1 // SPDX-License-Identifier: GPL-2.0-only
7 * Address space accounting code <alan@lxorguk.ukuu.org.uk>
10 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
12 #include <linux/kernel.h>
13 #include <linux/slab.h>
14 #include <linux/backing-dev.h>
16 #include <linux/mm_inline.h>
17 #include <linux/shm.h>
18 #include <linux/mman.h>
19 #include <linux/pagemap.h>
20 #include <linux/swap.h>
21 #include <linux/syscalls.h>
22 #include <linux/capability.h>
23 #include <linux/init.h>
24 #include <linux/file.h>
26 #include <linux/personality.h>
27 #include <linux/security.h>
28 #include <linux/hugetlb.h>
29 #include <linux/shmem_fs.h>
30 #include <linux/profile.h>
31 #include <linux/export.h>
32 #include <linux/mount.h>
33 #include <linux/mempolicy.h>
34 #include <linux/rmap.h>
35 #include <linux/mmu_notifier.h>
36 #include <linux/mmdebug.h>
37 #include <linux/perf_event.h>
38 #include <linux/audit.h>
39 #include <linux/khugepaged.h>
40 #include <linux/uprobes.h>
41 #include <linux/notifier.h>
42 #include <linux/memory.h>
43 #include <linux/printk.h>
44 #include <linux/userfaultfd_k.h>
45 #include <linux/moduleparam.h>
46 #include <linux/pkeys.h>
47 #include <linux/oom.h>
48 #include <linux/sched/mm.h>
50 #include <linux/uaccess.h>
51 #include <asm/cacheflush.h>
53 #include <asm/mmu_context.h>
55 #define CREATE_TRACE_POINTS
56 #include <trace/events/mmap.h>
60 #ifndef arch_mmap_check
61 #define arch_mmap_check(addr, len, flags) (0)
64 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_BITS
65 const int mmap_rnd_bits_min = CONFIG_ARCH_MMAP_RND_BITS_MIN;
66 const int mmap_rnd_bits_max = CONFIG_ARCH_MMAP_RND_BITS_MAX;
67 int mmap_rnd_bits __read_mostly = CONFIG_ARCH_MMAP_RND_BITS;
69 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS
70 const int mmap_rnd_compat_bits_min = CONFIG_ARCH_MMAP_RND_COMPAT_BITS_MIN;
71 const int mmap_rnd_compat_bits_max = CONFIG_ARCH_MMAP_RND_COMPAT_BITS_MAX;
72 int mmap_rnd_compat_bits __read_mostly = CONFIG_ARCH_MMAP_RND_COMPAT_BITS;
75 static bool ignore_rlimit_data;
76 core_param(ignore_rlimit_data, ignore_rlimit_data, bool, 0644);
78 static void unmap_region(struct mm_struct *mm, struct maple_tree *mt,
79 struct vm_area_struct *vma, struct vm_area_struct *prev,
80 struct vm_area_struct *next, unsigned long start,
83 static pgprot_t vm_pgprot_modify(pgprot_t oldprot, unsigned long vm_flags)
85 return pgprot_modify(oldprot, vm_get_page_prot(vm_flags));
88 /* Update vma->vm_page_prot to reflect vma->vm_flags. */
89 void vma_set_page_prot(struct vm_area_struct *vma)
91 unsigned long vm_flags = vma->vm_flags;
92 pgprot_t vm_page_prot;
94 vm_page_prot = vm_pgprot_modify(vma->vm_page_prot, vm_flags);
95 if (vma_wants_writenotify(vma, vm_page_prot)) {
96 vm_flags &= ~VM_SHARED;
97 vm_page_prot = vm_pgprot_modify(vm_page_prot, vm_flags);
99 /* remove_protection_ptes reads vma->vm_page_prot without mmap_lock */
100 WRITE_ONCE(vma->vm_page_prot, vm_page_prot);
104 * Requires inode->i_mapping->i_mmap_rwsem
106 static void __remove_shared_vm_struct(struct vm_area_struct *vma,
107 struct file *file, struct address_space *mapping)
109 if (vma->vm_flags & VM_SHARED)
110 mapping_unmap_writable(mapping);
112 flush_dcache_mmap_lock(mapping);
113 vma_interval_tree_remove(vma, &mapping->i_mmap);
114 flush_dcache_mmap_unlock(mapping);
118 * Unlink a file-based vm structure from its interval tree, to hide
119 * vma from rmap and vmtruncate before freeing its page tables.
121 void unlink_file_vma(struct vm_area_struct *vma)
123 struct file *file = vma->vm_file;
126 struct address_space *mapping = file->f_mapping;
127 i_mmap_lock_write(mapping);
128 __remove_shared_vm_struct(vma, file, mapping);
129 i_mmap_unlock_write(mapping);
134 * Close a vm structure and free it.
136 static void remove_vma(struct vm_area_struct *vma)
139 if (vma->vm_ops && vma->vm_ops->close)
140 vma->vm_ops->close(vma);
143 mpol_put(vma_policy(vma));
148 * check_brk_limits() - Use platform specific check of range & verify mlock
150 * @addr: The address to check
151 * @len: The size of increase.
153 * Return: 0 on success.
155 static int check_brk_limits(unsigned long addr, unsigned long len)
157 unsigned long mapped_addr;
159 mapped_addr = get_unmapped_area(NULL, addr, len, 0, MAP_FIXED);
160 if (IS_ERR_VALUE(mapped_addr))
163 return mlock_future_check(current->mm, current->mm->def_flags, len);
165 static int do_brk_munmap(struct ma_state *mas, struct vm_area_struct *vma,
166 unsigned long newbrk, unsigned long oldbrk,
167 struct list_head *uf);
168 static int do_brk_flags(struct ma_state *mas, struct vm_area_struct *brkvma,
169 unsigned long addr, unsigned long request, unsigned long flags);
170 SYSCALL_DEFINE1(brk, unsigned long, brk)
172 unsigned long newbrk, oldbrk, origbrk;
173 struct mm_struct *mm = current->mm;
174 struct vm_area_struct *brkvma, *next = NULL;
175 unsigned long min_brk;
177 bool downgraded = false;
179 MA_STATE(mas, &mm->mm_mt, 0, 0);
181 if (mmap_write_lock_killable(mm))
186 #ifdef CONFIG_COMPAT_BRK
188 * CONFIG_COMPAT_BRK can still be overridden by setting
189 * randomize_va_space to 2, which will still cause mm->start_brk
190 * to be arbitrarily shifted
192 if (current->brk_randomized)
193 min_brk = mm->start_brk;
195 min_brk = mm->end_data;
197 min_brk = mm->start_brk;
203 * Check against rlimit here. If this check is done later after the test
204 * of oldbrk with newbrk then it can escape the test and let the data
205 * segment grow beyond its set limit the in case where the limit is
206 * not page aligned -Ram Gupta
208 if (check_data_rlimit(rlimit(RLIMIT_DATA), brk, mm->start_brk,
209 mm->end_data, mm->start_data))
212 newbrk = PAGE_ALIGN(brk);
213 oldbrk = PAGE_ALIGN(mm->brk);
214 if (oldbrk == newbrk) {
220 * Always allow shrinking brk.
221 * do_brk_munmap() may downgrade mmap_lock to read.
223 if (brk <= mm->brk) {
226 /* Search one past newbrk */
227 mas_set(&mas, newbrk);
228 brkvma = mas_find(&mas, oldbrk);
229 BUG_ON(brkvma == NULL);
230 if (brkvma->vm_start >= oldbrk)
231 goto out; /* mapping intersects with an existing non-brk vma. */
233 * mm->brk must be protected by write mmap_lock.
234 * do_brk_munmap() may downgrade the lock, so update it
235 * before calling do_brk_munmap().
238 ret = do_brk_munmap(&mas, brkvma, newbrk, oldbrk, &uf);
249 if (check_brk_limits(oldbrk, newbrk - oldbrk))
253 * Only check if the next VMA is within the stack_guard_gap of the
256 mas_set(&mas, oldbrk);
257 next = mas_find(&mas, newbrk - 1 + PAGE_SIZE + stack_guard_gap);
258 if (next && newbrk + PAGE_SIZE > vm_start_gap(next))
261 brkvma = mas_prev(&mas, mm->start_brk);
262 /* Ok, looks good - let it rip. */
263 if (do_brk_flags(&mas, brkvma, oldbrk, newbrk - oldbrk, 0) < 0)
269 populate = newbrk > oldbrk && (mm->def_flags & VM_LOCKED) != 0;
271 mmap_read_unlock(mm);
273 mmap_write_unlock(mm);
274 userfaultfd_unmap_complete(mm, &uf);
276 mm_populate(oldbrk, newbrk - oldbrk);
280 mmap_write_unlock(mm);
284 #if defined(CONFIG_DEBUG_VM_MAPLE_TREE)
285 extern void mt_validate(struct maple_tree *mt);
286 extern void mt_dump(const struct maple_tree *mt);
288 /* Validate the maple tree */
289 static void validate_mm_mt(struct mm_struct *mm)
291 struct maple_tree *mt = &mm->mm_mt;
292 struct vm_area_struct *vma_mt;
294 MA_STATE(mas, mt, 0, 0);
296 mt_validate(&mm->mm_mt);
297 mas_for_each(&mas, vma_mt, ULONG_MAX) {
298 if ((vma_mt->vm_start != mas.index) ||
299 (vma_mt->vm_end - 1 != mas.last)) {
300 pr_emerg("issue in %s\n", current->comm);
303 pr_emerg("mt piv: %p %lu - %lu\n", vma_mt,
304 mas.index, mas.last);
305 pr_emerg("mt vma: %p %lu - %lu\n", vma_mt,
306 vma_mt->vm_start, vma_mt->vm_end);
309 if (vma_mt->vm_end != mas.last + 1) {
310 pr_err("vma: %p vma_mt %lu-%lu\tmt %lu-%lu\n",
311 mm, vma_mt->vm_start, vma_mt->vm_end,
312 mas.index, mas.last);
315 VM_BUG_ON_MM(vma_mt->vm_end != mas.last + 1, mm);
316 if (vma_mt->vm_start != mas.index) {
317 pr_err("vma: %p vma_mt %p %lu - %lu doesn't match\n",
318 mm, vma_mt, vma_mt->vm_start, vma_mt->vm_end);
321 VM_BUG_ON_MM(vma_mt->vm_start != mas.index, mm);
326 static void validate_mm(struct mm_struct *mm)
330 struct vm_area_struct *vma;
331 MA_STATE(mas, &mm->mm_mt, 0, 0);
335 mas_for_each(&mas, vma, ULONG_MAX) {
336 #ifdef CONFIG_DEBUG_VM_RB
337 struct anon_vma *anon_vma = vma->anon_vma;
338 struct anon_vma_chain *avc;
341 anon_vma_lock_read(anon_vma);
342 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
343 anon_vma_interval_tree_verify(avc);
344 anon_vma_unlock_read(anon_vma);
349 if (i != mm->map_count) {
350 pr_emerg("map_count %d mas_for_each %d\n", mm->map_count, i);
353 VM_BUG_ON_MM(bug, mm);
356 #else /* !CONFIG_DEBUG_VM_MAPLE_TREE */
357 #define validate_mm_mt(root) do { } while (0)
358 #define validate_mm(mm) do { } while (0)
359 #endif /* CONFIG_DEBUG_VM_MAPLE_TREE */
362 * vma has some anon_vma assigned, and is already inserted on that
363 * anon_vma's interval trees.
365 * Before updating the vma's vm_start / vm_end / vm_pgoff fields, the
366 * vma must be removed from the anon_vma's interval trees using
367 * anon_vma_interval_tree_pre_update_vma().
369 * After the update, the vma will be reinserted using
370 * anon_vma_interval_tree_post_update_vma().
372 * The entire update must be protected by exclusive mmap_lock and by
373 * the root anon_vma's mutex.
376 anon_vma_interval_tree_pre_update_vma(struct vm_area_struct *vma)
378 struct anon_vma_chain *avc;
380 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
381 anon_vma_interval_tree_remove(avc, &avc->anon_vma->rb_root);
385 anon_vma_interval_tree_post_update_vma(struct vm_area_struct *vma)
387 struct anon_vma_chain *avc;
389 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
390 anon_vma_interval_tree_insert(avc, &avc->anon_vma->rb_root);
393 static unsigned long count_vma_pages_range(struct mm_struct *mm,
394 unsigned long addr, unsigned long end)
396 VMA_ITERATOR(vmi, mm, addr);
397 struct vm_area_struct *vma;
398 unsigned long nr_pages = 0;
400 for_each_vma_range(vmi, vma, end) {
401 unsigned long vm_start = max(addr, vma->vm_start);
402 unsigned long vm_end = min(end, vma->vm_end);
404 nr_pages += PHYS_PFN(vm_end - vm_start);
410 static void __vma_link_file(struct vm_area_struct *vma,
411 struct address_space *mapping)
413 if (vma->vm_flags & VM_SHARED)
414 mapping_allow_writable(mapping);
416 flush_dcache_mmap_lock(mapping);
417 vma_interval_tree_insert(vma, &mapping->i_mmap);
418 flush_dcache_mmap_unlock(mapping);
422 * vma_mas_store() - Store a VMA in the maple tree.
423 * @vma: The vm_area_struct
424 * @mas: The maple state
426 * Efficient way to store a VMA in the maple tree when the @mas has already
427 * walked to the correct location.
429 * Note: the end address is inclusive in the maple tree.
431 void vma_mas_store(struct vm_area_struct *vma, struct ma_state *mas)
433 trace_vma_store(mas->tree, vma);
434 mas_set_range(mas, vma->vm_start, vma->vm_end - 1);
435 mas_store_prealloc(mas, vma);
439 * vma_mas_remove() - Remove a VMA from the maple tree.
440 * @vma: The vm_area_struct
441 * @mas: The maple state
443 * Efficient way to remove a VMA from the maple tree when the @mas has already
444 * been established and points to the correct location.
445 * Note: the end address is inclusive in the maple tree.
447 void vma_mas_remove(struct vm_area_struct *vma, struct ma_state *mas)
449 trace_vma_mas_szero(mas->tree, vma->vm_start, vma->vm_end - 1);
450 mas->index = vma->vm_start;
451 mas->last = vma->vm_end - 1;
452 mas_store_prealloc(mas, NULL);
456 * vma_mas_szero() - Set a given range to zero. Used when modifying a
457 * vm_area_struct start or end.
