1 // SPDX-License-Identifier: GPL-2.0-only
7 * Address space accounting code <alan@lxorguk.ukuu.org.uk>
10 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
12 #include <linux/kernel.h>
13 #include <linux/slab.h>
14 #include <linux/backing-dev.h>
16 #include <linux/mm_inline.h>
17 #include <linux/shm.h>
18 #include <linux/mman.h>
19 #include <linux/pagemap.h>
20 #include <linux/swap.h>
21 #include <linux/syscalls.h>
22 #include <linux/capability.h>
23 #include <linux/init.h>
24 #include <linux/file.h>
26 #include <linux/personality.h>
27 #include <linux/security.h>
28 #include <linux/hugetlb.h>
29 #include <linux/shmem_fs.h>
30 #include <linux/profile.h>
31 #include <linux/export.h>
32 #include <linux/mount.h>
33 #include <linux/mempolicy.h>
34 #include <linux/rmap.h>
35 #include <linux/mmu_notifier.h>
36 #include <linux/mmdebug.h>
37 #include <linux/perf_event.h>
38 #include <linux/audit.h>
39 #include <linux/khugepaged.h>
40 #include <linux/uprobes.h>
41 #include <linux/notifier.h>
42 #include <linux/memory.h>
43 #include <linux/printk.h>
44 #include <linux/userfaultfd_k.h>
45 #include <linux/moduleparam.h>
46 #include <linux/pkeys.h>
47 #include <linux/oom.h>
48 #include <linux/sched/mm.h>
49 #include <linux/ksm.h>
51 #include <linux/uaccess.h>
52 #include <asm/cacheflush.h>
54 #include <asm/mmu_context.h>
56 #define CREATE_TRACE_POINTS
57 #include <trace/events/mmap.h>
61 #ifndef arch_mmap_check
62 #define arch_mmap_check(addr, len, flags) (0)
65 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_BITS
66 const int mmap_rnd_bits_min = CONFIG_ARCH_MMAP_RND_BITS_MIN;
67 const int mmap_rnd_bits_max = CONFIG_ARCH_MMAP_RND_BITS_MAX;
68 int mmap_rnd_bits __read_mostly = CONFIG_ARCH_MMAP_RND_BITS;
70 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS
71 const int mmap_rnd_compat_bits_min = CONFIG_ARCH_MMAP_RND_COMPAT_BITS_MIN;
72 const int mmap_rnd_compat_bits_max = CONFIG_ARCH_MMAP_RND_COMPAT_BITS_MAX;
73 int mmap_rnd_compat_bits __read_mostly = CONFIG_ARCH_MMAP_RND_COMPAT_BITS;
76 static bool ignore_rlimit_data;
77 core_param(ignore_rlimit_data, ignore_rlimit_data, bool, 0644);
79 static void unmap_region(struct mm_struct *mm, struct maple_tree *mt,
80 struct vm_area_struct *vma, struct vm_area_struct *prev,
81 struct vm_area_struct *next, unsigned long start,
82 unsigned long end, bool mm_wr_locked);
84 static pgprot_t vm_pgprot_modify(pgprot_t oldprot, unsigned long vm_flags)
86 return pgprot_modify(oldprot, vm_get_page_prot(vm_flags));
89 /* Update vma->vm_page_prot to reflect vma->vm_flags. */
90 void vma_set_page_prot(struct vm_area_struct *vma)
92 unsigned long vm_flags = vma->vm_flags;
93 pgprot_t vm_page_prot;
95 vm_page_prot = vm_pgprot_modify(vma->vm_page_prot, vm_flags);
96 if (vma_wants_writenotify(vma, vm_page_prot)) {
97 vm_flags &= ~VM_SHARED;
98 vm_page_prot = vm_pgprot_modify(vm_page_prot, vm_flags);
100 /* remove_protection_ptes reads vma->vm_page_prot without mmap_lock */
101 WRITE_ONCE(vma->vm_page_prot, vm_page_prot);
105 * Requires inode->i_mapping->i_mmap_rwsem
107 static void __remove_shared_vm_struct(struct vm_area_struct *vma,
108 struct file *file, struct address_space *mapping)
110 if (vma->vm_flags & VM_SHARED)
111 mapping_unmap_writable(mapping);
113 flush_dcache_mmap_lock(mapping);
114 vma_interval_tree_remove(vma, &mapping->i_mmap);
115 flush_dcache_mmap_unlock(mapping);
119 * Unlink a file-based vm structure from its interval tree, to hide
120 * vma from rmap and vmtruncate before freeing its page tables.
122 void unlink_file_vma(struct vm_area_struct *vma)
124 struct file *file = vma->vm_file;
127 struct address_space *mapping = file->f_mapping;
128 i_mmap_lock_write(mapping);
129 __remove_shared_vm_struct(vma, file, mapping);
130 i_mmap_unlock_write(mapping);
135 * Close a vm structure and free it.
137 static void remove_vma(struct vm_area_struct *vma, bool unreachable)
140 if (vma->vm_ops && vma->vm_ops->close)
141 vma->vm_ops->close(vma);
144 mpol_put(vma_policy(vma));
151 static inline struct vm_area_struct *vma_prev_limit(struct vma_iterator *vmi,
154 return mas_prev(&vmi->mas, min);
157 static inline int vma_iter_clear_gfp(struct vma_iterator *vmi,
158 unsigned long start, unsigned long end, gfp_t gfp)
160 vmi->mas.index = start;
161 vmi->mas.last = end - 1;
162 mas_store_gfp(&vmi->mas, NULL, gfp);
163 if (unlikely(mas_is_err(&vmi->mas)))
170 * check_brk_limits() - Use platform specific check of range & verify mlock
172 * @addr: The address to check
173 * @len: The size of increase.
175 * Return: 0 on success.
177 static int check_brk_limits(unsigned long addr, unsigned long len)
179 unsigned long mapped_addr;
181 mapped_addr = get_unmapped_area(NULL, addr, len, 0, MAP_FIXED);
182 if (IS_ERR_VALUE(mapped_addr))
185 return mlock_future_check(current->mm, current->mm->def_flags, len);
187 static int do_brk_flags(struct vma_iterator *vmi, struct vm_area_struct *brkvma,
188 unsigned long addr, unsigned long request, unsigned long flags);
189 SYSCALL_DEFINE1(brk, unsigned long, brk)
191 unsigned long newbrk, oldbrk, origbrk;
192 struct mm_struct *mm = current->mm;
193 struct vm_area_struct *brkvma, *next = NULL;
194 unsigned long min_brk;
196 bool downgraded = false;
198 struct vma_iterator vmi;
200 if (mmap_write_lock_killable(mm))
205 #ifdef CONFIG_COMPAT_BRK
207 * CONFIG_COMPAT_BRK can still be overridden by setting
208 * randomize_va_space to 2, which will still cause mm->start_brk
209 * to be arbitrarily shifted
211 if (current->brk_randomized)
212 min_brk = mm->start_brk;
214 min_brk = mm->end_data;
216 min_brk = mm->start_brk;
222 * Check against rlimit here. If this check is done later after the test
223 * of oldbrk with newbrk then it can escape the test and let the data
224 * segment grow beyond its set limit the in case where the limit is
225 * not page aligned -Ram Gupta
227 if (check_data_rlimit(rlimit(RLIMIT_DATA), brk, mm->start_brk,
228 mm->end_data, mm->start_data))
231 newbrk = PAGE_ALIGN(brk);
232 oldbrk = PAGE_ALIGN(mm->brk);
233 if (oldbrk == newbrk) {
239 * Always allow shrinking brk.
240 * do_vma_munmap() may downgrade mmap_lock to read.
242 if (brk <= mm->brk) {
245 /* Search one past newbrk */
246 vma_iter_init(&vmi, mm, newbrk);
247 brkvma = vma_find(&vmi, oldbrk);
248 if (!brkvma || brkvma->vm_start >= oldbrk)
249 goto out; /* mapping intersects with an existing non-brk vma. */
251 * mm->brk must be protected by write mmap_lock.
252 * do_vma_munmap() may downgrade the lock, so update it
253 * before calling do_vma_munmap().
256 ret = do_vma_munmap(&vmi, brkvma, newbrk, oldbrk, &uf, true);
267 if (check_brk_limits(oldbrk, newbrk - oldbrk))
271 * Only check if the next VMA is within the stack_guard_gap of the
274 vma_iter_init(&vmi, mm, oldbrk);
275 next = vma_find(&vmi, newbrk + PAGE_SIZE + stack_guard_gap);
276 if (next && newbrk + PAGE_SIZE > vm_start_gap(next))
279 brkvma = vma_prev_limit(&vmi, mm->start_brk);
280 /* Ok, looks good - let it rip. */
281 if (do_brk_flags(&vmi, brkvma, oldbrk, newbrk - oldbrk, 0) < 0)
287 populate = newbrk > oldbrk && (mm->def_flags & VM_LOCKED) != 0;
289 mmap_read_unlock(mm);
291 mmap_write_unlock(mm);
292 userfaultfd_unmap_complete(mm, &uf);
294 mm_populate(oldbrk, newbrk - oldbrk);
298 mmap_write_unlock(mm);
302 #if defined(CONFIG_DEBUG_VM_MAPLE_TREE)
303 extern void mt_validate(struct maple_tree *mt);
304 extern void mt_dump(const struct maple_tree *mt);
306 /* Validate the maple tree */
307 static void validate_mm_mt(struct mm_struct *mm)
309 struct maple_tree *mt = &mm->mm_mt;
310 struct vm_area_struct *vma_mt;
312 MA_STATE(mas, mt, 0, 0);
314 mt_validate(&mm->mm_mt);
315 mas_for_each(&mas, vma_mt, ULONG_MAX) {
316 if ((vma_mt->vm_start != mas.index) ||
317 (vma_mt->vm_end - 1 != mas.last)) {
318 pr_emerg("issue in %s\n", current->comm);
321 pr_emerg("mt piv: %p %lu - %lu\n", vma_mt,
322 mas.index, mas.last);
323 pr_emerg("mt vma: %p %lu - %lu\n", vma_mt,
324 vma_mt->vm_start, vma_mt->vm_end);
327 if (vma_mt->vm_end != mas.last + 1) {
328 pr_err("vma: %p vma_mt %lu-%lu\tmt %lu-%lu\n",
329 mm, vma_mt->vm_start, vma_mt->vm_end,
330 mas.index, mas.last);
333 VM_BUG_ON_MM(vma_mt->vm_end != mas.last + 1, mm);
334 if (vma_mt->vm_start != mas.index) {
335 pr_err("vma: %p vma_mt %p %lu - %lu doesn't match\n",
336 mm, vma_mt, vma_mt->vm_start, vma_mt->vm_end);
339 VM_BUG_ON_MM(vma_mt->vm_start != mas.index, mm);
344 static void validate_mm(struct mm_struct *mm)
348 struct vm_area_struct *vma;
349 MA_STATE(mas, &mm->mm_mt, 0, 0);
353 mas_for_each(&mas, vma, ULONG_MAX) {
354 #ifdef CONFIG_DEBUG_VM_RB
355 struct anon_vma *anon_vma = vma->anon_vma;
356 struct anon_vma_chain *avc;
359 anon_vma_lock_read(anon_vma);
360 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
361 anon_vma_interval_tree_verify(avc);
362 anon_vma_unlock_read(anon_vma);
367 if (i != mm->map_count) {
368 pr_emerg("map_count %d mas_for_each %d\n", mm->map_count, i);
371 VM_BUG_ON_MM(bug, mm);
374 #else /* !CONFIG_DEBUG_VM_MAPLE_TREE */
375 #define validate_mm_mt(root) do { } while (0)
376 #define validate_mm(mm) do { } while (0)
377 #endif /* CONFIG_DEBUG_VM_MAPLE_TREE */
380 * vma has some anon_vma assigned, and is already inserted on that
381 * anon_vma's interval trees.
383 * Before updating the vma's vm_start / vm_end / vm_pgoff fields, the
384 * vma must be removed from the anon_vma's interval trees using
385 * anon_vma_interval_tree_pre_update_vma().
387 * After the update, the vma will be reinserted using
388 * anon_vma_interval_tree_post_update_vma().
390 * The entire update must be protected by exclusive mmap_lock and by
391 * the root anon_vma's mutex.
394 anon_vma_interval_tree_pre_update_vma(struct vm_area_struct *vma)
396 struct anon_vma_chain *avc;
398 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
399 anon_vma_interval_tree_remove(avc, &avc->anon_vma->rb_root);
403 anon_vma_interval_tree_post_update_vma(struct vm_area_struct *vma)
405 struct anon_vma_chain *avc;
407 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
408 anon_vma_interval_tree_insert(avc, &avc->anon_vma->rb_root);
411 static unsigned long count_vma_pages_range(struct mm_struct *mm,
412 unsigned long addr, unsigned long end)
414 VMA_ITERATOR(vmi, mm, addr);
415 struct vm_area_struct *vma;
416 unsigned long nr_pages = 0;
418 for_each_vma_range(vmi, vma, end) {
419 unsigned long vm_start = max(addr, vma->vm_start);
420 unsigned long vm_end = min(end, vma->vm_end);
422 nr_pages += PHYS_PFN(vm_end - vm_start);
428 static void __vma_link_file(struct vm_area_struct *vma,
429 struct address_space *mapping)
431 if (vma->vm_flags & VM_SHARED)
432 mapping_allow_writable(mapping);
434 flush_dcache_mmap_lock(mapping);
435 vma_interval_tree_insert(vma, &mapping->i_mmap);
436 flush_dcache_mmap_unlock(mapping);
439 static int vma_link(struct mm_struct *mm, struct vm_area_struct *vma)
441 VMA_ITERATOR(vmi, mm, 0);
442 struct address_space *mapping = NULL;
444 if (vma_iter_prealloc(&vmi))
448 mapping = vma->vm_file->f_mapping;
449 i_mmap_lock_write(mapping);
452 vma_iter_store(&vmi, vma);
455 __vma_link_file(vma, mapping);
456 i_mmap_unlock_write(mapping);
465 * init_multi_vma_prep() - Initializer for struct vma_prepare
466 * @vp: The vma_prepare struct
467 * @vma: The vma that will be altered once locked
468 * @next: The next vma if it is to be adjusted
469 * @remove: The first vma to be removed
470 * @remove2: The second vma to be removed
472 static inline void init_multi_vma_prep(struct vma_prepare *vp,
473 struct vm_area_struct *vma, struct vm_area_struct *next,
474 struct vm_area_struct *remove, struct vm_area_struct *remove2)
476 memset(vp, 0, sizeof(struct vma_prepare));
478 vp->anon_vma = vma->anon_vma;
480 vp->remove2 = remove2;
482 if (!vp->anon_vma && next)
483 vp->anon_vma = next->anon_vma;
485 vp->file = vma->vm_file;
487 vp->mapping = vma->vm_file->f_mapping;
492 * init_vma_prep() - Initializer wrapper for vma_prepare struct
493 * @vp: The vma_prepare struct
494 * @vma: The vma that will be altered once locked
496 static inline void init_vma_prep(struct vma_prepare *vp,
497 struct vm_area_struct *vma)
499 init_multi_vma_prep(vp, vma, NULL, NULL, NULL);
504 * vma_prepare() - Helper function for handling locking VMAs prior to altering
505 * @vp: The initialized vma_prepare struct
507 static inline void vma_prepare(struct vma_prepare *vp)
509 vma_start_write(vp->vma);
511 vma_start_write(vp->adj_next);
512 /* vp->insert is always a newly created VMA, no need for locking */
514 vma_start_write(vp->remove);
516 vma_start_write(vp->remove2);
519 uprobe_munmap(vp->vma, vp->vma->vm_start, vp->vma->vm_end);
522 uprobe_munmap(vp->adj_next, vp->adj_next->vm_start,
523 vp->adj_next->vm_end);
525 i_mmap_lock_write(vp->mapping);
526 if (vp->insert && vp->insert->vm_file) {
528 * Put into interval tree now, so instantiated pages
529 * are visible to arm/parisc __flush_dcache_page
530 * throughout; but we cannot insert into address
531 * space until vma start or end is updated.
