1 // SPDX-License-Identifier: GPL-2.0-only
7 * Address space accounting code <alan@lxorguk.ukuu.org.uk>
10 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
12 #include <linux/kernel.h>
13 #include <linux/slab.h>
14 #include <linux/backing-dev.h>
16 #include <linux/mm_inline.h>
17 #include <linux/vmacache.h>
18 #include <linux/shm.h>
19 #include <linux/mman.h>
20 #include <linux/pagemap.h>
21 #include <linux/swap.h>
22 #include <linux/syscalls.h>
23 #include <linux/capability.h>
24 #include <linux/init.h>
25 #include <linux/file.h>
27 #include <linux/personality.h>
28 #include <linux/security.h>
29 #include <linux/hugetlb.h>
30 #include <linux/shmem_fs.h>
31 #include <linux/profile.h>
32 #include <linux/export.h>
33 #include <linux/mount.h>
34 #include <linux/mempolicy.h>
35 #include <linux/rmap.h>
36 #include <linux/mmu_notifier.h>
37 #include <linux/mmdebug.h>
38 #include <linux/perf_event.h>
39 #include <linux/audit.h>
40 #include <linux/khugepaged.h>
41 #include <linux/uprobes.h>
42 #include <linux/rbtree_augmented.h>
43 #include <linux/notifier.h>
44 #include <linux/memory.h>
45 #include <linux/printk.h>
46 #include <linux/userfaultfd_k.h>
47 #include <linux/moduleparam.h>
48 #include <linux/pkeys.h>
49 #include <linux/oom.h>
50 #include <linux/sched/mm.h>
52 #include <linux/uaccess.h>
53 #include <asm/cacheflush.h>
55 #include <asm/mmu_context.h>
57 #define CREATE_TRACE_POINTS
58 #include <trace/events/mmap.h>
62 #ifndef arch_mmap_check
63 #define arch_mmap_check(addr, len, flags) (0)
66 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_BITS
67 const int mmap_rnd_bits_min = CONFIG_ARCH_MMAP_RND_BITS_MIN;
68 const int mmap_rnd_bits_max = CONFIG_ARCH_MMAP_RND_BITS_MAX;
69 int mmap_rnd_bits __read_mostly = CONFIG_ARCH_MMAP_RND_BITS;
71 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS
72 const int mmap_rnd_compat_bits_min = CONFIG_ARCH_MMAP_RND_COMPAT_BITS_MIN;
73 const int mmap_rnd_compat_bits_max = CONFIG_ARCH_MMAP_RND_COMPAT_BITS_MAX;
74 int mmap_rnd_compat_bits __read_mostly = CONFIG_ARCH_MMAP_RND_COMPAT_BITS;
77 static bool ignore_rlimit_data;
78 core_param(ignore_rlimit_data, ignore_rlimit_data, bool, 0644);
80 static void unmap_region(struct mm_struct *mm,
81 struct vm_area_struct *vma, struct vm_area_struct *prev,
82 unsigned long start, unsigned long end);
84 /* description of effects of mapping type and prot in current implementation.
85 * this is due to the limited x86 page protection hardware. The expected
86 * behavior is in parens:
89 * PROT_NONE PROT_READ PROT_WRITE PROT_EXEC
90 * MAP_SHARED r: (no) no r: (yes) yes r: (no) yes r: (no) yes
91 * w: (no) no w: (no) no w: (yes) yes w: (no) no
92 * x: (no) no x: (no) yes x: (no) yes x: (yes) yes
94 * MAP_PRIVATE r: (no) no r: (yes) yes r: (no) yes r: (no) yes
95 * w: (no) no w: (no) no w: (copy) copy w: (no) no
96 * x: (no) no x: (no) yes x: (no) yes x: (yes) yes
98 * On arm64, PROT_EXEC has the following behaviour for both MAP_SHARED and
99 * MAP_PRIVATE (with Enhanced PAN supported):
104 pgprot_t protection_map[16] __ro_after_init = {
108 [VM_WRITE | VM_READ] = __P011,
110 [VM_EXEC | VM_READ] = __P101,
111 [VM_EXEC | VM_WRITE] = __P110,
112 [VM_EXEC | VM_WRITE | VM_READ] = __P111,
113 [VM_SHARED] = __S000,
114 [VM_SHARED | VM_READ] = __S001,
115 [VM_SHARED | VM_WRITE] = __S010,
116 [VM_SHARED | VM_WRITE | VM_READ] = __S011,
117 [VM_SHARED | VM_EXEC] = __S100,
118 [VM_SHARED | VM_EXEC | VM_READ] = __S101,
119 [VM_SHARED | VM_EXEC | VM_WRITE] = __S110,
120 [VM_SHARED | VM_EXEC | VM_WRITE | VM_READ] = __S111
123 #ifndef CONFIG_ARCH_HAS_VM_GET_PAGE_PROT
124 pgprot_t vm_get_page_prot(unsigned long vm_flags)
126 return protection_map[vm_flags & (VM_READ|VM_WRITE|VM_EXEC|VM_SHARED)];
128 EXPORT_SYMBOL(vm_get_page_prot);
129 #endif /* CONFIG_ARCH_HAS_VM_GET_PAGE_PROT */
131 static pgprot_t vm_pgprot_modify(pgprot_t oldprot, unsigned long vm_flags)
133 return pgprot_modify(oldprot, vm_get_page_prot(vm_flags));
136 /* Update vma->vm_page_prot to reflect vma->vm_flags. */
137 void vma_set_page_prot(struct vm_area_struct *vma)
139 unsigned long vm_flags = vma->vm_flags;
140 pgprot_t vm_page_prot;
142 vm_page_prot = vm_pgprot_modify(vma->vm_page_prot, vm_flags);
143 if (vma_wants_writenotify(vma, vm_page_prot)) {
144 vm_flags &= ~VM_SHARED;
145 vm_page_prot = vm_pgprot_modify(vm_page_prot, vm_flags);
147 /* remove_protection_ptes reads vma->vm_page_prot without mmap_lock */
148 WRITE_ONCE(vma->vm_page_prot, vm_page_prot);
152 * Requires inode->i_mapping->i_mmap_rwsem
154 static void __remove_shared_vm_struct(struct vm_area_struct *vma,
155 struct file *file, struct address_space *mapping)
157 if (vma->vm_flags & VM_SHARED)
158 mapping_unmap_writable(mapping);
160 flush_dcache_mmap_lock(mapping);
161 vma_interval_tree_remove(vma, &mapping->i_mmap);
162 flush_dcache_mmap_unlock(mapping);
166 * Unlink a file-based vm structure from its interval tree, to hide
167 * vma from rmap and vmtruncate before freeing its page tables.
169 void unlink_file_vma(struct vm_area_struct *vma)
171 struct file *file = vma->vm_file;
174 struct address_space *mapping = file->f_mapping;
175 i_mmap_lock_write(mapping);
176 __remove_shared_vm_struct(vma, file, mapping);
177 i_mmap_unlock_write(mapping);
182 * Close a vm structure and free it, returning the next.
184 static struct vm_area_struct *remove_vma(struct vm_area_struct *vma)
186 struct vm_area_struct *next = vma->vm_next;
189 if (vma->vm_ops && vma->vm_ops->close)
190 vma->vm_ops->close(vma);
193 mpol_put(vma_policy(vma));
198 static int do_brk_flags(unsigned long addr, unsigned long request, unsigned long flags,
199 struct list_head *uf);
200 SYSCALL_DEFINE1(brk, unsigned long, brk)
202 unsigned long newbrk, oldbrk, origbrk;
203 struct mm_struct *mm = current->mm;
204 struct vm_area_struct *next;
205 unsigned long min_brk;
207 bool downgraded = false;
210 if (mmap_write_lock_killable(mm))
215 #ifdef CONFIG_COMPAT_BRK
217 * CONFIG_COMPAT_BRK can still be overridden by setting
218 * randomize_va_space to 2, which will still cause mm->start_brk
219 * to be arbitrarily shifted
221 if (current->brk_randomized)
222 min_brk = mm->start_brk;
224 min_brk = mm->end_data;
226 min_brk = mm->start_brk;
232 * Check against rlimit here. If this check is done later after the test
233 * of oldbrk with newbrk then it can escape the test and let the data
234 * segment grow beyond its set limit the in case where the limit is
235 * not page aligned -Ram Gupta
237 if (check_data_rlimit(rlimit(RLIMIT_DATA), brk, mm->start_brk,
238 mm->end_data, mm->start_data))
241 newbrk = PAGE_ALIGN(brk);
242 oldbrk = PAGE_ALIGN(mm->brk);
243 if (oldbrk == newbrk) {
249 * Always allow shrinking brk.
250 * __do_munmap() may downgrade mmap_lock to read.
252 if (brk <= mm->brk) {
256 * mm->brk must to be protected by write mmap_lock so update it
257 * before downgrading mmap_lock. When __do_munmap() fails,
258 * mm->brk will be restored from origbrk.
261 ret = __do_munmap(mm, newbrk, oldbrk-newbrk, &uf, true);
265 } else if (ret == 1) {
271 /* Check against existing mmap mappings. */
272 next = find_vma(mm, oldbrk);
273 if (next && newbrk + PAGE_SIZE > vm_start_gap(next))
276 /* Ok, looks good - let it rip. */
277 if (do_brk_flags(oldbrk, newbrk-oldbrk, 0, &uf) < 0)
282 populate = newbrk > oldbrk && (mm->def_flags & VM_LOCKED) != 0;
284 mmap_read_unlock(mm);
286 mmap_write_unlock(mm);
287 userfaultfd_unmap_complete(mm, &uf);
289 mm_populate(oldbrk, newbrk - oldbrk);
293 mmap_write_unlock(mm);
297 static inline unsigned long vma_compute_gap(struct vm_area_struct *vma)
299 unsigned long gap, prev_end;
302 * Note: in the rare case of a VM_GROWSDOWN above a VM_GROWSUP, we
303 * allow two stack_guard_gaps between them here, and when choosing
304 * an unmapped area; whereas when expanding we only require one.
305 * That's a little inconsistent, but keeps the code here simpler.
307 gap = vm_start_gap(vma);
309 prev_end = vm_end_gap(vma->vm_prev);
318 #ifdef CONFIG_DEBUG_VM_RB
319 static unsigned long vma_compute_subtree_gap(struct vm_area_struct *vma)
321 unsigned long max = vma_compute_gap(vma), subtree_gap;
322 if (vma->vm_rb.rb_left) {
323 subtree_gap = rb_entry(vma->vm_rb.rb_left,
324 struct vm_area_struct, vm_rb)->rb_subtree_gap;
325 if (subtree_gap > max)
328 if (vma->vm_rb.rb_right) {
329 subtree_gap = rb_entry(vma->vm_rb.rb_right,
330 struct vm_area_struct, vm_rb)->rb_subtree_gap;
331 if (subtree_gap > max)
337 static int browse_rb(struct mm_struct *mm)
339 struct rb_root *root = &mm->mm_rb;
340 int i = 0, j, bug = 0;
341 struct rb_node *nd, *pn = NULL;
342 unsigned long prev = 0, pend = 0;
344 for (nd = rb_first(root); nd; nd = rb_next(nd)) {
345 struct vm_area_struct *vma;
346 vma = rb_entry(nd, struct vm_area_struct, vm_rb);
347 if (vma->vm_start < prev) {
348 pr_emerg("vm_start %lx < prev %lx\n",
349 vma->vm_start, prev);
352 if (vma->vm_start < pend) {
353 pr_emerg("vm_start %lx < pend %lx\n",
354 vma->vm_start, pend);
357 if (vma->vm_start > vma->vm_end) {
358 pr_emerg("vm_start %lx > vm_end %lx\n",
359 vma->vm_start, vma->vm_end);
362 spin_lock(&mm->page_table_lock);
363 if (vma->rb_subtree_gap != vma_compute_subtree_gap(vma)) {
364 pr_emerg("free gap %lx, correct %lx\n",
366 vma_compute_subtree_gap(vma));
369 spin_unlock(&mm->page_table_lock);
372 prev = vma->vm_start;
376 for (nd = pn; nd; nd = rb_prev(nd))
379 pr_emerg("backwards %d, forwards %d\n", j, i);
385 static void validate_mm_rb(struct rb_root *root, struct vm_area_struct *ignore)
389 for (nd = rb_first(root); nd; nd = rb_next(nd)) {
390 struct vm_area_struct *vma;
391 vma = rb_entry(nd, struct vm_area_struct, vm_rb);
392 VM_BUG_ON_VMA(vma != ignore &&
393 vma->rb_subtree_gap != vma_compute_subtree_gap(vma),
398 static void validate_mm(struct mm_struct *mm)
402 unsigned long highest_address = 0;
403 struct vm_area_struct *vma = mm->mmap;
406 struct anon_vma *anon_vma = vma->anon_vma;
407 struct anon_vma_chain *avc;
410 anon_vma_lock_read(anon_vma);
411 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
412 anon_vma_interval_tree_verify(avc);
413 anon_vma_unlock_read(anon_vma);
416 highest_address = vm_end_gap(vma);
420 if (i != mm->map_count) {
421 pr_emerg("map_count %d vm_next %d\n", mm->map_count, i);
424 if (highest_address != mm->highest_vm_end) {
425 pr_emerg("mm->highest_vm_end %lx, found %lx\n",
426 mm->highest_vm_end, highest_address);
430 if (i != mm->map_count) {
432 pr_emerg("map_count %d rb %d\n", mm->map_count, i);
435 VM_BUG_ON_MM(bug, mm);
438 #define validate_mm_rb(root, ignore) do { } while (0)
439 #define validate_mm(mm) do { } while (0)
442 RB_DECLARE_CALLBACKS_MAX(static, vma_gap_callbacks,
443 struct vm_area_struct, vm_rb,
444 unsigned long, rb_subtree_gap, vma_compute_gap)
447 * Update augmented rbtree rb_subtree_gap values after vma->vm_start or
448 * vma->vm_prev->vm_end values changed, without modifying the vma's position
451 static void vma_gap_update(struct vm_area_struct *vma)
454 * As it turns out, RB_DECLARE_CALLBACKS_MAX() already created
455 * a callback function that does exactly what we want.