460 * @start: The start address to zero
461 * @end: The end address to zero.
463 static inline void vma_mas_szero(struct ma_state *mas, unsigned long start,
466 trace_vma_mas_szero(mas->tree, start, end - 1);
467 mas_set_range(mas, start, end - 1);
468 mas_store_prealloc(mas, NULL);
471 static int vma_link(struct mm_struct *mm, struct vm_area_struct *vma)
473 MA_STATE(mas, &mm->mm_mt, 0, 0);
474 struct address_space *mapping = NULL;
476 if (mas_preallocate(&mas, vma, GFP_KERNEL))
480 mapping = vma->vm_file->f_mapping;
481 i_mmap_lock_write(mapping);
484 vma_mas_store(vma, &mas);
487 __vma_link_file(vma, mapping);
488 i_mmap_unlock_write(mapping);
497 * vma_expand - Expand an existing VMA
499 * @mas: The maple state
500 * @vma: The vma to expand
501 * @start: The start of the vma
502 * @end: The exclusive end of the vma
503 * @pgoff: The page offset of vma
504 * @next: The current of next vma.
506 * Expand @vma to @start and @end. Can expand off the start and end. Will
507 * expand over @next if it's different from @vma and @end == @next->vm_end.
508 * Checking if the @vma can expand and merge with @next needs to be handled by
511 * Returns: 0 on success
513 inline int vma_expand(struct ma_state *mas, struct vm_area_struct *vma,
514 unsigned long start, unsigned long end, pgoff_t pgoff,
515 struct vm_area_struct *next)
517 struct mm_struct *mm = vma->vm_mm;
518 struct address_space *mapping = NULL;
519 struct rb_root_cached *root = NULL;
520 struct anon_vma *anon_vma = vma->anon_vma;
521 struct file *file = vma->vm_file;
522 bool remove_next = false;
524 if (next && (vma != next) && (end == next->vm_end)) {
526 if (next->anon_vma && !vma->anon_vma) {
529 anon_vma = next->anon_vma;
530 vma->anon_vma = anon_vma;
531 error = anon_vma_clone(vma, next);
537 /* Not merging but overwriting any part of next is not handled. */
538 VM_BUG_ON(next && !remove_next && next != vma && end > next->vm_start);
539 /* Only handles expanding */
540 VM_BUG_ON(vma->vm_start < start || vma->vm_end > end);
542 if (mas_preallocate(mas, vma, GFP_KERNEL))
545 vma_adjust_trans_huge(vma, start, end, 0);
548 mapping = file->f_mapping;
549 root = &mapping->i_mmap;
550 uprobe_munmap(vma, vma->vm_start, vma->vm_end);
551 i_mmap_lock_write(mapping);
555 anon_vma_lock_write(anon_vma);
556 anon_vma_interval_tree_pre_update_vma(vma);
560 flush_dcache_mmap_lock(mapping);
561 vma_interval_tree_remove(vma, root);
564 vma->vm_start = start;
566 vma->vm_pgoff = pgoff;
567 /* Note: mas must be pointing to the expanding VMA */
568 vma_mas_store(vma, mas);
571 vma_interval_tree_insert(vma, root);
572 flush_dcache_mmap_unlock(mapping);
575 /* Expanding over the next vma */
576 if (remove_next && file) {
577 __remove_shared_vm_struct(next, file, mapping);
581 anon_vma_interval_tree_post_update_vma(vma);
582 anon_vma_unlock_write(anon_vma);
586 i_mmap_unlock_write(mapping);
592 uprobe_munmap(next, next->vm_start, next->vm_end);
596 anon_vma_merge(vma, next);
598 mpol_put(vma_policy(next));
610 * We cannot adjust vm_start, vm_end, vm_pgoff fields of a vma that
611 * is already present in an i_mmap tree without adjusting the tree.
612 * The following helper function should be used when such adjustments
613 * are necessary. The "insert" vma (if any) is to be inserted
614 * before we drop the necessary locks.
616 int __vma_adjust(struct vm_area_struct *vma, unsigned long start,
617 unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert,
618 struct vm_area_struct *expand)
620 struct mm_struct *mm = vma->vm_mm;
621 struct vm_area_struct *next_next = NULL; /* uninit var warning */
622 struct vm_area_struct *next = find_vma(mm, vma->vm_end);
623 struct vm_area_struct *orig_vma = vma;
624 struct address_space *mapping = NULL;
625 struct rb_root_cached *root = NULL;
626 struct anon_vma *anon_vma = NULL;
627 struct file *file = vma->vm_file;
628 bool vma_changed = false;
629 long adjust_next = 0;
631 MA_STATE(mas, &mm->mm_mt, 0, 0);
632 struct vm_area_struct *exporter = NULL, *importer = NULL;
634 if (next && !insert) {
635 if (end >= next->vm_end) {
637 * vma expands, overlapping all the next, and
638 * perhaps the one after too (mprotect case 6).
639 * The only other cases that gets here are
640 * case 1, case 7 and case 8.
642 if (next == expand) {
644 * The only case where we don't expand "vma"
645 * and we expand "next" instead is case 8.
647 VM_WARN_ON(end != next->vm_end);
649 * remove_next == 3 means we're
650 * removing "vma" and that to do so we
651 * swapped "vma" and "next".
654 VM_WARN_ON(file != next->vm_file);
657 VM_WARN_ON(expand != vma);
659 * case 1, 6, 7, remove_next == 2 is case 6,
660 * remove_next == 1 is case 1 or 7.
662 remove_next = 1 + (end > next->vm_end);
663 if (remove_next == 2)
664 next_next = find_vma(mm, next->vm_end);
666 VM_WARN_ON(remove_next == 2 &&
667 end != next_next->vm_end);
674 * If next doesn't have anon_vma, import from vma after
675 * next, if the vma overlaps with it.
677 if (remove_next == 2 && !next->anon_vma)
678 exporter = next_next;
680 } else if (end > next->vm_start) {
682 * vma expands, overlapping part of the next:
683 * mprotect case 5 shifting the boundary up.
685 adjust_next = (end - next->vm_start);
688 VM_WARN_ON(expand != importer);
689 } else if (end < vma->vm_end) {
691 * vma shrinks, and !insert tells it's not
692 * split_vma inserting another: so it must be
693 * mprotect case 4 shifting the boundary down.
695 adjust_next = -(vma->vm_end - end);
698 VM_WARN_ON(expand != importer);
702 * Easily overlooked: when mprotect shifts the boundary,
703 * make sure the expanding vma has anon_vma set if the
704 * shrinking vma had, to cover any anon pages imported.
706 if (exporter && exporter->anon_vma && !importer->anon_vma) {
709 importer->anon_vma = exporter->anon_vma;
710 error = anon_vma_clone(importer, exporter);
716 if (mas_preallocate(&mas, vma, GFP_KERNEL))
719 vma_adjust_trans_huge(orig_vma, start, end, adjust_next);
721 mapping = file->f_mapping;
722 root = &mapping->i_mmap;
723 uprobe_munmap(vma, vma->vm_start, vma->vm_end);
726 uprobe_munmap(next, next->vm_start, next->vm_end);
728 i_mmap_lock_write(mapping);
729 if (insert && insert->vm_file) {
731 * Put into interval tree now, so instantiated pages
732 * are visible to arm/parisc __flush_dcache_page
733 * throughout; but we cannot insert into address
734 * space until vma start or end is updated.
736 __vma_link_file(insert, insert->vm_file->f_mapping);
740 anon_vma = vma->anon_vma;
741 if (!anon_vma && adjust_next)
742 anon_vma = next->anon_vma;
744 VM_WARN_ON(adjust_next && next->anon_vma &&
745 anon_vma != next->anon_vma);
746 anon_vma_lock_write(anon_vma);
747 anon_vma_interval_tree_pre_update_vma(vma);
749 anon_vma_interval_tree_pre_update_vma(next);
753 flush_dcache_mmap_lock(mapping);
754 vma_interval_tree_remove(vma, root);
756 vma_interval_tree_remove(next, root);
759 if (start != vma->vm_start) {
760 if ((vma->vm_start < start) &&
761 (!insert || (insert->vm_end != start))) {
762 vma_mas_szero(&mas, vma->vm_start, start);
763 VM_WARN_ON(insert && insert->vm_start > vma->vm_start);
767 vma->vm_start = start;
769 if (end != vma->vm_end) {
770 if (vma->vm_end > end) {
771 if (!insert || (insert->vm_start != end)) {
772 vma_mas_szero(&mas, end, vma->vm_end);
775 insert->vm_end < vma->vm_end);
784 vma_mas_store(vma, &mas);
786 vma->vm_pgoff = pgoff;
788 next->vm_start += adjust_next;
789 next->vm_pgoff += adjust_next >> PAGE_SHIFT;
790 vma_mas_store(next, &mas);
795 vma_interval_tree_insert(next, root);
796 vma_interval_tree_insert(vma, root);
797 flush_dcache_mmap_unlock(mapping);
800 if (remove_next && file) {
801 __remove_shared_vm_struct(next, file, mapping);
802 if (remove_next == 2)
803 __remove_shared_vm_struct(next_next, file, mapping);
806 * split_vma has split insert from vma, and needs
807 * us to insert it before dropping the locks
808 * (it may either follow vma or precede it).
811 vma_mas_store(insert, &mas);
816 anon_vma_interval_tree_post_update_vma(vma);
818 anon_vma_interval_tree_post_update_vma(next);
819 anon_vma_unlock_write(anon_vma);
823 i_mmap_unlock_write(mapping);
833 uprobe_munmap(next, next->vm_start, next->vm_end);
837 anon_vma_merge(vma, next);
839 mpol_put(vma_policy(next));
840 if (remove_next != 2)
841 BUG_ON(vma->vm_end < next->vm_end);
845 * In mprotect's case 6 (see comments on vma_merge),
846 * we must remove next_next too.
848 if (remove_next == 2) {
864 * If the vma has a ->close operation then the driver probably needs to release
865 * per-vma resources, so we don't attempt to merge those.
867 static inline int is_mergeable_vma(struct vm_area_struct *vma,
868 struct file *file, unsigned long vm_flags,
869 struct vm_userfaultfd_ctx vm_userfaultfd_ctx,
870 struct anon_vma_name *anon_name)
873 * VM_SOFTDIRTY should not prevent from VMA merging, if we
874 * match the flags but dirty bit -- the caller should mark
875 * merged VMA as dirty. If dirty bit won't be excluded from
876 * comparison, we increase pressure on the memory system forcing
877 * the kernel to generate new VMAs when old one could be
880 if ((vma->vm_flags ^ vm_flags) & ~VM_SOFTDIRTY)
882 if (vma->vm_file != file)
884 if (vma->vm_ops && vma->vm_ops->close)
886 if (!is_mergeable_vm_userfaultfd_ctx(vma, vm_userfaultfd_ctx))
888 if (!anon_vma_name_eq(anon_vma_name(vma), anon_name))
893 static inline int is_mergeable_anon_vma(struct anon_vma *anon_vma1,
894 struct anon_vma *anon_vma2,
895 struct vm_area_struct *vma)
898 * The list_is_singular() test is to avoid merging VMA cloned from
899 * parents. This can improve scalability caused by anon_vma lock.
901 if ((!anon_vma1 || !anon_vma2) && (!vma ||
902 list_is_singular(&vma->anon_vma_chain)))
904 return anon_vma1 == anon_vma2;
908 * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
909 * in front of (at a lower virtual address and file offset than) the vma.
911 * We cannot merge two vmas if they have differently assigned (non-NULL)
912 * anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
914 * We don't check here for the merged mmap wrapping around the end of pagecache
915 * indices (16TB on ia32) because do_mmap() does not permit mmap's which
916 * wrap, nor mmaps which cover the final page at index -1UL.
919 can_vma_merge_before(struct vm_area_struct *vma, unsigned long vm_flags,
920 struct anon_vma *anon_vma, struct file *file,
922 struct vm_userfaultfd_ctx vm_userfaultfd_ctx,
923 struct anon_vma_name *anon_name)
925 if (is_mergeable_vma(vma, file, vm_flags, vm_userfaultfd_ctx, anon_name) &&
926 is_mergeable_anon_vma(anon_vma, vma->anon_vma, vma)) {
927 if (vma->vm_pgoff == vm_pgoff)
934 * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
935 * beyond (at a higher virtual address and file offset than) the vma.
937 * We cannot merge two vmas if they have differently assigned (non-NULL)
938 * anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
941 can_vma_merge_after(struct vm_area_struct *vma, unsigned long vm_flags,
942 struct anon_vma *anon_vma, struct file *file,
944 struct vm_userfaultfd_ctx vm_userfaultfd_ctx,
945 struct anon_vma_name *anon_name)
947 if (is_mergeable_vma(vma, file, vm_flags, vm_userfaultfd_ctx, anon_name) &&
948 is_mergeable_anon_vma(anon_vma, vma->anon_vma, vma)) {
950 vm_pglen = vma_pages(vma);
951 if (vma->vm_pgoff + vm_pglen == vm_pgoff)
958 * Given a mapping request (addr,end,vm_flags,file,pgoff,anon_name),
959 * figure out whether that can be merged with its predecessor or its
960 * successor. Or both (it neatly fills a hole).
962 * In most cases - when called for mmap, brk or mremap - [addr,end) is
963 * certain not to be mapped by the time vma_merge is called; but when
964 * called for mprotect, it is certain to be already mapped (either at
965 * an offset within prev, or at the start of next), and the flags of
966 * this area are about to be changed to vm_flags - and the no-change
967 * case has already been eliminated.