533 __vma_link_file(vp->insert,
534 vp->insert->vm_file->f_mapping);
539 anon_vma_lock_write(vp->anon_vma);
540 anon_vma_interval_tree_pre_update_vma(vp->vma);
542 anon_vma_interval_tree_pre_update_vma(vp->adj_next);
546 flush_dcache_mmap_lock(vp->mapping);
547 vma_interval_tree_remove(vp->vma, &vp->mapping->i_mmap);
549 vma_interval_tree_remove(vp->adj_next,
550 &vp->mapping->i_mmap);
556 * vma_complete- Helper function for handling the unlocking after altering VMAs,
557 * or for inserting a VMA.
559 * @vp: The vma_prepare struct
560 * @vmi: The vma iterator
563 static inline void vma_complete(struct vma_prepare *vp,
564 struct vma_iterator *vmi, struct mm_struct *mm)
568 vma_interval_tree_insert(vp->adj_next,
569 &vp->mapping->i_mmap);
570 vma_interval_tree_insert(vp->vma, &vp->mapping->i_mmap);
571 flush_dcache_mmap_unlock(vp->mapping);
574 if (vp->remove && vp->file) {
575 __remove_shared_vm_struct(vp->remove, vp->file, vp->mapping);
577 __remove_shared_vm_struct(vp->remove2, vp->file,
579 } else if (vp->insert) {
581 * split_vma has split insert from vma, and needs
582 * us to insert it before dropping the locks
583 * (it may either follow vma or precede it).
585 vma_iter_store(vmi, vp->insert);
590 anon_vma_interval_tree_post_update_vma(vp->vma);
592 anon_vma_interval_tree_post_update_vma(vp->adj_next);
593 anon_vma_unlock_write(vp->anon_vma);
597 i_mmap_unlock_write(vp->mapping);
598 uprobe_mmap(vp->vma);
601 uprobe_mmap(vp->adj_next);
606 vma_mark_detached(vp->remove, true);
608 uprobe_munmap(vp->remove, vp->remove->vm_start,
612 if (vp->remove->anon_vma)
613 anon_vma_merge(vp->vma, vp->remove);
615 mpol_put(vma_policy(vp->remove));
617 WARN_ON_ONCE(vp->vma->vm_end < vp->remove->vm_end);
618 vm_area_free(vp->remove);
621 * In mprotect's case 6 (see comments on vma_merge),
622 * we are removing both mid and next vmas
625 vp->remove = vp->remove2;
630 if (vp->insert && vp->file)
631 uprobe_mmap(vp->insert);
635 * dup_anon_vma() - Helper function to duplicate anon_vma
636 * @dst: The destination VMA
637 * @src: The source VMA
639 * Returns: 0 on success.
641 static inline int dup_anon_vma(struct vm_area_struct *dst,
642 struct vm_area_struct *src)
645 * Easily overlooked: when mprotect shifts the boundary, make sure the
646 * expanding vma has anon_vma set if the shrinking vma had, to cover any
647 * anon pages imported.
649 if (src->anon_vma && !dst->anon_vma) {
650 dst->anon_vma = src->anon_vma;
651 return anon_vma_clone(dst, src);
658 * vma_expand - Expand an existing VMA
660 * @vmi: The vma iterator
661 * @vma: The vma to expand
662 * @start: The start of the vma
663 * @end: The exclusive end of the vma
664 * @pgoff: The page offset of vma
665 * @next: The current of next vma.
667 * Expand @vma to @start and @end. Can expand off the start and end. Will
668 * expand over @next if it's different from @vma and @end == @next->vm_end.
669 * Checking if the @vma can expand and merge with @next needs to be handled by
672 * Returns: 0 on success
674 int vma_expand(struct vma_iterator *vmi, struct vm_area_struct *vma,
675 unsigned long start, unsigned long end, pgoff_t pgoff,
676 struct vm_area_struct *next)
678 bool remove_next = false;
679 struct vma_prepare vp;
681 if (next && (vma != next) && (end == next->vm_end)) {
685 ret = dup_anon_vma(vma, next);
690 init_multi_vma_prep(&vp, vma, NULL, remove_next ? next : NULL, NULL);
691 /* Not merging but overwriting any part of next is not handled. */
692 VM_WARN_ON(next && !vp.remove &&
693 next != vma && end > next->vm_start);
694 /* Only handles expanding */
695 VM_WARN_ON(vma->vm_start < start || vma->vm_end > end);
697 if (vma_iter_prealloc(vmi))
701 vma_adjust_trans_huge(vma, start, end, 0);
702 /* VMA iterator points to previous, so set to start if necessary */
703 if (vma_iter_addr(vmi) != start)
704 vma_iter_set(vmi, start);
706 vma->vm_start = start;
708 vma->vm_pgoff = pgoff;
709 /* Note: mas must be pointing to the expanding VMA */
710 vma_iter_store(vmi, vma);
712 vma_complete(&vp, vmi, vma->vm_mm);
713 validate_mm(vma->vm_mm);
721 * vma_shrink() - Reduce an existing VMAs memory area
722 * @vmi: The vma iterator
723 * @vma: The VMA to modify
724 * @start: The new start
727 * Returns: 0 on success, -ENOMEM otherwise
729 int vma_shrink(struct vma_iterator *vmi, struct vm_area_struct *vma,
730 unsigned long start, unsigned long end, pgoff_t pgoff)
732 struct vma_prepare vp;
734 WARN_ON((vma->vm_start != start) && (vma->vm_end != end));
736 if (vma_iter_prealloc(vmi))
739 init_vma_prep(&vp, vma);
741 vma_adjust_trans_huge(vma, start, end, 0);
743 if (vma->vm_start < start)
744 vma_iter_clear(vmi, vma->vm_start, start);
746 if (vma->vm_end > end)
747 vma_iter_clear(vmi, end, vma->vm_end);
749 vma->vm_start = start;
751 vma->vm_pgoff = pgoff;
752 vma_complete(&vp, vmi, vma->vm_mm);
753 validate_mm(vma->vm_mm);
758 * If the vma has a ->close operation then the driver probably needs to release
759 * per-vma resources, so we don't attempt to merge those if the caller indicates
760 * the current vma may be removed as part of the merge.
762 static inline bool is_mergeable_vma(struct vm_area_struct *vma,
763 struct file *file, unsigned long vm_flags,
764 struct vm_userfaultfd_ctx vm_userfaultfd_ctx,
765 struct anon_vma_name *anon_name, bool may_remove_vma)
768 * VM_SOFTDIRTY should not prevent from VMA merging, if we
769 * match the flags but dirty bit -- the caller should mark
770 * merged VMA as dirty. If dirty bit won't be excluded from
771 * comparison, we increase pressure on the memory system forcing
772 * the kernel to generate new VMAs when old one could be
775 if ((vma->vm_flags ^ vm_flags) & ~VM_SOFTDIRTY)
777 if (vma->vm_file != file)
779 if (may_remove_vma && vma->vm_ops && vma->vm_ops->close)
781 if (!is_mergeable_vm_userfaultfd_ctx(vma, vm_userfaultfd_ctx))
783 if (!anon_vma_name_eq(anon_vma_name(vma), anon_name))
788 static inline bool is_mergeable_anon_vma(struct anon_vma *anon_vma1,
789 struct anon_vma *anon_vma2, struct vm_area_struct *vma)
792 * The list_is_singular() test is to avoid merging VMA cloned from
793 * parents. This can improve scalability caused by anon_vma lock.
795 if ((!anon_vma1 || !anon_vma2) && (!vma ||
796 list_is_singular(&vma->anon_vma_chain)))
798 return anon_vma1 == anon_vma2;
802 * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
803 * in front of (at a lower virtual address and file offset than) the vma.
805 * We cannot merge two vmas if they have differently assigned (non-NULL)
806 * anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
808 * We don't check here for the merged mmap wrapping around the end of pagecache
809 * indices (16TB on ia32) because do_mmap() does not permit mmap's which
810 * wrap, nor mmaps which cover the final page at index -1UL.
812 * We assume the vma may be removed as part of the merge.
815 can_vma_merge_before(struct vm_area_struct *vma, unsigned long vm_flags,
816 struct anon_vma *anon_vma, struct file *file,
817 pgoff_t vm_pgoff, struct vm_userfaultfd_ctx vm_userfaultfd_ctx,
818 struct anon_vma_name *anon_name)
820 if (is_mergeable_vma(vma, file, vm_flags, vm_userfaultfd_ctx, anon_name, true) &&
821 is_mergeable_anon_vma(anon_vma, vma->anon_vma, vma)) {
822 if (vma->vm_pgoff == vm_pgoff)
829 * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
830 * beyond (at a higher virtual address and file offset than) the vma.
832 * We cannot merge two vmas if they have differently assigned (non-NULL)
833 * anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
835 * We assume that vma is not removed as part of the merge.
838 can_vma_merge_after(struct vm_area_struct *vma, unsigned long vm_flags,
839 struct anon_vma *anon_vma, struct file *file,
840 pgoff_t vm_pgoff, struct vm_userfaultfd_ctx vm_userfaultfd_ctx,
841 struct anon_vma_name *anon_name)
843 if (is_mergeable_vma(vma, file, vm_flags, vm_userfaultfd_ctx, anon_name, false) &&
844 is_mergeable_anon_vma(anon_vma, vma->anon_vma, vma)) {
846 vm_pglen = vma_pages(vma);
847 if (vma->vm_pgoff + vm_pglen == vm_pgoff)
854 * Given a mapping request (addr,end,vm_flags,file,pgoff,anon_name),
855 * figure out whether that can be merged with its predecessor or its
856 * successor. Or both (it neatly fills a hole).
858 * In most cases - when called for mmap, brk or mremap - [addr,end) is
859 * certain not to be mapped by the time vma_merge is called; but when
860 * called for mprotect, it is certain to be already mapped (either at
861 * an offset within prev, or at the start of next), and the flags of
862 * this area are about to be changed to vm_flags - and the no-change
863 * case has already been eliminated.
865 * The following mprotect cases have to be considered, where **** is
866 * the area passed down from mprotect_fixup, never extending beyond one
867 * vma, PPPP is the previous vma, CCCC is a concurrent vma that starts
868 * at the same address as **** and is of the same or larger span, and
869 * NNNN the next vma after ****:
872 * PPPPPPNNNNNN PPPPPPNNNNNN PPPPPPCCCCCC
873 * cannot merge might become might become
874 * PPNNNNNNNNNN PPPPPPPPPPCC
875 * mmap, brk or case 4 below case 5 below
878 * PPPP NNNN PPPPCCCCNNNN
879 * might become might become
880 * PPPPPPPPPPPP 1 or PPPPPPPPPPPP 6 or
881 * PPPPPPPPNNNN 2 or PPPPPPPPNNNN 7 or
882 * PPPPNNNNNNNN 3 PPPPNNNNNNNN 8
884 * It is important for case 8 that the vma CCCC overlapping the
885 * region **** is never going to extended over NNNN. Instead NNNN must
886 * be extended in region **** and CCCC must be removed. This way in
887 * all cases where vma_merge succeeds, the moment vma_merge drops the
888 * rmap_locks, the properties of the merged vma will be already
889 * correct for the whole merged range. Some of those properties like
890 * vm_page_prot/vm_flags may be accessed by rmap_walks and they must
891 * be correct for the whole merged range immediately after the
892 * rmap_locks are released. Otherwise if NNNN would be removed and
893 * CCCC would be extended over the NNNN range, remove_migration_ptes
894 * or other rmap walkers (if working on addresses beyond the "end"
895 * parameter) may establish ptes with the wrong permissions of CCCC
896 * instead of the right permissions of NNNN.
899 * PPPP is represented by *prev
900 * CCCC is represented by *curr or not represented at all (NULL)
901 * NNNN is represented by *next or not represented at all (NULL)
902 * **** is not represented - it will be merged and the vma containing the
903 * area is returned, or the function will return NULL
905 struct vm_area_struct *vma_merge(struct vma_iterator *vmi, struct mm_struct *mm,
906 struct vm_area_struct *prev, unsigned long addr,
907 unsigned long end, unsigned long vm_flags,
908 struct anon_vma *anon_vma, struct file *file,
909 pgoff_t pgoff, struct mempolicy *policy,
910 struct vm_userfaultfd_ctx vm_userfaultfd_ctx,
911 struct anon_vma_name *anon_name)
913 struct vm_area_struct *curr, *next, *res;
914 struct vm_area_struct *vma, *adjust, *remove, *remove2;
915 struct vma_prepare vp;
918 bool merge_prev = false;
919 bool merge_next = false;
920 bool vma_expanded = false;
921 unsigned long vma_start = addr;
922 unsigned long vma_end = end;
923 pgoff_t pglen = (end - addr) >> PAGE_SHIFT;
928 * We later require that vma->vm_flags == vm_flags,
929 * so this tests vma->vm_flags & VM_SPECIAL, too.
