tizen 2.4 release
[profile/mobile/platform/kernel/linux-3.10-sc7730.git] / mm / mmap.c
1 /*
2  * mm/mmap.c
3  *
4  * Written by obz.
5  *
6  * Address space accounting code        <alan@lxorguk.ukuu.org.uk>
7  */
8
9 #include <linux/kernel.h>
10 #include <linux/slab.h>
11 #include <linux/backing-dev.h>
12 #include <linux/mm.h>
13 #include <linux/shm.h>
14 #include <linux/mman.h>
15 #include <linux/pagemap.h>
16 #include <linux/swap.h>
17 #include <linux/syscalls.h>
18 #include <linux/capability.h>
19 #include <linux/init.h>
20 #include <linux/file.h>
21 #include <linux/fs.h>
22 #include <linux/personality.h>
23 #include <linux/security.h>
24 #include <linux/hugetlb.h>
25 #include <linux/profile.h>
26 #include <linux/export.h>
27 #include <linux/mount.h>
28 #include <linux/mempolicy.h>
29 #include <linux/rmap.h>
30 #include <linux/mmu_notifier.h>
31 #include <linux/perf_event.h>
32 #include <linux/audit.h>
33 #include <linux/khugepaged.h>
34 #include <linux/uprobes.h>
35 #include <linux/rbtree_augmented.h>
36 #include <linux/sched/sysctl.h>
37 #include <linux/notifier.h>
38 #include <linux/memory.h>
39
40 #include <asm/uaccess.h>
41 #include <asm/cacheflush.h>
42 #include <asm/tlb.h>
43 #include <asm/mmu_context.h>
44
45 #include "internal.h"
46 #ifdef CONFIG_SDCARD_FS
47 #include "../fs/sdcardfs/sdcardfs.h"
48 #endif
49
50 #ifndef arch_mmap_check
51 #define arch_mmap_check(addr, len, flags)       (0)
52 #endif
53
54 #ifndef arch_rebalance_pgtables
55 #define arch_rebalance_pgtables(addr, len)              (addr)
56 #endif
57
58 static void unmap_region(struct mm_struct *mm,
59                 struct vm_area_struct *vma, struct vm_area_struct *prev,
60                 unsigned long start, unsigned long end);
61
62 /* description of effects of mapping type and prot in current implementation.
63  * this is due to the limited x86 page protection hardware.  The expected
64  * behavior is in parens:
65  *
66  * map_type     prot
67  *              PROT_NONE       PROT_READ       PROT_WRITE      PROT_EXEC
68  * MAP_SHARED   r: (no) no      r: (yes) yes    r: (no) yes     r: (no) yes
69  *              w: (no) no      w: (no) no      w: (yes) yes    w: (no) no
70  *              x: (no) no      x: (no) yes     x: (no) yes     x: (yes) yes
71  *              
72  * MAP_PRIVATE  r: (no) no      r: (yes) yes    r: (no) yes     r: (no) yes
73  *              w: (no) no      w: (no) no      w: (copy) copy  w: (no) no
74  *              x: (no) no      x: (no) yes     x: (no) yes     x: (yes) yes
75  *
76  */
77 pgprot_t protection_map[16] = {
78         __P000, __P001, __P010, __P011, __P100, __P101, __P110, __P111,
79         __S000, __S001, __S010, __S011, __S100, __S101, __S110, __S111
80 };
81
82 pgprot_t vm_get_page_prot(unsigned long vm_flags)
83 {
84         return __pgprot(pgprot_val(protection_map[vm_flags &
85                                 (VM_READ|VM_WRITE|VM_EXEC|VM_SHARED)]) |
86                         pgprot_val(arch_vm_get_page_prot(vm_flags)));
87 }
88 EXPORT_SYMBOL(vm_get_page_prot);
89
90 int sysctl_overcommit_memory __read_mostly = OVERCOMMIT_GUESS;  /* heuristic overcommit */
91 int sysctl_overcommit_ratio __read_mostly = 50; /* default is 50% */
92 int sysctl_max_map_count __read_mostly = DEFAULT_MAX_MAP_COUNT;
93 unsigned long sysctl_user_reserve_kbytes __read_mostly = 1UL << 17; /* 128MB */
94 unsigned long sysctl_admin_reserve_kbytes __read_mostly = 1UL << 13; /* 8MB */
95 /*
96  * Make sure vm_committed_as in one cacheline and not cacheline shared with
97  * other variables. It can be updated by several CPUs frequently.
98  */
99 struct percpu_counter vm_committed_as ____cacheline_aligned_in_smp;
100
101 /*
102  * The global memory commitment made in the system can be a metric
103  * that can be used to drive ballooning decisions when Linux is hosted
104  * as a guest. On Hyper-V, the host implements a policy engine for dynamically
105  * balancing memory across competing virtual machines that are hosted.
106  * Several metrics drive this policy engine including the guest reported
107  * memory commitment.
108  */
109 unsigned long vm_memory_committed(void)
110 {
111         return percpu_counter_read_positive(&vm_committed_as);
112 }
113 EXPORT_SYMBOL_GPL(vm_memory_committed);
114
115 /*
116  * Check that a process has enough memory to allocate a new virtual
117  * mapping. 0 means there is enough memory for the allocation to
118  * succeed and -ENOMEM implies there is not.
119  *
120  * We currently support three overcommit policies, which are set via the
121  * vm.overcommit_memory sysctl.  See Documentation/vm/overcommit-accounting
122  *
123  * Strict overcommit modes added 2002 Feb 26 by Alan Cox.
124  * Additional code 2002 Jul 20 by Robert Love.
125  *
126  * cap_sys_admin is 1 if the process has admin privileges, 0 otherwise.
127  *
128  * Note this is a helper function intended to be used by LSMs which
129  * wish to use this logic.
130  */
131 int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin)
132 {
133         long free, allowed, reserve;
134
135         vm_acct_memory(pages);
136
137         /*
138          * Sometimes we want to use more memory than we have
139          */
140         if (sysctl_overcommit_memory == OVERCOMMIT_ALWAYS)
141                 return 0;
142
143         if (sysctl_overcommit_memory == OVERCOMMIT_GUESS) {
144                 free = global_page_state(NR_FREE_PAGES);
145                 free += global_page_state(NR_FILE_PAGES);
146
147                 /*
148                  * shmem pages shouldn't be counted as free in this
149                  * case, they can't be purged, only swapped out, and
150                  * that won't affect the overall amount of available
151                  * memory in the system.
152                  */
153                 free -= global_page_state(NR_SHMEM);
154
155                 free += get_nr_swap_pages();
156
157                 /*
158                  * Any slabs which are created with the
159                  * SLAB_RECLAIM_ACCOUNT flag claim to have contents
160                  * which are reclaimable, under pressure.  The dentry
161                  * cache and most inode caches should fall into this
162                  */
163                 free += global_page_state(NR_SLAB_RECLAIMABLE);
164
165                 /*
166                  * Leave reserved pages. The pages are not for anonymous pages.
167                  */
168                 if (free <= totalreserve_pages)
169                         goto error;
170                 else
171                         free -= totalreserve_pages;
172
173                 /*
174                  * Reserve some for root
175                  */
176                 if (!cap_sys_admin)
177                         free -= sysctl_admin_reserve_kbytes >> (PAGE_SHIFT - 10);
178
179                 if (free > pages)
180                         return 0;
181
182                 goto error;
183         }
184
185         allowed = (totalram_pages - hugetlb_total_pages())
186                 * sysctl_overcommit_ratio / 100;
187         /*
188          * Reserve some for root
189          */
190         if (!cap_sys_admin)
191                 allowed -= sysctl_admin_reserve_kbytes >> (PAGE_SHIFT - 10);
192         allowed += total_swap_pages;
193
194         /*
195          * Don't let a single process grow so big a user can't recover
196          */
197         if (mm) {
198                 reserve = sysctl_user_reserve_kbytes >> (PAGE_SHIFT - 10);
199                 allowed -= min_t(long, mm->total_vm / 32, reserve);
200         }
201
202         if (percpu_counter_read_positive(&vm_committed_as) < allowed)
203                 return 0;
204 error:
205         vm_unacct_memory(pages);
206
207         return -ENOMEM;
208 }
209
210 /*
211  * Requires inode->i_mapping->i_mmap_mutex
212  */
213 static void __remove_shared_vm_struct(struct vm_area_struct *vma,
214                 struct file *file, struct address_space *mapping)
215 {
216         if (vma->vm_flags & VM_DENYWRITE)
217                 atomic_inc(&file_inode(file)->i_writecount);
218         if (vma->vm_flags & VM_SHARED)
219                 mapping->i_mmap_writable--;
220
221         flush_dcache_mmap_lock(mapping);
222         if (unlikely(vma->vm_flags & VM_NONLINEAR))
223                 list_del_init(&vma->shared.nonlinear);
224         else
225                 vma_interval_tree_remove(vma, &mapping->i_mmap);
226         flush_dcache_mmap_unlock(mapping);
227 }
228
229 /*
230  * Unlink a file-based vm structure from its interval tree, to hide
231  * vma from rmap and vmtruncate before freeing its page tables.
232  */
233 void unlink_file_vma(struct vm_area_struct *vma)
234 {
235         struct file *file = vma->vm_file;
236
237         if (file) {
238                 struct address_space *mapping = file->f_mapping;
239                 mutex_lock(&mapping->i_mmap_mutex);
240                 __remove_shared_vm_struct(vma, file, mapping);
241                 mutex_unlock(&mapping->i_mmap_mutex);
242         }
243 }
244
245 /*
246  * Close a vm structure and free it, returning the next.
247  */
248 static struct vm_area_struct *remove_vma(struct vm_area_struct *vma)
249 {
250         struct vm_area_struct *next = vma->vm_next;
251
252         might_sleep();
253         if (vma->vm_ops && vma->vm_ops->close)
254                 vma->vm_ops->close(vma);
255         if (vma->vm_file)
256                 fput(vma->vm_file);
257         mpol_put(vma_policy(vma));
258         kmem_cache_free(vm_area_cachep, vma);
259         return next;
260 }
261
262 static unsigned long do_brk(unsigned long addr, unsigned long len);
263
264 SYSCALL_DEFINE1(brk, unsigned long, brk)
265 {
266         unsigned long rlim, retval;
267         unsigned long newbrk, oldbrk;
268         struct mm_struct *mm = current->mm;
269         unsigned long min_brk;
270         bool populate;
271
272         down_write(&mm->mmap_sem);
273
274 #ifdef CONFIG_COMPAT_BRK
275         /*
276          * CONFIG_COMPAT_BRK can still be overridden by setting
277          * randomize_va_space to 2, which will still cause mm->start_brk
278          * to be arbitrarily shifted
279          */
280         if (current->brk_randomized)
281                 min_brk = mm->start_brk;
282         else
283                 min_brk = mm->end_data;
284 #else
285         min_brk = mm->start_brk;
286 #endif
287         if (brk < min_brk)
288                 goto out;
289
290         /*
291          * Check against rlimit here. If this check is done later after the test
292          * of oldbrk with newbrk then it can escape the test and let the data
293          * segment grow beyond its set limit the in case where the limit is
294          * not page aligned -Ram Gupta
295          */
296         rlim = rlimit(RLIMIT_DATA);
297         if (rlim < RLIM_INFINITY && (brk - mm->start_brk) +
298                         (mm->end_data - mm->start_data) > rlim)
299                 goto out;
300
301         newbrk = PAGE_ALIGN(brk);
302         oldbrk = PAGE_ALIGN(mm->brk);
303         if (oldbrk == newbrk)
304                 goto set_brk;
305
306         /* Always allow shrinking brk. */
307         if (brk <= mm->brk) {
308                 if (!do_munmap(mm, newbrk, oldbrk-newbrk))
309                         goto set_brk;
310                 goto out;
311         }
312
313         /* Check against existing mmap mappings. */
314         if (find_vma_intersection(mm, oldbrk, newbrk+PAGE_SIZE))
315                 goto out;
316
317         /* Ok, looks good - let it rip. */
318         if (do_brk(oldbrk, newbrk-oldbrk) != oldbrk)
319                 goto out;
320
321 set_brk:
322         mm->brk = brk;
323         populate = newbrk > oldbrk && (mm->def_flags & VM_LOCKED) != 0;
324         up_write(&mm->mmap_sem);
325         if (populate)
326                 mm_populate(oldbrk, newbrk - oldbrk);
327         return brk;
328
329 out:
330         retval = mm->brk;
331         up_write(&mm->mmap_sem);
332         return retval;
333 }
334
335 static long vma_compute_subtree_gap(struct vm_area_struct *vma)
336 {
337         unsigned long max, subtree_gap;
338         max = vma->vm_start;
339         if (vma->vm_prev)
340                 max -= vma->vm_prev->vm_end;
341         if (vma->vm_rb.rb_left) {
342                 subtree_gap = rb_entry(vma->vm_rb.rb_left,
343                                 struct vm_area_struct, vm_rb)->rb_subtree_gap;
344                 if (subtree_gap > max)
345                         max = subtree_gap;
346         }
347         if (vma->vm_rb.rb_right) {
348                 subtree_gap = rb_entry(vma->vm_rb.rb_right,
349                                 struct vm_area_struct, vm_rb)->rb_subtree_gap;
350                 if (subtree_gap > max)
351                         max = subtree_gap;
352         }
353         return max;
354 }
355
356 #ifdef CONFIG_DEBUG_VM_RB
357 static int browse_rb(struct rb_root *root)
358 {
359         int i = 0, j, bug = 0;
360         struct rb_node *nd, *pn = NULL;
361         unsigned long prev = 0, pend = 0;
362
363         for (nd = rb_first(root); nd; nd = rb_next(nd)) {
364                 struct vm_area_struct *vma;
365                 vma = rb_entry(nd, struct vm_area_struct, vm_rb);
366                 if (vma->vm_start < prev) {
367                         printk("vm_start %lx prev %lx\n", vma->vm_start, prev);
368                         bug = 1;
369                 }
370                 if (vma->vm_start < pend) {
371                         printk("vm_start %lx pend %lx\n", vma->vm_start, pend);
372                         bug = 1;
373                 }
374                 if (vma->vm_start > vma->vm_end) {
375                         printk("vm_end %lx < vm_start %lx\n",
376                                 vma->vm_end, vma->vm_start);
377                         bug = 1;
378                 }
379                 if (vma->rb_subtree_gap != vma_compute_subtree_gap(vma)) {
380                         printk("free gap %lx, correct %lx\n",
381                                vma->rb_subtree_gap,
382                                vma_compute_subtree_gap(vma));
383                         bug = 1;
384                 }
385                 i++;
386                 pn = nd;
387                 prev = vma->vm_start;
388                 pend = vma->vm_end;
389         }
390         j = 0;
391         for (nd = pn; nd; nd = rb_prev(nd))
392                 j++;
393         if (i != j) {
394                 printk("backwards %d, forwards %d\n", j, i);
395                 bug = 1;
396         }
397         return bug ? -1 : i;
398 }
399
400 static void validate_mm_rb(struct rb_root *root, struct vm_area_struct *ignore)
401 {
402         struct rb_node *nd;
403
404         for (nd = rb_first(root); nd; nd = rb_next(nd)) {
405                 struct vm_area_struct *vma;
406                 vma = rb_entry(nd, struct vm_area_struct, vm_rb);
407                 BUG_ON(vma != ignore &&
408                        vma->rb_subtree_gap != vma_compute_subtree_gap(vma));
409         }
410 }
411
412 void validate_mm(struct mm_struct *mm)
413 {
414         int bug = 0;
415         int i = 0;
416         unsigned long highest_address = 0;
417         struct vm_area_struct *vma = mm->mmap;
418         while (vma) {
419                 struct anon_vma_chain *avc;
420                 vma_lock_anon_vma(vma);
421                 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
422                         anon_vma_interval_tree_verify(avc);
423                 vma_unlock_anon_vma(vma);
424                 highest_address = vma->vm_end;
425                 vma = vma->vm_next;
426                 i++;
427         }
428         if (i != mm->map_count) {
429                 printk("map_count %d vm_next %d\n", mm->map_count, i);
430                 bug = 1;
431         }
432         if (highest_address != mm->highest_vm_end) {
433                 printk("mm->highest_vm_end %lx, found %lx\n",
434                        mm->highest_vm_end, highest_address);
435                 bug = 1;
436         }
437         i = browse_rb(&mm->mm_rb);
438         if (i != mm->map_count) {
439                 printk("map_count %d rb %d\n", mm->map_count, i);
440                 bug = 1;
441         }
442         BUG_ON(bug);
443 }
444 #else
445 #define validate_mm_rb(root, ignore) do { } while (0)
446 #define validate_mm(mm) do { } while (0)
447 #endif
448
449 RB_DECLARE_CALLBACKS(static, vma_gap_callbacks, struct vm_area_struct, vm_rb,
450                      unsigned long, rb_subtree_gap, vma_compute_subtree_gap)
451
452 /*
453  * Update augmented rbtree rb_subtree_gap values after vma->vm_start or
454  * vma->vm_prev->vm_end values changed, without modifying the vma's position
455  * in the rbtree.