969 * The following mprotect cases have to be considered, where AAAA is
970 * the area passed down from mprotect_fixup, never extending beyond one
971 * vma, PPPPPP is the prev vma specified, and NNNNNN the next vma after:
974 * PPPPPPNNNNNN PPPPPPNNNNNN PPPPPPNNNNNN
975 * cannot merge might become might become
976 * PPNNNNNNNNNN PPPPPPPPPPNN
977 * mmap, brk or case 4 below case 5 below
980 * PPPP NNNN PPPPNNNNXXXX
981 * might become might become
982 * PPPPPPPPPPPP 1 or PPPPPPPPPPPP 6 or
983 * PPPPPPPPNNNN 2 or PPPPPPPPXXXX 7 or
984 * PPPPNNNNNNNN 3 PPPPXXXXXXXX 8
986 * It is important for case 8 that the vma NNNN overlapping the
987 * region AAAA is never going to extended over XXXX. Instead XXXX must
988 * be extended in region AAAA and NNNN must be removed. This way in
989 * all cases where vma_merge succeeds, the moment vma_adjust drops the
990 * rmap_locks, the properties of the merged vma will be already
991 * correct for the whole merged range. Some of those properties like
992 * vm_page_prot/vm_flags may be accessed by rmap_walks and they must
993 * be correct for the whole merged range immediately after the
994 * rmap_locks are released. Otherwise if XXXX would be removed and
995 * NNNN would be extended over the XXXX range, remove_migration_ptes
996 * or other rmap walkers (if working on addresses beyond the "end"
997 * parameter) may establish ptes with the wrong permissions of NNNN
998 * instead of the right permissions of XXXX.
1000 struct vm_area_struct *vma_merge(struct mm_struct *mm,
1001 struct vm_area_struct *prev, unsigned long addr,
1002 unsigned long end, unsigned long vm_flags,
1003 struct anon_vma *anon_vma, struct file *file,
1004 pgoff_t pgoff, struct mempolicy *policy,
1005 struct vm_userfaultfd_ctx vm_userfaultfd_ctx,
1006 struct anon_vma_name *anon_name)
1008 pgoff_t pglen = (end - addr) >> PAGE_SHIFT;
1009 struct vm_area_struct *mid, *next, *res;
1011 bool merge_prev = false;
1012 bool merge_next = false;
1015 * We later require that vma->vm_flags == vm_flags,
1016 * so this tests vma->vm_flags & VM_SPECIAL, too.
1018 if (vm_flags & VM_SPECIAL)
1021 next = find_vma(mm, prev ? prev->vm_end : 0);
1023 if (next && next->vm_end == end) /* cases 6, 7, 8 */
1024 next = find_vma(mm, next->vm_end);
1026 /* verify some invariant that must be enforced by the caller */
1027 VM_WARN_ON(prev && addr <= prev->vm_start);
1028 VM_WARN_ON(mid && end > mid->vm_end);
1029 VM_WARN_ON(addr >= end);
1031 /* Can we merge the predecessor? */
1032 if (prev && prev->vm_end == addr &&
1033 mpol_equal(vma_policy(prev), policy) &&
1034 can_vma_merge_after(prev, vm_flags,
1035 anon_vma, file, pgoff,
1036 vm_userfaultfd_ctx, anon_name)) {
1039 /* Can we merge the successor? */
1040 if (next && end == next->vm_start &&
1041 mpol_equal(policy, vma_policy(next)) &&
1042 can_vma_merge_before(next, vm_flags,
1043 anon_vma, file, pgoff+pglen,
1044 vm_userfaultfd_ctx, anon_name)) {
1047 /* Can we merge both the predecessor and the successor? */
1048 if (merge_prev && merge_next &&
1049 is_mergeable_anon_vma(prev->anon_vma,
1050 next->anon_vma, NULL)) { /* cases 1, 6 */
1051 err = __vma_adjust(prev, prev->vm_start,
1052 next->vm_end, prev->vm_pgoff, NULL,
1055 } else if (merge_prev) { /* cases 2, 5, 7 */
1056 err = __vma_adjust(prev, prev->vm_start,
1057 end, prev->vm_pgoff, NULL, prev);
1059 } else if (merge_next) {
1060 if (prev && addr < prev->vm_end) /* case 4 */
1061 err = __vma_adjust(prev, prev->vm_start,
1062 addr, prev->vm_pgoff, NULL, next);
1063 else /* cases 3, 8 */
1064 err = __vma_adjust(mid, addr, next->vm_end,
1065 next->vm_pgoff - pglen, NULL, next);
1070 * Cannot merge with predecessor or successor or error in __vma_adjust?
1074 khugepaged_enter_vma(res, vm_flags);
1079 * Rough compatibility check to quickly see if it's even worth looking
1080 * at sharing an anon_vma.
1082 * They need to have the same vm_file, and the flags can only differ
1083 * in things that mprotect may change.
1085 * NOTE! The fact that we share an anon_vma doesn't _have_ to mean that
1086 * we can merge the two vma's. For example, we refuse to merge a vma if
1087 * there is a vm_ops->close() function, because that indicates that the
1088 * driver is doing some kind of reference counting. But that doesn't
1089 * really matter for the anon_vma sharing case.
1091 static int anon_vma_compatible(struct vm_area_struct *a, struct vm_area_struct *b)
1093 return a->vm_end == b->vm_start &&
1094 mpol_equal(vma_policy(a), vma_policy(b)) &&
1095 a->vm_file == b->vm_file &&
1096 !((a->vm_flags ^ b->vm_flags) & ~(VM_ACCESS_FLAGS | VM_SOFTDIRTY)) &&
1097 b->vm_pgoff == a->vm_pgoff + ((b->vm_start - a->vm_start) >> PAGE_SHIFT);
1101 * Do some basic sanity checking to see if we can re-use the anon_vma
1102 * from 'old'. The 'a'/'b' vma's are in VM order - one of them will be
1103 * the same as 'old', the other will be the new one that is trying
1104 * to share the anon_vma.
1106 * NOTE! This runs with mmap_lock held for reading, so it is possible that
1107 * the anon_vma of 'old' is concurrently in the process of being set up
1108 * by another page fault trying to merge _that_. But that's ok: if it
1109 * is being set up, that automatically means that it will be a singleton
1110 * acceptable for merging, so we can do all of this optimistically. But
1111 * we do that READ_ONCE() to make sure that we never re-load the pointer.
1113 * IOW: that the "list_is_singular()" test on the anon_vma_chain only
1114 * matters for the 'stable anon_vma' case (ie the thing we want to avoid
1115 * is to return an anon_vma that is "complex" due to having gone through
1118 * We also make sure that the two vma's are compatible (adjacent,
1119 * and with the same memory policies). That's all stable, even with just
1120 * a read lock on the mmap_lock.
1122 static struct anon_vma *reusable_anon_vma(struct vm_area_struct *old, struct vm_area_struct *a, struct vm_area_struct *b)
1124 if (anon_vma_compatible(a, b)) {
1125 struct anon_vma *anon_vma = READ_ONCE(old->anon_vma);
1127 if (anon_vma && list_is_singular(&old->anon_vma_chain))
1134 * find_mergeable_anon_vma is used by anon_vma_prepare, to check
1135 * neighbouring vmas for a suitable anon_vma, before it goes off
1136 * to allocate a new anon_vma. It checks because a repetitive
1137 * sequence of mprotects and faults may otherwise lead to distinct
1138 * anon_vmas being allocated, preventing vma merge in subsequent
1141 struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *vma)
1143 MA_STATE(mas, &vma->vm_mm->mm_mt, vma->vm_end, vma->vm_end);
1144 struct anon_vma *anon_vma = NULL;
1145 struct vm_area_struct *prev, *next;
1147 /* Try next first. */
1148 next = mas_walk(&mas);
1150 anon_vma = reusable_anon_vma(next, vma, next);
1155 prev = mas_prev(&mas, 0);
1156 VM_BUG_ON_VMA(prev != vma, vma);
1157 prev = mas_prev(&mas, 0);
1158 /* Try prev next. */
1160 anon_vma = reusable_anon_vma(prev, prev, vma);
1163 * We might reach here with anon_vma == NULL if we can't find
1164 * any reusable anon_vma.
1165 * There's no absolute need to look only at touching neighbours:
1166 * we could search further afield for "compatible" anon_vmas.
1167 * But it would probably just be a waste of time searching,
1168 * or lead to too many vmas hanging off the same anon_vma.
1169 * We're trying to allow mprotect remerging later on,
1170 * not trying to minimize memory used for anon_vmas.
1176 * If a hint addr is less than mmap_min_addr change hint to be as
1177 * low as possible but still greater than mmap_min_addr
1179 static inline unsigned long round_hint_to_min(unsigned long hint)
1182 if (((void *)hint != NULL) &&
1183 (hint < mmap_min_addr))
1184 return PAGE_ALIGN(mmap_min_addr);
1188 int mlock_future_check(struct mm_struct *mm, unsigned long flags,
1191 unsigned long locked, lock_limit;
1193 /* mlock MCL_FUTURE? */
1194 if (flags & VM_LOCKED) {
1195 locked = len >> PAGE_SHIFT;
1196 locked += mm->locked_vm;
1197 lock_limit = rlimit(RLIMIT_MEMLOCK);
1198 lock_limit >>= PAGE_SHIFT;
1199 if (locked > lock_limit && !capable(CAP_IPC_LOCK))
1205 static inline u64 file_mmap_size_max(struct file *file, struct inode *inode)
1207 if (S_ISREG(inode->i_mode))
1208 return MAX_LFS_FILESIZE;
1210 if (S_ISBLK(inode->i_mode))
1211 return MAX_LFS_FILESIZE;
1213 if (S_ISSOCK(inode->i_mode))
1214 return MAX_LFS_FILESIZE;
1216 /* Special "we do even unsigned file positions" case */
1217 if (file->f_mode & FMODE_UNSIGNED_OFFSET)
1220 /* Yes, random drivers might want more. But I'm tired of buggy drivers */
1224 static inline bool file_mmap_ok(struct file *file, struct inode *inode,
1225 unsigned long pgoff, unsigned long len)
1227 u64 maxsize = file_mmap_size_max(file, inode);
1229 if (maxsize && len > maxsize)
1232 if (pgoff > maxsize >> PAGE_SHIFT)
1238 * The caller must write-lock current->mm->mmap_lock.
1240 unsigned long do_mmap(struct file *file, unsigned long addr,
1241 unsigned long len, unsigned long prot,
1242 unsigned long flags, unsigned long pgoff,
1243 unsigned long *populate, struct list_head *uf)
1245 struct mm_struct *mm = current->mm;
1246 vm_flags_t vm_flags;
1256 * Does the application expect PROT_READ to imply PROT_EXEC?
1258 * (the exception is when the underlying filesystem is noexec
1259 * mounted, in which case we dont add PROT_EXEC.)
1261 if ((prot & PROT_READ) && (current->personality & READ_IMPLIES_EXEC))
1262 if (!(file && path_noexec(&file->f_path)))
1265 /* force arch specific MAP_FIXED handling in get_unmapped_area */
1266 if (flags & MAP_FIXED_NOREPLACE)
1269 if (!(flags & MAP_FIXED))
1270 addr = round_hint_to_min(addr);
1272 /* Careful about overflows.. */
1273 len = PAGE_ALIGN(len);
1277 /* offset overflow? */
1278 if ((pgoff + (len >> PAGE_SHIFT)) < pgoff)
1281 /* Too many mappings? */
1282 if (mm->map_count > sysctl_max_map_count)
1285 /* Obtain the address to map to. we verify (or select) it and ensure
1286 * that it represents a valid section of the address space.
1288 addr = get_unmapped_area(file, addr, len, pgoff, flags);
1289 if (IS_ERR_VALUE(addr))
1292 if (flags & MAP_FIXED_NOREPLACE) {
1293 if (find_vma_intersection(mm, addr, addr + len))
1297 if (prot == PROT_EXEC) {
1298 pkey = execute_only_pkey(mm);
1303 /* Do simple checking here so the lower-level routines won't have
1304 * to. we assume access permissions have been handled by the open
1305 * of the memory object, so we don't do any here.
1307 vm_flags = calc_vm_prot_bits(prot, pkey) | calc_vm_flag_bits(flags) |
1308 mm->def_flags | VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC;
1310 if (flags & MAP_LOCKED)
1311 if (!can_do_mlock())
1314 if (mlock_future_check(mm, vm_flags, len))
1318 struct inode *inode = file_inode(file);
1319 unsigned long flags_mask;
1321 if (!file_mmap_ok(file, inode, pgoff, len))
1324 flags_mask = LEGACY_MAP_MASK | file->f_op->mmap_supported_flags;
1326 switch (flags & MAP_TYPE) {
1329 * Force use of MAP_SHARED_VALIDATE with non-legacy
1330 * flags. E.g. MAP_SYNC is dangerous to use with
1331 * MAP_SHARED as you don't know which consistency model
1332 * you will get. We silently ignore unsupported flags
1333 * with MAP_SHARED to preserve backward compatibility.
1335 flags &= LEGACY_MAP_MASK;
1337 case MAP_SHARED_VALIDATE:
1338 if (flags & ~flags_mask)
1340 if (prot & PROT_WRITE) {
1341 if (!(file->f_mode & FMODE_WRITE))
1343 if (IS_SWAPFILE(file->f_mapping->host))
1348 * Make sure we don't allow writing to an append-only
1351 if (IS_APPEND(inode) && (file->f_mode & FMODE_WRITE))
1354 vm_flags |= VM_SHARED | VM_MAYSHARE;
1355 if (!(file->f_mode & FMODE_WRITE))
1356 vm_flags &= ~(VM_MAYWRITE | VM_SHARED);
1359 if (!(file->f_mode & FMODE_READ))
1361 if (path_noexec(&file->f_path)) {
1362 if (vm_flags & VM_EXEC)
1364 vm_flags &= ~VM_MAYEXEC;
1367 if (!file->f_op->mmap)
1369 if (vm_flags & (VM_GROWSDOWN|VM_GROWSUP))
1377 switch (flags & MAP_TYPE) {
1379 if (vm_flags & (VM_GROWSDOWN|VM_GROWSUP))
1385 vm_flags |= VM_SHARED | VM_MAYSHARE;
1389 * Set pgoff according to addr for anon_vma.
1391 pgoff = addr >> PAGE_SHIFT;
1399 * Set 'VM_NORESERVE' if we should not account for the
1400 * memory use of this mapping.