931 if (vm_flags & VM_SPECIAL)
934 /* Does the input range span an existing VMA? (cases 5 - 8) */
935 curr = find_vma_intersection(mm, prev ? prev->vm_end : 0, end);
937 if (!curr || /* cases 1 - 4 */
938 end == curr->vm_end) /* cases 6 - 8, adjacent VMA */
939 next = vma_lookup(mm, end);
941 next = NULL; /* case 5 */
944 vma_start = prev->vm_start;
945 vma_pgoff = prev->vm_pgoff;
947 /* Can we merge the predecessor? */
948 if (addr == prev->vm_end && mpol_equal(vma_policy(prev), policy)
949 && can_vma_merge_after(prev, vm_flags, anon_vma, file,
950 pgoff, vm_userfaultfd_ctx, anon_name)) {
956 /* Can we merge the successor? */
957 if (next && mpol_equal(policy, vma_policy(next)) &&
958 can_vma_merge_before(next, vm_flags, anon_vma, file, pgoff+pglen,
959 vm_userfaultfd_ctx, anon_name)) {
963 /* Verify some invariant that must be enforced by the caller. */
964 VM_WARN_ON(prev && addr <= prev->vm_start);
965 VM_WARN_ON(curr && (addr != curr->vm_start || end > curr->vm_end));
966 VM_WARN_ON(addr >= end);
968 if (!merge_prev && !merge_next)
969 return NULL; /* Not mergeable. */
972 remove = remove2 = adjust = NULL;
974 /* Can we merge both the predecessor and the successor? */
975 if (merge_prev && merge_next &&
976 is_mergeable_anon_vma(prev->anon_vma, next->anon_vma, NULL)) {
977 remove = next; /* case 1 */
978 vma_end = next->vm_end;
979 err = dup_anon_vma(prev, next);
980 if (curr) { /* case 6 */
984 err = dup_anon_vma(prev, curr);
986 } else if (merge_prev) { /* case 2 */
988 err = dup_anon_vma(prev, curr);
989 if (end == curr->vm_end) { /* case 7 */
991 } else { /* case 5 */
993 adj_start = (end - curr->vm_start);
996 } else { /* merge_next */
998 if (prev && addr < prev->vm_end) { /* case 4 */
1001 adj_start = -(prev->vm_end - addr);
1002 err = dup_anon_vma(next, prev);
1005 * Note that cases 3 and 8 are the ONLY ones where prev
1006 * is permitted to be (but is not necessarily) NULL.
1008 vma = next; /* case 3 */
1010 vma_end = next->vm_end;
1011 vma_pgoff = next->vm_pgoff - pglen;
1012 if (curr) { /* case 8 */
1013 vma_pgoff = curr->vm_pgoff;
1015 err = dup_anon_vma(next, curr);
1020 /* Error in anon_vma clone. */
1024 if (vma_iter_prealloc(vmi))
1027 init_multi_vma_prep(&vp, vma, adjust, remove, remove2);
1028 VM_WARN_ON(vp.anon_vma && adjust && adjust->anon_vma &&
1029 vp.anon_vma != adjust->anon_vma);
1032 vma_adjust_trans_huge(vma, vma_start, vma_end, adj_start);
1033 if (vma_start < vma->vm_start || vma_end > vma->vm_end)
1034 vma_expanded = true;
1036 vma->vm_start = vma_start;
1037 vma->vm_end = vma_end;
1038 vma->vm_pgoff = vma_pgoff;
1041 vma_iter_store(vmi, vma);
1044 adjust->vm_start += adj_start;
1045 adjust->vm_pgoff += adj_start >> PAGE_SHIFT;
1046 if (adj_start < 0) {
1047 WARN_ON(vma_expanded);
1048 vma_iter_store(vmi, next);
1052 vma_complete(&vp, vmi, mm);
1055 khugepaged_enter_vma(res, vm_flags);
1061 * Rough compatibility check to quickly see if it's even worth looking
1062 * at sharing an anon_vma.
1064 * They need to have the same vm_file, and the flags can only differ
1065 * in things that mprotect may change.
1067 * NOTE! The fact that we share an anon_vma doesn't _have_ to mean that
1068 * we can merge the two vma's. For example, we refuse to merge a vma if
1069 * there is a vm_ops->close() function, because that indicates that the
1070 * driver is doing some kind of reference counting. But that doesn't
1071 * really matter for the anon_vma sharing case.
1073 static int anon_vma_compatible(struct vm_area_struct *a, struct vm_area_struct *b)
1075 return a->vm_end == b->vm_start &&
1076 mpol_equal(vma_policy(a), vma_policy(b)) &&
1077 a->vm_file == b->vm_file &&
1078 !((a->vm_flags ^ b->vm_flags) & ~(VM_ACCESS_FLAGS | VM_SOFTDIRTY)) &&
1079 b->vm_pgoff == a->vm_pgoff + ((b->vm_start - a->vm_start) >> PAGE_SHIFT);
1083 * Do some basic sanity checking to see if we can re-use the anon_vma
1084 * from 'old'. The 'a'/'b' vma's are in VM order - one of them will be
1085 * the same as 'old', the other will be the new one that is trying
1086 * to share the anon_vma.
1088 * NOTE! This runs with mmap_lock held for reading, so it is possible that
1089 * the anon_vma of 'old' is concurrently in the process of being set up
1090 * by another page fault trying to merge _that_. But that's ok: if it
1091 * is being set up, that automatically means that it will be a singleton
1092 * acceptable for merging, so we can do all of this optimistically. But
1093 * we do that READ_ONCE() to make sure that we never re-load the pointer.
1095 * IOW: that the "list_is_singular()" test on the anon_vma_chain only
1096 * matters for the 'stable anon_vma' case (ie the thing we want to avoid
1097 * is to return an anon_vma that is "complex" due to having gone through
1100 * We also make sure that the two vma's are compatible (adjacent,
1101 * and with the same memory policies). That's all stable, even with just
1102 * a read lock on the mmap_lock.
1104 static struct anon_vma *reusable_anon_vma(struct vm_area_struct *old, struct vm_area_struct *a, struct vm_area_struct *b)
1106 if (anon_vma_compatible(a, b)) {
1107 struct anon_vma *anon_vma = READ_ONCE(old->anon_vma);
1109 if (anon_vma && list_is_singular(&old->anon_vma_chain))
1116 * find_mergeable_anon_vma is used by anon_vma_prepare, to check
1117 * neighbouring vmas for a suitable anon_vma, before it goes off
1118 * to allocate a new anon_vma. It checks because a repetitive
1119 * sequence of mprotects and faults may otherwise lead to distinct
1120 * anon_vmas being allocated, preventing vma merge in subsequent
1123 struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *vma)
1125 MA_STATE(mas, &vma->vm_mm->mm_mt, vma->vm_end, vma->vm_end);
1126 struct anon_vma *anon_vma = NULL;
1127 struct vm_area_struct *prev, *next;
1129 /* Try next first. */
1130 next = mas_walk(&mas);
1132 anon_vma = reusable_anon_vma(next, vma, next);
1137 prev = mas_prev(&mas, 0);
1138 VM_BUG_ON_VMA(prev != vma, vma);
1139 prev = mas_prev(&mas, 0);
1140 /* Try prev next. */
1142 anon_vma = reusable_anon_vma(prev, prev, vma);
1145 * We might reach here with anon_vma == NULL if we can't find
1146 * any reusable anon_vma.
1147 * There's no absolute need to look only at touching neighbours:
1148 * we could search further afield for "compatible" anon_vmas.
1149 * But it would probably just be a waste of time searching,
1150 * or lead to too many vmas hanging off the same anon_vma.
1151 * We're trying to allow mprotect remerging later on,
1152 * not trying to minimize memory used for anon_vmas.
1158 * If a hint addr is less than mmap_min_addr change hint to be as
1159 * low as possible but still greater than mmap_min_addr
1161 static inline unsigned long round_hint_to_min(unsigned long hint)
1164 if (((void *)hint != NULL) &&
1165 (hint < mmap_min_addr))
1166 return PAGE_ALIGN(mmap_min_addr);
1170 int mlock_future_check(struct mm_struct *mm, unsigned long flags,
1173 unsigned long locked, lock_limit;
1175 /* mlock MCL_FUTURE? */
1176 if (flags & VM_LOCKED) {
1177 locked = len >> PAGE_SHIFT;
1178 locked += mm->locked_vm;
1179 lock_limit = rlimit(RLIMIT_MEMLOCK);
1180 lock_limit >>= PAGE_SHIFT;
1181 if (locked > lock_limit && !capable(CAP_IPC_LOCK))
1187 static inline u64 file_mmap_size_max(struct file *file, struct inode *inode)
1189 if (S_ISREG(inode->i_mode))
1190 return MAX_LFS_FILESIZE;
1192 if (S_ISBLK(inode->i_mode))
1193 return MAX_LFS_FILESIZE;
1195 if (S_ISSOCK(inode->i_mode))
1196 return MAX_LFS_FILESIZE;
1198 /* Special "we do even unsigned file positions" case */
1199 if (file->f_mode & FMODE_UNSIGNED_OFFSET)
1202 /* Yes, random drivers might want more. But I'm tired of buggy drivers */
1206 static inline bool file_mmap_ok(struct file *file, struct inode *inode,
1207 unsigned long pgoff, unsigned long len)
1209 u64 maxsize = file_mmap_size_max(file, inode);
1211 if (maxsize && len > maxsize)
1214 if (pgoff > maxsize >> PAGE_SHIFT)
1220 * The caller must write-lock current->mm->mmap_lock.
1222 unsigned long do_mmap(struct file *file, unsigned long addr,
1223 unsigned long len, unsigned long prot,
1224 unsigned long flags, unsigned long pgoff,
1225 unsigned long *populate, struct list_head *uf)
1227 struct mm_struct *mm = current->mm;
1228 vm_flags_t vm_flags;
1238 * Does the application expect PROT_READ to imply PROT_EXEC?
1240 * (the exception is when the underlying filesystem is noexec
1241 * mounted, in which case we dont add PROT_EXEC.)
1243 if ((prot & PROT_READ) && (current->personality & READ_IMPLIES_EXEC))
1244 if (!(file && path_noexec(&file->f_path)))
1247 /* force arch specific MAP_FIXED handling in get_unmapped_area */
1248 if (flags & MAP_FIXED_NOREPLACE)
1251 if (!(flags & MAP_FIXED))
1252 addr = round_hint_to_min(addr);
1254 /* Careful about overflows.. */
1255 len = PAGE_ALIGN(len);
1259 /* offset overflow? */
1260 if ((pgoff + (len >> PAGE_SHIFT)) < pgoff)
1263 /* Too many mappings? */
1264 if (mm->map_count > sysctl_max_map_count)
1267 /* Obtain the address to map to. we verify (or select) it and ensure
1268 * that it represents a valid section of the address space.
1270 addr = get_unmapped_area(file, addr, len, pgoff, flags);
1271 if (IS_ERR_VALUE(addr))
1274 if (flags & MAP_FIXED_NOREPLACE) {
1275 if (find_vma_intersection(mm, addr, addr + len))
1279 if (prot == PROT_EXEC) {
1280 pkey = execute_only_pkey(mm);
1285 /* Do simple checking here so the lower-level routines won't have
1286 * to. we assume access permissions have been handled by the open
1287 * of the memory object, so we don't do any here.
1289 vm_flags = calc_vm_prot_bits(prot, pkey) | calc_vm_flag_bits(flags) |
1290 mm->def_flags | VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC;
1292 if (flags & MAP_LOCKED)
1293 if (!can_do_mlock())
1296 if (mlock_future_check(mm, vm_flags, len))
1300 struct inode *inode = file_inode(file);
1301 unsigned long flags_mask;
1303 if (!file_mmap_ok(file, inode, pgoff, len))
1306 flags_mask = LEGACY_MAP_MASK | file->f_op->mmap_supported_flags;
1308 switch (flags & MAP_TYPE) {
1311 * Force use of MAP_SHARED_VALIDATE with non-legacy
1312 * flags. E.g. MAP_SYNC is dangerous to use with
1313 * MAP_SHARED as you don't know which consistency model
1314 * you will get. We silently ignore unsupported flags
1315 * with MAP_SHARED to preserve backward compatibility.
1317 flags &= LEGACY_MAP_MASK;
1319 case MAP_SHARED_VALIDATE:
1320 if (flags & ~flags_mask)
1322 if (prot & PROT_WRITE) {
1323 if (!(file->f_mode & FMODE_WRITE))
1325 if (IS_SWAPFILE(file->f_mapping->host))
1330 * Make sure we don't allow writing to an append-only
1333 if (IS_APPEND(inode) && (file->f_mode & FMODE_WRITE))
1336 vm_flags |= VM_SHARED | VM_MAYSHARE;
1337 if (!(file->f_mode & FMODE_WRITE))
1338 vm_flags &= ~(VM_MAYWRITE | VM_SHARED);
1341 if (!(file->f_mode & FMODE_READ))
1343 if (path_noexec(&file->f_path)) {
1344 if (vm_flags & VM_EXEC)
1346 vm_flags &= ~VM_MAYEXEC;
1349 if (!file->f_op->mmap)
1351 if (vm_flags & (VM_GROWSDOWN|VM_GROWSUP))
1359 switch (flags & MAP_TYPE) {
1361 if (vm_flags & (VM_GROWSDOWN|VM_GROWSUP))
1367 vm_flags |= VM_SHARED | VM_MAYSHARE;
1371 * Set pgoff according to addr for anon_vma.
1373 pgoff = addr >> PAGE_SHIFT;
1381 * Set 'VM_NORESERVE' if we should not account for the
1382 * memory use of this mapping.
