Merge remote-tracking branch 'asoc/fix/wm8993' into asoc-linus
[platform/adaptation/renesas_rcar/renesas_kernel.git] / mm / mmap.c
1 /*
2  * mm/mmap.c
3  *
4  * Written by obz.
5  *
6  * Address space accounting code        <alan@lxorguk.ukuu.org.uk>
7  */
8
9 #include <linux/kernel.h>
10 #include <linux/slab.h>
11 #include <linux/backing-dev.h>
12 #include <linux/mm.h>
13 #include <linux/shm.h>
14 #include <linux/mman.h>
15 #include <linux/pagemap.h>
16 #include <linux/swap.h>
17 #include <linux/syscalls.h>
18 #include <linux/capability.h>
19 #include <linux/init.h>
20 #include <linux/file.h>
21 #include <linux/fs.h>
22 #include <linux/personality.h>
23 #include <linux/security.h>
24 #include <linux/hugetlb.h>
25 #include <linux/profile.h>
26 #include <linux/export.h>
27 #include <linux/mount.h>
28 #include <linux/mempolicy.h>
29 #include <linux/rmap.h>
30 #include <linux/mmu_notifier.h>
31 #include <linux/perf_event.h>
32 #include <linux/audit.h>
33 #include <linux/khugepaged.h>
34 #include <linux/uprobes.h>
35 #include <linux/rbtree_augmented.h>
36 #include <linux/sched/sysctl.h>
37 #include <linux/notifier.h>
38 #include <linux/memory.h>
39
40 #include <asm/uaccess.h>
41 #include <asm/cacheflush.h>
42 #include <asm/tlb.h>
43 #include <asm/mmu_context.h>
44
45 #include "internal.h"
46
47 #ifndef arch_mmap_check
48 #define arch_mmap_check(addr, len, flags)       (0)
49 #endif
50
51 #ifndef arch_rebalance_pgtables
52 #define arch_rebalance_pgtables(addr, len)              (addr)
53 #endif
54
55 static void unmap_region(struct mm_struct *mm,
56                 struct vm_area_struct *vma, struct vm_area_struct *prev,
57                 unsigned long start, unsigned long end);
58
59 /* description of effects of mapping type and prot in current implementation.
60  * this is due to the limited x86 page protection hardware.  The expected
61  * behavior is in parens:
62  *
63  * map_type     prot
64  *              PROT_NONE       PROT_READ       PROT_WRITE      PROT_EXEC
65  * MAP_SHARED   r: (no) no      r: (yes) yes    r: (no) yes     r: (no) yes
66  *              w: (no) no      w: (no) no      w: (yes) yes    w: (no) no
67  *              x: (no) no      x: (no) yes     x: (no) yes     x: (yes) yes
68  *              
69  * MAP_PRIVATE  r: (no) no      r: (yes) yes    r: (no) yes     r: (no) yes
70  *              w: (no) no      w: (no) no      w: (copy) copy  w: (no) no
71  *              x: (no) no      x: (no) yes     x: (no) yes     x: (yes) yes
72  *
73  */
74 pgprot_t protection_map[16] = {
75         __P000, __P001, __P010, __P011, __P100, __P101, __P110, __P111,
76         __S000, __S001, __S010, __S011, __S100, __S101, __S110, __S111
77 };
78
79 pgprot_t vm_get_page_prot(unsigned long vm_flags)
80 {
81         return __pgprot(pgprot_val(protection_map[vm_flags &
82                                 (VM_READ|VM_WRITE|VM_EXEC|VM_SHARED)]) |
83                         pgprot_val(arch_vm_get_page_prot(vm_flags)));
84 }
85 EXPORT_SYMBOL(vm_get_page_prot);
86
87 int sysctl_overcommit_memory __read_mostly = OVERCOMMIT_GUESS;  /* heuristic overcommit */
88 int sysctl_overcommit_ratio __read_mostly = 50; /* default is 50% */
89 unsigned long sysctl_overcommit_kbytes __read_mostly;
90 int sysctl_max_map_count __read_mostly = DEFAULT_MAX_MAP_COUNT;
91 unsigned long sysctl_user_reserve_kbytes __read_mostly = 1UL << 17; /* 128MB */
92 unsigned long sysctl_admin_reserve_kbytes __read_mostly = 1UL << 13; /* 8MB */
93 /*
94  * Make sure vm_committed_as in one cacheline and not cacheline shared with
95  * other variables. It can be updated by several CPUs frequently.