457 vma_gap_callbacks_propagate(&vma->vm_rb, NULL);
460 static inline void vma_rb_insert(struct vm_area_struct *vma,
461 struct rb_root *root)
463 /* All rb_subtree_gap values must be consistent prior to insertion */
464 validate_mm_rb(root, NULL);
466 rb_insert_augmented(&vma->vm_rb, root, &vma_gap_callbacks);
469 static void __vma_rb_erase(struct vm_area_struct *vma, struct rb_root *root)
472 * Note rb_erase_augmented is a fairly large inline function,
473 * so make sure we instantiate it only once with our desired
474 * augmented rbtree callbacks.
476 rb_erase_augmented(&vma->vm_rb, root, &vma_gap_callbacks);
479 static __always_inline void vma_rb_erase_ignore(struct vm_area_struct *vma,
480 struct rb_root *root,
481 struct vm_area_struct *ignore)
484 * All rb_subtree_gap values must be consistent prior to erase,
485 * with the possible exception of
487 * a. the "next" vma being erased if next->vm_start was reduced in
488 * __vma_adjust() -> __vma_unlink()
489 * b. the vma being erased in detach_vmas_to_be_unmapped() ->
492 validate_mm_rb(root, ignore);
494 __vma_rb_erase(vma, root);
497 static __always_inline void vma_rb_erase(struct vm_area_struct *vma,
498 struct rb_root *root)
500 vma_rb_erase_ignore(vma, root, vma);
504 * vma has some anon_vma assigned, and is already inserted on that
505 * anon_vma's interval trees.
507 * Before updating the vma's vm_start / vm_end / vm_pgoff fields, the
508 * vma must be removed from the anon_vma's interval trees using
509 * anon_vma_interval_tree_pre_update_vma().
511 * After the update, the vma will be reinserted using
512 * anon_vma_interval_tree_post_update_vma().
514 * The entire update must be protected by exclusive mmap_lock and by
515 * the root anon_vma's mutex.
518 anon_vma_interval_tree_pre_update_vma(struct vm_area_struct *vma)
520 struct anon_vma_chain *avc;
522 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
523 anon_vma_interval_tree_remove(avc, &avc->anon_vma->rb_root);
527 anon_vma_interval_tree_post_update_vma(struct vm_area_struct *vma)
529 struct anon_vma_chain *avc;
531 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
532 anon_vma_interval_tree_insert(avc, &avc->anon_vma->rb_root);
535 static int find_vma_links(struct mm_struct *mm, unsigned long addr,
536 unsigned long end, struct vm_area_struct **pprev,
537 struct rb_node ***rb_link, struct rb_node **rb_parent)
539 struct rb_node **__rb_link, *__rb_parent, *rb_prev;
541 mmap_assert_locked(mm);
542 __rb_link = &mm->mm_rb.rb_node;
543 rb_prev = __rb_parent = NULL;
546 struct vm_area_struct *vma_tmp;
548 __rb_parent = *__rb_link;
549 vma_tmp = rb_entry(__rb_parent, struct vm_area_struct, vm_rb);
551 if (vma_tmp->vm_end > addr) {
552 /* Fail if an existing vma overlaps the area */
553 if (vma_tmp->vm_start < end)
555 __rb_link = &__rb_parent->rb_left;
557 rb_prev = __rb_parent;
558 __rb_link = &__rb_parent->rb_right;
564 *pprev = rb_entry(rb_prev, struct vm_area_struct, vm_rb);
565 *rb_link = __rb_link;
566 *rb_parent = __rb_parent;
571 * vma_next() - Get the next VMA.
572 * @mm: The mm_struct.
573 * @vma: The current vma.
575 * If @vma is NULL, return the first vma in the mm.
577 * Returns: The next VMA after @vma.
579 static inline struct vm_area_struct *vma_next(struct mm_struct *mm,
580 struct vm_area_struct *vma)
589 * munmap_vma_range() - munmap VMAs that overlap a range.
591 * @start: The start of the range.
592 * @len: The length of the range.
593 * @pprev: pointer to the pointer that will be set to previous vm_area_struct
594 * @rb_link: the rb_node
595 * @rb_parent: the parent rb_node
597 * Find all the vm_area_struct that overlap from @start to
598 * @end and munmap them. Set @pprev to the previous vm_area_struct.
600 * Returns: -ENOMEM on munmap failure or 0 on success.
603 munmap_vma_range(struct mm_struct *mm, unsigned long start, unsigned long len,
604 struct vm_area_struct **pprev, struct rb_node ***link,
605 struct rb_node **parent, struct list_head *uf)
608 while (find_vma_links(mm, start, start + len, pprev, link, parent))
609 if (do_munmap(mm, start, len, uf))
614 static unsigned long count_vma_pages_range(struct mm_struct *mm,
615 unsigned long addr, unsigned long end)
617 unsigned long nr_pages = 0;
618 struct vm_area_struct *vma;
620 /* Find first overlapping mapping */
621 vma = find_vma_intersection(mm, addr, end);
625 nr_pages = (min(end, vma->vm_end) -
626 max(addr, vma->vm_start)) >> PAGE_SHIFT;
628 /* Iterate over the rest of the overlaps */
629 for (vma = vma->vm_next; vma; vma = vma->vm_next) {
630 unsigned long overlap_len;
632 if (vma->vm_start > end)
635 overlap_len = min(end, vma->vm_end) - vma->vm_start;
636 nr_pages += overlap_len >> PAGE_SHIFT;
642 void __vma_link_rb(struct mm_struct *mm, struct vm_area_struct *vma,
643 struct rb_node **rb_link, struct rb_node *rb_parent)
645 /* Update tracking information for the gap following the new vma. */
647 vma_gap_update(vma->vm_next);
649 mm->highest_vm_end = vm_end_gap(vma);
652 * vma->vm_prev wasn't known when we followed the rbtree to find the
653 * correct insertion point for that vma. As a result, we could not
654 * update the vma vm_rb parents rb_subtree_gap values on the way down.
655 * So, we first insert the vma with a zero rb_subtree_gap value
656 * (to be consistent with what we did on the way down), and then
657 * immediately update the gap to the correct value. Finally we
658 * rebalance the rbtree after all augmented values have been set.
660 rb_link_node(&vma->vm_rb, rb_parent, rb_link);
661 vma->rb_subtree_gap = 0;
663 vma_rb_insert(vma, &mm->mm_rb);
666 static void __vma_link_file(struct vm_area_struct *vma)
672 struct address_space *mapping = file->f_mapping;
674 if (vma->vm_flags & VM_SHARED)
675 mapping_allow_writable(mapping);
677 flush_dcache_mmap_lock(mapping);
678 vma_interval_tree_insert(vma, &mapping->i_mmap);
679 flush_dcache_mmap_unlock(mapping);
684 __vma_link(struct mm_struct *mm, struct vm_area_struct *vma,
685 struct vm_area_struct *prev, struct rb_node **rb_link,
686 struct rb_node *rb_parent)
688 __vma_link_list(mm, vma, prev);
689 __vma_link_rb(mm, vma, rb_link, rb_parent);
692 static void vma_link(struct mm_struct *mm, struct vm_area_struct *vma,
693 struct vm_area_struct *prev, struct rb_node **rb_link,
694 struct rb_node *rb_parent)
696 struct address_space *mapping = NULL;
699 mapping = vma->vm_file->f_mapping;
700 i_mmap_lock_write(mapping);
703 __vma_link(mm, vma, prev, rb_link, rb_parent);
704 __vma_link_file(vma);
707 i_mmap_unlock_write(mapping);
714 * Helper for vma_adjust() in the split_vma insert case: insert a vma into the
715 * mm's list and rbtree. It has already been inserted into the interval tree.
717 static void __insert_vm_struct(struct mm_struct *mm, struct vm_area_struct *vma)
719 struct vm_area_struct *prev;
720 struct rb_node **rb_link, *rb_parent;
722 if (find_vma_links(mm, vma->vm_start, vma->vm_end,
723 &prev, &rb_link, &rb_parent))
725 __vma_link(mm, vma, prev, rb_link, rb_parent);
729 static __always_inline void __vma_unlink(struct mm_struct *mm,
730 struct vm_area_struct *vma,
731 struct vm_area_struct *ignore)
733 vma_rb_erase_ignore(vma, &mm->mm_rb, ignore);
734 __vma_unlink_list(mm, vma);
736 vmacache_invalidate(mm);
740 * We cannot adjust vm_start, vm_end, vm_pgoff fields of a vma that
741 * is already present in an i_mmap tree without adjusting the tree.
742 * The following helper function should be used when such adjustments
743 * are necessary. The "insert" vma (if any) is to be inserted
744 * before we drop the necessary locks.
746 int __vma_adjust(struct vm_area_struct *vma, unsigned long start,
747 unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert,
748 struct vm_area_struct *expand)
750 struct mm_struct *mm = vma->vm_mm;
751 struct vm_area_struct *next = vma->vm_next, *orig_vma = vma;
752 struct address_space *mapping = NULL;
753 struct rb_root_cached *root = NULL;
754 struct anon_vma *anon_vma = NULL;
755 struct file *file = vma->vm_file;
756 bool start_changed = false, end_changed = false;
757 long adjust_next = 0;
760 if (next && !insert) {
761 struct vm_area_struct *exporter = NULL, *importer = NULL;
763 if (end >= next->vm_end) {
765 * vma expands, overlapping all the next, and
766 * perhaps the one after too (mprotect case 6).
767 * The only other cases that gets here are
768 * case 1, case 7 and case 8.
770 if (next == expand) {
772 * The only case where we don't expand "vma"
773 * and we expand "next" instead is case 8.
775 VM_WARN_ON(end != next->vm_end);
777 * remove_next == 3 means we're
778 * removing "vma" and that to do so we
779 * swapped "vma" and "next".
782 VM_WARN_ON(file != next->vm_file);
785 VM_WARN_ON(expand != vma);
787 * case 1, 6, 7, remove_next == 2 is case 6,
788 * remove_next == 1 is case 1 or 7.
790 remove_next = 1 + (end > next->vm_end);
791 VM_WARN_ON(remove_next == 2 &&
792 end != next->vm_next->vm_end);
793 /* trim end to next, for case 6 first pass */
801 * If next doesn't have anon_vma, import from vma after
802 * next, if the vma overlaps with it.
804 if (remove_next == 2 && !next->anon_vma)
805 exporter = next->vm_next;
807 } else if (end > next->vm_start) {
809 * vma expands, overlapping part of the next:
810 * mprotect case 5 shifting the boundary up.
812 adjust_next = (end - next->vm_start);
815 VM_WARN_ON(expand != importer);
816 } else if (end < vma->vm_end) {
818 * vma shrinks, and !insert tells it's not
819 * split_vma inserting another: so it must be
820 * mprotect case 4 shifting the boundary down.
822 adjust_next = -(vma->vm_end - end);
825 VM_WARN_ON(expand != importer);
829 * Easily overlooked: when mprotect shifts the boundary,
830 * make sure the expanding vma has anon_vma set if the
831 * shrinking vma had, to cover any anon pages imported.
833 if (exporter && exporter->anon_vma && !importer->anon_vma) {
836 importer->anon_vma = exporter->anon_vma;
837 error = anon_vma_clone(importer, exporter);
843 vma_adjust_trans_huge(orig_vma, start, end, adjust_next);
846 mapping = file->f_mapping;
847 root = &mapping->i_mmap;
848 uprobe_munmap(vma, vma->vm_start, vma->vm_end);
851 uprobe_munmap(next, next->vm_start, next->vm_end);
853 i_mmap_lock_write(mapping);
856 * Put into interval tree now, so instantiated pages
857 * are visible to arm/parisc __flush_dcache_page
858 * throughout; but we cannot insert into address
859 * space until vma start or end is updated.
861 __vma_link_file(insert);
865 anon_vma = vma->anon_vma;
866 if (!anon_vma && adjust_next)
867 anon_vma = next->anon_vma;
869 VM_WARN_ON(adjust_next && next->anon_vma &&
870 anon_vma != next->anon_vma);
871 anon_vma_lock_write(anon_vma);
872 anon_vma_interval_tree_pre_update_vma(vma);
874 anon_vma_interval_tree_pre_update_vma(next);
878 flush_dcache_mmap_lock(mapping);
879 vma_interval_tree_remove(vma, root);
881 vma_interval_tree_remove(next, root);
884 if (start != vma->vm_start) {
885 vma->vm_start = start;
886 start_changed = true;
888 if (end != vma->vm_end) {
892 vma->vm_pgoff = pgoff;
894 next->vm_start += adjust_next;
895 next->vm_pgoff += adjust_next >> PAGE_SHIFT;
900 vma_interval_tree_insert(next, root);
901 vma_interval_tree_insert(vma, root);
902 flush_dcache_mmap_unlock(mapping);
907 * vma_merge has merged next into vma, and needs
908 * us to remove next before dropping the locks.
910 if (remove_next != 3)
911 __vma_unlink(mm, next, next);
914 * vma is not before next if they've been
917 * pre-swap() next->vm_start was reduced so
918 * tell validate_mm_rb to ignore pre-swap()
919 * "next" (which is stored in post-swap()
922 __vma_unlink(mm, next, vma);
924 __remove_shared_vm_struct(next, file, mapping);
927 * split_vma has split insert from vma, and needs
928 * us to insert it before dropping the locks
929 * (it may either follow vma or precede it).
931 __insert_vm_struct(mm, insert);
937 mm->highest_vm_end = vm_end_gap(vma);
938 else if (!adjust_next)
939 vma_gap_update(next);
944 anon_vma_interval_tree_post_update_vma(vma);
946 anon_vma_interval_tree_post_update_vma(next);
947 anon_vma_unlock_write(anon_vma);
951 i_mmap_unlock_write(mapping);
960 uprobe_munmap(next, next->vm_start, next->vm_end);
964 anon_vma_merge(vma, next);
966 mpol_put(vma_policy(next));
969 * In mprotect's case 6 (see comments on vma_merge),
970 * we must remove another next too. It would clutter
971 * up the code too much to do both in one go.
973 if (remove_next != 3) {
975 * If "next" was removed and vma->vm_end was
976 * expanded (up) over it, in turn
977 * "next->vm_prev->vm_end" changed and the
978 * "vma->vm_next" gap must be updated.
983 * For the scope of the comment "next" and
984 * "vma" considered pre-swap(): if "vma" was
985 * removed, next->vm_start was expanded (down)
986 * over it and the "next" gap must be updated.
987 * Because of the swap() the post-swap() "vma"
988 * actually points to pre-swap() "next"
989 * (post-swap() "next" as opposed is now a
994 if (remove_next == 2) {
1000 vma_gap_update(next);
1003 * If remove_next == 2 we obviously can't
1006 * If remove_next == 3 we can't reach this
1007 * path because pre-swap() next is always not
1008 * NULL. pre-swap() "next" is not being
1009 * removed and its next->vm_end is not altered
1010 * (and furthermore "end" already matches
1011 * next->vm_end in remove_next == 3).