1402 if (flags & MAP_NORESERVE) {
1403 /* We honor MAP_NORESERVE if allowed to overcommit */
1404 if (sysctl_overcommit_memory != OVERCOMMIT_NEVER)
1405 vm_flags |= VM_NORESERVE;
1407 /* hugetlb applies strict overcommit unless MAP_NORESERVE */
1408 if (file && is_file_hugepages(file))
1409 vm_flags |= VM_NORESERVE;
1412 addr = mmap_region(file, addr, len, vm_flags, pgoff, uf);
1413 if (!IS_ERR_VALUE(addr) &&
1414 ((vm_flags & VM_LOCKED) ||
1415 (flags & (MAP_POPULATE | MAP_NONBLOCK)) == MAP_POPULATE))
1420 unsigned long ksys_mmap_pgoff(unsigned long addr, unsigned long len,
1421 unsigned long prot, unsigned long flags,
1422 unsigned long fd, unsigned long pgoff)
1424 struct file *file = NULL;
1425 unsigned long retval;
1427 if (!(flags & MAP_ANONYMOUS)) {
1428 audit_mmap_fd(fd, flags);
1432 if (is_file_hugepages(file)) {
1433 len = ALIGN(len, huge_page_size(hstate_file(file)));
1434 } else if (unlikely(flags & MAP_HUGETLB)) {
1438 } else if (flags & MAP_HUGETLB) {
1441 hs = hstate_sizelog((flags >> MAP_HUGE_SHIFT) & MAP_HUGE_MASK);
1445 len = ALIGN(len, huge_page_size(hs));
1447 * VM_NORESERVE is used because the reservations will be
1448 * taken when vm_ops->mmap() is called
1450 file = hugetlb_file_setup(HUGETLB_ANON_FILE, len,
1452 HUGETLB_ANONHUGE_INODE,
1453 (flags >> MAP_HUGE_SHIFT) & MAP_HUGE_MASK);
1455 return PTR_ERR(file);
1458 retval = vm_mmap_pgoff(file, addr, len, prot, flags, pgoff);
1465 SYSCALL_DEFINE6(mmap_pgoff, unsigned long, addr, unsigned long, len,
1466 unsigned long, prot, unsigned long, flags,
1467 unsigned long, fd, unsigned long, pgoff)
1469 return ksys_mmap_pgoff(addr, len, prot, flags, fd, pgoff);
1472 #ifdef __ARCH_WANT_SYS_OLD_MMAP
1473 struct mmap_arg_struct {
1477 unsigned long flags;
1479 unsigned long offset;
1482 SYSCALL_DEFINE1(old_mmap, struct mmap_arg_struct __user *, arg)
1484 struct mmap_arg_struct a;
1486 if (copy_from_user(&a, arg, sizeof(a)))
1488 if (offset_in_page(a.offset))
1491 return ksys_mmap_pgoff(a.addr, a.len, a.prot, a.flags, a.fd,
1492 a.offset >> PAGE_SHIFT);
1494 #endif /* __ARCH_WANT_SYS_OLD_MMAP */
1497 * Some shared mappings will want the pages marked read-only
1498 * to track write events. If so, we'll downgrade vm_page_prot
1499 * to the private version (using protection_map[] without the
1502 int vma_wants_writenotify(struct vm_area_struct *vma, pgprot_t vm_page_prot)
1504 vm_flags_t vm_flags = vma->vm_flags;
1505 const struct vm_operations_struct *vm_ops = vma->vm_ops;
1507 /* If it was private or non-writable, the write bit is already clear */
1508 if ((vm_flags & (VM_WRITE|VM_SHARED)) != ((VM_WRITE|VM_SHARED)))
1511 /* The backer wishes to know when pages are first written to? */
1512 if (vm_ops && (vm_ops->page_mkwrite || vm_ops->pfn_mkwrite))
1515 /* The open routine did something to the protections that pgprot_modify
1516 * won't preserve? */
1517 if (pgprot_val(vm_page_prot) !=
1518 pgprot_val(vm_pgprot_modify(vm_page_prot, vm_flags)))
1522 * Do we need to track softdirty? hugetlb does not support softdirty
1525 if (vma_soft_dirty_enabled(vma) && !is_vm_hugetlb_page(vma))
1528 /* Specialty mapping? */
1529 if (vm_flags & VM_PFNMAP)
1532 /* Can the mapping track the dirty pages? */
1533 return vma->vm_file && vma->vm_file->f_mapping &&
1534 mapping_can_writeback(vma->vm_file->f_mapping);
1538 * We account for memory if it's a private writeable mapping,
1539 * not hugepages and VM_NORESERVE wasn't set.
1541 static inline int accountable_mapping(struct file *file, vm_flags_t vm_flags)
1544 * hugetlb has its own accounting separate from the core VM
1545 * VM_HUGETLB may not be set yet so we cannot check for that flag.
1547 if (file && is_file_hugepages(file))
1550 return (vm_flags & (VM_NORESERVE | VM_SHARED | VM_WRITE)) == VM_WRITE;
1554 * unmapped_area() - Find an area between the low_limit and the high_limit with
1555 * the correct alignment and offset, all from @info. Note: current->mm is used
1558 * @info: The unmapped area information including the range (low_limit -
1559 * hight_limit), the alignment offset and mask.
1561 * Return: A memory address or -ENOMEM.
1563 static unsigned long unmapped_area(struct vm_unmapped_area_info *info)
1565 unsigned long length, gap;
1567 MA_STATE(mas, ¤t->mm->mm_mt, 0, 0);
1569 /* Adjust search length to account for worst case alignment overhead */
1570 length = info->length + info->align_mask;
1571 if (length < info->length)
1574 if (mas_empty_area(&mas, info->low_limit, info->high_limit - 1,
1579 gap += (info->align_offset - gap) & info->align_mask;
1584 * unmapped_area_topdown() - Find an area between the low_limit and the
1585 * high_limit with * the correct alignment and offset at the highest available
1586 * address, all from @info. Note: current->mm is used for the search.
1588 * @info: The unmapped area information including the range (low_limit -
1589 * hight_limit), the alignment offset and mask.
1591 * Return: A memory address or -ENOMEM.
1593 static unsigned long unmapped_area_topdown(struct vm_unmapped_area_info *info)
1595 unsigned long length, gap;
1597 MA_STATE(mas, ¤t->mm->mm_mt, 0, 0);
1598 /* Adjust search length to account for worst case alignment overhead */
1599 length = info->length + info->align_mask;
1600 if (length < info->length)
1603 if (mas_empty_area_rev(&mas, info->low_limit, info->high_limit - 1,
1607 gap = mas.last + 1 - info->length;
1608 gap -= (gap - info->align_offset) & info->align_mask;
1613 * Search for an unmapped address range.
1615 * We are looking for a range that:
1616 * - does not intersect with any VMA;
1617 * - is contained within the [low_limit, high_limit) interval;
1618 * - is at least the desired size.
1619 * - satisfies (begin_addr & align_mask) == (align_offset & align_mask)
1621 unsigned long vm_unmapped_area(struct vm_unmapped_area_info *info)
1625 if (info->flags & VM_UNMAPPED_AREA_TOPDOWN)
1626 addr = unmapped_area_topdown(info);
1628 addr = unmapped_area(info);
1630 trace_vm_unmapped_area(addr, info);
1634 /* Get an address range which is currently unmapped.
1635 * For shmat() with addr=0.
1637 * Ugly calling convention alert:
1638 * Return value with the low bits set means error value,
1640 * if (ret & ~PAGE_MASK)
1643 * This function "knows" that -ENOMEM has the bits set.
1646 generic_get_unmapped_area(struct file *filp, unsigned long addr,
1647 unsigned long len, unsigned long pgoff,
1648 unsigned long flags)
1650 struct mm_struct *mm = current->mm;
1651 struct vm_area_struct *vma, *prev;
1652 struct vm_unmapped_area_info info;
1653 const unsigned long mmap_end = arch_get_mmap_end(addr, len, flags);
1655 if (len > mmap_end - mmap_min_addr)
1658 if (flags & MAP_FIXED)
1662 addr = PAGE_ALIGN(addr);
1663 vma = find_vma_prev(mm, addr, &prev);
1664 if (mmap_end - len >= addr && addr >= mmap_min_addr &&
1665 (!vma || addr + len <= vm_start_gap(vma)) &&
1666 (!prev || addr >= vm_end_gap(prev)))
1672 info.low_limit = mm->mmap_base;
1673 info.high_limit = mmap_end;
1674 info.align_mask = 0;
1675 info.align_offset = 0;
1676 return vm_unmapped_area(&info);
1679 #ifndef HAVE_ARCH_UNMAPPED_AREA
1681 arch_get_unmapped_area(struct file *filp, unsigned long addr,
1682 unsigned long len, unsigned long pgoff,
1683 unsigned long flags)
1685 return generic_get_unmapped_area(filp, addr, len, pgoff, flags);
1690 * This mmap-allocator allocates new areas top-down from below the
1691 * stack's low limit (the base):
1694 generic_get_unmapped_area_topdown(struct file *filp, unsigned long addr,
1695 unsigned long len, unsigned long pgoff,
1696 unsigned long flags)
1698 struct vm_area_struct *vma, *prev;
1699 struct mm_struct *mm = current->mm;
1700 struct vm_unmapped_area_info info;
1701 const unsigned long mmap_end = arch_get_mmap_end(addr, len, flags);
1703 /* requested length too big for entire address space */
1704 if (len > mmap_end - mmap_min_addr)
1707 if (flags & MAP_FIXED)
1710 /* requesting a specific address */
1712 addr = PAGE_ALIGN(addr);
1713 vma = find_vma_prev(mm, addr, &prev);
1714 if (mmap_end - len >= addr && addr >= mmap_min_addr &&
1715 (!vma || addr + len <= vm_start_gap(vma)) &&
1716 (!prev || addr >= vm_end_gap(prev)))
1720 info.flags = VM_UNMAPPED_AREA_TOPDOWN;
1722 info.low_limit = max(PAGE_SIZE, mmap_min_addr);
1723 info.high_limit = arch_get_mmap_base(addr, mm->mmap_base);
1724 info.align_mask = 0;
1725 info.align_offset = 0;
1726 addr = vm_unmapped_area(&info);
1729 * A failed mmap() very likely causes application failure,
1730 * so fall back to the bottom-up function here. This scenario
1731 * can happen with large stack limits and large mmap()
1734 if (offset_in_page(addr)) {
1735 VM_BUG_ON(addr != -ENOMEM);
1737 info.low_limit = TASK_UNMAPPED_BASE;
1738 info.high_limit = mmap_end;
1739 addr = vm_unmapped_area(&info);
1745 #ifndef HAVE_ARCH_UNMAPPED_AREA_TOPDOWN
1747 arch_get_unmapped_area_topdown(struct file *filp, unsigned long addr,
1748 unsigned long len, unsigned long pgoff,
1749 unsigned long flags)
1751 return generic_get_unmapped_area_topdown(filp, addr, len, pgoff, flags);
1756 get_unmapped_area(struct file *file, unsigned long addr, unsigned long len,
1757 unsigned long pgoff, unsigned long flags)
1759 unsigned long (*get_area)(struct file *, unsigned long,
1760 unsigned long, unsigned long, unsigned long);
1762 unsigned long error = arch_mmap_check(addr, len, flags);
1766 /* Careful about overflows.. */
1767 if (len > TASK_SIZE)
1770 get_area = current->mm->get_unmapped_area;
1772 if (file->f_op->get_unmapped_area)
1773 get_area = file->f_op->get_unmapped_area;
1774 } else if (flags & MAP_SHARED) {
1776 * mmap_region() will call shmem_zero_setup() to create a file,
1777 * so use shmem's get_unmapped_area in case it can be huge.
1778 * do_mmap() will clear pgoff, so match alignment.
1781 get_area = shmem_get_unmapped_area;
1782 } else if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE)) {
1783 /* Ensures that larger anonymous mappings are THP aligned. */
1784 get_area = thp_get_unmapped_area;
1787 addr = get_area(file, addr, len, pgoff, flags);
1788 if (IS_ERR_VALUE(addr))
1791 if (addr > TASK_SIZE - len)
1793 if (offset_in_page(addr))
1796 error = security_mmap_addr(addr);
1797 return error ? error : addr;
1800 EXPORT_SYMBOL(get_unmapped_area);
1803 * find_vma_intersection() - Look up the first VMA which intersects the interval
1804 * @mm: The process address space.
1805 * @start_addr: The inclusive start user address.
1806 * @end_addr: The exclusive end user address.
1808 * Returns: The first VMA within the provided range, %NULL otherwise. Assumes
1809 * start_addr < end_addr.
1811 struct vm_area_struct *find_vma_intersection(struct mm_struct *mm,
1812 unsigned long start_addr,
1813 unsigned long end_addr)
1815 unsigned long index = start_addr;
1817 mmap_assert_locked(mm);
1818 return mt_find(&mm->mm_mt, &index, end_addr - 1);
1820 EXPORT_SYMBOL(find_vma_intersection);
1823 * find_vma() - Find the VMA for a given address, or the next VMA.
1824 * @mm: The mm_struct to check
1825 * @addr: The address
1827 * Returns: The VMA associated with addr, or the next VMA.
1828 * May return %NULL in the case of no VMA at addr or above.
1830 struct vm_area_struct *find_vma(struct mm_struct *mm, unsigned long addr)
1832 unsigned long index = addr;
1834 mmap_assert_locked(mm);
1835 return mt_find(&mm->mm_mt, &index, ULONG_MAX);
1837 EXPORT_SYMBOL(find_vma);
1840 * find_vma_prev() - Find the VMA for a given address, or the next vma and
1841 * set %pprev to the previous VMA, if any.
1842 * @mm: The mm_struct to check
1843 * @addr: The address
1844 * @pprev: The pointer to set to the previous VMA
1846 * Note that RCU lock is missing here since the external mmap_lock() is used
1849 * Returns: The VMA associated with @addr, or the next vma.
1850 * May return %NULL in the case of no vma at addr or above.
1852 struct vm_area_struct *
1853 find_vma_prev(struct mm_struct *mm, unsigned long addr,
1854 struct vm_area_struct **pprev)
1856 struct vm_area_struct *vma;
1857 MA_STATE(mas, &mm->mm_mt, addr, addr);
1859 vma = mas_walk(&mas);
1860 *pprev = mas_prev(&mas, 0);
1862 vma = mas_next(&mas, ULONG_MAX);
1867 * Verify that the stack growth is acceptable and
1868 * update accounting. This is shared with both the
1869 * grow-up and grow-down cases.
