mm: introduce mm_populate() for populating new vmas
[platform/adaptation/renesas_rcar/renesas_kernel.git] / mm / mmap.c
1 /*
2  * mm/mmap.c
3  *
4  * Written by obz.
5  *
6  * Address space accounting code        <alan@lxorguk.ukuu.org.uk>
7  */
8
9 #include <linux/slab.h>
10 #include <linux/backing-dev.h>
11 #include <linux/mm.h>
12 #include <linux/shm.h>
13 #include <linux/mman.h>
14 #include <linux/pagemap.h>
15 #include <linux/swap.h>
16 #include <linux/syscalls.h>
17 #include <linux/capability.h>
18 #include <linux/init.h>
19 #include <linux/file.h>
20 #include <linux/fs.h>
21 #include <linux/personality.h>
22 #include <linux/security.h>
23 #include <linux/hugetlb.h>
24 #include <linux/profile.h>
25 #include <linux/export.h>
26 #include <linux/mount.h>
27 #include <linux/mempolicy.h>
28 #include <linux/rmap.h>
29 #include <linux/mmu_notifier.h>
30 #include <linux/perf_event.h>
31 #include <linux/audit.h>
32 #include <linux/khugepaged.h>
33 #include <linux/uprobes.h>
34 #include <linux/rbtree_augmented.h>
35 #include <linux/sched/sysctl.h>
36
37 #include <asm/uaccess.h>
38 #include <asm/cacheflush.h>
39 #include <asm/tlb.h>
40 #include <asm/mmu_context.h>
41
42 #include "internal.h"
43
44 #ifndef arch_mmap_check
45 #define arch_mmap_check(addr, len, flags)       (0)
46 #endif
47
48 #ifndef arch_rebalance_pgtables
49 #define arch_rebalance_pgtables(addr, len)              (addr)
50 #endif
51
52 static void unmap_region(struct mm_struct *mm,
53                 struct vm_area_struct *vma, struct vm_area_struct *prev,
54                 unsigned long start, unsigned long end);
55
56 /* description of effects of mapping type and prot in current implementation.
57  * this is due to the limited x86 page protection hardware.  The expected
58  * behavior is in parens:
59  *
60  * map_type     prot
61  *              PROT_NONE       PROT_READ       PROT_WRITE      PROT_EXEC
62  * MAP_SHARED   r: (no) no      r: (yes) yes    r: (no) yes     r: (no) yes
63  *              w: (no) no      w: (no) no      w: (yes) yes    w: (no) no
64  *              x: (no) no      x: (no) yes     x: (no) yes     x: (yes) yes
65  *              
66  * MAP_PRIVATE  r: (no) no      r: (yes) yes    r: (no) yes     r: (no) yes
67  *              w: (no) no      w: (no) no      w: (copy) copy  w: (no) no
68  *              x: (no) no      x: (no) yes     x: (no) yes     x: (yes) yes
69  *
70  */
71 pgprot_t protection_map[16] = {
72         __P000, __P001, __P010, __P011, __P100, __P101, __P110, __P111,
73         __S000, __S001, __S010, __S011, __S100, __S101, __S110, __S111
74 };
75
76 pgprot_t vm_get_page_prot(unsigned long vm_flags)
77 {
78         return __pgprot(pgprot_val(protection_map[vm_flags &
79                                 (VM_READ|VM_WRITE|VM_EXEC|VM_SHARED)]) |
80                         pgprot_val(arch_vm_get_page_prot(vm_flags)));
81 }
82 EXPORT_SYMBOL(vm_get_page_prot);
83
84 int sysctl_overcommit_memory __read_mostly = OVERCOMMIT_GUESS;  /* heuristic overcommit */
85 int sysctl_overcommit_ratio __read_mostly = 50; /* default is 50% */
86 int sysctl_max_map_count __read_mostly = DEFAULT_MAX_MAP_COUNT;
87 /*
88  * Make sure vm_committed_as in one cacheline and not cacheline shared with
89  * other variables. It can be updated by several CPUs frequently.
90  */
91 struct percpu_counter vm_committed_as ____cacheline_aligned_in_smp;
92
93 /*
94  * The global memory commitment made in the system can be a metric
95  * that can be used to drive ballooning decisions when Linux is hosted
96  * as a guest. On Hyper-V, the host implements a policy engine for dynamically
97  * balancing memory across competing virtual machines that are hosted.
98  * Several metrics drive this policy engine including the guest reported
99  * memory commitment.
100  */
101 unsigned long vm_memory_committed(void)
102 {
103         return percpu_counter_read_positive(&vm_committed_as);
104 }
105 EXPORT_SYMBOL_GPL(vm_memory_committed);
106
107 /*
108  * Check that a process has enough memory to allocate a new virtual
109  * mapping. 0 means there is enough memory for the allocation to
110  * succeed and -ENOMEM implies there is not.
111  *
112  * We currently support three overcommit policies, which are set via the
113  * vm.overcommit_memory sysctl.  See Documentation/vm/overcommit-accounting
114  *
115  * Strict overcommit modes added 2002 Feb 26 by Alan Cox.
116  * Additional code 2002 Jul 20 by Robert Love.
117  *
118  * cap_sys_admin is 1 if the process has admin privileges, 0 otherwise.
119  *
120  * Note this is a helper function intended to be used by LSMs which
121  * wish to use this logic.
122  */
123 int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin)
124 {
125         unsigned long free, allowed;
126
127         vm_acct_memory(pages);
128
129         /*
130          * Sometimes we want to use more memory than we have
131          */
132         if (sysctl_overcommit_memory == OVERCOMMIT_ALWAYS)
133                 return 0;
134
135         if (sysctl_overcommit_memory == OVERCOMMIT_GUESS) {
136                 free = global_page_state(NR_FREE_PAGES);
137                 free += global_page_state(NR_FILE_PAGES);
138
139                 /*
140                  * shmem pages shouldn't be counted as free in this
141                  * case, they can't be purged, only swapped out, and
142                  * that won't affect the overall amount of available
143                  * memory in the system.
144                  */
145                 free -= global_page_state(NR_SHMEM);
146
147                 free += nr_swap_pages;
148
149                 /*
150                  * Any slabs which are created with the
151                  * SLAB_RECLAIM_ACCOUNT flag claim to have contents
152                  * which are reclaimable, under pressure.  The dentry
153                  * cache and most inode caches should fall into this
154                  */
155                 free += global_page_state(NR_SLAB_RECLAIMABLE);
156
157                 /*
158                  * Leave reserved pages. The pages are not for anonymous pages.
159                  */
160                 if (free <= totalreserve_pages)
161                         goto error;
162                 else
163                         free -= totalreserve_pages;
164
165                 /*
166                  * Leave the last 3% for root
167                  */
168                 if (!cap_sys_admin)
169                         free -= free / 32;
170
171                 if (free > pages)
172                         return 0;
173
174                 goto error;
175         }
176
177         allowed = (totalram_pages - hugetlb_total_pages())
178                 * sysctl_overcommit_ratio / 100;
179         /*
180          * Leave the last 3% for root
181          */
182         if (!cap_sys_admin)
183                 allowed -= allowed / 32;
184         allowed += total_swap_pages;
185
186         /* Don't let a single process grow too big:
187            leave 3% of the size of this process for other processes */
188         if (mm)
189                 allowed -= mm->total_vm / 32;
190
191         if (percpu_counter_read_positive(&vm_committed_as) < allowed)
192                 return 0;
193 error:
194         vm_unacct_memory(pages);
195
196         return -ENOMEM;
197 }
198
199 /*
200  * Requires inode->i_mapping->i_mmap_mutex
201  */
202 static void __remove_shared_vm_struct(struct vm_area_struct *vma,
203                 struct file *file, struct address_space *mapping)
204 {
205         if (vma->vm_flags & VM_DENYWRITE)
206                 atomic_inc(&file->f_path.dentry->d_inode->i_writecount);
207         if (vma->vm_flags & VM_SHARED)
208                 mapping->i_mmap_writable--;
209
210         flush_dcache_mmap_lock(mapping);
211         if (unlikely(vma->vm_flags & VM_NONLINEAR))
212                 list_del_init(&vma->shared.nonlinear);
213         else
214                 vma_interval_tree_remove(vma, &mapping->i_mmap);
215         flush_dcache_mmap_unlock(mapping);
216 }
217
218 /*
219  * Unlink a file-based vm structure from its interval tree, to hide
220  * vma from rmap and vmtruncate before freeing its page tables.
221  */
222 void unlink_file_vma(struct vm_area_struct *vma)
223 {
224         struct file *file = vma->vm_file;
225
226         if (file) {
227                 struct address_space *mapping = file->f_mapping;
228                 mutex_lock(&mapping->i_mmap_mutex);
229                 __remove_shared_vm_struct(vma, file, mapping);
230                 mutex_unlock(&mapping->i_mmap_mutex);
231         }
232 }
233
234 /*
235  * Close a vm structure and free it, returning the next.
236  */
237 static struct vm_area_struct *remove_vma(struct vm_area_struct *vma)
238 {
239         struct vm_area_struct *next = vma->vm_next;
240
241         might_sleep();
242         if (vma->vm_ops && vma->vm_ops->close)
243                 vma->vm_ops->close(vma);
244         if (vma->vm_file)
245                 fput(vma->vm_file);
246         mpol_put(vma_policy(vma));
247         kmem_cache_free(vm_area_cachep, vma);
248         return next;
249 }
250
251 static unsigned long do_brk(unsigned long addr, unsigned long len);
252
253 SYSCALL_DEFINE1(brk, unsigned long, brk)
254 {
255         unsigned long rlim, retval;
256         unsigned long newbrk, oldbrk;
257         struct mm_struct *mm = current->mm;
258         unsigned long min_brk;
259
260         down_write(&mm->mmap_sem);
261
262 #ifdef CONFIG_COMPAT_BRK
263         /*
264          * CONFIG_COMPAT_BRK can still be overridden by setting
265          * randomize_va_space to 2, which will still cause mm->start_brk
266          * to be arbitrarily shifted
267          */
268         if (current->brk_randomized)
269                 min_brk = mm->start_brk;
270         else
271                 min_brk = mm->end_data;
272 #else
273         min_brk = mm->start_brk;
274 #endif
275         if (brk < min_brk)
276                 goto out;
277
278         /*
279          * Check against rlimit here. If this check is done later after the test
280          * of oldbrk with newbrk then it can escape the test and let the data
281          * segment grow beyond its set limit the in case where the limit is
282          * not page aligned -Ram Gupta
283          */
284         rlim = rlimit(RLIMIT_DATA);
285         if (rlim < RLIM_INFINITY && (brk - mm->start_brk) +
286                         (mm->end_data - mm->start_data) > rlim)
287                 goto out;
288
289         newbrk = PAGE_ALIGN(brk);
290         oldbrk = PAGE_ALIGN(mm->brk);
291         if (oldbrk == newbrk)
292                 goto set_brk;
293
294         /* Always allow shrinking brk. */
295         if (brk <= mm->brk) {
296                 if (!do_munmap(mm, newbrk, oldbrk-newbrk))
297                         goto set_brk;
298                 goto out;
299         }
300
301         /* Check against existing mmap mappings. */
302         if (find_vma_intersection(mm, oldbrk, newbrk+PAGE_SIZE))
303                 goto out;
304
305         /* Ok, looks good - let it rip. */
306         if (do_brk(oldbrk, newbrk-oldbrk) != oldbrk)
307                 goto out;
308 set_brk:
309         mm->brk = brk;
310 out:
311         retval = mm->brk;
312         up_write(&mm->mmap_sem);
313         return retval;
314 }
315
316 static long vma_compute_subtree_gap(struct vm_area_struct *vma)
317 {
318         unsigned long max, subtree_gap;
319         max = vma->vm_start;
320         if (vma->vm_prev)
321                 max -= vma->vm_prev->vm_end;
322         if (vma->vm_rb.rb_left) {
323                 subtree_gap = rb_entry(vma->vm_rb.rb_left,
324                                 struct vm_area_struct, vm_rb)->rb_subtree_gap;
325                 if (subtree_gap > max)
326                         max = subtree_gap;
327         }
328         if (vma->vm_rb.rb_right) {
329                 subtree_gap = rb_entry(vma->vm_rb.rb_right,
330                                 struct vm_area_struct, vm_rb)->rb_subtree_gap;
331                 if (subtree_gap > max)
332                         max = subtree_gap;
333         }
334         return max;
335 }
336
337 #ifdef CONFIG_DEBUG_VM_RB
338 static int browse_rb(struct rb_root *root)
339 {
340         int i = 0, j, bug = 0;
341         struct rb_node *nd, *pn = NULL;
342         unsigned long prev = 0, pend = 0;
343
344         for (nd = rb_first(root); nd; nd = rb_next(nd)) {
345                 struct vm_area_struct *vma;
346                 vma = rb_entry(nd, struct vm_area_struct, vm_rb);
347                 if (vma->vm_start < prev) {
348                         printk("vm_start %lx prev %lx\n", vma->vm_start, prev);
349                         bug = 1;
350                 }
351                 if (vma->vm_start < pend) {
352                         printk("vm_start %lx pend %lx\n", vma->vm_start, pend);
353                         bug = 1;
354                 }
355                 if (vma->vm_start > vma->vm_end) {
356                         printk("vm_end %lx < vm_start %lx\n",
357                                 vma->vm_end, vma->vm_start);
358                         bug = 1;
359                 }
360                 if (vma->rb_subtree_gap != vma_compute_subtree_gap(vma)) {
361                         printk("free gap %lx, correct %lx\n",
362                                vma->rb_subtree_gap,
363                                vma_compute_subtree_gap(vma));
364                         bug = 1;
365                 }
366                 i++;
367                 pn = nd;
368                 prev = vma->vm_start;
369                 pend = vma->vm_end;
370         }
371         j = 0;
372         for (nd = pn; nd; nd = rb_prev(nd))
373                 j++;
374         if (i != j) {
375                 printk("backwards %d, forwards %d\n", j, i);
376                 bug = 1;
377         }
378         return bug ? -1 : i;
379 }
380
381 static void validate_mm_rb(struct rb_root *root, struct vm_area_struct *ignore)
382 {
383         struct rb_node *nd;
384
385         for (nd = rb_first(root); nd; nd = rb_next(nd)) {
386                 struct vm_area_struct *vma;
387                 vma = rb_entry(nd, struct vm_area_struct, vm_rb);
388                 BUG_ON(vma != ignore &&
389                        vma->rb_subtree_gap != vma_compute_subtree_gap(vma));
390         }
391 }
392
393 void validate_mm(struct mm_struct *mm)
394 {
395         int bug = 0;
396         int i = 0;
397         unsigned long highest_address = 0;
398         struct vm_area_struct *vma = mm->mmap;
399         while (vma) {
400                 struct anon_vma_chain *avc;
401                 vma_lock_anon_vma(vma);
402                 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
403                         anon_vma_interval_tree_verify(avc);
404                 vma_unlock_anon_vma(vma);
405                 highest_address = vma->vm_end;
406                 vma = vma->vm_next;
407                 i++;
408         }
409         if (i != mm->map_count) {
410                 printk("map_count %d vm_next %d\n", mm->map_count, i);
411                 bug = 1;
412         }
413         if (highest_address != mm->highest_vm_end) {
414                 printk("mm->highest_vm_end %lx, found %lx\n",
415                        mm->highest_vm_end, highest_address);
416                 bug = 1;
417         }
418         i = browse_rb(&mm->mm_rb);
419         if (i != mm->map_count) {
420                 printk("map_count %d rb %d\n", mm->map_count, i);
421                 bug = 1;
422         }
423         BUG_ON(bug);
424 }
425 #else
426 #define validate_mm_rb(root, ignore) do { } while (0)
427 #define validate_mm(mm) do { } while (0)
428 #endif
429
430 RB_DECLARE_CALLBACKS(static, vma_gap_callbacks, struct vm_area_struct, vm_rb,
431                      unsigned long, rb_subtree_gap, vma_compute_subtree_gap)
432
433 /*
434  * Update augmented rbtree rb_subtree_gap values after vma->vm_start or
435  * vma->vm_prev->vm_end values changed, without modifying the vma's position
436  * in the rbtree.