1013 * We reach this only in the remove_next == 1
1014 * case if the "next" vma that was removed was
1015 * the highest vma of the mm. However in such
1016 * case next->vm_end == "end" and the extended
1017 * "vma" has vma->vm_end == next->vm_end so
1018 * mm->highest_vm_end doesn't need any update
1019 * in remove_next == 1 case.
1021 VM_WARN_ON(mm->highest_vm_end != vm_end_gap(vma));
1025 uprobe_mmap(insert);
1033 * If the vma has a ->close operation then the driver probably needs to release
1034 * per-vma resources, so we don't attempt to merge those.
1036 static inline int is_mergeable_vma(struct vm_area_struct *vma,
1037 struct file *file, unsigned long vm_flags,
1038 struct vm_userfaultfd_ctx vm_userfaultfd_ctx,
1039 struct anon_vma_name *anon_name)
1042 * VM_SOFTDIRTY should not prevent from VMA merging, if we
1043 * match the flags but dirty bit -- the caller should mark
1044 * merged VMA as dirty. If dirty bit won't be excluded from
1045 * comparison, we increase pressure on the memory system forcing
1046 * the kernel to generate new VMAs when old one could be
1049 if ((vma->vm_flags ^ vm_flags) & ~VM_SOFTDIRTY)
1051 if (vma->vm_file != file)
1053 if (vma->vm_ops && vma->vm_ops->close)
1055 if (!is_mergeable_vm_userfaultfd_ctx(vma, vm_userfaultfd_ctx))
1057 if (!anon_vma_name_eq(anon_vma_name(vma), anon_name))
1062 static inline int is_mergeable_anon_vma(struct anon_vma *anon_vma1,
1063 struct anon_vma *anon_vma2,
1064 struct vm_area_struct *vma)
1067 * The list_is_singular() test is to avoid merging VMA cloned from
1068 * parents. This can improve scalability caused by anon_vma lock.
1070 if ((!anon_vma1 || !anon_vma2) && (!vma ||
1071 list_is_singular(&vma->anon_vma_chain)))
1073 return anon_vma1 == anon_vma2;
1077 * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
1078 * in front of (at a lower virtual address and file offset than) the vma.
1080 * We cannot merge two vmas if they have differently assigned (non-NULL)
1081 * anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
1083 * We don't check here for the merged mmap wrapping around the end of pagecache
1084 * indices (16TB on ia32) because do_mmap() does not permit mmap's which
1085 * wrap, nor mmaps which cover the final page at index -1UL.
1088 can_vma_merge_before(struct vm_area_struct *vma, unsigned long vm_flags,
1089 struct anon_vma *anon_vma, struct file *file,
1091 struct vm_userfaultfd_ctx vm_userfaultfd_ctx,
1092 struct anon_vma_name *anon_name)
1094 if (is_mergeable_vma(vma, file, vm_flags, vm_userfaultfd_ctx, anon_name) &&
1095 is_mergeable_anon_vma(anon_vma, vma->anon_vma, vma)) {
1096 if (vma->vm_pgoff == vm_pgoff)
1103 * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
1104 * beyond (at a higher virtual address and file offset than) the vma.
1106 * We cannot merge two vmas if they have differently assigned (non-NULL)
1107 * anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
1110 can_vma_merge_after(struct vm_area_struct *vma, unsigned long vm_flags,
1111 struct anon_vma *anon_vma, struct file *file,
1113 struct vm_userfaultfd_ctx vm_userfaultfd_ctx,
1114 struct anon_vma_name *anon_name)
1116 if (is_mergeable_vma(vma, file, vm_flags, vm_userfaultfd_ctx, anon_name) &&
1117 is_mergeable_anon_vma(anon_vma, vma->anon_vma, vma)) {
1119 vm_pglen = vma_pages(vma);
1120 if (vma->vm_pgoff + vm_pglen == vm_pgoff)
1127 * Given a mapping request (addr,end,vm_flags,file,pgoff,anon_name),
1128 * figure out whether that can be merged with its predecessor or its
1129 * successor. Or both (it neatly fills a hole).
1131 * In most cases - when called for mmap, brk or mremap - [addr,end) is
1132 * certain not to be mapped by the time vma_merge is called; but when
1133 * called for mprotect, it is certain to be already mapped (either at
1134 * an offset within prev, or at the start of next), and the flags of
1135 * this area are about to be changed to vm_flags - and the no-change
1136 * case has already been eliminated.
1138 * The following mprotect cases have to be considered, where AAAA is
1139 * the area passed down from mprotect_fixup, never extending beyond one
1140 * vma, PPPPPP is the prev vma specified, and NNNNNN the next vma after:
1143 * PPPPPPNNNNNN PPPPPPNNNNNN PPPPPPNNNNNN
1144 * cannot merge might become might become
1145 * PPNNNNNNNNNN PPPPPPPPPPNN
1146 * mmap, brk or case 4 below case 5 below
1149 * PPPP NNNN PPPPNNNNXXXX
1150 * might become might become
1151 * PPPPPPPPPPPP 1 or PPPPPPPPPPPP 6 or
1152 * PPPPPPPPNNNN 2 or PPPPPPPPXXXX 7 or
1153 * PPPPNNNNNNNN 3 PPPPXXXXXXXX 8
1155 * It is important for case 8 that the vma NNNN overlapping the
1156 * region AAAA is never going to extended over XXXX. Instead XXXX must
1157 * be extended in region AAAA and NNNN must be removed. This way in
1158 * all cases where vma_merge succeeds, the moment vma_adjust drops the
1159 * rmap_locks, the properties of the merged vma will be already
1160 * correct for the whole merged range. Some of those properties like
1161 * vm_page_prot/vm_flags may be accessed by rmap_walks and they must
1162 * be correct for the whole merged range immediately after the
1163 * rmap_locks are released. Otherwise if XXXX would be removed and
1164 * NNNN would be extended over the XXXX range, remove_migration_ptes
1165 * or other rmap walkers (if working on addresses beyond the "end"
1166 * parameter) may establish ptes with the wrong permissions of NNNN
1167 * instead of the right permissions of XXXX.
1169 struct vm_area_struct *vma_merge(struct mm_struct *mm,
1170 struct vm_area_struct *prev, unsigned long addr,
1171 unsigned long end, unsigned long vm_flags,
1172 struct anon_vma *anon_vma, struct file *file,
1173 pgoff_t pgoff, struct mempolicy *policy,
1174 struct vm_userfaultfd_ctx vm_userfaultfd_ctx,
1175 struct anon_vma_name *anon_name)
1177 pgoff_t pglen = (end - addr) >> PAGE_SHIFT;
1178 struct vm_area_struct *area, *next;
1182 * We later require that vma->vm_flags == vm_flags,
1183 * so this tests vma->vm_flags & VM_SPECIAL, too.
1185 if (vm_flags & VM_SPECIAL)
1188 next = vma_next(mm, prev);
1190 if (area && area->vm_end == end) /* cases 6, 7, 8 */
1191 next = next->vm_next;
1193 /* verify some invariant that must be enforced by the caller */
1194 VM_WARN_ON(prev && addr <= prev->vm_start);
1195 VM_WARN_ON(area && end > area->vm_end);
1196 VM_WARN_ON(addr >= end);
1199 * Can it merge with the predecessor?
1201 if (prev && prev->vm_end == addr &&
1202 mpol_equal(vma_policy(prev), policy) &&
1203 can_vma_merge_after(prev, vm_flags,
1204 anon_vma, file, pgoff,
1205 vm_userfaultfd_ctx, anon_name)) {
1207 * OK, it can. Can we now merge in the successor as well?
1209 if (next && end == next->vm_start &&
1210 mpol_equal(policy, vma_policy(next)) &&
1211 can_vma_merge_before(next, vm_flags,
1214 vm_userfaultfd_ctx, anon_name) &&
1215 is_mergeable_anon_vma(prev->anon_vma,
1216 next->anon_vma, NULL)) {
1218 err = __vma_adjust(prev, prev->vm_start,
1219 next->vm_end, prev->vm_pgoff, NULL,
1221 } else /* cases 2, 5, 7 */
1222 err = __vma_adjust(prev, prev->vm_start,
1223 end, prev->vm_pgoff, NULL, prev);
1226 khugepaged_enter_vma(prev, vm_flags);
1231 * Can this new request be merged in front of next?
1233 if (next && end == next->vm_start &&
1234 mpol_equal(policy, vma_policy(next)) &&
1235 can_vma_merge_before(next, vm_flags,
1236 anon_vma, file, pgoff+pglen,
1237 vm_userfaultfd_ctx, anon_name)) {
1238 if (prev && addr < prev->vm_end) /* case 4 */
1239 err = __vma_adjust(prev, prev->vm_start,
1240 addr, prev->vm_pgoff, NULL, next);
1241 else { /* cases 3, 8 */
1242 err = __vma_adjust(area, addr, next->vm_end,
1243 next->vm_pgoff - pglen, NULL, next);
1245 * In case 3 area is already equal to next and
1246 * this is a noop, but in case 8 "area" has
1247 * been removed and next was expanded over it.
1253 khugepaged_enter_vma(area, vm_flags);
1261 * Rough compatibility check to quickly see if it's even worth looking
1262 * at sharing an anon_vma.
1264 * They need to have the same vm_file, and the flags can only differ
1265 * in things that mprotect may change.
1267 * NOTE! The fact that we share an anon_vma doesn't _have_ to mean that
1268 * we can merge the two vma's. For example, we refuse to merge a vma if
1269 * there is a vm_ops->close() function, because that indicates that the
1270 * driver is doing some kind of reference counting. But that doesn't
1271 * really matter for the anon_vma sharing case.
1273 static int anon_vma_compatible(struct vm_area_struct *a, struct vm_area_struct *b)
1275 return a->vm_end == b->vm_start &&
1276 mpol_equal(vma_policy(a), vma_policy(b)) &&
1277 a->vm_file == b->vm_file &&
1278 !((a->vm_flags ^ b->vm_flags) & ~(VM_ACCESS_FLAGS | VM_SOFTDIRTY)) &&
1279 b->vm_pgoff == a->vm_pgoff + ((b->vm_start - a->vm_start) >> PAGE_SHIFT);
1283 * Do some basic sanity checking to see if we can re-use the anon_vma
1284 * from 'old'. The 'a'/'b' vma's are in VM order - one of them will be
1285 * the same as 'old', the other will be the new one that is trying
1286 * to share the anon_vma.
1288 * NOTE! This runs with mmap_lock held for reading, so it is possible that
1289 * the anon_vma of 'old' is concurrently in the process of being set up
1290 * by another page fault trying to merge _that_. But that's ok: if it
1291 * is being set up, that automatically means that it will be a singleton
1292 * acceptable for merging, so we can do all of this optimistically. But
1293 * we do that READ_ONCE() to make sure that we never re-load the pointer.
1295 * IOW: that the "list_is_singular()" test on the anon_vma_chain only
1296 * matters for the 'stable anon_vma' case (ie the thing we want to avoid
1297 * is to return an anon_vma that is "complex" due to having gone through
1300 * We also make sure that the two vma's are compatible (adjacent,
1301 * and with the same memory policies). That's all stable, even with just
1302 * a read lock on the mmap_lock.
1304 static struct anon_vma *reusable_anon_vma(struct vm_area_struct *old, struct vm_area_struct *a, struct vm_area_struct *b)
1306 if (anon_vma_compatible(a, b)) {
1307 struct anon_vma *anon_vma = READ_ONCE(old->anon_vma);
1309 if (anon_vma && list_is_singular(&old->anon_vma_chain))
1316 * find_mergeable_anon_vma is used by anon_vma_prepare, to check
1317 * neighbouring vmas for a suitable anon_vma, before it goes off
1318 * to allocate a new anon_vma. It checks because a repetitive
1319 * sequence of mprotects and faults may otherwise lead to distinct
1320 * anon_vmas being allocated, preventing vma merge in subsequent
1323 struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *vma)
1325 struct anon_vma *anon_vma = NULL;
1327 /* Try next first. */
1329 anon_vma = reusable_anon_vma(vma->vm_next, vma, vma->vm_next);
1334 /* Try prev next. */
1336 anon_vma = reusable_anon_vma(vma->vm_prev, vma->vm_prev, vma);
1339 * We might reach here with anon_vma == NULL if we can't find
1340 * any reusable anon_vma.
1341 * There's no absolute need to look only at touching neighbours:
1342 * we could search further afield for "compatible" anon_vmas.
1343 * But it would probably just be a waste of time searching,
1344 * or lead to too many vmas hanging off the same anon_vma.
1345 * We're trying to allow mprotect remerging later on,
1346 * not trying to minimize memory used for anon_vmas.
1352 * If a hint addr is less than mmap_min_addr change hint to be as
1353 * low as possible but still greater than mmap_min_addr
1355 static inline unsigned long round_hint_to_min(unsigned long hint)
1358 if (((void *)hint != NULL) &&
1359 (hint < mmap_min_addr))
1360 return PAGE_ALIGN(mmap_min_addr);
1364 int mlock_future_check(struct mm_struct *mm, unsigned long flags,
1367 unsigned long locked, lock_limit;
1369 /* mlock MCL_FUTURE? */
1370 if (flags & VM_LOCKED) {
1371 locked = len >> PAGE_SHIFT;
1372 locked += mm->locked_vm;
1373 lock_limit = rlimit(RLIMIT_MEMLOCK);
1374 lock_limit >>= PAGE_SHIFT;
1375 if (locked > lock_limit && !capable(CAP_IPC_LOCK))
1381 static inline u64 file_mmap_size_max(struct file *file, struct inode *inode)
1383 if (S_ISREG(inode->i_mode))
1384 return MAX_LFS_FILESIZE;
1386 if (S_ISBLK(inode->i_mode))
1387 return MAX_LFS_FILESIZE;
1389 if (S_ISSOCK(inode->i_mode))
1390 return MAX_LFS_FILESIZE;
1392 /* Special "we do even unsigned file positions" case */
1393 if (file->f_mode & FMODE_UNSIGNED_OFFSET)
1396 /* Yes, random drivers might want more. But I'm tired of buggy drivers */
1400 static inline bool file_mmap_ok(struct file *file, struct inode *inode,
1401 unsigned long pgoff, unsigned long len)
1403 u64 maxsize = file_mmap_size_max(file, inode);
1405 if (maxsize && len > maxsize)
1408 if (pgoff > maxsize >> PAGE_SHIFT)
1414 * The caller must write-lock current->mm->mmap_lock.