456  */
457 static void vma_gap_update(struct vm_area_struct *vma)
458 {
459         /*
460          * As it turns out, RB_DECLARE_CALLBACKS() already created a callback
461          * function that does exacltly what we want.
462          */
463         vma_gap_callbacks_propagate(&vma->vm_rb, NULL);
464 }
465
466 static inline void vma_rb_insert(struct vm_area_struct *vma,
467                                  struct rb_root *root)
468 {
469         /* All rb_subtree_gap values must be consistent prior to insertion */
470         validate_mm_rb(root, NULL);
471
472         rb_insert_augmented(&vma->vm_rb, root, &vma_gap_callbacks);
473 }
474
475 static void vma_rb_erase(struct vm_area_struct *vma, struct rb_root *root)
476 {
477         /*
478          * All rb_subtree_gap values must be consistent prior to erase,
479          * with the possible exception of the vma being erased.
480          */
481         validate_mm_rb(root, vma);
482
483         /*
484          * Note rb_erase_augmented is a fairly large inline function,
485          * so make sure we instantiate it only once with our desired
486          * augmented rbtree callbacks.
487          */
488         rb_erase_augmented(&vma->vm_rb, root, &vma_gap_callbacks);
489 }
490
491 /*
492  * vma has some anon_vma assigned, and is already inserted on that
493  * anon_vma's interval trees.
494  *
495  * Before updating the vma's vm_start / vm_end / vm_pgoff fields, the
496  * vma must be removed from the anon_vma's interval trees using
497  * anon_vma_interval_tree_pre_update_vma().
498  *
499  * After the update, the vma will be reinserted using
500  * anon_vma_interval_tree_post_update_vma().
501  *
502  * The entire update must be protected by exclusive mmap_sem and by
503  * the root anon_vma's mutex.
504  */
505 static inline void
506 anon_vma_interval_tree_pre_update_vma(struct vm_area_struct *vma)
507 {
508         struct anon_vma_chain *avc;
509
510         list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
511                 anon_vma_interval_tree_remove(avc, &avc->anon_vma->rb_root);
512 }
513
514 static inline void
515 anon_vma_interval_tree_post_update_vma(struct vm_area_struct *vma)
516 {
517         struct anon_vma_chain *avc;
518
519         list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
520                 anon_vma_interval_tree_insert(avc, &avc->anon_vma->rb_root);
521 }
522
523 static int find_vma_links(struct mm_struct *mm, unsigned long addr,
524                 unsigned long end, struct vm_area_struct **pprev,
525                 struct rb_node ***rb_link, struct rb_node **rb_parent)
526 {
527         struct rb_node **__rb_link, *__rb_parent, *rb_prev;
528
529         __rb_link = &mm->mm_rb.rb_node;
530         rb_prev = __rb_parent = NULL;
531
532         while (*__rb_link) {
533                 struct vm_area_struct *vma_tmp;
534
535                 __rb_parent = *__rb_link;
536                 vma_tmp = rb_entry(__rb_parent, struct vm_area_struct, vm_rb);
537
538                 if (vma_tmp->vm_end > addr) {
539                         /* Fail if an existing vma overlaps the area */
540                         if (vma_tmp->vm_start < end)
541                                 return -ENOMEM;
542                         __rb_link = &__rb_parent->rb_left;
543                 } else {
544                         rb_prev = __rb_parent;
545                         __rb_link = &__rb_parent->rb_right;
546                 }
547         }
548
549         *pprev = NULL;
550         if (rb_prev)
551                 *pprev = rb_entry(rb_prev, struct vm_area_struct, vm_rb);
552         *rb_link = __rb_link;
553         *rb_parent = __rb_parent;
554         return 0;
555 }
556
557 static unsigned long count_vma_pages_range(struct mm_struct *mm,
558                 unsigned long addr, unsigned long end)
559 {
560         unsigned long nr_pages = 0;
561         struct vm_area_struct *vma;
562
563         /* Find first overlaping mapping */
564         vma = find_vma_intersection(mm, addr, end);
565         if (!vma)
566                 return 0;
567
568         nr_pages = (min(end, vma->vm_end) -
569                 max(addr, vma->vm_start)) >> PAGE_SHIFT;
570
571         /* Iterate over the rest of the overlaps */
572         for (vma = vma->vm_next; vma; vma = vma->vm_next) {
573                 unsigned long overlap_len;
574
575                 if (vma->vm_start > end)
576                         break;
577
578                 overlap_len = min(end, vma->vm_end) - vma->vm_start;
579                 nr_pages += overlap_len >> PAGE_SHIFT;
580         }
581
582         return nr_pages;
583 }
584
585 void __vma_link_rb(struct mm_struct *mm, struct vm_area_struct *vma,
586                 struct rb_node **rb_link, struct rb_node *rb_parent)
587 {
588         /* Update tracking information for the gap following the new vma. */
589         if (vma->vm_next)
590                 vma_gap_update(vma->vm_next);
591         else
592                 mm->highest_vm_end = vma->vm_end;
593
594         /*
595          * vma->vm_prev wasn't known when we followed the rbtree to find the
596          * correct insertion point for that vma. As a result, we could not
597          * update the vma vm_rb parents rb_subtree_gap values on the way down.
598          * So, we first insert the vma with a zero rb_subtree_gap value
599          * (to be consistent with what we did on the way down), and then
600          * immediately update the gap to the correct value. Finally we
601          * rebalance the rbtree after all augmented values have been set.
602          */
603         rb_link_node(&vma->vm_rb, rb_parent, rb_link);
604         vma->rb_subtree_gap = 0;
605         vma_gap_update(vma);
606         vma_rb_insert(vma, &mm->mm_rb);
607 }
608
609 static void __vma_link_file(struct vm_area_struct *vma)
610 {
611         struct file *file;
612
613         file = vma->vm_file;
614         if (file) {
615                 struct address_space *mapping = file->f_mapping;
616
617                 if (vma->vm_flags & VM_DENYWRITE)
618                         atomic_dec(&file_inode(file)->i_writecount);
619                 if (vma->vm_flags & VM_SHARED)
620                         mapping->i_mmap_writable++;
621
622                 flush_dcache_mmap_lock(mapping);
623                 if (unlikely(vma->vm_flags & VM_NONLINEAR))
624                         vma_nonlinear_insert(vma, &mapping->i_mmap_nonlinear);
625                 else
626                         vma_interval_tree_insert(vma, &mapping->i_mmap);
627                 flush_dcache_mmap_unlock(mapping);
628         }
629 }
630
631 static void
632 __vma_link(struct mm_struct *mm, struct vm_area_struct *vma,
633         struct vm_area_struct *prev, struct rb_node **rb_link,
634         struct rb_node *rb_parent)
635 {
636         __vma_link_list(mm, vma, prev, rb_parent);
637         __vma_link_rb(mm, vma, rb_link, rb_parent);
638 }
639
640 static void vma_link(struct mm_struct *mm, struct vm_area_struct *vma,
641                         struct vm_area_struct *prev, struct rb_node **rb_link,
642                         struct rb_node *rb_parent)
643 {
644         struct address_space *mapping = NULL;
645
646         if (vma->vm_file)
647                 mapping = vma->vm_file->f_mapping;
648
649         if (mapping)
650                 mutex_lock(&mapping->i_mmap_mutex);
651
652         __vma_link(mm, vma, prev, rb_link, rb_parent);
653         __vma_link_file(vma);
654
655         if (mapping)
656                 mutex_unlock(&mapping->i_mmap_mutex);
657
658         mm->map_count++;
659         validate_mm(mm);
660 }
661
662 /*
663  * Helper for vma_adjust() in the split_vma insert case: insert a vma into the
664  * mm's list and rbtree.  It has already been inserted into the interval tree.
665  */
666 static void __insert_vm_struct(struct mm_struct *mm, struct vm_area_struct *vma)
667 {
668         struct vm_area_struct *prev;
669         struct rb_node **rb_link, *rb_parent;
670
671         if (find_vma_links(mm, vma->vm_start, vma->vm_end,
672                            &prev, &rb_link, &rb_parent))
673                 BUG();
674         __vma_link(mm, vma, prev, rb_link, rb_parent);
675         mm->map_count++;
676 }
677
678 static inline void
679 __vma_unlink(struct mm_struct *mm, struct vm_area_struct *vma,
680                 struct vm_area_struct *prev)
681 {
682         struct vm_area_struct *next;
683
684         vma_rb_erase(vma, &mm->mm_rb);
685         prev->vm_next = next = vma->vm_next;
686         if (next)
687                 next->vm_prev = prev;
688         if (mm->mmap_cache == vma)
689                 mm->mmap_cache = prev;
690 }
691
692 /*
693  * We cannot adjust vm_start, vm_end, vm_pgoff fields of a vma that
694  * is already present in an i_mmap tree without adjusting the tree.
695  * The following helper function should be used when such adjustments
696  * are necessary.  The "insert" vma (if any) is to be inserted
697  * before we drop the necessary locks.
698  */
699 int vma_adjust(struct vm_area_struct *vma, unsigned long start,
700         unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert)
701 {
702         struct mm_struct *mm = vma->vm_mm;
703         struct vm_area_struct *next = vma->vm_next;
704         struct vm_area_struct *importer = NULL;
705         struct address_space *mapping = NULL;
706         struct rb_root *root = NULL;
707         struct anon_vma *anon_vma = NULL;
708         struct file *file = vma->vm_file;
709         bool start_changed = false, end_changed = false;
710         long adjust_next = 0;
711         int remove_next = 0;
712
713         if (next && !insert) {
714                 struct vm_area_struct *exporter = NULL;
715
716                 if (end >= next->vm_end) {
717                         /*
718                          * vma expands, overlapping all the next, and
719                          * perhaps the one after too (mprotect case 6).
720                          */
721 again:                  remove_next = 1 + (end > next->vm_end);
722                         end = next->vm_end;
723                         exporter = next;
724                         importer = vma;
725                 } else if (end > next->vm_start) {
726                         /*
727                          * vma expands, overlapping part of the next:
728                          * mprotect case 5 shifting the boundary up.
729                          */
730                         adjust_next = (end - next->vm_start) >> PAGE_SHIFT;
731                         exporter = next;
732                         importer = vma;
733                 } else if (end < vma->vm_end) {
734                         /*
735                          * vma shrinks, and !insert tells it's not
736                          * split_vma inserting another: so it must be
737                          * mprotect case 4 shifting the boundary down.
738                          */
739                         adjust_next = - ((vma->vm_end - end) >> PAGE_SHIFT);
740                         exporter = vma;
741                         importer = next;
742                 }
743
744                 /*
745                  * Easily overlooked: when mprotect shifts the boundary,
746                  * make sure the expanding vma has anon_vma set if the
747                  * shrinking vma had, to cover any anon pages imported.
748                  */
749                 if (exporter && exporter->anon_vma && !importer->anon_vma) {
750                         if (anon_vma_clone(importer, exporter))
751                                 return -ENOMEM;
752                         importer->anon_vma = exporter->anon_vma;
753                 }
754         }
755
756         if (file) {
757                 mapping = file->f_mapping;
758                 if (!(vma->vm_flags & VM_NONLINEAR)) {
759                         root = &mapping->i_mmap;
760                         uprobe_munmap(vma, vma->vm_start, vma->vm_end);
761
762                         if (adjust_next)
763                                 uprobe_munmap(next, next->vm_start,
764                                                         next->vm_end);
765                 }
766
767                 mutex_lock(&mapping->i_mmap_mutex);
768                 if (insert) {
769                         /*
770                          * Put into interval tree now, so instantiated pages
771                          * are visible to arm/parisc __flush_dcache_page
772                          * throughout; but we cannot insert into address
773                          * space until vma start or end is updated.
774                          */
775                         __vma_link_file(insert);
776                 }
777         }
778
779         vma_adjust_trans_huge(vma, start, end, adjust_next);
780
781         anon_vma = vma->anon_vma;
782         if (!anon_vma && adjust_next)
783                 anon_vma = next->anon_vma;
784         if (anon_vma) {
785                 VM_BUG_ON(adjust_next && next->anon_vma &&
786                           anon_vma != next->anon_vma);
787                 anon_vma_lock_write(anon_vma);
788                 anon_vma_interval_tree_pre_update_vma(vma);
789                 if (adjust_next)
790                         anon_vma_interval_tree_pre_update_vma(next);
791         }
792
793         if (root) {
794                 flush_dcache_mmap_lock(mapping);
795                 vma_interval_tree_remove(vma, root);
796                 if (adjust_next)
797                         vma_interval_tree_remove(next, root);
798         }
799
800         if (start != vma->vm_start) {
801                 vma->vm_start = start;
802                 start_changed = true;
803         }
804         if (end != vma->vm_end) {
805                 vma->vm_end = end;
806                 end_changed = true;
807         }
808         vma->vm_pgoff = pgoff;
809         if (adjust_next) {
810                 next->vm_start += adjust_next << PAGE_SHIFT;
811                 next->vm_pgoff += adjust_next;
812         }
813
814         if (root) {
815                 if (adjust_next)
816                         vma_interval_tree_insert(next, root);
817                 vma_interval_tree_insert(vma, root);
818                 flush_dcache_mmap_unlock(mapping);
819         }
820
821         if (remove_next) {
822                 /*
823                  * vma_merge has merged next into vma, and needs
824                  * us to remove next before dropping the locks.
825                  */
826                 __vma_unlink(mm, next, vma);
827                 if (file)
828                         __remove_shared_vm_struct(next, file, mapping);
829         } else if (insert) {
830                 /*
831                  * split_vma has split insert from vma, and needs
832                  * us to insert it before dropping the locks
833                  * (it may either follow vma or precede it).