1384 if (flags & MAP_NORESERVE) {
1385 /* We honor MAP_NORESERVE if allowed to overcommit */
1386 if (sysctl_overcommit_memory != OVERCOMMIT_NEVER)
1387 vm_flags |= VM_NORESERVE;
1389 /* hugetlb applies strict overcommit unless MAP_NORESERVE */
1390 if (file && is_file_hugepages(file))
1391 vm_flags |= VM_NORESERVE;
1394 addr = mmap_region(file, addr, len, vm_flags, pgoff, uf);
1395 if (!IS_ERR_VALUE(addr) &&
1396 ((vm_flags & VM_LOCKED) ||
1397 (flags & (MAP_POPULATE | MAP_NONBLOCK)) == MAP_POPULATE))
1402 unsigned long ksys_mmap_pgoff(unsigned long addr, unsigned long len,
1403 unsigned long prot, unsigned long flags,
1404 unsigned long fd, unsigned long pgoff)
1406 struct file *file = NULL;
1407 unsigned long retval;
1409 if (!(flags & MAP_ANONYMOUS)) {
1410 audit_mmap_fd(fd, flags);
1414 if (is_file_hugepages(file)) {
1415 len = ALIGN(len, huge_page_size(hstate_file(file)));
1416 } else if (unlikely(flags & MAP_HUGETLB)) {
1420 } else if (flags & MAP_HUGETLB) {
1423 hs = hstate_sizelog((flags >> MAP_HUGE_SHIFT) & MAP_HUGE_MASK);
1427 len = ALIGN(len, huge_page_size(hs));
1429 * VM_NORESERVE is used because the reservations will be
1430 * taken when vm_ops->mmap() is called
1432 file = hugetlb_file_setup(HUGETLB_ANON_FILE, len,
1434 HUGETLB_ANONHUGE_INODE,
1435 (flags >> MAP_HUGE_SHIFT) & MAP_HUGE_MASK);
1437 return PTR_ERR(file);
1440 retval = vm_mmap_pgoff(file, addr, len, prot, flags, pgoff);
1447 SYSCALL_DEFINE6(mmap_pgoff, unsigned long, addr, unsigned long, len,
1448 unsigned long, prot, unsigned long, flags,
1449 unsigned long, fd, unsigned long, pgoff)
1451 return ksys_mmap_pgoff(addr, len, prot, flags, fd, pgoff);
1454 #ifdef __ARCH_WANT_SYS_OLD_MMAP
1455 struct mmap_arg_struct {
1459 unsigned long flags;
1461 unsigned long offset;
1464 SYSCALL_DEFINE1(old_mmap, struct mmap_arg_struct __user *, arg)
1466 struct mmap_arg_struct a;
1468 if (copy_from_user(&a, arg, sizeof(a)))
1470 if (offset_in_page(a.offset))
1473 return ksys_mmap_pgoff(a.addr, a.len, a.prot, a.flags, a.fd,
1474 a.offset >> PAGE_SHIFT);
1476 #endif /* __ARCH_WANT_SYS_OLD_MMAP */
1479 * Some shared mappings will want the pages marked read-only
1480 * to track write events. If so, we'll downgrade vm_page_prot
1481 * to the private version (using protection_map[] without the
1484 int vma_wants_writenotify(struct vm_area_struct *vma, pgprot_t vm_page_prot)
1486 vm_flags_t vm_flags = vma->vm_flags;
1487 const struct vm_operations_struct *vm_ops = vma->vm_ops;
1489 /* If it was private or non-writable, the write bit is already clear */
1490 if ((vm_flags & (VM_WRITE|VM_SHARED)) != ((VM_WRITE|VM_SHARED)))
1493 /* The backer wishes to know when pages are first written to? */
1494 if (vm_ops && (vm_ops->page_mkwrite || vm_ops->pfn_mkwrite))
1497 /* The open routine did something to the protections that pgprot_modify
1498 * won't preserve? */
1499 if (pgprot_val(vm_page_prot) !=
1500 pgprot_val(vm_pgprot_modify(vm_page_prot, vm_flags)))
1504 * Do we need to track softdirty? hugetlb does not support softdirty
1507 if (vma_soft_dirty_enabled(vma) && !is_vm_hugetlb_page(vma))
1510 /* Do we need write faults for uffd-wp tracking? */
1511 if (userfaultfd_wp(vma))
1514 /* Specialty mapping? */
1515 if (vm_flags & VM_PFNMAP)
1518 /* Can the mapping track the dirty pages? */
1519 return vma->vm_file && vma->vm_file->f_mapping &&
1520 mapping_can_writeback(vma->vm_file->f_mapping);
1524 * We account for memory if it's a private writeable mapping,
1525 * not hugepages and VM_NORESERVE wasn't set.
1527 static inline int accountable_mapping(struct file *file, vm_flags_t vm_flags)
1530 * hugetlb has its own accounting separate from the core VM
1531 * VM_HUGETLB may not be set yet so we cannot check for that flag.
1533 if (file && is_file_hugepages(file))
1536 return (vm_flags & (VM_NORESERVE | VM_SHARED | VM_WRITE)) == VM_WRITE;
1540 * unmapped_area() - Find an area between the low_limit and the high_limit with
1541 * the correct alignment and offset, all from @info. Note: current->mm is used
1544 * @info: The unmapped area information including the range [low_limit -
1545 * high_limit), the alignment offset and mask.
1547 * Return: A memory address or -ENOMEM.
1549 static unsigned long unmapped_area(struct vm_unmapped_area_info *info)
1551 unsigned long length, gap;
1552 unsigned long low_limit, high_limit;
1553 struct vm_area_struct *tmp;
1555 MA_STATE(mas, ¤t->mm->mm_mt, 0, 0);
1557 /* Adjust search length to account for worst case alignment overhead */
1558 length = info->length + info->align_mask;
1559 if (length < info->length)
1562 low_limit = info->low_limit;
1563 if (low_limit < mmap_min_addr)
1564 low_limit = mmap_min_addr;
1565 high_limit = info->high_limit;
1567 if (mas_empty_area(&mas, low_limit, high_limit - 1, length))
1571 gap += (info->align_offset - gap) & info->align_mask;
1572 tmp = mas_next(&mas, ULONG_MAX);
1573 if (tmp && (tmp->vm_flags & VM_GROWSDOWN)) { /* Avoid prev check if possible */
1574 if (vm_start_gap(tmp) < gap + length - 1) {
1575 low_limit = tmp->vm_end;
1580 tmp = mas_prev(&mas, 0);
1581 if (tmp && vm_end_gap(tmp) > gap) {
1582 low_limit = vm_end_gap(tmp);
1592 * unmapped_area_topdown() - Find an area between the low_limit and the
1593 * high_limit with the correct alignment and offset at the highest available
1594 * address, all from @info. Note: current->mm is used for the search.
1596 * @info: The unmapped area information including the range [low_limit -
1597 * high_limit), the alignment offset and mask.
1599 * Return: A memory address or -ENOMEM.
1601 static unsigned long unmapped_area_topdown(struct vm_unmapped_area_info *info)
1603 unsigned long length, gap, gap_end;
1604 unsigned long low_limit, high_limit;
1605 struct vm_area_struct *tmp;
1607 MA_STATE(mas, ¤t->mm->mm_mt, 0, 0);
1608 /* Adjust search length to account for worst case alignment overhead */
1609 length = info->length + info->align_mask;
1610 if (length < info->length)
1613 low_limit = info->low_limit;
1614 if (low_limit < mmap_min_addr)
1615 low_limit = mmap_min_addr;
1616 high_limit = info->high_limit;
1618 if (mas_empty_area_rev(&mas, low_limit, high_limit - 1, length))
1621 gap = mas.last + 1 - info->length;
1622 gap -= (gap - info->align_offset) & info->align_mask;
1624 tmp = mas_next(&mas, ULONG_MAX);
1625 if (tmp && (tmp->vm_flags & VM_GROWSDOWN)) { /* Avoid prev check if possible */
1626 if (vm_start_gap(tmp) <= gap_end) {
1627 high_limit = vm_start_gap(tmp);
1632 tmp = mas_prev(&mas, 0);
1633 if (tmp && vm_end_gap(tmp) > gap) {
1634 high_limit = tmp->vm_start;
1644 * Search for an unmapped address range.
1646 * We are looking for a range that:
1647 * - does not intersect with any VMA;
1648 * - is contained within the [low_limit, high_limit) interval;
1649 * - is at least the desired size.
1650 * - satisfies (begin_addr & align_mask) == (align_offset & align_mask)
1652 unsigned long vm_unmapped_area(struct vm_unmapped_area_info *info)
1656 if (info->flags & VM_UNMAPPED_AREA_TOPDOWN)
1657 addr = unmapped_area_topdown(info);
1659 addr = unmapped_area(info);
1661 trace_vm_unmapped_area(addr, info);
1665 /* Get an address range which is currently unmapped.
1666 * For shmat() with addr=0.
1668 * Ugly calling convention alert:
1669 * Return value with the low bits set means error value,
1671 * if (ret & ~PAGE_MASK)
1674 * This function "knows" that -ENOMEM has the bits set.
1677 generic_get_unmapped_area(struct file *filp, unsigned long addr,
1678 unsigned long len, unsigned long pgoff,
1679 unsigned long flags)
1681 struct mm_struct *mm = current->mm;
1682 struct vm_area_struct *vma, *prev;
1683 struct vm_unmapped_area_info info;
1684 const unsigned long mmap_end = arch_get_mmap_end(addr, len, flags);
1686 if (len > mmap_end - mmap_min_addr)
1689 if (flags & MAP_FIXED)
1693 addr = PAGE_ALIGN(addr);
1694 vma = find_vma_prev(mm, addr, &prev);
1695 if (mmap_end - len >= addr && addr >= mmap_min_addr &&
1696 (!vma || addr + len <= vm_start_gap(vma)) &&
1697 (!prev || addr >= vm_end_gap(prev)))
1703 info.low_limit = mm->mmap_base;
1704 info.high_limit = mmap_end;
1705 info.align_mask = 0;
1706 info.align_offset = 0;
1707 return vm_unmapped_area(&info);
1710 #ifndef HAVE_ARCH_UNMAPPED_AREA
1712 arch_get_unmapped_area(struct file *filp, unsigned long addr,
1713 unsigned long len, unsigned long pgoff,
1714 unsigned long flags)
1716 return generic_get_unmapped_area(filp, addr, len, pgoff, flags);
1721 * This mmap-allocator allocates new areas top-down from below the
1722 * stack's low limit (the base):
1725 generic_get_unmapped_area_topdown(struct file *filp, unsigned long addr,
1726 unsigned long len, unsigned long pgoff,
1727 unsigned long flags)
1729 struct vm_area_struct *vma, *prev;
1730 struct mm_struct *mm = current->mm;
1731 struct vm_unmapped_area_info info;
1732 const unsigned long mmap_end = arch_get_mmap_end(addr, len, flags);
1734 /* requested length too big for entire address space */
1735 if (len > mmap_end - mmap_min_addr)
1738 if (flags & MAP_FIXED)
1741 /* requesting a specific address */
1743 addr = PAGE_ALIGN(addr);
1744 vma = find_vma_prev(mm, addr, &prev);
1745 if (mmap_end - len >= addr && addr >= mmap_min_addr &&
1746 (!vma || addr + len <= vm_start_gap(vma)) &&
1747 (!prev || addr >= vm_end_gap(prev)))
1751 info.flags = VM_UNMAPPED_AREA_TOPDOWN;
1753 info.low_limit = PAGE_SIZE;
1754 info.high_limit = arch_get_mmap_base(addr, mm->mmap_base);
1755 info.align_mask = 0;
1756 info.align_offset = 0;
1757 addr = vm_unmapped_area(&info);
1760 * A failed mmap() very likely causes application failure,
1761 * so fall back to the bottom-up function here. This scenario
1762 * can happen with large stack limits and large mmap()
1765 if (offset_in_page(addr)) {
1766 VM_BUG_ON(addr != -ENOMEM);
1768 info.low_limit = TASK_UNMAPPED_BASE;
1769 info.high_limit = mmap_end;
1770 addr = vm_unmapped_area(&info);
1776 #ifndef HAVE_ARCH_UNMAPPED_AREA_TOPDOWN
1778 arch_get_unmapped_area_topdown(struct file *filp, unsigned long addr,
1779 unsigned long len, unsigned long pgoff,
1780 unsigned long flags)
1782 return generic_get_unmapped_area_topdown(filp, addr, len, pgoff, flags);
1787 get_unmapped_area(struct file *file, unsigned long addr, unsigned long len,
1788 unsigned long pgoff, unsigned long flags)
1790 unsigned long (*get_area)(struct file *, unsigned long,
1791 unsigned long, unsigned long, unsigned long);
1793 unsigned long error = arch_mmap_check(addr, len, flags);
1797 /* Careful about overflows.. */
1798 if (len > TASK_SIZE)
1801 get_area = current->mm->get_unmapped_area;
1803 if (file->f_op->get_unmapped_area)
1804 get_area = file->f_op->get_unmapped_area;
1805 } else if (flags & MAP_SHARED) {
1807 * mmap_region() will call shmem_zero_setup() to create a file,
1808 * so use shmem's get_unmapped_area in case it can be huge.
1809 * do_mmap() will clear pgoff, so match alignment.
1812 get_area = shmem_get_unmapped_area;
1815 addr = get_area(file, addr, len, pgoff, flags);
1816 if (IS_ERR_VALUE(addr))
1819 if (addr > TASK_SIZE - len)
1821 if (offset_in_page(addr))
1824 error = security_mmap_addr(addr);
1825 return error ? error : addr;
1828 EXPORT_SYMBOL(get_unmapped_area);
1831 * find_vma_intersection() - Look up the first VMA which intersects the interval
1832 * @mm: The process address space.
1833 * @start_addr: The inclusive start user address.
1834 * @end_addr: The exclusive end user address.
1836 * Returns: The first VMA within the provided range, %NULL otherwise. Assumes
1837 * start_addr < end_addr.
1839 struct vm_area_struct *find_vma_intersection(struct mm_struct *mm,
1840 unsigned long start_addr,
1841 unsigned long end_addr)
1843 unsigned long index = start_addr;
1845 mmap_assert_locked(mm);
1846 return mt_find(&mm->mm_mt, &index, end_addr - 1);
1848 EXPORT_SYMBOL(find_vma_intersection);
1851 * find_vma() - Find the VMA for a given address, or the next VMA.
1852 * @mm: The mm_struct to check
1853 * @addr: The address
1855 * Returns: The VMA associated with addr, or the next VMA.
1856 * May return %NULL in the case of no VMA at addr or above.
1858 struct vm_area_struct *find_vma(struct mm_struct *mm, unsigned long addr)
1860 unsigned long index = addr;
1862 mmap_assert_locked(mm);
1863 return mt_find(&mm->mm_mt, &index, ULONG_MAX);
1865 EXPORT_SYMBOL(find_vma);
1868 * find_vma_prev() - Find the VMA for a given address, or the next vma and
1869 * set %pprev to the previous VMA, if any.
1870 * @mm: The mm_struct to check
1871 * @addr: The address
1872 * @pprev: The pointer to set to the previous VMA
1874 * Note that RCU lock is missing here since the external mmap_lock() is used
1877 * Returns: The VMA associated with @addr, or the next vma.
1878 * May return %NULL in the case of no vma at addr or above.
