can be updated by several CPUs frequently.
94  */
95 struct percpu_counter vm_committed_as ____cacheline_aligned_in_smp;
96
97 /*
98  * Check that a process has enough memory to allocate a new virtual
99  * mapping. 0 means there is enough memory for the allocation to
100  * succeed and -ENOMEM implies there is not.
101  *
102  * We currently support three overcommit policies, which are set via the
103  * vm.overcommit_memory sysctl.  See Documentation/vm/overcommit-accounting
104  *
105  * Strict overcommit modes added 2002 Feb 26 by Alan Cox.
106  * Additional code 2002 Jul 20 by Robert Love.
107  *
108  * cap_sys_admin is 1 if the process has admin privileges, 0 otherwise.
109  *
110  * Note this is a helper function intended to be used by LSMs which
111  * wish to use this logic.
112  */
113 int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin)
114 {
115         unsigned long free, allowed;
116
117         vm_acct_memory(pages);
118
119         /*
120          * Sometimes we want to use more memory than we have
121          */
122         if (sysctl_overcommit_memory == OVERCOMMIT_ALWAYS)
123                 return 0;
124
125         if (sysctl_overcommit_memory == OVERCOMMIT_GUESS) {
126                 free = global_page_state(NR_FREE_PAGES);
127                 free += global_page_state(NR_FILE_PAGES);
128
129                 /*
130                  * shmem pages shouldn't be counted as free in this
131                  * case, they can't be purged, only swapped out, and
132                  * that won't affect the overall amount of available
133                  * memory in the system.
134                  */
135                 free -= global_page_state(NR_SHMEM);
136
137                 free += nr_swap_pages;
138
139                 /*
140                  * Any slabs which are created with the
141                  * SLAB_RECLAIM_ACCOUNT flag claim to have contents
142                  * which are reclaimable, under pressure.  The dentry
143                  * cache and most inode caches should fall into this
144                  */
145                 free += global_page_state(NR_SLAB_RECLAIMABLE);
146
147                 /*
148                  * Leave reserved pages. The pages are not for anonymous pages.
149                  */
150                 if (free <= totalreserve_pages)
151                         goto error;
152                 else
153                         free -= totalreserve_pages;
154
155                 /*
156                  * Leave the last 3% for root
157                  */
158                 if (!cap_sys_admin)
159                         free -= free / 32;
160
161                 if (free > pages)
162                         return 0;
163
164                 goto error;
165         }
166
167         allowed = (totalram_pages - hugetlb_total_pages())
168                 * sysctl_overcommit_ratio / 100;
169         /*
170          * Leave the last 3% for root
171          */
172         if (!cap_sys_admin)
173                 allowed -= allowed / 32;
174         allowed += total_swap_pages;
175
176         /* Don't let a single process grow too big:
177            leave 3% of the size of this process for other processes */
178         if (mm)
179                 allowed -= mm->total_vm / 32;
180
181         if (percpu_counter_read_positive(&vm_committed_as) < allowed)
182                 return 0;
183 error:
184         vm_unacct_memory(pages);
185
186         return -ENOMEM;
187 }
188
189 /*
190  * Requires inode->i_mapping->i_mmap_mutex
191  */
192 static void __remove_shared_vm_struct(struct vm_area_struct *vma,
193                 struct file *file, struct address_space *mapping)
194 {
195         if (vma->vm_flags & VM_DENYWRITE)
196                 atomic_inc(&file->f_path.dentry->d_inode->i_writecount);
197         if (vma->vm_flags & VM_SHARED)
198                 mapping->i_mmap_writable--;
199
200         flush_dcache_mmap_lock(mapping);
201         if (unlikely(vma->vm_flags & VM_NONLINEAR))
202                 list_del_init(&vma->shared.vm_set.list);
203         else
204                 vma_prio_tree_remove(vma, &mapping->i_mmap);
205         flush_dcache_mmap_unlock(mapping);
206 }
207
208 /*
209  * Unlink a file-based vm structure from its prio_tree, to hide
210  * vma from rmap and vmtruncate before freeing its page tables.
211  */
212 void unlink_file_vma(struct vm_area_struct *vma)
213 {
214         struct file *file = vma->vm_file;
215
216         if (file) {
217                 struct address_space *mapping = file->f_mapping;
218                 mutex_lock(&mapping->i_mmap_mutex);
219                 __remove_shared_vm_struct(vma, file, mapping);
220                 mutex_unlock(&mapping->i_mmap_mutex);
221         }
222 }
223
224 /*
225  * Close a vm structure and free it, returning the next.
226  */
227 static struct vm_area_struct *remove_vma(struct vm_area_struct *vma)
228 {
229         struct vm_area_struct *next = vma->vm_next;
230
231         might_sleep();
232         if (vma->vm_ops && vma->vm_ops->close)
233                 vma->vm_ops->close(vma);
234         if (vma->vm_file)
235                 fput(vma->vm_file);
236         mpol_put(vma_policy(vma));
237         kmem_cache_free(vm_area_cachep, vma);
238         return next;
239 }
240
241 static unsigned long do_brk(unsigned long addr, unsigned long len);
242
243 SYSCALL_DEFINE1(brk, unsigned long, brk)
244 {
245         unsigned long rlim, retval;
246         unsigned long newbrk, oldbrk;
247         struct mm_struct *mm = current->mm;
248         unsigned long min_brk;
249
250         down_write(&mm->mmap_sem);
251
252 #ifdef CONFIG_COMPAT_BRK
253         /*
254          * CONFIG_COMPAT_BRK can still be overridden by setting
255          * randomize_va_space to 2, which will still cause mm->start_brk
256          * to be arbitrarily shifted
257          */
258         if (current->brk_randomized)
259                 min_brk = mm->start_brk;
260         else
261                 min_brk = mm->end_data;
262 #else
263         min_brk = mm->start_brk;
264 #endif
265         if (brk < min_brk)
266                 goto out;
267
268         /*
269          * Check against rlimit here. If this check is done later after the test
270          * of oldbrk with newbrk then it can escape the test and let the data
271          * segment grow beyond its set limit the in case where the limit is
272          * not page aligned -Ram Gupta
273          */
274         rlim = rlimit(RLIMIT_DATA);
275         if (rlim < RLIM_INFINITY && (brk - mm->start_brk) +
276                         (mm->end_data - mm->start_data) > rlim)
277                 goto out;
278
279         newbrk = PAGE_ALIGN(brk);
280         oldbrk = PAGE_ALIGN(mm->brk);
281         if (oldbrk == newbrk)
282                 goto set_brk;
283
284         /* Always allow shrinking brk. */
285         if (brk <= mm->brk) {
286                 if (!do_munmap(mm, newbrk, oldbrk-newbrk))
287                         goto set_brk;
288                 goto out;
289         }
290
291         /* Check against existing mmap mappings. */
292         if (find_vma_intersection(mm, oldbrk, newbrk+PAGE_SIZE))
293                 goto out;
294
295         /* Ok, looks good - let it rip. */
296         if (do_brk(oldbrk, newbrk-oldbrk) != oldbrk)
297                 goto out;
298 set_brk:
299         mm->brk = brk;
300 out:
301         retval = mm->brk;
302         up_write(&mm->mmap_sem);
303         return retval;
304 }
305
306 #ifdef DEBUG_MM_RB
307 static int browse_rb(struct rb_root *root)
308 {
309         int i = 0, j;
310         struct rb_node *nd, *pn = NULL;
311         unsigned long prev = 0, pend = 0;
312
313         for (nd = rb_first(root); nd; nd = rb_next(nd)) {
314                 struct vm_area_struct *vma;
315                 vma = rb_entry(nd, struct vm_area_struct, vm_rb);
316                 if (vma->vm_start < prev)
317                         printk("vm_start %lx prev %lx\n", vma->vm_start, prev), i = -1;
318                 if (vma->vm_start < pend)
319                         printk("vm_start %lx pend %lx\n", vma->vm_start, pend);
320                 if (vma->vm_start > vma->vm_end)
321                         printk("vm_end %lx < vm_start %lx\n", vma->vm_end, vma->vm_start);
322                 i++;
323                 pn = nd;
324                 prev = vma->vm_start;
325                 pend = vma->vm_end;
326         }
327         j = 0;
328         for (nd = pn; nd; nd = rb_prev(nd)) {
329                 j++;
330         }
331         if (i != j)
332                 printk("backwards %d, forwards %d\n", j, i), i = 0;
333         return i;
334 }
335
336 void validate_mm(struct mm_struct *mm)
337 {
338         int bug = 0;
339         int i = 0;
340         struct vm_area_struct *tmp = mm->mmap;
341         while (tmp) {
342                 tmp = tmp->vm_next;
343                 i++;
344         }
345         if (i != mm->map_count)
346                 printk("map_count %d vm_next %d\n", mm->map_count, i), bug = 1;
347         i = browse_rb(&mm->mm_rb);
348         if (i != mm->map_count)
349                 printk("map_count %d rb %d\n", mm->map_count, i), bug = 1;
350         BUG_ON(bug);
351 }
352 #else
353 #define validate_mm(mm) do { } while (0)
354 #endif
355
356 static struct vm_area_struct *
357 find_vma_prepare(struct mm_struct *mm, unsigned long addr,
358                 struct vm_area_struct **pprev, struct rb_node ***rb_link,
359                 struct rb_node ** rb_parent)
360 {
361         struct vm_area_struct * vma;
362         struct rb_node ** __rb_link, * __rb_parent, * rb_prev;
363
364         __rb_link = &mm->mm_rb.rb_node;
365         rb_prev = __rb_parent = NULL;
366         vma = NULL;
367
368         while (*__rb_link) {
369                 struct vm_area_struct *vma_tmp;
370
371                 __rb_parent = *__rb_link;
372                 vma_tmp = rb_entry(__rb_parent, struct vm_area_struct, vm_rb);
373
374                 if (vma_tmp->vm_end > addr) {
375                         vma = vma_tmp;
376                         if (vma_tmp->vm_start <= addr)
377                                 break;
378                         __rb_link = &__rb_parent->rb_left;
379                 } else {
380                         rb_prev = __rb_parent;
381                         __rb_link = &__rb_parent->rb_right;
382                 }
383         }
384
385         *pprev = NULL;
386         if (rb_prev)
387                 *pprev = rb_entry(rb_prev, struct vm_area_struct, vm_rb);
388         *rb_link = __rb_link;
389         *rb_parent = __rb_parent;
390         return vma;
391 }
392
393 void __vma_link_rb(struct mm_struct *mm, struct vm_area_struct *vma,
394                 struct rb_node **rb_link, struct rb_node *rb_parent)
395 {
396         rb_link_node(&vma->vm_rb, rb_parent, rb_link);
397         rb_insert_color(&vma->vm_rb, &mm->mm_rb);
398 }
399
400 static void __vma_link_file(struct vm_area_struct *vma)
401 {
402         struct file *file;
403
404         file = vma->vm_file;
405         if (file) {
406                 struct address_space *mapping = file->f_mapping;
407
408                 if (vma->vm_flags & VM_DENYWRITE)
409                         atomic_dec(&file->f_path.dentry->d_inode->i_writecount);
410                 if (vma->vm_flags & VM_SHARED)
411                         mapping->i_mmap_writable++;
412
413                 flush_dcache_mmap_lock(mapping);
414                 if (unlikely(vma->vm_flags & VM_NONLINEAR))
415                         vma_nonlinear_insert(vma, &mapping->i_mmap_nonlinear);
416                 else
417                         vma_prio_tree_insert(vma, &mapping->i_mmap);
418                 flush_dcache_mmap_unlock(mapping);
419         }
420 }
421
422 static void
423 __vma_link(struct mm_struct *mm, struct vm_area_struct *vma,
424         struct vm_area_struct *prev, struct rb_node **rb_link,
425         struct rb_node *rb_parent)
426 {
427         __vma_link_list(mm, vma, prev, rb_parent);
428         __vma_link_rb(mm, vma, rb_link, rb_parent);
429 }
430
431 static void vma_link(struct mm_struct *mm, struct vm_area_struct *vma,
432                         struct vm_area_struct *prev, struct rb_node **rb_link,
433                         struct rb_node *rb_parent)
434 {
435         struct address_space *mapping = NULL;
436
437         if (vma->vm_file)
438                 mapping = vma->vm_file->f_mapping;
439
440         if (mapping)
441                 mutex_lock(&mapping->i_mmap_mutex);
442
443         __vma_link(mm, vma, prev, rb_link, rb_parent);
444         __vma_link_file(vma);
445
446         if (mapping)
447                 mutex_unlock(&mapping->i_mmap_mutex);
448
449         mm->map_count++;
450         validate_mm(mm);
451 }
452
453 /*
454  * Helper for vma_adjust() in the split_vma insert case: insert a vma into the
455  * mm's list and rbtree.  It has already been inserted into the prio_tree.