834                  */
835                 __insert_vm_struct(mm, insert);
836         } else {
837                 if (start_changed)
838                         vma_gap_update(vma);
839                 if (end_changed) {
840                         if (!next)
841                                 mm->highest_vm_end = end;
842                         else if (!adjust_next)
843                                 vma_gap_update(next);
844                 }
845         }
846
847         if (anon_vma) {
848                 anon_vma_interval_tree_post_update_vma(vma);
849                 if (adjust_next)
850                         anon_vma_interval_tree_post_update_vma(next);
851                 anon_vma_unlock_write(anon_vma);
852         }
853         if (mapping)
854                 mutex_unlock(&mapping->i_mmap_mutex);
855
856         if (root) {
857                 uprobe_mmap(vma);
858
859                 if (adjust_next)
860                         uprobe_mmap(next);
861         }
862
863         if (remove_next) {
864                 if (file) {
865                         uprobe_munmap(next, next->vm_start, next->vm_end);
866                         fput(file);
867                 }
868                 if (next->anon_vma)
869                         anon_vma_merge(vma, next);
870                 mm->map_count--;
871                 mpol_put(vma_policy(next));
872                 kmem_cache_free(vm_area_cachep, next);
873                 /*
874                  * In mprotect's case 6 (see comments on vma_merge),
875                  * we must remove another next too. It would clutter
876                  * up the code too much to do both in one go.
877                  */
878                 next = vma->vm_next;
879                 if (remove_next == 2)
880                         goto again;
881                 else if (next)
882                         vma_gap_update(next);
883                 else
884                         mm->highest_vm_end = end;
885         }
886         if (insert && file)
887                 uprobe_mmap(insert);
888
889         validate_mm(mm);
890
891         return 0;
892 }
893
894 /*
895  * If the vma has a ->close operation then the driver probably needs to release
896  * per-vma resources, so we don't attempt to merge those.
897  */
898 static inline int is_mergeable_vma(struct vm_area_struct *vma,
899                         struct file *file, unsigned long vm_flags,
900                         const char __user *anon_name)
901 {
902         if (vma->vm_flags ^ vm_flags)
903                 return 0;
904         if (vma->vm_file != file)
905                 return 0;
906         if (vma->vm_ops && vma->vm_ops->close)
907                 return 0;
908         if (vma_get_anon_name(vma) != anon_name)
909                 return 0;
910         return 1;
911 }
912
913 static inline int is_mergeable_anon_vma(struct anon_vma *anon_vma1,
914                                         struct anon_vma *anon_vma2,
915                                         struct vm_area_struct *vma)
916 {
917         /*
918          * The list_is_singular() test is to avoid merging VMA cloned from
919          * parents. This can improve scalability caused by anon_vma lock.
920          */
921         if ((!anon_vma1 || !anon_vma2) && (!vma ||
922                 list_is_singular(&vma->anon_vma_chain)))
923                 return 1;
924         return anon_vma1 == anon_vma2;
925 }
926
927 /*
928  * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
929  * in front of (at a lower virtual address and file offset than) the vma.
930  *
931  * We cannot merge two vmas if they have differently assigned (non-NULL)
932  * anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
933  *
934  * We don't check here for the merged mmap wrapping around the end of pagecache
935  * indices (16TB on ia32) because do_mmap_pgoff() does not permit mmap's which
936  * wrap, nor mmaps which cover the final page at index -1UL.
937  */
938 static int
939 can_vma_merge_before(struct vm_area_struct *vma, unsigned long vm_flags,
940         struct anon_vma *anon_vma, struct file *file, pgoff_t vm_pgoff,
941         const char __user *anon_name)
942 {
943         if (is_mergeable_vma(vma, file, vm_flags, anon_name) &&
944             is_mergeable_anon_vma(anon_vma, vma->anon_vma, vma)) {
945                 if (vma->vm_pgoff == vm_pgoff)
946                         return 1;
947         }
948         return 0;
949 }
950
951 /*
952  * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
953  * beyond (at a higher virtual address and file offset than) the vma.
954  *
955  * We cannot merge two vmas if they have differently assigned (non-NULL)
956  * anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
957  */
958 static int
959 can_vma_merge_after(struct vm_area_struct *vma, unsigned long vm_flags,
960         struct anon_vma *anon_vma, struct file *file, pgoff_t vm_pgoff,
961         const char __user *anon_name)
962 {
963         if (is_mergeable_vma(vma, file, vm_flags, anon_name) &&
964             is_mergeable_anon_vma(anon_vma, vma->anon_vma, vma)) {
965                 pgoff_t vm_pglen;
966                 vm_pglen = (vma->vm_end - vma->vm_start) >> PAGE_SHIFT;
967                 if (vma->vm_pgoff + vm_pglen == vm_pgoff)
968                         return 1;
969         }
970         return 0;
971 }
972
973 /*
974  * Given a mapping request (addr,end,vm_flags,file,pgoff,anon_name),
975  * figure out whether that can be merged with its predecessor or its
976  * successor.  Or both (it neatly fills a hole).
977  *
978  * In most cases - when called for mmap, brk or mremap - [addr,end) is
979  * certain not to be mapped by the time vma_merge is called; but when
980  * called for mprotect, it is certain to be already mapped (either at
981  * an offset within prev, or at the start of next), and the flags of
982  * this area are about to be changed to vm_flags - and the no-change
983  * case has already been eliminated.
984  *
985  * The following mprotect cases have to be considered, where AAAA is
986  * the area passed down from mprotect_fixup, never extending beyond one
987  * vma, PPPPPP is the prev vma specified, and NNNNNN the next vma after:
988  *
989  *     AAAA             AAAA                AAAA          AAAA
990  *    PPPPPPNNNNNN    PPPPPPNNNNNN    PPPPPPNNNNNN    PPPPNNNNXXXX
991  *    cannot merge    might become    might become    might become
992  *                    PPNNNNNNNNNN    PPPPPPPPPPNN    PPPPPPPPPPPP 6 or
993  *    mmap, brk or    case 4 below    case 5 below    PPPPPPPPXXXX 7 or
994  *    mremap move:                                    PPPPNNNNNNNN 8
995  *        AAAA
996  *    PPPP    NNNN    PPPPPPPPPPPP    PPPPPPPPNNNN    PPPPNNNNNNNN
997  *    might become    case 1 below    case 2 below    case 3 below
998  *
999  * Odd one out? Case 8, because it extends NNNN but needs flags of XXXX:
1000  * mprotect_fixup updates vm_flags & vm_page_prot on successful return.
1001  */
1002 struct vm_area_struct *vma_merge(struct mm_struct *mm,
1003                         struct vm_area_struct *prev, unsigned long addr,
1004                         unsigned long end, unsigned long vm_flags,
1005                         struct anon_vma *anon_vma, struct file *file,
1006                         pgoff_t pgoff, struct mempolicy *policy,
1007                         const char __user *anon_name)
1008 {
1009         pgoff_t pglen = (end - addr) >> PAGE_SHIFT;
1010         struct vm_area_struct *area, *next;
1011         int err;
1012
1013         /*
1014          * We later require that vma->vm_flags == vm_flags,
1015          * so this tests vma->vm_flags & VM_SPECIAL, too.
1016          */
1017         if (vm_flags & VM_SPECIAL)
1018                 return NULL;
1019
1020         if (prev)
1021                 next = prev->vm_next;
1022         else
1023                 next = mm->mmap;
1024         area = next;
1025         if (next && next->vm_end == end)                /* cases 6, 7, 8 */
1026                 next = next->vm_next;
1027
1028         /*
1029          * Can it merge with the predecessor?
1030          */
1031         if (prev && prev->vm_end == addr &&
1032                         mpol_equal(vma_policy(prev), policy) &&
1033                         can_vma_merge_after(prev, vm_flags, anon_vma,
1034                                                 file, pgoff, anon_name)) {
1035                 /*
1036                  * OK, it can.  Can we now merge in the successor as well?
1037                  */
1038                 if (next && end == next->vm_start &&
1039                                 mpol_equal(policy, vma_policy(next)) &&
1040                                 can_vma_merge_before(next, vm_flags, anon_vma,
1041                                                 file, pgoff+pglen, anon_name) &&
1042                                 is_mergeable_anon_vma(prev->anon_vma,
1043                                                       next->anon_vma, NULL)) {
1044                                                         /* cases 1, 6 */
1045                         err = vma_adjust(prev, prev->vm_start,
1046                                 next->vm_end, prev->vm_pgoff, NULL);
1047                 } else                                  /* cases 2, 5, 7 */
1048                         err = vma_adjust(prev, prev->vm_start,
1049                                 end, prev->vm_pgoff, NULL);
1050                 if (err)
1051                         return NULL;
1052                 khugepaged_enter_vma_merge(prev);
1053                 return prev;
1054         }
1055
1056         /*
1057          * Can this new request be merged in front of next?
1058          */
1059         if (next && end == next->vm_start &&
1060                         mpol_equal(policy, vma_policy(next)) &&
1061                         can_vma_merge_before(next, vm_flags, anon_vma,
1062                                         file, pgoff+pglen, anon_name)) {
1063                 if (prev && addr < prev->vm_end)        /* case 4 */
1064                         err = vma_adjust(prev, prev->vm_start,
1065                                 addr, prev->vm_pgoff, NULL);
1066                 else                                    /* cases 3, 8 */
1067                         err = vma_adjust(area, addr, next->vm_end,
1068                                 next->vm_pgoff - pglen, NULL);
1069                 if (err)
1070                         return NULL;
1071                 khugepaged_enter_vma_merge(area);
1072                 return area;
1073         }
1074
1075         return NULL;
1076 }
1077
1078 /*
1079  * Rough compatbility check to quickly see if it's even worth looking
1080  * at sharing an anon_vma.
1081  *
1082  * They need to have the same vm_file, and the flags can only differ
1083  * in things that mprotect may change.
1084  *
1085  * NOTE! The fact that we share an anon_vma doesn't _have_ to mean that
1086  * we can merge the two vma's. For example, we refuse to merge a vma if
1087  * there is a vm_ops->close() function, because that indicates that the
1088  * driver is doing some kind of reference counting. But that doesn't
1089  * really matter for the anon_vma sharing case.
1090  */
1091 static int anon_vma_compatible(struct vm_area_struct *a, struct vm_area_struct *b)
1092 {
1093         return a->vm_end == b->vm_start &&
1094                 mpol_equal(vma_policy(a), vma_policy(b)) &&
1095                 a->vm_file == b->vm_file &&
1096                 !((a->vm_flags ^ b->vm_flags) & ~(VM_READ|VM_WRITE|VM_EXEC)) &&
1097                 b->vm_pgoff == a->vm_pgoff + ((b->vm_start - a->vm_start) >> PAGE_SHIFT);
1098 }
1099
1100 /*
1101  * Do some basic sanity checking to see if we can re-use the anon_vma
1102  * from 'old'. The 'a'/'b' vma's are in VM order - one of them will be
1103  * the same as 'old', the other will be the new one that is trying
1104  * to share the anon_vma.
1105  *
1106  * NOTE! This runs with mm_sem held for reading, so it is possible that
1107  * the anon_vma of 'old' is concurrently in the process of being set up
1108  * by another page fault trying to merge _that_. But that's ok: if it
1109  * is being set up, that automatically means that it will be a singleton
1110  * acceptable for merging, so we can do all of this optimistically. But
1111  * we do that ACCESS_ONCE() to make sure that we never re-load the pointer.
1112  *
1113  * IOW: that the "list_is_singular()" test on the anon_vma_chain only
1114  * matters for the 'stable anon_vma' case (ie the thing we want to avoid
1115  * is to return an anon_vma that is "complex" due to having gone through
1116  * a fork).
1117  *
1118  * We also make sure that the two vma's are compatible (adjacent,
1119  * and with the same memory policies). That's all stable, even with just
1120  * a read lock on the mm_sem.
1121  */
1122 static struct anon_vma *reusable_anon_vma(struct vm_area_struct *old, struct vm_area_struct *a, struct vm_area_struct *b)
1123 {
1124         if (anon_vma_compatible(a, b)) {
1125                 struct anon_vma *anon_vma = ACCESS_ONCE(old->anon_vma);
1126
1127                 if (anon_vma && list_is_singular(&old->anon_vma_chain))
1128                         return anon_vma;
1129         }
1130         return NULL;
1131 }
1132
1133 /*
1134  * find_mergeable_anon_vma is used by anon_vma_prepare, to check
1135  * neighbouring vmas for a suitable anon_vma, before it goes off
1136  * to allocate a new anon_vma.  It checks because a repetitive
1137  * sequence of mprotects and faults may otherwise lead to distinct
1138  * anon_vmas being allocated, preventing vma merge in subsequent
1139  * mprotect.
1140  */
1141 struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *vma)
1142 {
1143         struct anon_vma *anon_vma;
1144         struct vm_area_struct *near;
1145
1146         near = vma->vm_next;
1147         if (!near)
1148                 goto try_prev;
1149
1150         anon_vma = reusable_anon_vma(near, vma, near);
1151         if (anon_vma)
1152                 return anon_vma;
1153 try_prev:
1154         near = vma->vm_prev;
1155         if (!near)
1156                 goto none;
1157
1158         anon_vma = reusable_anon_vma(near, near, vma);
1159         if (anon_vma)
1160                 return anon_vma;
1161 none:
1162         /*
1163          * There's no absolute need to look only at touching neighbours:
1164          * we could search further afield for "compatible" anon_vmas.
1165          * But it would probably just be a waste of time searching,
1166          * or lead to too many vmas hanging off the same anon_vma.
1167          * We're trying to allow mprotect remerging later on,
1168          * not trying to minimize memory used for anon_vmas.
1169          */
1170         return NULL;
1171 }
1172
1173 #ifdef CONFIG_PROC_FS
1174 void vm_stat_account(struct mm_struct *mm, unsigned long flags,
1175                                                 struct file *file, long pages)
1176 {
1177         const unsigned long stack_flags
1178                 = VM_STACK_FLAGS & (VM_GROWSUP|VM_GROWSDOWN);
1179
1180         mm->total_vm += pages;
1181
1182         if (file) {
1183                 mm->shared_vm += pages;
1184                 if ((flags & (VM_EXEC|VM_WRITE)) == VM_EXEC)
1185                         mm->exec_vm += pages;
1186         } else if (flags & stack_flags)
1187                 mm->stack_vm += pages;
1188 }
1189 #endif /* CONFIG_PROC_FS */
1190
1191 /*
1192  * If a hint addr is less than mmap_min_addr change hint to be as
1193  * low as possible but still greater than mmap_min_addr
1194  */
1195 static inline unsigned long round_hint_to_min(unsigned long hint)
1196 {
1197         hint &= PAGE_MASK;
1198         if (((void *)hint != NULL) &&
1199             (hint < mmap_min_addr))
1200                 return PAGE_ALIGN(mmap_min_addr);
1201         return hint;
1202 }
1203
1204 /*
1205  * The caller must hold down_write(&current->mm->mmap_sem).
1206  */
1207
1208 unsigned long do_mmap_pgoff(struct file *file, unsigned long addr,
1209                         unsigned long len, unsigned long prot,
1210                         unsigned long flags, unsigned long pgoff,
1211                         unsigned long *populate)
1212 {
1213         struct mm_struct * mm = current->mm;
1214         struct inode *inode;
1215         vm_flags_t vm_flags;
1216
1217         *populate = 0;
1218 #ifdef CONFIG_SDCARD_FS
1219         if (file && (file->f_path.mnt->mnt_sb->s_magic == SDCARDFS_SUPER_MAGIC))
1220                 file = sdcardfs_lower_file(file);
1221 #endif
1222
1223         /*
1224          * Does the application expect PROT_READ to imply PROT_EXEC?
1225          *
1226          * (the exception is when the underlying filesystem is noexec
1227          *  mounted, in which case we dont add PROT_EXEC.)
1228          */
1229         if ((prot & PROT_READ) && (current->personality & READ_IMPLIES_EXEC))
1230                 if (!(file && (file->f_path.mnt->mnt_flags & MNT_NOEXEC)))
1231                         prot |= PROT_EXEC;
1232
1233         if (!len)
1234                 return -EINVAL;
1235
1236         if (!(flags & MAP_FIXED))
1237                 addr = round_hint_to_min(addr);
1238
1239         /* Careful about overflows.. */
1240         len = PAGE_ALIGN(len);
1241         if (!len)
1242                 return -ENOMEM;
1243
1244         /* offset overflow? */
1245         if ((pgoff + (len >> PAGE_SHIFT)) < pgoff)
1246                return -EOVERFLOW;
1247
1248         /* Too many mappings? */
1249         if (mm->map_count > sysctl_max_map_count)
1250                 return -ENOMEM;
1251
1252         /* Obtain the address to map to. we verify (or select) it and ensure
1253          * that it represents a valid section of the address space.