437  */
438 static void vma_gap_update(struct vm_area_struct *vma)
439 {
440         /*
441          * As it turns out, RB_DECLARE_CALLBACKS() already created a callback
442          * function that does exacltly what we want.
443          */
444         vma_gap_callbacks_propagate(&vma->vm_rb, NULL);
445 }
446
447 static inline void vma_rb_insert(struct vm_area_struct *vma,
448                                  struct rb_root *root)
449 {
450         /* All rb_subtree_gap values must be consistent prior to insertion */
451         validate_mm_rb(root, NULL);
452
453         rb_insert_augmented(&vma->vm_rb, root, &vma_gap_callbacks);
454 }
455
456 static void vma_rb_erase(struct vm_area_struct *vma, struct rb_root *root)
457 {
458         /*
459          * All rb_subtree_gap values must be consistent prior to erase,
460          * with the possible exception of the vma being erased.
461          */
462         validate_mm_rb(root, vma);
463
464         /*
465          * Note rb_erase_augmented is a fairly large inline function,
466          * so make sure we instantiate it only once with our desired
467          * augmented rbtree callbacks.
468          */
469         rb_erase_augmented(&vma->vm_rb, root, &vma_gap_callbacks);
470 }
471
472 /*
473  * vma has some anon_vma assigned, and is already inserted on that
474  * anon_vma's interval trees.
475  *
476  * Before updating the vma's vm_start / vm_end / vm_pgoff fields, the
477  * vma must be removed from the anon_vma's interval trees using
478  * anon_vma_interval_tree_pre_update_vma().
479  *
480  * After the update, the vma will be reinserted using
481  * anon_vma_interval_tree_post_update_vma().
482  *
483  * The entire update must be protected by exclusive mmap_sem and by
484  * the root anon_vma's mutex.
485  */
486 static inline void
487 anon_vma_interval_tree_pre_update_vma(struct vm_area_struct *vma)
488 {
489         struct anon_vma_chain *avc;
490
491         list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
492                 anon_vma_interval_tree_remove(avc, &avc->anon_vma->rb_root);
493 }
494
495 static inline void
496 anon_vma_interval_tree_post_update_vma(struct vm_area_struct *vma)
497 {
498         struct anon_vma_chain *avc;
499
500         list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
501                 anon_vma_interval_tree_insert(avc, &avc->anon_vma->rb_root);
502 }
503
504 static int find_vma_links(struct mm_struct *mm, unsigned long addr,
505                 unsigned long end, struct vm_area_struct **pprev,
506                 struct rb_node ***rb_link, struct rb_node **rb_parent)
507 {
508         struct rb_node **__rb_link, *__rb_parent, *rb_prev;
509
510         __rb_link = &mm->mm_rb.rb_node;
511         rb_prev = __rb_parent = NULL;
512
513         while (*__rb_link) {
514                 struct vm_area_struct *vma_tmp;
515
516                 __rb_parent = *__rb_link;
517                 vma_tmp = rb_entry(__rb_parent, struct vm_area_struct, vm_rb);
518
519                 if (vma_tmp->vm_end > addr) {
520                         /* Fail if an existing vma overlaps the area */
521                         if (vma_tmp->vm_start < end)
522                                 return -ENOMEM;
523                         __rb_link = &__rb_parent->rb_left;
524                 } else {
525                         rb_prev = __rb_parent;
526                         __rb_link = &__rb_parent->rb_right;
527                 }
528         }
529
530         *pprev = NULL;
531         if (rb_prev)
532                 *pprev = rb_entry(rb_prev, struct vm_area_struct, vm_rb);
533         *rb_link = __rb_link;
534         *rb_parent = __rb_parent;
535         return 0;
536 }
537
538 void __vma_link_rb(struct mm_struct *mm, struct vm_area_struct *vma,
539                 struct rb_node **rb_link, struct rb_node *rb_parent)
540 {
541         /* Update tracking information for the gap following the new vma. */
542         if (vma->vm_next)
543                 vma_gap_update(vma->vm_next);
544         else
545                 mm->highest_vm_end = vma->vm_end;
546
547         /*
548          * vma->vm_prev wasn't known when we followed the rbtree to find the
549          * correct insertion point for that vma. As a result, we could not
550          * update the vma vm_rb parents rb_subtree_gap values on the way down.
551          * So, we first insert the vma with a zero rb_subtree_gap value
552          * (to be consistent with what we did on the way down), and then
553          * immediately update the gap to the correct value. Finally we
554          * rebalance the rbtree after all augmented values have been set.
555          */
556         rb_link_node(&vma->vm_rb, rb_parent, rb_link);
557         vma->rb_subtree_gap = 0;
558         vma_gap_update(vma);
559         vma_rb_insert(vma, &mm->mm_rb);
560 }
561
562 static void __vma_link_file(struct vm_area_struct *vma)
563 {
564         struct file *file;
565
566         file = vma->vm_file;
567         if (file) {
568                 struct address_space *mapping = file->f_mapping;
569
570                 if (vma->vm_flags & VM_DENYWRITE)
571                         atomic_dec(&file->f_path.dentry->d_inode->i_writecount);
572                 if (vma->vm_flags & VM_SHARED)
573                         mapping->i_mmap_writable++;
574
575                 flush_dcache_mmap_lock(mapping);
576                 if (unlikely(vma->vm_flags & VM_NONLINEAR))
577                         vma_nonlinear_insert(vma, &mapping->i_mmap_nonlinear);
578                 else
579                         vma_interval_tree_insert(vma, &mapping->i_mmap);
580                 flush_dcache_mmap_unlock(mapping);
581         }
582 }
583
584 static void
585 __vma_link(struct mm_struct *mm, struct vm_area_struct *vma,
586         struct vm_area_struct *prev, struct rb_node **rb_link,
587         struct rb_node *rb_parent)
588 {
589         __vma_link_list(mm, vma, prev, rb_parent);
590         __vma_link_rb(mm, vma, rb_link, rb_parent);
591 }
592
593 static void vma_link(struct mm_struct *mm, struct vm_area_struct *vma,
594                         struct vm_area_struct *prev, struct rb_node **rb_link,
595                         struct rb_node *rb_parent)
596 {
597         struct address_space *mapping = NULL;
598
599         if (vma->vm_file)
600                 mapping = vma->vm_file->f_mapping;
601
602         if (mapping)
603                 mutex_lock(&mapping->i_mmap_mutex);
604
605         __vma_link(mm, vma, prev, rb_link, rb_parent);
606         __vma_link_file(vma);
607
608         if (mapping)
609                 mutex_unlock(&mapping->i_mmap_mutex);
610
611         mm->map_count++;
612         validate_mm(mm);
613 }
614
615 /*
616  * Helper for vma_adjust() in the split_vma insert case: insert a vma into the
617  * mm's list and rbtree.  It has already been inserted into the interval tree.
618  */
619 static void __insert_vm_struct(struct mm_struct *mm, struct vm_area_struct *vma)
620 {
621         struct vm_area_struct *prev;
622         struct rb_node **rb_link, *rb_parent;
623
624         if (find_vma_links(mm, vma->vm_start, vma->vm_end,
625                            &prev, &rb_link, &rb_parent))
626                 BUG();
627         __vma_link(mm, vma, prev, rb_link, rb_parent);
628         mm->map_count++;
629 }
630
631 static inline void
632 __vma_unlink(struct mm_struct *mm, struct vm_area_struct *vma,
633                 struct vm_area_struct *prev)
634 {
635         struct vm_area_struct *next;
636
637         vma_rb_erase(vma, &mm->mm_rb);
638         prev->vm_next = next = vma->vm_next;
639         if (next)
640                 next->vm_prev = prev;
641         if (mm->mmap_cache == vma)
642                 mm->mmap_cache = prev;
643 }
644
645 /*
646  * We cannot adjust vm_start, vm_end, vm_pgoff fields of a vma that
647  * is already present in an i_mmap tree without adjusting the tree.
648  * The following helper function should be used when such adjustments
649  * are necessary.  The "insert" vma (if any) is to be inserted
650  * before we drop the necessary locks.
651  */
652 int vma_adjust(struct vm_area_struct *vma, unsigned long start,
653         unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert)
654 {
655         struct mm_struct *mm = vma->vm_mm;
656         struct vm_area_struct *next = vma->vm_next;
657         struct vm_area_struct *importer = NULL;
658         struct address_space *mapping = NULL;
659         struct rb_root *root = NULL;
660         struct anon_vma *anon_vma = NULL;
661         struct file *file = vma->vm_file;
662         bool start_changed = false, end_changed = false;
663         long adjust_next = 0;
664         int remove_next = 0;
665
666         if (next && !insert) {
667                 struct vm_area_struct *exporter = NULL;
668
669                 if (end >= next->vm_end) {
670                         /*
671                          * vma expands, overlapping all the next, and
672                          * perhaps the one after too (mprotect case 6).
673                          */
674 again:                  remove_next = 1 + (end > next->vm_end);
675                         end = next->vm_end;
676                         exporter = next;
677                         importer = vma;
678                 } else if (end > next->vm_start) {
679                         /*
680                          * vma expands, overlapping part of the next:
681                          * mprotect case 5 shifting the boundary up.
682                          */
683                         adjust_next = (end - next->vm_start) >> PAGE_SHIFT;
684                         exporter = next;
685                         importer = vma;
686                 } else if (end < vma->vm_end) {
687                         /*
688                          * vma shrinks, and !insert tells it's not
689                          * split_vma inserting another: so it must be
690                          * mprotect case 4 shifting the boundary down.
691                          */
692                         adjust_next = - ((vma->vm_end - end) >> PAGE_SHIFT);
693                         exporter = vma;
694                         importer = next;
695                 }
696
697                 /*
698                  * Easily overlooked: when mprotect shifts the boundary,
699                  * make sure the expanding vma has anon_vma set if the
700                  * shrinking vma had, to cover any anon pages imported.
701                  */
702                 if (exporter && exporter->anon_vma && !importer->anon_vma) {
703                         if (anon_vma_clone(importer, exporter))
704                                 return -ENOMEM;
705                         importer->anon_vma = exporter->anon_vma;
706                 }
707         }
708
709         if (file) {
710                 mapping = file->f_mapping;
711                 if (!(vma->vm_flags & VM_NONLINEAR)) {
712                         root = &mapping->i_mmap;
713                         uprobe_munmap(vma, vma->vm_start, vma->vm_end);
714
715                         if (adjust_next)
716                                 uprobe_munmap(next, next->vm_start,
717                                                         next->vm_end);
718                 }
719
720                 mutex_lock(&mapping->i_mmap_mutex);
721                 if (insert) {
722                         /*
723                          * Put into interval tree now, so instantiated pages
724                          * are visible to arm/parisc __flush_dcache_page
725                          * throughout; but we cannot insert into address
726                          * space until vma start or end is updated.
727                          */
728                         __vma_link_file(insert);
729                 }
730         }
731
732         vma_adjust_trans_huge(vma, start, end, adjust_next);
733
734         anon_vma = vma->anon_vma;
735         if (!anon_vma && adjust_next)
736                 anon_vma = next->anon_vma;
737         if (anon_vma) {
738                 VM_BUG_ON(adjust_next && next->anon_vma &&
739                           anon_vma != next->anon_vma);
740                 anon_vma_lock_write(anon_vma);
741                 anon_vma_interval_tree_pre_update_vma(vma);
742                 if (adjust_next)
743                         anon_vma_interval_tree_pre_update_vma(next);
744         }
745
746         if (root) {
747                 flush_dcache_mmap_lock(mapping);
748                 vma_interval_tree_remove(vma, root);
749                 if (adjust_next)
750                         vma_interval_tree_remove(next, root);
751         }
752
753         if (start != vma->vm_start) {
754                 vma->vm_start = start;
755                 start_changed = true;
756         }
757         if (end != vma->vm_end) {
758                 vma->vm_end = end;
759                 end_changed = true;
760         }
761         vma->vm_pgoff = pgoff;
762         if (adjust_next) {
763                 next->vm_start += adjust_next << PAGE_SHIFT;
764                 next->vm_pgoff += adjust_next;
765         }
766
767         if (root) {
768                 if (adjust_next)
769                         vma_interval_tree_insert(next, root);
770                 vma_interval_tree_insert(vma, root);
771                 flush_dcache_mmap_unlock(mapping);
772         }
773
774         if (remove_next) {
775                 /*
776                  * vma_merge has merged next into vma, and needs
777                  * us to remove next before dropping the locks.
778                  */
779                 __vma_unlink(mm, next, vma);
780                 if (file)
781                         __remove_shared_vm_struct(next, file, mapping);
782         } else if (insert) {
783                 /*
784                  * split_vma has split insert from vma, and needs
785                  * us to insert it before dropping the locks
786                  * (it may either follow vma or precede it).