96  */
97 struct percpu_counter vm_committed_as ____cacheline_aligned_in_smp;
98
99 /*
100  * The global memory commitment made in the system can be a metric
101  * that can be used to drive ballooning decisions when Linux is hosted
102  * as a guest. On Hyper-V, the host implements a policy engine for dynamically
103  * balancing memory across competing virtual machines that are hosted.
104  * Several metrics drive this policy engine including the guest reported
105  * memory commitment.
106  */
107 unsigned long vm_memory_committed(void)
108 {
109         return percpu_counter_read_positive(&vm_committed_as);
110 }
111 EXPORT_SYMBOL_GPL(vm_memory_committed);
112
113 /*
114  * Check that a process has enough memory to allocate a new virtual
115  * mapping. 0 means there is enough memory for the allocation to
116  * succeed and -ENOMEM implies there is not.
117  *
118  * We currently support three overcommit policies, which are set via the
119  * vm.overcommit_memory sysctl.  See Documentation/vm/overcommit-accounting
120  *
121  * Strict overcommit modes added 2002 Feb 26 by Alan Cox.
122  * Additional code 2002 Jul 20 by Robert Love.
123  *
124  * cap_sys_admin is 1 if the process has admin privileges, 0 otherwise.
125  *
126  * Note this is a helper function intended to be used by LSMs which
127  * wish to use this logic.
128  */
129 int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin)
130 {
131         unsigned long free, allowed, reserve;
132
133         vm_acct_memory(pages);
134
135         /*
136          * Sometimes we want to use more memory than we have
137          */
138         if (sysctl_overcommit_memory == OVERCOMMIT_ALWAYS)
139                 return 0;
140
141         if (sysctl_overcommit_memory == OVERCOMMIT_GUESS) {
142                 free = global_page_state(NR_FREE_PAGES);
143                 free += global_page_state(NR_FILE_PAGES);
144
145                 /*
146                  * shmem pages shouldn't be counted as free in this
147                  * case, they can't be purged, only swapped out, and
148                  * that won't affect the overall amount of available
149                  * memory in the system.
150                  */
151                 free -= global_page_state(NR_SHMEM);
152
153                 free += get_nr_swap_pages();
154
155                 /*
156                  * Any slabs which are created with the
157                  * SLAB_RECLAIM_ACCOUNT flag claim to have contents
158                  * which are reclaimable, under pressure.  The dentry
159                  * cache and most inode caches should fall into this
160                  */
161                 free += global_page_state(NR_SLAB_RECLAIMABLE);
162
163                 /*
164                  * Leave reserved pages. The pages are not for anonymous pages.