1254          */
1255         addr = get_unmapped_area(file, addr, len, pgoff, flags);
1256         if (addr & ~PAGE_MASK)
1257                 return addr;
1258
1259         /* Do simple checking here so the lower-level routines won't have
1260          * to. we assume access permissions have been handled by the open
1261          * of the memory object, so we don't do any here.
1262          */
1263         vm_flags = calc_vm_prot_bits(prot) | calc_vm_flag_bits(flags) |
1264                         mm->def_flags | VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC;
1265
1266         if (flags & MAP_LOCKED)
1267                 if (!can_do_mlock())
1268                         return -EPERM;
1269
1270         /* mlock MCL_FUTURE? */
1271         if (vm_flags & VM_LOCKED) {
1272                 unsigned long locked, lock_limit;
1273                 locked = len >> PAGE_SHIFT;
1274                 locked += mm->locked_vm;
1275                 lock_limit = rlimit(RLIMIT_MEMLOCK);
1276                 lock_limit >>= PAGE_SHIFT;
1277                 if (locked > lock_limit && !capable(CAP_IPC_LOCK))
1278                         return -EAGAIN;
1279         }
1280
1281         inode = file ? file_inode(file) : NULL;
1282
1283         if (file) {
1284                 switch (flags & MAP_TYPE) {
1285                 case MAP_SHARED:
1286                         if ((prot&PROT_WRITE) && !(file->f_mode&FMODE_WRITE))
1287                                 return -EACCES;
1288
1289                         /*
1290                          * Make sure we don't allow writing to an append-only
1291                          * file..
1292                          */
1293                         if (IS_APPEND(inode) && (file->f_mode & FMODE_WRITE))
1294                                 return -EACCES;
1295
1296                         /*
1297                          * Make sure there are no mandatory locks on the file.
1298                          */
1299                         if (locks_verify_locked(inode))
1300                                 return -EAGAIN;
1301
1302                         vm_flags |= VM_SHARED | VM_MAYSHARE;
1303                         if (!(file->f_mode & FMODE_WRITE))
1304                                 vm_flags &= ~(VM_MAYWRITE | VM_SHARED);
1305
1306                         /* fall through */
1307                 case MAP_PRIVATE:
1308                         if (!(file->f_mode & FMODE_READ))
1309                                 return -EACCES;
1310                         if (file->f_path.mnt->mnt_flags & MNT_NOEXEC) {
1311                                 if (vm_flags & VM_EXEC)
1312                                         return -EPERM;
1313                                 vm_flags &= ~VM_MAYEXEC;
1314                         }
1315
1316                         if (!file->f_op || !file->f_op->mmap)
1317                                 return -ENODEV;
1318                         break;
1319
1320                 default:
1321                         return -EINVAL;
1322                 }
1323         } else {
1324                 switch (flags & MAP_TYPE) {
1325                 case MAP_SHARED:
1326                         /*
1327                          * Ignore pgoff.
1328                          */
1329                         pgoff = 0;
1330                         vm_flags |= VM_SHARED | VM_MAYSHARE;
1331                         break;
1332                 case MAP_PRIVATE:
1333                         /*
1334                          * Set pgoff according to addr for anon_vma.
1335                          */
1336                         pgoff = addr >> PAGE_SHIFT;
1337                         break;
1338                 default:
1339                         return -EINVAL;
1340                 }
1341         }
1342
1343         /*
1344          * Set 'VM_NORESERVE' if we should not account for the
1345          * memory use of this mapping.
1346          */
1347         if (flags & MAP_NORESERVE) {
1348                 /* We honor MAP_NORESERVE if allowed to overcommit */
1349                 if (sysctl_overcommit_memory != OVERCOMMIT_NEVER)
1350                         vm_flags |= VM_NORESERVE;
1351
1352                 /* hugetlb applies strict overcommit unless MAP_NORESERVE */
1353                 if (file && is_file_hugepages(file))
1354                         vm_flags |= VM_NORESERVE;
1355         }
1356
1357         addr = mmap_region(file, addr, len, vm_flags, pgoff);
1358         if (!IS_ERR_VALUE(addr) &&
1359             ((vm_flags & VM_LOCKED) ||
1360              (flags & (MAP_POPULATE | MAP_NONBLOCK)) == MAP_POPULATE))
1361                 *populate = len;
1362         return addr;
1363 }
1364
1365 SYSCALL_DEFINE6(mmap_pgoff, unsigned long, addr, unsigned long, len,
1366                 unsigned long, prot, unsigned long, flags,
1367                 unsigned long, fd, unsigned long, pgoff)
1368 {
1369         struct file *file = NULL;
1370         unsigned long retval = -EBADF;
1371
1372         if (!(flags & MAP_ANONYMOUS)) {
1373                 audit_mmap_fd(fd, flags);
1374                 if (unlikely(flags & MAP_HUGETLB))
1375                         return -EINVAL;
1376                 file = fget(fd);
1377                 if (!file)
1378                         goto out;
1379                 if (is_file_hugepages(file))
1380                         len = ALIGN(len, huge_page_size(hstate_file(file)));
1381         } else if (flags & MAP_HUGETLB) {
1382                 struct user_struct *user = NULL;
1383                 struct hstate *hs = hstate_sizelog((flags >> MAP_HUGE_SHIFT) &
1384                                                    SHM_HUGE_MASK);
1385
1386                 if (!hs)
1387                         return -EINVAL;
1388
1389                 len = ALIGN(len, huge_page_size(hs));
1390                 /*
1391                  * VM_NORESERVE is used because the reservations will be
1392                  * taken when vm_ops->mmap() is called
1393                  * A dummy user value is used because we are not locking
1394                  * memory so no accounting is necessary
1395                  */
1396                 file = hugetlb_file_setup(HUGETLB_ANON_FILE, len,
1397                                 VM_NORESERVE,
1398                                 &user, HUGETLB_ANONHUGE_INODE,
1399                                 (flags >> MAP_HUGE_SHIFT) & MAP_HUGE_MASK);
1400                 if (IS_ERR(file))
1401                         return PTR_ERR(file);
1402         }
1403
1404         flags &= ~(MAP_EXECUTABLE | MAP_DENYWRITE);
1405
1406         retval = vm_mmap_pgoff(file, addr, len, prot, flags, pgoff);
1407         if (file)
1408                 fput(file);
1409 out:
1410         return retval;
1411 }
1412
1413 #ifdef __ARCH_WANT_SYS_OLD_MMAP
1414 struct mmap_arg_struct {
1415         unsigned long addr;
1416         unsigned long len;
1417         unsigned long prot;
1418         unsigned long flags;
1419         unsigned long fd;
1420         unsigned long offset;
1421 };
1422
1423 SYSCALL_DEFINE1(old_mmap, struct mmap_arg_struct __user *, arg)
1424 {
1425         struct mmap_arg_struct a;
1426
1427         if (copy_from_user(&a, arg, sizeof(a)))
1428                 return -EFAULT;
1429         if (a.offset & ~PAGE_MASK)
1430                 return -EINVAL;
1431
1432         return sys_mmap_pgoff(a.addr, a.len, a.prot, a.flags, a.fd,
1433                               a.offset >> PAGE_SHIFT);
1434 }
1435 #endif /* __ARCH_WANT_SYS_OLD_MMAP */
1436
1437 /*
1438  * Some shared mappigns will want the pages marked read-only
1439  * to track write events. If so, we'll downgrade vm_page_prot
1440  * to the private version (using protection_map[] without the
1441  * VM_SHARED bit).
1442  */
1443 int vma_wants_writenotify(struct vm_area_struct *vma)
1444 {
1445         vm_flags_t vm_flags = vma->vm_flags;
1446
1447         /* If it was private or non-writable, the write bit is already clear */
1448         if ((vm_flags & (VM_WRITE|VM_SHARED)) != ((VM_WRITE|VM_SHARED)))
1449                 return 0;
1450
1451         /* The backer wishes to know when pages are first written to? */
1452         if (vma->vm_ops && vma->vm_ops->page_mkwrite)
1453                 return 1;
1454
1455         /* The open routine did something to the protections already? */
1456         if (pgprot_val(vma->vm_page_prot) !=
1457             pgprot_val(vm_get_page_prot(vm_flags)))
1458                 return 0;
1459
1460         /* Specialty mapping? */
1461         if (vm_flags & VM_PFNMAP)
1462                 return 0;
1463
1464         /* Can the mapping track the dirty pages? */
1465         return vma->vm_file && vma->vm_file->f_mapping &&
1466                 mapping_cap_account_dirty(vma->vm_file->f_mapping);
1467 }
1468
1469 /*
1470  * We account for memory if it's a private writeable mapping,
1471  * not hugepages and VM_NORESERVE wasn't set.
1472  */
1473 static inline int accountable_mapping(struct file *file, vm_flags_t vm_flags)
1474 {
1475         /*
1476          * hugetlb has its own accounting separate from the core VM
1477          * VM_HUGETLB may not be set yet so we cannot check for that flag.
1478          */
1479         if (file && is_file_hugepages(file))
1480                 return 0;
1481
1482         return (vm_flags & (VM_NORESERVE | VM_SHARED | VM_WRITE)) == VM_WRITE;
1483 }
1484
1485 unsigned long mmap_region(struct file *file, unsigned long addr,
1486                 unsigned long len, vm_flags_t vm_flags, unsigned long pgoff)
1487 {
1488         struct mm_struct *mm = current->mm;
1489         struct vm_area_struct *vma, *prev;
1490         int correct_wcount = 0;
1491         int error;
1492         struct rb_node **rb_link, *rb_parent;
1493         unsigned long charged = 0;
1494         struct inode *inode =  file ? file_inode(file) : NULL;
1495
1496         /* Check against address space limit. */
1497         if (!may_expand_vm(mm, len >> PAGE_SHIFT)) {
1498                 unsigned long nr_pages;
1499
1500                 /*
1501                  * MAP_FIXED may remove pages of mappings that intersects with
1502                  * requested mapping. Account for the pages it would unmap.
1503                  */
1504                 if (!(vm_flags & MAP_FIXED))
1505                         return -ENOMEM;
1506
1507                 nr_pages = count_vma_pages_range(mm, addr, addr + len);
1508
1509                 if (!may_expand_vm(mm, (len >> PAGE_SHIFT) - nr_pages))
1510                         return -ENOMEM;
1511         }
1512
1513         /* Clear old maps */
1514         error = -ENOMEM;
1515 munmap_back:
1516         if (find_vma_links(mm, addr, addr + len, &prev, &rb_link, &rb_parent)) {
1517                 if (do_munmap(mm, addr, len))
1518                         return -ENOMEM;
1519                 goto munmap_back;
1520         }
1521
1522         /*
1523          * Private writable mapping: check memory availability
1524          */
1525         if (accountable_mapping(file, vm_flags)) {
1526                 charged = len >> PAGE_SHIFT;
1527                 if (security_vm_enough_memory_mm(mm, charged))
1528                         return -ENOMEM;
1529                 vm_flags |= VM_ACCOUNT;
1530         }
1531
1532         /*
1533          * Can we just expand an old mapping?
1534          */
1535         vma = vma_merge(mm, prev, addr, addr + len, vm_flags, NULL, file, pgoff,
1536                         NULL, NULL);
1537         if (vma)
1538                 goto out;
1539
1540         /*
1541          * Determine the object being mapped and call the appropriate
1542          * specific mapper. the address has already been validated, but
1543          * not unmapped, but the maps are removed from the list.
1544          */
1545         vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
1546         if (!vma) {
1547                 error = -ENOMEM;
1548                 goto unacct_error;
1549         }
1550
1551         vma->vm_mm = mm;
1552         vma->vm_start = addr;
1553         vma->vm_end = addr + len;
1554         vma->vm_flags = vm_flags;
1555         vma->vm_page_prot = vm_get_page_prot(vm_flags);
1556         vma->vm_pgoff = pgoff;
1557         INIT_LIST_HEAD(&vma->anon_vma_chain);
1558
1559         error = -EINVAL;        /* when rejecting VM_GROWSDOWN|VM_GROWSUP */
1560
1561         if (file) {
1562                 if (vm_flags & (VM_GROWSDOWN|VM_GROWSUP))
1563                         goto free_vma;
1564                 if (vm_flags & VM_DENYWRITE) {
1565                         error = deny_write_access(file);
1566                         if (error)
1567                                 goto free_vma;
1568                         correct_wcount = 1;
1569                 }
1570                 vma->vm_file = get_file(file);
1571                 error = file->f_op->mmap(file, vma);
1572                 if (error)
1573                         goto unmap_and_free_vma;
1574
1575                 /* Can addr have changed??
1576                  *
1577                  * Answer: Yes, several device drivers can do it in their
1578                  *         f_op->mmap method. -DaveM
1579                  * Bug: If addr is changed, prev, rb_link, rb_parent should
1580                  *      be updated for vma_link()
1581                  */
1582                 WARN_ON_ONCE(addr != vma->vm_start);
1583
1584                 addr = vma->vm_start;
1585                 pgoff = vma->vm_pgoff;
1586                 vm_flags = vma->vm_flags;
1587         } else if (vm_flags & VM_SHARED) {
1588                 if (unlikely(vm_flags & (VM_GROWSDOWN|VM_GROWSUP)))
1589                         goto free_vma;
1590                 error = shmem_zero_setup(vma);
1591                 if (error)
1592                         goto free_vma;
1593         }
1594
1595         if (vma_wants_writenotify(vma)) {
1596                 pgprot_t pprot = vma->vm_page_prot;
1597
1598                 /* Can vma->vm_page_prot have changed??
1599                  *
1600                  * Answer: Yes, drivers may have changed it in their
1601                  *         f_op->mmap method.
1602                  *
1603                  * Ensures that vmas marked as uncached stay that way.