1880 struct vm_area_struct *
1881 find_vma_prev(struct mm_struct *mm, unsigned long addr,
1882 struct vm_area_struct **pprev)
1884 struct vm_area_struct *vma;
1885 MA_STATE(mas, &mm->mm_mt, addr, addr);
1887 vma = mas_walk(&mas);
1888 *pprev = mas_prev(&mas, 0);
1890 vma = mas_next(&mas, ULONG_MAX);
1895 * Verify that the stack growth is acceptable and
1896 * update accounting. This is shared with both the
1897 * grow-up and grow-down cases.
1899 static int acct_stack_growth(struct vm_area_struct *vma,
1900 unsigned long size, unsigned long grow)
1902 struct mm_struct *mm = vma->vm_mm;
1903 unsigned long new_start;
1905 /* address space limit tests */
1906 if (!may_expand_vm(mm, vma->vm_flags, grow))
1909 /* Stack limit test */
1910 if (size > rlimit(RLIMIT_STACK))
1913 /* mlock limit tests */
1914 if (mlock_future_check(mm, vma->vm_flags, grow << PAGE_SHIFT))
1917 /* Check to ensure the stack will not grow into a hugetlb-only region */
1918 new_start = (vma->vm_flags & VM_GROWSUP) ? vma->vm_start :
1920 if (is_hugepage_only_range(vma->vm_mm, new_start, size))
1924 * Overcommit.. This must be the final test, as it will
1925 * update security statistics.
1927 if (security_vm_enough_memory_mm(mm, grow))
1933 #if defined(CONFIG_STACK_GROWSUP) || defined(CONFIG_IA64)
1935 * PA-RISC uses this for its stack; IA64 for its Register Backing Store.
1936 * vma is the last one with address > vma->vm_end. Have to extend vma.
1938 int expand_upwards(struct vm_area_struct *vma, unsigned long address)
1940 struct mm_struct *mm = vma->vm_mm;
1941 struct vm_area_struct *next;
1942 unsigned long gap_addr;
1944 MA_STATE(mas, &mm->mm_mt, 0, 0);
1946 if (!(vma->vm_flags & VM_GROWSUP))
1949 /* Guard against exceeding limits of the address space. */
1950 address &= PAGE_MASK;
1951 if (address >= (TASK_SIZE & PAGE_MASK))
1953 address += PAGE_SIZE;
1955 /* Enforce stack_guard_gap */
1956 gap_addr = address + stack_guard_gap;
1958 /* Guard against overflow */
1959 if (gap_addr < address || gap_addr > TASK_SIZE)
1960 gap_addr = TASK_SIZE;
1962 next = find_vma_intersection(mm, vma->vm_end, gap_addr);
1963 if (next && vma_is_accessible(next)) {
1964 if (!(next->vm_flags & VM_GROWSUP))
1966 /* Check that both stack segments have the same anon_vma? */
1969 if (mas_preallocate(&mas, GFP_KERNEL))
1972 /* We must make sure the anon_vma is allocated. */
1973 if (unlikely(anon_vma_prepare(vma))) {
1979 * vma->vm_start/vm_end cannot change under us because the caller
1980 * is required to hold the mmap_lock in read mode. We need the
1981 * anon_vma lock to serialize against concurrent expand_stacks.
1983 anon_vma_lock_write(vma->anon_vma);
1985 /* Somebody else might have raced and expanded it already */
1986 if (address > vma->vm_end) {
1987 unsigned long size, grow;
1989 size = address - vma->vm_start;
1990 grow = (address - vma->vm_end) >> PAGE_SHIFT;
1993 if (vma->vm_pgoff + (size >> PAGE_SHIFT) >= vma->vm_pgoff) {
1994 error = acct_stack_growth(vma, size, grow);
1997 * We only hold a shared mmap_lock lock here, so
1998 * we need to protect against concurrent vma
1999 * expansions. anon_vma_lock_write() doesn't
2000 * help here, as we don't guarantee that all
2001 * growable vmas in a mm share the same root
2002 * anon vma. So, we reuse mm->page_table_lock
2003 * to guard against concurrent vma expansions.
2005 spin_lock(&mm->page_table_lock);
2006 if (vma->vm_flags & VM_LOCKED)
2007 mm->locked_vm += grow;
2008 vm_stat_account(mm, vma->vm_flags, grow);
2009 anon_vma_interval_tree_pre_update_vma(vma);
2010 vma->vm_end = address;
2011 /* Overwrite old entry in mtree. */
2012 mas_set_range(&mas, vma->vm_start, address - 1);
2013 mas_store_prealloc(&mas, vma);
2014 anon_vma_interval_tree_post_update_vma(vma);
2015 spin_unlock(&mm->page_table_lock);
2017 perf_event_mmap(vma);
2021 anon_vma_unlock_write(vma->anon_vma);
2022 khugepaged_enter_vma(vma, vma->vm_flags);
2026 #endif /* CONFIG_STACK_GROWSUP || CONFIG_IA64 */
2029 * vma is the first one with address < vma->vm_start. Have to extend vma.
2031 int expand_downwards(struct vm_area_struct *vma, unsigned long address)
2033 struct mm_struct *mm = vma->vm_mm;
2034 MA_STATE(mas, &mm->mm_mt, vma->vm_start, vma->vm_start);
2035 struct vm_area_struct *prev;
2038 address &= PAGE_MASK;
2039 if (address < mmap_min_addr)
2042 /* Enforce stack_guard_gap */
2043 prev = mas_prev(&mas, 0);
2044 /* Check that both stack segments have the same anon_vma? */
2045 if (prev && !(prev->vm_flags & VM_GROWSDOWN) &&
2046 vma_is_accessible(prev)) {
2047 if (address - prev->vm_end < stack_guard_gap)
2051 if (mas_preallocate(&mas, GFP_KERNEL))
2054 /* We must make sure the anon_vma is allocated. */
2055 if (unlikely(anon_vma_prepare(vma))) {
2061 * vma->vm_start/vm_end cannot change under us because the caller
2062 * is required to hold the mmap_lock in read mode. We need the
2063 * anon_vma lock to serialize against concurrent expand_stacks.
2065 anon_vma_lock_write(vma->anon_vma);
2067 /* Somebody else might have raced and expanded it already */
2068 if (address < vma->vm_start) {
2069 unsigned long size, grow;
2071 size = vma->vm_end - address;
2072 grow = (vma->vm_start - address) >> PAGE_SHIFT;
2075 if (grow <= vma->vm_pgoff) {
2076 error = acct_stack_growth(vma, size, grow);
2079 * We only hold a shared mmap_lock lock here, so
2080 * we need to protect against concurrent vma
2081 * expansions. anon_vma_lock_write() doesn't
2082 * help here, as we don't guarantee that all
2083 * growable vmas in a mm share the same root
2084 * anon vma. So, we reuse mm->page_table_lock
2085 * to guard against concurrent vma expansions.
2087 spin_lock(&mm->page_table_lock);
2088 if (vma->vm_flags & VM_LOCKED)
2089 mm->locked_vm += grow;
2090 vm_stat_account(mm, vma->vm_flags, grow);
2091 anon_vma_interval_tree_pre_update_vma(vma);
2092 vma->vm_start = address;
2093 vma->vm_pgoff -= grow;
2094 /* Overwrite old entry in mtree. */
2095 mas_set_range(&mas, address, vma->vm_end - 1);
2096 mas_store_prealloc(&mas, vma);
2097 anon_vma_interval_tree_post_update_vma(vma);
2098 spin_unlock(&mm->page_table_lock);
2100 perf_event_mmap(vma);
2104 anon_vma_unlock_write(vma->anon_vma);
2105 khugepaged_enter_vma(vma, vma->vm_flags);
2110 /* enforced gap between the expanding stack and other mappings. */
2111 unsigned long stack_guard_gap = 256UL<<PAGE_SHIFT;
2113 static int __init cmdline_parse_stack_guard_gap(char *p)
2118 val = simple_strtoul(p, &endptr, 10);
2120 stack_guard_gap = val << PAGE_SHIFT;
2124 __setup("stack_guard_gap=", cmdline_parse_stack_guard_gap);
2126 #ifdef CONFIG_STACK_GROWSUP
2127 int expand_stack(struct vm_area_struct *vma, unsigned long address)
2129 return expand_upwards(vma, address);
2132 struct vm_area_struct *
2133 find_extend_vma(struct mm_struct *mm, unsigned long addr)
2135 struct vm_area_struct *vma, *prev;
2138 vma = find_vma_prev(mm, addr, &prev);
2139 if (vma && (vma->vm_start <= addr))
2141 if (!prev || expand_stack(prev, addr))
2143 if (prev->vm_flags & VM_LOCKED)
2144 populate_vma_page_range(prev, addr, prev->vm_end, NULL);
2148 int expand_stack(struct vm_area_struct *vma, unsigned long address)
2150 return expand_downwards(vma, address);
2153 struct vm_area_struct *
2154 find_extend_vma(struct mm_struct *mm, unsigned long addr)
2156 struct vm_area_struct *vma;
2157 unsigned long start;
2160 vma = find_vma(mm, addr);
2163 if (vma->vm_start <= addr)
2165 if (!(vma->vm_flags & VM_GROWSDOWN))
2167 start = vma->vm_start;
2168 if (expand_stack(vma, addr))
2170 if (vma->vm_flags & VM_LOCKED)
2171 populate_vma_page_range(vma, addr, start, NULL);
2176 EXPORT_SYMBOL_GPL(find_extend_vma);
2179 * Ok - we have the memory areas we should free on a maple tree so release them,
2180 * and do the vma updates.
2182 * Called with the mm semaphore held.
2184 static inline void remove_mt(struct mm_struct *mm, struct ma_state *mas)
2186 unsigned long nr_accounted = 0;
2187 struct vm_area_struct *vma;
2189 /* Update high watermark before we lower total_vm */
2190 update_hiwater_vm(mm);
2191 mas_for_each(mas, vma, ULONG_MAX) {
2192 long nrpages = vma_pages(vma);
2194 if (vma->vm_flags & VM_ACCOUNT)
2195 nr_accounted += nrpages;
2196 vm_stat_account(mm, vma->vm_flags, -nrpages);
2197 remove_vma(vma, false);
2199 vm_unacct_memory(nr_accounted);
2204 * Get rid of page table information in the indicated region.
2206 * Called with the mm semaphore held.
2208 static void unmap_region(struct mm_struct *mm, struct maple_tree *mt,
2209 struct vm_area_struct *vma, struct vm_area_struct *prev,
2210 struct vm_area_struct *next,
2211 unsigned long start, unsigned long end, bool mm_wr_locked)
2213 struct mmu_gather tlb;
2216 tlb_gather_mmu(&tlb, mm);
2217 update_hiwater_rss(mm);
2218 unmap_vmas(&tlb, mt, vma, start, end, mm_wr_locked);
2219 free_pgtables(&tlb, mt, vma, prev ? prev->vm_end : FIRST_USER_ADDRESS,
2220 next ? next->vm_start : USER_PGTABLES_CEILING,
2222 tlb_finish_mmu(&tlb);
2226 * __split_vma() bypasses sysctl_max_map_count checking. We use this where it
2227 * has already been checked or doesn't make sense to fail.
2228 * VMA Iterator will point to the end VMA.
2230 int __split_vma(struct vma_iterator *vmi, struct vm_area_struct *vma,
2231 unsigned long addr, int new_below)
2233 struct vma_prepare vp;
2234 struct vm_area_struct *new;
2237 validate_mm_mt(vma->vm_mm);
2239 WARN_ON(vma->vm_start >= addr);
2240 WARN_ON(vma->vm_end <= addr);
2242 if (vma->vm_ops && vma->vm_ops->may_split) {
2243 err = vma->vm_ops->may_split(vma, addr);
2248 new = vm_area_dup(vma);
2253 if (vma_iter_prealloc(vmi))
2259 new->vm_start = addr;
2260 new->vm_pgoff += ((addr - vma->vm_start) >> PAGE_SHIFT);
2263 err = vma_dup_policy(vma, new);
2267 err = anon_vma_clone(new, vma);
2272 get_file(new->vm_file);
2274 if (new->vm_ops && new->vm_ops->open)
2275 new->vm_ops->open(new);
2277 init_vma_prep(&vp, vma);
2280 vma_adjust_trans_huge(vma, vma->vm_start, addr, 0);
2283 vma->vm_start = addr;
2284 vma->vm_pgoff += (addr - new->vm_start) >> PAGE_SHIFT;
2289 /* vma_complete stores the new vma */
2290 vma_complete(&vp, vmi, vma->vm_mm);
2295 validate_mm_mt(vma->vm_mm);
2299 mpol_put(vma_policy(new));
2304 validate_mm_mt(vma->vm_mm);
2309 * Split a vma into two pieces at address 'addr', a new vma is allocated
2310 * either for the first part or the tail.
2312 int split_vma(struct vma_iterator *vmi, struct vm_area_struct *vma,
2313 unsigned long addr, int new_below)
2315 if (vma->vm_mm->map_count >= sysctl_max_map_count)
2318 return __split_vma(vmi, vma, addr, new_below);
2322 * do_vmi_align_munmap() - munmap the aligned region from @start to @end.
2323 * @vmi: The vma iterator
2324 * @vma: The starting vm_area_struct
2325 * @mm: The mm_struct
2326 * @start: The aligned start address to munmap.
2327 * @end: The aligned end address to munmap.
2328 * @uf: The userfaultfd list_head
2329 * @downgrade: Set to true to attempt a write downgrade of the mmap_lock
2331 * If @downgrade is true, check return code for potential release of the lock.
2334 do_vmi_align_munmap(struct vma_iterator *vmi, struct vm_area_struct *vma,
2335 struct mm_struct *mm, unsigned long start,
2336 unsigned long end, struct list_head *uf, bool downgrade)
2338 struct vm_area_struct *prev, *next = NULL;
2339 struct maple_tree mt_detach;
2341 int error = -ENOMEM;
2342 unsigned long locked_vm = 0;
2343 MA_STATE(mas_detach, &mt_detach, 0, 0);
2344 mt_init_flags(&mt_detach, vmi->mas.tree->ma_flags & MT_FLAGS_LOCK_MASK);
2345 mt_set_external_lock(&mt_detach, &mm->mmap_lock);
2348 * If we need to split any vma, do it now to save pain later.
2350 * Note: mremap's move_vma VM_ACCOUNT handling assumes a partially
2351 * unmapped vm_area_struct will remain in use: so lower split_vma
2352 * places tmp vma above, and higher split_vma places tmp vma below.
2355 /* Does it split the first one? */
2356 if (start > vma->vm_start) {
2359 * Make sure that map_count on return from munmap() will
2360 * not exceed its limit; but let map_count go just above
2361 * its limit temporarily, to help free resources as expected.