1416 unsigned long do_mmap(struct file *file, unsigned long addr,
1417 unsigned long len, unsigned long prot,
1418 unsigned long flags, unsigned long pgoff,
1419 unsigned long *populate, struct list_head *uf)
1421 struct mm_struct *mm = current->mm;
1422 vm_flags_t vm_flags;
1431 * Does the application expect PROT_READ to imply PROT_EXEC?
1433 * (the exception is when the underlying filesystem is noexec
1434 * mounted, in which case we dont add PROT_EXEC.)
1436 if ((prot & PROT_READ) && (current->personality & READ_IMPLIES_EXEC))
1437 if (!(file && path_noexec(&file->f_path)))
1440 /* force arch specific MAP_FIXED handling in get_unmapped_area */
1441 if (flags & MAP_FIXED_NOREPLACE)
1444 if (!(flags & MAP_FIXED))
1445 addr = round_hint_to_min(addr);
1447 /* Careful about overflows.. */
1448 len = PAGE_ALIGN(len);
1452 /* offset overflow? */
1453 if ((pgoff + (len >> PAGE_SHIFT)) < pgoff)
1456 /* Too many mappings? */
1457 if (mm->map_count > sysctl_max_map_count)
1460 /* Obtain the address to map to. we verify (or select) it and ensure
1461 * that it represents a valid section of the address space.
1463 addr = get_unmapped_area(file, addr, len, pgoff, flags);
1464 if (IS_ERR_VALUE(addr))
1467 if (flags & MAP_FIXED_NOREPLACE) {
1468 if (find_vma_intersection(mm, addr, addr + len))
1472 if (prot == PROT_EXEC) {
1473 pkey = execute_only_pkey(mm);
1478 /* Do simple checking here so the lower-level routines won't have
1479 * to. we assume access permissions have been handled by the open
1480 * of the memory object, so we don't do any here.
1482 vm_flags = calc_vm_prot_bits(prot, pkey) | calc_vm_flag_bits(flags) |
1483 mm->def_flags | VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC;
1485 if (flags & MAP_LOCKED)
1486 if (!can_do_mlock())
1489 if (mlock_future_check(mm, vm_flags, len))
1493 struct inode *inode = file_inode(file);
1494 unsigned long flags_mask;
1496 if (!file_mmap_ok(file, inode, pgoff, len))
1499 flags_mask = LEGACY_MAP_MASK | file->f_op->mmap_supported_flags;
1501 switch (flags & MAP_TYPE) {
1504 * Force use of MAP_SHARED_VALIDATE with non-legacy
1505 * flags. E.g. MAP_SYNC is dangerous to use with
1506 * MAP_SHARED as you don't know which consistency model
1507 * you will get. We silently ignore unsupported flags
1508 * with MAP_SHARED to preserve backward compatibility.
1510 flags &= LEGACY_MAP_MASK;
1512 case MAP_SHARED_VALIDATE:
1513 if (flags & ~flags_mask)
1515 if (prot & PROT_WRITE) {
1516 if (!(file->f_mode & FMODE_WRITE))
1518 if (IS_SWAPFILE(file->f_mapping->host))
1523 * Make sure we don't allow writing to an append-only
1526 if (IS_APPEND(inode) && (file->f_mode & FMODE_WRITE))
1529 vm_flags |= VM_SHARED | VM_MAYSHARE;
1530 if (!(file->f_mode & FMODE_WRITE))
1531 vm_flags &= ~(VM_MAYWRITE | VM_SHARED);
1534 if (!(file->f_mode & FMODE_READ))
1536 if (path_noexec(&file->f_path)) {
1537 if (vm_flags & VM_EXEC)
1539 vm_flags &= ~VM_MAYEXEC;
1542 if (!file->f_op->mmap)
1544 if (vm_flags & (VM_GROWSDOWN|VM_GROWSUP))
1552 switch (flags & MAP_TYPE) {
1554 if (vm_flags & (VM_GROWSDOWN|VM_GROWSUP))
1560 vm_flags |= VM_SHARED | VM_MAYSHARE;
1564 * Set pgoff according to addr for anon_vma.
1566 pgoff = addr >> PAGE_SHIFT;
1574 * Set 'VM_NORESERVE' if we should not account for the
1575 * memory use of this mapping.
1577 if (flags & MAP_NORESERVE) {
1578 /* We honor MAP_NORESERVE if allowed to overcommit */
1579 if (sysctl_overcommit_memory != OVERCOMMIT_NEVER)
1580 vm_flags |= VM_NORESERVE;
1582 /* hugetlb applies strict overcommit unless MAP_NORESERVE */
1583 if (file && is_file_hugepages(file))
1584 vm_flags |= VM_NORESERVE;
1587 addr = mmap_region(file, addr, len, vm_flags, pgoff, uf);
1588 if (!IS_ERR_VALUE(addr) &&
1589 ((vm_flags & VM_LOCKED) ||
1590 (flags & (MAP_POPULATE | MAP_NONBLOCK)) == MAP_POPULATE))
1595 unsigned long ksys_mmap_pgoff(unsigned long addr, unsigned long len,
1596 unsigned long prot, unsigned long flags,
1597 unsigned long fd, unsigned long pgoff)
1599 struct file *file = NULL;
1600 unsigned long retval;
1602 if (!(flags & MAP_ANONYMOUS)) {
1603 audit_mmap_fd(fd, flags);
1607 if (is_file_hugepages(file)) {
1608 len = ALIGN(len, huge_page_size(hstate_file(file)));
1609 } else if (unlikely(flags & MAP_HUGETLB)) {
1613 } else if (flags & MAP_HUGETLB) {
1616 hs = hstate_sizelog((flags >> MAP_HUGE_SHIFT) & MAP_HUGE_MASK);
1620 len = ALIGN(len, huge_page_size(hs));
1622 * VM_NORESERVE is used because the reservations will be
1623 * taken when vm_ops->mmap() is called
1625 file = hugetlb_file_setup(HUGETLB_ANON_FILE, len,
1627 HUGETLB_ANONHUGE_INODE,
1628 (flags >> MAP_HUGE_SHIFT) & MAP_HUGE_MASK);
1630 return PTR_ERR(file);
1633 retval = vm_mmap_pgoff(file, addr, len, prot, flags, pgoff);
1640 SYSCALL_DEFINE6(mmap_pgoff, unsigned long, addr, unsigned long, len,
1641 unsigned long, prot, unsigned long, flags,
1642 unsigned long, fd, unsigned long, pgoff)
1644 return ksys_mmap_pgoff(addr, len, prot, flags, fd, pgoff);
1647 #ifdef __ARCH_WANT_SYS_OLD_MMAP
1648 struct mmap_arg_struct {
1652 unsigned long flags;
1654 unsigned long offset;
1657 SYSCALL_DEFINE1(old_mmap, struct mmap_arg_struct __user *, arg)
1659 struct mmap_arg_struct a;
1661 if (copy_from_user(&a, arg, sizeof(a)))
1663 if (offset_in_page(a.offset))
1666 return ksys_mmap_pgoff(a.addr, a.len, a.prot, a.flags, a.fd,
1667 a.offset >> PAGE_SHIFT);
1669 #endif /* __ARCH_WANT_SYS_OLD_MMAP */
1672 * Some shared mappings will want the pages marked read-only
1673 * to track write events. If so, we'll downgrade vm_page_prot
1674 * to the private version (using protection_map[] without the
1677 int vma_wants_writenotify(struct vm_area_struct *vma, pgprot_t vm_page_prot)
1679 vm_flags_t vm_flags = vma->vm_flags;
1680 const struct vm_operations_struct *vm_ops = vma->vm_ops;
1682 /* If it was private or non-writable, the write bit is already clear */
1683 if ((vm_flags & (VM_WRITE|VM_SHARED)) != ((VM_WRITE|VM_SHARED)))
1686 /* The backer wishes to know when pages are first written to? */
1687 if (vm_ops && (vm_ops->page_mkwrite || vm_ops->pfn_mkwrite))
1690 /* The open routine did something to the protections that pgprot_modify
1691 * won't preserve? */
1692 if (pgprot_val(vm_page_prot) !=
1693 pgprot_val(vm_pgprot_modify(vm_page_prot, vm_flags)))
1696 /* Do we need to track softdirty? */
1697 if (IS_ENABLED(CONFIG_MEM_SOFT_DIRTY) && !(vm_flags & VM_SOFTDIRTY))
1700 /* Specialty mapping? */
1701 if (vm_flags & VM_PFNMAP)
1704 /* Can the mapping track the dirty pages? */
1705 return vma->vm_file && vma->vm_file->f_mapping &&
1706 mapping_can_writeback(vma->vm_file->f_mapping);
1710 * We account for memory if it's a private writeable mapping,
1711 * not hugepages and VM_NORESERVE wasn't set.
1713 static inline int accountable_mapping(struct file *file, vm_flags_t vm_flags)
1716 * hugetlb has its own accounting separate from the core VM
1717 * VM_HUGETLB may not be set yet so we cannot check for that flag.
1719 if (file && is_file_hugepages(file))
1722 return (vm_flags & (VM_NORESERVE | VM_SHARED | VM_WRITE)) == VM_WRITE;
1725 unsigned long mmap_region(struct file *file, unsigned long addr,
1726 unsigned long len, vm_flags_t vm_flags, unsigned long pgoff,
1727 struct list_head *uf)
1729 struct mm_struct *mm = current->mm;
1730 struct vm_area_struct *vma, *prev, *merge;
1732 struct rb_node **rb_link, *rb_parent;
1733 unsigned long charged = 0;
1735 /* Check against address space limit. */
1736 if (!may_expand_vm(mm, vm_flags, len >> PAGE_SHIFT)) {
1737 unsigned long nr_pages;
1740 * MAP_FIXED may remove pages of mappings that intersects with
1741 * requested mapping. Account for the pages it would unmap.
1743 nr_pages = count_vma_pages_range(mm, addr, addr + len);
1745 if (!may_expand_vm(mm, vm_flags,
1746 (len >> PAGE_SHIFT) - nr_pages))
1750 /* Clear old maps, set up prev, rb_link, rb_parent, and uf */
1751 if (munmap_vma_range(mm, addr, len, &prev, &rb_link, &rb_parent, uf))
1754 * Private writable mapping: check memory availability
1756 if (accountable_mapping(file, vm_flags)) {
1757 charged = len >> PAGE_SHIFT;
1758 if (security_vm_enough_memory_mm(mm, charged))
1760 vm_flags |= VM_ACCOUNT;
1764 * Can we just expand an old mapping?
1766 vma = vma_merge(mm, prev, addr, addr + len, vm_flags,
1767 NULL, file, pgoff, NULL, NULL_VM_UFFD_CTX, NULL);
1772 * Determine the object being mapped and call the appropriate
1773 * specific mapper. the address has already been validated, but
1774 * not unmapped, but the maps are removed from the list.
1776 vma = vm_area_alloc(mm);
1782 vma->vm_start = addr;
1783 vma->vm_end = addr + len;
1784 vma->vm_flags = vm_flags;
1785 vma->vm_page_prot = vm_get_page_prot(vm_flags);
1786 vma->vm_pgoff = pgoff;
1789 if (vm_flags & VM_SHARED) {
1790 error = mapping_map_writable(file->f_mapping);
1795 vma->vm_file = get_file(file);
1796 error = call_mmap(file, vma);
1798 goto unmap_and_free_vma;
1800 /* Can addr have changed??
1802 * Answer: Yes, several device drivers can do it in their
1803 * f_op->mmap method. -DaveM
1804 * Bug: If addr is changed, prev, rb_link, rb_parent should
1805 * be updated for vma_link()
1807 WARN_ON_ONCE(addr != vma->vm_start);
1809 addr = vma->vm_start;
1811 /* If vm_flags changed after call_mmap(), we should try merge vma again
1812 * as we may succeed this time.
1814 if (unlikely(vm_flags != vma->vm_flags && prev)) {
1815 merge = vma_merge(mm, prev, vma->vm_start, vma->vm_end, vma->vm_flags,
1816 NULL, vma->vm_file, vma->vm_pgoff, NULL, NULL_VM_UFFD_CTX, NULL);
1818 /* ->mmap() can change vma->vm_file and fput the original file. So
1819 * fput the vma->vm_file here or we would add an extra fput for file
1820 * and cause general protection fault ultimately.
1825 /* Update vm_flags to pick up the change. */
1826 vm_flags = vma->vm_flags;
1827 goto unmap_writable;
1831 vm_flags = vma->vm_flags;
1832 } else if (vm_flags & VM_SHARED) {
1833 error = shmem_zero_setup(vma);
1837 vma_set_anonymous(vma);
1840 /* Allow architectures to sanity-check the vm_flags */
1841 if (!arch_validate_flags(vma->vm_flags)) {
1844 goto unmap_and_free_vma;
1849 vma_link(mm, vma, prev, rb_link, rb_parent);
1852 * vma_merge() calls khugepaged_enter_vma() either, the below
1853 * call covers the non-merge case.
1855 khugepaged_enter_vma(vma, vma->vm_flags);
1857 /* Once vma denies write, undo our temporary denial count */
1859 if (file && vm_flags & VM_SHARED)
1860 mapping_unmap_writable(file->f_mapping);
1861 file = vma->vm_file;
1863 perf_event_mmap(vma);
1865 vm_stat_account(mm, vm_flags, len >> PAGE_SHIFT);
1866 if (vm_flags & VM_LOCKED) {
1867 if ((vm_flags & VM_SPECIAL) || vma_is_dax(vma) ||
1868 is_vm_hugetlb_page(vma) ||
1869 vma == get_gate_vma(current->mm))
1870 vma->vm_flags &= VM_LOCKED_CLEAR_MASK;
1872 mm->locked_vm += (len >> PAGE_SHIFT);
1879 * New (or expanded) vma always get soft dirty status.
1880 * Otherwise user-space soft-dirty page tracker won't
1881 * be able to distinguish situation when vma area unmapped,
1882 * then new mapped in-place (which must be aimed as
1883 * a completely new data area).