456  */
457 static void __insert_vm_struct(struct mm_struct *mm, struct vm_area_struct *vma)
458 {
459         struct vm_area_struct *__vma, *prev;
460         struct rb_node **rb_link, *rb_parent;
461
462         __vma = find_vma_prepare(mm, vma->vm_start,&prev, &rb_link, &rb_parent);
463         BUG_ON(__vma && __vma->vm_start < vma->vm_end);
464         __vma_link(mm, vma, prev, rb_link, rb_parent);
465         mm->map_count++;
466 }
467
468 static inline void
469 __vma_unlink(struct mm_struct *mm, struct vm_area_struct *vma,
470                 struct vm_area_struct *prev)
471 {
472         struct vm_area_struct *next = vma->vm_next;
473
474         prev->vm_next = next;
475         if (next)
476                 next->vm_prev = prev;
477         rb_erase(&vma->vm_rb, &mm->mm_rb);
478         if (mm->mmap_cache == vma)
479                 mm->mmap_cache = prev;
480 }
481
482 /*
483  * We cannot adjust vm_start, vm_end, vm_pgoff fields of a vma that
484  * is already present in an i_mmap tree without adjusting the tree.
485  * The following helper function should be used when such adjustments
486  * are necessary.  The "insert" vma (if any) is to be inserted
487  * before we drop the necessary locks.
488  */
489 int vma_adjust(struct vm_area_struct *vma, unsigned long start,
490         unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert)
491 {
492         struct mm_struct *mm = vma->vm_mm;
493         struct vm_area_struct *next = vma->vm_next;
494         struct vm_area_struct *importer = NULL;
495         struct address_space *mapping = NULL;
496         struct prio_tree_root *root = NULL;
497         struct anon_vma *anon_vma = NULL;
498         struct file *file = vma->vm_file;
499         long adjust_next = 0;
500         int remove_next = 0;
501
502         if (next && !insert) {
503                 struct vm_area_struct *exporter = NULL;
504
505                 if (end >= next->vm_end) {
506                         /*
507                          * vma expands, overlapping all the next, and
508                          * perhaps the one after too (mprotect case 6).
509                          */
510 again:                  remove_next = 1 + (end > next->vm_end);
511                         end = next->vm_end;
512                         exporter = next;
513                         importer = vma;
514                 } else if (end > next->vm_start) {
515                         /*
516                          * vma expands, overlapping part of the next:
517                          * mprotect case 5 shifting the boundary up.
518                          */
519                         adjust_next = (end - next->vm_start) >> PAGE_SHIFT;
520                         exporter = next;
521                         importer = vma;
522                 } else if (end < vma->vm_end) {
523                         /*
524                          * vma shrinks, and !insert tells it's not
525                          * split_vma inserting another: so it must be
526                          * mprotect case 4 shifting the boundary down.
527                          */
528                         adjust_next = - ((vma->vm_end - end) >> PAGE_SHIFT);
529                         exporter = vma;
530                         importer = next;
531                 }
532
533                 /*
534                  * Easily overlooked: when mprotect shifts the boundary,
535                  * make sure the expanding vma has anon_vma set if the
536                  * shrinking vma had, to cover any anon pages imported.
537                  */
538                 if (exporter && exporter->anon_vma && !importer->anon_vma) {
539                         if (anon_vma_clone(importer, exporter))
540                                 return -ENOMEM;
541                         importer->anon_vma = exporter->anon_vma;
542                 }
543         }
544
545         if (file) {
546                 mapping = file->f_mapping;
547                 if (!(vma->vm_flags & VM_NONLINEAR)) {
548                         root = &mapping->i_mmap;
549                         uprobe_munmap(vma, vma->vm_start, vma->vm_end);
550
551                         if (adjust_next)
552                                 uprobe_munmap(next, next->vm_start,
553                                                         next->vm_end);
554                 }
555
556                 mutex_lock(&mapping->i_mmap_mutex);
557                 if (insert) {
558                         /*
559                          * Put into prio_tree now, so instantiated pages
560                          * are visible to arm/parisc __flush_dcache_page
561                          * throughout; but we cannot insert into address
562                          * space until vma start or end is updated.
563                          */
564                         __vma_link_file(insert);
565                 }
566         }
567
568         vma_adjust_trans_huge(vma, start, end, adjust_next);
569
570         /*
571          * When changing only vma->vm_end, we don't really need anon_vma
572          * lock. This is a fairly rare case by itself, but the anon_vma
573          * lock may be shared between many sibling processes.  Skipping
574          * the lock for brk adjustments makes a difference sometimes.
575          */
576         if (vma->anon_vma && (importer || start != vma->vm_start)) {
577                 anon_vma = vma->anon_vma;
578                 anon_vma_lock(anon_vma);
579         }
580
581         if (root) {
582                 flush_dcache_mmap_lock(mapping);
583                 vma_prio_tree_remove(vma, root);
584                 if (adjust_next)
585                         vma_prio_tree_remove(next, root);
586         }
587
588         vma->vm_start = start;
589         vma->vm_end = end;
590         vma->vm_pgoff = pgoff;
591         if (adjust_next) {
592                 next->vm_start += adjust_next << PAGE_SHIFT;
593                 next->vm_pgoff += adjust_next;
594         }
595
596         if (root) {
597                 if (adjust_next)
598                         vma_prio_tree_insert(next, root);
599                 vma_prio_tree_insert(vma, root);
600                 flush_dcache_mmap_unlock(mapping);
601         }
602
603         if (remove_next) {
604                 /*
605                  * vma_merge has merged next into vma, and needs
606                  * us to remove next before dropping the locks.
607                  */
608                 __vma_unlink(mm, next, vma);
609                 if (file)
610                         __remove_shared_vm_struct(next, file, mapping);
611         } else if (insert) {
612                 /*
613                  * split_vma has split insert from vma, and needs
614                  * us to insert it before dropping the locks
615                  * (it may either follow vma or precede it).
616                  */
617                 __insert_vm_struct(mm, insert);
618         }
619
620         if (anon_vma)
621                 anon_vma_unlock(anon_vma);
622         if (mapping)
623                 mutex_unlock(&mapping->i_mmap_mutex);
624
625         if (root) {
626                 uprobe_mmap(vma);
627
628                 if (adjust_next)
629                         uprobe_mmap(next);
630         }
631
632         if (remove_next) {
633                 if (file) {
634                         uprobe_munmap(next, next->vm_start, next->vm_end);
635                         fput(file);
636                 }
637                 if (next->anon_vma)
638                         anon_vma_merge(vma, next);
639                 mm->map_count--;
640                 mpol_put(vma_policy(next));
641                 kmem_cache_free(vm_area_cachep, next);
642                 /*
643                  * In mprotect's case 6 (see comments on vma_merge),
644                  * we must remove another next too. It would clutter
645                  * up the code too much to do both in one go.
646                  */
647                 if (remove_next == 2) {
648                         next = vma->vm_next;
649                         goto again;
650                 }
651         }
652         if (insert && file)
653                 uprobe_mmap(insert);
654
655         validate_mm(mm);
656
657         return 0;
658 }
659
660 /*
661  * If the vma has a ->close operation then the driver probably needs to release
662  * per-vma resources, so we don't attempt to merge those.
663  */
664 static inline int is_mergeable_vma(struct vm_area_struct *vma,
665                         struct file *file, unsigned long vm_flags)
666 {
667         if (vma->vm_flags ^ vm_flags)
668                 return 0;
669         if (vma->vm_file != file)
670                 return 0;
671         if (vma->vm_ops && vma->vm_ops->close)
672                 return 0;
673         return 1;
674 }
675
676 static inline int is_mergeable_anon_vma(struct anon_vma *anon_vma1,
677                                         struct anon_vma *anon_vma2,
678                                         struct vm_area_struct *vma)
679 {
680         /*
681          * The list_is_singular() test is to avoid merging VMA cloned from
682          * parents. This can improve scalability caused by anon_vma lock.
683          */
684         if ((!anon_vma1 || !anon_vma2) && (!vma ||
685                 list_is_singular(&vma->anon_vma_chain)))
686                 return 1;
687         return anon_vma1 == anon_vma2;
688 }
689
690 /*
691  * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
692  * in front of (at a lower virtual address and file offset than) the vma.
693  *
694  * We cannot merge two vmas if they have differently assigned (non-NULL)
695  * anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
696  *
697  * We don't check here for the merged mmap wrapping around the end of pagecache
698  * indices (16TB on ia32) because do_mmap_pgoff() does not permit mmap's which
699  * wrap, nor mmaps which cover the final page at index -1UL.
700  */
701 static int
702 can_vma_merge_before(struct vm_area_struct *vma, unsigned long vm_flags,
703         struct anon_vma *anon_vma, struct file *file, pgoff_t vm_pgoff)
704 {
705         if (is_mergeable_vma(vma, file, vm_flags) &&
706             is_mergeable_anon_vma(anon_vma, vma->anon_vma, vma)) {
707                 if (vma->vm_pgoff == vm_pgoff)
708                         return 1;
709         }
710         return 0;
711 }
712
713 /*
714  * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
715  * beyond (at a higher virtual address and file offset than) the vma.
716  *
717  * We cannot merge two vmas if they have differently assigned (non-NULL)
718  * anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
719  */
720 static int
721 can_vma_merge_after(struct vm_area_struct *vma, unsigned long vm_flags,
722         struct anon_vma *anon_vma, struct file *file, pgoff_t vm_pgoff)
723 {
724         if (is_mergeable_vma(vma, file, vm_flags) &&
725             is_mergeable_anon_vma(anon_vma, vma->anon_vma, vma)) {
726                 pgoff_t vm_pglen;
727                 vm_pglen = (vma->vm_end - vma->vm_start) >> PAGE_SHIFT;
728                 if (vma->vm_pgoff + vm_pglen == vm_pgoff)
729                         return 1;
730         }
731         return 0;
732 }
733
734 /*
735  * Given a mapping request (addr,end,vm_flags,file,pgoff), figure out
736  * whether that can be merged with its predecessor or its successor.
737  * Or both (it neatly fills a hole).
738  *
739  * In most cases - when called for mmap, brk or mremap - [addr,end) is
740  * certain not to be mapped by the time vma_merge is called; but when
741  * called for mprotect, it is certain to be already mapped (either at
742  * an offset within prev, or at the start of next), and the flags of
743  * this area are about to be changed to vm_flags - and the no-change
744  * case has already been eliminated.
745  *
746  * The following mprotect cases have to be considered, where AAAA is
747  * the area passed down from mprotect_fixup, never extending beyond one
748  * vma, PPPPPP is the prev vma specified, and NNNNNN the next vma after:
749  *
750  *     AAAA             AAAA                AAAA          AAAA
751  *    PPPPPPNNNNNN    PPPPPPNNNNNN    PPPPPPNNNNNN    PPPPNNNNXXXX
752  *    cannot merge    might become    might become    might become
753  *                    PPNNNNNNNNNN    PPPPPPPPPPNN    PPPPPPPPPPPP 6 or
754  *    mmap, brk or    case 4 below    case 5 below    PPPPPPPPXXXX 7 or
755  *    mremap move:                                    PPPPNNNNNNNN 8
756  *        AAAA
757  *    PPPP    NNNN    PPPPPPPPPPPP    PPPPPPPPNNNN    PPPPNNNNNNNN
758  *    might become    case 1 below    case 2 below    case 3 below
759  *
760  * Odd one out? Case 8, because it extends NNNN but needs flags of XXXX:
761  * mprotect_fixup updates vm_flags & vm_page_prot on successful return.