1604                  */
1605                 vma->vm_page_prot = vm_get_page_prot(vm_flags & ~VM_SHARED);
1606                 if (pgprot_val(pprot) == pgprot_val(pgprot_noncached(pprot)))
1607                         vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot);
1608         }
1609
1610         vma_link(mm, vma, prev, rb_link, rb_parent);
1611         file = vma->vm_file;
1612
1613         /* Once vma denies write, undo our temporary denial count */
1614         if (correct_wcount)
1615                 atomic_inc(&inode->i_writecount);
1616 out:
1617         perf_event_mmap(vma);
1618
1619         vm_stat_account(mm, vm_flags, file, len >> PAGE_SHIFT);
1620         if (vm_flags & VM_LOCKED) {
1621                 if (!((vm_flags & VM_SPECIAL) || is_vm_hugetlb_page(vma) ||
1622                                         vma == get_gate_vma(current->mm)))
1623                         mm->locked_vm += (len >> PAGE_SHIFT);
1624                 else
1625                         vma->vm_flags &= ~VM_LOCKED;
1626         }
1627
1628         if (file)
1629                 uprobe_mmap(vma);
1630
1631         return addr;
1632
1633 unmap_and_free_vma:
1634         if (correct_wcount)
1635                 atomic_inc(&inode->i_writecount);
1636         vma->vm_file = NULL;
1637         fput(file);
1638
1639         /* Undo any partial mapping done by a device driver. */
1640         unmap_region(mm, vma, prev, vma->vm_start, vma->vm_end);
1641         charged = 0;
1642 free_vma:
1643         kmem_cache_free(vm_area_cachep, vma);
1644 unacct_error:
1645         if (charged)
1646                 vm_unacct_memory(charged);
1647         return error;
1648 }
1649
1650 unsigned long unmapped_area(struct vm_unmapped_area_info *info)
1651 {
1652         /*
1653          * We implement the search by looking for an rbtree node that
1654          * immediately follows a suitable gap. That is,
1655          * - gap_start = vma->vm_prev->vm_end <= info->high_limit - length;
1656          * - gap_end   = vma->vm_start        >= info->low_limit  + length;
1657          * - gap_end - gap_start >= length
1658          */
1659
1660         struct mm_struct *mm = current->mm;
1661         struct vm_area_struct *vma;
1662         unsigned long length, low_limit, high_limit, gap_start, gap_end;
1663
1664         /* Adjust search length to account for worst case alignment overhead */
1665         length = info->length + info->align_mask;
1666         if (length < info->length)
1667                 return -ENOMEM;
1668
1669         /* Adjust search limits by the desired length */
1670         if (info->high_limit < length)
1671                 return -ENOMEM;
1672         high_limit = info->high_limit - length;
1673
1674         if (info->low_limit > high_limit)
1675                 return -ENOMEM;
1676         low_limit = info->low_limit + length;
1677
1678         /* Check if rbtree root looks promising */
1679         if (RB_EMPTY_ROOT(&mm->mm_rb))
1680                 goto check_highest;
1681         vma = rb_entry(mm->mm_rb.rb_node, struct vm_area_struct, vm_rb);
1682         if (vma->rb_subtree_gap < length)
1683                 goto check_highest;
1684
1685         while (true) {
1686                 /* Visit left subtree if it looks promising */
1687                 gap_end = vma->vm_start;
1688                 if (gap_end >= low_limit && vma->vm_rb.rb_left) {
1689                         struct vm_area_struct *left =
1690                                 rb_entry(vma->vm_rb.rb_left,
1691                                          struct vm_area_struct, vm_rb);
1692                         if (left->rb_subtree_gap >= length) {
1693                                 vma = left;
1694                                 continue;
1695                         }
1696                 }
1697
1698                 gap_start = vma->vm_prev ? vma->vm_prev->vm_end : 0;
1699 check_current:
1700                 /* Check if current node has a suitable gap */
1701                 if (gap_start > high_limit)
1702                         return -ENOMEM;
1703                 if (gap_end >= low_limit && gap_end - gap_start >= length)
1704                         goto found;
1705
1706                 /* Visit right subtree if it looks promising */
1707                 if (vma->vm_rb.rb_right) {
1708                         struct vm_area_struct *right =
1709                                 rb_entry(vma->vm_rb.rb_right,
1710                                          struct vm_area_struct, vm_rb);
1711                         if (right->rb_subtree_gap >= length) {
1712                                 vma = right;
1713                                 continue;
1714                         }
1715                 }
1716
1717                 /* Go back up the rbtree to find next candidate node */
1718                 while (true) {
1719                         struct rb_node *prev = &vma->vm_rb;
1720                         if (!rb_parent(prev))
1721                                 goto check_highest;
1722                         vma = rb_entry(rb_parent(prev),
1723                                        struct vm_area_struct, vm_rb);
1724                         if (prev == vma->vm_rb.rb_left) {
1725                                 gap_start = vma->vm_prev->vm_end;
1726                                 gap_end = vma->vm_start;
1727                                 goto check_current;
1728                         }
1729                 }
1730         }
1731
1732 check_highest:
1733         /* Check highest gap, which does not precede any rbtree node */
1734         gap_start = mm->highest_vm_end;
1735         gap_end = ULONG_MAX;  /* Only for VM_BUG_ON below */
1736         if (gap_start > high_limit)
1737                 return -ENOMEM;
1738
1739 found:
1740         /* We found a suitable gap. Clip it with the original low_limit. */
1741         if (gap_start < info->low_limit)
1742                 gap_start = info->low_limit;
1743
1744         /* Adjust gap address to the desired alignment */
1745         gap_start += (info->align_offset - gap_start) & info->align_mask;
1746
1747         VM_BUG_ON(gap_start + info->length > info->high_limit);
1748         VM_BUG_ON(gap_start + info->length > gap_end);
1749         return gap_start;
1750 }
1751
1752 unsigned long unmapped_area_topdown(struct vm_unmapped_area_info *info)
1753 {
1754         struct mm_struct *mm = current->mm;
1755         struct vm_area_struct *vma;
1756         unsigned long length, low_limit, high_limit, gap_start, gap_end;
1757
1758         /* Adjust search length to account for worst case alignment overhead */
1759         length = info->length + info->align_mask;
1760         if (length < info->length)
1761                 return -ENOMEM;
1762
1763         /*
1764          * Adjust search limits by the desired length.
1765          * See implementation comment at top of unmapped_area().
1766          */
1767         gap_end = info->high_limit;
1768         if (gap_end < length)
1769                 return -ENOMEM;
1770         high_limit = gap_end - length;
1771
1772         if (info->low_limit > high_limit)
1773                 return -ENOMEM;
1774         low_limit = info->low_limit + length;
1775
1776         /* Check highest gap, which does not precede any rbtree node */
1777         gap_start = mm->highest_vm_end;
1778         if (gap_start <= high_limit)
1779                 goto found_highest;
1780
1781         /* Check if rbtree root looks promising */
1782         if (RB_EMPTY_ROOT(&mm->mm_rb))
1783                 return -ENOMEM;
1784         vma = rb_entry(mm->mm_rb.rb_node, struct vm_area_struct, vm_rb);
1785         if (vma->rb_subtree_gap < length)
1786                 return -ENOMEM;
1787
1788         while (true) {
1789                 /* Visit right subtree if it looks promising */
1790                 gap_start = vma->vm_prev ? vma->vm_prev->vm_end : 0;
1791                 if (gap_start <= high_limit && vma->vm_rb.rb_right) {
1792                         struct vm_area_struct *right =
1793                                 rb_entry(vma->vm_rb.rb_right,
1794                                          struct vm_area_struct, vm_rb);
1795                         if (right->rb_subtree_gap >= length) {
1796                                 vma = right;
1797                                 continue;
1798                         }
1799                 }
1800
1801 check_current:
1802                 /* Check if current node has a suitable gap */
1803                 gap_end = vma->vm_start;
1804                 if (gap_end < low_limit)
1805                         return -ENOMEM;
1806                 if (gap_start <= high_limit && gap_end - gap_start >= length)
1807                         goto found;
1808
1809                 /* Visit left subtree if it looks promising */
1810                 if (vma->vm_rb.rb_left) {
1811                         struct vm_area_struct *left =
1812                                 rb_entry(vma->vm_rb.rb_left,
1813                                          struct vm_area_struct, vm_rb);
1814                         if (left->rb_subtree_gap >= length) {
1815                                 vma = left;
1816                                 continue;
1817                         }
1818                 }
1819
1820                 /* Go back up the rbtree to find next candidate node */
1821                 while (true) {
1822                         struct rb_node *prev = &vma->vm_rb;
1823                         if (!rb_parent(prev))
1824                                 return -ENOMEM;
1825                         vma = rb_entry(rb_parent(prev),
1826                                        struct vm_area_struct, vm_rb);
1827                         if (prev == vma->vm_rb.rb_right) {
1828                                 gap_start = vma->vm_prev ?
1829                                         vma->vm_prev->vm_end : 0;
1830                                 goto check_current;
1831                         }
1832                 }
1833         }
1834
1835 found:
1836         /* We found a suitable gap. Clip it with the original high_limit. */
1837         if (gap_end > info->high_limit)
1838                 gap_end = info->high_limit;
1839
1840 found_highest:
1841         /* Compute highest gap address at the desired alignment */
1842         gap_end -= info->length;
1843         gap_end -= (gap_end - info->align_offset) & info->align_mask;
1844
1845         VM_BUG_ON(gap_end < info->low_limit);
1846         VM_BUG_ON(gap_end < gap_start);
1847         return gap_end;
1848 }
1849
1850 /* Get an address range which is currently unmapped.
1851  * For shmat() with addr=0.
1852  *
1853  * Ugly calling convention alert:
1854  * Return value with the low bits set means error value,
1855  * ie
1856  *      if (ret & ~PAGE_MASK)
1857  *              error = ret;
1858  *
1859  * This function "knows" that -ENOMEM has the bits set.
1860  */
1861 #ifndef HAVE_ARCH_UNMAPPED_AREA
1862 unsigned long
1863 arch_get_unmapped_area(struct file *filp, unsigned long addr,
1864                 unsigned long len, unsigned long pgoff, unsigned long flags)
1865 {
1866         struct mm_struct *mm = current->mm;
1867         struct vm_area_struct *vma;
1868         struct vm_unmapped_area_info info;
1869
1870         if (len > TASK_SIZE - mmap_min_addr)
1871                 return -ENOMEM;
1872
1873         if (flags & MAP_FIXED)
1874                 return addr;
1875
1876         if (addr) {
1877                 addr = PAGE_ALIGN(addr);
1878                 vma = find_vma(mm, addr);
1879                 if (TASK_SIZE - len >= addr && addr >= mmap_min_addr &&
1880                     (!vma || addr + len <= vma->vm_start))
1881                         return addr;
1882         }
1883
1884         info.flags = 0;
1885         info.length = len;
1886         info.low_limit = TASK_UNMAPPED_BASE;
1887         info.high_limit = TASK_SIZE;
1888         info.align_mask = 0;
1889         return vm_unmapped_area(&info);
1890 }
1891 #endif  
1892
1893 void arch_unmap_area(struct mm_struct *mm, unsigned long addr)
1894 {
1895         /*
1896          * Is this a new hole at the lowest possible address?
1897          */
1898         if (addr >= TASK_UNMAPPED_BASE && addr < mm->free_area_cache)
1899                 mm->free_area_cache = addr;
1900 }
1901
1902 /*
1903  * This mmap-allocator allocates new areas top-down from below the
1904  * stack's low limit (the base):
1905  */
1906 #ifndef HAVE_ARCH_UNMAPPED_AREA_TOPDOWN
1907 unsigned long
1908 arch_get_unmapped_area_topdown(struct file *filp, const unsigned long addr0,
1909                           const unsigned long len, const unsigned long pgoff,
1910                           const unsigned long flags)
1911 {
1912         struct vm_area_struct *vma;
1913         struct mm_struct *mm = current->mm;
1914         unsigned long addr = addr0;
1915         struct vm_unmapped_area_info info;
1916
1917         /* requested length too big for entire address space */
1918         if (len > TASK_SIZE - mmap_min_addr)
1919                 return -ENOMEM;
1920
1921         if (flags & MAP_FIXED)
1922                 return addr;
1923
1924         /* requesting a specific address */
1925         if (addr) {
1926                 addr = PAGE_ALIGN(addr);
1927                 vma = find_vma(mm, addr);
1928                 if (TASK_SIZE - len >= addr && addr >= mmap_min_addr &&
1929                                 (!vma || addr + len <= vma->vm_start))
1930                         return addr;
1931         }
1932
1933         info.flags = VM_UNMAPPED_AREA_TOPDOWN;
1934         info.length = len;
1935         info.low_limit = max(PAGE_SIZE, mmap_min_addr);
1936         info.high_limit = mm->mmap_base;
1937         info.align_mask = 0;
1938         addr = vm_unmapped_area(&info);
1939
1940         /*
1941          * A failed mmap() very likely causes application failure,
1942          * so fall back to the bottom-up function here. This scenario
1943          * can happen with large stack limits and large mmap()
1944          * allocations.
1945          */
1946         if (addr & ~PAGE_MASK) {
1947                 VM_BUG_ON(addr != -ENOMEM);
1948                 info.flags = 0;
1949                 info.low_limit = TASK_UNMAPPED_BASE;
1950                 info.high_limit = TASK_SIZE;
1951                 addr = vm_unmapped_area(&info);
1952         }
1953
1954         return addr;
1955 }
1956 #endif
1957
1958 void arch_unmap_area_topdown(struct mm_struct *mm, unsigned long addr)
1959 {
1960         /*
1961          * Is this a new hole at the highest possible address?
1962          */
1963         if (addr > mm->free_area_cache)
1964                 mm->free_area_cache = addr;
1965
1966         /* dont allow allocations above current base */
1967         if (mm->free_area_cache > mm->mmap_base)
1968                 mm->free_area_cache = mm->mmap_base;
1969 }
1970
1971 unsigned long
1972 get_unmapped_area(struct file *file, unsigned long addr, unsigned long len,
1973                 unsigned long pgoff, unsigned long flags)
1974 {
1975         unsigned long (*get_area)(struct file *, unsigned long,
1976                                   unsigned long, unsigned long, unsigned long);
1977
1978         unsigned long error = arch_mmap_check(addr, len, flags);
1979         if (error)
1980                 return error;
1981
1982         /* Careful about overflows.. */
1983         if (len > TASK_SIZE)
1984                 return -ENOMEM;
1985
1986         get_area = current->mm->get_unmapped_area;
1987         if (file && file->f_op && file->f_op->get_unmapped_area)
1988                 get_area = file->f_op->get_unmapped_area;
1989         addr = get_area(file, addr, len, pgoff, flags);
1990         if (IS_ERR_VALUE(addr))
1991                 return addr;
1992
1993         if (addr > TASK_SIZE - len)
1994                 return -ENOMEM;
1995         if (addr & ~PAGE_MASK)
1996                 return -EINVAL;
1997
1998         addr = arch_rebalance_pgtables(addr, len);
1999         error = security_mmap_addr(addr);
2000         return error ? error : addr;
2001 }
2002
2003 EXPORT_SYMBOL(get_unmapped_area);
2004
2005 /* Look up the first VMA which satisfies  addr < vm_end,  NULL if none. */
2006 struct vm_area_struct *find_vma(struct mm_struct *mm, unsigned long addr)
2007 {
2008         struct vm_area_struct *vma = NULL;
2009
2010         /* Check the cache first. */
2011         /* (Cache hit rate is typically around 35%.) */
2012         vma = ACCESS_ONCE(mm->mmap_cache);
2013         if (!(vma && vma->vm_end > addr && vma->vm_start <= addr)) {
2014                 struct rb_node *rb_node;
2015
2016                 rb_node = mm->mm_rb.rb_node;
2017                 vma = NULL;
2018
2019                 while (rb_node) {
2020                         struct vm_area_struct *vma_tmp;
2021
2022                         vma_tmp = rb_entry(rb_node,
2023                                            struct vm_area_struct, vm_rb);
2024
2025                         if (vma_tmp->vm_end > addr) {
2026                                 vma = vma_tmp;
2027                                 if (vma_tmp->vm_start <= addr)
2028                                         break;
2029                                 rb_node = rb_node->rb_left;
2030                         } else
2031                                 rb_node = rb_node->rb_right;
2032                 }
2033                 if (vma)
2034                         mm->mmap_cache = vma;
2035         }
2036         return vma;
2037 }
2038
2039 EXPORT_SYMBOL(find_vma);
2040
2041 /*
2042  * Same as find_vma, but also return a pointer to the previous VMA in *pprev.
2043  */
2044 struct vm_area_struct *
2045 find_vma_prev(struct mm_struct *mm, unsigned long addr,
2046                         struct vm_area_struct **pprev)
2047 {
2048         struct vm_area_struct *vma;
2049
2050         vma = find_vma(mm, addr);
2051         if (vma) {
2052                 *pprev = vma->vm_prev;
2053         } else {
2054                 struct rb_node *rb_node = mm->mm_rb.rb_node;
2055                 *pprev = NULL;
2056                 while (rb_node) {
2057                         *pprev = rb_entry(rb_node, struct vm_area_struct, vm_rb);
2058                         rb_node = rb_node->rb_right;
2059                 }
2060         }
2061         return vma;
2062 }
2063
2064 /*
2065  * Verify that the stack growth is acceptable and
2066  * update accounting. This is shared with both the
2067  * grow-up and grow-down cases.