787                  */
788                 __insert_vm_struct(mm, insert);
789         } else {
790                 if (start_changed)
791                         vma_gap_update(vma);
792                 if (end_changed) {
793                         if (!next)
794                                 mm->highest_vm_end = end;
795                         else if (!adjust_next)
796                                 vma_gap_update(next);
797                 }
798         }
799
800         if (anon_vma) {
801                 anon_vma_interval_tree_post_update_vma(vma);
802                 if (adjust_next)
803                         anon_vma_interval_tree_post_update_vma(next);
804                 anon_vma_unlock(anon_vma);
805         }
806         if (mapping)
807                 mutex_unlock(&mapping->i_mmap_mutex);
808
809         if (root) {
810                 uprobe_mmap(vma);
811
812                 if (adjust_next)
813                         uprobe_mmap(next);
814         }
815
816         if (remove_next) {
817                 if (file) {
818                         uprobe_munmap(next, next->vm_start, next->vm_end);
819                         fput(file);
820                 }
821                 if (next->anon_vma)
822                         anon_vma_merge(vma, next);
823                 mm->map_count--;
824                 mpol_put(vma_policy(next));
825                 kmem_cache_free(vm_area_cachep, next);
826                 /*
827                  * In mprotect's case 6 (see comments on vma_merge),
828                  * we must remove another next too. It would clutter
829                  * up the code too much to do both in one go.
830                  */
831                 next = vma->vm_next;
832                 if (remove_next == 2)
833                         goto again;
834                 else if (next)
835                         vma_gap_update(next);
836                 else
837                         mm->highest_vm_end = end;
838         }
839         if (insert && file)
840                 uprobe_mmap(insert);
841
842         validate_mm(mm);
843
844         return 0;
845 }
846
847 /*
848  * If the vma has a ->close operation then the driver probably needs to release
849  * per-vma resources, so we don't attempt to merge those.
850  */
851 static inline int is_mergeable_vma(struct vm_area_struct *vma,
852                         struct file *file, unsigned long vm_flags)
853 {
854         if (vma->vm_flags ^ vm_flags)
855                 return 0;
856         if (vma->vm_file != file)
857                 return 0;
858         if (vma->vm_ops && vma->vm_ops->close)
859                 return 0;
860         return 1;
861 }
862
863 static inline int is_mergeable_anon_vma(struct anon_vma *anon_vma1,
864                                         struct anon_vma *anon_vma2,
865                                         struct vm_area_struct *vma)
866 {
867         /*
868          * The list_is_singular() test is to avoid merging VMA cloned from
869          * parents. This can improve scalability caused by anon_vma lock.
870          */
871         if ((!anon_vma1 || !anon_vma2) && (!vma ||
872                 list_is_singular(&vma->anon_vma_chain)))
873                 return 1;
874         return anon_vma1 == anon_vma2;
875 }
876
877 /*
878  * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
879  * in front of (at a lower virtual address and file offset than) the vma.
880  *
881  * We cannot merge two vmas if they have differently assigned (non-NULL)
882  * anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
883  *
884  * We don't check here for the merged mmap wrapping around the end of pagecache
885  * indices (16TB on ia32) because do_mmap_pgoff() does not permit mmap's which
886  * wrap, nor mmaps which cover the final page at index -1UL.
887  */
888 static int
889 can_vma_merge_before(struct vm_area_struct *vma, unsigned long vm_flags,
890         struct anon_vma *anon_vma, struct file *file, pgoff_t vm_pgoff)
891 {
892         if (is_mergeable_vma(vma, file, vm_flags) &&
893             is_mergeable_anon_vma(anon_vma, vma->anon_vma, vma)) {
894                 if (vma->vm_pgoff == vm_pgoff)
895                         return 1;
896         }
897         return 0;
898 }
899
900 /*
901  * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
902  * beyond (at a higher virtual address and file offset than) the vma.
903  *
904  * We cannot merge two vmas if they have differently assigned (non-NULL)
905  * anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
906  */
907 static int
908 can_vma_merge_after(struct vm_area_struct *vma, unsigned long vm_flags,
909         struct anon_vma *anon_vma, struct file *file, pgoff_t vm_pgoff)
910 {
911         if (is_mergeable_vma(vma, file, vm_flags) &&
912             is_mergeable_anon_vma(anon_vma, vma->anon_vma, vma)) {
913                 pgoff_t vm_pglen;
914                 vm_pglen = (vma->vm_end - vma->vm_start) >> PAGE_SHIFT;
915                 if (vma->vm_pgoff + vm_pglen == vm_pgoff)
916                         return 1;
917         }
918         return 0;
919 }
920
921 /*
922  * Given a mapping request (addr,end,vm_flags,file,pgoff), figure out
923  * whether that can be merged with its predecessor or its successor.
924  * Or both (it neatly fills a hole).
925  *
926  * In most cases - when called for mmap, brk or mremap - [addr,end) is
927  * certain not to be mapped by the time vma_merge is called; but when
928  * called for mprotect, it is certain to be already mapped (either at
929  * an offset within prev, or at the start of next), and the flags of
930  * this area are about to be changed to vm_flags - and the no-change
931  * case has already been eliminated.
932  *
933  * The following mprotect cases have to be considered, where AAAA is
934  * the area passed down from mprotect_fixup, never extending beyond one
935  * vma, PPPPPP is the prev vma specified, and NNNNNN the next vma after:
936  *
937  *     AAAA             AAAA                AAAA          AAAA
938  *    PPPPPPNNNNNN    PPPPPPNNNNNN    PPPPPPNNNNNN    PPPPNNNNXXXX
939  *    cannot merge    might become    might become    might become
940  *                    PPNNNNNNNNNN    PPPPPPPPPPNN    PPPPPPPPPPPP 6 or
941  *    mmap, brk or    case 4 below    case 5 below    PPPPPPPPXXXX 7 or
942  *    mremap move:                                    PPPPNNNNNNNN 8
943  *        AAAA
944  *    PPPP    NNNN    PPPPPPPPPPPP    PPPPPPPPNNNN    PPPPNNNNNNNN
945  *    might become    case 1 below    case 2 below    case 3 below
946  *
947  * Odd one out? Case 8, because it extends NNNN but needs flags of XXXX:
948  * mprotect_fixup updates vm_flags & vm_page_prot on successful return.
949  */
950 struct vm_area_struct *vma_merge(struct mm_struct *mm,
951                         struct vm_area_struct *prev, unsigned long addr,
952                         unsigned long end, unsigned long vm_flags,
953                         struct anon_vma *anon_vma, struct file *file,
954                         pgoff_t pgoff, struct mempolicy *policy)
955 {
956         pgoff_t pglen = (end - addr) >> PAGE_SHIFT;
957         struct vm_area_struct *area, *next;
958         int err;
959
960         /*
961          * We later require that vma->vm_flags == vm_flags,
962          * so this tests vma->vm_flags & VM_SPECIAL, too.
963          */
964         if (vm_flags & VM_SPECIAL)
965                 return NULL;
966
967         if (prev)
968                 next = prev->vm_next;
969         else
970                 next = mm->mmap;
971         area = next;
972         if (next && next->vm_end == end)                /* cases 6, 7, 8 */
973                 next = next->vm_next;
974
975         /*
976          * Can it merge with the predecessor?
977          */
978         if (prev && prev->vm_end == addr &&
979                         mpol_equal(vma_policy(prev), policy) &&
980                         can_vma_merge_after(prev, vm_flags,
981                                                 anon_vma, file, pgoff)) {
982                 /*
983                  * OK, it can.  Can we now merge in the successor as well?
984                  */
985                 if (next && end == next->vm_start &&
986                                 mpol_equal(policy, vma_policy(next)) &&
987                                 can_vma_merge_before(next, vm_flags,
988                                         anon_vma, file, pgoff+pglen) &&
989                                 is_mergeable_anon_vma(prev->anon_vma,
990                                                       next->anon_vma, NULL)) {
991                                                         /* cases 1, 6 */
992                         err = vma_adjust(prev, prev->vm_start,
993                                 next->vm_end, prev->vm_pgoff, NULL);
994                 } else                                  /* cases 2, 5, 7 */
995                         err = vma_adjust(prev, prev->vm_start,
996                                 end, prev->vm_pgoff, NULL);
997                 if (err)
998                         return NULL;
999                 khugepaged_enter_vma_merge(prev);
1000                 return prev;
1001         }
1002
1003         /*
1004          * Can this new request be merged in front of next?
1005          */
1006         if (next && end == next->vm_start &&
1007                         mpol_equal(policy, vma_policy(next)) &&
1008                         can_vma_merge_before(next, vm_flags,
1009                                         anon_vma, file, pgoff+pglen)) {
1010                 if (prev && addr < prev->vm_end)        /* case 4 */
1011                         err = vma_adjust(prev, prev->vm_start,
1012                                 addr, prev->vm_pgoff, NULL);
1013                 else                                    /* cases 3, 8 */
1014                         err = vma_adjust(area, addr, next->vm_end,
1015                                 next->vm_pgoff - pglen, NULL);
1016                 if (err)
1017                         return NULL;
1018                 khugepaged_enter_vma_merge(area);
1019                 return area;
1020         }
1021
1022         return NULL;
1023 }
1024
1025 /*
1026  * Rough compatbility check to quickly see if it's even worth looking
1027  * at sharing an anon_vma.
1028  *
1029  * They need to have the same vm_file, and the flags can only differ
1030  * in things that mprotect may change.
1031  *
1032  * NOTE! The fact that we share an anon_vma doesn't _have_ to mean that
1033  * we can merge the two vma's. For example, we refuse to merge a vma if
1034  * there is a vm_ops->close() function, because that indicates that the
1035  * driver is doing some kind of reference counting. But that doesn't
1036  * really matter for the anon_vma sharing case.
1037  */
1038 static int anon_vma_compatible(struct vm_area_struct *a, struct vm_area_struct *b)
1039 {
1040         return a->vm_end == b->vm_start &&
1041                 mpol_equal(vma_policy(a), vma_policy(b)) &&
1042                 a->vm_file == b->vm_file &&
1043                 !((a->vm_flags ^ b->vm_flags) & ~(VM_READ|VM_WRITE|VM_EXEC)) &&
1044                 b->vm_pgoff == a->vm_pgoff + ((b->vm_start - a->vm_start) >> PAGE_SHIFT);
1045 }
1046
1047 /*
1048  * Do some basic sanity checking to see if we can re-use the anon_vma
1049  * from 'old'. The 'a'/'b' vma's are in VM order - one of them will be
1050  * the same as 'old', the other will be the new one that is trying
1051  * to share the anon_vma.
1052  *
1053  * NOTE! This runs with mm_sem held for reading, so it is possible that
1054  * the anon_vma of 'old' is concurrently in the process of being set up
1055  * by another page fault trying to merge _that_. But that's ok: if it
1056  * is being set up, that automatically means that it will be a singleton
1057  * acceptable for merging, so we can do all of this optimistically. But
1058  * we do that ACCESS_ONCE() to make sure that we never re-load the pointer.
1059  *
1060  * IOW: that the "list_is_singular()" test on the anon_vma_chain only
1061  * matters for the 'stable anon_vma' case (ie the thing we want to avoid
1062  * is to return an anon_vma that is "complex" due to having gone through
1063  * a fork).
1064  *
1065  * We also make sure that the two vma's are compatible (adjacent,
1066  * and with the same memory policies). That's all stable, even with just
1067  * a read lock on the mm_sem.
1068  */
1069 static struct anon_vma *reusable_anon_vma(struct vm_area_struct *old, struct vm_area_struct *a, struct vm_area_struct *b)
1070 {
1071         if (anon_vma_compatible(a, b)) {
1072                 struct anon_vma *anon_vma = ACCESS_ONCE(old->anon_vma);
1073
1074                 if (anon_vma && list_is_singular(&old->anon_vma_chain))
1075                         return anon_vma;
1076         }
1077         return NULL;
1078 }
1079
1080 /*
1081  * find_mergeable_anon_vma is used by anon_vma_prepare, to check
1082  * neighbouring vmas for a suitable anon_vma, before it goes off
1083  * to allocate a new anon_vma.  It checks because a repetitive
1084  * sequence of mprotects and faults may otherwise lead to distinct
1085  * anon_vmas being allocated, preventing vma merge in subsequent
1086  * mprotect.
1087  */
1088 struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *vma)
1089 {
1090         struct anon_vma *anon_vma;
1091         struct vm_area_struct *near;
1092
1093         near = vma->vm_next;
1094         if (!near)
1095                 goto try_prev;
1096
1097         anon_vma = reusable_anon_vma(near, vma, near);
1098         if (anon_vma)
1099                 return anon_vma;
1100 try_prev:
1101         near = vma->vm_prev;
1102         if (!near)
1103                 goto none;
1104
1105         anon_vma = reusable_anon_vma(near, near, vma);
1106         if (anon_vma)
1107                 return anon_vma;
1108 none:
1109         /*
1110          * There's no absolute need to look only at touching neighbours:
1111          * we could search further afield for "compatible" anon_vmas.
1112          * But it would probably just be a waste of time searching,
1113          * or lead to too many vmas hanging off the same anon_vma.
1114          * We're trying to allow mprotect remerging later on,
1115          * not trying to minimize memory used for anon_vmas.
1116          */
1117         return NULL;
1118 }
1119
1120 #ifdef CONFIG_PROC_FS
1121 void vm_stat_account(struct mm_struct *mm, unsigned long flags,
1122                                                 struct file *file, long pages)
1123 {
1124         const unsigned long stack_flags
1125                 = VM_STACK_FLAGS & (VM_GROWSUP|VM_GROWSDOWN);
1126
1127         mm->total_vm += pages;
1128
1129         if (file) {
1130                 mm->shared_vm += pages;
1131                 if ((flags & (VM_EXEC|VM_WRITE)) == VM_EXEC)
1132                         mm->exec_vm += pages;
1133         } else if (flags & stack_flags)
1134                 mm->stack_vm += pages;
1135 }
1136 #endif /* CONFIG_PROC_FS */
1137
1138 /*
1139  * If a hint addr is less than mmap_min_addr change hint to be as
1140  * low as possible but still greater than mmap_min_addr
1141  */
1142 static inline unsigned long round_hint_to_min(unsigned long hint)
1143 {
1144         hint &= PAGE_MASK;
1145         if (((void *)hint != NULL) &&
1146             (hint < mmap_min_addr))
1147                 return PAGE_ALIGN(mmap_min_addr);
1148         return hint;
1149 }
1150
1151 /*
1152  * The caller must hold down_write(&current->mm->mmap_sem).
1153  */
1154
1155 unsigned long do_mmap_pgoff(struct file *file, unsigned long addr,
1156                         unsigned long len, unsigned long prot,
1157                         unsigned long flags, unsigned long pgoff,
1158                         bool *populate)
1159 {
1160         struct mm_struct * mm = current->mm;
1161         struct inode *inode;
1162         vm_flags_t vm_flags;
1163
1164         *populate = false;
1165
1166         /*
1167          * Does the application expect PROT_READ to imply PROT_EXEC?