1871 static int acct_stack_growth(struct vm_area_struct *vma,
1872 unsigned long size, unsigned long grow)
1874 struct mm_struct *mm = vma->vm_mm;
1875 unsigned long new_start;
1877 /* address space limit tests */
1878 if (!may_expand_vm(mm, vma->vm_flags, grow))
1881 /* Stack limit test */
1882 if (size > rlimit(RLIMIT_STACK))
1885 /* mlock limit tests */
1886 if (mlock_future_check(mm, vma->vm_flags, grow << PAGE_SHIFT))
1889 /* Check to ensure the stack will not grow into a hugetlb-only region */
1890 new_start = (vma->vm_flags & VM_GROWSUP) ? vma->vm_start :
1892 if (is_hugepage_only_range(vma->vm_mm, new_start, size))
1896 * Overcommit.. This must be the final test, as it will
1897 * update security statistics.
1899 if (security_vm_enough_memory_mm(mm, grow))
1905 #if defined(CONFIG_STACK_GROWSUP) || defined(CONFIG_IA64)
1907 * PA-RISC uses this for its stack; IA64 for its Register Backing Store.
1908 * vma is the last one with address > vma->vm_end. Have to extend vma.
1910 int expand_upwards(struct vm_area_struct *vma, unsigned long address)
1912 struct mm_struct *mm = vma->vm_mm;
1913 struct vm_area_struct *next;
1914 unsigned long gap_addr;
1916 MA_STATE(mas, &mm->mm_mt, 0, 0);
1918 if (!(vma->vm_flags & VM_GROWSUP))
1921 /* Guard against exceeding limits of the address space. */
1922 address &= PAGE_MASK;
1923 if (address >= (TASK_SIZE & PAGE_MASK))
1925 address += PAGE_SIZE;
1927 /* Enforce stack_guard_gap */
1928 gap_addr = address + stack_guard_gap;
1930 /* Guard against overflow */
1931 if (gap_addr < address || gap_addr > TASK_SIZE)
1932 gap_addr = TASK_SIZE;
1934 next = find_vma_intersection(mm, vma->vm_end, gap_addr);
1935 if (next && vma_is_accessible(next)) {
1936 if (!(next->vm_flags & VM_GROWSUP))
1938 /* Check that both stack segments have the same anon_vma? */
1941 if (mas_preallocate(&mas, vma, GFP_KERNEL))
1944 /* We must make sure the anon_vma is allocated. */
1945 if (unlikely(anon_vma_prepare(vma))) {
1951 * vma->vm_start/vm_end cannot change under us because the caller
1952 * is required to hold the mmap_lock in read mode. We need the
1953 * anon_vma lock to serialize against concurrent expand_stacks.
1955 anon_vma_lock_write(vma->anon_vma);
1957 /* Somebody else might have raced and expanded it already */
1958 if (address > vma->vm_end) {
1959 unsigned long size, grow;
1961 size = address - vma->vm_start;
1962 grow = (address - vma->vm_end) >> PAGE_SHIFT;
1965 if (vma->vm_pgoff + (size >> PAGE_SHIFT) >= vma->vm_pgoff) {
1966 error = acct_stack_growth(vma, size, grow);
1969 * We only hold a shared mmap_lock lock here, so
1970 * we need to protect against concurrent vma
1971 * expansions. anon_vma_lock_write() doesn't
1972 * help here, as we don't guarantee that all
1973 * growable vmas in a mm share the same root
1974 * anon vma. So, we reuse mm->page_table_lock
1975 * to guard against concurrent vma expansions.
1977 spin_lock(&mm->page_table_lock);
1978 if (vma->vm_flags & VM_LOCKED)
1979 mm->locked_vm += grow;
1980 vm_stat_account(mm, vma->vm_flags, grow);
1981 anon_vma_interval_tree_pre_update_vma(vma);
1982 vma->vm_end = address;
1983 /* Overwrite old entry in mtree. */
1984 vma_mas_store(vma, &mas);
1985 anon_vma_interval_tree_post_update_vma(vma);
1986 spin_unlock(&mm->page_table_lock);
1988 perf_event_mmap(vma);
1992 anon_vma_unlock_write(vma->anon_vma);
1993 khugepaged_enter_vma(vma, vma->vm_flags);
1997 #endif /* CONFIG_STACK_GROWSUP || CONFIG_IA64 */
2000 * vma is the first one with address < vma->vm_start. Have to extend vma.
2002 int expand_downwards(struct vm_area_struct *vma, unsigned long address)
2004 struct mm_struct *mm = vma->vm_mm;
2005 MA_STATE(mas, &mm->mm_mt, vma->vm_start, vma->vm_start);
2006 struct vm_area_struct *prev;
2009 address &= PAGE_MASK;
2010 if (address < mmap_min_addr)
2013 /* Enforce stack_guard_gap */
2014 prev = mas_prev(&mas, 0);
2015 /* Check that both stack segments have the same anon_vma? */
2016 if (prev && !(prev->vm_flags & VM_GROWSDOWN) &&
2017 vma_is_accessible(prev)) {
2018 if (address - prev->vm_end < stack_guard_gap)
2022 if (mas_preallocate(&mas, vma, GFP_KERNEL))
2025 /* We must make sure the anon_vma is allocated. */
2026 if (unlikely(anon_vma_prepare(vma))) {
2032 * vma->vm_start/vm_end cannot change under us because the caller
2033 * is required to hold the mmap_lock in read mode. We need the
2034 * anon_vma lock to serialize against concurrent expand_stacks.
2036 anon_vma_lock_write(vma->anon_vma);
2038 /* Somebody else might have raced and expanded it already */
2039 if (address < vma->vm_start) {
2040 unsigned long size, grow;
2042 size = vma->vm_end - address;
2043 grow = (vma->vm_start - address) >> PAGE_SHIFT;
2046 if (grow <= vma->vm_pgoff) {
2047 error = acct_stack_growth(vma, size, grow);
2050 * We only hold a shared mmap_lock lock here, so
2051 * we need to protect against concurrent vma
2052 * expansions. anon_vma_lock_write() doesn't
2053 * help here, as we don't guarantee that all
2054 * growable vmas in a mm share the same root
2055 * anon vma. So, we reuse mm->page_table_lock
2056 * to guard against concurrent vma expansions.
2058 spin_lock(&mm->page_table_lock);
2059 if (vma->vm_flags & VM_LOCKED)
2060 mm->locked_vm += grow;
2061 vm_stat_account(mm, vma->vm_flags, grow);
2062 anon_vma_interval_tree_pre_update_vma(vma);
2063 vma->vm_start = address;
2064 vma->vm_pgoff -= grow;
2065 /* Overwrite old entry in mtree. */
2066 vma_mas_store(vma, &mas);
2067 anon_vma_interval_tree_post_update_vma(vma);
2068 spin_unlock(&mm->page_table_lock);
2070 perf_event_mmap(vma);
2074 anon_vma_unlock_write(vma->anon_vma);
2075 khugepaged_enter_vma(vma, vma->vm_flags);
2080 /* enforced gap between the expanding stack and other mappings. */
2081 unsigned long stack_guard_gap = 256UL<<PAGE_SHIFT;
2083 static int __init cmdline_parse_stack_guard_gap(char *p)
2088 val = simple_strtoul(p, &endptr, 10);
2090 stack_guard_gap = val << PAGE_SHIFT;
2094 __setup("stack_guard_gap=", cmdline_parse_stack_guard_gap);
2096 #ifdef CONFIG_STACK_GROWSUP
2097 int expand_stack(struct vm_area_struct *vma, unsigned long address)
2099 return expand_upwards(vma, address);
2102 struct vm_area_struct *
2103 find_extend_vma(struct mm_struct *mm, unsigned long addr)
2105 struct vm_area_struct *vma, *prev;
2108 vma = find_vma_prev(mm, addr, &prev);
2109 if (vma && (vma->vm_start <= addr))
2111 if (!prev || expand_stack(prev, addr))
2113 if (prev->vm_flags & VM_LOCKED)
2114 populate_vma_page_range(prev, addr, prev->vm_end, NULL);
2118 int expand_stack(struct vm_area_struct *vma, unsigned long address)
2120 return expand_downwards(vma, address);
2123 struct vm_area_struct *
2124 find_extend_vma(struct mm_struct *mm, unsigned long addr)
2126 struct vm_area_struct *vma;
2127 unsigned long start;
2130 vma = find_vma(mm, addr);
2133 if (vma->vm_start <= addr)
2135 if (!(vma->vm_flags & VM_GROWSDOWN))
2137 start = vma->vm_start;
2138 if (expand_stack(vma, addr))
2140 if (vma->vm_flags & VM_LOCKED)
2141 populate_vma_page_range(vma, addr, start, NULL);
2146 EXPORT_SYMBOL_GPL(find_extend_vma);
2149 * Ok - we have the memory areas we should free on a maple tree so release them,
2150 * and do the vma updates.
2152 * Called with the mm semaphore held.
2154 static inline void remove_mt(struct mm_struct *mm, struct ma_state *mas)
2156 unsigned long nr_accounted = 0;
2157 struct vm_area_struct *vma;
2159 /* Update high watermark before we lower total_vm */
2160 update_hiwater_vm(mm);
2161 mas_for_each(mas, vma, ULONG_MAX) {
2162 long nrpages = vma_pages(vma);
2164 if (vma->vm_flags & VM_ACCOUNT)
2165 nr_accounted += nrpages;
2166 vm_stat_account(mm, vma->vm_flags, -nrpages);
2169 vm_unacct_memory(nr_accounted);
2174 * Get rid of page table information in the indicated region.
2176 * Called with the mm semaphore held.
2178 static void unmap_region(struct mm_struct *mm, struct maple_tree *mt,
2179 struct vm_area_struct *vma, struct vm_area_struct *prev,
2180 struct vm_area_struct *next,
2181 unsigned long start, unsigned long end)
2183 struct mmu_gather tlb;
2186 tlb_gather_mmu(&tlb, mm);
2187 update_hiwater_rss(mm);
2188 unmap_vmas(&tlb, mt, vma, start, end);
2189 free_pgtables(&tlb, mt, vma, prev ? prev->vm_end : FIRST_USER_ADDRESS,
2190 next ? next->vm_start : USER_PGTABLES_CEILING);
2191 tlb_finish_mmu(&tlb);
2195 * __split_vma() bypasses sysctl_max_map_count checking. We use this where it
2196 * has already been checked or doesn't make sense to fail.
2198 int __split_vma(struct mm_struct *mm, struct vm_area_struct *vma,
2199 unsigned long addr, int new_below)
2201 struct vm_area_struct *new;
2205 if (vma->vm_ops && vma->vm_ops->may_split) {
2206 err = vma->vm_ops->may_split(vma, addr);
2211 new = vm_area_dup(vma);
2218 new->vm_start = addr;
2219 new->vm_pgoff += ((addr - vma->vm_start) >> PAGE_SHIFT);
2222 err = vma_dup_policy(vma, new);
2226 err = anon_vma_clone(new, vma);
2231 get_file(new->vm_file);
2233 if (new->vm_ops && new->vm_ops->open)
2234 new->vm_ops->open(new);
2237 err = vma_adjust(vma, addr, vma->vm_end, vma->vm_pgoff +
2238 ((addr - new->vm_start) >> PAGE_SHIFT), new);
2240 err = vma_adjust(vma, vma->vm_start, addr, vma->vm_pgoff, new);
2246 /* Avoid vm accounting in close() operation */
2247 new->vm_start = new->vm_end;
2249 /* Clean everything up if vma_adjust failed. */
2250 if (new->vm_ops && new->vm_ops->close)
2251 new->vm_ops->close(new);
2254 unlink_anon_vmas(new);
2256 mpol_put(vma_policy(new));
2264 * Split a vma into two pieces at address 'addr', a new vma is allocated
2265 * either for the first part or the tail.
2267 int split_vma(struct mm_struct *mm, struct vm_area_struct *vma,
2268 unsigned long addr, int new_below)
2270 if (mm->map_count >= sysctl_max_map_count)
2273 return __split_vma(mm, vma, addr, new_below);
2276 static inline int munmap_sidetree(struct vm_area_struct *vma,
2277 struct ma_state *mas_detach)
2279 mas_set_range(mas_detach, vma->vm_start, vma->vm_end - 1);
2280 if (mas_store_gfp(mas_detach, vma, GFP_KERNEL))
2283 if (vma->vm_flags & VM_LOCKED)
2284 vma->vm_mm->locked_vm -= vma_pages(vma);
2290 * do_mas_align_munmap() - munmap the aligned region from @start to @end.
2291 * @mas: The maple_state, ideally set up to alter the correct tree location.
2292 * @vma: The starting vm_area_struct
2293 * @mm: The mm_struct
2294 * @start: The aligned start address to munmap.
2295 * @end: The aligned end address to munmap.
2296 * @uf: The userfaultfd list_head
2297 * @downgrade: Set to true to attempt a write downgrade of the mmap_sem
2299 * If @downgrade is true, check return code for potential release of the lock.
2302 do_mas_align_munmap(struct ma_state *mas, struct vm_area_struct *vma,
2303 struct mm_struct *mm, unsigned long start,
2304 unsigned long end, struct list_head *uf, bool downgrade)
2306 struct vm_area_struct *prev, *next = NULL;
2307 struct maple_tree mt_detach;
2309 int error = -ENOMEM;
2310 MA_STATE(mas_detach, &mt_detach, 0, 0);
2311 mt_init_flags(&mt_detach, MT_FLAGS_LOCK_EXTERN);
2312 mt_set_external_lock(&mt_detach, &mm->mmap_lock);
2314 if (mas_preallocate(mas, vma, GFP_KERNEL))
2317 mas->last = end - 1;
2319 * If we need to split any vma, do it now to save pain later.
2321 * Note: mremap's move_vma VM_ACCOUNT handling assumes a partially
2322 * unmapped vm_area_struct will remain in use: so lower split_vma
2323 * places tmp vma above, and higher split_vma places tmp vma below.
2326 /* Does it split the first one? */
2327 if (start > vma->vm_start) {
2330 * Make sure that map_count on return from munmap() will
2331 * not exceed its limit; but let map_count go just above
2332 * its limit temporarily, to help free resources as expected.
2334 if (end < vma->vm_end && mm->map_count >= sysctl_max_map_count)
2335 goto map_count_exceeded;
2338 * mas_pause() is not needed since mas->index needs to be set
2339 * differently than vma->vm_end anyways.