165                  */
166                 if (free <= totalreserve_pages)
167                         goto error;
168                 else
169                         free -= totalreserve_pages;
170
171                 /*
172                  * Reserve some for root
173                  */
174                 if (!cap_sys_admin)
175                         free -= sysctl_admin_reserve_kbytes >> (PAGE_SHIFT - 10);
176
177                 if (free > pages)
178                         return 0;
179
180                 goto error;
181         }
182
183         allowed = vm_commit_limit();
184         /*
185          * Reserve some for root
186          */
187         if (!cap_sys_admin)
188                 allowed -= sysctl_admin_reserve_kbytes >> (PAGE_SHIFT - 10);
189
190         /*
191          * Don't let a single process grow so big a user can't recover
192          */
193         if (mm) {
194                 reserve = sysctl_user_reserve_kbytes >> (PAGE_SHIFT - 10);
195                 allowed -= min(mm->total_vm / 32, reserve);
196         }
197
198         if (percpu_counter_read_positive(&vm_committed_as) < allowed)
199                 return 0;
200 error:
201         vm_unacct_memory(pages);
202
203         return -ENOMEM;
204 }
205
206 /*
207  * Requires inode->i_mapping->i_mmap_mutex
208  */
209 static void __remove_shared_vm_struct(struct vm_area_struct *vma,
210                 struct file *file, struct address_space *mapping)
211 {
212         if (vma->vm_flags & VM_DENYWRITE)
213                 atomic_inc(&file_inode(file)->i_writecount);
214         if (vma->vm_flags & VM_SHARED)
215                 mapping->i_mmap_writable--;
216
217         flush_dcache_mmap_lock(mapping);
218         if (unlikely(vma->vm_flags & VM_NONLINEAR))
219                 list_del_init(&vma->shared.nonlinear);
220         else
221                 vma_interval_tree_remove(vma, &mapping->i_mmap);
222         flush_dcache_mmap_unlock(mapping);
223 }
224
225 /*
226  * Unlink a file-based vm structure from its interval tree, to hide
227  * vma from rmap and vmtruncate before freeing its page tables.
228  */
229 void unlink_file_vma(struct vm_area_struct *vma)
230 {
231         struct file *file = vma->vm_file;
232
233         if (file) {
234                 struct address_space *mapping = file->f_mapping;
235                 mutex_lock(&mapping->i_mmap_mutex);
236                 __remove_shared_vm_struct(vma, file, mapping);
237                 mutex_unlock(&mapping->i_mmap_mutex);
238         }
239 }
240
241 /*
242  * Close a vm structure and free it, returning the next.
243  */
244 static struct vm_area_struct *remove_vma(struct vm_area_struct *vma)
245 {
246         struct vm_area_struct *next = vma->vm_next;
247
248         might_sleep();
249         if (vma->vm_ops && vma->vm_ops->close)
250                 vma->vm_ops->close(vma);
251         if (vma->vm_file)
252                 fput(vma->vm_file);
253         mpol_put(vma_policy(vma));
254         kmem_cache_free(vm_area_cachep, vma);
255         return next;
256 }
257
258 static unsigned long do_brk(unsigned long addr, unsigned long len);
259
260 SYSCALL_DEFINE1(brk, unsigned long, brk)
261 {
262         unsigned long rlim, retval;
263         unsigned long newbrk, oldbrk;
264         struct mm_struct *mm = current->mm;
265         unsigned long min_brk;
266         bool populate;
267
268         down_write(&mm->mmap_sem);
269
270 #ifdef CONFIG_COMPAT_BRK
271         /*
272          * CONFIG_COMPAT_BRK can still be overridden by setting
273          * randomize_va_space to 2, which will still cause mm->start_brk
274          * to be arbitrarily shifted
275          */
276         if (current->brk_randomized)
277                 min_brk = mm->start_brk;
278         else
279                 min_brk = mm->end_data;
280 #else
281         min_brk = mm->start_brk;
282 #endif
283         if (brk < min_brk)
284                 goto out;
285
286         /*
287          * Check against rlimit here. If this check is done later after the test