762  */
763 struct vm_area_struct *vma_merge(struct mm_struct *mm,
764                         struct vm_area_struct *prev, unsigned long addr,
765                         unsigned long end, unsigned long vm_flags,
766                         struct anon_vma *anon_vma, struct file *file,
767                         pgoff_t pgoff, struct mempolicy *policy)
768 {
769         pgoff_t pglen = (end - addr) >> PAGE_SHIFT;
770         struct vm_area_struct *area, *next;
771         int err;
772
773         /*
774          * We later require that vma->vm_flags == vm_flags,
775          * so this tests vma->vm_flags & VM_SPECIAL, too.
776          */
777         if (vm_flags & VM_SPECIAL)
778                 return NULL;
779
780         if (prev)
781                 next = prev->vm_next;
782         else
783                 next = mm->mmap;
784         area = next;
785         if (next && next->vm_end == end)                /* cases 6, 7, 8 */
786                 next = next->vm_next;
787
788         /*
789          * Can it merge with the predecessor?
790          */
791         if (prev && prev->vm_end == addr &&
792                         mpol_equal(vma_policy(prev), policy) &&
793                         can_vma_merge_after(prev, vm_flags,
794                                                 anon_vma, file, pgoff)) {
795                 /*
796                  * OK, it can.  Can we now merge in the successor as well?
797                  */
798                 if (next && end == next->vm_start &&
799                                 mpol_equal(policy, vma_policy(next)) &&
800                                 can_vma_merge_before(next, vm_flags,
801                                         anon_vma, file, pgoff+pglen) &&
802                                 is_mergeable_anon_vma(prev->anon_vma,
803                                                       next->anon_vma, NULL)) {
804                                                         /* cases 1, 6 */
805                         err = vma_adjust(prev, prev->vm_start,
806                                 next->vm_end, prev->vm_pgoff, NULL);
807                 } else                                  /* cases 2, 5, 7 */
808                         err = vma_adjust(prev, prev->vm_start,
809                                 end, prev->vm_pgoff, NULL);
810                 if (err)
811                         return NULL;
812                 khugepaged_enter_vma_merge(prev);
813                 return prev;
814         }
815
816         /*
817          * Can this new request be merged in front of next?
818          */
819         if (next && end == next->vm_start &&
820                         mpol_equal(policy, vma_policy(next)) &&
821                         can_vma_merge_before(next, vm_flags,
822                                         anon_vma, file, pgoff+pglen)) {
823                 if (prev && addr < prev->vm_end)        /* case 4 */
824                         err = vma_adjust(prev, prev->vm_start,
825                                 addr, prev->vm_pgoff, NULL);
826                 else                                    /* cases 3, 8 */
827                         err = vma_adjust(area, addr, next->vm_end,
828                                 next->vm_pgoff - pglen, NULL);
829                 if (err)
830                         return NULL;
831                 khugepaged_enter_vma_merge(area);
832                 return area;
833         }
834
835         return NULL;
836 }
837
838 /*
839  * Rough compatbility check to quickly see if it's even worth looking
840  * at sharing an anon_vma.
841  *
842  * They need to have the same vm_file, and the flags can only differ
843  * in things that mprotect may change.
844  *
845  * NOTE! The fact that we share an anon_vma doesn't _have_ to mean that
846  * we can merge the two vma's. For example, we refuse to merge a vma if
847  * there is a vm_ops->close() function, because that indicates that the
848  * driver is doing some kind of reference counting. But that doesn't
849  * really matter for the anon_vma sharing case.
850  */
851 static int anon_vma_compatible(struct vm_area_struct *a, struct vm_area_struct *b)
852 {
853         return a->vm_end == b->vm_start &&
854                 mpol_equal(vma_policy(a), vma_policy(b)) &&
855                 a->vm_file == b->vm_file &&
856                 !((a->vm_flags ^ b->vm_flags) & ~(VM_READ|VM_WRITE|VM_EXEC)) &&
857                 b->vm_pgoff == a->vm_pgoff + ((b->vm_start - a->vm_start) >> PAGE_SHIFT);
858 }
859
860 /*
861  * Do some basic sanity checking to see if we can re-use the anon_vma
862  * from 'old'. The 'a'/'b' vma's are in VM order - one of them will be
863  * the same as 'old', the other will be the new one that is trying
864  * to share the anon_vma.
865  *
866  * NOTE! This runs with mm_sem held for reading, so it is possible that
867  * the anon_vma of 'old' is concurrently in the process of being set up
868  * by another page fault trying to merge _that_. But that's ok: if it
869  * is being set up, that automatically means that it will be a singleton
870  * acceptable for merging, so we can do all of this optimistically. But
871  * we do that ACCESS_ONCE() to make sure that we never re-load the pointer.
872  *
873  * IOW: that the "list_is_singular()" test on the anon_vma_chain only
874  * matters for the 'stable anon_vma' case (ie the thing we want to avoid
875  * is to return an anon_vma that is "complex" due to having gone through
876  * a fork).
877  *
878  * We also make sure that the two vma's are compatible (adjacent,
879  * and with the same memory policies). That's all stable, even with just
880  * a read lock on the mm_sem.
881  */
882 static struct anon_vma *reusable_anon_vma(struct vm_area_struct *old, struct vm_area_struct *a, struct vm_area_struct *b)
883 {
884         if (anon_vma_compatible(a, b)) {
885                 struct anon_vma *anon_vma = ACCESS_ONCE(old->anon_vma);
886
887                 if (anon_vma && list_is_singular(&old->anon_vma_chain))
888                         return anon_vma;
889         }
890         return NULL;
891 }
892
893 /*
894  * find_mergeable_anon_vma is used by anon_vma_prepare, to check
895  * neighbouring vmas for a suitable anon_vma, before it goes off
896  * to allocate a new anon_vma.  It checks because a repetitive
897  * sequence of mprotects and faults may otherwise lead to distinct
898  * anon_vmas being allocated, preventing vma merge in subsequent
899  * mprotect.
900  */
901 struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *vma)
902 {
903         struct anon_vma *anon_vma;
904         struct vm_area_struct *near;
905
906         near = vma->vm_next;
907         if (!near)
908                 goto try_prev;
909
910         anon_vma = reusable_anon_vma(near, vma, near);
911         if (anon_vma)
912                 return anon_vma;
913 try_prev:
914         near = vma->vm_prev;
915         if (!near)
916                 goto none;
917
918         anon_vma = reusable_anon_vma(near, near, vma);
919         if (anon_vma)
920                 return anon_vma;
921 none:
922         /*
923          * There's no absolute need to look only at touching neighbours:
924          * we could search further afield for "compatible" anon_vmas.
925          * But it would probably just be a waste of time searching,
926          * or lead to too many vmas hanging off the same anon_vma.
927          * We're trying to allow mprotect remerging later on,
928          * not trying to minimize memory used for anon_vmas.
929          */
930         return NULL;
931 }
932
933 #ifdef CONFIG_PROC_FS
934 void vm_stat_account(struct mm_struct *mm, unsigned long flags,
935                                                 struct file *file, long pages)
936 {
937         const unsigned long stack_flags
938                 = VM_STACK_FLAGS & (VM_GROWSUP|VM_GROWSDOWN);
939
940         mm->total_vm += pages;
941
942         if (file) {
943                 mm->shared_vm += pages;
944                 if ((flags & (VM_EXEC|VM_WRITE)) == VM_EXEC)
945                         mm->exec_vm += pages;
946         } else if (flags & stack_flags)
947                 mm->stack_vm += pages;
948         if (flags & (VM_RESERVED|VM_IO))
949                 mm->reserved_vm += pages;
950 }
951 #endif /* CONFIG_PROC_FS */
952
953 /*
954  * If a hint addr is less than mmap_min_addr change hint to be as
955  * low as possible but still greater than mmap_min_addr
956  */
957 static inline unsigned long round_hint_to_min(unsigned long hint)
958 {
959         hint &= PAGE_MASK;
960         if (((void *)hint != NULL) &&
961             (hint < mmap_min_addr))
962                 return PAGE_ALIGN(mmap_min_addr);
963         return hint;
964 }
965
966 /*
967  * The caller must hold down_write(&current->mm->mmap_sem).
968  */
969
970 unsigned long do_mmap_pgoff(struct file *file, unsigned long addr,
971                         unsigned long len, unsigned long prot,
972                         unsigned long flags, unsigned long pgoff)
973 {
974         struct mm_struct * mm = current->mm;
975         struct inode *inode;
976         vm_flags_t vm_flags;
977
978         /*
979          * Does the application expect PROT_READ to imply PROT_EXEC?
980          *
981          * (the exception is when the underlying filesystem is noexec
982          *  mounted, in which case we dont add PROT_EXEC.)
983          */
984         if ((prot & PROT_READ) && (current->personality & READ_IMPLIES_EXEC))
985                 if (!(file && (file->f_path.mnt->mnt_flags & MNT_NOEXEC)))
986                         prot |= PROT_EXEC;
987
988         if (!len)
989                 return -EINVAL;
990
991         if (!(flags & MAP_FIXED))
992                 addr = round_hint_to_min(addr);
993
994         /* Careful about overflows.. */
995         len = PAGE_ALIGN(len);
996         if (!len)
997                 return -ENOMEM;
998
999         /* offset overflow? */
1000         if ((pgoff + (len >> PAGE_SHIFT)) < pgoff)
1001                return -EOVERFLOW;
1002
1003         /* Too many mappings? */
1004         if (mm->map_count > sysctl_max_map_count)
1005                 return -ENOMEM;
1006
1007         /* Obtain the address to map to. we verify (or select) it and ensure
1008          * that it represents a valid section of the address space.
1009          */
1010         addr = get_unmapped_area(file, addr, len, pgoff, flags);
1011         if (addr & ~PAGE_MASK)
1012                 return addr;
1013
1014         /* Do simple checking here so the lower-level routines won't have
1015          * to. we assume access permissions have been handled by the open
1016          * of the memory object, so we don't do any here.
1017          */
1018         vm_flags = calc_vm_prot_bits(prot) | calc_vm_flag_bits(flags) |
1019                         mm->def_flags | VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC;
1020
1021         if (flags & MAP_LOCKED)
1022                 if (!can_do_mlock())
1023                         return -EPERM;
1024
1025         /* mlock MCL_FUTURE? */
1026         if (vm_flags & VM_LOCKED) {
1027                 unsigned long locked, lock_limit;
1028                 locked = len >> PAGE_SHIFT;
1029                 locked += mm->locked_vm;
1030                 lock_limit = rlimit(RLIMIT_MEMLOCK);
1031                 lock_limit >>= PAGE_SHIFT;
1032                 if (locked > lock_limit && !capable(CAP_IPC_LOCK))
1033                         return -EAGAIN;
1034         }
1035
1036         inode = file ? file->f_path.dentry->d_inode : NULL;
1037
1038         if (file) {
1039                 switch (flags & MAP_TYPE) {
1040                 case MAP_SHARED:
1041                         if ((prot&PROT_WRITE) && !(file->f_mode&FMODE_WRITE))
1042                                 return -EACCES;
1043
1044                         /*
1045                          * Make sure we don't allow writing to an append-only
1046                          * file..
1047                          */
1048                         if (IS_APPEND(inode) && (file->f_mode & FMODE_WRITE))
1049                                 return -EACCES;
1050
1051                         /*
1052                          * Make sure there are no mandatory locks on the file.
1053                          */
1054                         if (locks_verify_locked(inode))
1055                                 return -EAGAIN;
1056
1057                         vm_flags |= VM_SHARED | VM_MAYSHARE;
1058                         if (!(file->f_mode & FMODE_WRITE))
1059                                 vm_flags &= ~(VM_MAYWRITE | VM_SHARED);
1060
1061                         /* fall through */
1062                 case MAP_PRIVATE:
1063                         if (!(file->f_mode & FMODE_READ))
1064                                 return -EACCES;
1065                         if (file->f_path.mnt->mnt_flags & MNT_NOEXEC) {
1066                                 if (vm_flags & VM_EXEC)
1067                                         return -EPERM;
1068                                 vm_flags &= ~VM_MAYEXEC;
1069                         }
1070
1071                         if (!file->f_op || !file->f_op->mmap)
1072                                 return -ENODEV;
1073                         break;
1074
1075                 default:
1076                         return -EINVAL;
1077                 }
1078         } else {
1079                 switch (flags & MAP_TYPE) {
1080                 case MAP_SHARED:
1081                         /*
1082                          * Ignore pgoff.