1885 vma->vm_flags |= VM_SOFTDIRTY;
1887 vma_set_page_prot(vma);
1893 vma->vm_file = NULL;
1895 /* Undo any partial mapping done by a device driver. */
1896 unmap_region(mm, vma, prev, vma->vm_start, vma->vm_end);
1898 if (vm_flags & VM_SHARED)
1899 mapping_unmap_writable(file->f_mapping);
1904 vm_unacct_memory(charged);
1908 static unsigned long unmapped_area(struct vm_unmapped_area_info *info)
1911 * We implement the search by looking for an rbtree node that
1912 * immediately follows a suitable gap. That is,
1913 * - gap_start = vma->vm_prev->vm_end <= info->high_limit - length;
1914 * - gap_end = vma->vm_start >= info->low_limit + length;
1915 * - gap_end - gap_start >= length
1918 struct mm_struct *mm = current->mm;
1919 struct vm_area_struct *vma;
1920 unsigned long length, low_limit, high_limit, gap_start, gap_end;
1922 /* Adjust search length to account for worst case alignment overhead */
1923 length = info->length + info->align_mask;
1924 if (length < info->length)
1927 /* Adjust search limits by the desired length */
1928 if (info->high_limit < length)
1930 high_limit = info->high_limit - length;
1932 if (info->low_limit > high_limit)
1934 low_limit = info->low_limit + length;
1936 /* Check if rbtree root looks promising */
1937 if (RB_EMPTY_ROOT(&mm->mm_rb))
1939 vma = rb_entry(mm->mm_rb.rb_node, struct vm_area_struct, vm_rb);
1940 if (vma->rb_subtree_gap < length)
1944 /* Visit left subtree if it looks promising */
1945 gap_end = vm_start_gap(vma);
1946 if (gap_end >= low_limit && vma->vm_rb.rb_left) {
1947 struct vm_area_struct *left =
1948 rb_entry(vma->vm_rb.rb_left,
1949 struct vm_area_struct, vm_rb);
1950 if (left->rb_subtree_gap >= length) {
1956 gap_start = vma->vm_prev ? vm_end_gap(vma->vm_prev) : 0;
1958 /* Check if current node has a suitable gap */
1959 if (gap_start > high_limit)
1961 if (gap_end >= low_limit &&
1962 gap_end > gap_start && gap_end - gap_start >= length)
1965 /* Visit right subtree if it looks promising */
1966 if (vma->vm_rb.rb_right) {
1967 struct vm_area_struct *right =
1968 rb_entry(vma->vm_rb.rb_right,
1969 struct vm_area_struct, vm_rb);
1970 if (right->rb_subtree_gap >= length) {
1976 /* Go back up the rbtree to find next candidate node */
1978 struct rb_node *prev = &vma->vm_rb;
1979 if (!rb_parent(prev))
1981 vma = rb_entry(rb_parent(prev),
1982 struct vm_area_struct, vm_rb);
1983 if (prev == vma->vm_rb.rb_left) {
1984 gap_start = vm_end_gap(vma->vm_prev);
1985 gap_end = vm_start_gap(vma);
1992 /* Check highest gap, which does not precede any rbtree node */
1993 gap_start = mm->highest_vm_end;
1994 gap_end = ULONG_MAX; /* Only for VM_BUG_ON below */
1995 if (gap_start > high_limit)
1999 /* We found a suitable gap. Clip it with the original low_limit. */
2000 if (gap_start < info->low_limit)
2001 gap_start = info->low_limit;
2003 /* Adjust gap address to the desired alignment */
2004 gap_start += (info->align_offset - gap_start) & info->align_mask;
2006 VM_BUG_ON(gap_start + info->length > info->high_limit);
2007 VM_BUG_ON(gap_start + info->length > gap_end);
2011 static unsigned long unmapped_area_topdown(struct vm_unmapped_area_info *info)
2013 struct mm_struct *mm = current->mm;
2014 struct vm_area_struct *vma;
2015 unsigned long length, low_limit, high_limit, gap_start, gap_end;
2017 /* Adjust search length to account for worst case alignment overhead */
2018 length = info->length + info->align_mask;
2019 if (length < info->length)
2023 * Adjust search limits by the desired length.
2024 * See implementation comment at top of unmapped_area().
2026 gap_end = info->high_limit;
2027 if (gap_end < length)
2029 high_limit = gap_end - length;
2031 if (info->low_limit > high_limit)
2033 low_limit = info->low_limit + length;
2035 /* Check highest gap, which does not precede any rbtree node */
2036 gap_start = mm->highest_vm_end;
2037 if (gap_start <= high_limit)
2040 /* Check if rbtree root looks promising */
2041 if (RB_EMPTY_ROOT(&mm->mm_rb))
2043 vma = rb_entry(mm->mm_rb.rb_node, struct vm_area_struct, vm_rb);
2044 if (vma->rb_subtree_gap < length)
2048 /* Visit right subtree if it looks promising */
2049 gap_start = vma->vm_prev ? vm_end_gap(vma->vm_prev) : 0;
2050 if (gap_start <= high_limit && vma->vm_rb.rb_right) {
2051 struct vm_area_struct *right =
2052 rb_entry(vma->vm_rb.rb_right,
2053 struct vm_area_struct, vm_rb);
2054 if (right->rb_subtree_gap >= length) {
2061 /* Check if current node has a suitable gap */
2062 gap_end = vm_start_gap(vma);
2063 if (gap_end < low_limit)
2065 if (gap_start <= high_limit &&
2066 gap_end > gap_start && gap_end - gap_start >= length)
2069 /* Visit left subtree if it looks promising */
2070 if (vma->vm_rb.rb_left) {
2071 struct vm_area_struct *left =
2072 rb_entry(vma->vm_rb.rb_left,
2073 struct vm_area_struct, vm_rb);
2074 if (left->rb_subtree_gap >= length) {
2080 /* Go back up the rbtree to find next candidate node */
2082 struct rb_node *prev = &vma->vm_rb;
2083 if (!rb_parent(prev))
2085 vma = rb_entry(rb_parent(prev),
2086 struct vm_area_struct, vm_rb);
2087 if (prev == vma->vm_rb.rb_right) {
2088 gap_start = vma->vm_prev ?
2089 vm_end_gap(vma->vm_prev) : 0;
2096 /* We found a suitable gap. Clip it with the original high_limit. */
2097 if (gap_end > info->high_limit)
2098 gap_end = info->high_limit;
2101 /* Compute highest gap address at the desired alignment */
2102 gap_end -= info->length;
2103 gap_end -= (gap_end - info->align_offset) & info->align_mask;
2105 VM_BUG_ON(gap_end < info->low_limit);
2106 VM_BUG_ON(gap_end < gap_start);
2111 * Search for an unmapped address range.
2113 * We are looking for a range that:
2114 * - does not intersect with any VMA;
2115 * - is contained within the [low_limit, high_limit) interval;
2116 * - is at least the desired size.
2117 * - satisfies (begin_addr & align_mask) == (align_offset & align_mask)
2119 unsigned long vm_unmapped_area(struct vm_unmapped_area_info *info)
2123 if (info->flags & VM_UNMAPPED_AREA_TOPDOWN)
2124 addr = unmapped_area_topdown(info);
2126 addr = unmapped_area(info);
2128 trace_vm_unmapped_area(addr, info);
2132 /* Get an address range which is currently unmapped.
2133 * For shmat() with addr=0.
2135 * Ugly calling convention alert:
2136 * Return value with the low bits set means error value,
2138 * if (ret & ~PAGE_MASK)
2141 * This function "knows" that -ENOMEM has the bits set.
2144 generic_get_unmapped_area(struct file *filp, unsigned long addr,
2145 unsigned long len, unsigned long pgoff,
2146 unsigned long flags)
2148 struct mm_struct *mm = current->mm;
2149 struct vm_area_struct *vma, *prev;
2150 struct vm_unmapped_area_info info;
2151 const unsigned long mmap_end = arch_get_mmap_end(addr, len, flags);
2153 if (len > mmap_end - mmap_min_addr)
2156 if (flags & MAP_FIXED)
2160 addr = PAGE_ALIGN(addr);
2161 vma = find_vma_prev(mm, addr, &prev);
2162 if (mmap_end - len >= addr && addr >= mmap_min_addr &&
2163 (!vma || addr + len <= vm_start_gap(vma)) &&
2164 (!prev || addr >= vm_end_gap(prev)))
2170 info.low_limit = mm->mmap_base;
2171 info.high_limit = mmap_end;
2172 info.align_mask = 0;
2173 info.align_offset = 0;
2174 return vm_unmapped_area(&info);
2177 #ifndef HAVE_ARCH_UNMAPPED_AREA
2179 arch_get_unmapped_area(struct file *filp, unsigned long addr,
2180 unsigned long len, unsigned long pgoff,
2181 unsigned long flags)
2183 return generic_get_unmapped_area(filp, addr, len, pgoff, flags);
2188 * This mmap-allocator allocates new areas top-down from below the
2189 * stack's low limit (the base):
2192 generic_get_unmapped_area_topdown(struct file *filp, unsigned long addr,
2193 unsigned long len, unsigned long pgoff,
2194 unsigned long flags)
2196 struct vm_area_struct *vma, *prev;
2197 struct mm_struct *mm = current->mm;
2198 struct vm_unmapped_area_info info;
2199 const unsigned long mmap_end = arch_get_mmap_end(addr, len, flags);
2201 /* requested length too big for entire address space */
2202 if (len > mmap_end - mmap_min_addr)
2205 if (flags & MAP_FIXED)
2208 /* requesting a specific address */
2210 addr = PAGE_ALIGN(addr);
2211 vma = find_vma_prev(mm, addr, &prev);
2212 if (mmap_end - len >= addr && addr >= mmap_min_addr &&
2213 (!vma || addr + len <= vm_start_gap(vma)) &&
2214 (!prev || addr >= vm_end_gap(prev)))
2218 info.flags = VM_UNMAPPED_AREA_TOPDOWN;
2220 info.low_limit = max(PAGE_SIZE, mmap_min_addr);
2221 info.high_limit = arch_get_mmap_base(addr, mm->mmap_base);
2222 info.align_mask = 0;
2223 info.align_offset = 0;
2224 addr = vm_unmapped_area(&info);
2227 * A failed mmap() very likely causes application failure,
2228 * so fall back to the bottom-up function here. This scenario
2229 * can happen with large stack limits and large mmap()
2232 if (offset_in_page(addr)) {
2233 VM_BUG_ON(addr != -ENOMEM);
2235 info.low_limit = TASK_UNMAPPED_BASE;
2236 info.high_limit = mmap_end;
2237 addr = vm_unmapped_area(&info);
2243 #ifndef HAVE_ARCH_UNMAPPED_AREA_TOPDOWN
2245 arch_get_unmapped_area_topdown(struct file *filp, unsigned long addr,
2246 unsigned long len, unsigned long pgoff,
2247 unsigned long flags)
2249 return generic_get_unmapped_area_topdown(filp, addr, len, pgoff, flags);
2254 get_unmapped_area(struct file *file, unsigned long addr, unsigned long len,
2255 unsigned long pgoff, unsigned long flags)
2257 unsigned long (*get_area)(struct file *, unsigned long,
2258 unsigned long, unsigned long, unsigned long);
2260 unsigned long error = arch_mmap_check(addr, len, flags);
2264 /* Careful about overflows.. */
2265 if (len > TASK_SIZE)
2268 get_area = current->mm->get_unmapped_area;
2270 if (file->f_op->get_unmapped_area)
2271 get_area = file->f_op->get_unmapped_area;
2272 } else if (flags & MAP_SHARED) {
2274 * mmap_region() will call shmem_zero_setup() to create a file,
2275 * so use shmem's get_unmapped_area in case it can be huge.
2276 * do_mmap() will clear pgoff, so match alignment.
2279 get_area = shmem_get_unmapped_area;
2282 addr = get_area(file, addr, len, pgoff, flags);
2283 if (IS_ERR_VALUE(addr))
2286 if (addr > TASK_SIZE - len)
2288 if (offset_in_page(addr))
2291 error = security_mmap_addr(addr);
2292 return error ? error : addr;
2295 EXPORT_SYMBOL(get_unmapped_area);
2297 /* Look up the first VMA which satisfies addr < vm_end, NULL if none. */
2298 struct vm_area_struct *find_vma(struct mm_struct *mm, unsigned long addr)
2300 struct rb_node *rb_node;
2301 struct vm_area_struct *vma;
2303 mmap_assert_locked(mm);
2304 /* Check the cache first. */
2305 vma = vmacache_find(mm, addr);
2309 rb_node = mm->mm_rb.rb_node;
2312 struct vm_area_struct *tmp;
2314 tmp = rb_entry(rb_node, struct vm_area_struct, vm_rb);
2316 if (tmp->vm_end > addr) {
2318 if (tmp->vm_start <= addr)
2320 rb_node = rb_node->rb_left;
2322 rb_node = rb_node->rb_right;
2326 vmacache_update(addr, vma);
2330 EXPORT_SYMBOL(find_vma);
2333 * Same as find_vma, but also return a pointer to the previous VMA in *pprev.
2335 struct vm_area_struct *
2336 find_vma_prev(struct mm_struct *mm, unsigned long addr,
2337 struct vm_area_struct **pprev)
2339 struct vm_area_struct *vma;
2341 vma = find_vma(mm, addr);
2343 *pprev = vma->vm_prev;
2345 struct rb_node *rb_node = rb_last(&mm->mm_rb);
2347 *pprev = rb_node ? rb_entry(rb_node, struct vm_area_struct, vm_rb) : NULL;
2353 * Verify that the stack growth is acceptable and
2354 * update accounting. This is shared with both the
2355 * grow-up and grow-down cases.
2357 static int acct_stack_growth(struct vm_area_struct *vma,
2358 unsigned long size, unsigned long grow)
2360 struct mm_struct *mm = vma->vm_mm;
2361 unsigned long new_start;
2363 /* address space limit tests */
2364 if (!may_expand_vm(mm, vma->vm_flags, grow))
2367 /* Stack limit test */
2368 if (size > rlimit(RLIMIT_STACK))
2371 /* mlock limit tests */
2372 if (mlock_future_check(mm, vma->vm_flags, grow << PAGE_SHIFT))
2375 /* Check to ensure the stack will not grow into a hugetlb-only region */
2376 new_start = (vma->vm_flags & VM_GROWSUP) ? vma->vm_start :
2378 if (is_hugepage_only_range(vma->vm_mm, new_start, size))
2382 * Overcommit.. This must be the final test, as it will
2383 * update security statistics.