288          * of oldbrk with newbrk then it can escape the test and let the data
289          * segment grow beyond its set limit the in case where the limit is
290          * not page aligned -Ram Gupta
291          */
292         rlim = rlimit(RLIMIT_DATA);
293         if (rlim < RLIM_INFINITY && (brk - mm->start_brk) +
294                         (mm->end_data - mm->start_data) > rlim)
295                 goto out;
296
297         newbrk = PAGE_ALIGN(brk);
298         oldbrk = PAGE_ALIGN(mm->brk);
299         if (oldbrk == newbrk)
300                 goto set_brk;
301
302         /* Always allow shrinking brk. */
303         if (brk <= mm->brk) {
304                 if (!do_munmap(mm, newbrk, oldbrk-newbrk))
305                         goto set_brk;
306                 goto out;
307         }
308
309         /* Check against existing mmap mappings. */
310         if (find_vma_intersection(mm, oldbrk, newbrk+PAGE_SIZE))
311                 goto out;
312
313         /* Ok, looks good - let it rip. */
314         if (do_brk(oldbrk, newbrk-oldbrk) != oldbrk)
315                 goto out;
316
317 set_brk:
318         mm->brk = brk;
319         populate = newbrk > oldbrk && (mm->def_flags & VM_LOCKED) != 0;
320         up_write(&mm->mmap_sem);
321         if (populate)
322                 mm_populate(oldbrk, newbrk - oldbrk);
323         return brk;
324
325 out:
326         retval = mm->brk;
327         up_write(&mm->mmap_sem);
328         return retval;
329 }
330
331 static long vma_compute_subtree_gap(struct vm_area_struct *vma)
332 {
333         unsigned long max, subtree_gap;
334         max = vma->vm_start;
335         if (vma->vm_prev)
336                 max -= vma->vm_prev->vm_end;
337         if (vma->vm_rb.rb_left) {
338                 subtree_gap = rb_entry(vma->vm_rb.rb_left,
339                                 struct vm_area_struct, vm_rb)->rb_subtree_gap;
340                 if (subtree_gap > max)
341                         max = subtree_gap;
342         }
343         if (vma->vm_rb.rb_right) {
344                 subtree_gap = rb_entry(vma->vm_rb.rb_right,
345                                 struct vm_area_struct, vm_rb)->rb_subtree_gap;
346                 if (subtree_gap > max)
347                         max = subtree_gap;
348         }
349         return max;
350 }
351
352 #ifdef CONFIG_DEBUG_VM_RB
353 static int browse_rb(struct rb_root *root)
354 {
355         int i = 0, j, bug = 0;
356         struct rb_node *nd, *pn = NULL;
357         unsigned long prev = 0, pend = 0;
358
359         for (nd = rb_first(root); nd; nd = rb_next(nd)) {
360                 struct vm_area_struct *vma;
361                 vma = rb_entry(nd, struct vm_area_struct, vm_rb);
362                 if (vma->vm_start < prev) {
363                         printk("vm_start %lx prev %lx\n", vma->vm_start, prev);
364                         bug = 1;
365                 }
366                 if (vma->vm_start < pend) {
367                         printk("vm_start %lx pend %lx\n", vma->vm_start, pend);
368                         bug = 1;
369                 }
370                 if (vma->vm_start > vma->vm_end) {
371                         printk("vm_end %lx < vm_start %lx\n",
372                                 vma->vm_end, vma->vm_start);
373                         bug = 1;
374                 }
375                 if (vma->rb_subtree_gap != vma_compute_subtree_gap(vma)) {
376                         printk("free gap %lx, correct %lx\n",
377                                vma->rb_subtree_gap,
378                                vma_compute_subtree_gap(vma));
379                         bug = 1;
380                 }
381                 i++;
382                 pn = nd;
383                 prev = vma->vm_start;
384                 pend = vma->vm_end;
385         }
386         j = 0;
387         for (nd = pn; nd; nd = rb_prev(nd))
388                 j++;
389         if (i != j) {
390                 printk("backwards %d, forwards %d\n", j, i);