1168          *
1169          * (the exception is when the underlying filesystem is noexec
1170          *  mounted, in which case we dont add PROT_EXEC.)
1171          */
1172         if ((prot & PROT_READ) && (current->personality & READ_IMPLIES_EXEC))
1173                 if (!(file && (file->f_path.mnt->mnt_flags & MNT_NOEXEC)))
1174                         prot |= PROT_EXEC;
1175
1176         if (!len)
1177                 return -EINVAL;
1178
1179         if (!(flags & MAP_FIXED))
1180                 addr = round_hint_to_min(addr);
1181
1182         /* Careful about overflows.. */
1183         len = PAGE_ALIGN(len);
1184         if (!len)
1185                 return -ENOMEM;
1186
1187         /* offset overflow? */
1188         if ((pgoff + (len >> PAGE_SHIFT)) < pgoff)
1189                return -EOVERFLOW;
1190
1191         /* Too many mappings? */
1192         if (mm->map_count > sysctl_max_map_count)
1193                 return -ENOMEM;
1194
1195         /* Obtain the address to map to. we verify (or select) it and ensure
1196          * that it represents a valid section of the address space.
1197          */
1198         addr = get_unmapped_area(file, addr, len, pgoff, flags);
1199         if (addr & ~PAGE_MASK)
1200                 return addr;
1201
1202         /* Do simple checking here so the lower-level routines won't have
1203          * to. we assume access permissions have been handled by the open
1204          * of the memory object, so we don't do any here.
1205          */
1206         vm_flags = calc_vm_prot_bits(prot) | calc_vm_flag_bits(flags) |
1207                         mm->def_flags | VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC;
1208
1209         if (flags & MAP_LOCKED)
1210                 if (!can_do_mlock())
1211                         return -EPERM;
1212
1213         /* mlock MCL_FUTURE? */
1214         if (vm_flags & VM_LOCKED) {
1215                 unsigned long locked, lock_limit;
1216                 locked = len >> PAGE_SHIFT;
1217                 locked += mm->locked_vm;
1218                 lock_limit = rlimit(RLIMIT_MEMLOCK);
1219                 lock_limit >>= PAGE_SHIFT;
1220                 if (locked > lock_limit && !capable(CAP_IPC_LOCK))
1221                         return -EAGAIN;
1222         }
1223
1224         inode = file ? file->f_path.dentry->d_inode : NULL;
1225
1226         if (file) {
1227                 switch (flags & MAP_TYPE) {
1228                 case MAP_SHARED:
1229                         if ((prot&PROT_WRITE) && !(file->f_mode&FMODE_WRITE))
1230                                 return -EACCES;
1231
1232                         /*
1233                          * Make sure we don't allow writing to an append-only
1234                          * file..
1235                          */
1236                         if (IS_APPEND(inode) && (file->f_mode & FMODE_WRITE))
1237                                 return -EACCES;
1238
1239                         /*
1240                          * Make sure there are no mandatory locks on the file.
1241                          */
1242                         if (locks_verify_locked(inode))
1243                                 return -EAGAIN;
1244
1245                         vm_flags |= VM_SHARED | VM_MAYSHARE;
1246                         if (!(file->f_mode & FMODE_WRITE))
1247                                 vm_flags &= ~(VM_MAYWRITE | VM_SHARED);
1248
1249                         /* fall through */
1250                 case MAP_PRIVATE:
1251                         if (!(file->f_mode & FMODE_READ))
1252                                 return -EACCES;
1253                         if (file->f_path.mnt->mnt_flags & MNT_NOEXEC) {
1254                                 if (vm_flags & VM_EXEC)
1255                                         return -EPERM;
1256                                 vm_flags &= ~VM_MAYEXEC;
1257                         }
1258
1259                         if (!file->f_op || !file->f_op->mmap)
1260                                 return -ENODEV;
1261                         break;
1262
1263                 default:
1264                         return -EINVAL;
1265                 }
1266         } else {
1267                 switch (flags & MAP_TYPE) {
1268                 case MAP_SHARED:
1269                         /*
1270                          * Ignore pgoff.
1271                          */
1272                         pgoff = 0;
1273                         vm_flags |= VM_SHARED | VM_MAYSHARE;
1274                         break;
1275                 case MAP_PRIVATE:
1276                         /*
1277                          * Set pgoff according to addr for anon_vma.
1278                          */
1279                         pgoff = addr >> PAGE_SHIFT;
1280                         break;
1281                 default:
1282                         return -EINVAL;
1283                 }
1284         }
1285
1286         addr = mmap_region(file, addr, len, flags, vm_flags, pgoff);
1287         if (!IS_ERR_VALUE(addr) &&
1288             ((vm_flags & VM_LOCKED) ||
1289              (flags & (MAP_POPULATE | MAP_NONBLOCK)) == MAP_POPULATE))
1290                 *populate = true;
1291         return addr;
1292 }
1293
1294 SYSCALL_DEFINE6(mmap_pgoff, unsigned long, addr, unsigned long, len,
1295                 unsigned long, prot, unsigned long, flags,
1296                 unsigned long, fd, unsigned long, pgoff)
1297 {
1298         struct file *file = NULL;
1299         unsigned long retval = -EBADF;
1300
1301         if (!(flags & MAP_ANONYMOUS)) {
1302                 audit_mmap_fd(fd, flags);
1303                 if (unlikely(flags & MAP_HUGETLB))
1304                         return -EINVAL;
1305                 file = fget(fd);
1306                 if (!file)
1307                         goto out;
1308         } else if (flags & MAP_HUGETLB) {
1309                 struct user_struct *user = NULL;
1310                 /*
1311                  * VM_NORESERVE is used because the reservations will be
1312                  * taken when vm_ops->mmap() is called
1313                  * A dummy user value is used because we are not locking
1314                  * memory so no accounting is necessary
1315                  */
1316                 file = hugetlb_file_setup(HUGETLB_ANON_FILE, addr, len,
1317                                 VM_NORESERVE,
1318                                 &user, HUGETLB_ANONHUGE_INODE,
1319                                 (flags >> MAP_HUGE_SHIFT) & MAP_HUGE_MASK);
1320                 if (IS_ERR(file))
1321                         return PTR_ERR(file);
1322         }
1323
1324         flags &= ~(MAP_EXECUTABLE | MAP_DENYWRITE);
1325
1326         retval = vm_mmap_pgoff(file, addr, len, prot, flags, pgoff);
1327         if (file)
1328                 fput(file);
1329 out:
1330         return retval;
1331 }
1332
1333 #ifdef __ARCH_WANT_SYS_OLD_MMAP
1334 struct mmap_arg_struct {
1335         unsigned long addr;
1336         unsigned long len;
1337         unsigned long prot;
1338         unsigned long flags;
1339         unsigned long fd;
1340         unsigned long offset;
1341 };
1342
1343 SYSCALL_DEFINE1(old_mmap, struct mmap_arg_struct __user *, arg)
1344 {
1345         struct mmap_arg_struct a;
1346
1347         if (copy_from_user(&a, arg, sizeof(a)))
1348                 return -EFAULT;
1349         if (a.offset & ~PAGE_MASK)
1350                 return -EINVAL;
1351
1352         return sys_mmap_pgoff(a.addr, a.len, a.prot, a.flags, a.fd,
1353                               a.offset >> PAGE_SHIFT);
1354 }
1355 #endif /* __ARCH_WANT_SYS_OLD_MMAP */
1356
1357 /*
1358  * Some shared mappigns will want the pages marked read-only
1359  * to track write events. If so, we'll downgrade vm_page_prot
1360  * to the private version (using protection_map[] without the
1361  * VM_SHARED bit).
1362  */
1363 int vma_wants_writenotify(struct vm_area_struct *vma)
1364 {
1365         vm_flags_t vm_flags = vma->vm_flags;
1366
1367         /* If it was private or non-writable, the write bit is already clear */
1368         if ((vm_flags & (VM_WRITE|VM_SHARED)) != ((VM_WRITE|VM_SHARED)))
1369                 return 0;
1370
1371         /* The backer wishes to know when pages are first written to? */
1372         if (vma->vm_ops && vma->vm_ops->page_mkwrite)
1373                 return 1;
1374
1375         /* The open routine did something to the protections already? */
1376         if (pgprot_val(vma->vm_page_prot) !=
1377             pgprot_val(vm_get_page_prot(vm_flags)))
1378                 return 0;
1379
1380         /* Specialty mapping? */
1381         if (vm_flags & VM_PFNMAP)
1382                 return 0;
1383
1384         /* Can the mapping track the dirty pages? */
1385         return vma->vm_file && vma->vm_file->f_mapping &&
1386                 mapping_cap_account_dirty(vma->vm_file->f_mapping);
1387 }
1388
1389 /*
1390  * We account for memory if it's a private writeable mapping,
1391  * not hugepages and VM_NORESERVE wasn't set.
1392  */
1393 static inline int accountable_mapping(struct file *file, vm_flags_t vm_flags)
1394 {
1395         /*
1396          * hugetlb has its own accounting separate from the core VM
1397          * VM_HUGETLB may not be set yet so we cannot check for that flag.
1398          */
1399         if (file && is_file_hugepages(file))
1400                 return 0;
1401
1402         return (vm_flags & (VM_NORESERVE | VM_SHARED | VM_WRITE)) == VM_WRITE;
1403 }
1404
1405 unsigned long mmap_region(struct file *file, unsigned long addr,
1406                           unsigned long len, unsigned long flags,
1407                           vm_flags_t vm_flags, unsigned long pgoff)
1408 {
1409         struct mm_struct *mm = current->mm;
1410         struct vm_area_struct *vma, *prev;
1411         int correct_wcount = 0;
1412         int error;
1413         struct rb_node **rb_link, *rb_parent;
1414         unsigned long charged = 0;
1415         struct inode *inode =  file ? file->f_path.dentry->d_inode : NULL;
1416
1417         /* Clear old maps */
1418         error = -ENOMEM;
1419 munmap_back:
1420         if (find_vma_links(mm, addr, addr + len, &prev, &rb_link, &rb_parent)) {
1421                 if (do_munmap(mm, addr, len))
1422                         return -ENOMEM;
1423                 goto munmap_back;
1424         }
1425
1426         /* Check against address space limit. */
1427         if (!may_expand_vm(mm, len >> PAGE_SHIFT))
1428                 return -ENOMEM;
1429
1430         /*
1431          * Set 'VM_NORESERVE' if we should not account for the
1432          * memory use of this mapping.
1433          */
1434         if ((flags & MAP_NORESERVE)) {
1435                 /* We honor MAP_NORESERVE if allowed to overcommit */
1436                 if (sysctl_overcommit_memory != OVERCOMMIT_NEVER)
1437                         vm_flags |= VM_NORESERVE;
1438
1439                 /* hugetlb applies strict overcommit unless MAP_NORESERVE */
1440                 if (file && is_file_hugepages(file))
1441                         vm_flags |= VM_NORESERVE;
1442         }
1443
1444         /*
1445          * Private writable mapping: check memory availability
1446          */
1447         if (accountable_mapping(file, vm_flags)) {
1448                 charged = len >> PAGE_SHIFT;
1449                 if (security_vm_enough_memory_mm(mm, charged))
1450                         return -ENOMEM;
1451                 vm_flags |= VM_ACCOUNT;
1452         }
1453
1454         /*
1455          * Can we just expand an old mapping?
1456          */
1457         vma = vma_merge(mm, prev, addr, addr + len, vm_flags, NULL, file, pgoff, NULL);
1458         if (vma)
1459                 goto out;
1460
1461         /*
1462          * Determine the object being mapped and call the appropriate
1463          * specific mapper. the address has already been validated, but
1464          * not unmapped, but the maps are removed from the list.
1465          */
1466         vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
1467         if (!vma) {
1468                 error = -ENOMEM;
1469                 goto unacct_error;
1470         }
1471
1472         vma->vm_mm = mm;
1473         vma->vm_start = addr;
1474         vma->vm_end = addr + len;
1475         vma->vm_flags = vm_flags;
1476         vma->vm_page_prot = vm_get_page_prot(vm_flags);
1477         vma->vm_pgoff = pgoff;
1478         INIT_LIST_HEAD(&vma->anon_vma_chain);
1479
1480         error = -EINVAL;        /* when rejecting VM_GROWSDOWN|VM_GROWSUP */
1481
1482         if (file) {
1483                 if (vm_flags & (VM_GROWSDOWN|VM_GROWSUP))
1484                         goto free_vma;
1485                 if (vm_flags & VM_DENYWRITE) {
1486                         error = deny_write_access(file);
1487                         if (error)
1488                                 goto free_vma;
1489                         correct_wcount = 1;
1490                 }
1491                 vma->vm_file = get_file(file);
1492                 error = file->f_op->mmap(file, vma);
1493                 if (error)
1494                         goto unmap_and_free_vma;
1495
1496                 /* Can addr have changed??
1497                  *
1498                  * Answer: Yes, several device drivers can do it in their
1499                  *         f_op->mmap method. -DaveM
1500                  * Bug: If addr is changed, prev, rb_link, rb_parent should
1501                  *      be updated for vma_link()
1502                  */
1503                 WARN_ON_ONCE(addr != vma->vm_start);
1504
1505                 addr = vma->vm_start;
1506                 pgoff = vma->vm_pgoff;
1507                 vm_flags = vma->vm_flags;
1508         } else if (vm_flags & VM_SHARED) {
1509                 if (unlikely(vm_flags & (VM_GROWSDOWN|VM_GROWSUP)))
1510                         goto free_vma;
1511                 error = shmem_zero_setup(vma);
1512                 if (error)
1513                         goto free_vma;
1514         }
1515
1516         if (vma_wants_writenotify(vma)) {
1517                 pgprot_t pprot = vma->vm_page_prot;
1518
1519                 /* Can vma->vm_page_prot have changed??
1520                  *
1521                  * Answer: Yes, drivers may have changed it in their
1522                  *         f_op->mmap method.
1523                  *
1524                  * Ensures that vmas marked as uncached stay that way.