2341 error = __split_vma(mm, vma, start, 0);
2343 goto start_split_failed;
2345 mas_set(mas, start);
2346 vma = mas_walk(mas);
2349 prev = mas_prev(mas, 0);
2350 if (unlikely((!prev)))
2351 mas_set(mas, start);
2354 * Detach a range of VMAs from the mm. Using next as a temp variable as
2355 * it is always overwritten.
2357 mas_for_each(mas, next, end - 1) {
2358 /* Does it split the end? */
2359 if (next->vm_end > end) {
2360 struct vm_area_struct *split;
2362 error = __split_vma(mm, next, end, 1);
2364 goto end_split_failed;
2367 split = mas_prev(mas, 0);
2368 error = munmap_sidetree(split, &mas_detach);
2370 goto munmap_sidetree_failed;
2377 error = munmap_sidetree(next, &mas_detach);
2379 goto munmap_sidetree_failed;
2382 #ifdef CONFIG_DEBUG_VM_MAPLE_TREE
2383 BUG_ON(next->vm_start < start);
2384 BUG_ON(next->vm_start > end);
2389 next = mas_next(mas, ULONG_MAX);
2393 * If userfaultfd_unmap_prep returns an error the vmas
2394 * will remain split, but userland will get a
2395 * highly unexpected error anyway. This is no
2396 * different than the case where the first of the two
2397 * __split_vma fails, but we don't undo the first
2398 * split, despite we could. This is unlikely enough
2399 * failure that it's not worth optimizing it for.
2401 error = userfaultfd_unmap_prep(mm, start, end, uf);
2404 goto userfaultfd_error;
2407 /* Point of no return */
2408 mas_set_range(mas, start, end - 1);
2409 #if defined(CONFIG_DEBUG_VM_MAPLE_TREE)
2410 /* Make sure no VMAs are about to be lost. */
2412 MA_STATE(test, &mt_detach, start, end - 1);
2413 struct vm_area_struct *vma_mas, *vma_test;
2417 vma_test = mas_find(&test, end - 1);
2418 mas_for_each(mas, vma_mas, end - 1) {
2419 BUG_ON(vma_mas != vma_test);
2421 vma_test = mas_next(&test, end - 1);
2424 BUG_ON(count != test_count);
2425 mas_set_range(mas, start, end - 1);
2428 mas_store_prealloc(mas, NULL);
2429 mm->map_count -= count;
2431 * Do not downgrade mmap_lock if we are next to VM_GROWSDOWN or
2432 * VM_GROWSUP VMA. Such VMAs can change their size under
2433 * down_read(mmap_lock) and collide with the VMA we are about to unmap.
2436 if (next && (next->vm_flags & VM_GROWSDOWN))
2438 else if (prev && (prev->vm_flags & VM_GROWSUP))
2441 mmap_write_downgrade(mm);
2444 unmap_region(mm, &mt_detach, vma, prev, next, start, end);
2445 /* Statistics and freeing VMAs */
2446 mas_set(&mas_detach, start);
2447 remove_mt(mm, &mas_detach);
2448 __mt_destroy(&mt_detach);
2452 return downgrade ? 1 : 0;
2455 munmap_sidetree_failed:
2457 __mt_destroy(&mt_detach);
2465 * do_mas_munmap() - munmap a given range.
2466 * @mas: The maple state
2467 * @mm: The mm_struct
2468 * @start: The start address to munmap
2469 * @len: The length of the range to munmap
2470 * @uf: The userfaultfd list_head
2471 * @downgrade: set to true if the user wants to attempt to write_downgrade the
2474 * This function takes a @mas that is either pointing to the previous VMA or set
2475 * to MA_START and sets it up to remove the mapping(s). The @len will be
2476 * aligned and any arch_unmap work will be preformed.
2478 * Returns: -EINVAL on failure, 1 on success and unlock, 0 otherwise.
2480 int do_mas_munmap(struct ma_state *mas, struct mm_struct *mm,
2481 unsigned long start, size_t len, struct list_head *uf,
2485 struct vm_area_struct *vma;
2487 if ((offset_in_page(start)) || start > TASK_SIZE || len > TASK_SIZE-start)
2490 end = start + PAGE_ALIGN(len);
2494 /* arch_unmap() might do unmaps itself. */
2495 arch_unmap(mm, start, end);
2497 /* Find the first overlapping VMA */
2498 vma = mas_find(mas, end - 1);
2502 return do_mas_align_munmap(mas, vma, mm, start, end, uf, downgrade);
2505 /* do_munmap() - Wrapper function for non-maple tree aware do_munmap() calls.
2506 * @mm: The mm_struct
2507 * @start: The start address to munmap
2508 * @len: The length to be munmapped.
2509 * @uf: The userfaultfd list_head
2511 int do_munmap(struct mm_struct *mm, unsigned long start, size_t len,
2512 struct list_head *uf)
2514 MA_STATE(mas, &mm->mm_mt, start, start);
2516 return do_mas_munmap(&mas, mm, start, len, uf, false);
2519 unsigned long mmap_region(struct file *file, unsigned long addr,
2520 unsigned long len, vm_flags_t vm_flags, unsigned long pgoff,
2521 struct list_head *uf)
2523 struct mm_struct *mm = current->mm;
2524 struct vm_area_struct *vma = NULL;
2525 struct vm_area_struct *next, *prev, *merge;
2526 pgoff_t pglen = len >> PAGE_SHIFT;
2527 unsigned long charged = 0;
2528 unsigned long end = addr + len;
2529 unsigned long merge_start = addr, merge_end = end;
2532 MA_STATE(mas, &mm->mm_mt, addr, end - 1);
2534 /* Check against address space limit. */
2535 if (!may_expand_vm(mm, vm_flags, len >> PAGE_SHIFT)) {
2536 unsigned long nr_pages;
2539 * MAP_FIXED may remove pages of mappings that intersects with
2540 * requested mapping. Account for the pages it would unmap.
2542 nr_pages = count_vma_pages_range(mm, addr, end);
2544 if (!may_expand_vm(mm, vm_flags,
2545 (len >> PAGE_SHIFT) - nr_pages))
2549 /* Unmap any existing mapping in the area */
2550 if (do_mas_munmap(&mas, mm, addr, len, uf, false))
2554 * Private writable mapping: check memory availability
2556 if (accountable_mapping(file, vm_flags)) {
2557 charged = len >> PAGE_SHIFT;
2558 if (security_vm_enough_memory_mm(mm, charged))
2560 vm_flags |= VM_ACCOUNT;
2563 next = mas_next(&mas, ULONG_MAX);
2564 prev = mas_prev(&mas, 0);
2565 if (vm_flags & VM_SPECIAL)
2568 /* Attempt to expand an old mapping */
2570 if (next && next->vm_start == end && !vma_policy(next) &&
2571 can_vma_merge_before(next, vm_flags, NULL, file, pgoff+pglen,
2572 NULL_VM_UFFD_CTX, NULL)) {
2573 merge_end = next->vm_end;
2575 vm_pgoff = next->vm_pgoff - pglen;
2579 if (prev && prev->vm_end == addr && !vma_policy(prev) &&
2580 (vma ? can_vma_merge_after(prev, vm_flags, vma->anon_vma, file,
2581 pgoff, vma->vm_userfaultfd_ctx, NULL) :
2582 can_vma_merge_after(prev, vm_flags, NULL, file, pgoff,
2583 NULL_VM_UFFD_CTX, NULL))) {
2584 merge_start = prev->vm_start;
2586 vm_pgoff = prev->vm_pgoff;
2590 /* Actually expand, if possible */
2592 !vma_expand(&mas, vma, merge_start, merge_end, vm_pgoff, next)) {
2593 khugepaged_enter_vma(vma, vm_flags);
2601 * Determine the object being mapped and call the appropriate
2602 * specific mapper. the address has already been validated, but
2603 * not unmapped, but the maps are removed from the list.
2605 vma = vm_area_alloc(mm);
2611 vma->vm_start = addr;
2613 vma->vm_flags = vm_flags;
2614 vma->vm_page_prot = vm_get_page_prot(vm_flags);
2615 vma->vm_pgoff = pgoff;
2618 if (vm_flags & VM_SHARED) {
2619 error = mapping_map_writable(file->f_mapping);
2624 vma->vm_file = get_file(file);
2625 error = call_mmap(file, vma);
2627 goto unmap_and_free_vma;
2630 * Expansion is handled above, merging is handled below.
2631 * Drivers should not alter the address of the VMA.
2633 if (WARN_ON((addr != vma->vm_start))) {
2635 goto close_and_free_vma;
2640 * If vm_flags changed after call_mmap(), we should try merge
2641 * vma again as we may succeed this time.
2643 if (unlikely(vm_flags != vma->vm_flags && prev)) {
2644 merge = vma_merge(mm, prev, vma->vm_start, vma->vm_end, vma->vm_flags,
2645 NULL, vma->vm_file, vma->vm_pgoff, NULL, NULL_VM_UFFD_CTX, NULL);
2648 * ->mmap() can change vma->vm_file and fput
2649 * the original file. So fput the vma->vm_file
2650 * here or we would add an extra fput for file
2651 * and cause general protection fault
2657 /* Update vm_flags to pick up the change. */
2658 vm_flags = vma->vm_flags;
2659 goto unmap_writable;
2663 vm_flags = vma->vm_flags;
2664 } else if (vm_flags & VM_SHARED) {
2665 error = shmem_zero_setup(vma);
2669 vma_set_anonymous(vma);
2672 /* Allow architectures to sanity-check the vm_flags */
2673 if (!arch_validate_flags(vma->vm_flags)) {
2676 goto close_and_free_vma;
2681 if (mas_preallocate(&mas, vma, GFP_KERNEL)) {
2684 goto close_and_free_vma;
2690 i_mmap_lock_write(vma->vm_file->f_mapping);
2692 vma_mas_store(vma, &mas);
2695 if (vma->vm_flags & VM_SHARED)
2696 mapping_allow_writable(vma->vm_file->f_mapping);
2698 flush_dcache_mmap_lock(vma->vm_file->f_mapping);
2699 vma_interval_tree_insert(vma, &vma->vm_file->f_mapping->i_mmap);
2700 flush_dcache_mmap_unlock(vma->vm_file->f_mapping);
2701 i_mmap_unlock_write(vma->vm_file->f_mapping);
2705 * vma_merge() calls khugepaged_enter_vma() either, the below
2706 * call covers the non-merge case.
2708 khugepaged_enter_vma(vma, vma->vm_flags);
2710 /* Once vma denies write, undo our temporary denial count */
2712 if (file && vm_flags & VM_SHARED)
2713 mapping_unmap_writable(file->f_mapping);
2714 file = vma->vm_file;
2716 perf_event_mmap(vma);
2718 vm_stat_account(mm, vm_flags, len >> PAGE_SHIFT);
2719 if (vm_flags & VM_LOCKED) {
2720 if ((vm_flags & VM_SPECIAL) || vma_is_dax(vma) ||
2721 is_vm_hugetlb_page(vma) ||
2722 vma == get_gate_vma(current->mm))
2723 vma->vm_flags &= VM_LOCKED_CLEAR_MASK;
2725 mm->locked_vm += (len >> PAGE_SHIFT);
2732 * New (or expanded) vma always get soft dirty status.
2733 * Otherwise user-space soft-dirty page tracker won't
2734 * be able to distinguish situation when vma area unmapped,
2735 * then new mapped in-place (which must be aimed as
2736 * a completely new data area).
2738 vma->vm_flags |= VM_SOFTDIRTY;
2740 vma_set_page_prot(vma);
2746 if (vma->vm_ops && vma->vm_ops->close)
2747 vma->vm_ops->close(vma);
2750 vma->vm_file = NULL;
2752 /* Undo any partial mapping done by a device driver. */
2753 unmap_region(mm, mas.tree, vma, prev, next, vma->vm_start, vma->vm_end);
2754 if (vm_flags & VM_SHARED)
2755 mapping_unmap_writable(file->f_mapping);
2760 vm_unacct_memory(charged);
2765 static int __vm_munmap(unsigned long start, size_t len, bool downgrade)
2768 struct mm_struct *mm = current->mm;
2770 MA_STATE(mas, &mm->mm_mt, start, start);
2772 if (mmap_write_lock_killable(mm))
2775 ret = do_mas_munmap(&mas, mm, start, len, &uf, downgrade);
2777 * Returning 1 indicates mmap_lock is downgraded.
2778 * But 1 is not legal return value of vm_munmap() and munmap(), reset
2779 * it to 0 before return.
2782 mmap_read_unlock(mm);
2785 mmap_write_unlock(mm);
2787 userfaultfd_unmap_complete(mm, &uf);
2791 int vm_munmap(unsigned long start, size_t len)
2793 return __vm_munmap(start, len, false);
2795 EXPORT_SYMBOL(vm_munmap);
2797 SYSCALL_DEFINE2(munmap, unsigned long, addr, size_t, len)
2799 addr = untagged_addr(addr);
2800 return __vm_munmap(addr, len, true);
2805 * Emulation of deprecated remap_file_pages() syscall.
2807 SYSCALL_DEFINE5(remap_file_pages, unsigned long, start, unsigned long, size,
2808 unsigned long, prot, unsigned long, pgoff, unsigned long, flags)
2811 struct mm_struct *mm = current->mm;
2812 struct vm_area_struct *vma;
2813 unsigned long populate = 0;
2814 unsigned long ret = -EINVAL;
2817 pr_warn_once("%s (%d) uses deprecated remap_file_pages() syscall. See Documentation/mm/remap_file_pages.rst.\n",
2818 current->comm, current->pid);
2822 start = start & PAGE_MASK;
2823 size = size & PAGE_MASK;
2825 if (start + size <= start)
2828 /* Does pgoff wrap? */
2829 if (pgoff + (size >> PAGE_SHIFT) < pgoff)
2832 if (mmap_write_lock_killable(mm))
2835 vma = vma_lookup(mm, start);
2837 if (!vma || !(vma->vm_flags & VM_SHARED))
2840 if (start + size > vma->vm_end) {
2841 VMA_ITERATOR(vmi, mm, vma->vm_end);
2842 struct vm_area_struct *next, *prev = vma;
2844 for_each_vma_range(vmi, next, start + size) {
2845 /* hole between vmas ? */
2846 if (next->vm_start != prev->vm_end)
2849 if (next->vm_file != vma->vm_file)
2852 if (next->vm_flags != vma->vm_flags)
2862 prot |= vma->vm_flags & VM_READ ? PROT_READ : 0;
2863 prot |= vma->vm_flags & VM_WRITE ? PROT_WRITE : 0;
2864 prot |= vma->vm_flags & VM_EXEC ? PROT_EXEC : 0;
2866 flags &= MAP_NONBLOCK;
2867 flags |= MAP_SHARED | MAP_FIXED | MAP_POPULATE;
2868 if (vma->vm_flags & VM_LOCKED)
2869 flags |= MAP_LOCKED;
2871 file = get_file(vma->vm_file);
2872 ret = do_mmap(vma->vm_file, start, size,
2873 prot, flags, pgoff, &populate, NULL);
2876 mmap_write_unlock(mm);
2878 mm_populate(ret, populate);
2879 if (!IS_ERR_VALUE(ret))
2885 * brk_munmap() - Unmap a parital vma.