2068  */
2069 static int acct_stack_growth(struct vm_area_struct *vma, unsigned long size, unsigned long grow)
2070 {
2071         struct mm_struct *mm = vma->vm_mm;
2072         struct rlimit *rlim = current->signal->rlim;
2073         unsigned long new_start, actual_size;
2074
2075         /* address space limit tests */
2076         if (!may_expand_vm(mm, grow))
2077                 return -ENOMEM;
2078
2079         /* Stack limit test */
2080         actual_size = size;
2081         if (size && (vma->vm_flags & (VM_GROWSUP | VM_GROWSDOWN)))
2082                 actual_size -= PAGE_SIZE;
2083         if (actual_size > ACCESS_ONCE(rlim[RLIMIT_STACK].rlim_cur))
2084                 return -ENOMEM;
2085
2086         /* mlock limit tests */
2087         if (vma->vm_flags & VM_LOCKED) {
2088                 unsigned long locked;
2089                 unsigned long limit;
2090                 locked = mm->locked_vm + grow;
2091                 limit = ACCESS_ONCE(rlim[RLIMIT_MEMLOCK].rlim_cur);
2092                 limit >>= PAGE_SHIFT;
2093                 if (locked > limit && !capable(CAP_IPC_LOCK))
2094                         return -ENOMEM;
2095         }
2096
2097         /* Check to ensure the stack will not grow into a hugetlb-only region */
2098         new_start = (vma->vm_flags & VM_GROWSUP) ? vma->vm_start :
2099                         vma->vm_end - size;
2100         if (is_hugepage_only_range(vma->vm_mm, new_start, size))
2101                 return -EFAULT;
2102
2103         /*
2104          * Overcommit..  This must be the final test, as it will
2105          * update security statistics.
2106          */
2107         if (security_vm_enough_memory_mm(mm, grow))
2108                 return -ENOMEM;
2109
2110         /* Ok, everything looks good - let it rip */
2111         if (vma->vm_flags & VM_LOCKED)
2112                 mm->locked_vm += grow;
2113         vm_stat_account(mm, vma->vm_flags, vma->vm_file, grow);
2114         return 0;
2115 }
2116
2117 #if defined(CONFIG_STACK_GROWSUP) || defined(CONFIG_IA64)
2118 /*
2119  * PA-RISC uses this for its stack; IA64 for its Register Backing Store.
2120  * vma is the last one with address > vma->vm_end.  Have to extend vma.
2121  */
2122 int expand_upwards(struct vm_area_struct *vma, unsigned long address)
2123 {
2124         int error;
2125
2126         if (!(vma->vm_flags & VM_GROWSUP))
2127                 return -EFAULT;
2128
2129         /*
2130          * We must make sure the anon_vma is allocated
2131          * so that the anon_vma locking is not a noop.
2132          */
2133         if (unlikely(anon_vma_prepare(vma)))
2134                 return -ENOMEM;
2135         vma_lock_anon_vma(vma);
2136
2137         /*
2138          * vma->vm_start/vm_end cannot change under us because the caller
2139          * is required to hold the mmap_sem in read mode.  We need the
2140          * anon_vma lock to serialize against concurrent expand_stacks.
2141          * Also guard against wrapping around to address 0.
2142          */
2143         if (address < PAGE_ALIGN(address+4))
2144                 address = PAGE_ALIGN(address+4);
2145         else {
2146                 vma_unlock_anon_vma(vma);
2147                 return -ENOMEM;
2148         }
2149         error = 0;
2150
2151         /* Somebody else might have raced and expanded it already */
2152         if (address > vma->vm_end) {
2153                 unsigned long size, grow;
2154
2155                 size = address - vma->vm_start;
2156                 grow = (address - vma->vm_end) >> PAGE_SHIFT;
2157
2158                 error = -ENOMEM;
2159                 if (vma->vm_pgoff + (size >> PAGE_SHIFT) >= vma->vm_pgoff) {
2160                         error = acct_stack_growth(vma, size, grow);
2161                         if (!error) {
2162                                 /*
2163                                  * vma_gap_update() doesn't support concurrent
2164                                  * updates, but we only hold a shared mmap_sem
2165                                  * lock here, so we need to protect against
2166                                  * concurrent vma expansions.
2167                                  * vma_lock_anon_vma() doesn't help here, as
2168                                  * we don't guarantee that all growable vmas
2169                                  * in a mm share the same root anon vma.
2170                                  * So, we reuse mm->page_table_lock to guard
2171                                  * against concurrent vma expansions.
2172                                  */
2173                                 spin_lock(&vma->vm_mm->page_table_lock);
2174                                 anon_vma_interval_tree_pre_update_vma(vma);
2175                                 vma->vm_end = address;
2176                                 anon_vma_interval_tree_post_update_vma(vma);
2177                                 if (vma->vm_next)
2178                                         vma_gap_update(vma->vm_next);
2179                                 else
2180                                         vma->vm_mm->highest_vm_end = address;
2181                                 spin_unlock(&vma->vm_mm->page_table_lock);
2182
2183                                 perf_event_mmap(vma);
2184                         }
2185                 }
2186         }
2187         vma_unlock_anon_vma(vma);
2188         khugepaged_enter_vma_merge(vma);
2189         validate_mm(vma->vm_mm);
2190         return error;
2191 }
2192 #endif /* CONFIG_STACK_GROWSUP || CONFIG_IA64 */
2193
2194 /*
2195  * vma is the first one with address < vma->vm_start.  Have to extend vma.
2196  */
2197 int expand_downwards(struct vm_area_struct *vma,
2198                                    unsigned long address)
2199 {
2200         int error;
2201
2202         /*
2203          * We must make sure the anon_vma is allocated
2204          * so that the anon_vma locking is not a noop.
2205          */
2206         if (unlikely(anon_vma_prepare(vma)))
2207                 return -ENOMEM;
2208
2209         address &= PAGE_MASK;
2210         error = security_mmap_addr(address);
2211         if (error)
2212                 return error;
2213
2214         vma_lock_anon_vma(vma);
2215
2216         /*
2217          * vma->vm_start/vm_end cannot change under us because the caller
2218          * is required to hold the mmap_sem in read mode.  We need the
2219          * anon_vma lock to serialize against concurrent expand_stacks.
2220          */
2221
2222         /* Somebody else might have raced and expanded it already */
2223         if (address < vma->vm_start) {
2224                 unsigned long size, grow;
2225
2226                 size = vma->vm_end - address;
2227                 grow = (vma->vm_start - address) >> PAGE_SHIFT;
2228
2229                 error = -ENOMEM;
2230                 if (grow <= vma->vm_pgoff) {
2231                         error = acct_stack_growth(vma, size, grow);
2232                         if (!error) {
2233                                 /*
2234                                  * vma_gap_update() doesn't support concurrent
2235                                  * updates, but we only hold a shared mmap_sem
2236                                  * lock here, so we need to protect against
2237                                  * concurrent vma expansions.
2238                                  * vma_lock_anon_vma() doesn't help here, as
2239                                  * we don't guarantee that all growable vmas
2240                                  * in a mm share the same root anon vma.
2241                                  * So, we reuse mm->page_table_lock to guard
2242                                  * against concurrent vma expansions.
2243                                  */
2244                                 spin_lock(&vma->vm_mm->page_table_lock);
2245                                 anon_vma_interval_tree_pre_update_vma(vma);
2246                                 vma->vm_start = address;
2247                                 vma->vm_pgoff -= grow;
2248                                 anon_vma_interval_tree_post_update_vma(vma);
2249                                 vma_gap_update(vma);
2250                                 spin_unlock(&vma->vm_mm->page_table_lock);
2251
2252                                 perf_event_mmap(vma);
2253                         }
2254                 }
2255         }
2256         vma_unlock_anon_vma(vma);
2257         khugepaged_enter_vma_merge(vma);
2258         validate_mm(vma->vm_mm);
2259         return error;
2260 }
2261
2262 /*
2263  * Note how expand_stack() refuses to expand the stack all the way to
2264  * abut the next virtual mapping, *unless* that mapping itself is also
2265  * a stack mapping. We want to leave room for a guard page, after all
2266  * (the guard page itself is not added here, that is done by the
2267  * actual page faulting logic)
2268  *
2269  * This matches the behavior of the guard page logic (see mm/memory.c:
2270  * check_stack_guard_page()), which only allows the guard page to be
2271  * removed under these circumstances.
2272  */
2273 #ifdef CONFIG_STACK_GROWSUP
2274 int expand_stack(struct vm_area_struct *vma, unsigned long address)
2275 {
2276         struct vm_area_struct *next;
2277
2278         address &= PAGE_MASK;
2279         next = vma->vm_next;
2280         if (next && next->vm_start == address + PAGE_SIZE) {
2281                 if (!(next->vm_flags & VM_GROWSUP))
2282                         return -ENOMEM;
2283         }
2284         return expand_upwards(vma, address);
2285 }
2286
2287 struct vm_area_struct *
2288 find_extend_vma(struct mm_struct *mm, unsigned long addr)
2289 {
2290         struct vm_area_struct *vma, *prev;
2291
2292         addr &= PAGE_MASK;
2293         vma = find_vma_prev(mm, addr, &prev);
2294         if (vma && (vma->vm_start <= addr))
2295                 return vma;
2296         if (!prev || expand_stack(prev, addr))
2297                 return NULL;
2298         if (prev->vm_flags & VM_LOCKED)
2299                 __mlock_vma_pages_range(prev, addr, prev->vm_end, NULL);
2300         return prev;
2301 }
2302 #else
2303 int expand_stack(struct vm_area_struct *vma, unsigned long address)
2304 {
2305         struct vm_area_struct *prev;
2306
2307         address &= PAGE_MASK;
2308         prev = vma->vm_prev;
2309         if (prev && prev->vm_end == address) {
2310                 if (!(prev->vm_flags & VM_GROWSDOWN))
2311                         return -ENOMEM;
2312         }
2313         return expand_downwards(vma, address);
2314 }
2315
2316 struct vm_area_struct *
2317 find_extend_vma(struct mm_struct * mm, unsigned long addr)
2318 {
2319         struct vm_area_struct * vma;
2320         unsigned long start;
2321
2322         addr &= PAGE_MASK;
2323         vma = find_vma(mm,addr);
2324         if (!vma)
2325                 return NULL;
2326         if (vma->vm_start <= addr)
2327                 return vma;
2328         if (!(vma->vm_flags & VM_GROWSDOWN))
2329                 return NULL;
2330         start = vma->vm_start;
2331         if (expand_stack(vma, addr))
2332                 return NULL;
2333         if (vma->vm_flags & VM_LOCKED)
2334                 __mlock_vma_pages_range(vma, addr, start, NULL);
2335         return vma;
2336 }
2337 #endif
2338
2339 /*
2340  * Ok - we have the memory areas we should free on the vma list,
2341  * so release them, and do the vma updates.
2342  *
2343  * Called with the mm semaphore held.
2344  */
2345 static void remove_vma_list(struct mm_struct *mm, struct vm_area_struct *vma)
2346 {
2347         unsigned long nr_accounted = 0;
2348
2349         /* Update high watermark before we lower total_vm */
2350         update_hiwater_vm(mm);
2351         do {
2352                 long nrpages = vma_pages(vma);
2353
2354                 if (vma->vm_flags & VM_ACCOUNT)
2355                         nr_accounted += nrpages;
2356                 vm_stat_account(mm, vma->vm_flags, vma->vm_file, -nrpages);
2357                 vma = remove_vma(vma);
2358         } while (vma);
2359         vm_unacct_memory(nr_accounted);
2360         validate_mm(mm);
2361 }
2362
2363 /*
2364  * Get rid of page table information in the indicated region.
2365  *
2366  * Called with the mm semaphore held.
2367  */
2368 static void unmap_region(struct mm_struct *mm,
2369                 struct vm_area_struct *vma, struct vm_area_struct *prev,
2370                 unsigned long start, unsigned long end)
2371 {
2372         struct vm_area_struct *next = prev? prev->vm_next: mm->mmap;
2373         struct mmu_gather tlb;
2374
2375         lru_add_drain();
2376         tlb_gather_mmu(&tlb, mm, start, end);
2377         update_hiwater_rss(mm);
2378         unmap_vmas(&tlb, vma, start, end);
2379         free_pgtables(&tlb, vma, prev ? prev->vm_end : FIRST_USER_ADDRESS,
2380                                  next ? next->vm_start : USER_PGTABLES_CEILING);
2381         tlb_finish_mmu(&tlb, start, end);
2382 }
2383
2384 /*
2385  * Create a list of vma's touched by the unmap, removing them from the mm's
2386  * vma list as we go..
2387  */
2388 static void
2389 detach_vmas_to_be_unmapped(struct mm_struct *mm, struct vm_area_struct *vma,
2390         struct vm_area_struct *prev, unsigned long end)
2391 {
2392         struct vm_area_struct **insertion_point;
2393         struct vm_area_struct *tail_vma = NULL;
2394         unsigned long addr;
2395
2396         insertion_point = (prev ? &prev->vm_next : &mm->mmap);
2397         vma->vm_prev = NULL;
2398         do {
2399                 vma_rb_erase(vma, &mm->mm_rb);
2400                 mm->map_count--;
2401                 tail_vma = vma;
2402                 vma = vma->vm_next;
2403         } while (vma && vma->vm_start < end);
2404         *insertion_point = vma;
2405         if (vma) {
2406                 vma->vm_prev = prev;
2407                 vma_gap_update(vma);
2408         } else
2409                 mm->highest_vm_end = prev ? prev->vm_end : 0;
2410         tail_vma->vm_next = NULL;
2411         if (mm->unmap_area == arch_unmap_area)
2412                 addr = prev ? prev->vm_end : mm->mmap_base;
2413         else
2414                 addr = vma ?  vma->vm_start : mm->mmap_base;
2415         mm->unmap_area(mm, addr);
2416         mm->mmap_cache = NULL;          /* Kill the cache. */
2417 }
2418
2419 /*
2420  * __split_vma() bypasses sysctl_max_map_count checking.  We use this on the
2421  * munmap path where it doesn't make sense to fail.
2422  */
2423 static int __split_vma(struct mm_struct * mm, struct vm_area_struct * vma,
2424               unsigned long addr, int new_below)
2425 {
2426         struct mempolicy *pol;
2427         struct vm_area_struct *new;
2428         int err = -ENOMEM;
2429
2430         if (is_vm_hugetlb_page(vma) && (addr &
2431                                         ~(huge_page_mask(hstate_vma(vma)))))
2432                 return -EINVAL;
2433
2434         new = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
2435         if (!new)
2436                 goto out_err;
2437
2438         /* most fields are the same, copy all, and then fixup */
2439         *new = *vma;
2440
2441         INIT_LIST_HEAD(&new->anon_vma_chain);
2442
2443         if (new_below)
2444                 new->vm_end = addr;
2445         else {
2446                 new->vm_start = addr;
2447                 new->vm_pgoff += ((addr - vma->vm_start) >> PAGE_SHIFT);
2448         }
2449
2450         pol = mpol_dup(vma_policy(vma));
2451         if (IS_ERR(pol)) {
2452                 err = PTR_ERR(pol);
2453                 goto out_free_vma;
2454         }
2455         vma_set_policy(new, pol);
2456
2457         if (anon_vma_clone(new, vma))
2458                 goto out_free_mpol;
2459
2460         if (new->vm_file)
2461                 get_file(new->vm_file);
2462
2463         if (new->vm_ops && new->vm_ops->open)
2464                 new->vm_ops->open(new);
2465
2466         if (new_below)
2467                 err = vma_adjust(vma, addr, vma->vm_end, vma->vm_pgoff +
2468                         ((addr - new->vm_start) >> PAGE_SHIFT), new);
2469         else
2470                 err = vma_adjust(vma, vma->vm_start, addr, vma->vm_pgoff, new);
2471
2472         /* Success. */
2473         if (!err)
2474                 return 0;
2475
2476         /* Clean everything up if vma_adjust failed. */
2477         if (new->vm_ops && new->vm_ops->close)
2478                 new->vm_ops->close(new);
2479         if (new->vm_file)
2480                 fput(new->vm_file);
2481         unlink_anon_vmas(new);
2482  out_free_mpol:
2483         mpol_put(pol);
2484  out_free_vma:
2485         kmem_cache_free(vm_area_cachep, new);
2486  out_err:
2487         return err;
2488 }
2489
2490 /*
2491  * Split a vma into two pieces at address 'addr', a new vma is allocated
2492  * either for the first part or the tail.