1525                  */
1526                 vma->vm_page_prot = vm_get_page_prot(vm_flags & ~VM_SHARED);
1527                 if (pgprot_val(pprot) == pgprot_val(pgprot_noncached(pprot)))
1528                         vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot);
1529         }
1530
1531         vma_link(mm, vma, prev, rb_link, rb_parent);
1532         file = vma->vm_file;
1533
1534         /* Once vma denies write, undo our temporary denial count */
1535         if (correct_wcount)
1536                 atomic_inc(&inode->i_writecount);
1537 out:
1538         perf_event_mmap(vma);
1539
1540         vm_stat_account(mm, vm_flags, file, len >> PAGE_SHIFT);
1541         if (vm_flags & VM_LOCKED) {
1542                 if (!((vm_flags & VM_SPECIAL) || is_vm_hugetlb_page(vma) ||
1543                                         vma == get_gate_vma(current->mm)))
1544                         mm->locked_vm += (len >> PAGE_SHIFT);
1545                 else
1546                         vma->vm_flags &= ~VM_LOCKED;
1547         }
1548
1549         if (file)
1550                 uprobe_mmap(vma);
1551
1552         return addr;
1553
1554 unmap_and_free_vma:
1555         if (correct_wcount)
1556                 atomic_inc(&inode->i_writecount);
1557         vma->vm_file = NULL;
1558         fput(file);
1559
1560         /* Undo any partial mapping done by a device driver. */
1561         unmap_region(mm, vma, prev, vma->vm_start, vma->vm_end);
1562         charged = 0;
1563 free_vma:
1564         kmem_cache_free(vm_area_cachep, vma);
1565 unacct_error:
1566         if (charged)
1567                 vm_unacct_memory(charged);
1568         return error;
1569 }
1570
1571 unsigned long unmapped_area(struct vm_unmapped_area_info *info)
1572 {
1573         /*
1574          * We implement the search by looking for an rbtree node that
1575          * immediately follows a suitable gap. That is,
1576          * - gap_start = vma->vm_prev->vm_end <= info->high_limit - length;
1577          * - gap_end   = vma->vm_start        >= info->low_limit  + length;
1578          * - gap_end - gap_start >= length
1579          */
1580
1581         struct mm_struct *mm = current->mm;
1582         struct vm_area_struct *vma;
1583         unsigned long length, low_limit, high_limit, gap_start, gap_end;
1584
1585         /* Adjust search length to account for worst case alignment overhead */
1586         length = info->length + info->align_mask;
1587         if (length < info->length)
1588                 return -ENOMEM;
1589
1590         /* Adjust search limits by the desired length */
1591         if (info->high_limit < length)
1592                 return -ENOMEM;
1593         high_limit = info->high_limit - length;
1594
1595         if (info->low_limit > high_limit)
1596                 return -ENOMEM;
1597         low_limit = info->low_limit + length;
1598
1599         /* Check if rbtree root looks promising */
1600         if (RB_EMPTY_ROOT(&mm->mm_rb))
1601                 goto check_highest;
1602         vma = rb_entry(mm->mm_rb.rb_node, struct vm_area_struct, vm_rb);
1603         if (vma->rb_subtree_gap < length)
1604                 goto check_highest;
1605
1606         while (true) {
1607                 /* Visit left subtree if it looks promising */
1608                 gap_end = vma->vm_start;
1609                 if (gap_end >= low_limit && vma->vm_rb.rb_left) {
1610                         struct vm_area_struct *left =
1611                                 rb_entry(vma->vm_rb.rb_left,
1612                                          struct vm_area_struct, vm_rb);
1613                         if (left->rb_subtree_gap >= length) {
1614                                 vma = left;
1615                                 continue;
1616                         }
1617                 }
1618
1619                 gap_start = vma->vm_prev ? vma->vm_prev->vm_end : 0;
1620 check_current:
1621                 /* Check if current node has a suitable gap */
1622                 if (gap_start > high_limit)
1623                         return -ENOMEM;
1624                 if (gap_end >= low_limit && gap_end - gap_start >= length)
1625                         goto found;
1626
1627                 /* Visit right subtree if it looks promising */
1628                 if (vma->vm_rb.rb_right) {
1629                         struct vm_area_struct *right =
1630                                 rb_entry(vma->vm_rb.rb_right,
1631                                          struct vm_area_struct, vm_rb);
1632                         if (right->rb_subtree_gap >= length) {
1633                                 vma = right;
1634                                 continue;
1635                         }
1636                 }
1637
1638                 /* Go back up the rbtree to find next candidate node */
1639                 while (true) {
1640                         struct rb_node *prev = &vma->vm_rb;
1641                         if (!rb_parent(prev))
1642                                 goto check_highest;
1643                         vma = rb_entry(rb_parent(prev),
1644                                        struct vm_area_struct, vm_rb);
1645                         if (prev == vma->vm_rb.rb_left) {
1646                                 gap_start = vma->vm_prev->vm_end;
1647                                 gap_end = vma->vm_start;
1648                                 goto check_current;
1649                         }
1650                 }
1651         }
1652
1653 check_highest:
1654         /* Check highest gap, which does not precede any rbtree node */
1655         gap_start = mm->highest_vm_end;
1656         gap_end = ULONG_MAX;  /* Only for VM_BUG_ON below */
1657         if (gap_start > high_limit)
1658                 return -ENOMEM;
1659
1660 found:
1661         /* We found a suitable gap. Clip it with the original low_limit. */
1662         if (gap_start < info->low_limit)
1663                 gap_start = info->low_limit;
1664
1665         /* Adjust gap address to the desired alignment */
1666         gap_start += (info->align_offset - gap_start) & info->align_mask;
1667
1668         VM_BUG_ON(gap_start + info->length > info->high_limit);
1669         VM_BUG_ON(gap_start + info->length > gap_end);
1670         return gap_start;
1671 }
1672
1673 unsigned long unmapped_area_topdown(struct vm_unmapped_area_info *info)
1674 {
1675         struct mm_struct *mm = current->mm;
1676         struct vm_area_struct *vma;
1677         unsigned long length, low_limit, high_limit, gap_start, gap_end;
1678
1679         /* Adjust search length to account for worst case alignment overhead */
1680         length = info->length + info->align_mask;
1681         if (length < info->length)
1682                 return -ENOMEM;
1683
1684         /*
1685          * Adjust search limits by the desired length.
1686          * See implementation comment at top of unmapped_area().
1687          */
1688         gap_end = info->high_limit;
1689         if (gap_end < length)
1690                 return -ENOMEM;
1691         high_limit = gap_end - length;
1692
1693         if (info->low_limit > high_limit)
1694                 return -ENOMEM;
1695         low_limit = info->low_limit + length;
1696
1697         /* Check highest gap, which does not precede any rbtree node */
1698         gap_start = mm->highest_vm_end;
1699         if (gap_start <= high_limit)
1700                 goto found_highest;
1701
1702         /* Check if rbtree root looks promising */
1703         if (RB_EMPTY_ROOT(&mm->mm_rb))
1704                 return -ENOMEM;
1705         vma = rb_entry(mm->mm_rb.rb_node, struct vm_area_struct, vm_rb);
1706         if (vma->rb_subtree_gap < length)
1707                 return -ENOMEM;
1708
1709         while (true) {
1710                 /* Visit right subtree if it looks promising */
1711                 gap_start = vma->vm_prev ? vma->vm_prev->vm_end : 0;
1712                 if (gap_start <= high_limit && vma->vm_rb.rb_right) {
1713                         struct vm_area_struct *right =
1714                                 rb_entry(vma->vm_rb.rb_right,
1715                                          struct vm_area_struct, vm_rb);
1716                         if (right->rb_subtree_gap >= length) {
1717                                 vma = right;
1718                                 continue;
1719                         }
1720                 }
1721
1722 check_current:
1723                 /* Check if current node has a suitable gap */
1724                 gap_end = vma->vm_start;
1725                 if (gap_end < low_limit)
1726                         return -ENOMEM;
1727                 if (gap_start <= high_limit && gap_end - gap_start >= length)
1728                         goto found;
1729
1730                 /* Visit left subtree if it looks promising */
1731                 if (vma->vm_rb.rb_left) {
1732                         struct vm_area_struct *left =
1733                                 rb_entry(vma->vm_rb.rb_left,
1734                                          struct vm_area_struct, vm_rb);
1735                         if (left->rb_subtree_gap >= length) {
1736                                 vma = left;
1737                                 continue;
1738                         }
1739                 }
1740
1741                 /* Go back up the rbtree to find next candidate node */
1742                 while (true) {
1743                         struct rb_node *prev = &vma->vm_rb;
1744                         if (!rb_parent(prev))
1745                                 return -ENOMEM;
1746                         vma = rb_entry(rb_parent(prev),
1747                                        struct vm_area_struct, vm_rb);
1748                         if (prev == vma->vm_rb.rb_right) {
1749                                 gap_start = vma->vm_prev ?
1750                                         vma->vm_prev->vm_end : 0;
1751                                 goto check_current;
1752                         }
1753                 }
1754         }
1755
1756 found:
1757         /* We found a suitable gap. Clip it with the original high_limit. */
1758         if (gap_end > info->high_limit)
1759                 gap_end = info->high_limit;
1760
1761 found_highest:
1762         /* Compute highest gap address at the desired alignment */
1763         gap_end -= info->length;
1764         gap_end -= (gap_end - info->align_offset) & info->align_mask;
1765
1766         VM_BUG_ON(gap_end < info->low_limit);
1767         VM_BUG_ON(gap_end < gap_start);
1768         return gap_end;
1769 }
1770
1771 /* Get an address range which is currently unmapped.
1772  * For shmat() with addr=0.
1773  *
1774  * Ugly calling convention alert:
1775  * Return value with the low bits set means error value,
1776  * ie
1777  *      if (ret & ~PAGE_MASK)
1778  *              error = ret;
1779  *
1780  * This function "knows" that -ENOMEM has the bits set.
1781  */
1782 #ifndef HAVE_ARCH_UNMAPPED_AREA
1783 unsigned long
1784 arch_get_unmapped_area(struct file *filp, unsigned long addr,
1785                 unsigned long len, unsigned long pgoff, unsigned long flags)
1786 {
1787         struct mm_struct *mm = current->mm;
1788         struct vm_area_struct *vma;
1789         struct vm_unmapped_area_info info;
1790
1791         if (len > TASK_SIZE)
1792                 return -ENOMEM;
1793
1794         if (flags & MAP_FIXED)
1795                 return addr;
1796
1797         if (addr) {
1798                 addr = PAGE_ALIGN(addr);
1799                 vma = find_vma(mm, addr);
1800                 if (TASK_SIZE - len >= addr &&
1801                     (!vma || addr + len <= vma->vm_start))
1802                         return addr;
1803         }
1804
1805         info.flags = 0;
1806         info.length = len;
1807         info.low_limit = TASK_UNMAPPED_BASE;
1808         info.high_limit = TASK_SIZE;
1809         info.align_mask = 0;
1810         return vm_unmapped_area(&info);
1811 }
1812 #endif  
1813
1814 void arch_unmap_area(struct mm_struct *mm, unsigned long addr)
1815 {
1816         /*
1817          * Is this a new hole at the lowest possible address?
1818          */
1819         if (addr >= TASK_UNMAPPED_BASE && addr < mm->free_area_cache)
1820                 mm->free_area_cache = addr;
1821 }
1822
1823 /*
1824  * This mmap-allocator allocates new areas top-down from below the
1825  * stack's low limit (the base):
1826  */
1827 #ifndef HAVE_ARCH_UNMAPPED_AREA_TOPDOWN
1828 unsigned long
1829 arch_get_unmapped_area_topdown(struct file *filp, const unsigned long addr0,
1830                           const unsigned long len, const unsigned long pgoff,
1831                           const unsigned long flags)
1832 {
1833         struct vm_area_struct *vma;
1834         struct mm_struct *mm = current->mm;
1835         unsigned long addr = addr0;
1836         struct vm_unmapped_area_info info;
1837
1838         /* requested length too big for entire address space */
1839         if (len > TASK_SIZE)
1840                 return -ENOMEM;
1841
1842         if (flags & MAP_FIXED)
1843                 return addr;
1844
1845         /* requesting a specific address */
1846         if (addr) {
1847                 addr = PAGE_ALIGN(addr);
1848                 vma = find_vma(mm, addr);
1849                 if (TASK_SIZE - len >= addr &&
1850                                 (!vma || addr + len <= vma->vm_start))
1851                         return addr;
1852         }
1853
1854         info.flags = VM_UNMAPPED_AREA_TOPDOWN;
1855         info.length = len;
1856         info.low_limit = PAGE_SIZE;
1857         info.high_limit = mm->mmap_base;
1858         info.align_mask = 0;
1859         addr = vm_unmapped_area(&info);
1860
1861         /*
1862          * A failed mmap() very likely causes application failure,
1863          * so fall back to the bottom-up function here. This scenario
1864          * can happen with large stack limits and large mmap()
1865          * allocations.
1866          */
1867         if (addr & ~PAGE_MASK) {
1868                 VM_BUG_ON(addr != -ENOMEM);
1869                 info.flags = 0;
1870                 info.low_limit = TASK_UNMAPPED_BASE;
1871                 info.high_limit = TASK_SIZE;
1872                 addr = vm_unmapped_area(&info);
1873         }
1874
1875         return addr;
1876 }
1877 #endif
1878
1879 void arch_unmap_area_topdown(struct mm_struct *mm, unsigned long addr)
1880 {
1881         /*
1882          * Is this a new hole at the highest possible address?