2385 if (security_vm_enough_memory_mm(mm, grow))
2391 #if defined(CONFIG_STACK_GROWSUP) || defined(CONFIG_IA64)
2393 * PA-RISC uses this for its stack; IA64 for its Register Backing Store.
2394 * vma is the last one with address > vma->vm_end. Have to extend vma.
2396 int expand_upwards(struct vm_area_struct *vma, unsigned long address)
2398 struct mm_struct *mm = vma->vm_mm;
2399 struct vm_area_struct *next;
2400 unsigned long gap_addr;
2403 if (!(vma->vm_flags & VM_GROWSUP))
2406 /* Guard against exceeding limits of the address space. */
2407 address &= PAGE_MASK;
2408 if (address >= (TASK_SIZE & PAGE_MASK))
2410 address += PAGE_SIZE;
2412 /* Enforce stack_guard_gap */
2413 gap_addr = address + stack_guard_gap;
2415 /* Guard against overflow */
2416 if (gap_addr < address || gap_addr > TASK_SIZE)
2417 gap_addr = TASK_SIZE;
2419 next = vma->vm_next;
2420 if (next && next->vm_start < gap_addr && vma_is_accessible(next)) {
2421 if (!(next->vm_flags & VM_GROWSUP))
2423 /* Check that both stack segments have the same anon_vma? */
2426 /* We must make sure the anon_vma is allocated. */
2427 if (unlikely(anon_vma_prepare(vma)))
2431 * vma->vm_start/vm_end cannot change under us because the caller
2432 * is required to hold the mmap_lock in read mode. We need the
2433 * anon_vma lock to serialize against concurrent expand_stacks.
2435 anon_vma_lock_write(vma->anon_vma);
2437 /* Somebody else might have raced and expanded it already */
2438 if (address > vma->vm_end) {
2439 unsigned long size, grow;
2441 size = address - vma->vm_start;
2442 grow = (address - vma->vm_end) >> PAGE_SHIFT;
2445 if (vma->vm_pgoff + (size >> PAGE_SHIFT) >= vma->vm_pgoff) {
2446 error = acct_stack_growth(vma, size, grow);
2449 * vma_gap_update() doesn't support concurrent
2450 * updates, but we only hold a shared mmap_lock
2451 * lock here, so we need to protect against
2452 * concurrent vma expansions.
2453 * anon_vma_lock_write() doesn't help here, as
2454 * we don't guarantee that all growable vmas
2455 * in a mm share the same root anon vma.
2456 * So, we reuse mm->page_table_lock to guard
2457 * against concurrent vma expansions.
2459 spin_lock(&mm->page_table_lock);
2460 if (vma->vm_flags & VM_LOCKED)
2461 mm->locked_vm += grow;
2462 vm_stat_account(mm, vma->vm_flags, grow);
2463 anon_vma_interval_tree_pre_update_vma(vma);
2464 vma->vm_end = address;
2465 anon_vma_interval_tree_post_update_vma(vma);
2467 vma_gap_update(vma->vm_next);
2469 mm->highest_vm_end = vm_end_gap(vma);
2470 spin_unlock(&mm->page_table_lock);
2472 perf_event_mmap(vma);
2476 anon_vma_unlock_write(vma->anon_vma);
2477 khugepaged_enter_vma(vma, vma->vm_flags);
2481 #endif /* CONFIG_STACK_GROWSUP || CONFIG_IA64 */
2484 * vma is the first one with address < vma->vm_start. Have to extend vma.
2486 int expand_downwards(struct vm_area_struct *vma,
2487 unsigned long address)
2489 struct mm_struct *mm = vma->vm_mm;
2490 struct vm_area_struct *prev;
2493 address &= PAGE_MASK;
2494 if (address < mmap_min_addr)
2497 /* Enforce stack_guard_gap */
2498 prev = vma->vm_prev;
2499 /* Check that both stack segments have the same anon_vma? */
2500 if (prev && !(prev->vm_flags & VM_GROWSDOWN) &&
2501 vma_is_accessible(prev)) {
2502 if (address - prev->vm_end < stack_guard_gap)
2506 /* We must make sure the anon_vma is allocated. */
2507 if (unlikely(anon_vma_prepare(vma)))
2511 * vma->vm_start/vm_end cannot change under us because the caller
2512 * is required to hold the mmap_lock in read mode. We need the
2513 * anon_vma lock to serialize against concurrent expand_stacks.
2515 anon_vma_lock_write(vma->anon_vma);
2517 /* Somebody else might have raced and expanded it already */
2518 if (address < vma->vm_start) {
2519 unsigned long size, grow;
2521 size = vma->vm_end - address;
2522 grow = (vma->vm_start - address) >> PAGE_SHIFT;
2525 if (grow <= vma->vm_pgoff) {
2526 error = acct_stack_growth(vma, size, grow);
2529 * vma_gap_update() doesn't support concurrent
2530 * updates, but we only hold a shared mmap_lock
2531 * lock here, so we need to protect against
2532 * concurrent vma expansions.
2533 * anon_vma_lock_write() doesn't help here, as
2534 * we don't guarantee that all growable vmas
2535 * in a mm share the same root anon vma.
2536 * So, we reuse mm->page_table_lock to guard
2537 * against concurrent vma expansions.
2539 spin_lock(&mm->page_table_lock);
2540 if (vma->vm_flags & VM_LOCKED)
2541 mm->locked_vm += grow;
2542 vm_stat_account(mm, vma->vm_flags, grow);
2543 anon_vma_interval_tree_pre_update_vma(vma);
2544 vma->vm_start = address;
2545 vma->vm_pgoff -= grow;
2546 anon_vma_interval_tree_post_update_vma(vma);
2547 vma_gap_update(vma);
2548 spin_unlock(&mm->page_table_lock);
2550 perf_event_mmap(vma);
2554 anon_vma_unlock_write(vma->anon_vma);
2555 khugepaged_enter_vma(vma, vma->vm_flags);
2560 /* enforced gap between the expanding stack and other mappings. */
2561 unsigned long stack_guard_gap = 256UL<<PAGE_SHIFT;
2563 static int __init cmdline_parse_stack_guard_gap(char *p)
2568 val = simple_strtoul(p, &endptr, 10);
2570 stack_guard_gap = val << PAGE_SHIFT;
2574 __setup("stack_guard_gap=", cmdline_parse_stack_guard_gap);
2576 #ifdef CONFIG_STACK_GROWSUP
2577 int expand_stack(struct vm_area_struct *vma, unsigned long address)
2579 return expand_upwards(vma, address);
2582 struct vm_area_struct *
2583 find_extend_vma(struct mm_struct *mm, unsigned long addr)
2585 struct vm_area_struct *vma, *prev;
2588 vma = find_vma_prev(mm, addr, &prev);
2589 if (vma && (vma->vm_start <= addr))
2591 /* don't alter vm_end if the coredump is running */
2592 if (!prev || expand_stack(prev, addr))
2594 if (prev->vm_flags & VM_LOCKED)
2595 populate_vma_page_range(prev, addr, prev->vm_end, NULL);
2599 int expand_stack(struct vm_area_struct *vma, unsigned long address)
2601 return expand_downwards(vma, address);
2604 struct vm_area_struct *
2605 find_extend_vma(struct mm_struct *mm, unsigned long addr)
2607 struct vm_area_struct *vma;
2608 unsigned long start;
2611 vma = find_vma(mm, addr);
2614 if (vma->vm_start <= addr)
2616 if (!(vma->vm_flags & VM_GROWSDOWN))
2618 start = vma->vm_start;
2619 if (expand_stack(vma, addr))
2621 if (vma->vm_flags & VM_LOCKED)
2622 populate_vma_page_range(vma, addr, start, NULL);
2627 EXPORT_SYMBOL_GPL(find_extend_vma);
2630 * Ok - we have the memory areas we should free on the vma list,
2631 * so release them, and do the vma updates.
2633 * Called with the mm semaphore held.
2635 static void remove_vma_list(struct mm_struct *mm, struct vm_area_struct *vma)
2637 unsigned long nr_accounted = 0;
2639 /* Update high watermark before we lower total_vm */
2640 update_hiwater_vm(mm);
2642 long nrpages = vma_pages(vma);
2644 if (vma->vm_flags & VM_ACCOUNT)
2645 nr_accounted += nrpages;
2646 vm_stat_account(mm, vma->vm_flags, -nrpages);
2647 vma = remove_vma(vma);
2649 vm_unacct_memory(nr_accounted);
2654 * Get rid of page table information in the indicated region.
2656 * Called with the mm semaphore held.
2658 static void unmap_region(struct mm_struct *mm,
2659 struct vm_area_struct *vma, struct vm_area_struct *prev,
2660 unsigned long start, unsigned long end)
2662 struct vm_area_struct *next = vma_next(mm, prev);
2663 struct mmu_gather tlb;
2666 tlb_gather_mmu(&tlb, mm);
2667 update_hiwater_rss(mm);
2668 unmap_vmas(&tlb, vma, start, end);
2669 free_pgtables(&tlb, vma, prev ? prev->vm_end : FIRST_USER_ADDRESS,
2670 next ? next->vm_start : USER_PGTABLES_CEILING);
2671 tlb_finish_mmu(&tlb);
2675 * Create a list of vma's touched by the unmap, removing them from the mm's
2676 * vma list as we go..
2679 detach_vmas_to_be_unmapped(struct mm_struct *mm, struct vm_area_struct *vma,
2680 struct vm_area_struct *prev, unsigned long end)
2682 struct vm_area_struct **insertion_point;
2683 struct vm_area_struct *tail_vma = NULL;
2685 insertion_point = (prev ? &prev->vm_next : &mm->mmap);
2686 vma->vm_prev = NULL;
2688 vma_rb_erase(vma, &mm->mm_rb);
2689 if (vma->vm_flags & VM_LOCKED)
2690 mm->locked_vm -= vma_pages(vma);
2694 } while (vma && vma->vm_start < end);
2695 *insertion_point = vma;
2697 vma->vm_prev = prev;
2698 vma_gap_update(vma);
2700 mm->highest_vm_end = prev ? vm_end_gap(prev) : 0;
2701 tail_vma->vm_next = NULL;
2703 /* Kill the cache */
2704 vmacache_invalidate(mm);
2707 * Do not downgrade mmap_lock if we are next to VM_GROWSDOWN or
2708 * VM_GROWSUP VMA. Such VMAs can change their size under
2709 * down_read(mmap_lock) and collide with the VMA we are about to unmap.
2711 if (vma && (vma->vm_flags & VM_GROWSDOWN))
2713 if (prev && (prev->vm_flags & VM_GROWSUP))
2719 * __split_vma() bypasses sysctl_max_map_count checking. We use this where it
2720 * has already been checked or doesn't make sense to fail.
2722 int __split_vma(struct mm_struct *mm, struct vm_area_struct *vma,
2723 unsigned long addr, int new_below)
2725 struct vm_area_struct *new;
2728 if (vma->vm_ops && vma->vm_ops->may_split) {
2729 err = vma->vm_ops->may_split(vma, addr);
2734 new = vm_area_dup(vma);
2741 new->vm_start = addr;
2742 new->vm_pgoff += ((addr - vma->vm_start) >> PAGE_SHIFT);
2745 err = vma_dup_policy(vma, new);
2749 err = anon_vma_clone(new, vma);
2754 get_file(new->vm_file);
2756 if (new->vm_ops && new->vm_ops->open)
2757 new->vm_ops->open(new);
2760 err = vma_adjust(vma, addr, vma->vm_end, vma->vm_pgoff +
2761 ((addr - new->vm_start) >> PAGE_SHIFT), new);
2763 err = vma_adjust(vma, vma->vm_start, addr, vma->vm_pgoff, new);
2769 /* Clean everything up if vma_adjust failed. */
2770 if (new->vm_ops && new->vm_ops->close)
2771 new->vm_ops->close(new);
2774 unlink_anon_vmas(new);
2776 mpol_put(vma_policy(new));
2783 * Split a vma into two pieces at address 'addr', a new vma is allocated
2784 * either for the first part or the tail.
2786 int split_vma(struct mm_struct *mm, struct vm_area_struct *vma,
2787 unsigned long addr, int new_below)
2789 if (mm->map_count >= sysctl_max_map_count)
2792 return __split_vma(mm, vma, addr, new_below);
2795 /* Munmap is split into 2 main parts -- this part which finds
2796 * what needs doing, and the areas themselves, which do the
2797 * work. This now handles partial unmappings.
2798 * Jeremy Fitzhardinge <jeremy@goop.org>
2800 int __do_munmap(struct mm_struct *mm, unsigned long start, size_t len,
2801 struct list_head *uf, bool downgrade)
2804 struct vm_area_struct *vma, *prev, *last;
2806 if ((offset_in_page(start)) || start > TASK_SIZE || len > TASK_SIZE-start)
2809 len = PAGE_ALIGN(len);
2815 * arch_unmap() might do unmaps itself. It must be called
2816 * and finish any rbtree manipulation before this code
2817 * runs and also starts to manipulate the rbtree.
2819 arch_unmap(mm, start, end);
2821 /* Find the first overlapping VMA where start < vma->vm_end */
2822 vma = find_vma_intersection(mm, start, end);
2825 prev = vma->vm_prev;
2828 * If we need to split any vma, do it now to save pain later.
2830 * Note: mremap's move_vma VM_ACCOUNT handling assumes a partially
2831 * unmapped vm_area_struct will remain in use: so lower split_vma
2832 * places tmp vma above, and higher split_vma places tmp vma below.
2834 if (start > vma->vm_start) {
2838 * Make sure that map_count on return from munmap() will
2839 * not exceed its limit; but let map_count go just above
2840 * its limit temporarily, to help free resources as expected.
2842 if (end < vma->vm_end && mm->map_count >= sysctl_max_map_count)
2845 error = __split_vma(mm, vma, start, 0);
2851 /* Does it split the last one? */
2852 last = find_vma(mm, end);
2853 if (last && end > last->vm_start) {
2854 int error = __split_vma(mm, last, end, 1);
2858 vma = vma_next(mm, prev);
2862 * If userfaultfd_unmap_prep returns an error the vmas
2863 * will remain split, but userland will get a
2864 * highly unexpected error anyway. This is no
2865 * different than the case where the first of the two
2866 * __split_vma fails, but we don't undo the first
2867 * split, despite we could. This is unlikely enough
2868 * failure that it's not worth optimizing it for.