1083                          */
1084                         pgoff = 0;
1085                         vm_flags |= VM_SHARED | VM_MAYSHARE;
1086                         break;
1087                 case MAP_PRIVATE:
1088                         /*
1089                          * Set pgoff according to addr for anon_vma.
1090                          */
1091                         pgoff = addr >> PAGE_SHIFT;
1092                         break;
1093                 default:
1094                         return -EINVAL;
1095                 }
1096         }
1097
1098         return mmap_region(file, addr, len, flags, vm_flags, pgoff);
1099 }
1100
1101 SYSCALL_DEFINE6(mmap_pgoff, unsigned long, addr, unsigned long, len,
1102                 unsigned long, prot, unsigned long, flags,
1103                 unsigned long, fd, unsigned long, pgoff)
1104 {
1105         struct file *file = NULL;
1106         unsigned long retval = -EBADF;
1107
1108         if (!(flags & MAP_ANONYMOUS)) {
1109                 audit_mmap_fd(fd, flags);
1110                 if (unlikely(flags & MAP_HUGETLB))
1111                         return -EINVAL;
1112                 file = fget(fd);
1113                 if (!file)
1114                         goto out;
1115         } else if (flags & MAP_HUGETLB) {
1116                 struct user_struct *user = NULL;
1117                 /*
1118                  * VM_NORESERVE is used because the reservations will be
1119                  * taken when vm_ops->mmap() is called
1120                  * A dummy user value is used because we are not locking
1121                  * memory so no accounting is necessary
1122                  */
1123                 file = hugetlb_file_setup(HUGETLB_ANON_FILE, addr, len,
1124                                                 VM_NORESERVE, &user,
1125                                                 HUGETLB_ANONHUGE_INODE);
1126                 if (IS_ERR(file))
1127                         return PTR_ERR(file);
1128         }
1129
1130         flags &= ~(MAP_EXECUTABLE | MAP_DENYWRITE);
1131
1132         retval = vm_mmap_pgoff(file, addr, len, prot, flags, pgoff);
1133         if (file)
1134                 fput(file);
1135 out:
1136         return retval;
1137 }
1138
1139 #ifdef __ARCH_WANT_SYS_OLD_MMAP
1140 struct mmap_arg_struct {
1141         unsigned long addr;
1142         unsigned long len;
1143         unsigned long prot;
1144         unsigned long flags;
1145         unsigned long fd;
1146         unsigned long offset;
1147 };
1148
1149 SYSCALL_DEFINE1(old_mmap, struct mmap_arg_struct __user *, arg)
1150 {
1151         struct mmap_arg_struct a;
1152
1153         if (copy_from_user(&a, arg, sizeof(a)))
1154                 return -EFAULT;
1155         if (a.offset & ~PAGE_MASK)
1156                 return -EINVAL;
1157
1158         return sys_mmap_pgoff(a.addr, a.len, a.prot, a.flags, a.fd,
1159                               a.offset >> PAGE_SHIFT);
1160 }
1161 #endif /* __ARCH_WANT_SYS_OLD_MMAP */
1162
1163 /*
1164  * Some shared mappigns will want the pages marked read-only
1165  * to track write events. If so, we'll downgrade vm_page_prot
1166  * to the private version (using protection_map[] without the
1167  * VM_SHARED bit).
1168  */
1169 int vma_wants_writenotify(struct vm_area_struct *vma)
1170 {
1171         vm_flags_t vm_flags = vma->vm_flags;
1172
1173         /* If it was private or non-writable, the write bit is already clear */
1174         if ((vm_flags & (VM_WRITE|VM_SHARED)) != ((VM_WRITE|VM_SHARED)))
1175                 return 0;
1176
1177         /* The backer wishes to know when pages are first written to? */
1178         if (vma->vm_ops && vma->vm_ops->page_mkwrite)
1179                 return 1;
1180
1181         /* The open routine did something to the protections already? */
1182         if (pgprot_val(vma->vm_page_prot) !=
1183             pgprot_val(vm_get_page_prot(vm_flags)))
1184                 return 0;
1185
1186         /* Specialty mapping? */
1187         if (vm_flags & VM_PFNMAP)
1188                 return 0;
1189
1190         /* Can the mapping track the dirty pages? */
1191         return vma->vm_file && vma->vm_file->f_mapping &&
1192                 mapping_cap_account_dirty(vma->vm_file->f_mapping);
1193 }
1194
1195 /*
1196  * We account for memory if it's a private writeable mapping,
1197  * not hugepages and VM_NORESERVE wasn't set.
1198  */
1199 static inline int accountable_mapping(struct file *file, vm_flags_t vm_flags)
1200 {
1201         /*
1202          * hugetlb has its own accounting separate from the core VM
1203          * VM_HUGETLB may not be set yet so we cannot check for that flag.
1204          */
1205         if (file && is_file_hugepages(file))
1206                 return 0;
1207
1208         return (vm_flags & (VM_NORESERVE | VM_SHARED | VM_WRITE)) == VM_WRITE;
1209 }
1210
1211 unsigned long mmap_region(struct file *file, unsigned long addr,
1212                           unsigned long len, unsigned long flags,
1213                           vm_flags_t vm_flags, unsigned long pgoff)
1214 {
1215         struct mm_struct *mm = current->mm;
1216         struct vm_area_struct *vma, *prev;
1217         int correct_wcount = 0;
1218         int error;
1219         struct rb_node **rb_link, *rb_parent;
1220         unsigned long charged = 0;
1221         struct inode *inode =  file ? file->f_path.dentry->d_inode : NULL;
1222
1223         /* Clear old maps */
1224         error = -ENOMEM;
1225 munmap_back:
1226         vma = find_vma_prepare(mm, addr, &prev, &rb_link, &rb_parent);
1227         if (vma && vma->vm_start < addr + len) {
1228                 if (do_munmap(mm, addr, len))
1229                         return -ENOMEM;
1230                 goto munmap_back;
1231         }
1232
1233         /* Check against address space limit. */
1234         if (!may_expand_vm(mm, len >> PAGE_SHIFT))
1235                 return -ENOMEM;
1236
1237         /*
1238          * Set 'VM_NORESERVE' if we should not account for the
1239          * memory use of this mapping.
1240          */
1241         if ((flags & MAP_NORESERVE)) {
1242                 /* We honor MAP_NORESERVE if allowed to overcommit */
1243                 if (sysctl_overcommit_memory != OVERCOMMIT_NEVER)
1244                         vm_flags |= VM_NORESERVE;
1245
1246                 /* hugetlb applies strict overcommit unless MAP_NORESERVE */
1247                 if (file && is_file_hugepages(file))
1248                         vm_flags |= VM_NORESERVE;
1249         }
1250
1251         /*
1252          * Private writable mapping: check memory availability
1253          */
1254         if (accountable_mapping(file, vm_flags)) {
1255                 charged = len >> PAGE_SHIFT;
1256                 if (security_vm_enough_memory_mm(mm, charged))
1257                         return -ENOMEM;
1258                 vm_flags |= VM_ACCOUNT;
1259         }
1260
1261         /*
1262          * Can we just expand an old mapping?
1263          */
1264         vma = vma_merge(mm, prev, addr, addr + len, vm_flags, NULL, file, pgoff, NULL);
1265         if (vma)
1266                 goto out;
1267
1268         /*
1269          * Determine the object being mapped and call the appropriate
1270          * specific mapper. the address has already been validated, but
1271          * not unmapped, but the maps are removed from the list.
1272          */
1273         vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
1274         if (!vma) {
1275                 error = -ENOMEM;
1276                 goto unacct_error;
1277         }
1278
1279         vma->vm_mm = mm;
1280         vma->vm_start = addr;
1281         vma->vm_end = addr + len;
1282         vma->vm_flags = vm_flags;
1283         vma->vm_page_prot = vm_get_page_prot(vm_flags);
1284         vma->vm_pgoff = pgoff;
1285         INIT_LIST_HEAD(&vma->anon_vma_chain);
1286
1287         error = -EINVAL;        /* when rejecting VM_GROWSDOWN|VM_GROWSUP */
1288
1289         if (file) {
1290                 if (vm_flags & (VM_GROWSDOWN|VM_GROWSUP))
1291                         goto free_vma;
1292                 if (vm_flags & VM_DENYWRITE) {
1293                         error = deny_write_access(file);
1294                         if (error)
1295                                 goto free_vma;
1296                         correct_wcount = 1;
1297                 }
1298                 vma->vm_file = get_file(file);
1299                 error = file->f_op->mmap(file, vma);
1300                 if (error)
1301                         goto unmap_and_free_vma;
1302
1303                 /* Can addr have changed??
1304                  *
1305                  * Answer: Yes, several device drivers can do it in their
1306                  *         f_op->mmap method. -DaveM
1307                  */
1308                 addr = vma->vm_start;
1309                 pgoff = vma->vm_pgoff;
1310                 vm_flags = vma->vm_flags;
1311         } else if (vm_flags & VM_SHARED) {
1312                 if (unlikely(vm_flags & (VM_GROWSDOWN|VM_GROWSUP)))
1313                         goto free_vma;
1314                 error = shmem_zero_setup(vma);
1315                 if (error)
1316                         goto free_vma;
1317         }
1318
1319         if (vma_wants_writenotify(vma)) {
1320                 pgprot_t pprot = vma->vm_page_prot;
1321
1322                 /* Can vma->vm_page_prot have changed??
1323                  *
1324                  * Answer: Yes, drivers may have changed it in their
1325                  *         f_op->mmap method.
1326                  *
1327                  * Ensures that vmas marked as uncached stay that way.
1328                  */
1329                 vma->vm_page_prot = vm_get_page_prot(vm_flags & ~VM_SHARED);
1330                 if (pgprot_val(pprot) == pgprot_val(pgprot_noncached(pprot)))
1331                         vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot);
1332         }
1333
1334         vma_link(mm, vma, prev, rb_link, rb_parent);
1335         file = vma->vm_file;
1336
1337         /* Once vma denies write, undo our temporary denial count */
1338         if (correct_wcount)
1339                 atomic_inc(&inode->i_writecount);
1340 out:
1341         perf_event_mmap(vma);
1342
1343         vm_stat_account(mm, vm_flags, file, len >> PAGE_SHIFT);
1344         if (vm_flags & VM_LOCKED) {
1345                 if (!mlock_vma_pages_range(vma, addr, addr + len))
1346                         mm->locked_vm += (len >> PAGE_SHIFT);
1347         } else if ((flags & MAP_POPULATE) && !(flags & MAP_NONBLOCK))
1348                 make_pages_present(addr, addr + len);
1349
1350         if (file)
1351                 uprobe_mmap(vma);
1352
1353         return addr;
1354
1355 unmap_and_free_vma:
1356         if (correct_wcount)
1357                 atomic_inc(&inode->i_writecount);
1358         vma->vm_file = NULL;
1359         fput(file);
1360
1361         /* Undo any partial mapping done by a device driver. */
1362         unmap_region(mm, vma, prev, vma->vm_start, vma->vm_end);
1363         charged = 0;
1364 free_vma:
1365         kmem_cache_free(vm_area_cachep, vma);
1366 unacct_error:
1367         if (charged)
1368                 vm_unacct_memory(charged);
1369         return error;
1370 }
1371
1372 /* Get an address range which is currently unmapped.
1373  * For shmat() with addr=0.
1374  *
1375  * Ugly calling convention alert:
1376  * Return value with the low bits set means error value,
1377  * ie
1378  *      if (ret & ~PAGE_MASK)
1379  *              error = ret;
1380  *
1381  * This function "knows" that -ENOMEM has the bits set.