2493  */
2494 int split_vma(struct mm_struct *mm, struct vm_area_struct *vma,
2495               unsigned long addr, int new_below)
2496 {
2497         if (mm->map_count >= sysctl_max_map_count)
2498                 return -ENOMEM;
2499
2500         return __split_vma(mm, vma, addr, new_below);
2501 }
2502
2503 /* Munmap is split into 2 main parts -- this part which finds
2504  * what needs doing, and the areas themselves, which do the
2505  * work.  This now handles partial unmappings.
2506  * Jeremy Fitzhardinge <jeremy@goop.org>
2507  */
2508 int do_munmap(struct mm_struct *mm, unsigned long start, size_t len)
2509 {
2510         unsigned long end;
2511         struct vm_area_struct *vma, *prev, *last;
2512
2513         if ((start & ~PAGE_MASK) || start > TASK_SIZE || len > TASK_SIZE-start)
2514                 return -EINVAL;
2515
2516         if ((len = PAGE_ALIGN(len)) == 0)
2517                 return -EINVAL;
2518
2519         /* Find the first overlapping VMA */
2520         vma = find_vma(mm, start);
2521         if (!vma)
2522                 return 0;
2523         prev = vma->vm_prev;
2524         /* we have  start < vma->vm_end  */
2525
2526         /* if it doesn't overlap, we have nothing.. */
2527         end = start + len;
2528         if (vma->vm_start >= end)
2529                 return 0;
2530
2531         /*
2532          * If we need to split any vma, do it now to save pain later.
2533          *
2534          * Note: mremap's move_vma VM_ACCOUNT handling assumes a partially
2535          * unmapped vm_area_struct will remain in use: so lower split_vma
2536          * places tmp vma above, and higher split_vma places tmp vma below.
2537          */
2538         if (start > vma->vm_start) {
2539                 int error;
2540
2541                 /*
2542                  * Make sure that map_count on return from munmap() will
2543                  * not exceed its limit; but let map_count go just above
2544                  * its limit temporarily, to help free resources as expected.
2545                  */
2546                 if (end < vma->vm_end && mm->map_count >= sysctl_max_map_count)
2547                         return -ENOMEM;
2548
2549                 error = __split_vma(mm, vma, start, 0);
2550                 if (error)
2551                         return error;
2552                 prev = vma;
2553         }
2554
2555         /* Does it split the last one? */
2556         last = find_vma(mm, end);
2557         if (last && end > last->vm_start) {
2558                 int error = __split_vma(mm, last, end, 1);
2559                 if (error)
2560                         return error;
2561         }
2562         vma = prev? prev->vm_next: mm->mmap;
2563
2564         /*
2565          * unlock any mlock()ed ranges before detaching vmas
2566          */
2567         if (mm->locked_vm) {
2568                 struct vm_area_struct *tmp = vma;
2569                 while (tmp && tmp->vm_start < end) {
2570                         if (tmp->vm_flags & VM_LOCKED) {
2571                                 mm->locked_vm -= vma_pages(tmp);
2572                                 munlock_vma_pages_all(tmp);
2573                         }
2574                         tmp = tmp->vm_next;
2575                 }
2576         }
2577
2578         /*
2579          * Remove the vma's, and unmap the actual pages
2580          */
2581         detach_vmas_to_be_unmapped(mm, vma, prev, end);
2582         unmap_region(mm, vma, prev, start, end);
2583
2584         /* Fix up all other VM information */
2585         remove_vma_list(mm, vma);
2586
2587         return 0;
2588 }
2589
2590 int vm_munmap(unsigned long start, size_t len)
2591 {
2592         int ret;
2593         struct mm_struct *mm = current->mm;
2594
2595         down_write(&mm->mmap_sem);
2596         ret = do_munmap(mm, start, len);
2597         up_write(&mm->mmap_sem);
2598         return ret;
2599 }
2600 EXPORT_SYMBOL(vm_munmap);
2601
2602 SYSCALL_DEFINE2(munmap, unsigned long, addr, size_t, len)
2603 {
2604         profile_munmap(addr);
2605         return vm_munmap(addr, len);
2606 }
2607
2608 static inline void verify_mm_writelocked(struct mm_struct *mm)
2609 {
2610 #ifdef CONFIG_DEBUG_VM
2611         if (unlikely(down_read_trylock(&mm->mmap_sem))) {
2612                 WARN_ON(1);
2613                 up_read(&mm->mmap_sem);
2614         }
2615 #endif
2616 }
2617
2618 /*
2619  *  this is really a simplified "do_mmap".  it only handles
2620  *  anonymous maps.  eventually we may be able to do some
2621  *  brk-specific accounting here.
2622  */
2623 static unsigned long do_brk(unsigned long addr, unsigned long len)
2624 {
2625         struct mm_struct * mm = current->mm;
2626         struct vm_area_struct * vma, * prev;
2627         unsigned long flags;
2628         struct rb_node ** rb_link, * rb_parent;
2629         pgoff_t pgoff = addr >> PAGE_SHIFT;
2630         int error;
2631
2632         len = PAGE_ALIGN(len);
2633         if (!len)
2634                 return addr;
2635
2636         flags = VM_DATA_DEFAULT_FLAGS | VM_ACCOUNT | mm->def_flags;
2637
2638         error = get_unmapped_area(NULL, addr, len, 0, MAP_FIXED);
2639         if (error & ~PAGE_MASK)
2640                 return error;
2641
2642         /*
2643          * mlock MCL_FUTURE?
2644          */
2645         if (mm->def_flags & VM_LOCKED) {
2646                 unsigned long locked, lock_limit;
2647                 locked = len >> PAGE_SHIFT;
2648                 locked += mm->locked_vm;
2649                 lock_limit = rlimit(RLIMIT_MEMLOCK);
2650                 lock_limit >>= PAGE_SHIFT;
2651                 if (locked > lock_limit && !capable(CAP_IPC_LOCK))
2652                         return -EAGAIN;
2653         }
2654
2655         /*
2656          * mm->mmap_sem is required to protect against another thread
2657          * changing the mappings in case we sleep.
2658          */
2659         verify_mm_writelocked(mm);
2660
2661         /*
2662          * Clear old maps.  this also does some error checking for us
2663          */
2664  munmap_back:
2665         if (find_vma_links(mm, addr, addr + len, &prev, &rb_link, &rb_parent)) {
2666                 if (do_munmap(mm, addr, len))
2667                         return -ENOMEM;
2668                 goto munmap_back;
2669         }
2670
2671         /* Check against address space limits *after* clearing old maps... */
2672         if (!may_expand_vm(mm, len >> PAGE_SHIFT))
2673                 return -ENOMEM;
2674
2675         if (mm->map_count > sysctl_max_map_count)
2676                 return -ENOMEM;
2677
2678         if (security_vm_enough_memory_mm(mm, len >> PAGE_SHIFT))
2679                 return -ENOMEM;
2680
2681         /* Can we just expand an old private anonymous mapping? */
2682         vma = vma_merge(mm, prev, addr, addr + len, flags,
2683                                         NULL, NULL, pgoff, NULL, NULL);
2684         if (vma)
2685                 goto out;
2686
2687         /*
2688          * create a vma struct for an anonymous mapping
2689          */
2690         vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
2691         if (!vma) {
2692                 vm_unacct_memory(len >> PAGE_SHIFT);
2693                 return -ENOMEM;
2694         }
2695
2696         INIT_LIST_HEAD(&vma->anon_vma_chain);
2697         vma->vm_mm = mm;
2698         vma->vm_start = addr;
2699         vma->vm_end = addr + len;
2700         vma->vm_pgoff = pgoff;
2701         vma->vm_flags = flags;
2702         vma->vm_page_prot = vm_get_page_prot(flags);
2703         vma_link(mm, vma, prev, rb_link, rb_parent);
2704 out:
2705         perf_event_mmap(vma);
2706         mm->total_vm += len >> PAGE_SHIFT;
2707         if (flags & VM_LOCKED)
2708                 mm->locked_vm += (len >> PAGE_SHIFT);
2709         return addr;
2710 }
2711
2712 unsigned long vm_brk(unsigned long addr, unsigned long len)
2713 {
2714         struct mm_struct *mm = current->mm;
2715         unsigned long ret;
2716         bool populate;
2717
2718         down_write(&mm->mmap_sem);
2719         ret = do_brk(addr, len);
2720         populate = ((mm->def_flags & VM_LOCKED) != 0);
2721         up_write(&mm->mmap_sem);
2722         if (populate)
2723                 mm_populate(addr, len);
2724         return ret;
2725 }
2726 EXPORT_SYMBOL(vm_brk);
2727
2728 /* Release all mmaps. */
2729 void exit_mmap(struct mm_struct *mm)
2730 {
2731         struct mmu_gather tlb;
2732         struct vm_area_struct *vma;
2733         unsigned long nr_accounted = 0;
2734
2735         /* mm's last user has gone, and its about to be pulled down */
2736         mmu_notifier_release(mm);
2737
2738         if (mm->locked_vm) {
2739                 vma = mm->mmap;
2740                 while (vma) {
2741                         if (vma->vm_flags & VM_LOCKED)
2742                                 munlock_vma_pages_all(vma);
2743                         vma = vma->vm_next;
2744                 }
2745         }
2746
2747         arch_exit_mmap(mm);
2748
2749         vma = mm->mmap;
2750         if (!vma)       /* Can happen if dup_mmap() received an OOM */
2751                 return;
2752
2753         lru_add_drain();
2754         flush_cache_mm(mm);
2755         tlb_gather_mmu(&tlb, mm, 0, -1);
2756         /* update_hiwater_rss(mm) here? but nobody should be looking */
2757         /* Use -1 here to ensure all VMAs in the mm are unmapped */
2758         unmap_vmas(&tlb, vma, 0, -1);
2759
2760         free_pgtables(&tlb, vma, FIRST_USER_ADDRESS, USER_PGTABLES_CEILING);
2761         tlb_finish_mmu(&tlb, 0, -1);
2762
2763         /*
2764          * Walk the list again, actually closing and freeing it,
2765          * with preemption enabled, without holding any MM locks.
2766          */
2767         while (vma) {
2768                 if (vma->vm_flags & VM_ACCOUNT)
2769                         nr_accounted += vma_pages(vma);
2770                 vma = remove_vma(vma);
2771         }
2772         vm_unacct_memory(nr_accounted);
2773
2774         WARN_ON(mm->nr_ptes > (FIRST_USER_ADDRESS+PMD_SIZE-1)>>PMD_SHIFT);
2775 }
2776
2777 /* Insert vm structure into process list sorted by address
2778  * and into the inode's i_mmap tree.  If vm_file is non-NULL
2779  * then i_mmap_mutex is taken here.
2780  */
2781 int insert_vm_struct(struct mm_struct *mm, struct vm_area_struct *vma)
2782 {
2783         struct vm_area_struct *prev;
2784         struct rb_node **rb_link, *rb_parent;
2785
2786         /*
2787          * The vm_pgoff of a purely anonymous vma should be irrelevant
2788          * until its first write fault, when page's anon_vma and index
2789          * are set.  But now set the vm_pgoff it will almost certainly
2790          * end up with (unless mremap moves it elsewhere before that
2791          * first wfault), so /proc/pid/maps tells a consistent story.
2792          *
2793          * By setting it to reflect the virtual start address of the
2794          * vma, merges and splits can happen in a seamless way, just
2795          * using the existing file pgoff checks and manipulations.
2796          * Similarly in do_mmap_pgoff and in do_brk.
2797          */
2798         if (!vma->vm_file) {
2799                 BUG_ON(vma->anon_vma);
2800                 vma->vm_pgoff = vma->vm_start >> PAGE_SHIFT;
2801         }
2802         if (find_vma_links(mm, vma->vm_start, vma->vm_end,
2803                            &prev, &rb_link, &rb_parent))
2804                 return -ENOMEM;
2805         if ((vma->vm_flags & VM_ACCOUNT) &&
2806              security_vm_enough_memory_mm(mm, vma_pages(vma)))
2807                 return -ENOMEM;
2808
2809         vma_link(mm, vma, prev, rb_link, rb_parent);
2810         return 0;
2811 }
2812
2813 /*
2814  * Copy the vma structure to a new location in the same mm,
2815  * prior to moving page table entries, to effect an mremap move.
2816  */
2817 struct vm_area_struct *copy_vma(struct vm_area_struct **vmap,
2818         unsigned long addr, unsigned long len, pgoff_t pgoff,
2819         bool *need_rmap_locks)
2820 {
2821         struct vm_area_struct *vma = *vmap;
2822         unsigned long vma_start = vma->vm_start;
2823         struct mm_struct *mm = vma->vm_mm;
2824         struct vm_area_struct *new_vma, *prev;
2825         struct rb_node **rb_link, *rb_parent;
2826         struct mempolicy *pol;
2827         bool faulted_in_anon_vma = true;
2828
2829         /*
2830          * If anonymous vma has not yet been faulted, update new pgoff
2831          * to match new location, to increase its chance of merging.
2832          */
2833         if (unlikely(!vma->vm_file && !vma->anon_vma)) {
2834                 pgoff = addr >> PAGE_SHIFT;
2835                 faulted_in_anon_vma = false;
2836         }
2837
2838         if (find_vma_links(mm, addr, addr + len, &prev, &rb_link, &rb_parent))
2839                 return NULL;    /* should never get here */
2840         new_vma = vma_merge(mm, prev, addr, addr + len, vma->vm_flags,
2841                         vma->anon_vma, vma->vm_file, pgoff, vma_policy(vma),
2842                         vma_get_anon_name(vma));
2843         if (new_vma) {
2844                 /*
2845                  * Source vma may have been merged into new_vma
2846                  */
2847                 if (unlikely(vma_start >= new_vma->vm_start &&
2848                              vma_start < new_vma->vm_end)) {
2849                         /*
2850                          * The only way we can get a vma_merge with
2851                          * self during an mremap is if the vma hasn't
2852                          * been faulted in yet and we were allowed to
2853                          * reset the dst vma->vm_pgoff to the
2854                          * destination address of the mremap to allow
2855                          * the merge to happen. mremap must change the
2856                          * vm_pgoff linearity between src and dst vmas
2857                          * (in turn preventing a vma_merge) to be
2858                          * safe. It is only safe to keep the vm_pgoff
2859                          * linear if there are no pages mapped yet.