2886 * @mas: The maple tree state.
2887 * @vma: The vma to be modified
2888 * @newbrk: the start of the address to unmap
2889 * @oldbrk: The end of the address to unmap
2890 * @uf: The userfaultfd list_head
2892 * Returns: 1 on success.
2893 * unmaps a partial VMA mapping. Does not handle alignment, downgrades lock if
2896 static int do_brk_munmap(struct ma_state *mas, struct vm_area_struct *vma,
2897 unsigned long newbrk, unsigned long oldbrk,
2898 struct list_head *uf)
2900 struct mm_struct *mm = vma->vm_mm;
2903 arch_unmap(mm, newbrk, oldbrk);
2904 ret = do_mas_align_munmap(mas, vma, mm, newbrk, oldbrk, uf, true);
2910 * do_brk_flags() - Increase the brk vma if the flags match.
2911 * @mas: The maple tree state.
2912 * @addr: The start address
2913 * @len: The length of the increase
2915 * @flags: The VMA Flags
2917 * Extend the brk VMA from addr to addr + len. If the VMA is NULL or the flags
2918 * do not match then create a new anonymous VMA. Eventually we may be able to
2919 * do some brk-specific accounting here.
2921 static int do_brk_flags(struct ma_state *mas, struct vm_area_struct *vma,
2922 unsigned long addr, unsigned long len, unsigned long flags)
2924 struct mm_struct *mm = current->mm;
2928 * Check against address space limits by the changed size
2929 * Note: This happens *after* clearing old mappings in some code paths.
2931 flags |= VM_DATA_DEFAULT_FLAGS | VM_ACCOUNT | mm->def_flags;
2932 if (!may_expand_vm(mm, flags, len >> PAGE_SHIFT))
2935 if (mm->map_count > sysctl_max_map_count)
2938 if (security_vm_enough_memory_mm(mm, len >> PAGE_SHIFT))
2942 * Expand the existing vma if possible; Note that singular lists do not
2943 * occur after forking, so the expand will only happen on new VMAs.
2946 (!vma->anon_vma || list_is_singular(&vma->anon_vma_chain)) &&
2947 ((vma->vm_flags & ~VM_SOFTDIRTY) == flags)) {
2948 mas_set_range(mas, vma->vm_start, addr + len - 1);
2949 if (mas_preallocate(mas, vma, GFP_KERNEL))
2952 vma_adjust_trans_huge(vma, vma->vm_start, addr + len, 0);
2953 if (vma->anon_vma) {
2954 anon_vma_lock_write(vma->anon_vma);
2955 anon_vma_interval_tree_pre_update_vma(vma);
2957 vma->vm_end = addr + len;
2958 vma->vm_flags |= VM_SOFTDIRTY;
2959 mas_store_prealloc(mas, vma);
2961 if (vma->anon_vma) {
2962 anon_vma_interval_tree_post_update_vma(vma);
2963 anon_vma_unlock_write(vma->anon_vma);
2965 khugepaged_enter_vma(vma, flags);
2969 /* create a vma struct for an anonymous mapping */
2970 vma = vm_area_alloc(mm);
2972 goto vma_alloc_fail;
2974 vma_set_anonymous(vma);
2975 vma->vm_start = addr;
2976 vma->vm_end = addr + len;
2977 vma->vm_pgoff = addr >> PAGE_SHIFT;
2978 vma->vm_flags = flags;
2979 vma->vm_page_prot = vm_get_page_prot(flags);
2980 mas_set_range(mas, vma->vm_start, addr + len - 1);
2981 if (mas_store_gfp(mas, vma, GFP_KERNEL))
2982 goto mas_store_fail;
2986 perf_event_mmap(vma);
2987 mm->total_vm += len >> PAGE_SHIFT;
2988 mm->data_vm += len >> PAGE_SHIFT;
2989 if (flags & VM_LOCKED)
2990 mm->locked_vm += (len >> PAGE_SHIFT);
2991 vma->vm_flags |= VM_SOFTDIRTY;
2998 vm_unacct_memory(len >> PAGE_SHIFT);
3002 int vm_brk_flags(unsigned long addr, unsigned long request, unsigned long flags)
3004 struct mm_struct *mm = current->mm;
3005 struct vm_area_struct *vma = NULL;
3010 MA_STATE(mas, &mm->mm_mt, addr, addr);
3012 len = PAGE_ALIGN(request);
3018 if (mmap_write_lock_killable(mm))
3021 /* Until we need other flags, refuse anything except VM_EXEC. */
3022 if ((flags & (~VM_EXEC)) != 0)
3025 ret = check_brk_limits(addr, len);
3029 ret = do_mas_munmap(&mas, mm, addr, len, &uf, 0);
3033 vma = mas_prev(&mas, 0);
3034 if (!vma || vma->vm_end != addr || vma_policy(vma) ||
3035 !can_vma_merge_after(vma, flags, NULL, NULL,
3036 addr >> PAGE_SHIFT, NULL_VM_UFFD_CTX, NULL))
3039 ret = do_brk_flags(&mas, vma, addr, len, flags);
3040 populate = ((mm->def_flags & VM_LOCKED) != 0);
3041 mmap_write_unlock(mm);
3042 userfaultfd_unmap_complete(mm, &uf);
3043 if (populate && !ret)
3044 mm_populate(addr, len);
3049 mmap_write_unlock(mm);
3052 EXPORT_SYMBOL(vm_brk_flags);
3054 int vm_brk(unsigned long addr, unsigned long len)
3056 return vm_brk_flags(addr, len, 0);
3058 EXPORT_SYMBOL(vm_brk);
3060 /* Release all mmaps. */
3061 void exit_mmap(struct mm_struct *mm)
3063 struct mmu_gather tlb;
3064 struct vm_area_struct *vma;
3065 unsigned long nr_accounted = 0;
3066 MA_STATE(mas, &mm->mm_mt, 0, 0);
3069 /* mm's last user has gone, and its about to be pulled down */
3070 mmu_notifier_release(mm);
3075 vma = mas_find(&mas, ULONG_MAX);
3077 /* Can happen if dup_mmap() received an OOM */
3078 mmap_read_unlock(mm);
3084 tlb_gather_mmu_fullmm(&tlb, mm);
3085 /* update_hiwater_rss(mm) here? but nobody should be looking */
3086 /* Use ULONG_MAX here to ensure all VMAs in the mm are unmapped */
3087 unmap_vmas(&tlb, &mm->mm_mt, vma, 0, ULONG_MAX);
3088 mmap_read_unlock(mm);
3091 * Set MMF_OOM_SKIP to hide this task from the oom killer/reaper
3092 * because the memory has been already freed.
3094 set_bit(MMF_OOM_SKIP, &mm->flags);
3095 mmap_write_lock(mm);
3096 free_pgtables(&tlb, &mm->mm_mt, vma, FIRST_USER_ADDRESS,
3097 USER_PGTABLES_CEILING);
3098 tlb_finish_mmu(&tlb);
3101 * Walk the list again, actually closing and freeing it, with preemption
3102 * enabled, without holding any MM locks besides the unreachable
3106 if (vma->vm_flags & VM_ACCOUNT)
3107 nr_accounted += vma_pages(vma);
3111 } while ((vma = mas_find(&mas, ULONG_MAX)) != NULL);
3113 BUG_ON(count != mm->map_count);
3115 trace_exit_mmap(mm);
3116 __mt_destroy(&mm->mm_mt);
3117 mmap_write_unlock(mm);
3118 vm_unacct_memory(nr_accounted);
3121 /* Insert vm structure into process list sorted by address
3122 * and into the inode's i_mmap tree. If vm_file is non-NULL
3123 * then i_mmap_rwsem is taken here.
3125 int insert_vm_struct(struct mm_struct *mm, struct vm_area_struct *vma)
3127 unsigned long charged = vma_pages(vma);
3130 if (find_vma_intersection(mm, vma->vm_start, vma->vm_end))
3133 if ((vma->vm_flags & VM_ACCOUNT) &&
3134 security_vm_enough_memory_mm(mm, charged))
3138 * The vm_pgoff of a purely anonymous vma should be irrelevant
3139 * until its first write fault, when page's anon_vma and index
3140 * are set. But now set the vm_pgoff it will almost certainly
3141 * end up with (unless mremap moves it elsewhere before that
3142 * first wfault), so /proc/pid/maps tells a consistent story.
3144 * By setting it to reflect the virtual start address of the
3145 * vma, merges and splits can happen in a seamless way, just
3146 * using the existing file pgoff checks and manipulations.
3147 * Similarly in do_mmap and in do_brk_flags.
3149 if (vma_is_anonymous(vma)) {
3150 BUG_ON(vma->anon_vma);
3151 vma->vm_pgoff = vma->vm_start >> PAGE_SHIFT;
3154 if (vma_link(mm, vma)) {
3155 vm_unacct_memory(charged);
3163 * Copy the vma structure to a new location in the same mm,
3164 * prior to moving page table entries, to effect an mremap move.
3166 struct vm_area_struct *copy_vma(struct vm_area_struct **vmap,
3167 unsigned long addr, unsigned long len, pgoff_t pgoff,
3168 bool *need_rmap_locks)
3170 struct vm_area_struct *vma = *vmap;
3171 unsigned long vma_start = vma->vm_start;
3172 struct mm_struct *mm = vma->vm_mm;
3173 struct vm_area_struct *new_vma, *prev;
3174 bool faulted_in_anon_vma = true;
3178 * If anonymous vma has not yet been faulted, update new pgoff
3179 * to match new location, to increase its chance of merging.
3181 if (unlikely(vma_is_anonymous(vma) && !vma->anon_vma)) {
3182 pgoff = addr >> PAGE_SHIFT;
3183 faulted_in_anon_vma = false;
3186 new_vma = find_vma_prev(mm, addr, &prev);
3187 if (new_vma && new_vma->vm_start < addr + len)
3188 return NULL; /* should never get here */
3190 new_vma = vma_merge(mm, prev, addr, addr + len, vma->vm_flags,
3191 vma->anon_vma, vma->vm_file, pgoff, vma_policy(vma),
3192 vma->vm_userfaultfd_ctx, anon_vma_name(vma));
3195 * Source vma may have been merged into new_vma
3197 if (unlikely(vma_start >= new_vma->vm_start &&
3198 vma_start < new_vma->vm_end)) {
3200 * The only way we can get a vma_merge with
3201 * self during an mremap is if the vma hasn't
3202 * been faulted in yet and we were allowed to
3203 * reset the dst vma->vm_pgoff to the
3204 * destination address of the mremap to allow
3205 * the merge to happen. mremap must change the
3206 * vm_pgoff linearity between src and dst vmas
3207 * (in turn preventing a vma_merge) to be
3208 * safe. It is only safe to keep the vm_pgoff
3209 * linear if there are no pages mapped yet.
3211 VM_BUG_ON_VMA(faulted_in_anon_vma, new_vma);
3212 *vmap = vma = new_vma;
3214 *need_rmap_locks = (new_vma->vm_pgoff <= vma->vm_pgoff);
3216 new_vma = vm_area_dup(vma);
3219 new_vma->vm_start = addr;
3220 new_vma->vm_end = addr + len;
3221 new_vma->vm_pgoff = pgoff;
3222 if (vma_dup_policy(vma, new_vma))
3224 if (anon_vma_clone(new_vma, vma))
3225 goto out_free_mempol;
3226 if (new_vma->vm_file)
3227 get_file(new_vma->vm_file);
3228 if (new_vma->vm_ops && new_vma->vm_ops->open)
3229 new_vma->vm_ops->open(new_vma);
3230 if (vma_link(mm, new_vma))
3232 *need_rmap_locks = false;
3238 if (new_vma->vm_ops && new_vma->vm_ops->close)
3239 new_vma->vm_ops->close(new_vma);
3241 if (new_vma->vm_file)
3242 fput(new_vma->vm_file);
3244 unlink_anon_vmas(new_vma);
3246 mpol_put(vma_policy(new_vma));
3248 vm_area_free(new_vma);
3255 * Return true if the calling process may expand its vm space by the passed
3258 bool may_expand_vm(struct mm_struct *mm, vm_flags_t flags, unsigned long npages)
3260 if (mm->total_vm + npages > rlimit(RLIMIT_AS) >> PAGE_SHIFT)
3263 if (is_data_mapping(flags) &&
3264 mm->data_vm + npages > rlimit(RLIMIT_DATA) >> PAGE_SHIFT) {
3265 /* Workaround for Valgrind */
3266 if (rlimit(RLIMIT_DATA) == 0 &&
3267 mm->data_vm + npages <= rlimit_max(RLIMIT_DATA) >> PAGE_SHIFT)
3270 pr_warn_once("%s (%d): VmData %lu exceed data ulimit %lu. Update limits%s.\n",
3271 current->comm, current->pid,
3272 (mm->data_vm + npages) << PAGE_SHIFT,
3273 rlimit(RLIMIT_DATA),
3274 ignore_rlimit_data ? "" : " or use boot option ignore_rlimit_data");
3276 if (!ignore_rlimit_data)
3283 void vm_stat_account(struct mm_struct *mm, vm_flags_t flags, long npages)
3285 WRITE_ONCE(mm->total_vm, READ_ONCE(mm->total_vm)+npages);
3287 if (is_exec_mapping(flags))
3288 mm->exec_vm += npages;
3289 else if (is_stack_mapping(flags))
3290 mm->stack_vm += npages;
3291 else if (is_data_mapping(flags))
3292 mm->data_vm += npages;
3295 static vm_fault_t special_mapping_fault(struct vm_fault *vmf);
3298 * Having a close hook prevents vma merging regardless of flags.