391                 bug = 1;
392         }
393         return bug ? -1 : i;
394 }
395
396 static void validate_mm_rb(struct rb_root *root, struct vm_area_struct *ignore)
397 {
398         struct rb_node *nd;
399
400         for (nd = rb_first(root); nd; nd = rb_next(nd)) {
401                 struct vm_area_struct *vma;
402                 vma = rb_entry(nd, struct vm_area_struct, vm_rb);
403                 BUG_ON(vma != ignore &&
404                        vma->rb_subtree_gap != vma_compute_subtree_gap(vma));
405         }
406 }
407
408 void validate_mm(struct mm_struct *mm)
409 {
410         int bug = 0;
411         int i = 0;
412         unsigned long highest_address = 0;
413         struct vm_area_struct *vma = mm->mmap;
414         while (vma) {
415                 struct anon_vma_chain *avc;
416                 vma_lock_anon_vma(vma);
417                 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
418                         anon_vma_interval_tree_verify(avc);
419                 vma_unlock_anon_vma(vma);
420                 highest_address = vma->vm_end;
421                 vma = vma->vm_next;
422                 i++;
423         }
424         if (i != mm->map_count) {
425                 printk("map_count %d vm_next %d\n", mm->map_count, i);
426                 bug = 1;
427         }
428         if (highest_address != mm->highest_vm_end) {
429                 printk("mm->highest_vm_end %lx, found %lx\n",
430                        mm->highest_vm_end, highest_address);
431                 bug = 1;
432         }
433         i = browse_rb(&mm->mm_rb);
434         if (i != mm->map_count) {
435                 printk("map_count %d rb %d\n", mm->map_count, i);
436                 bug = 1;
437         }
438         BUG_ON(bug);
439 }
440 #else
441 #define validate_mm_rb(root, ignore) do { } while (0)
442 #define validate_mm(mm) do { } while (0)
443 #endif
444
445 RB_DECLARE_CALLBACKS(static, vma_gap_callbacks, struct vm_area_struct, vm_rb,
446                      unsigned long, rb_subtree_gap, vma_compute_subtree_gap)
447
448 /*
449  * Update augmented rbtree rb_subtree_gap values after vma->vm_start or
450  * vma->vm_prev->vm_end values changed, without modifying the vma's position
451  * in the rbtree.
452  */
453 static void vma_gap_update(struct vm_area_struct *vma)
454 {
455         /*
456          * As it turns out, RB_DECLARE_CALLBACKS() already created a callback
457          * function that does exacltly what we want.
458          */
459         vma_gap_callbacks_propagate(&vma->vm_rb, NULL);
460 }
461
462 static inline void vma_rb_insert(struct vm_area_struct *vma,
463                                  struct rb_root *root)
464 {
465         /* All rb_subtree_gap values must be consistent prior to insertion */
466         validate_mm_rb(root, NULL);
467
468         rb_insert_augmented(&vma->vm_rb, root, &vma_gap_callbacks);
469 }
470
471 static void vma_rb_erase(struct vm_area_struct *vma, struct rb_root *root)
472 {
473         /*
474          * All rb_subtree_gap values must be consistent prior to erase,
475          * with the possible exception of the vma being erased.
476          */
477         validate_mm_rb(root, vma);
478
479         /*
480          * Note rb_erase_augmented is a fairly large inline function,
481          * so make sure we instantiate it only once with our desired
482          * augmented rbtree callbacks.
483          */
484         rb_erase_augmented(&vma->vm_rb, root, &vma_gap_callbacks);
485 }
486
487 /*
488  * vma has some anon_vma assigned, and is already inserted on that
489  * anon_vma's interval trees.
490  *
491  * Before updating the vma's vm_start / vm_end / vm_pgoff fields, the
492  * vma must be removed from the anon_vma's interval trees using
493  * anon_vma_interval_tree_pre_update_vma().
494  *
495  * After the update, the vma will be reinserted using
496  * anon_vma_interval_tree_post_update_vma().
497  *
498  * The entire update must be protected by exclusive mmap_sem and by
499  * the root anon_vma's mutex.