2870 int error = userfaultfd_unmap_prep(vma, start, end, uf);
2875 /* Detach vmas from rbtree */
2876 if (!detach_vmas_to_be_unmapped(mm, vma, prev, end))
2880 mmap_write_downgrade(mm);
2882 unmap_region(mm, vma, prev, start, end);
2884 /* Fix up all other VM information */
2885 remove_vma_list(mm, vma);
2887 return downgrade ? 1 : 0;
2890 int do_munmap(struct mm_struct *mm, unsigned long start, size_t len,
2891 struct list_head *uf)
2893 return __do_munmap(mm, start, len, uf, false);
2896 static int __vm_munmap(unsigned long start, size_t len, bool downgrade)
2899 struct mm_struct *mm = current->mm;
2902 if (mmap_write_lock_killable(mm))
2905 ret = __do_munmap(mm, start, len, &uf, downgrade);
2907 * Returning 1 indicates mmap_lock is downgraded.
2908 * But 1 is not legal return value of vm_munmap() and munmap(), reset
2909 * it to 0 before return.
2912 mmap_read_unlock(mm);
2915 mmap_write_unlock(mm);
2917 userfaultfd_unmap_complete(mm, &uf);
2921 int vm_munmap(unsigned long start, size_t len)
2923 return __vm_munmap(start, len, false);
2925 EXPORT_SYMBOL(vm_munmap);
2927 SYSCALL_DEFINE2(munmap, unsigned long, addr, size_t, len)
2929 addr = untagged_addr(addr);
2930 return __vm_munmap(addr, len, true);
2935 * Emulation of deprecated remap_file_pages() syscall.
2937 SYSCALL_DEFINE5(remap_file_pages, unsigned long, start, unsigned long, size,
2938 unsigned long, prot, unsigned long, pgoff, unsigned long, flags)
2941 struct mm_struct *mm = current->mm;
2942 struct vm_area_struct *vma;
2943 unsigned long populate = 0;
2944 unsigned long ret = -EINVAL;
2947 pr_warn_once("%s (%d) uses deprecated remap_file_pages() syscall. See Documentation/vm/remap_file_pages.rst.\n",
2948 current->comm, current->pid);
2952 start = start & PAGE_MASK;
2953 size = size & PAGE_MASK;
2955 if (start + size <= start)
2958 /* Does pgoff wrap? */
2959 if (pgoff + (size >> PAGE_SHIFT) < pgoff)
2962 if (mmap_write_lock_killable(mm))
2965 vma = vma_lookup(mm, start);
2967 if (!vma || !(vma->vm_flags & VM_SHARED))
2970 if (start + size > vma->vm_end) {
2971 struct vm_area_struct *next;
2973 for (next = vma->vm_next; next; next = next->vm_next) {
2974 /* hole between vmas ? */
2975 if (next->vm_start != next->vm_prev->vm_end)
2978 if (next->vm_file != vma->vm_file)
2981 if (next->vm_flags != vma->vm_flags)
2984 if (start + size <= next->vm_end)
2992 prot |= vma->vm_flags & VM_READ ? PROT_READ : 0;
2993 prot |= vma->vm_flags & VM_WRITE ? PROT_WRITE : 0;
2994 prot |= vma->vm_flags & VM_EXEC ? PROT_EXEC : 0;
2996 flags &= MAP_NONBLOCK;
2997 flags |= MAP_SHARED | MAP_FIXED | MAP_POPULATE;
2998 if (vma->vm_flags & VM_LOCKED)
2999 flags |= MAP_LOCKED;
3001 file = get_file(vma->vm_file);
3002 ret = do_mmap(vma->vm_file, start, size,
3003 prot, flags, pgoff, &populate, NULL);
3006 mmap_write_unlock(mm);
3008 mm_populate(ret, populate);
3009 if (!IS_ERR_VALUE(ret))
3015 * this is really a simplified "do_mmap". it only handles
3016 * anonymous maps. eventually we may be able to do some
3017 * brk-specific accounting here.
3019 static int do_brk_flags(unsigned long addr, unsigned long len, unsigned long flags, struct list_head *uf)
3021 struct mm_struct *mm = current->mm;
3022 struct vm_area_struct *vma, *prev;
3023 struct rb_node **rb_link, *rb_parent;
3024 pgoff_t pgoff = addr >> PAGE_SHIFT;
3026 unsigned long mapped_addr;
3028 /* Until we need other flags, refuse anything except VM_EXEC. */
3029 if ((flags & (~VM_EXEC)) != 0)
3031 flags |= VM_DATA_DEFAULT_FLAGS | VM_ACCOUNT | mm->def_flags;
3033 mapped_addr = get_unmapped_area(NULL, addr, len, 0, MAP_FIXED);
3034 if (IS_ERR_VALUE(mapped_addr))
3037 error = mlock_future_check(mm, mm->def_flags, len);
3041 /* Clear old maps, set up prev, rb_link, rb_parent, and uf */
3042 if (munmap_vma_range(mm, addr, len, &prev, &rb_link, &rb_parent, uf))
3045 /* Check against address space limits *after* clearing old maps... */
3046 if (!may_expand_vm(mm, flags, len >> PAGE_SHIFT))
3049 if (mm->map_count > sysctl_max_map_count)
3052 if (security_vm_enough_memory_mm(mm, len >> PAGE_SHIFT))
3055 /* Can we just expand an old private anonymous mapping? */
3056 vma = vma_merge(mm, prev, addr, addr + len, flags,
3057 NULL, NULL, pgoff, NULL, NULL_VM_UFFD_CTX, NULL);
3062 * create a vma struct for an anonymous mapping
3064 vma = vm_area_alloc(mm);
3066 vm_unacct_memory(len >> PAGE_SHIFT);
3070 vma_set_anonymous(vma);
3071 vma->vm_start = addr;
3072 vma->vm_end = addr + len;
3073 vma->vm_pgoff = pgoff;
3074 vma->vm_flags = flags;
3075 vma->vm_page_prot = vm_get_page_prot(flags);
3076 vma_link(mm, vma, prev, rb_link, rb_parent);
3078 perf_event_mmap(vma);
3079 mm->total_vm += len >> PAGE_SHIFT;
3080 mm->data_vm += len >> PAGE_SHIFT;
3081 if (flags & VM_LOCKED)
3082 mm->locked_vm += (len >> PAGE_SHIFT);
3083 vma->vm_flags |= VM_SOFTDIRTY;
3087 int vm_brk_flags(unsigned long addr, unsigned long request, unsigned long flags)
3089 struct mm_struct *mm = current->mm;
3095 len = PAGE_ALIGN(request);
3101 if (mmap_write_lock_killable(mm))
3104 ret = do_brk_flags(addr, len, flags, &uf);
3105 populate = ((mm->def_flags & VM_LOCKED) != 0);
3106 mmap_write_unlock(mm);
3107 userfaultfd_unmap_complete(mm, &uf);
3108 if (populate && !ret)
3109 mm_populate(addr, len);
3112 EXPORT_SYMBOL(vm_brk_flags);
3114 int vm_brk(unsigned long addr, unsigned long len)
3116 return vm_brk_flags(addr, len, 0);
3118 EXPORT_SYMBOL(vm_brk);
3120 /* Release all mmaps. */
3121 void exit_mmap(struct mm_struct *mm)
3123 struct mmu_gather tlb;
3124 struct vm_area_struct *vma;
3125 unsigned long nr_accounted = 0;
3127 /* mm's last user has gone, and its about to be pulled down */
3128 mmu_notifier_release(mm);
3130 if (unlikely(mm_is_oom_victim(mm))) {
3132 * Manually reap the mm to free as much memory as possible.
3133 * Then, as the oom reaper does, set MMF_OOM_SKIP to disregard
3134 * this mm from further consideration. Taking mm->mmap_lock for
3135 * write after setting MMF_OOM_SKIP will guarantee that the oom
3136 * reaper will not run on this mm again after mmap_lock is
3139 * Nothing can be holding mm->mmap_lock here and the above call
3140 * to mmu_notifier_release(mm) ensures mmu notifier callbacks in
3141 * __oom_reap_task_mm() will not block.
3143 (void)__oom_reap_task_mm(mm);
3144 set_bit(MMF_OOM_SKIP, &mm->flags);
3147 mmap_write_lock(mm);
3152 /* Can happen if dup_mmap() received an OOM */
3153 mmap_write_unlock(mm);
3159 tlb_gather_mmu_fullmm(&tlb, mm);
3160 /* update_hiwater_rss(mm) here? but nobody should be looking */
3161 /* Use -1 here to ensure all VMAs in the mm are unmapped */
3162 unmap_vmas(&tlb, vma, 0, -1);
3163 free_pgtables(&tlb, vma, FIRST_USER_ADDRESS, USER_PGTABLES_CEILING);
3164 tlb_finish_mmu(&tlb);
3166 /* Walk the list again, actually closing and freeing it. */
3168 if (vma->vm_flags & VM_ACCOUNT)
3169 nr_accounted += vma_pages(vma);
3170 vma = remove_vma(vma);
3174 mmap_write_unlock(mm);
3175 vm_unacct_memory(nr_accounted);
3178 /* Insert vm structure into process list sorted by address
3179 * and into the inode's i_mmap tree. If vm_file is non-NULL
3180 * then i_mmap_rwsem is taken here.
3182 int insert_vm_struct(struct mm_struct *mm, struct vm_area_struct *vma)
3184 struct vm_area_struct *prev;
3185 struct rb_node **rb_link, *rb_parent;
3187 if (find_vma_links(mm, vma->vm_start, vma->vm_end,
3188 &prev, &rb_link, &rb_parent))
3190 if ((vma->vm_flags & VM_ACCOUNT) &&
3191 security_vm_enough_memory_mm(mm, vma_pages(vma)))
3195 * The vm_pgoff of a purely anonymous vma should be irrelevant
3196 * until its first write fault, when page's anon_vma and index
3197 * are set. But now set the vm_pgoff it will almost certainly
3198 * end up with (unless mremap moves it elsewhere before that
3199 * first wfault), so /proc/pid/maps tells a consistent story.
3201 * By setting it to reflect the virtual start address of the
3202 * vma, merges and splits can happen in a seamless way, just
3203 * using the existing file pgoff checks and manipulations.
3204 * Similarly in do_mmap and in do_brk_flags.
3206 if (vma_is_anonymous(vma)) {
3207 BUG_ON(vma->anon_vma);
3208 vma->vm_pgoff = vma->vm_start >> PAGE_SHIFT;
3211 vma_link(mm, vma, prev, rb_link, rb_parent);
3216 * Copy the vma structure to a new location in the same mm,
3217 * prior to moving page table entries, to effect an mremap move.
3219 struct vm_area_struct *copy_vma(struct vm_area_struct **vmap,
3220 unsigned long addr, unsigned long len, pgoff_t pgoff,
3221 bool *need_rmap_locks)
3223 struct vm_area_struct *vma = *vmap;
3224 unsigned long vma_start = vma->vm_start;
3225 struct mm_struct *mm = vma->vm_mm;
3226 struct vm_area_struct *new_vma, *prev;
3227 struct rb_node **rb_link, *rb_parent;
3228 bool faulted_in_anon_vma = true;
3231 * If anonymous vma has not yet been faulted, update new pgoff
3232 * to match new location, to increase its chance of merging.
3234 if (unlikely(vma_is_anonymous(vma) && !vma->anon_vma)) {
3235 pgoff = addr >> PAGE_SHIFT;
3236 faulted_in_anon_vma = false;
3239 if (find_vma_links(mm, addr, addr + len, &prev, &rb_link, &rb_parent))
3240 return NULL; /* should never get here */
3241 new_vma = vma_merge(mm, prev, addr, addr + len, vma->vm_flags,
3242 vma->anon_vma, vma->vm_file, pgoff, vma_policy(vma),
3243 vma->vm_userfaultfd_ctx, anon_vma_name(vma));
3246 * Source vma may have been merged into new_vma
3248 if (unlikely(vma_start >= new_vma->vm_start &&
3249 vma_start < new_vma->vm_end)) {
3251 * The only way we can get a vma_merge with
3252 * self during an mremap is if the vma hasn't
3253 * been faulted in yet and we were allowed to
3254 * reset the dst vma->vm_pgoff to the
3255 * destination address of the mremap to allow
3256 * the merge to happen. mremap must change the
3257 * vm_pgoff linearity between src and dst vmas
3258 * (in turn preventing a vma_merge) to be
3259 * safe. It is only safe to keep the vm_pgoff
3260 * linear if there are no pages mapped yet.
3262 VM_BUG_ON_VMA(faulted_in_anon_vma, new_vma);
3263 *vmap = vma = new_vma;
3265 *need_rmap_locks = (new_vma->vm_pgoff <= vma->vm_pgoff);
3267 new_vma = vm_area_dup(vma);
3270 new_vma->vm_start = addr;
3271 new_vma->vm_end = addr + len;
3272 new_vma->vm_pgoff = pgoff;
3273 if (vma_dup_policy(vma, new_vma))
3275 if (anon_vma_clone(new_vma, vma))
3276 goto out_free_mempol;
3277 if (new_vma->vm_file)
3278 get_file(new_vma->vm_file);
3279 if (new_vma->vm_ops && new_vma->vm_ops->open)
3280 new_vma->vm_ops->open(new_vma);
3281 vma_link(mm, new_vma, prev, rb_link, rb_parent);
3282 *need_rmap_locks = false;
3287 mpol_put(vma_policy(new_vma));
3289 vm_area_free(new_vma);
3295 * Return true if the calling process may expand its vm space by the passed
3298 bool may_expand_vm(struct mm_struct *mm, vm_flags_t flags, unsigned long npages)
3300 if (mm->total_vm + npages > rlimit(RLIMIT_AS) >> PAGE_SHIFT)
3303 if (is_data_mapping(flags) &&
3304 mm->data_vm + npages > rlimit(RLIMIT_DATA) >> PAGE_SHIFT) {
3305 /* Workaround for Valgrind */
3306 if (rlimit(RLIMIT_DATA) == 0 &&
3307 mm->data_vm + npages <= rlimit_max(RLIMIT_DATA) >> PAGE_SHIFT)
3310 pr_warn_once("%s (%d): VmData %lu exceed data ulimit %lu. Update limits%s.\n",
3311 current->comm, current->pid,
3312 (mm->data_vm + npages) << PAGE_SHIFT,
3313 rlimit(RLIMIT_DATA),
3314 ignore_rlimit_data ? "" : " or use boot option ignore_rlimit_data");
3316 if (!ignore_rlimit_data)
3323 void vm_stat_account(struct mm_struct *mm, vm_flags_t flags, long npages)
3325 WRITE_ONCE(mm->total_vm, READ_ONCE(mm->total_vm)+npages);
3327 if (is_exec_mapping(flags))
3328 mm->exec_vm += npages;
3329 else if (is_stack_mapping(flags))
3330 mm->stack_vm += npages;
3331 else if (is_data_mapping(flags))
3332 mm->data_vm += npages;
3335 static vm_fault_t special_mapping_fault(struct vm_fault *vmf);
3338 * Having a close hook prevents vma merging regardless of flags.