3300 static void special_mapping_close(struct vm_area_struct *vma)
3304 static const char *special_mapping_name(struct vm_area_struct *vma)
3306 return ((struct vm_special_mapping *)vma->vm_private_data)->name;
3309 static int special_mapping_mremap(struct vm_area_struct *new_vma)
3311 struct vm_special_mapping *sm = new_vma->vm_private_data;
3313 if (WARN_ON_ONCE(current->mm != new_vma->vm_mm))
3317 return sm->mremap(sm, new_vma);
3322 static int special_mapping_split(struct vm_area_struct *vma, unsigned long addr)
3325 * Forbid splitting special mappings - kernel has expectations over
3326 * the number of pages in mapping. Together with VM_DONTEXPAND
3327 * the size of vma should stay the same over the special mapping's
3333 static const struct vm_operations_struct special_mapping_vmops = {
3334 .close = special_mapping_close,
3335 .fault = special_mapping_fault,
3336 .mremap = special_mapping_mremap,
3337 .name = special_mapping_name,
3338 /* vDSO code relies that VVAR can't be accessed remotely */
3340 .may_split = special_mapping_split,
3343 static const struct vm_operations_struct legacy_special_mapping_vmops = {
3344 .close = special_mapping_close,
3345 .fault = special_mapping_fault,
3348 static vm_fault_t special_mapping_fault(struct vm_fault *vmf)
3350 struct vm_area_struct *vma = vmf->vma;
3352 struct page **pages;
3354 if (vma->vm_ops == &legacy_special_mapping_vmops) {
3355 pages = vma->vm_private_data;
3357 struct vm_special_mapping *sm = vma->vm_private_data;
3360 return sm->fault(sm, vmf->vma, vmf);
3365 for (pgoff = vmf->pgoff; pgoff && *pages; ++pages)
3369 struct page *page = *pages;
3375 return VM_FAULT_SIGBUS;
3378 static struct vm_area_struct *__install_special_mapping(
3379 struct mm_struct *mm,
3380 unsigned long addr, unsigned long len,
3381 unsigned long vm_flags, void *priv,
3382 const struct vm_operations_struct *ops)
3385 struct vm_area_struct *vma;
3388 vma = vm_area_alloc(mm);
3389 if (unlikely(vma == NULL))
3390 return ERR_PTR(-ENOMEM);
3392 vma->vm_start = addr;
3393 vma->vm_end = addr + len;
3395 vma->vm_flags = vm_flags | mm->def_flags | VM_DONTEXPAND | VM_SOFTDIRTY;
3396 vma->vm_flags &= VM_LOCKED_CLEAR_MASK;
3397 vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
3400 vma->vm_private_data = priv;
3402 ret = insert_vm_struct(mm, vma);
3406 vm_stat_account(mm, vma->vm_flags, len >> PAGE_SHIFT);
3408 perf_event_mmap(vma);
3416 return ERR_PTR(ret);
3419 bool vma_is_special_mapping(const struct vm_area_struct *vma,
3420 const struct vm_special_mapping *sm)
3422 return vma->vm_private_data == sm &&
3423 (vma->vm_ops == &special_mapping_vmops ||
3424 vma->vm_ops == &legacy_special_mapping_vmops);
3428 * Called with mm->mmap_lock held for writing.
3429 * Insert a new vma covering the given region, with the given flags.
3430 * Its pages are supplied by the given array of struct page *.
3431 * The array can be shorter than len >> PAGE_SHIFT if it's null-terminated.
3432 * The region past the last page supplied will always produce SIGBUS.
3433 * The array pointer and the pages it points to are assumed to stay alive
3434 * for as long as this mapping might exist.
3436 struct vm_area_struct *_install_special_mapping(
3437 struct mm_struct *mm,
3438 unsigned long addr, unsigned long len,
3439 unsigned long vm_flags, const struct vm_special_mapping *spec)
3441 return __install_special_mapping(mm, addr, len, vm_flags, (void *)spec,
3442 &special_mapping_vmops);
3445 int install_special_mapping(struct mm_struct *mm,
3446 unsigned long addr, unsigned long len,
3447 unsigned long vm_flags, struct page **pages)
3449 struct vm_area_struct *vma = __install_special_mapping(
3450 mm, addr, len, vm_flags, (void *)pages,
3451 &legacy_special_mapping_vmops);
3453 return PTR_ERR_OR_ZERO(vma);
3456 static DEFINE_MUTEX(mm_all_locks_mutex);
3458 static void vm_lock_anon_vma(struct mm_struct *mm, struct anon_vma *anon_vma)
3460 if (!test_bit(0, (unsigned long *) &anon_vma->root->rb_root.rb_root.rb_node)) {
3462 * The LSB of head.next can't change from under us
3463 * because we hold the mm_all_locks_mutex.
3465 down_write_nest_lock(&anon_vma->root->rwsem, &mm->mmap_lock);
3467 * We can safely modify head.next after taking the
3468 * anon_vma->root->rwsem. If some other vma in this mm shares
3469 * the same anon_vma we won't take it again.
3471 * No need of atomic instructions here, head.next
3472 * can't change from under us thanks to the
3473 * anon_vma->root->rwsem.
3475 if (__test_and_set_bit(0, (unsigned long *)
3476 &anon_vma->root->rb_root.rb_root.rb_node))
3481 static void vm_lock_mapping(struct mm_struct *mm, struct address_space *mapping)
3483 if (!test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) {
3485 * AS_MM_ALL_LOCKS can't change from under us because
3486 * we hold the mm_all_locks_mutex.
3488 * Operations on ->flags have to be atomic because
3489 * even if AS_MM_ALL_LOCKS is stable thanks to the
3490 * mm_all_locks_mutex, there may be other cpus
3491 * changing other bitflags in parallel to us.
3493 if (test_and_set_bit(AS_MM_ALL_LOCKS, &mapping->flags))
3495 down_write_nest_lock(&mapping->i_mmap_rwsem, &mm->mmap_lock);
3500 * This operation locks against the VM for all pte/vma/mm related
3501 * operations that could ever happen on a certain mm. This includes
3502 * vmtruncate, try_to_unmap, and all page faults.
3504 * The caller must take the mmap_lock in write mode before calling
3505 * mm_take_all_locks(). The caller isn't allowed to release the
3506 * mmap_lock until mm_drop_all_locks() returns.
3508 * mmap_lock in write mode is required in order to block all operations
3509 * that could modify pagetables and free pages without need of
3510 * altering the vma layout. It's also needed in write mode to avoid new
3511 * anon_vmas to be associated with existing vmas.
3513 * A single task can't take more than one mm_take_all_locks() in a row
3514 * or it would deadlock.
3516 * The LSB in anon_vma->rb_root.rb_node and the AS_MM_ALL_LOCKS bitflag in
3517 * mapping->flags avoid to take the same lock twice, if more than one
3518 * vma in this mm is backed by the same anon_vma or address_space.
3520 * We take locks in following order, accordingly to comment at beginning
3522 * - all hugetlbfs_i_mmap_rwsem_key locks (aka mapping->i_mmap_rwsem for
3524 * - all i_mmap_rwsem locks;
3525 * - all anon_vma->rwseml
3527 * We can take all locks within these types randomly because the VM code
3528 * doesn't nest them and we protected from parallel mm_take_all_locks() by
3529 * mm_all_locks_mutex.
3531 * mm_take_all_locks() and mm_drop_all_locks are expensive operations
3532 * that may have to take thousand of locks.
3534 * mm_take_all_locks() can fail if it's interrupted by signals.
3536 int mm_take_all_locks(struct mm_struct *mm)
3538 struct vm_area_struct *vma;
3539 struct anon_vma_chain *avc;
3540 MA_STATE(mas, &mm->mm_mt, 0, 0);
3542 mmap_assert_write_locked(mm);
3544 mutex_lock(&mm_all_locks_mutex);
3546 mas_for_each(&mas, vma, ULONG_MAX) {
3547 if (signal_pending(current))
3549 if (vma->vm_file && vma->vm_file->f_mapping &&
3550 is_vm_hugetlb_page(vma))
3551 vm_lock_mapping(mm, vma->vm_file->f_mapping);
3555 mas_for_each(&mas, vma, ULONG_MAX) {
3556 if (signal_pending(current))
3558 if (vma->vm_file && vma->vm_file->f_mapping &&
3559 !is_vm_hugetlb_page(vma))
3560 vm_lock_mapping(mm, vma->vm_file->f_mapping);
3564 mas_for_each(&mas, vma, ULONG_MAX) {
3565 if (signal_pending(current))
3568 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
3569 vm_lock_anon_vma(mm, avc->anon_vma);
3575 mm_drop_all_locks(mm);
3579 static void vm_unlock_anon_vma(struct anon_vma *anon_vma)
3581 if (test_bit(0, (unsigned long *) &anon_vma->root->rb_root.rb_root.rb_node)) {
3583 * The LSB of head.next can't change to 0 from under
3584 * us because we hold the mm_all_locks_mutex.
3586 * We must however clear the bitflag before unlocking
3587 * the vma so the users using the anon_vma->rb_root will
3588 * never see our bitflag.
3590 * No need of atomic instructions here, head.next
3591 * can't change from under us until we release the
3592 * anon_vma->root->rwsem.
3594 if (!__test_and_clear_bit(0, (unsigned long *)
3595 &anon_vma->root->rb_root.rb_root.rb_node))
3597 anon_vma_unlock_write(anon_vma);
3601 static void vm_unlock_mapping(struct address_space *mapping)
3603 if (test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) {
3605 * AS_MM_ALL_LOCKS can't change to 0 from under us
3606 * because we hold the mm_all_locks_mutex.
3608 i_mmap_unlock_write(mapping);
3609 if (!test_and_clear_bit(AS_MM_ALL_LOCKS,
3616 * The mmap_lock cannot be released by the caller until
3617 * mm_drop_all_locks() returns.
3619 void mm_drop_all_locks(struct mm_struct *mm)
3621 struct vm_area_struct *vma;
3622 struct anon_vma_chain *avc;
3623 MA_STATE(mas, &mm->mm_mt, 0, 0);
3625 mmap_assert_write_locked(mm);
3626 BUG_ON(!mutex_is_locked(&mm_all_locks_mutex));
3628 mas_for_each(&mas, vma, ULONG_MAX) {
3630 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
3631 vm_unlock_anon_vma(avc->anon_vma);
3632 if (vma->vm_file && vma->vm_file->f_mapping)
3633 vm_unlock_mapping(vma->vm_file->f_mapping);
3636 mutex_unlock(&mm_all_locks_mutex);
3640 * initialise the percpu counter for VM
3642 void __init mmap_init(void)
3646 ret = percpu_counter_init(&vm_committed_as, 0, GFP_KERNEL);
3651 * Initialise sysctl_user_reserve_kbytes.
3653 * This is intended to prevent a user from starting a single memory hogging
3654 * process, such that they cannot recover (kill the hog) in OVERCOMMIT_NEVER
3657 * The default value is min(3% of free memory, 128MB)
3658 * 128MB is enough to recover with sshd/login, bash, and top/kill.
3660 static int init_user_reserve(void)
3662 unsigned long free_kbytes;
3664 free_kbytes = global_zone_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
3666 sysctl_user_reserve_kbytes = min(free_kbytes / 32, 1UL << 17);
3669 subsys_initcall(init_user_reserve);
3672 * Initialise sysctl_admin_reserve_kbytes.
3674 * The purpose of sysctl_admin_reserve_kbytes is to allow the sys admin
3675 * to log in and kill a memory hogging process.
3677 * Systems with more than 256MB will reserve 8MB, enough to recover
3678 * with sshd, bash, and top in OVERCOMMIT_GUESS. Smaller systems will
3679 * only reserve 3% of free pages by default.
3681 static int init_admin_reserve(void)
3683 unsigned long free_kbytes;
3685 free_kbytes = global_zone_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
3687 sysctl_admin_reserve_kbytes = min(free_kbytes / 32, 1UL << 13);
3690 subsys_initcall(init_admin_reserve);
3693 * Reinititalise user and admin reserves if memory is added or removed.
3695 * The default user reserve max is 128MB, and the default max for the
3696 * admin reserve is 8MB. These are usually, but not always, enough to
3697 * enable recovery from a memory hogging process using login/sshd, a shell,
3698 * and tools like top. It may make sense to increase or even disable the
3699 * reserve depending on the existence of swap or variations in the recovery
3700 * tools. So, the admin may have changed them.
3702 * If memory is added and the reserves have been eliminated or increased above
3703 * the default max, then we'll trust the admin.
3705 * If memory is removed and there isn't enough free memory, then we
3706 * need to reset the reserves.
3708 * Otherwise keep the reserve set by the admin.
3710 static int reserve_mem_notifier(struct notifier_block *nb,
3711 unsigned long action, void *data)
3713 unsigned long tmp, free_kbytes;
3717 /* Default max is 128MB. Leave alone if modified by operator. */
3718 tmp = sysctl_user_reserve_kbytes;
3719 if (0 < tmp && tmp < (1UL << 17))
3720 init_user_reserve();
3722 /* Default max is 8MB. Leave alone if modified by operator. */
3723 tmp = sysctl_admin_reserve_kbytes;
3724 if (0 < tmp && tmp < (1UL << 13))
3725 init_admin_reserve();
3729 free_kbytes = global_zone_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
3731 if (sysctl_user_reserve_kbytes > free_kbytes) {
3732 init_user_reserve();
3733 pr_info("vm.user_reserve_kbytes reset to %lu\n",
3734 sysctl_user_reserve_kbytes);
3737 if (sysctl_admin_reserve_kbytes > free_kbytes) {
3738 init_admin_reserve();
3739 pr_info("vm.admin_reserve_kbytes reset to %lu\n",
3740 sysctl_admin_reserve_kbytes);
3749 static struct notifier_block reserve_mem_nb = {
3750 .notifier_call = reserve_mem_notifier,
3753 static int __meminit init_reserve_notifier(void)
3755 if (register_hotmemory_notifier(&reserve_mem_nb))
3756 pr_err("Failed registering memory add/remove notifier for admin reserve\n");
3760 subsys_initcall(init_reserve_notifier);