2860                          */
2861                         VM_BUG_ON(faulted_in_anon_vma);
2862                         *vmap = vma = new_vma;
2863                 }
2864                 *need_rmap_locks = (new_vma->vm_pgoff <= vma->vm_pgoff);
2865         } else {
2866                 new_vma = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
2867                 if (new_vma) {
2868                         *new_vma = *vma;
2869                         new_vma->vm_start = addr;
2870                         new_vma->vm_end = addr + len;
2871                         new_vma->vm_pgoff = pgoff;
2872                         pol = mpol_dup(vma_policy(vma));
2873                         if (IS_ERR(pol))
2874                                 goto out_free_vma;
2875                         vma_set_policy(new_vma, pol);
2876                         INIT_LIST_HEAD(&new_vma->anon_vma_chain);
2877                         if (anon_vma_clone(new_vma, vma))
2878                                 goto out_free_mempol;
2879                         if (new_vma->vm_file)
2880                                 get_file(new_vma->vm_file);
2881                         if (new_vma->vm_ops && new_vma->vm_ops->open)
2882                                 new_vma->vm_ops->open(new_vma);
2883                         vma_link(mm, new_vma, prev, rb_link, rb_parent);
2884                         *need_rmap_locks = false;
2885                 }
2886         }
2887         return new_vma;
2888
2889  out_free_mempol:
2890         mpol_put(pol);
2891  out_free_vma:
2892         kmem_cache_free(vm_area_cachep, new_vma);
2893         return NULL;
2894 }
2895
2896 /*
2897  * Return true if the calling process may expand its vm space by the passed
2898  * number of pages
2899  */
2900 int may_expand_vm(struct mm_struct *mm, unsigned long npages)
2901 {
2902         unsigned long cur = mm->total_vm;       /* pages */
2903         unsigned long lim;
2904
2905         lim = rlimit(RLIMIT_AS) >> PAGE_SHIFT;
2906
2907         if (cur + npages > lim)
2908                 return 0;
2909         return 1;
2910 }
2911
2912
2913 static int special_mapping_fault(struct vm_area_struct *vma,
2914                                 struct vm_fault *vmf)
2915 {
2916         pgoff_t pgoff;
2917         struct page **pages;
2918
2919         /*
2920          * special mappings have no vm_file, and in that case, the mm
2921          * uses vm_pgoff internally. So we have to subtract it from here.
2922          * We are allowed to do this because we are the mm; do not copy
2923          * this code into drivers!
2924          */
2925         pgoff = vmf->pgoff - vma->vm_pgoff;
2926
2927         for (pages = vma->vm_private_data; pgoff && *pages; ++pages)
2928                 pgoff--;
2929
2930         if (*pages) {
2931                 struct page *page = *pages;
2932                 get_page(page);
2933                 vmf->page = page;
2934                 return 0;
2935         }
2936
2937         return VM_FAULT_SIGBUS;
2938 }
2939
2940 /*
2941  * Having a close hook prevents vma merging regardless of flags.
2942  */
2943 static void special_mapping_close(struct vm_area_struct *vma)
2944 {
2945 }
2946
2947 static const struct vm_operations_struct special_mapping_vmops = {
2948         .close = special_mapping_close,
2949         .fault = special_mapping_fault,
2950 };
2951
2952 /*
2953  * Called with mm->mmap_sem held for writing.
2954  * Insert a new vma covering the given region, with the given flags.
2955  * Its pages are supplied by the given array of struct page *.
2956  * The array can be shorter than len >> PAGE_SHIFT if it's null-terminated.
2957  * The region past the last page supplied will always produce SIGBUS.
2958  * The array pointer and the pages it points to are assumed to stay alive
2959  * for as long as this mapping might exist.
2960  */
2961 int install_special_mapping(struct mm_struct *mm,
2962                             unsigned long addr, unsigned long len,
2963                             unsigned long vm_flags, struct page **pages)
2964 {
2965         int ret;
2966         struct vm_area_struct *vma;
2967
2968         vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
2969         if (unlikely(vma == NULL))
2970                 return -ENOMEM;
2971
2972         INIT_LIST_HEAD(&vma->anon_vma_chain);
2973         vma->vm_mm = mm;
2974         vma->vm_start = addr;
2975         vma->vm_end = addr + len;
2976
2977         vma->vm_flags = vm_flags | mm->def_flags | VM_DONTEXPAND;
2978         vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
2979
2980         vma->vm_ops = &special_mapping_vmops;
2981         vma->vm_private_data = pages;
2982
2983         ret = insert_vm_struct(mm, vma);
2984         if (ret)
2985                 goto out;
2986
2987         mm->total_vm += len >> PAGE_SHIFT;
2988
2989         perf_event_mmap(vma);
2990
2991         return 0;
2992
2993 out:
2994         kmem_cache_free(vm_area_cachep, vma);
2995         return ret;
2996 }
2997
2998 static DEFINE_MUTEX(mm_all_locks_mutex);
2999
3000 static void vm_lock_anon_vma(struct mm_struct *mm, struct anon_vma *anon_vma)
3001 {
3002         if (!test_bit(0, (unsigned long *) &anon_vma->root->rb_root.rb_node)) {
3003                 /*
3004                  * The LSB of head.next can't change from under us
3005                  * because we hold the mm_all_locks_mutex.
3006                  */
3007                 down_write_nest_lock(&anon_vma->root->rwsem, &mm->mmap_sem);
3008                 /*
3009                  * We can safely modify head.next after taking the
3010                  * anon_vma->root->rwsem. If some other vma in this mm shares
3011                  * the same anon_vma we won't take it again.
3012                  *
3013                  * No need of atomic instructions here, head.next
3014                  * can't change from under us thanks to the
3015                  * anon_vma->root->rwsem.
3016                  */
3017                 if (__test_and_set_bit(0, (unsigned long *)
3018                                        &anon_vma->root->rb_root.rb_node))
3019                         BUG();
3020         }
3021 }
3022
3023 static void vm_lock_mapping(struct mm_struct *mm, struct address_space *mapping)
3024 {
3025         if (!test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) {
3026                 /*
3027                  * AS_MM_ALL_LOCKS can't change from under us because
3028                  * we hold the mm_all_locks_mutex.
3029                  *
3030                  * Operations on ->flags have to be atomic because
3031                  * even if AS_MM_ALL_LOCKS is stable thanks to the
3032                  * mm_all_locks_mutex, there may be other cpus
3033                  * changing other bitflags in parallel to us.
3034                  */
3035                 if (test_and_set_bit(AS_MM_ALL_LOCKS, &mapping->flags))
3036                         BUG();
3037                 mutex_lock_nest_lock(&mapping->i_mmap_mutex, &mm->mmap_sem);
3038         }
3039 }
3040
3041 /*
3042  * This operation locks against the VM for all pte/vma/mm related
3043  * operations that could ever happen on a certain mm. This includes
3044  * vmtruncate, try_to_unmap, and all page faults.
3045  *
3046  * The caller must take the mmap_sem in write mode before calling
3047  * mm_take_all_locks(). The caller isn't allowed to release the
3048  * mmap_sem until mm_drop_all_locks() returns.
3049  *
3050  * mmap_sem in write mode is required in order to block all operations
3051  * that could modify pagetables and free pages without need of
3052  * altering the vma layout (for example populate_range() with
3053  * nonlinear vmas). It's also needed in write mode to avoid new
3054  * anon_vmas to be associated with existing vmas.
3055  *
3056  * A single task can't take more than one mm_take_all_locks() in a row
3057  * or it would deadlock.
3058  *
3059  * The LSB in anon_vma->rb_root.rb_node and the AS_MM_ALL_LOCKS bitflag in
3060  * mapping->flags avoid to take the same lock twice, if more than one
3061  * vma in this mm is backed by the same anon_vma or address_space.
3062  *
3063  * We can take all the locks in random order because the VM code
3064  * taking i_mmap_mutex or anon_vma->rwsem outside the mmap_sem never
3065  * takes more than one of them in a row. Secondly we're protected
3066  * against a concurrent mm_take_all_locks() by the mm_all_locks_mutex.
3067  *
3068  * mm_take_all_locks() and mm_drop_all_locks are expensive operations
3069  * that may have to take thousand of locks.
3070  *
3071  * mm_take_all_locks() can fail if it's interrupted by signals.
3072  */
3073 int mm_take_all_locks(struct mm_struct *mm)
3074 {
3075         struct vm_area_struct *vma;
3076         struct anon_vma_chain *avc;
3077
3078         BUG_ON(down_read_trylock(&mm->mmap_sem));
3079
3080         mutex_lock(&mm_all_locks_mutex);
3081
3082         for (vma = mm->mmap; vma; vma = vma->vm_next) {
3083                 if (signal_pending(current))
3084                         goto out_unlock;
3085                 if (vma->vm_file && vma->vm_file->f_mapping)
3086                         vm_lock_mapping(mm, vma->vm_file->f_mapping);
3087         }
3088
3089         for (vma = mm->mmap; vma; vma = vma->vm_next) {
3090                 if (signal_pending(current))
3091                         goto out_unlock;
3092                 if (vma->anon_vma)
3093                         list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
3094                                 vm_lock_anon_vma(mm, avc->anon_vma);
3095         }
3096
3097         return 0;
3098
3099 out_unlock:
3100         mm_drop_all_locks(mm);
3101         return -EINTR;
3102 }
3103
3104 static void vm_unlock_anon_vma(struct anon_vma *anon_vma)
3105 {
3106         if (test_bit(0, (unsigned long *) &anon_vma->root->rb_root.rb_node)) {
3107                 /*
3108                  * The LSB of head.next can't change to 0 from under
3109                  * us because we hold the mm_all_locks_mutex.
3110                  *
3111                  * We must however clear the bitflag before unlocking
3112                  * the vma so the users using the anon_vma->rb_root will
3113                  * never see our bitflag.
3114                  *
3115                  * No need of atomic instructions here, head.next
3116                  * can't change from under us until we release the
3117                  * anon_vma->root->rwsem.
3118                  */
3119                 if (!__test_and_clear_bit(0, (unsigned long *)
3120                                           &anon_vma->root->rb_root.rb_node))
3121                         BUG();
3122                 anon_vma_unlock_write(anon_vma);
3123         }
3124 }
3125
3126 static void vm_unlock_mapping(struct address_space *mapping)
3127 {
3128         if (test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) {
3129                 /*
3130                  * AS_MM_ALL_LOCKS can't change to 0 from under us
3131                  * because we hold the mm_all_locks_mutex.
3132                  */
3133                 mutex_unlock(&mapping->i_mmap_mutex);
3134                 if (!test_and_clear_bit(AS_MM_ALL_LOCKS,
3135                                         &mapping->flags))
3136                         BUG();
3137         }
3138 }
3139
3140 /*
3141  * The mmap_sem cannot be released by the caller until
3142  * mm_drop_all_locks() returns.
3143  */
3144 void mm_drop_all_locks(struct mm_struct *mm)
3145 {
3146         struct vm_area_struct *vma;
3147         struct anon_vma_chain *avc;
3148
3149         BUG_ON(down_read_trylock(&mm->mmap_sem));
3150         BUG_ON(!mutex_is_locked(&mm_all_locks_mutex));
3151
3152         for (vma = mm->mmap; vma; vma = vma->vm_next) {
3153                 if (vma->anon_vma)
3154                         list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
3155                                 vm_unlock_anon_vma(avc->anon_vma);
3156                 if (vma->vm_file && vma->vm_file->f_mapping)
3157                         vm_unlock_mapping(vma->vm_file->f_mapping);
3158         }
3159
3160         mutex_unlock(&mm_all_locks_mutex);
3161 }
3162
3163 /*
3164  * initialise the VMA slab
3165  */
3166 void __init mmap_init(void)
3167 {
3168         int ret;
3169
3170         ret = percpu_counter_init(&vm_committed_as, 0);
3171         VM_BUG_ON(ret);
3172 }
3173
3174 /*
3175  * Initialise sysctl_user_reserve_kbytes.
3176  *
3177  * This is intended to prevent a user from starting a single memory hogging
3178  * process, such that they cannot recover (kill the hog) in OVERCOMMIT_NEVER
3179  * mode.
3180  *
3181  * The default value is min(3% of free memory, 128MB)
3182  * 128MB is enough to recover with sshd/login, bash, and top/kill.
3183  */
3184 static int init_user_reserve(void)
3185 {
3186         unsigned long free_kbytes;
3187
3188         free_kbytes = global_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
3189
3190         sysctl_user_reserve_kbytes = min(free_kbytes / 32, 1UL << 17);
3191         return 0;
3192 }
3193 module_init(init_user_reserve)
3194
3195 /*
3196  * Initialise sysctl_admin_reserve_kbytes.
3197  *
3198  * The purpose of sysctl_admin_reserve_kbytes is to allow the sys admin
3199  * to log in and kill a memory hogging process.
3200  *
3201  * Systems with more than 256MB will reserve 8MB, enough to recover
3202  * with sshd, bash, and top in OVERCOMMIT_GUESS. Smaller systems will
3203  * only reserve 3% of free pages by default.
3204  */
3205 static int init_admin_reserve(void)
3206 {
3207         unsigned long free_kbytes;
3208
3209         free_kbytes = global_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
3210
3211         sysctl_admin_reserve_kbytes = min(free_kbytes / 32, 1UL << 13);
3212         return 0;
3213 }
3214 module_init(init_admin_reserve)
3215
3216 /*
3217  * Reinititalise user and admin reserves if memory is added or removed.
3218  *
3219  * The default user reserve max is 128MB, and the default max for the
3220  * admin reserve is 8MB. These are usually, but not always, enough to
3221  * enable recovery from a memory hogging process using login/sshd, a shell,
3222  * and tools like top. It may make sense to increase or even disable the
3223  * reserve depending on the existence of swap or variations in the recovery
3224  * tools. So, the admin may have changed them.
3225  *
3226  * If memory is added and the reserves have been eliminated or increased above
3227  * the default max, then we'll trust the admin.
3228  *
3229  * If memory is removed and there isn't enough free memory, then we
3230  * need to reset the reserves.
3231  *
3232  * Otherwise keep the reserve set by the admin.
3233  */
3234 static int reserve_mem_notifier(struct notifier_block *nb,
3235                              unsigned long action, void *data)
3236 {
3237         unsigned long tmp, free_kbytes;
3238
3239         switch (action) {
3240         case MEM_ONLINE:
3241                 /* Default max is 128MB. Leave alone if modified by operator. */
3242                 tmp = sysctl_user_reserve_kbytes;
3243                 if (0 < tmp && tmp < (1UL << 17))
3244                         init_user_reserve();
3245
3246                 /* Default max is 8MB.  Leave alone if modified by operator. */
3247                 tmp = sysctl_admin_reserve_kbytes;
3248                 if (0 < tmp && tmp < (1UL << 13))
3249                         init_admin_reserve();
3250
3251                 break;
3252         case MEM_OFFLINE:
3253                 free_kbytes = global_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
3254
3255                 if (sysctl_user_reserve_kbytes > free_kbytes) {
3256                         init_user_reserve();
3257                         pr_info("vm.user_reserve_kbytes reset to %lu\n",
3258                                 sysctl_user_reserve_kbytes);
3259                 }
3260
3261                 if (sysctl_admin_reserve_kbytes > free_kbytes) {
3262                         init_admin_reserve();
3263                         pr_info("vm.admin_reserve_kbytes reset to %lu\n",
3264                                 sysctl_admin_reserve_kbytes);
3265                 }
3266                 break;
3267         default:
3268                 break;
3269         }
3270         return NOTIFY_OK;
3271 }
3272
3273 static struct notifier_block reserve_mem_nb = {
3274         .notifier_call = reserve_mem_notifier,
3275 };
3276
3277 static int __meminit init_reserve_notifier(void)
3278 {
3279         if (register_hotmemory_notifier(&reserve_mem_nb))
3280                 printk("Failed registering memory add/remove notifier for admin reserve");
3281
3282         return 0;
3283 }
3284 module_init(init_reserve_notifier)