2363 if (end < vma->vm_end && mm->map_count >= sysctl_max_map_count)
2364 goto map_count_exceeded;
2366 error = __split_vma(vmi, vma, start, 0);
2368 goto start_split_failed;
2370 vma = vma_iter_load(vmi);
2373 prev = vma_prev(vmi);
2374 if (unlikely((!prev)))
2375 vma_iter_set(vmi, start);
2378 * Detach a range of VMAs from the mm. Using next as a temp variable as
2379 * it is always overwritten.
2381 for_each_vma_range(*vmi, next, end) {
2382 /* Does it split the end? */
2383 if (next->vm_end > end) {
2384 error = __split_vma(vmi, next, end, 0);
2386 goto end_split_failed;
2388 vma_start_write(next);
2389 mas_set_range(&mas_detach, next->vm_start, next->vm_end - 1);
2390 if (mas_store_gfp(&mas_detach, next, GFP_KERNEL))
2391 goto munmap_gather_failed;
2392 vma_mark_detached(next, true);
2393 if (next->vm_flags & VM_LOCKED)
2394 locked_vm += vma_pages(next);
2397 #ifdef CONFIG_DEBUG_VM_MAPLE_TREE
2398 BUG_ON(next->vm_start < start);
2399 BUG_ON(next->vm_start > end);
2403 next = vma_next(vmi);
2406 * If userfaultfd_unmap_prep returns an error the vmas
2407 * will remain split, but userland will get a
2408 * highly unexpected error anyway. This is no
2409 * different than the case where the first of the two
2410 * __split_vma fails, but we don't undo the first
2411 * split, despite we could. This is unlikely enough
2412 * failure that it's not worth optimizing it for.
2414 error = userfaultfd_unmap_prep(mm, start, end, uf);
2417 goto userfaultfd_error;
2420 #if defined(CONFIG_DEBUG_VM_MAPLE_TREE)
2421 /* Make sure no VMAs are about to be lost. */
2423 MA_STATE(test, &mt_detach, start, end - 1);
2424 struct vm_area_struct *vma_mas, *vma_test;
2427 vma_iter_set(vmi, start);
2429 vma_test = mas_find(&test, end - 1);
2430 for_each_vma_range(*vmi, vma_mas, end) {
2431 BUG_ON(vma_mas != vma_test);
2433 vma_test = mas_next(&test, end - 1);
2436 BUG_ON(count != test_count);
2439 /* Point of no return */
2441 vma_iter_set(vmi, start);
2442 if (vma_iter_clear_gfp(vmi, start, end, GFP_KERNEL))
2443 goto clear_tree_failed;
2445 mm->locked_vm -= locked_vm;
2446 mm->map_count -= count;
2448 * Do not downgrade mmap_lock if we are next to VM_GROWSDOWN or
2449 * VM_GROWSUP VMA. Such VMAs can change their size under
2450 * down_read(mmap_lock) and collide with the VMA we are about to unmap.
2453 if (next && (next->vm_flags & VM_GROWSDOWN))
2455 else if (prev && (prev->vm_flags & VM_GROWSUP))
2458 mmap_write_downgrade(mm);
2462 * We can free page tables without write-locking mmap_lock because VMAs
2463 * were isolated before we downgraded mmap_lock.
2465 unmap_region(mm, &mt_detach, vma, prev, next, start, end, !downgrade);
2466 /* Statistics and freeing VMAs */
2467 mas_set(&mas_detach, start);
2468 remove_mt(mm, &mas_detach);
2469 __mt_destroy(&mt_detach);
2473 return downgrade ? 1 : 0;
2477 munmap_gather_failed:
2479 mas_set(&mas_detach, 0);
2480 mas_for_each(&mas_detach, next, end)
2481 vma_mark_detached(next, false);
2483 __mt_destroy(&mt_detach);
2490 * do_vmi_munmap() - munmap a given range.
2491 * @vmi: The vma iterator
2492 * @mm: The mm_struct
2493 * @start: The start address to munmap
2494 * @len: The length of the range to munmap
2495 * @uf: The userfaultfd list_head
2496 * @downgrade: set to true if the user wants to attempt to write_downgrade the
2499 * This function takes a @mas that is either pointing to the previous VMA or set
2500 * to MA_START and sets it up to remove the mapping(s). The @len will be
2501 * aligned and any arch_unmap work will be preformed.
2503 * Returns: -EINVAL on failure, 1 on success and unlock, 0 otherwise.
2505 int do_vmi_munmap(struct vma_iterator *vmi, struct mm_struct *mm,
2506 unsigned long start, size_t len, struct list_head *uf,
2510 struct vm_area_struct *vma;
2512 if ((offset_in_page(start)) || start > TASK_SIZE || len > TASK_SIZE-start)
2515 end = start + PAGE_ALIGN(len);
2519 /* arch_unmap() might do unmaps itself. */
2520 arch_unmap(mm, start, end);
2522 /* Find the first overlapping VMA */
2523 vma = vma_find(vmi, end);
2527 return do_vmi_align_munmap(vmi, vma, mm, start, end, uf, downgrade);
2530 /* do_munmap() - Wrapper function for non-maple tree aware do_munmap() calls.
2531 * @mm: The mm_struct
2532 * @start: The start address to munmap
2533 * @len: The length to be munmapped.
2534 * @uf: The userfaultfd list_head
2536 int do_munmap(struct mm_struct *mm, unsigned long start, size_t len,
2537 struct list_head *uf)
2539 VMA_ITERATOR(vmi, mm, start);
2541 return do_vmi_munmap(&vmi, mm, start, len, uf, false);
2544 unsigned long mmap_region(struct file *file, unsigned long addr,
2545 unsigned long len, vm_flags_t vm_flags, unsigned long pgoff,
2546 struct list_head *uf)
2548 struct mm_struct *mm = current->mm;
2549 struct vm_area_struct *vma = NULL;
2550 struct vm_area_struct *next, *prev, *merge;
2551 pgoff_t pglen = len >> PAGE_SHIFT;
2552 unsigned long charged = 0;
2553 unsigned long end = addr + len;
2554 unsigned long merge_start = addr, merge_end = end;
2557 VMA_ITERATOR(vmi, mm, addr);
2559 /* Check against address space limit. */
2560 if (!may_expand_vm(mm, vm_flags, len >> PAGE_SHIFT)) {
2561 unsigned long nr_pages;
2564 * MAP_FIXED may remove pages of mappings that intersects with
2565 * requested mapping. Account for the pages it would unmap.
2567 nr_pages = count_vma_pages_range(mm, addr, end);
2569 if (!may_expand_vm(mm, vm_flags,
2570 (len >> PAGE_SHIFT) - nr_pages))
2574 /* Unmap any existing mapping in the area */
2575 if (do_vmi_munmap(&vmi, mm, addr, len, uf, false))
2579 * Private writable mapping: check memory availability
2581 if (accountable_mapping(file, vm_flags)) {
2582 charged = len >> PAGE_SHIFT;
2583 if (security_vm_enough_memory_mm(mm, charged))
2585 vm_flags |= VM_ACCOUNT;
2588 next = vma_next(&vmi);
2589 prev = vma_prev(&vmi);
2590 if (vm_flags & VM_SPECIAL)
2593 /* Attempt to expand an old mapping */
2595 if (next && next->vm_start == end && !vma_policy(next) &&
2596 can_vma_merge_before(next, vm_flags, NULL, file, pgoff+pglen,
2597 NULL_VM_UFFD_CTX, NULL)) {
2598 merge_end = next->vm_end;
2600 vm_pgoff = next->vm_pgoff - pglen;
2604 if (prev && prev->vm_end == addr && !vma_policy(prev) &&
2605 (vma ? can_vma_merge_after(prev, vm_flags, vma->anon_vma, file,
2606 pgoff, vma->vm_userfaultfd_ctx, NULL) :
2607 can_vma_merge_after(prev, vm_flags, NULL, file, pgoff,
2608 NULL_VM_UFFD_CTX, NULL))) {
2609 merge_start = prev->vm_start;
2611 vm_pgoff = prev->vm_pgoff;
2615 /* Actually expand, if possible */
2617 !vma_expand(&vmi, vma, merge_start, merge_end, vm_pgoff, next)) {
2618 khugepaged_enter_vma(vma, vm_flags);
2624 * Determine the object being mapped and call the appropriate
2625 * specific mapper. the address has already been validated, but
2626 * not unmapped, but the maps are removed from the list.
2628 vma = vm_area_alloc(mm);
2634 vma_iter_set(&vmi, addr);
2635 vma->vm_start = addr;
2637 vm_flags_init(vma, vm_flags);
2638 vma->vm_page_prot = vm_get_page_prot(vm_flags);
2639 vma->vm_pgoff = pgoff;
2642 if (vm_flags & VM_SHARED) {
2643 error = mapping_map_writable(file->f_mapping);
2648 vma->vm_file = get_file(file);
2649 error = call_mmap(file, vma);
2651 goto unmap_and_free_vma;
2654 * Expansion is handled above, merging is handled below.
2655 * Drivers should not alter the address of the VMA.
2658 if (WARN_ON((addr != vma->vm_start)))
2659 goto close_and_free_vma;
2661 vma_iter_set(&vmi, addr);
2663 * If vm_flags changed after call_mmap(), we should try merge
2664 * vma again as we may succeed this time.
2666 if (unlikely(vm_flags != vma->vm_flags && prev)) {
2667 merge = vma_merge(&vmi, mm, prev, vma->vm_start,
2668 vma->vm_end, vma->vm_flags, NULL,
2669 vma->vm_file, vma->vm_pgoff, NULL,
2670 NULL_VM_UFFD_CTX, NULL);
2673 * ->mmap() can change vma->vm_file and fput
2674 * the original file. So fput the vma->vm_file
2675 * here or we would add an extra fput for file
2676 * and cause general protection fault
2682 /* Update vm_flags to pick up the change. */
2683 vm_flags = vma->vm_flags;
2684 goto unmap_writable;
2688 vm_flags = vma->vm_flags;
2689 } else if (vm_flags & VM_SHARED) {
2690 error = shmem_zero_setup(vma);
2694 vma_set_anonymous(vma);
2697 if (map_deny_write_exec(vma, vma->vm_flags)) {
2699 goto close_and_free_vma;
2702 /* Allow architectures to sanity-check the vm_flags */
2704 if (!arch_validate_flags(vma->vm_flags))
2705 goto close_and_free_vma;
2708 if (vma_iter_prealloc(&vmi))
2709 goto close_and_free_vma;
2712 i_mmap_lock_write(vma->vm_file->f_mapping);
2714 vma_iter_store(&vmi, vma);
2717 if (vma->vm_flags & VM_SHARED)
2718 mapping_allow_writable(vma->vm_file->f_mapping);
2720 flush_dcache_mmap_lock(vma->vm_file->f_mapping);
2721 vma_interval_tree_insert(vma, &vma->vm_file->f_mapping->i_mmap);
2722 flush_dcache_mmap_unlock(vma->vm_file->f_mapping);
2723 i_mmap_unlock_write(vma->vm_file->f_mapping);
2727 * vma_merge() calls khugepaged_enter_vma() either, the below
2728 * call covers the non-merge case.
2730 khugepaged_enter_vma(vma, vma->vm_flags);
2732 /* Once vma denies write, undo our temporary denial count */
2734 if (file && vm_flags & VM_SHARED)
2735 mapping_unmap_writable(file->f_mapping);
2736 file = vma->vm_file;
2739 perf_event_mmap(vma);
2741 vm_stat_account(mm, vm_flags, len >> PAGE_SHIFT);
2742 if (vm_flags & VM_LOCKED) {
2743 if ((vm_flags & VM_SPECIAL) || vma_is_dax(vma) ||
2744 is_vm_hugetlb_page(vma) ||
2745 vma == get_gate_vma(current->mm))
2746 vm_flags_clear(vma, VM_LOCKED_MASK);
2748 mm->locked_vm += (len >> PAGE_SHIFT);
2755 * New (or expanded) vma always get soft dirty status.
2756 * Otherwise user-space soft-dirty page tracker won't
2757 * be able to distinguish situation when vma area unmapped,
2758 * then new mapped in-place (which must be aimed as
2759 * a completely new data area).
2761 vm_flags_set(vma, VM_SOFTDIRTY);
2763 vma_set_page_prot(vma);
2769 if (file && vma->vm_ops && vma->vm_ops->close)
2770 vma->vm_ops->close(vma);
2772 if (file || vma->vm_file) {
2775 vma->vm_file = NULL;
2777 /* Undo any partial mapping done by a device driver. */
2778 unmap_region(mm, &mm->mm_mt, vma, prev, next, vma->vm_start,
2781 if (file && (vm_flags & VM_SHARED))
2782 mapping_unmap_writable(file->f_mapping);
2787 vm_unacct_memory(charged);
2792 static int __vm_munmap(unsigned long start, size_t len, bool downgrade)
2795 struct mm_struct *mm = current->mm;
2797 VMA_ITERATOR(vmi, mm, start);
2799 if (mmap_write_lock_killable(mm))
2802 ret = do_vmi_munmap(&vmi, mm, start, len, &uf, downgrade);
2804 * Returning 1 indicates mmap_lock is downgraded.
2805 * But 1 is not legal return value of vm_munmap() and munmap(), reset
2806 * it to 0 before return.
2809 mmap_read_unlock(mm);
2812 mmap_write_unlock(mm);
2814 userfaultfd_unmap_complete(mm, &uf);
2818 int vm_munmap(unsigned long start, size_t len)
2820 return __vm_munmap(start, len, false);
2822 EXPORT_SYMBOL(vm_munmap);
2824 SYSCALL_DEFINE2(munmap, unsigned long, addr, size_t, len)
2826 addr = untagged_addr(addr);
2827 return __vm_munmap(addr, len, true);
2832 * Emulation of deprecated remap_file_pages() syscall.