1382  */
1383 #ifndef HAVE_ARCH_UNMAPPED_AREA
1384 unsigned long
1385 arch_get_unmapped_area(struct file *filp, unsigned long addr,
1386                 unsigned long len, unsigned long pgoff, unsigned long flags)
1387 {
1388         struct mm_struct *mm = current->mm;
1389         struct vm_area_struct *vma;
1390         unsigned long start_addr;
1391
1392         if (len > TASK_SIZE)
1393                 return -ENOMEM;
1394
1395         if (flags & MAP_FIXED)
1396                 return addr;
1397
1398         if (addr) {
1399                 addr = PAGE_ALIGN(addr);
1400                 vma = find_vma(mm, addr);
1401                 if (TASK_SIZE - len >= addr &&
1402                     (!vma || addr + len <= vma->vm_start))
1403                         return addr;
1404         }
1405         if (len > mm->cached_hole_size) {
1406                 start_addr = addr = mm->free_area_cache;
1407         } else {
1408                 start_addr = addr = TASK_UNMAPPED_BASE;
1409                 mm->cached_hole_size = 0;
1410         }
1411
1412 full_search:
1413         for (vma = find_vma(mm, addr); ; vma = vma->vm_next) {
1414                 /* At this point:  (!vma || addr < vma->vm_end). */
1415                 if (TASK_SIZE - len < addr) {
1416                         /*
1417                          * Start a new search - just in case we missed
1418                          * some holes.
1419                          */
1420                         if (start_addr != TASK_UNMAPPED_BASE) {
1421                                 addr = TASK_UNMAPPED_BASE;
1422                                 start_addr = addr;
1423                                 mm->cached_hole_size = 0;
1424                                 goto full_search;
1425                         }
1426                         return -ENOMEM;
1427                 }
1428                 if (!vma || addr + len <= vma->vm_start) {
1429                         /*
1430                          * Remember the place where we stopped the search:
1431                          */
1432                         mm->free_area_cache = addr + len;
1433                         return addr;
1434                 }
1435                 if (addr + mm->cached_hole_size < vma->vm_start)
1436                         mm->cached_hole_size = vma->vm_start - addr;
1437                 addr = vma->vm_end;
1438         }
1439 }
1440 #endif  
1441
1442 void arch_unmap_area(struct mm_struct *mm, unsigned long addr)
1443 {
1444         /*
1445          * Is this a new hole at the lowest possible address?
1446          */
1447         if (addr >= TASK_UNMAPPED_BASE && addr < mm->free_area_cache)
1448                 mm->free_area_cache = addr;
1449 }
1450
1451 /*
1452  * This mmap-allocator allocates new areas top-down from below the
1453  * stack's low limit (the base):
1454  */
1455 #ifndef HAVE_ARCH_UNMAPPED_AREA_TOPDOWN
1456 unsigned long
1457 arch_get_unmapped_area_topdown(struct file *filp, const unsigned long addr0,
1458                           const unsigned long len, const unsigned long pgoff,
1459                           const unsigned long flags)
1460 {
1461         struct vm_area_struct *vma;
1462         struct mm_struct *mm = current->mm;
1463         unsigned long addr = addr0, start_addr;
1464
1465         /* requested length too big for entire address space */
1466         if (len > TASK_SIZE)
1467                 return -ENOMEM;
1468
1469         if (flags & MAP_FIXED)
1470                 return addr;
1471
1472         /* requesting a specific address */
1473         if (addr) {
1474                 addr = PAGE_ALIGN(addr);
1475                 vma = find_vma(mm, addr);
1476                 if (TASK_SIZE - len >= addr &&
1477                                 (!vma || addr + len <= vma->vm_start))
1478                         return addr;
1479         }
1480
1481         /* check if free_area_cache is useful for us */
1482         if (len <= mm->cached_hole_size) {
1483                 mm->cached_hole_size = 0;
1484                 mm->free_area_cache = mm->mmap_base;
1485         }
1486
1487 try_again:
1488         /* either no address requested or can't fit in requested address hole */
1489         start_addr = addr = mm->free_area_cache;
1490
1491         if (addr < len)
1492                 goto fail;
1493
1494         addr -= len;
1495         do {
1496                 /*
1497                  * Lookup failure means no vma is above this address,
1498                  * else if new region fits below vma->vm_start,
1499                  * return with success:
1500                  */
1501                 vma = find_vma(mm, addr);
1502                 if (!vma || addr+len <= vma->vm_start)
1503                         /* remember the address as a hint for next time */
1504                         return (mm->free_area_cache = addr);
1505
1506                 /* remember the largest hole we saw so far */
1507                 if (addr + mm->cached_hole_size < vma->vm_start)
1508                         mm->cached_hole_size = vma->vm_start - addr;
1509
1510                 /* try just below the current vma->vm_start */
1511                 addr = vma->vm_start-len;
1512         } while (len < vma->vm_start);
1513
1514 fail:
1515         /*
1516          * if hint left us with no space for the requested
1517          * mapping then try again:
1518          *
1519          * Note: this is different with the case of bottomup
1520          * which does the fully line-search, but we use find_vma
1521          * here that causes some holes skipped.
1522          */
1523         if (start_addr != mm->mmap_base) {
1524                 mm->free_area_cache = mm->mmap_base;
1525                 mm->cached_hole_size = 0;
1526                 goto try_again;
1527         }
1528
1529         /*
1530          * A failed mmap() very likely causes application failure,
1531          * so fall back to the bottom-up function here. This scenario
1532          * can happen with large stack limits and large mmap()
1533          * allocations.
1534          */
1535         mm->cached_hole_size = ~0UL;
1536         mm->free_area_cache = TASK_UNMAPPED_BASE;
1537         addr = arch_get_unmapped_area(filp, addr0, len, pgoff, flags);
1538         /*
1539          * Restore the topdown base:
1540          */
1541         mm->free_area_cache = mm->mmap_base;
1542         mm->cached_hole_size = ~0UL;
1543
1544         return addr;
1545 }
1546 #endif
1547
1548 void arch_unmap_area_topdown(struct mm_struct *mm, unsigned long addr)
1549 {
1550         /*
1551          * Is this a new hole at the highest possible address?
1552          */
1553         if (addr > mm->free_area_cache)
1554                 mm->free_area_cache = addr;
1555
1556         /* dont allow allocations above current base */
1557         if (mm->free_area_cache > mm->mmap_base)
1558                 mm->free_area_cache = mm->mmap_base;
1559 }
1560
1561 unsigned long
1562 get_unmapped_area(struct file *file, unsigned long addr, unsigned long len,
1563                 unsigned long pgoff, unsigned long flags)
1564 {
1565         unsigned long (*get_area)(struct file *, unsigned long,
1566                                   unsigned long, unsigned long, unsigned long);
1567
1568         unsigned long error = arch_mmap_check(addr, len, flags);
1569         if (error)
1570                 return error;
1571
1572         /* Careful about overflows.. */
1573         if (len > TASK_SIZE)
1574                 return -ENOMEM;
1575
1576         get_area = current->mm->get_unmapped_area;
1577         if (file && file->f_op && file->f_op->get_unmapped_area)
1578                 get_area = file->f_op->get_unmapped_area;
1579         addr = get_area(file, addr, len, pgoff, flags);
1580         if (IS_ERR_VALUE(addr))
1581                 return addr;
1582
1583         if (addr > TASK_SIZE - len)
1584                 return -ENOMEM;
1585         if (addr & ~PAGE_MASK)
1586                 return -EINVAL;
1587
1588         addr = arch_rebalance_pgtables(addr, len);
1589         error = security_mmap_addr(addr);
1590         return error ? error : addr;
1591 }
1592
1593 EXPORT_SYMBOL(get_unmapped_area);
1594
1595 /* Look up the first VMA which satisfies  addr < vm_end,  NULL if none. */
1596 struct vm_area_struct *find_vma(struct mm_struct *mm, unsigned long addr)
1597 {
1598         struct vm_area_struct *vma = NULL;
1599
1600         if (WARN_ON_ONCE(!mm))          /* Remove this in linux-3.6 */
1601                 return NULL;
1602
1603         /* Check the cache first. */
1604         /* (Cache hit rate is typically around 35%.) */
1605         vma = mm->mmap_cache;
1606         if (!(vma && vma->vm_end > addr && vma->vm_start <= addr)) {
1607                 struct rb_node *rb_node;
1608
1609                 rb_node = mm->mm_rb.rb_node;
1610                 vma = NULL;
1611
1612                 while (rb_node) {
1613                         struct vm_area_struct *vma_tmp;
1614
1615                         vma_tmp = rb_entry(rb_node,
1616                                            struct vm_area_struct, vm_rb);
1617
1618                         if (vma_tmp->vm_end > addr) {
1619                                 vma = vma_tmp;
1620                                 if (vma_tmp->vm_start <= addr)
1621                                         break;
1622                                 rb_node = rb_node->rb_left;
1623                         } else
1624                                 rb_node = rb_node->rb_right;
1625                 }
1626                 if (vma)
1627                         mm->mmap_cache = vma;
1628         }
1629         return vma;
1630 }
1631
1632 EXPORT_SYMBOL(find_vma);
1633
1634 /*
1635  * Same as find_vma, but also return a pointer to the previous VMA in *pprev.
1636  */
1637 struct vm_area_struct *
1638 find_vma_prev(struct mm_struct *mm, unsigned long addr,
1639                         struct vm_area_struct **pprev)
1640 {
1641         struct vm_area_struct *vma;
1642
1643         vma = find_vma(mm, addr);
1644         if (vma) {
1645                 *pprev = vma->vm_prev;
1646         } else {
1647                 struct rb_node *rb_node = mm->mm_rb.rb_node;
1648                 *pprev = NULL;
1649                 while (rb_node) {
1650                         *pprev = rb_entry(rb_node, struct vm_area_struct, vm_rb);
1651                         rb_node = rb_node->rb_right;
1652                 }
1653         }
1654         return vma;
1655 }
1656
1657 /*
1658  * Verify that the stack growth is acceptable and
1659  * update accounting. This is shared with both the
1660  * grow-up and grow-down cases.
1661  */
1662 static int acct_stack_growth(struct vm_area_struct *vma, unsigned long size, unsigned long grow)
1663 {
1664         struct mm_struct *mm = vma->vm_mm;
1665         struct rlimit *rlim = current->signal->rlim;
1666         unsigned long new_start;
1667
1668         /* address space limit tests */
1669         if (!may_expand_vm(mm, grow))
1670                 return -ENOMEM;
1671
1672         /* Stack limit test */
1673         if (size > ACCESS_ONCE(rlim[RLIMIT_STACK].rlim_cur))
1674                 return -ENOMEM;
1675
1676         /* mlock limit tests */
1677         if (vma->vm_flags & VM_LOCKED) {
1678                 unsigned long locked;
1679                 unsigned long limit;
1680                 locked = mm->locked_vm + grow;
1681                 limit = ACCESS_ONCE(rlim[RLIMIT_MEMLOCK].rlim_cur);
1682                 limit >>= PAGE_SHIFT;
1683                 if (locked > limit && !capable(CAP_IPC_LOCK))
1684                         return -ENOMEM;
1685         }
1686
1687         /* Check to ensure the stack will not grow into a hugetlb-only region */
1688         new_start = (vma->vm_flags & VM_GROWSUP) ? vma->vm_start :
1689                         vma->vm_end - size;
1690         if (is_hugepage_only_range(vma->vm_mm, new_start, size))
1691                 return -EFAULT;
1692
1693         /*
1694          * Overcommit..  This must be the final test, as it will
1695          * update security statistics.
1696          */
1697         if (security_vm_enough_memory_mm(mm, grow))
1698                 return -ENOMEM;
1699
1700         /* Ok, everything looks good - let it rip */
1701         if (vma->vm_flags & VM_LOCKED)
1702                 mm->locked_vm += grow;
1703         vm_stat_account(mm, vma->vm_flags, vma->vm_file, grow);
1704         return 0;
1705 }
1706
1707 #if defined(CONFIG_STACK_GROWSUP) || defined(CONFIG_IA64)
1708 /*
1709  * PA-RISC uses this for its stack; IA64 for its Register Backing Store.
1710  * vma is the last one with address > vma->vm_end.  Have to extend vma.
1711  */
1712 int expand_upwards(struct vm_area_struct *vma, unsigned long address)
1713 {
1714         int error;
1715
1716         if (!(vma->vm_flags & VM_GROWSUP))
1717                 return -EFAULT;
1718
1719         /*
1720          * We must make sure the anon_vma is allocated
1721          * so that the anon_vma locking is not a noop.