1883          */
1884         if (addr > mm->free_area_cache)
1885                 mm->free_area_cache = addr;
1886
1887         /* dont allow allocations above current base */
1888         if (mm->free_area_cache > mm->mmap_base)
1889                 mm->free_area_cache = mm->mmap_base;
1890 }
1891
1892 unsigned long
1893 get_unmapped_area(struct file *file, unsigned long addr, unsigned long len,
1894                 unsigned long pgoff, unsigned long flags)
1895 {
1896         unsigned long (*get_area)(struct file *, unsigned long,
1897                                   unsigned long, unsigned long, unsigned long);
1898
1899         unsigned long error = arch_mmap_check(addr, len, flags);
1900         if (error)
1901                 return error;
1902
1903         /* Careful about overflows.. */
1904         if (len > TASK_SIZE)
1905                 return -ENOMEM;
1906
1907         get_area = current->mm->get_unmapped_area;
1908         if (file && file->f_op && file->f_op->get_unmapped_area)
1909                 get_area = file->f_op->get_unmapped_area;
1910         addr = get_area(file, addr, len, pgoff, flags);
1911         if (IS_ERR_VALUE(addr))
1912                 return addr;
1913
1914         if (addr > TASK_SIZE - len)
1915                 return -ENOMEM;
1916         if (addr & ~PAGE_MASK)
1917                 return -EINVAL;
1918
1919         addr = arch_rebalance_pgtables(addr, len);
1920         error = security_mmap_addr(addr);
1921         return error ? error : addr;
1922 }
1923
1924 EXPORT_SYMBOL(get_unmapped_area);
1925
1926 /* Look up the first VMA which satisfies  addr < vm_end,  NULL if none. */
1927 struct vm_area_struct *find_vma(struct mm_struct *mm, unsigned long addr)
1928 {
1929         struct vm_area_struct *vma = NULL;
1930
1931         if (WARN_ON_ONCE(!mm))          /* Remove this in linux-3.6 */
1932                 return NULL;
1933
1934         /* Check the cache first. */
1935         /* (Cache hit rate is typically around 35%.) */
1936         vma = mm->mmap_cache;
1937         if (!(vma && vma->vm_end > addr && vma->vm_start <= addr)) {
1938                 struct rb_node *rb_node;
1939
1940                 rb_node = mm->mm_rb.rb_node;
1941                 vma = NULL;
1942
1943                 while (rb_node) {
1944                         struct vm_area_struct *vma_tmp;
1945
1946                         vma_tmp = rb_entry(rb_node,
1947                                            struct vm_area_struct, vm_rb);
1948
1949                         if (vma_tmp->vm_end > addr) {
1950                                 vma = vma_tmp;
1951                                 if (vma_tmp->vm_start <= addr)
1952                                         break;
1953                                 rb_node = rb_node->rb_left;
1954                         } else
1955                                 rb_node = rb_node->rb_right;
1956                 }
1957                 if (vma)
1958                         mm->mmap_cache = vma;
1959         }
1960         return vma;
1961 }
1962
1963 EXPORT_SYMBOL(find_vma);
1964
1965 /*
1966  * Same as find_vma, but also return a pointer to the previous VMA in *pprev.
1967  */
1968 struct vm_area_struct *
1969 find_vma_prev(struct mm_struct *mm, unsigned long addr,
1970                         struct vm_area_struct **pprev)
1971 {
1972         struct vm_area_struct *vma;
1973
1974         vma = find_vma(mm, addr);
1975         if (vma) {
1976                 *pprev = vma->vm_prev;
1977         } else {
1978                 struct rb_node *rb_node = mm->mm_rb.rb_node;
1979                 *pprev = NULL;
1980                 while (rb_node) {
1981                         *pprev = rb_entry(rb_node, struct vm_area_struct, vm_rb);
1982                         rb_node = rb_node->rb_right;
1983                 }
1984         }
1985         return vma;
1986 }
1987
1988 /*
1989  * Verify that the stack growth is acceptable and
1990  * update accounting. This is shared with both the
1991  * grow-up and grow-down cases.
1992  */
1993 static int acct_stack_growth(struct vm_area_struct *vma, unsigned long size, unsigned long grow)
1994 {
1995         struct mm_struct *mm = vma->vm_mm;
1996         struct rlimit *rlim = current->signal->rlim;
1997         unsigned long new_start;
1998
1999         /* address space limit tests */
2000         if (!may_expand_vm(mm, grow))
2001                 return -ENOMEM;
2002
2003         /* Stack limit test */
2004         if (size > ACCESS_ONCE(rlim[RLIMIT_STACK].rlim_cur))
2005                 return -ENOMEM;
2006
2007         /* mlock limit tests */
2008         if (vma->vm_flags & VM_LOCKED) {
2009                 unsigned long locked;
2010                 unsigned long limit;
2011                 locked = mm->locked_vm + grow;
2012                 limit = ACCESS_ONCE(rlim[RLIMIT_MEMLOCK].rlim_cur);
2013                 limit >>= PAGE_SHIFT;
2014                 if (locked > limit && !capable(CAP_IPC_LOCK))
2015                         return -ENOMEM;
2016         }
2017
2018         /* Check to ensure the stack will not grow into a hugetlb-only region */
2019         new_start = (vma->vm_flags & VM_GROWSUP) ? vma->vm_start :
2020                         vma->vm_end - size;
2021         if (is_hugepage_only_range(vma->vm_mm, new_start, size))
2022                 return -EFAULT;
2023
2024         /*
2025          * Overcommit..  This must be the final test, as it will
2026          * update security statistics.
2027          */
2028         if (security_vm_enough_memory_mm(mm, grow))
2029                 return -ENOMEM;
2030
2031         /* Ok, everything looks good - let it rip */
2032         if (vma->vm_flags & VM_LOCKED)
2033                 mm->locked_vm += grow;
2034         vm_stat_account(mm, vma->vm_flags, vma->vm_file, grow);
2035         return 0;
2036 }
2037
2038 #if defined(CONFIG_STACK_GROWSUP) || defined(CONFIG_IA64)
2039 /*
2040  * PA-RISC uses this for its stack; IA64 for its Register Backing Store.
2041  * vma is the last one with address > vma->vm_end.  Have to extend vma.
2042  */
2043 int expand_upwards(struct vm_area_struct *vma, unsigned long address)
2044 {
2045         int error;
2046
2047         if (!(vma->vm_flags & VM_GROWSUP))
2048                 return -EFAULT;
2049
2050         /*
2051          * We must make sure the anon_vma is allocated
2052          * so that the anon_vma locking is not a noop.
2053          */
2054         if (unlikely(anon_vma_prepare(vma)))
2055                 return -ENOMEM;
2056         vma_lock_anon_vma(vma);
2057
2058         /*
2059          * vma->vm_start/vm_end cannot change under us because the caller
2060          * is required to hold the mmap_sem in read mode.  We need the
2061          * anon_vma lock to serialize against concurrent expand_stacks.
2062          * Also guard against wrapping around to address 0.
2063          */
2064         if (address < PAGE_ALIGN(address+4))
2065                 address = PAGE_ALIGN(address+4);
2066         else {
2067                 vma_unlock_anon_vma(vma);
2068                 return -ENOMEM;
2069         }
2070         error = 0;
2071
2072         /* Somebody else might have raced and expanded it already */
2073         if (address > vma->vm_end) {
2074                 unsigned long size, grow;
2075
2076                 size = address - vma->vm_start;
2077                 grow = (address - vma->vm_end) >> PAGE_SHIFT;
2078
2079                 error = -ENOMEM;
2080                 if (vma->vm_pgoff + (size >> PAGE_SHIFT) >= vma->vm_pgoff) {
2081                         error = acct_stack_growth(vma, size, grow);
2082                         if (!error) {
2083                                 /*
2084                                  * vma_gap_update() doesn't support concurrent
2085                                  * updates, but we only hold a shared mmap_sem
2086                                  * lock here, so we need to protect against
2087                                  * concurrent vma expansions.
2088                                  * vma_lock_anon_vma() doesn't help here, as
2089                                  * we don't guarantee that all growable vmas
2090                                  * in a mm share the same root anon vma.
2091                                  * So, we reuse mm->page_table_lock to guard
2092                                  * against concurrent vma expansions.
2093                                  */
2094                                 spin_lock(&vma->vm_mm->page_table_lock);
2095                                 anon_vma_interval_tree_pre_update_vma(vma);
2096                                 vma->vm_end = address;
2097                                 anon_vma_interval_tree_post_update_vma(vma);
2098                                 if (vma->vm_next)
2099                                         vma_gap_update(vma->vm_next);
2100                                 else
2101                                         vma->vm_mm->highest_vm_end = address;
2102                                 spin_unlock(&vma->vm_mm->page_table_lock);
2103
2104                                 perf_event_mmap(vma);
2105                         }
2106                 }
2107         }
2108         vma_unlock_anon_vma(vma);
2109         khugepaged_enter_vma_merge(vma);
2110         validate_mm(vma->vm_mm);
2111         return error;
2112 }
2113 #endif /* CONFIG_STACK_GROWSUP || CONFIG_IA64 */
2114
2115 /*
2116  * vma is the first one with address < vma->vm_start.  Have to extend vma.
2117  */
2118 int expand_downwards(struct vm_area_struct *vma,
2119                                    unsigned long address)
2120 {
2121         int error;
2122
2123         /*
2124          * We must make sure the anon_vma is allocated
2125          * so that the anon_vma locking is not a noop.
2126          */
2127         if (unlikely(anon_vma_prepare(vma)))
2128                 return -ENOMEM;
2129
2130         address &= PAGE_MASK;
2131         error = security_mmap_addr(address);
2132         if (error)
2133                 return error;
2134
2135         vma_lock_anon_vma(vma);
2136
2137         /*
2138          * vma->vm_start/vm_end cannot change under us because the caller
2139          * is required to hold the mmap_sem in read mode.  We need the
2140          * anon_vma lock to serialize against concurrent expand_stacks.
2141          */
2142
2143         /* Somebody else might have raced and expanded it already */
2144         if (address < vma->vm_start) {
2145                 unsigned long size, grow;
2146
2147                 size = vma->vm_end - address;
2148                 grow = (vma->vm_start - address) >> PAGE_SHIFT;
2149
2150                 error = -ENOMEM;
2151                 if (grow <= vma->vm_pgoff) {
2152                         error = acct_stack_growth(vma, size, grow);
2153                         if (!error) {
2154                                 /*
2155                                  * vma_gap_update() doesn't support concurrent
2156                                  * updates, but we only hold a shared mmap_sem
2157                                  * lock here, so we need to protect against
2158                                  * concurrent vma expansions.
2159                                  * vma_lock_anon_vma() doesn't help here, as
2160                                  * we don't guarantee that all growable vmas
2161                                  * in a mm share the same root anon vma.
2162                                  * So, we reuse mm->page_table_lock to guard
2163                                  * against concurrent vma expansions.
2164                                  */
2165                                 spin_lock(&vma->vm_mm->page_table_lock);
2166                                 anon_vma_interval_tree_pre_update_vma(vma);
2167                                 vma->vm_start = address;
2168                                 vma->vm_pgoff -= grow;
2169                                 anon_vma_interval_tree_post_update_vma(vma);
2170                                 vma_gap_update(vma);
2171                                 spin_unlock(&vma->vm_mm->page_table_lock);
2172
2173                                 perf_event_mmap(vma);
2174                         }
2175                 }
2176         }
2177         vma_unlock_anon_vma(vma);
2178         khugepaged_enter_vma_merge(vma);
2179         validate_mm(vma->vm_mm);
2180         return error;
2181 }
2182
2183 #ifdef CONFIG_STACK_GROWSUP
2184 int expand_stack(struct vm_area_struct *vma, unsigned long address)
2185 {
2186         return expand_upwards(vma, address);
2187 }
2188
2189 struct vm_area_struct *
2190 find_extend_vma(struct mm_struct *mm, unsigned long addr)
2191 {
2192         struct vm_area_struct *vma, *prev;
2193
2194         addr &= PAGE_MASK;
2195         vma = find_vma_prev(mm, addr, &prev);
2196         if (vma && (vma->vm_start <= addr))
2197                 return vma;
2198         if (!prev || expand_stack(prev, addr))
2199                 return NULL;
2200         if (prev->vm_flags & VM_LOCKED) {
2201                 mlock_vma_pages_range(prev, addr, prev->vm_end);
2202         }
2203         return prev;
2204 }
2205 #else
2206 int expand_stack(struct vm_area_struct *vma, unsigned long address)
2207 {
2208         return expand_downwards(vma, address);
2209 }
2210
2211 struct vm_area_struct *
2212 find_extend_vma(struct mm_struct * mm, unsigned long addr)
2213 {
2214         struct vm_area_struct * vma;
2215         unsigned long start;
2216
2217         addr &= PAGE_MASK;
2218         vma = find_vma(mm,addr);
2219         if (!vma)
2220                 return NULL;
2221         if (vma->vm_start <= addr)
2222                 return vma;
2223         if (!(vma->vm_flags & VM_GROWSDOWN))
2224                 return NULL;
2225         start = vma->vm_start;
2226         if (expand_stack(vma, addr))
2227                 return NULL;
2228         if (vma->vm_flags & VM_LOCKED) {
2229                 mlock_vma_pages_range(vma, addr, start);
2230         }
2231         return vma;
2232 }
2233 #endif
2234
2235 /*
2236  * Ok - we have the memory areas we should free on the vma list,
2237  * so release them, and do the vma updates.
2238  *
2239  * Called with the mm semaphore held.
2240  */
2241 static void remove_vma_list(struct mm_struct *mm, struct vm_area_struct *vma)
2242 {
2243         unsigned long nr_accounted = 0;
2244
2245         /* Update high watermark before we lower total_vm */
2246         update_hiwater_vm(mm);
2247         do {
2248                 long nrpages = vma_pages(vma);
2249
2250                 if (vma->vm_flags & VM_ACCOUNT)
2251                         nr_accounted += nrpages;
2252                 vm_stat_account(mm, vma->vm_flags, vma->vm_file, -nrpages);
2253                 vma = remove_vma(vma);
2254         } while (vma);
2255         vm_unacct_memory(nr_accounted);
2256         validate_mm(mm);
2257 }
2258
2259 /*
2260  * Get rid of page table information in the indicated region.
2261  *
2262  * Called with the mm semaphore held.
2263  */
2264 static void unmap_region(struct mm_struct *mm,
2265                 struct vm_area_struct *vma, struct vm_area_struct *prev,
2266                 unsigned long start, unsigned long end)
2267 {
2268         struct vm_area_struct *next = prev? prev->vm_next: mm->mmap;
2269         struct mmu_gather tlb;
2270
2271         lru_add_drain();
2272         tlb_gather_mmu(&tlb, mm, 0);
2273         update_hiwater_rss(mm);
2274         unmap_vmas(&tlb, vma, start, end);
2275         free_pgtables(&tlb, vma, prev ? prev->vm_end : FIRST_USER_ADDRESS,
2276                                  next ? next->vm_start : 0);
2277         tlb_finish_mmu(&tlb, start, end);
2278 }
2279
2280 /*
2281  * Create a list of vma's touched by the unmap, removing them from the mm's
2282  * vma list as we go..
2283  */
2284 static void
2285 detach_vmas_to_be_unmapped(struct mm_struct *mm, struct vm_area_struct *vma,
2286         struct vm_area_struct *prev, unsigned long end)
2287 {
2288         struct vm_area_struct **insertion_point;
2289         struct vm_area_struct *tail_vma = NULL;
2290         unsigned long addr;
2291
2292         insertion_point = (prev ? &prev->vm_next : &mm->mmap);
2293         vma->vm_prev = NULL;
2294         do {
2295                 vma_rb_erase(vma, &mm->mm_rb);
2296                 mm->map_count--;
2297                 tail_vma = vma;
2298                 vma = vma->vm_next;
2299         } while (vma && vma->vm_start < end);
2300         *insertion_point = vma;
2301         if (vma) {
2302                 vma->vm_prev = prev;
2303                 vma_gap_update(vma);
2304         } else
2305                 mm->highest_vm_end = prev ? prev->vm_end : 0;
2306         tail_vma->vm_next = NULL;
2307         if (mm->unmap_area == arch_unmap_area)
2308                 addr = prev ? prev->vm_end : mm->mmap_base;
2309         else
2310                 addr = vma ?  vma->vm_start : mm->mmap_base;
2311         mm->unmap_area(mm, addr);
2312         mm->mmap_cache = NULL;          /* Kill the cache. */
2313 }
2314
2315 /*
2316  * __split_vma() bypasses sysctl_max_map_count checking.  We use this on the
2317  * munmap path where it doesn't make sense to fail.