2834 SYSCALL_DEFINE5(remap_file_pages, unsigned long, start, unsigned long, size,
2835 unsigned long, prot, unsigned long, pgoff, unsigned long, flags)
2838 struct mm_struct *mm = current->mm;
2839 struct vm_area_struct *vma;
2840 unsigned long populate = 0;
2841 unsigned long ret = -EINVAL;
2844 pr_warn_once("%s (%d) uses deprecated remap_file_pages() syscall. See Documentation/mm/remap_file_pages.rst.\n",
2845 current->comm, current->pid);
2849 start = start & PAGE_MASK;
2850 size = size & PAGE_MASK;
2852 if (start + size <= start)
2855 /* Does pgoff wrap? */
2856 if (pgoff + (size >> PAGE_SHIFT) < pgoff)
2859 if (mmap_write_lock_killable(mm))
2862 vma = vma_lookup(mm, start);
2864 if (!vma || !(vma->vm_flags & VM_SHARED))
2867 if (start + size > vma->vm_end) {
2868 VMA_ITERATOR(vmi, mm, vma->vm_end);
2869 struct vm_area_struct *next, *prev = vma;
2871 for_each_vma_range(vmi, next, start + size) {
2872 /* hole between vmas ? */
2873 if (next->vm_start != prev->vm_end)
2876 if (next->vm_file != vma->vm_file)
2879 if (next->vm_flags != vma->vm_flags)
2882 if (start + size <= next->vm_end)
2892 prot |= vma->vm_flags & VM_READ ? PROT_READ : 0;
2893 prot |= vma->vm_flags & VM_WRITE ? PROT_WRITE : 0;
2894 prot |= vma->vm_flags & VM_EXEC ? PROT_EXEC : 0;
2896 flags &= MAP_NONBLOCK;
2897 flags |= MAP_SHARED | MAP_FIXED | MAP_POPULATE;
2898 if (vma->vm_flags & VM_LOCKED)
2899 flags |= MAP_LOCKED;
2901 file = get_file(vma->vm_file);
2902 ret = do_mmap(vma->vm_file, start, size,
2903 prot, flags, pgoff, &populate, NULL);
2906 mmap_write_unlock(mm);
2908 mm_populate(ret, populate);
2909 if (!IS_ERR_VALUE(ret))
2915 * do_vma_munmap() - Unmap a full or partial vma.
2916 * @vmi: The vma iterator pointing at the vma
2917 * @vma: The first vma to be munmapped
2918 * @start: the start of the address to unmap
2919 * @end: The end of the address to unmap
2920 * @uf: The userfaultfd list_head
2921 * @downgrade: Attempt to downgrade or not
2923 * Returns: 0 on success and not downgraded, 1 on success and downgraded.
2924 * unmaps a VMA mapping when the vma iterator is already in position.
2925 * Does not handle alignment.
2927 int do_vma_munmap(struct vma_iterator *vmi, struct vm_area_struct *vma,
2928 unsigned long start, unsigned long end,
2929 struct list_head *uf, bool downgrade)
2931 struct mm_struct *mm = vma->vm_mm;
2934 arch_unmap(mm, start, end);
2935 ret = do_vmi_align_munmap(vmi, vma, mm, start, end, uf, downgrade);
2941 * do_brk_flags() - Increase the brk vma if the flags match.
2942 * @vmi: The vma iterator
2943 * @addr: The start address
2944 * @len: The length of the increase
2946 * @flags: The VMA Flags
2948 * Extend the brk VMA from addr to addr + len. If the VMA is NULL or the flags
2949 * do not match then create a new anonymous VMA. Eventually we may be able to
2950 * do some brk-specific accounting here.
2952 static int do_brk_flags(struct vma_iterator *vmi, struct vm_area_struct *vma,
2953 unsigned long addr, unsigned long len, unsigned long flags)
2955 struct mm_struct *mm = current->mm;
2956 struct vma_prepare vp;
2960 * Check against address space limits by the changed size
2961 * Note: This happens *after* clearing old mappings in some code paths.
2963 flags |= VM_DATA_DEFAULT_FLAGS | VM_ACCOUNT | mm->def_flags;
2964 if (!may_expand_vm(mm, flags, len >> PAGE_SHIFT))
2967 if (mm->map_count > sysctl_max_map_count)
2970 if (security_vm_enough_memory_mm(mm, len >> PAGE_SHIFT))
2974 * Expand the existing vma if possible; Note that singular lists do not
2975 * occur after forking, so the expand will only happen on new VMAs.
2977 if (vma && vma->vm_end == addr && !vma_policy(vma) &&
2978 can_vma_merge_after(vma, flags, NULL, NULL,
2979 addr >> PAGE_SHIFT, NULL_VM_UFFD_CTX, NULL)) {
2980 if (vma_iter_prealloc(vmi))
2983 init_vma_prep(&vp, vma);
2985 vma_adjust_trans_huge(vma, vma->vm_start, addr + len, 0);
2986 vma->vm_end = addr + len;
2987 vm_flags_set(vma, VM_SOFTDIRTY);
2988 vma_iter_store(vmi, vma);
2990 vma_complete(&vp, vmi, mm);
2991 khugepaged_enter_vma(vma, flags);
2995 /* create a vma struct for an anonymous mapping */
2996 vma = vm_area_alloc(mm);
3000 vma_set_anonymous(vma);
3001 vma->vm_start = addr;
3002 vma->vm_end = addr + len;
3003 vma->vm_pgoff = addr >> PAGE_SHIFT;
3004 vm_flags_init(vma, flags);
3005 vma->vm_page_prot = vm_get_page_prot(flags);
3006 if (vma_iter_store_gfp(vmi, vma, GFP_KERNEL))
3007 goto mas_store_fail;
3012 perf_event_mmap(vma);
3013 mm->total_vm += len >> PAGE_SHIFT;
3014 mm->data_vm += len >> PAGE_SHIFT;
3015 if (flags & VM_LOCKED)
3016 mm->locked_vm += (len >> PAGE_SHIFT);
3017 vm_flags_set(vma, VM_SOFTDIRTY);
3024 vm_unacct_memory(len >> PAGE_SHIFT);
3028 int vm_brk_flags(unsigned long addr, unsigned long request, unsigned long flags)
3030 struct mm_struct *mm = current->mm;
3031 struct vm_area_struct *vma = NULL;
3036 VMA_ITERATOR(vmi, mm, addr);
3038 len = PAGE_ALIGN(request);
3044 if (mmap_write_lock_killable(mm))
3047 /* Until we need other flags, refuse anything except VM_EXEC. */
3048 if ((flags & (~VM_EXEC)) != 0)
3051 ret = check_brk_limits(addr, len);
3055 ret = do_vmi_munmap(&vmi, mm, addr, len, &uf, 0);
3059 vma = vma_prev(&vmi);
3060 ret = do_brk_flags(&vmi, vma, addr, len, flags);
3061 populate = ((mm->def_flags & VM_LOCKED) != 0);
3062 mmap_write_unlock(mm);
3063 userfaultfd_unmap_complete(mm, &uf);
3064 if (populate && !ret)
3065 mm_populate(addr, len);
3070 mmap_write_unlock(mm);
3073 EXPORT_SYMBOL(vm_brk_flags);
3075 int vm_brk(unsigned long addr, unsigned long len)
3077 return vm_brk_flags(addr, len, 0);
3079 EXPORT_SYMBOL(vm_brk);
3081 /* Release all mmaps. */
3082 void exit_mmap(struct mm_struct *mm)
3084 struct mmu_gather tlb;
3085 struct vm_area_struct *vma;
3086 unsigned long nr_accounted = 0;
3087 MA_STATE(mas, &mm->mm_mt, 0, 0);
3090 /* mm's last user has gone, and its about to be pulled down */
3091 mmu_notifier_release(mm);
3096 vma = mas_find(&mas, ULONG_MAX);
3098 /* Can happen if dup_mmap() received an OOM */
3099 mmap_read_unlock(mm);
3105 tlb_gather_mmu_fullmm(&tlb, mm);
3106 /* update_hiwater_rss(mm) here? but nobody should be looking */
3107 /* Use ULONG_MAX here to ensure all VMAs in the mm are unmapped */
3108 unmap_vmas(&tlb, &mm->mm_mt, vma, 0, ULONG_MAX, false);
3109 mmap_read_unlock(mm);
3112 * Set MMF_OOM_SKIP to hide this task from the oom killer/reaper
3113 * because the memory has been already freed.
3115 set_bit(MMF_OOM_SKIP, &mm->flags);
3116 mmap_write_lock(mm);
3117 mt_clear_in_rcu(&mm->mm_mt);
3118 free_pgtables(&tlb, &mm->mm_mt, vma, FIRST_USER_ADDRESS,
3119 USER_PGTABLES_CEILING, true);
3120 tlb_finish_mmu(&tlb);
3123 * Walk the list again, actually closing and freeing it, with preemption
3124 * enabled, without holding any MM locks besides the unreachable
3128 if (vma->vm_flags & VM_ACCOUNT)
3129 nr_accounted += vma_pages(vma);
3130 remove_vma(vma, true);
3133 } while ((vma = mas_find(&mas, ULONG_MAX)) != NULL);
3135 BUG_ON(count != mm->map_count);
3137 trace_exit_mmap(mm);
3138 __mt_destroy(&mm->mm_mt);
3139 mmap_write_unlock(mm);
3140 vm_unacct_memory(nr_accounted);
3143 /* Insert vm structure into process list sorted by address
3144 * and into the inode's i_mmap tree. If vm_file is non-NULL
3145 * then i_mmap_rwsem is taken here.
3147 int insert_vm_struct(struct mm_struct *mm, struct vm_area_struct *vma)
3149 unsigned long charged = vma_pages(vma);
3152 if (find_vma_intersection(mm, vma->vm_start, vma->vm_end))
3155 if ((vma->vm_flags & VM_ACCOUNT) &&
3156 security_vm_enough_memory_mm(mm, charged))
3160 * The vm_pgoff of a purely anonymous vma should be irrelevant
3161 * until its first write fault, when page's anon_vma and index
3162 * are set. But now set the vm_pgoff it will almost certainly
3163 * end up with (unless mremap moves it elsewhere before that
3164 * first wfault), so /proc/pid/maps tells a consistent story.
3166 * By setting it to reflect the virtual start address of the
3167 * vma, merges and splits can happen in a seamless way, just
3168 * using the existing file pgoff checks and manipulations.
3169 * Similarly in do_mmap and in do_brk_flags.
3171 if (vma_is_anonymous(vma)) {
3172 BUG_ON(vma->anon_vma);
3173 vma->vm_pgoff = vma->vm_start >> PAGE_SHIFT;
3176 if (vma_link(mm, vma)) {
3177 vm_unacct_memory(charged);
3185 * Copy the vma structure to a new location in the same mm,
3186 * prior to moving page table entries, to effect an mremap move.
3188 struct vm_area_struct *copy_vma(struct vm_area_struct **vmap,
3189 unsigned long addr, unsigned long len, pgoff_t pgoff,
3190 bool *need_rmap_locks)
3192 struct vm_area_struct *vma = *vmap;
3193 unsigned long vma_start = vma->vm_start;
3194 struct mm_struct *mm = vma->vm_mm;
3195 struct vm_area_struct *new_vma, *prev;
3196 bool faulted_in_anon_vma = true;
3197 VMA_ITERATOR(vmi, mm, addr);
3201 * If anonymous vma has not yet been faulted, update new pgoff
3202 * to match new location, to increase its chance of merging.
3204 if (unlikely(vma_is_anonymous(vma) && !vma->anon_vma)) {
3205 pgoff = addr >> PAGE_SHIFT;
3206 faulted_in_anon_vma = false;
3209 new_vma = find_vma_prev(mm, addr, &prev);
3210 if (new_vma && new_vma->vm_start < addr + len)
3211 return NULL; /* should never get here */
3213 new_vma = vma_merge(&vmi, mm, prev, addr, addr + len, vma->vm_flags,
3214 vma->anon_vma, vma->vm_file, pgoff, vma_policy(vma),
3215 vma->vm_userfaultfd_ctx, anon_vma_name(vma));
3218 * Source vma may have been merged into new_vma
3220 if (unlikely(vma_start >= new_vma->vm_start &&
3221 vma_start < new_vma->vm_end)) {
3223 * The only way we can get a vma_merge with
3224 * self during an mremap is if the vma hasn't
3225 * been faulted in yet and we were allowed to
3226 * reset the dst vma->vm_pgoff to the
3227 * destination address of the mremap to allow
3228 * the merge to happen. mremap must change the
3229 * vm_pgoff linearity between src and dst vmas
3230 * (in turn preventing a vma_merge) to be
3231 * safe. It is only safe to keep the vm_pgoff
3232 * linear if there are no pages mapped yet.
3234 VM_BUG_ON_VMA(faulted_in_anon_vma, new_vma);
3235 *vmap = vma = new_vma;
3237 *need_rmap_locks = (new_vma->vm_pgoff <= vma->vm_pgoff);
3239 new_vma = vm_area_dup(vma);
3242 new_vma->vm_start = addr;
3243 new_vma->vm_end = addr + len;
3244 new_vma->vm_pgoff = pgoff;
3245 if (vma_dup_policy(vma, new_vma))
3247 if (anon_vma_clone(new_vma, vma))
3248 goto out_free_mempol;
3249 if (new_vma->vm_file)
3250 get_file(new_vma->vm_file);
3251 if (new_vma->vm_ops && new_vma->vm_ops->open)
3252 new_vma->vm_ops->open(new_vma);
3253 vma_start_write(new_vma);
3254 if (vma_link(mm, new_vma))
3256 *need_rmap_locks = false;
3262 if (new_vma->vm_ops && new_vma->vm_ops->close)
3263 new_vma->vm_ops->close(new_vma);
3265 if (new_vma->vm_file)
3266 fput(new_vma->vm_file);
3268 unlink_anon_vmas(new_vma);
3270 mpol_put(vma_policy(new_vma));
3272 vm_area_free(new_vma);
3279 * Return true if the calling process may expand its vm space by the passed
3282 bool may_expand_vm(struct mm_struct *mm, vm_flags_t flags, unsigned long npages)
3284 if (mm->total_vm + npages > rlimit(RLIMIT_AS) >> PAGE_SHIFT)
3287 if (is_data_mapping(flags) &&
3288 mm->data_vm + npages > rlimit(RLIMIT_DATA) >> PAGE_SHIFT) {
3289 /* Workaround for Valgrind */
3290 if (rlimit(RLIMIT_DATA) == 0 &&
3291 mm->data_vm + npages <= rlimit_max(RLIMIT_DATA) >> PAGE_SHIFT)
3294 pr_warn_once("%s (%d): VmData %lu exceed data ulimit %lu. Update limits%s.\n",
3295 current->comm, current->pid,
3296 (mm->data_vm + npages) << PAGE_SHIFT,
3297 rlimit(RLIMIT_DATA),
3298 ignore_rlimit_data ? "" : " or use boot option ignore_rlimit_data");
3300 if (!ignore_rlimit_data)
3307 void vm_stat_account(struct mm_struct *mm, vm_flags_t flags, long npages)
3309 WRITE_ONCE(mm->total_vm, READ_ONCE(mm->total_vm)+npages);
3311 if (is_exec_mapping(flags))
3312 mm->exec_vm += npages;
3313 else if (is_stack_mapping(flags))
3314 mm->stack_vm += npages;
3315 else if (is_data_mapping(flags))
3316 mm->data_vm += npages;
3319 static vm_fault_t special_mapping_fault(struct vm_fault *vmf);
3322 * Having a close hook prevents vma merging regardless of flags.