1722          */
1723         if (unlikely(anon_vma_prepare(vma)))
1724                 return -ENOMEM;
1725         vma_lock_anon_vma(vma);
1726
1727         /*
1728          * vma->vm_start/vm_end cannot change under us because the caller
1729          * is required to hold the mmap_sem in read mode.  We need the
1730          * anon_vma lock to serialize against concurrent expand_stacks.
1731          * Also guard against wrapping around to address 0.
1732          */
1733         if (address < PAGE_ALIGN(address+4))
1734                 address = PAGE_ALIGN(address+4);
1735         else {
1736                 vma_unlock_anon_vma(vma);
1737                 return -ENOMEM;
1738         }
1739         error = 0;
1740
1741         /* Somebody else might have raced and expanded it already */
1742         if (address > vma->vm_end) {
1743                 unsigned long size, grow;
1744
1745                 size = address - vma->vm_start;
1746                 grow = (address - vma->vm_end) >> PAGE_SHIFT;
1747
1748                 error = -ENOMEM;
1749                 if (vma->vm_pgoff + (size >> PAGE_SHIFT) >= vma->vm_pgoff) {
1750                         error = acct_stack_growth(vma, size, grow);
1751                         if (!error) {
1752                                 vma->vm_end = address;
1753                                 perf_event_mmap(vma);
1754                         }
1755                 }
1756         }
1757         vma_unlock_anon_vma(vma);
1758         khugepaged_enter_vma_merge(vma);
1759         return error;
1760 }
1761 #endif /* CONFIG_STACK_GROWSUP || CONFIG_IA64 */
1762
1763 /*
1764  * vma is the first one with address < vma->vm_start.  Have to extend vma.
1765  */
1766 int expand_downwards(struct vm_area_struct *vma,
1767                                    unsigned long address)
1768 {
1769         int error;
1770
1771         /*
1772          * We must make sure the anon_vma is allocated
1773          * so that the anon_vma locking is not a noop.
1774          */
1775         if (unlikely(anon_vma_prepare(vma)))
1776                 return -ENOMEM;
1777
1778         address &= PAGE_MASK;
1779         error = security_mmap_addr(address);
1780         if (error)
1781                 return error;
1782
1783         vma_lock_anon_vma(vma);
1784
1785         /*
1786          * vma->vm_start/vm_end cannot change under us because the caller
1787          * is required to hold the mmap_sem in read mode.  We need the
1788          * anon_vma lock to serialize against concurrent expand_stacks.
1789          */
1790
1791         /* Somebody else might have raced and expanded it already */
1792         if (address < vma->vm_start) {
1793                 unsigned long size, grow;
1794
1795                 size = vma->vm_end - address;
1796                 grow = (vma->vm_start - address) >> PAGE_SHIFT;
1797
1798                 error = -ENOMEM;
1799                 if (grow <= vma->vm_pgoff) {
1800                         error = acct_stack_growth(vma, size, grow);
1801                         if (!error) {
1802                                 vma->vm_start = address;
1803                                 vma->vm_pgoff -= grow;
1804                                 perf_event_mmap(vma);
1805                         }
1806                 }
1807         }
1808         vma_unlock_anon_vma(vma);
1809         khugepaged_enter_vma_merge(vma);
1810         return error;
1811 }
1812
1813 #ifdef CONFIG_STACK_GROWSUP
1814 int expand_stack(struct vm_area_struct *vma, unsigned long address)
1815 {
1816         return expand_upwards(vma, address);
1817 }
1818
1819 struct vm_area_struct *
1820 find_extend_vma(struct mm_struct *mm, unsigned long addr)
1821 {
1822         struct vm_area_struct *vma, *prev;
1823
1824         addr &= PAGE_MASK;
1825         vma = find_vma_prev(mm, addr, &prev);
1826         if (vma && (vma->vm_start <= addr))
1827                 return vma;
1828         if (!prev || expand_stack(prev, addr))
1829                 return NULL;
1830         if (prev->vm_flags & VM_LOCKED) {
1831                 mlock_vma_pages_range(prev, addr, prev->vm_end);
1832         }
1833         return prev;
1834 }
1835 #else
1836 int expand_stack(struct vm_area_struct *vma, unsigned long address)
1837 {
1838         return expand_downwards(vma, address);
1839 }
1840
1841 struct vm_area_struct *
1842 find_extend_vma(struct mm_struct * mm, unsigned long addr)
1843 {
1844         struct vm_area_struct * vma;
1845         unsigned long start;
1846
1847         addr &= PAGE_MASK;
1848         vma = find_vma(mm,addr);
1849         if (!vma)
1850                 return NULL;
1851         if (vma->vm_start <= addr)
1852                 return vma;
1853         if (!(vma->vm_flags & VM_GROWSDOWN))
1854                 return NULL;
1855         start = vma->vm_start;
1856         if (expand_stack(vma, addr))
1857                 return NULL;
1858         if (vma->vm_flags & VM_LOCKED) {
1859                 mlock_vma_pages_range(vma, addr, start);
1860         }
1861         return vma;
1862 }
1863 #endif
1864
1865 /*
1866  * Ok - we have the memory areas we should free on the vma list,
1867  * so release them, and do the vma updates.
1868  *
1869  * Called with the mm semaphore held.
1870  */
1871 static void remove_vma_list(struct mm_struct *mm, struct vm_area_struct *vma)
1872 {
1873         unsigned long nr_accounted = 0;
1874
1875         /* Update high watermark before we lower total_vm */
1876         update_hiwater_vm(mm);
1877         do {
1878                 long nrpages = vma_pages(vma);
1879
1880                 if (vma->vm_flags & VM_ACCOUNT)
1881                         nr_accounted += nrpages;
1882                 vm_stat_account(mm, vma->vm_flags, vma->vm_file, -nrpages);
1883                 vma = remove_vma(vma);
1884         } while (vma);
1885         vm_unacct_memory(nr_accounted);
1886         validate_mm(mm);
1887 }
1888
1889 /*
1890  * Get rid of page table information in the indicated region.
1891  *
1892  * Called with the mm semaphore held.
1893  */
1894 static void unmap_region(struct mm_struct *mm,
1895                 struct vm_area_struct *vma, struct vm_area_struct *prev,
1896                 unsigned long start, unsigned long end)
1897 {
1898         struct vm_area_struct *next = prev? prev->vm_next: mm->mmap;
1899         struct mmu_gather tlb;
1900
1901         lru_add_drain();
1902         tlb_gather_mmu(&tlb, mm, 0);
1903         update_hiwater_rss(mm);
1904         unmap_vmas(&tlb, vma, start, end);
1905         free_pgtables(&tlb, vma, prev ? prev->vm_end : FIRST_USER_ADDRESS,
1906                                  next ? next->vm_start : 0);
1907         tlb_finish_mmu(&tlb, start, end);
1908 }
1909
1910 /*
1911  * Create a list of vma's touched by the unmap, removing them from the mm's
1912  * vma list as we go..
1913  */
1914 static void
1915 detach_vmas_to_be_unmapped(struct mm_struct *mm, struct vm_area_struct *vma,
1916         struct vm_area_struct *prev, unsigned long end)
1917 {
1918         struct vm_area_struct **insertion_point;
1919         struct vm_area_struct *tail_vma = NULL;
1920         unsigned long addr;
1921
1922         insertion_point = (prev ? &prev->vm_next : &mm->mmap);
1923         vma->vm_prev = NULL;
1924         do {
1925                 rb_erase(&vma->vm_rb, &mm->mm_rb);
1926                 mm->map_count--;
1927                 tail_vma = vma;
1928                 vma = vma->vm_next;
1929         } while (vma && vma->vm_start < end);
1930         *insertion_point = vma;
1931         if (vma)
1932                 vma->vm_prev = prev;
1933         tail_vma->vm_next = NULL;
1934         if (mm->unmap_area == arch_unmap_area)
1935                 addr = prev ? prev->vm_end : mm->mmap_base;
1936         else
1937                 addr = vma ?  vma->vm_start : mm->mmap_base;
1938         mm->unmap_area(mm, addr);
1939         mm->mmap_cache = NULL;          /* Kill the cache. */
1940 }
1941
1942 /*
1943  * __split_vma() bypasses sysctl_max_map_count checking.  We use this on the
1944  * munmap path where it doesn't make sense to fail.
1945  */
1946 static int __split_vma(struct mm_struct * mm, struct vm_area_struct * vma,
1947               unsigned long addr, int new_below)
1948 {
1949         struct mempolicy *pol;
1950         struct vm_area_struct *new;
1951         int err = -ENOMEM;
1952
1953         if (is_vm_hugetlb_page(vma) && (addr &
1954                                         ~(huge_page_mask(hstate_vma(vma)))))
1955                 return -EINVAL;
1956
1957         new = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
1958         if (!new)
1959                 goto out_err;
1960
1961         /* most fields are the same, copy all, and then fixup */
1962         *new = *vma;
1963
1964         INIT_LIST_HEAD(&new->anon_vma_chain);
1965
1966         if (new_below)
1967                 new->vm_end = addr;
1968         else {
1969                 new->vm_start = addr;
1970                 new->vm_pgoff += ((addr - vma->vm_start) >> PAGE_SHIFT);
1971         }
1972
1973         pol = mpol_dup(vma_policy(vma));
1974         if (IS_ERR(pol)) {
1975                 err = PTR_ERR(pol);
1976                 goto out_free_vma;
1977         }
1978         vma_set_policy(new, pol);
1979
1980         if (anon_vma_clone(new, vma))
1981                 goto out_free_mpol;
1982
1983         if (new->vm_file)
1984                 get_file(new->vm_file);
1985
1986         if (new->vm_ops && new->vm_ops->open)
1987                 new->vm_ops->open(new);
1988
1989         if (new_below)
1990                 err = vma_adjust(vma, addr, vma->vm_end, vma->vm_pgoff +
1991                         ((addr - new->vm_start) >> PAGE_SHIFT), new);
1992         else
1993                 err = vma_adjust(vma, vma->vm_start, addr, vma->vm_pgoff, new);
1994
1995         /* Success. */
1996         if (!err)
1997                 return 0;
1998
1999         /* Clean everything up if vma_adjust failed. */
2000         if (new->vm_ops && new->vm_ops->close)
2001                 new->vm_ops->close(new);
2002         if (new->vm_file)
2003                 fput(new->vm_file);
2004         unlink_anon_vmas(new);
2005  out_free_mpol:
2006         mpol_put(pol);
2007  out_free_vma:
2008         kmem_cache_free(vm_area_cachep, new);
2009  out_err:
2010         return err;
2011 }
2012
2013 /*
2014  * Split a vma into two pieces at address 'addr', a new vma is allocated
2015  * either for the first part or the tail.
2016  */
2017 int split_vma(struct mm_struct *mm, struct vm_area_struct *vma,
2018               unsigned long addr, int new_below)
2019 {
2020         if (mm->map_count >= sysctl_max_map_count)
2021                 return -ENOMEM;
2022
2023         return __split_vma(mm, vma, addr, new_below);
2024 }
2025
2026 /* Munmap is split into 2 main parts -- this part which finds
2027  * what needs doing, and the areas themselves, which do the
2028  * work.  This now handles partial unmappings.
2029  * Jeremy Fitzhardinge <jeremy@goop.org>
2030  */
2031 int do_munmap(struct mm_struct *mm, unsigned long start, size_t len)
2032 {
2033         unsigned long end;
2034         struct vm_area_struct *vma, *prev, *last;
2035
2036         if ((start & ~PAGE_MASK) || start > TASK_SIZE || len > TASK_SIZE-start)
2037                 return -EINVAL;
2038
2039         if ((len = PAGE_ALIGN(len)) == 0)
2040                 return -EINVAL;
2041
2042         /* Find the first overlapping VMA */
2043         vma = find_vma(mm, start);
2044         if (!vma)
2045                 return 0;
2046         prev = vma->vm_prev;
2047         /* we have  start < vma->vm_end  */
2048
2049         /* if it doesn't overlap, we have nothing.. */
2050         end = start + len;
2051         if (vma->vm_start >= end)
2052                 return 0;
2053
2054         /*
2055          * If we need to split any vma, do it now to save pain later.