2318  */
2319 static int __split_vma(struct mm_struct * mm, struct vm_area_struct * vma,
2320               unsigned long addr, int new_below)
2321 {
2322         struct mempolicy *pol;
2323         struct vm_area_struct *new;
2324         int err = -ENOMEM;
2325
2326         if (is_vm_hugetlb_page(vma) && (addr &
2327                                         ~(huge_page_mask(hstate_vma(vma)))))
2328                 return -EINVAL;
2329
2330         new = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
2331         if (!new)
2332                 goto out_err;
2333
2334         /* most fields are the same, copy all, and then fixup */
2335         *new = *vma;
2336
2337         INIT_LIST_HEAD(&new->anon_vma_chain);
2338
2339         if (new_below)
2340                 new->vm_end = addr;
2341         else {
2342                 new->vm_start = addr;
2343                 new->vm_pgoff += ((addr - vma->vm_start) >> PAGE_SHIFT);
2344         }
2345
2346         pol = mpol_dup(vma_policy(vma));
2347         if (IS_ERR(pol)) {
2348                 err = PTR_ERR(pol);
2349                 goto out_free_vma;
2350         }
2351         vma_set_policy(new, pol);
2352
2353         if (anon_vma_clone(new, vma))
2354                 goto out_free_mpol;
2355
2356         if (new->vm_file)
2357                 get_file(new->vm_file);
2358
2359         if (new->vm_ops && new->vm_ops->open)
2360                 new->vm_ops->open(new);
2361
2362         if (new_below)
2363                 err = vma_adjust(vma, addr, vma->vm_end, vma->vm_pgoff +
2364                         ((addr - new->vm_start) >> PAGE_SHIFT), new);
2365         else
2366                 err = vma_adjust(vma, vma->vm_start, addr, vma->vm_pgoff, new);
2367
2368         /* Success. */
2369         if (!err)
2370                 return 0;
2371
2372         /* Clean everything up if vma_adjust failed. */
2373         if (new->vm_ops && new->vm_ops->close)
2374                 new->vm_ops->close(new);
2375         if (new->vm_file)
2376                 fput(new->vm_file);
2377         unlink_anon_vmas(new);
2378  out_free_mpol:
2379         mpol_put(pol);
2380  out_free_vma:
2381         kmem_cache_free(vm_area_cachep, new);
2382  out_err:
2383         return err;
2384 }
2385
2386 /*
2387  * Split a vma into two pieces at address 'addr', a new vma is allocated
2388  * either for the first part or the tail.
2389  */
2390 int split_vma(struct mm_struct *mm, struct vm_area_struct *vma,
2391               unsigned long addr, int new_below)
2392 {
2393         if (mm->map_count >= sysctl_max_map_count)
2394                 return -ENOMEM;
2395
2396         return __split_vma(mm, vma, addr, new_below);
2397 }
2398
2399 /* Munmap is split into 2 main parts -- this part which finds
2400  * what needs doing, and the areas themselves, which do the
2401  * work.  This now handles partial unmappings.
2402  * Jeremy Fitzhardinge <jeremy@goop.org>
2403  */
2404 int do_munmap(struct mm_struct *mm, unsigned long start, size_t len)
2405 {
2406         unsigned long end;
2407         struct vm_area_struct *vma, *prev, *last;
2408
2409         if ((start & ~PAGE_MASK) || start > TASK_SIZE || len > TASK_SIZE-start)
2410                 return -EINVAL;
2411
2412         if ((len = PAGE_ALIGN(len)) == 0)
2413                 return -EINVAL;
2414
2415         /* Find the first overlapping VMA */
2416         vma = find_vma(mm, start);
2417         if (!vma)
2418                 return 0;
2419         prev = vma->vm_prev;
2420         /* we have  start < vma->vm_end  */
2421
2422         /* if it doesn't overlap, we have nothing.. */
2423         end = start + len;
2424         if (vma->vm_start >= end)
2425                 return 0;
2426
2427         /*
2428          * If we need to split any vma, do it now to save pain later.
2429          *
2430          * Note: mremap's move_vma VM_ACCOUNT handling assumes a partially
2431          * unmapped vm_area_struct will remain in use: so lower split_vma
2432          * places tmp vma above, and higher split_vma places tmp vma below.
2433          */
2434         if (start > vma->vm_start) {
2435                 int error;
2436
2437                 /*
2438                  * Make sure that map_count on return from munmap() will
2439                  * not exceed its limit; but let map_count go just above
2440                  * its limit temporarily, to help free resources as expected.
2441                  */
2442                 if (end < vma->vm_end && mm->map_count >= sysctl_max_map_count)
2443                         return -ENOMEM;
2444
2445                 error = __split_vma(mm, vma, start, 0);
2446                 if (error)
2447                         return error;
2448                 prev = vma;
2449         }
2450
2451         /* Does it split the last one? */
2452         last = find_vma(mm, end);
2453         if (last && end > last->vm_start) {
2454                 int error = __split_vma(mm, last, end, 1);
2455                 if (error)
2456                         return error;
2457         }
2458         vma = prev? prev->vm_next: mm->mmap;
2459
2460         /*
2461          * unlock any mlock()ed ranges before detaching vmas
2462          */
2463         if (mm->locked_vm) {
2464                 struct vm_area_struct *tmp = vma;
2465                 while (tmp && tmp->vm_start < end) {
2466                         if (tmp->vm_flags & VM_LOCKED) {
2467                                 mm->locked_vm -= vma_pages(tmp);
2468                                 munlock_vma_pages_all(tmp);
2469                         }
2470                         tmp = tmp->vm_next;
2471                 }
2472         }
2473
2474         /*
2475          * Remove the vma's, and unmap the actual pages
2476          */
2477         detach_vmas_to_be_unmapped(mm, vma, prev, end);
2478         unmap_region(mm, vma, prev, start, end);
2479
2480         /* Fix up all other VM information */
2481         remove_vma_list(mm, vma);
2482
2483         return 0;
2484 }
2485
2486 int vm_munmap(unsigned long start, size_t len)
2487 {
2488         int ret;
2489         struct mm_struct *mm = current->mm;
2490
2491         down_write(&mm->mmap_sem);
2492         ret = do_munmap(mm, start, len);
2493         up_write(&mm->mmap_sem);
2494         return ret;
2495 }
2496 EXPORT_SYMBOL(vm_munmap);
2497
2498 SYSCALL_DEFINE2(munmap, unsigned long, addr, size_t, len)
2499 {
2500         profile_munmap(addr);
2501         return vm_munmap(addr, len);
2502 }
2503
2504 static inline void verify_mm_writelocked(struct mm_struct *mm)
2505 {
2506 #ifdef CONFIG_DEBUG_VM
2507         if (unlikely(down_read_trylock(&mm->mmap_sem))) {
2508                 WARN_ON(1);
2509                 up_read(&mm->mmap_sem);
2510         }
2511 #endif
2512 }
2513
2514 /*
2515  *  this is really a simplified "do_mmap".  it only handles
2516  *  anonymous maps.  eventually we may be able to do some
2517  *  brk-specific accounting here.
2518  */
2519 static unsigned long do_brk(unsigned long addr, unsigned long len)
2520 {
2521         struct mm_struct * mm = current->mm;
2522         struct vm_area_struct * vma, * prev;
2523         unsigned long flags;
2524         struct rb_node ** rb_link, * rb_parent;
2525         pgoff_t pgoff = addr >> PAGE_SHIFT;
2526         int error;
2527
2528         len = PAGE_ALIGN(len);
2529         if (!len)
2530                 return addr;
2531
2532         flags = VM_DATA_DEFAULT_FLAGS | VM_ACCOUNT | mm->def_flags;
2533
2534         error = get_unmapped_area(NULL, addr, len, 0, MAP_FIXED);
2535         if (error & ~PAGE_MASK)
2536                 return error;
2537
2538         /*
2539          * mlock MCL_FUTURE?
2540          */
2541         if (mm->def_flags & VM_LOCKED) {
2542                 unsigned long locked, lock_limit;
2543                 locked = len >> PAGE_SHIFT;
2544                 locked += mm->locked_vm;
2545                 lock_limit = rlimit(RLIMIT_MEMLOCK);
2546                 lock_limit >>= PAGE_SHIFT;
2547                 if (locked > lock_limit && !capable(CAP_IPC_LOCK))
2548                         return -EAGAIN;
2549         }
2550
2551         /*
2552          * mm->mmap_sem is required to protect against another thread
2553          * changing the mappings in case we sleep.
2554          */
2555         verify_mm_writelocked(mm);
2556
2557         /*
2558          * Clear old maps.  this also does some error checking for us
2559          */
2560  munmap_back:
2561         if (find_vma_links(mm, addr, addr + len, &prev, &rb_link, &rb_parent)) {
2562                 if (do_munmap(mm, addr, len))
2563                         return -ENOMEM;
2564                 goto munmap_back;
2565         }
2566
2567         /* Check against address space limits *after* clearing old maps... */
2568         if (!may_expand_vm(mm, len >> PAGE_SHIFT))
2569                 return -ENOMEM;
2570
2571         if (mm->map_count > sysctl_max_map_count)
2572                 return -ENOMEM;
2573
2574         if (security_vm_enough_memory_mm(mm, len >> PAGE_SHIFT))
2575                 return -ENOMEM;
2576
2577         /* Can we just expand an old private anonymous mapping? */
2578         vma = vma_merge(mm, prev, addr, addr + len, flags,
2579                                         NULL, NULL, pgoff, NULL);
2580         if (vma)
2581                 goto out;
2582
2583         /*
2584          * create a vma struct for an anonymous mapping
2585          */
2586         vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
2587         if (!vma) {
2588                 vm_unacct_memory(len >> PAGE_SHIFT);
2589                 return -ENOMEM;
2590         }
2591
2592         INIT_LIST_HEAD(&vma->anon_vma_chain);
2593         vma->vm_mm = mm;
2594         vma->vm_start = addr;
2595         vma->vm_end = addr + len;
2596         vma->vm_pgoff = pgoff;
2597         vma->vm_flags = flags;
2598         vma->vm_page_prot = vm_get_page_prot(flags);
2599         vma_link(mm, vma, prev, rb_link, rb_parent);
2600 out:
2601         perf_event_mmap(vma);
2602         mm->total_vm += len >> PAGE_SHIFT;
2603         if (flags & VM_LOCKED) {
2604                 if (!mlock_vma_pages_range(vma, addr, addr + len))
2605                         mm->locked_vm += (len >> PAGE_SHIFT);
2606         }
2607         return addr;
2608 }
2609
2610 unsigned long vm_brk(unsigned long addr, unsigned long len)
2611 {
2612         struct mm_struct *mm = current->mm;
2613         unsigned long ret;
2614
2615         down_write(&mm->mmap_sem);
2616         ret = do_brk(addr, len);
2617         up_write(&mm->mmap_sem);
2618         return ret;
2619 }
2620 EXPORT_SYMBOL(vm_brk);
2621
2622 /* Release all mmaps. */
2623 void exit_mmap(struct mm_struct *mm)
2624 {
2625         struct mmu_gather tlb;
2626         struct vm_area_struct *vma;
2627         unsigned long nr_accounted = 0;
2628
2629         /* mm's last user has gone, and its about to be pulled down */
2630         mmu_notifier_release(mm);
2631
2632         if (mm->locked_vm) {
2633                 vma = mm->mmap;
2634                 while (vma) {
2635                         if (vma->vm_flags & VM_LOCKED)
2636                                 munlock_vma_pages_all(vma);
2637                         vma = vma->vm_next;
2638                 }
2639         }
2640
2641         arch_exit_mmap(mm);
2642
2643         vma = mm->mmap;
2644         if (!vma)       /* Can happen if dup_mmap() received an OOM */
2645                 return;
2646
2647         lru_add_drain();
2648         flush_cache_mm(mm);
2649         tlb_gather_mmu(&tlb, mm, 1);
2650         /* update_hiwater_rss(mm) here? but nobody should be looking */
2651         /* Use -1 here to ensure all VMAs in the mm are unmapped */
2652         unmap_vmas(&tlb, vma, 0, -1);
2653
2654         free_pgtables(&tlb, vma, FIRST_USER_ADDRESS, 0);
2655         tlb_finish_mmu(&tlb, 0, -1);
2656
2657         /*
2658          * Walk the list again, actually closing and freeing it,
2659          * with preemption enabled, without holding any MM locks.
2660          */
2661         while (vma) {
2662                 if (vma->vm_flags & VM_ACCOUNT)
2663                         nr_accounted += vma_pages(vma);
2664                 vma = remove_vma(vma);
2665         }
2666         vm_unacct_memory(nr_accounted);
2667
2668         WARN_ON(mm->nr_ptes > (FIRST_USER_ADDRESS+PMD_SIZE-1)>>PMD_SHIFT);
2669 }
2670
2671 /* Insert vm structure into process list sorted by address
2672  * and into the inode's i_mmap tree.  If vm_file is non-NULL
2673  * then i_mmap_mutex is taken here.
2674  */
2675 int insert_vm_struct(struct mm_struct *mm, struct vm_area_struct *vma)
2676 {
2677         struct vm_area_struct *prev;
2678         struct rb_node **rb_link, *rb_parent;
2679
2680         /*
2681          * The vm_pgoff of a purely anonymous vma should be irrelevant
2682          * until its first write fault, when page's anon_vma and index
2683          * are set.  But now set the vm_pgoff it will almost certainly
2684          * end up with (unless mremap moves it elsewhere before that
2685          * first wfault), so /proc/pid/maps tells a consistent story.
2686          *
2687          * By setting it to reflect the virtual start address of the
2688          * vma, merges and splits can happen in a seamless way, just
2689          * using the existing file pgoff checks and manipulations.
2690          * Similarly in do_mmap_pgoff and in do_brk.