3324 static void special_mapping_close(struct vm_area_struct *vma)
3328 static const char *special_mapping_name(struct vm_area_struct *vma)
3330 return ((struct vm_special_mapping *)vma->vm_private_data)->name;
3333 static int special_mapping_mremap(struct vm_area_struct *new_vma)
3335 struct vm_special_mapping *sm = new_vma->vm_private_data;
3337 if (WARN_ON_ONCE(current->mm != new_vma->vm_mm))
3341 return sm->mremap(sm, new_vma);
3346 static int special_mapping_split(struct vm_area_struct *vma, unsigned long addr)
3349 * Forbid splitting special mappings - kernel has expectations over
3350 * the number of pages in mapping. Together with VM_DONTEXPAND
3351 * the size of vma should stay the same over the special mapping's
3357 static const struct vm_operations_struct special_mapping_vmops = {
3358 .close = special_mapping_close,
3359 .fault = special_mapping_fault,
3360 .mremap = special_mapping_mremap,
3361 .name = special_mapping_name,
3362 /* vDSO code relies that VVAR can't be accessed remotely */
3364 .may_split = special_mapping_split,
3367 static const struct vm_operations_struct legacy_special_mapping_vmops = {
3368 .close = special_mapping_close,
3369 .fault = special_mapping_fault,
3372 static vm_fault_t special_mapping_fault(struct vm_fault *vmf)
3374 struct vm_area_struct *vma = vmf->vma;
3376 struct page **pages;
3378 if (vma->vm_ops == &legacy_special_mapping_vmops) {
3379 pages = vma->vm_private_data;
3381 struct vm_special_mapping *sm = vma->vm_private_data;
3384 return sm->fault(sm, vmf->vma, vmf);
3389 for (pgoff = vmf->pgoff; pgoff && *pages; ++pages)
3393 struct page *page = *pages;
3399 return VM_FAULT_SIGBUS;
3402 static struct vm_area_struct *__install_special_mapping(
3403 struct mm_struct *mm,
3404 unsigned long addr, unsigned long len,
3405 unsigned long vm_flags, void *priv,
3406 const struct vm_operations_struct *ops)
3409 struct vm_area_struct *vma;
3412 vma = vm_area_alloc(mm);
3413 if (unlikely(vma == NULL))
3414 return ERR_PTR(-ENOMEM);
3416 vma->vm_start = addr;
3417 vma->vm_end = addr + len;
3419 vm_flags_init(vma, (vm_flags | mm->def_flags |
3420 VM_DONTEXPAND | VM_SOFTDIRTY) & ~VM_LOCKED_MASK);
3421 vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
3424 vma->vm_private_data = priv;
3426 ret = insert_vm_struct(mm, vma);
3430 vm_stat_account(mm, vma->vm_flags, len >> PAGE_SHIFT);
3432 perf_event_mmap(vma);
3440 return ERR_PTR(ret);
3443 bool vma_is_special_mapping(const struct vm_area_struct *vma,
3444 const struct vm_special_mapping *sm)
3446 return vma->vm_private_data == sm &&
3447 (vma->vm_ops == &special_mapping_vmops ||
3448 vma->vm_ops == &legacy_special_mapping_vmops);
3452 * Called with mm->mmap_lock held for writing.
3453 * Insert a new vma covering the given region, with the given flags.
3454 * Its pages are supplied by the given array of struct page *.
3455 * The array can be shorter than len >> PAGE_SHIFT if it's null-terminated.
3456 * The region past the last page supplied will always produce SIGBUS.
3457 * The array pointer and the pages it points to are assumed to stay alive
3458 * for as long as this mapping might exist.
3460 struct vm_area_struct *_install_special_mapping(
3461 struct mm_struct *mm,
3462 unsigned long addr, unsigned long len,
3463 unsigned long vm_flags, const struct vm_special_mapping *spec)
3465 return __install_special_mapping(mm, addr, len, vm_flags, (void *)spec,
3466 &special_mapping_vmops);
3469 int install_special_mapping(struct mm_struct *mm,
3470 unsigned long addr, unsigned long len,
3471 unsigned long vm_flags, struct page **pages)
3473 struct vm_area_struct *vma = __install_special_mapping(
3474 mm, addr, len, vm_flags, (void *)pages,
3475 &legacy_special_mapping_vmops);
3477 return PTR_ERR_OR_ZERO(vma);
3480 static DEFINE_MUTEX(mm_all_locks_mutex);
3482 static void vm_lock_anon_vma(struct mm_struct *mm, struct anon_vma *anon_vma)
3484 if (!test_bit(0, (unsigned long *) &anon_vma->root->rb_root.rb_root.rb_node)) {
3486 * The LSB of head.next can't change from under us
3487 * because we hold the mm_all_locks_mutex.
3489 down_write_nest_lock(&anon_vma->root->rwsem, &mm->mmap_lock);
3491 * We can safely modify head.next after taking the
3492 * anon_vma->root->rwsem. If some other vma in this mm shares
3493 * the same anon_vma we won't take it again.
3495 * No need of atomic instructions here, head.next
3496 * can't change from under us thanks to the
3497 * anon_vma->root->rwsem.
3499 if (__test_and_set_bit(0, (unsigned long *)
3500 &anon_vma->root->rb_root.rb_root.rb_node))
3505 static void vm_lock_mapping(struct mm_struct *mm, struct address_space *mapping)
3507 if (!test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) {
3509 * AS_MM_ALL_LOCKS can't change from under us because
3510 * we hold the mm_all_locks_mutex.
3512 * Operations on ->flags have to be atomic because
3513 * even if AS_MM_ALL_LOCKS is stable thanks to the
3514 * mm_all_locks_mutex, there may be other cpus
3515 * changing other bitflags in parallel to us.
3517 if (test_and_set_bit(AS_MM_ALL_LOCKS, &mapping->flags))
3519 down_write_nest_lock(&mapping->i_mmap_rwsem, &mm->mmap_lock);
3524 * This operation locks against the VM for all pte/vma/mm related
3525 * operations that could ever happen on a certain mm. This includes
3526 * vmtruncate, try_to_unmap, and all page faults.
3528 * The caller must take the mmap_lock in write mode before calling
3529 * mm_take_all_locks(). The caller isn't allowed to release the
3530 * mmap_lock until mm_drop_all_locks() returns.
3532 * mmap_lock in write mode is required in order to block all operations
3533 * that could modify pagetables and free pages without need of
3534 * altering the vma layout. It's also needed in write mode to avoid new
3535 * anon_vmas to be associated with existing vmas.
3537 * A single task can't take more than one mm_take_all_locks() in a row
3538 * or it would deadlock.
3540 * The LSB in anon_vma->rb_root.rb_node and the AS_MM_ALL_LOCKS bitflag in
3541 * mapping->flags avoid to take the same lock twice, if more than one
3542 * vma in this mm is backed by the same anon_vma or address_space.
3544 * We take locks in following order, accordingly to comment at beginning
3546 * - all hugetlbfs_i_mmap_rwsem_key locks (aka mapping->i_mmap_rwsem for
3548 * - all vmas marked locked
3549 * - all i_mmap_rwsem locks;
3550 * - all anon_vma->rwseml
3552 * We can take all locks within these types randomly because the VM code
3553 * doesn't nest them and we protected from parallel mm_take_all_locks() by
3554 * mm_all_locks_mutex.
3556 * mm_take_all_locks() and mm_drop_all_locks are expensive operations
3557 * that may have to take thousand of locks.
3559 * mm_take_all_locks() can fail if it's interrupted by signals.
3561 int mm_take_all_locks(struct mm_struct *mm)
3563 struct vm_area_struct *vma;
3564 struct anon_vma_chain *avc;
3565 MA_STATE(mas, &mm->mm_mt, 0, 0);
3567 mmap_assert_write_locked(mm);
3569 mutex_lock(&mm_all_locks_mutex);
3571 mas_for_each(&mas, vma, ULONG_MAX) {
3572 if (signal_pending(current))
3574 vma_start_write(vma);
3578 mas_for_each(&mas, vma, ULONG_MAX) {
3579 if (signal_pending(current))
3581 if (vma->vm_file && vma->vm_file->f_mapping &&
3582 is_vm_hugetlb_page(vma))
3583 vm_lock_mapping(mm, vma->vm_file->f_mapping);
3587 mas_for_each(&mas, vma, ULONG_MAX) {
3588 if (signal_pending(current))
3590 if (vma->vm_file && vma->vm_file->f_mapping &&
3591 !is_vm_hugetlb_page(vma))
3592 vm_lock_mapping(mm, vma->vm_file->f_mapping);
3596 mas_for_each(&mas, vma, ULONG_MAX) {
3597 if (signal_pending(current))
3600 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
3601 vm_lock_anon_vma(mm, avc->anon_vma);
3607 mm_drop_all_locks(mm);
3611 static void vm_unlock_anon_vma(struct anon_vma *anon_vma)
3613 if (test_bit(0, (unsigned long *) &anon_vma->root->rb_root.rb_root.rb_node)) {
3615 * The LSB of head.next can't change to 0 from under
3616 * us because we hold the mm_all_locks_mutex.
3618 * We must however clear the bitflag before unlocking
3619 * the vma so the users using the anon_vma->rb_root will
3620 * never see our bitflag.
3622 * No need of atomic instructions here, head.next
3623 * can't change from under us until we release the
3624 * anon_vma->root->rwsem.
3626 if (!__test_and_clear_bit(0, (unsigned long *)
3627 &anon_vma->root->rb_root.rb_root.rb_node))
3629 anon_vma_unlock_write(anon_vma);
3633 static void vm_unlock_mapping(struct address_space *mapping)
3635 if (test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) {
3637 * AS_MM_ALL_LOCKS can't change to 0 from under us
3638 * because we hold the mm_all_locks_mutex.
3640 i_mmap_unlock_write(mapping);
3641 if (!test_and_clear_bit(AS_MM_ALL_LOCKS,
3648 * The mmap_lock cannot be released by the caller until
3649 * mm_drop_all_locks() returns.
3651 void mm_drop_all_locks(struct mm_struct *mm)
3653 struct vm_area_struct *vma;
3654 struct anon_vma_chain *avc;
3655 MA_STATE(mas, &mm->mm_mt, 0, 0);
3657 mmap_assert_write_locked(mm);
3658 BUG_ON(!mutex_is_locked(&mm_all_locks_mutex));
3660 mas_for_each(&mas, vma, ULONG_MAX) {
3662 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
3663 vm_unlock_anon_vma(avc->anon_vma);
3664 if (vma->vm_file && vma->vm_file->f_mapping)
3665 vm_unlock_mapping(vma->vm_file->f_mapping);
3667 vma_end_write_all(mm);
3669 mutex_unlock(&mm_all_locks_mutex);
3673 * initialise the percpu counter for VM
3675 void __init mmap_init(void)
3679 ret = percpu_counter_init(&vm_committed_as, 0, GFP_KERNEL);
3684 * Initialise sysctl_user_reserve_kbytes.
3686 * This is intended to prevent a user from starting a single memory hogging
3687 * process, such that they cannot recover (kill the hog) in OVERCOMMIT_NEVER
3690 * The default value is min(3% of free memory, 128MB)
3691 * 128MB is enough to recover with sshd/login, bash, and top/kill.
3693 static int init_user_reserve(void)
3695 unsigned long free_kbytes;
3697 free_kbytes = global_zone_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
3699 sysctl_user_reserve_kbytes = min(free_kbytes / 32, 1UL << 17);
3702 subsys_initcall(init_user_reserve);
3705 * Initialise sysctl_admin_reserve_kbytes.
3707 * The purpose of sysctl_admin_reserve_kbytes is to allow the sys admin
3708 * to log in and kill a memory hogging process.
3710 * Systems with more than 256MB will reserve 8MB, enough to recover
3711 * with sshd, bash, and top in OVERCOMMIT_GUESS. Smaller systems will
3712 * only reserve 3% of free pages by default.
3714 static int init_admin_reserve(void)
3716 unsigned long free_kbytes;
3718 free_kbytes = global_zone_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
3720 sysctl_admin_reserve_kbytes = min(free_kbytes / 32, 1UL << 13);
3723 subsys_initcall(init_admin_reserve);
3726 * Reinititalise user and admin reserves if memory is added or removed.
3728 * The default user reserve max is 128MB, and the default max for the
3729 * admin reserve is 8MB. These are usually, but not always, enough to
3730 * enable recovery from a memory hogging process using login/sshd, a shell,
3731 * and tools like top. It may make sense to increase or even disable the
3732 * reserve depending on the existence of swap or variations in the recovery
3733 * tools. So, the admin may have changed them.
3735 * If memory is added and the reserves have been eliminated or increased above
3736 * the default max, then we'll trust the admin.
3738 * If memory is removed and there isn't enough free memory, then we
3739 * need to reset the reserves.
3741 * Otherwise keep the reserve set by the admin.
3743 static int reserve_mem_notifier(struct notifier_block *nb,
3744 unsigned long action, void *data)
3746 unsigned long tmp, free_kbytes;
3750 /* Default max is 128MB. Leave alone if modified by operator. */
3751 tmp = sysctl_user_reserve_kbytes;
3752 if (0 < tmp && tmp < (1UL << 17))
3753 init_user_reserve();
3755 /* Default max is 8MB. Leave alone if modified by operator. */
3756 tmp = sysctl_admin_reserve_kbytes;
3757 if (0 < tmp && tmp < (1UL << 13))
3758 init_admin_reserve();
3762 free_kbytes = global_zone_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
3764 if (sysctl_user_reserve_kbytes > free_kbytes) {
3765 init_user_reserve();
3766 pr_info("vm.user_reserve_kbytes reset to %lu\n",
3767 sysctl_user_reserve_kbytes);
3770 if (sysctl_admin_reserve_kbytes > free_kbytes) {
3771 init_admin_reserve();
3772 pr_info("vm.admin_reserve_kbytes reset to %lu\n",
3773 sysctl_admin_reserve_kbytes);
3782 static int __meminit init_reserve_notifier(void)
3784 if (hotplug_memory_notifier(reserve_mem_notifier, DEFAULT_CALLBACK_PRI))
3785 pr_err("Failed registering memory add/remove notifier for admin reserve\n");
3789 subsys_initcall(init_reserve_notifier);