2056          *
2057          * Note: mremap's move_vma VM_ACCOUNT handling assumes a partially
2058          * unmapped vm_area_struct will remain in use: so lower split_vma
2059          * places tmp vma above, and higher split_vma places tmp vma below.
2060          */
2061         if (start > vma->vm_start) {
2062                 int error;
2063
2064                 /*
2065                  * Make sure that map_count on return from munmap() will
2066                  * not exceed its limit; but let map_count go just above
2067                  * its limit temporarily, to help free resources as expected.
2068                  */
2069                 if (end < vma->vm_end && mm->map_count >= sysctl_max_map_count)
2070                         return -ENOMEM;
2071
2072                 error = __split_vma(mm, vma, start, 0);
2073                 if (error)
2074                         return error;
2075                 prev = vma;
2076         }
2077
2078         /* Does it split the last one? */
2079         last = find_vma(mm, end);
2080         if (last && end > last->vm_start) {
2081                 int error = __split_vma(mm, last, end, 1);
2082                 if (error)
2083                         return error;
2084         }
2085         vma = prev? prev->vm_next: mm->mmap;
2086
2087         /*
2088          * unlock any mlock()ed ranges before detaching vmas
2089          */
2090         if (mm->locked_vm) {
2091                 struct vm_area_struct *tmp = vma;
2092                 while (tmp && tmp->vm_start < end) {
2093                         if (tmp->vm_flags & VM_LOCKED) {
2094                                 mm->locked_vm -= vma_pages(tmp);
2095                                 munlock_vma_pages_all(tmp);
2096                         }
2097                         tmp = tmp->vm_next;
2098                 }
2099         }
2100
2101         /*
2102          * Remove the vma's, and unmap the actual pages
2103          */
2104         detach_vmas_to_be_unmapped(mm, vma, prev, end);
2105         unmap_region(mm, vma, prev, start, end);
2106
2107         /* Fix up all other VM information */
2108         remove_vma_list(mm, vma);
2109
2110         return 0;
2111 }
2112
2113 int vm_munmap(unsigned long start, size_t len)
2114 {
2115         int ret;
2116         struct mm_struct *mm = current->mm;
2117
2118         down_write(&mm->mmap_sem);
2119         ret = do_munmap(mm, start, len);
2120         up_write(&mm->mmap_sem);
2121         return ret;
2122 }
2123 EXPORT_SYMBOL(vm_munmap);
2124
2125 SYSCALL_DEFINE2(munmap, unsigned long, addr, size_t, len)
2126 {
2127         profile_munmap(addr);
2128         return vm_munmap(addr, len);
2129 }
2130
2131 static inline void verify_mm_writelocked(struct mm_struct *mm)
2132 {
2133 #ifdef CONFIG_DEBUG_VM
2134         if (unlikely(down_read_trylock(&mm->mmap_sem))) {
2135                 WARN_ON(1);
2136                 up_read(&mm->mmap_sem);
2137         }
2138 #endif
2139 }
2140
2141 /*
2142  *  this is really a simplified "do_mmap".  it only handles
2143  *  anonymous maps.  eventually we may be able to do some
2144  *  brk-specific accounting here.
2145  */
2146 static unsigned long do_brk(unsigned long addr, unsigned long len)
2147 {
2148         struct mm_struct * mm = current->mm;
2149         struct vm_area_struct * vma, * prev;
2150         unsigned long flags;
2151         struct rb_node ** rb_link, * rb_parent;
2152         pgoff_t pgoff = addr >> PAGE_SHIFT;
2153         int error;
2154
2155         len = PAGE_ALIGN(len);
2156         if (!len)
2157                 return addr;
2158
2159         flags = VM_DATA_DEFAULT_FLAGS | VM_ACCOUNT | mm->def_flags;
2160
2161         error = get_unmapped_area(NULL, addr, len, 0, MAP_FIXED);
2162         if (error & ~PAGE_MASK)
2163                 return error;
2164
2165         /*
2166          * mlock MCL_FUTURE?
2167          */
2168         if (mm->def_flags & VM_LOCKED) {
2169                 unsigned long locked, lock_limit;
2170                 locked = len >> PAGE_SHIFT;
2171                 locked += mm->locked_vm;
2172                 lock_limit = rlimit(RLIMIT_MEMLOCK);
2173                 lock_limit >>= PAGE_SHIFT;
2174                 if (locked > lock_limit && !capable(CAP_IPC_LOCK))
2175                         return -EAGAIN;
2176         }
2177
2178         /*
2179          * mm->mmap_sem is required to protect against another thread
2180          * changing the mappings in case we sleep.
2181          */
2182         verify_mm_writelocked(mm);
2183
2184         /*
2185          * Clear old maps.  this also does some error checking for us
2186          */
2187  munmap_back:
2188         vma = find_vma_prepare(mm, addr, &prev, &rb_link, &rb_parent);
2189         if (vma && vma->vm_start < addr + len) {
2190                 if (do_munmap(mm, addr, len))
2191                         return -ENOMEM;
2192                 goto munmap_back;
2193         }
2194
2195         /* Check against address space limits *after* clearing old maps... */
2196         if (!may_expand_vm(mm, len >> PAGE_SHIFT))
2197                 return -ENOMEM;
2198
2199         if (mm->map_count > sysctl_max_map_count)
2200                 return -ENOMEM;
2201
2202         if (security_vm_enough_memory_mm(mm, len >> PAGE_SHIFT))
2203                 return -ENOMEM;
2204
2205         /* Can we just expand an old private anonymous mapping? */
2206         vma = vma_merge(mm, prev, addr, addr + len, flags,
2207                                         NULL, NULL, pgoff, NULL);
2208         if (vma)
2209                 goto out;
2210
2211         /*
2212          * create a vma struct for an anonymous mapping
2213          */
2214         vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
2215         if (!vma) {
2216                 vm_unacct_memory(len >> PAGE_SHIFT);
2217                 return -ENOMEM;
2218         }
2219
2220         INIT_LIST_HEAD(&vma->anon_vma_chain);
2221         vma->vm_mm = mm;
2222         vma->vm_start = addr;
2223         vma->vm_end = addr + len;
2224         vma->vm_pgoff = pgoff;
2225         vma->vm_flags = flags;
2226         vma->vm_page_prot = vm_get_page_prot(flags);
2227         vma_link(mm, vma, prev, rb_link, rb_parent);
2228 out:
2229         perf_event_mmap(vma);
2230         mm->total_vm += len >> PAGE_SHIFT;
2231         if (flags & VM_LOCKED) {
2232                 if (!mlock_vma_pages_range(vma, addr, addr + len))
2233                         mm->locked_vm += (len >> PAGE_SHIFT);
2234         }
2235         return addr;
2236 }
2237
2238 unsigned long vm_brk(unsigned long addr, unsigned long len)
2239 {
2240         struct mm_struct *mm = current->mm;
2241         unsigned long ret;
2242
2243         down_write(&mm->mmap_sem);
2244         ret = do_brk(addr, len);
2245         up_write(&mm->mmap_sem);
2246         return ret;
2247 }
2248 EXPORT_SYMBOL(vm_brk);
2249
2250 /* Release all mmaps. */
2251 void exit_mmap(struct mm_struct *mm)
2252 {
2253         struct mmu_gather tlb;
2254         struct vm_area_struct *vma;
2255         unsigned long nr_accounted = 0;
2256
2257         /* mm's last user has gone, and its about to be pulled down */
2258         mmu_notifier_release(mm);
2259
2260         if (mm->locked_vm) {
2261                 vma = mm->mmap;
2262                 while (vma) {
2263                         if (vma->vm_flags & VM_LOCKED)
2264                                 munlock_vma_pages_all(vma);
2265                         vma = vma->vm_next;
2266                 }
2267         }
2268
2269         arch_exit_mmap(mm);
2270
2271         vma = mm->mmap;
2272         if (!vma)       /* Can happen if dup_mmap() received an OOM */
2273                 return;
2274
2275         lru_add_drain();
2276         flush_cache_mm(mm);
2277         tlb_gather_mmu(&tlb, mm, 1);
2278         /* update_hiwater_rss(mm) here? but nobody should be looking */
2279         /* Use -1 here to ensure all VMAs in the mm are unmapped */
2280         unmap_vmas(&tlb, vma, 0, -1);
2281
2282         free_pgtables(&tlb, vma, FIRST_USER_ADDRESS, 0);
2283         tlb_finish_mmu(&tlb, 0, -1);
2284
2285         /*
2286          * Walk the list again, actually closing and freeing it,
2287          * with preemption enabled, without holding any MM locks.
2288          */
2289         while (vma) {
2290                 if (vma->vm_flags & VM_ACCOUNT)
2291                         nr_accounted += vma_pages(vma);
2292                 vma = remove_vma(vma);
2293         }
2294         vm_unacct_memory(nr_accounted);
2295
2296         WARN_ON(mm->nr_ptes > (FIRST_USER_ADDRESS+PMD_SIZE-1)>>PMD_SHIFT);
2297 }
2298
2299 /* Insert vm structure into process list sorted by address
2300  * and into the inode's i_mmap tree.  If vm_file is non-NULL
2301  * then i_mmap_mutex is taken here.
2302  */
2303 int insert_vm_struct(struct mm_struct * mm, struct vm_area_struct * vma)
2304 {
2305         struct vm_area_struct * __vma, * prev;
2306         struct rb_node ** rb_link, * rb_parent;
2307
2308         /*
2309          * The vm_pgoff of a purely anonymous vma should be irrelevant
2310          * until its first write fault, when page's anon_vma and index
2311          * are set.  But now set the vm_pgoff it will almost certainly
2312          * end up with (unless mremap moves it elsewhere before that
2313          * first wfault), so /proc/pid/maps tells a consistent story.
2314          *
2315          * By setting it to reflect the virtual start address of the
2316          * vma, merges and splits can happen in a seamless way, just
2317          * using the existing file pgoff checks and manipulations.
2318          * Similarly in do_mmap_pgoff and in do_brk.
2319          */
2320         if (!vma->vm_file) {
2321                 BUG_ON(vma->anon_vma);
2322                 vma->vm_pgoff = vma->vm_start >> PAGE_SHIFT;
2323         }
2324         __vma = find_vma_prepare(mm,vma->vm_start,&prev,&rb_link,&rb_parent);
2325         if (__vma && __vma->vm_start < vma->vm_end)
2326                 return -ENOMEM;
2327         if ((vma->vm_flags & VM_ACCOUNT) &&
2328              security_vm_enough_memory_mm(mm, vma_pages(vma)))
2329                 return -ENOMEM;
2330
2331         vma_link(mm, vma, prev, rb_link, rb_parent);
2332         return 0;
2333 }
2334
2335 /*
2336  * Copy the vma structure to a new location in the same mm,
2337  * prior to moving page table entries, to effect an mremap move.
2338  */
2339 struct vm_area_struct *copy_vma(struct vm_area_struct **vmap,
2340         unsigned long addr, unsigned long len, pgoff_t pgoff)
2341 {
2342         struct vm_area_struct *vma = *vmap;
2343         unsigned long vma_start = vma->vm_start;
2344         struct mm_struct *mm = vma->vm_mm;
2345         struct vm_area_struct *new_vma, *prev;
2346         struct rb_node **rb_link, *rb_parent;
2347         struct mempolicy *pol;
2348         bool faulted_in_anon_vma = true;
2349
2350         /*
2351          * If anonymous vma has not yet been faulted, update new pgoff
2352          * to match new location, to increase its chance of merging.
2353          */
2354         if (unlikely(!vma->vm_file && !vma->anon_vma)) {
2355                 pgoff = addr >> PAGE_SHIFT;
2356                 faulted_in_anon_vma = false;
2357         }
2358
2359         find_vma_prepare(mm, addr, &prev, &rb_link, &rb_parent);
2360         new_vma = vma_merge(mm, prev, addr, addr + len, vma->vm_flags,
2361                         vma->anon_vma, vma->vm_file, pgoff, vma_policy(vma));
2362         if (new_vma) {
2363                 /*
2364                  * Source vma may have been merged into new_vma
2365                  */
2366                 if (unlikely(vma_start >= new_vma->vm_start &&
2367                              vma_start < new_vma->vm_end)) {
2368                         /*
2369                          * The only way we can get a vma_merge with
2370                          * self during an mremap is if the vma hasn't
2371                          * been faulted in yet and we were allowed to
2372                          * reset the dst vma->vm_pgoff to the
2373                          * destination address of the mremap to allow
2374                          * the merge to happen. mremap must change the
2375                          * vm_pgoff linearity between src and dst vmas
2376                          * (in turn preventing a vma_merge) to be
2377                          * safe. It is only safe to keep the vm_pgoff
2378                          * linear if there are no pages mapped yet.