2691          */
2692         if (!vma->vm_file) {
2693                 BUG_ON(vma->anon_vma);
2694                 vma->vm_pgoff = vma->vm_start >> PAGE_SHIFT;
2695         }
2696         if (find_vma_links(mm, vma->vm_start, vma->vm_end,
2697                            &prev, &rb_link, &rb_parent))
2698                 return -ENOMEM;
2699         if ((vma->vm_flags & VM_ACCOUNT) &&
2700              security_vm_enough_memory_mm(mm, vma_pages(vma)))
2701                 return -ENOMEM;
2702
2703         vma_link(mm, vma, prev, rb_link, rb_parent);
2704         return 0;
2705 }
2706
2707 /*
2708  * Copy the vma structure to a new location in the same mm,
2709  * prior to moving page table entries, to effect an mremap move.
2710  */
2711 struct vm_area_struct *copy_vma(struct vm_area_struct **vmap,
2712         unsigned long addr, unsigned long len, pgoff_t pgoff,
2713         bool *need_rmap_locks)
2714 {
2715         struct vm_area_struct *vma = *vmap;
2716         unsigned long vma_start = vma->vm_start;
2717         struct mm_struct *mm = vma->vm_mm;
2718         struct vm_area_struct *new_vma, *prev;
2719         struct rb_node **rb_link, *rb_parent;
2720         struct mempolicy *pol;
2721         bool faulted_in_anon_vma = true;
2722
2723         /*
2724          * If anonymous vma has not yet been faulted, update new pgoff
2725          * to match new location, to increase its chance of merging.
2726          */
2727         if (unlikely(!vma->vm_file && !vma->anon_vma)) {
2728                 pgoff = addr >> PAGE_SHIFT;
2729                 faulted_in_anon_vma = false;
2730         }
2731
2732         if (find_vma_links(mm, addr, addr + len, &prev, &rb_link, &rb_parent))
2733                 return NULL;    /* should never get here */
2734         new_vma = vma_merge(mm, prev, addr, addr + len, vma->vm_flags,
2735                         vma->anon_vma, vma->vm_file, pgoff, vma_policy(vma));
2736         if (new_vma) {
2737                 /*
2738                  * Source vma may have been merged into new_vma
2739                  */
2740                 if (unlikely(vma_start >= new_vma->vm_start &&
2741                              vma_start < new_vma->vm_end)) {
2742                         /*
2743                          * The only way we can get a vma_merge with
2744                          * self during an mremap is if the vma hasn't
2745                          * been faulted in yet and we were allowed to
2746                          * reset the dst vma->vm_pgoff to the
2747                          * destination address of the mremap to allow
2748                          * the merge to happen. mremap must change the
2749                          * vm_pgoff linearity between src and dst vmas
2750                          * (in turn preventing a vma_merge) to be
2751                          * safe. It is only safe to keep the vm_pgoff
2752                          * linear if there are no pages mapped yet.
2753                          */
2754                         VM_BUG_ON(faulted_in_anon_vma);
2755                         *vmap = vma = new_vma;
2756                 }
2757                 *need_rmap_locks = (new_vma->vm_pgoff <= vma->vm_pgoff);
2758         } else {
2759                 new_vma = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
2760                 if (new_vma) {
2761                         *new_vma = *vma;
2762                         new_vma->vm_start = addr;
2763                         new_vma->vm_end = addr + len;
2764                         new_vma->vm_pgoff = pgoff;
2765                         pol = mpol_dup(vma_policy(vma));
2766                         if (IS_ERR(pol))
2767                                 goto out_free_vma;
2768                         vma_set_policy(new_vma, pol);
2769                         INIT_LIST_HEAD(&new_vma->anon_vma_chain);
2770                         if (anon_vma_clone(new_vma, vma))
2771                                 goto out_free_mempol;
2772                         if (new_vma->vm_file)
2773                                 get_file(new_vma->vm_file);
2774                         if (new_vma->vm_ops && new_vma->vm_ops->open)
2775                                 new_vma->vm_ops->open(new_vma);
2776                         vma_link(mm, new_vma, prev, rb_link, rb_parent);
2777                         *need_rmap_locks = false;
2778                 }
2779         }
2780         return new_vma;
2781
2782  out_free_mempol:
2783         mpol_put(pol);
2784  out_free_vma:
2785         kmem_cache_free(vm_area_cachep, new_vma);
2786         return NULL;
2787 }
2788
2789 /*
2790  * Return true if the calling process may expand its vm space by the passed
2791  * number of pages
2792  */
2793 int may_expand_vm(struct mm_struct *mm, unsigned long npages)
2794 {
2795         unsigned long cur = mm->total_vm;       /* pages */
2796         unsigned long lim;
2797
2798         lim = rlimit(RLIMIT_AS) >> PAGE_SHIFT;
2799
2800         if (cur + npages > lim)
2801                 return 0;
2802         return 1;
2803 }
2804
2805
2806 static int special_mapping_fault(struct vm_area_struct *vma,
2807                                 struct vm_fault *vmf)
2808 {
2809         pgoff_t pgoff;
2810         struct page **pages;
2811
2812         /*
2813          * special mappings have no vm_file, and in that case, the mm
2814          * uses vm_pgoff internally. So we have to subtract it from here.
2815          * We are allowed to do this because we are the mm; do not copy
2816          * this code into drivers!
2817          */
2818         pgoff = vmf->pgoff - vma->vm_pgoff;
2819
2820         for (pages = vma->vm_private_data; pgoff && *pages; ++pages)
2821                 pgoff--;
2822
2823         if (*pages) {
2824                 struct page *page = *pages;
2825                 get_page(page);
2826                 vmf->page = page;
2827                 return 0;
2828         }
2829
2830         return VM_FAULT_SIGBUS;
2831 }
2832
2833 /*
2834  * Having a close hook prevents vma merging regardless of flags.
2835  */
2836 static void special_mapping_close(struct vm_area_struct *vma)
2837 {
2838 }
2839
2840 static const struct vm_operations_struct special_mapping_vmops = {
2841         .close = special_mapping_close,
2842         .fault = special_mapping_fault,
2843 };
2844
2845 /*
2846  * Called with mm->mmap_sem held for writing.
2847  * Insert a new vma covering the given region, with the given flags.
2848  * Its pages are supplied by the given array of struct page *.
2849  * The array can be shorter than len >> PAGE_SHIFT if it's null-terminated.
2850  * The region past the last page supplied will always produce SIGBUS.
2851  * The array pointer and the pages it points to are assumed to stay alive
2852  * for as long as this mapping might exist.
2853  */
2854 int install_special_mapping(struct mm_struct *mm,
2855                             unsigned long addr, unsigned long len,
2856                             unsigned long vm_flags, struct page **pages)
2857 {
2858         int ret;
2859         struct vm_area_struct *vma;
2860
2861         vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
2862         if (unlikely(vma == NULL))
2863                 return -ENOMEM;
2864
2865         INIT_LIST_HEAD(&vma->anon_vma_chain);
2866         vma->vm_mm = mm;
2867         vma->vm_start = addr;
2868         vma->vm_end = addr + len;
2869
2870         vma->vm_flags = vm_flags | mm->def_flags | VM_DONTEXPAND;
2871         vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
2872
2873         vma->vm_ops = &special_mapping_vmops;
2874         vma->vm_private_data = pages;
2875
2876         ret = insert_vm_struct(mm, vma);
2877         if (ret)
2878                 goto out;
2879
2880         mm->total_vm += len >> PAGE_SHIFT;
2881
2882         perf_event_mmap(vma);
2883
2884         return 0;
2885
2886 out:
2887         kmem_cache_free(vm_area_cachep, vma);
2888         return ret;
2889 }
2890
2891 static DEFINE_MUTEX(mm_all_locks_mutex);
2892
2893 static void vm_lock_anon_vma(struct mm_struct *mm, struct anon_vma *anon_vma)
2894 {
2895         if (!test_bit(0, (unsigned long *) &anon_vma->root->rb_root.rb_node)) {
2896                 /*
2897                  * The LSB of head.next can't change from under us
2898                  * because we hold the mm_all_locks_mutex.
2899                  */
2900                 down_write_nest_lock(&anon_vma->root->rwsem, &mm->mmap_sem);
2901                 /*
2902                  * We can safely modify head.next after taking the
2903                  * anon_vma->root->rwsem. If some other vma in this mm shares
2904                  * the same anon_vma we won't take it again.
2905                  *
2906                  * No need of atomic instructions here, head.next
2907                  * can't change from under us thanks to the
2908                  * anon_vma->root->rwsem.
2909                  */
2910                 if (__test_and_set_bit(0, (unsigned long *)
2911                                        &anon_vma->root->rb_root.rb_node))
2912                         BUG();
2913         }
2914 }
2915
2916 static void vm_lock_mapping(struct mm_struct *mm, struct address_space *mapping)
2917 {
2918         if (!test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) {
2919                 /*
2920                  * AS_MM_ALL_LOCKS can't change from under us because
2921                  * we hold the mm_all_locks_mutex.
2922                  *
2923                  * Operations on ->flags have to be atomic because
2924                  * even if AS_MM_ALL_LOCKS is stable thanks to the
2925                  * mm_all_locks_mutex, there may be other cpus
2926                  * changing other bitflags in parallel to us.
2927                  */
2928                 if (test_and_set_bit(AS_MM_ALL_LOCKS, &mapping->flags))
2929                         BUG();
2930                 mutex_lock_nest_lock(&mapping->i_mmap_mutex, &mm->mmap_sem);
2931         }
2932 }
2933
2934 /*
2935  * This operation locks against the VM for all pte/vma/mm related
2936  * operations that could ever happen on a certain mm. This includes
2937  * vmtruncate, try_to_unmap, and all page faults.
2938  *
2939  * The caller must take the mmap_sem in write mode before calling
2940  * mm_take_all_locks(). The caller isn't allowed to release the
2941  * mmap_sem until mm_drop_all_locks() returns.
2942  *
2943  * mmap_sem in write mode is required in order to block all operations
2944  * that could modify pagetables and free pages without need of
2945  * altering the vma layout (for example populate_range() with
2946  * nonlinear vmas). It's also needed in write mode to avoid new
2947  * anon_vmas to be associated with existing vmas.
2948  *
2949  * A single task can't take more than one mm_take_all_locks() in a row
2950  * or it would deadlock.
2951  *
2952  * The LSB in anon_vma->rb_root.rb_node and the AS_MM_ALL_LOCKS bitflag in
2953  * mapping->flags avoid to take the same lock twice, if more than one
2954  * vma in this mm is backed by the same anon_vma or address_space.
2955  *
2956  * We can take all the locks in random order because the VM code
2957  * taking i_mmap_mutex or anon_vma->rwsem outside the mmap_sem never
2958  * takes more than one of them in a row. Secondly we're protected
2959  * against a concurrent mm_take_all_locks() by the mm_all_locks_mutex.
2960  *
2961  * mm_take_all_locks() and mm_drop_all_locks are expensive operations
2962  * that may have to take thousand of locks.
2963  *
2964  * mm_take_all_locks() can fail if it's interrupted by signals.
2965  */
2966 int mm_take_all_locks(struct mm_struct *mm)
2967 {
2968         struct vm_area_struct *vma;
2969         struct anon_vma_chain *avc;
2970
2971         BUG_ON(down_read_trylock(&mm->mmap_sem));
2972
2973         mutex_lock(&mm_all_locks_mutex);
2974
2975         for (vma = mm->mmap; vma; vma = vma->vm_next) {
2976                 if (signal_pending(current))
2977                         goto out_unlock;
2978                 if (vma->vm_file && vma->vm_file->f_mapping)
2979                         vm_lock_mapping(mm, vma->vm_file->f_mapping);
2980         }
2981
2982         for (vma = mm->mmap; vma; vma = vma->vm_next) {
2983                 if (signal_pending(current))
2984                         goto out_unlock;
2985                 if (vma->anon_vma)
2986                         list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
2987                                 vm_lock_anon_vma(mm, avc->anon_vma);
2988         }
2989
2990         return 0;
2991
2992 out_unlock:
2993         mm_drop_all_locks(mm);
2994         return -EINTR;
2995 }
2996
2997 static void vm_unlock_anon_vma(struct anon_vma *anon_vma)
2998 {
2999         if (test_bit(0, (unsigned long *) &anon_vma->root->rb_root.rb_node)) {
3000                 /*
3001                  * The LSB of head.next can't change to 0 from under
3002                  * us because we hold the mm_all_locks_mutex.
3003                  *
3004                  * We must however clear the bitflag before unlocking
3005                  * the vma so the users using the anon_vma->rb_root will
3006                  * never see our bitflag.
3007                  *
3008                  * No need of atomic instructions here, head.next
3009                  * can't change from under us until we release the
3010                  * anon_vma->root->rwsem.
3011                  */
3012                 if (!__test_and_clear_bit(0, (unsigned long *)
3013                                           &anon_vma->root->rb_root.rb_node))
3014                         BUG();
3015                 anon_vma_unlock(anon_vma);
3016         }
3017 }
3018
3019 static void vm_unlock_mapping(struct address_space *mapping)
3020 {
3021         if (test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) {
3022                 /*
3023                  * AS_MM_ALL_LOCKS can't change to 0 from under us
3024                  * because we hold the mm_all_locks_mutex.
3025                  */
3026                 mutex_unlock(&mapping->i_mmap_mutex);
3027                 if (!test_and_clear_bit(AS_MM_ALL_LOCKS,
3028                                         &mapping->flags))
3029                         BUG();
3030         }
3031 }
3032
3033 /*
3034  * The mmap_sem cannot be released by the caller until
3035  * mm_drop_all_locks() returns.
3036  */
3037 void mm_drop_all_locks(struct mm_struct *mm)
3038 {
3039         struct vm_area_struct *vma;
3040         struct anon_vma_chain *avc;
3041
3042         BUG_ON(down_read_trylock(&mm->mmap_sem));
3043         BUG_ON(!mutex_is_locked(&mm_all_locks_mutex));
3044
3045         for (vma = mm->mmap; vma; vma = vma->vm_next) {
3046                 if (vma->anon_vma)
3047                         list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
3048                                 vm_unlock_anon_vma(avc->anon_vma);
3049                 if (vma->vm_file && vma->vm_file->f_mapping)
3050                         vm_unlock_mapping(vma->vm_file->f_mapping);
3051         }
3052
3053         mutex_unlock(&mm_all_locks_mutex);
3054 }
3055
3056 /*
3057  * initialise the VMA slab
3058  */
3059 void __init mmap_init(void)
3060 {
3061         int ret;
3062
3063         ret = percpu_counter_init(&vm_committed_as, 0);
3064         VM_BUG_ON(ret);
3065 }