3340 static void special_mapping_close(struct vm_area_struct *vma)
3344 static const char *special_mapping_name(struct vm_area_struct *vma)
3346 return ((struct vm_special_mapping *)vma->vm_private_data)->name;
3349 static int special_mapping_mremap(struct vm_area_struct *new_vma)
3351 struct vm_special_mapping *sm = new_vma->vm_private_data;
3353 if (WARN_ON_ONCE(current->mm != new_vma->vm_mm))
3357 return sm->mremap(sm, new_vma);
3362 static int special_mapping_split(struct vm_area_struct *vma, unsigned long addr)
3365 * Forbid splitting special mappings - kernel has expectations over
3366 * the number of pages in mapping. Together with VM_DONTEXPAND
3367 * the size of vma should stay the same over the special mapping's
3373 static const struct vm_operations_struct special_mapping_vmops = {
3374 .close = special_mapping_close,
3375 .fault = special_mapping_fault,
3376 .mremap = special_mapping_mremap,
3377 .name = special_mapping_name,
3378 /* vDSO code relies that VVAR can't be accessed remotely */
3380 .may_split = special_mapping_split,
3383 static const struct vm_operations_struct legacy_special_mapping_vmops = {
3384 .close = special_mapping_close,
3385 .fault = special_mapping_fault,
3388 static vm_fault_t special_mapping_fault(struct vm_fault *vmf)
3390 struct vm_area_struct *vma = vmf->vma;
3392 struct page **pages;
3394 if (vma->vm_ops == &legacy_special_mapping_vmops) {
3395 pages = vma->vm_private_data;
3397 struct vm_special_mapping *sm = vma->vm_private_data;
3400 return sm->fault(sm, vmf->vma, vmf);
3405 for (pgoff = vmf->pgoff; pgoff && *pages; ++pages)
3409 struct page *page = *pages;
3415 return VM_FAULT_SIGBUS;
3418 static struct vm_area_struct *__install_special_mapping(
3419 struct mm_struct *mm,
3420 unsigned long addr, unsigned long len,
3421 unsigned long vm_flags, void *priv,
3422 const struct vm_operations_struct *ops)
3425 struct vm_area_struct *vma;
3427 vma = vm_area_alloc(mm);
3428 if (unlikely(vma == NULL))
3429 return ERR_PTR(-ENOMEM);
3431 vma->vm_start = addr;
3432 vma->vm_end = addr + len;
3434 vma->vm_flags = vm_flags | mm->def_flags | VM_DONTEXPAND | VM_SOFTDIRTY;
3435 vma->vm_flags &= VM_LOCKED_CLEAR_MASK;
3436 vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
3439 vma->vm_private_data = priv;
3441 ret = insert_vm_struct(mm, vma);
3445 vm_stat_account(mm, vma->vm_flags, len >> PAGE_SHIFT);
3447 perf_event_mmap(vma);
3453 return ERR_PTR(ret);
3456 bool vma_is_special_mapping(const struct vm_area_struct *vma,
3457 const struct vm_special_mapping *sm)
3459 return vma->vm_private_data == sm &&
3460 (vma->vm_ops == &special_mapping_vmops ||
3461 vma->vm_ops == &legacy_special_mapping_vmops);
3465 * Called with mm->mmap_lock held for writing.
3466 * Insert a new vma covering the given region, with the given flags.
3467 * Its pages are supplied by the given array of struct page *.
3468 * The array can be shorter than len >> PAGE_SHIFT if it's null-terminated.
3469 * The region past the last page supplied will always produce SIGBUS.
3470 * The array pointer and the pages it points to are assumed to stay alive
3471 * for as long as this mapping might exist.
3473 struct vm_area_struct *_install_special_mapping(
3474 struct mm_struct *mm,
3475 unsigned long addr, unsigned long len,
3476 unsigned long vm_flags, const struct vm_special_mapping *spec)
3478 return __install_special_mapping(mm, addr, len, vm_flags, (void *)spec,
3479 &special_mapping_vmops);
3482 int install_special_mapping(struct mm_struct *mm,
3483 unsigned long addr, unsigned long len,
3484 unsigned long vm_flags, struct page **pages)
3486 struct vm_area_struct *vma = __install_special_mapping(
3487 mm, addr, len, vm_flags, (void *)pages,
3488 &legacy_special_mapping_vmops);
3490 return PTR_ERR_OR_ZERO(vma);
3493 static DEFINE_MUTEX(mm_all_locks_mutex);
3495 static void vm_lock_anon_vma(struct mm_struct *mm, struct anon_vma *anon_vma)
3497 if (!test_bit(0, (unsigned long *) &anon_vma->root->rb_root.rb_root.rb_node)) {
3499 * The LSB of head.next can't change from under us
3500 * because we hold the mm_all_locks_mutex.
3502 down_write_nest_lock(&anon_vma->root->rwsem, &mm->mmap_lock);
3504 * We can safely modify head.next after taking the
3505 * anon_vma->root->rwsem. If some other vma in this mm shares
3506 * the same anon_vma we won't take it again.
3508 * No need of atomic instructions here, head.next
3509 * can't change from under us thanks to the
3510 * anon_vma->root->rwsem.
3512 if (__test_and_set_bit(0, (unsigned long *)
3513 &anon_vma->root->rb_root.rb_root.rb_node))
3518 static void vm_lock_mapping(struct mm_struct *mm, struct address_space *mapping)
3520 if (!test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) {
3522 * AS_MM_ALL_LOCKS can't change from under us because
3523 * we hold the mm_all_locks_mutex.
3525 * Operations on ->flags have to be atomic because
3526 * even if AS_MM_ALL_LOCKS is stable thanks to the
3527 * mm_all_locks_mutex, there may be other cpus
3528 * changing other bitflags in parallel to us.
3530 if (test_and_set_bit(AS_MM_ALL_LOCKS, &mapping->flags))
3532 down_write_nest_lock(&mapping->i_mmap_rwsem, &mm->mmap_lock);
3537 * This operation locks against the VM for all pte/vma/mm related
3538 * operations that could ever happen on a certain mm. This includes
3539 * vmtruncate, try_to_unmap, and all page faults.
3541 * The caller must take the mmap_lock in write mode before calling
3542 * mm_take_all_locks(). The caller isn't allowed to release the
3543 * mmap_lock until mm_drop_all_locks() returns.
3545 * mmap_lock in write mode is required in order to block all operations
3546 * that could modify pagetables and free pages without need of
3547 * altering the vma layout. It's also needed in write mode to avoid new
3548 * anon_vmas to be associated with existing vmas.
3550 * A single task can't take more than one mm_take_all_locks() in a row
3551 * or it would deadlock.
3553 * The LSB in anon_vma->rb_root.rb_node and the AS_MM_ALL_LOCKS bitflag in
3554 * mapping->flags avoid to take the same lock twice, if more than one
3555 * vma in this mm is backed by the same anon_vma or address_space.
3557 * We take locks in following order, accordingly to comment at beginning
3559 * - all hugetlbfs_i_mmap_rwsem_key locks (aka mapping->i_mmap_rwsem for
3561 * - all i_mmap_rwsem locks;
3562 * - all anon_vma->rwseml
3564 * We can take all locks within these types randomly because the VM code
3565 * doesn't nest them and we protected from parallel mm_take_all_locks() by
3566 * mm_all_locks_mutex.
3568 * mm_take_all_locks() and mm_drop_all_locks are expensive operations
3569 * that may have to take thousand of locks.
3571 * mm_take_all_locks() can fail if it's interrupted by signals.
3573 int mm_take_all_locks(struct mm_struct *mm)
3575 struct vm_area_struct *vma;
3576 struct anon_vma_chain *avc;
3578 mmap_assert_write_locked(mm);
3580 mutex_lock(&mm_all_locks_mutex);
3582 for (vma = mm->mmap; vma; vma = vma->vm_next) {
3583 if (signal_pending(current))
3585 if (vma->vm_file && vma->vm_file->f_mapping &&
3586 is_vm_hugetlb_page(vma))
3587 vm_lock_mapping(mm, vma->vm_file->f_mapping);
3590 for (vma = mm->mmap; vma; vma = vma->vm_next) {
3591 if (signal_pending(current))
3593 if (vma->vm_file && vma->vm_file->f_mapping &&
3594 !is_vm_hugetlb_page(vma))
3595 vm_lock_mapping(mm, vma->vm_file->f_mapping);
3598 for (vma = mm->mmap; vma; vma = vma->vm_next) {
3599 if (signal_pending(current))
3602 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
3603 vm_lock_anon_vma(mm, avc->anon_vma);
3609 mm_drop_all_locks(mm);
3613 static void vm_unlock_anon_vma(struct anon_vma *anon_vma)
3615 if (test_bit(0, (unsigned long *) &anon_vma->root->rb_root.rb_root.rb_node)) {
3617 * The LSB of head.next can't change to 0 from under
3618 * us because we hold the mm_all_locks_mutex.
3620 * We must however clear the bitflag before unlocking
3621 * the vma so the users using the anon_vma->rb_root will
3622 * never see our bitflag.
3624 * No need of atomic instructions here, head.next
3625 * can't change from under us until we release the
3626 * anon_vma->root->rwsem.
3628 if (!__test_and_clear_bit(0, (unsigned long *)
3629 &anon_vma->root->rb_root.rb_root.rb_node))
3631 anon_vma_unlock_write(anon_vma);
3635 static void vm_unlock_mapping(struct address_space *mapping)
3637 if (test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) {
3639 * AS_MM_ALL_LOCKS can't change to 0 from under us
3640 * because we hold the mm_all_locks_mutex.
3642 i_mmap_unlock_write(mapping);
3643 if (!test_and_clear_bit(AS_MM_ALL_LOCKS,
3650 * The mmap_lock cannot be released by the caller until
3651 * mm_drop_all_locks() returns.
3653 void mm_drop_all_locks(struct mm_struct *mm)
3655 struct vm_area_struct *vma;
3656 struct anon_vma_chain *avc;
3658 mmap_assert_write_locked(mm);
3659 BUG_ON(!mutex_is_locked(&mm_all_locks_mutex));
3661 for (vma = mm->mmap; vma; vma = vma->vm_next) {
3663 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
3664 vm_unlock_anon_vma(avc->anon_vma);
3665 if (vma->vm_file && vma->vm_file->f_mapping)
3666 vm_unlock_mapping(vma->vm_file->f_mapping);
3669 mutex_unlock(&mm_all_locks_mutex);
3673 * initialise the percpu counter for VM
3675 void __init mmap_init(void)
3679 ret = percpu_counter_init(&vm_committed_as, 0, GFP_KERNEL);
3684 * Initialise sysctl_user_reserve_kbytes.
3686 * This is intended to prevent a user from starting a single memory hogging
3687 * process, such that they cannot recover (kill the hog) in OVERCOMMIT_NEVER
3690 * The default value is min(3% of free memory, 128MB)
3691 * 128MB is enough to recover with sshd/login, bash, and top/kill.
3693 static int init_user_reserve(void)
3695 unsigned long free_kbytes;
3697 free_kbytes = global_zone_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
3699 sysctl_user_reserve_kbytes = min(free_kbytes / 32, 1UL << 17);
3702 subsys_initcall(init_user_reserve);
3705 * Initialise sysctl_admin_reserve_kbytes.
3707 * The purpose of sysctl_admin_reserve_kbytes is to allow the sys admin
3708 * to log in and kill a memory hogging process.
3710 * Systems with more than 256MB will reserve 8MB, enough to recover
3711 * with sshd, bash, and top in OVERCOMMIT_GUESS. Smaller systems will
3712 * only reserve 3% of free pages by default.
3714 static int init_admin_reserve(void)
3716 unsigned long free_kbytes;
3718 free_kbytes = global_zone_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
3720 sysctl_admin_reserve_kbytes = min(free_kbytes / 32, 1UL << 13);
3723 subsys_initcall(init_admin_reserve);
3726 * Reinititalise user and admin reserves if memory is added or removed.
3728 * The default user reserve max is 128MB, and the default max for the
3729 * admin reserve is 8MB. These are usually, but not always, enough to
3730 * enable recovery from a memory hogging process using login/sshd, a shell,
3731 * and tools like top. It may make sense to increase or even disable the
3732 * reserve depending on the existence of swap or variations in the recovery
3733 * tools. So, the admin may have changed them.
3735 * If memory is added and the reserves have been eliminated or increased above
3736 * the default max, then we'll trust the admin.
3738 * If memory is removed and there isn't enough free memory, then we
3739 * need to reset the reserves.
3741 * Otherwise keep the reserve set by the admin.
3743 static int reserve_mem_notifier(struct notifier_block *nb,
3744 unsigned long action, void *data)
3746 unsigned long tmp, free_kbytes;
3750 /* Default max is 128MB. Leave alone if modified by operator. */
3751 tmp = sysctl_user_reserve_kbytes;
3752 if (0 < tmp && tmp < (1UL << 17))
3753 init_user_reserve();
3755 /* Default max is 8MB. Leave alone if modified by operator. */
3756 tmp = sysctl_admin_reserve_kbytes;
3757 if (0 < tmp && tmp < (1UL << 13))
3758 init_admin_reserve();
3762 free_kbytes = global_zone_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
3764 if (sysctl_user_reserve_kbytes > free_kbytes) {
3765 init_user_reserve();
3766 pr_info("vm.user_reserve_kbytes reset to %lu\n",
3767 sysctl_user_reserve_kbytes);
3770 if (sysctl_admin_reserve_kbytes > free_kbytes) {
3771 init_admin_reserve();
3772 pr_info("vm.admin_reserve_kbytes reset to %lu\n",
3773 sysctl_admin_reserve_kbytes);
3782 static struct notifier_block reserve_mem_nb = {
3783 .notifier_call = reserve_mem_notifier,
3786 static int __meminit init_reserve_notifier(void)
3788 if (register_hotmemory_notifier(&reserve_mem_nb))
3789 pr_err("Failed registering memory add/remove notifier for admin reserve\n");
3793 subsys_initcall(init_reserve_notifier);