2379                          */
2380                         VM_BUG_ON(faulted_in_anon_vma);
2381                         *vmap = new_vma;
2382                 } else
2383                         anon_vma_moveto_tail(new_vma);
2384         } else {
2385                 new_vma = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
2386                 if (new_vma) {
2387                         *new_vma = *vma;
2388                         pol = mpol_dup(vma_policy(vma));
2389                         if (IS_ERR(pol))
2390                                 goto out_free_vma;
2391                         INIT_LIST_HEAD(&new_vma->anon_vma_chain);
2392                         if (anon_vma_clone(new_vma, vma))
2393                                 goto out_free_mempol;
2394                         vma_set_policy(new_vma, pol);
2395                         new_vma->vm_start = addr;
2396                         new_vma->vm_end = addr + len;
2397                         new_vma->vm_pgoff = pgoff;
2398                         if (new_vma->vm_file)
2399                                 get_file(new_vma->vm_file);
2400                         if (new_vma->vm_ops && new_vma->vm_ops->open)
2401                                 new_vma->vm_ops->open(new_vma);
2402                         vma_link(mm, new_vma, prev, rb_link, rb_parent);
2403                 }
2404         }
2405         return new_vma;
2406
2407  out_free_mempol:
2408         mpol_put(pol);
2409  out_free_vma:
2410         kmem_cache_free(vm_area_cachep, new_vma);
2411         return NULL;
2412 }
2413
2414 /*
2415  * Return true if the calling process may expand its vm space by the passed
2416  * number of pages
2417  */
2418 int may_expand_vm(struct mm_struct *mm, unsigned long npages)
2419 {
2420         unsigned long cur = mm->total_vm;       /* pages */
2421         unsigned long lim;
2422
2423         lim = rlimit(RLIMIT_AS) >> PAGE_SHIFT;
2424
2425         if (cur + npages > lim)
2426                 return 0;
2427         return 1;
2428 }
2429
2430
2431 static int special_mapping_fault(struct vm_area_struct *vma,
2432                                 struct vm_fault *vmf)
2433 {
2434         pgoff_t pgoff;
2435         struct page **pages;
2436
2437         /*
2438          * special mappings have no vm_file, and in that case, the mm
2439          * uses vm_pgoff internally. So we have to subtract it from here.
2440          * We are allowed to do this because we are the mm; do not copy
2441          * this code into drivers!
2442          */
2443         pgoff = vmf->pgoff - vma->vm_pgoff;
2444
2445         for (pages = vma->vm_private_data; pgoff && *pages; ++pages)
2446                 pgoff--;
2447
2448         if (*pages) {
2449                 struct page *page = *pages;
2450                 get_page(page);
2451                 vmf->page = page;
2452                 return 0;
2453         }
2454
2455         return VM_FAULT_SIGBUS;
2456 }
2457
2458 /*
2459  * Having a close hook prevents vma merging regardless of flags.
2460  */
2461 static void special_mapping_close(struct vm_area_struct *vma)
2462 {
2463 }
2464
2465 static const struct vm_operations_struct special_mapping_vmops = {
2466         .close = special_mapping_close,
2467         .fault = special_mapping_fault,
2468 };
2469
2470 /*
2471  * Called with mm->mmap_sem held for writing.
2472  * Insert a new vma covering the given region, with the given flags.
2473  * Its pages are supplied by the given array of struct page *.
2474  * The array can be shorter than len >> PAGE_SHIFT if it's null-terminated.
2475  * The region past the last page supplied will always produce SIGBUS.
2476  * The array pointer and the pages it points to are assumed to stay alive
2477  * for as long as this mapping might exist.
2478  */
2479 int install_special_mapping(struct mm_struct *mm,
2480                             unsigned long addr, unsigned long len,
2481                             unsigned long vm_flags, struct page **pages)
2482 {
2483         int ret;
2484         struct vm_area_struct *vma;
2485
2486         vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
2487         if (unlikely(vma == NULL))
2488                 return -ENOMEM;
2489
2490         INIT_LIST_HEAD(&vma->anon_vma_chain);
2491         vma->vm_mm = mm;
2492         vma->vm_start = addr;
2493         vma->vm_end = addr + len;
2494
2495         vma->vm_flags = vm_flags | mm->def_flags | VM_DONTEXPAND;
2496         vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
2497
2498         vma->vm_ops = &special_mapping_vmops;
2499         vma->vm_private_data = pages;
2500
2501         ret = insert_vm_struct(mm, vma);
2502         if (ret)
2503                 goto out;
2504
2505         mm->total_vm += len >> PAGE_SHIFT;
2506
2507         perf_event_mmap(vma);
2508
2509         return 0;
2510
2511 out:
2512         kmem_cache_free(vm_area_cachep, vma);
2513         return ret;
2514 }
2515
2516 static DEFINE_MUTEX(mm_all_locks_mutex);
2517
2518 static void vm_lock_anon_vma(struct mm_struct *mm, struct anon_vma *anon_vma)
2519 {
2520         if (!test_bit(0, (unsigned long *) &anon_vma->root->head.next)) {
2521                 /*
2522                  * The LSB of head.next can't change from under us
2523                  * because we hold the mm_all_locks_mutex.
2524                  */
2525                 mutex_lock_nest_lock(&anon_vma->root->mutex, &mm->mmap_sem);
2526                 /*
2527                  * We can safely modify head.next after taking the
2528                  * anon_vma->root->mutex. If some other vma in this mm shares
2529                  * the same anon_vma we won't take it again.
2530                  *
2531                  * No need of atomic instructions here, head.next
2532                  * can't change from under us thanks to the
2533                  * anon_vma->root->mutex.
2534                  */
2535                 if (__test_and_set_bit(0, (unsigned long *)
2536                                        &anon_vma->root->head.next))
2537                         BUG();
2538         }
2539 }
2540
2541 static void vm_lock_mapping(struct mm_struct *mm, struct address_space *mapping)
2542 {
2543         if (!test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) {
2544                 /*
2545                  * AS_MM_ALL_LOCKS can't change from under us because
2546                  * we hold the mm_all_locks_mutex.
2547                  *
2548                  * Operations on ->flags have to be atomic because
2549                  * even if AS_MM_ALL_LOCKS is stable thanks to the
2550                  * mm_all_locks_mutex, there may be other cpus
2551                  * changing other bitflags in parallel to us.
2552                  */
2553                 if (test_and_set_bit(AS_MM_ALL_LOCKS, &mapping->flags))
2554                         BUG();
2555                 mutex_lock_nest_lock(&mapping->i_mmap_mutex, &mm->mmap_sem);
2556         }
2557 }
2558
2559 /*
2560  * This operation locks against the VM for all pte/vma/mm related
2561  * operations that could ever happen on a certain mm. This includes
2562  * vmtruncate, try_to_unmap, and all page faults.
2563  *
2564  * The caller must take the mmap_sem in write mode before calling
2565  * mm_take_all_locks(). The caller isn't allowed to release the
2566  * mmap_sem until mm_drop_all_locks() returns.
2567  *
2568  * mmap_sem in write mode is required in order to block all operations
2569  * that could modify pagetables and free pages without need of
2570  * altering the vma layout (for example populate_range() with
2571  * nonlinear vmas). It's also needed in write mode to avoid new
2572  * anon_vmas to be associated with existing vmas.
2573  *
2574  * A single task can't take more than one mm_take_all_locks() in a row
2575  * or it would deadlock.
2576  *
2577  * The LSB in anon_vma->head.next and the AS_MM_ALL_LOCKS bitflag in
2578  * mapping->flags avoid to take the same lock twice, if more than one
2579  * vma in this mm is backed by the same anon_vma or address_space.
2580  *
2581  * We can take all the locks in random order because the VM code
2582  * taking i_mmap_mutex or anon_vma->mutex outside the mmap_sem never
2583  * takes more than one of them in a row. Secondly we're protected
2584  * against a concurrent mm_take_all_locks() by the mm_all_locks_mutex.
2585  *
2586  * mm_take_all_locks() and mm_drop_all_locks are expensive operations
2587  * that may have to take thousand of locks.
2588  *
2589  * mm_take_all_locks() can fail if it's interrupted by signals.
2590  */
2591 int mm_take_all_locks(struct mm_struct *mm)
2592 {
2593         struct vm_area_struct *vma;
2594         struct anon_vma_chain *avc;
2595
2596         BUG_ON(down_read_trylock(&mm->mmap_sem));
2597
2598         mutex_lock(&mm_all_locks_mutex);
2599
2600         for (vma = mm->mmap; vma; vma = vma->vm_next) {
2601                 if (signal_pending(current))
2602                         goto out_unlock;
2603                 if (vma->vm_file && vma->vm_file->f_mapping)
2604                         vm_lock_mapping(mm, vma->vm_file->f_mapping);
2605         }
2606
2607         for (vma = mm->mmap; vma; vma = vma->vm_next) {
2608                 if (signal_pending(current))
2609                         goto out_unlock;
2610                 if (vma->anon_vma)
2611                         list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
2612                                 vm_lock_anon_vma(mm, avc->anon_vma);
2613         }
2614
2615         return 0;
2616
2617 out_unlock:
2618         mm_drop_all_locks(mm);
2619         return -EINTR;
2620 }
2621
2622 static void vm_unlock_anon_vma(struct anon_vma *anon_vma)
2623 {
2624         if (test_bit(0, (unsigned long *) &anon_vma->root->head.next)) {
2625                 /*
2626                  * The LSB of head.next can't change to 0 from under
2627                  * us because we hold the mm_all_locks_mutex.
2628                  *
2629                  * We must however clear the bitflag before unlocking
2630                  * the vma so the users using the anon_vma->head will
2631                  * never see our bitflag.
2632                  *
2633                  * No need of atomic instructions here, head.next
2634                  * can't change from under us until we release the
2635                  * anon_vma->root->mutex.
2636                  */
2637                 if (!__test_and_clear_bit(0, (unsigned long *)
2638                                           &anon_vma->root->head.next))
2639                         BUG();
2640                 anon_vma_unlock(anon_vma);
2641         }
2642 }
2643
2644 static void vm_unlock_mapping(struct address_space *mapping)
2645 {
2646         if (test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) {
2647                 /*
2648                  * AS_MM_ALL_LOCKS can't change to 0 from under us
2649                  * because we hold the mm_all_locks_mutex.
2650                  */
2651                 mutex_unlock(&mapping->i_mmap_mutex);
2652                 if (!test_and_clear_bit(AS_MM_ALL_LOCKS,
2653                                         &mapping->flags))
2654                         BUG();
2655         }
2656 }
2657
2658 /*
2659  * The mmap_sem cannot be released by the caller until
2660  * mm_drop_all_locks() returns.
2661  */
2662 void mm_drop_all_locks(struct mm_struct *mm)
2663 {
2664         struct vm_area_struct *vma;
2665         struct anon_vma_chain *avc;
2666
2667         BUG_ON(down_read_trylock(&mm->mmap_sem));
2668         BUG_ON(!mutex_is_locked(&mm_all_locks_mutex));
2669
2670         for (vma = mm->mmap; vma; vma = vma->vm_next) {
2671                 if (vma->anon_vma)
2672                         list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
2673                                 vm_unlock_anon_vma(avc->anon_vma);
2674                 if (vma->vm_file && vma->vm_file->f_mapping)
2675                         vm_unlock_mapping(vma->vm_file->f_mapping);
2676         }
2677
2678         mutex_unlock(&mm_all_locks_mutex);
2679 }
2680
2681 /*
2682  * initialise the VMA slab
2683  */
2684 void __init mmap_init(void)
2685 {
2686         int ret;
2687
2688         ret = percpu_counter_init(&vm_committed_as, 0);
2689         VM_BUG_ON(ret);
2690 }