500  */
501 static inline void
502 anon_vma_interval_tree_pre_update_vma(struct vm_area_struct *vma)
503 {
504         struct anon_vma_chain *avc;
505
506         list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
507                 anon_vma_interval_tree_remove(avc, &avc->anon_vma->rb_root);
508 }
509
510 static inline void
511 anon_vma_interval_tree_post_update_vma(struct vm_area_struct *vma)
512 {
513         struct anon_vma_chain *avc;
514
515         list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
516                 anon_vma_interval_tree_insert(avc, &avc->anon_vma->rb_root);
517 }
518
519 static int find_vma_links(struct mm_struct *mm, unsigned long addr,
520                 unsigned long end, struct vm_area_struct **pprev,
521                 struct rb_node ***rb_link, struct rb_node **rb_parent)
522 {
523         struct rb_node **__rb_link, *__rb_parent, *rb_prev;
524
525         __rb_link = &mm->mm_rb.rb_node;
526         rb_prev = __rb_parent = NULL;
527
528         while (*__rb_link) {
529                 struct vm_area_struct *vma_tmp;
530
531                 __rb_parent = *__rb_link;
532                 vma_tmp = rb_entry(__rb_parent, struct vm_area_struct, vm_rb);
533
534                 if (vma_tmp->vm_end > addr) {
535                         /* Fail if an existing vma overlaps the area */
536                         if (vma_tmp->vm_start < end)
537                                 return -ENOMEM;
538                         __rb_link = &__rb_parent->rb_left;
539                 } else {
540                         rb_prev = __rb_parent;
541                         __rb_link = &__rb_parent->rb_right;
542                 }
543         }
544
545         *pprev = NULL;
546         if (rb_prev)
547                 *pprev = rb_entry(rb_prev, struct vm_area_struct, vm_rb);
548         *rb_link = __rb_link;
549         *rb_parent = __rb_parent;
550         return 0;
551 }
552
553 static unsigned long count_vma_pages_range(struct mm_struct *mm,
554                 unsigned long addr, unsigned long end)
555 {
556         unsigned long nr_pages = 0;
557         struct vm_area_struct *vma;
558
559         /* Find first overlaping mapping */
560         vma = find_vma_intersection(mm, addr, end);
561         if (!vma)
562                 return 0;
563
564         nr_pages = (min(end, vma->vm_end) -
565                 max(addr, vma->vm_start)) >> PAGE_SHIFT;
566
567         /* Iterate over the rest of the overlaps */
568         for (vma = vma->vm_next; vma; vma = vma->vm_next) {
569                 unsigned long overlap_len;
570
571                 if (vma->vm_start > end)
572                         break;
573
574                 overlap_len = min(end, vma->vm_end) - vma->vm_start;
575                 nr_pages += overlap_len >> PAGE_SHIFT;
576         }
577
578         return nr_pages;
579 }
580
581 void __vma_link_rb(struct mm_struct *mm, struct vm_area_struct *vma,
582                 struct rb_node **rb_link, struct rb_node *rb_parent)
583 {
584         /* Update tracking information for the gap following the new vma. */
585         if (vma->vm_next)
586                 vma_gap_update(vma->vm_next);
587         else
588                 mm->highest_vm_end = vma->vm_end;
589
590         /*
591          * vma->vm_prev wasn't known when we followed the rbtree to find the
592          * correct insertion point for that vma. As a result, we could not
593          * update the vma vm_rb parents rb_subtree_gap values on the way down.
594          * So, we first insert the vma with a zero rb_subtree_gap value
595          * (to be consistent with what we did on the way down), and then
596          * immediately update the gap to the correct value. Finally we
597          * rebalance the rbtree after all augmented values have been set.
598          */
599         rb_link_node(&vma->vm_rb, rb_parent, rb_link);
600         vma->rb_subtree_gap = 0;
601         vma_gap_update(vma);
602         vma_rb_insert(vma, &mm->mm_rb);
603 }
604
605 static void __vma_link_file(struct vm_area_struct *vma)
606 {
607         struct file *file;
608
609         file = vma->vm_file;
610         if (file) {
611                 struct address_space *mapping = file->f_mapping;
612
613                 if (vma->vm_flags & VM_DENYWRITE)
614                         atomic_dec(&file_inode(file)->i_writecount);
615                 if (vma->vm_flags & VM_SHARED)
616                         mapping->i_mmap_writable++;
617
618                 flush_dcache_mmap_lock(mapping);
619                 if (unlikely(vma->vm_flags & VM_NONLINEAR))
620                         vma_nonlinear_insert(vma, &mapping->i_mmap_nonlinear);
621                 else
622                         vma_interval_tree_insert(vma, &mapping->i_mmap);
623                 flush_dcache_mmap_unlock(mapping);
624         }
625 }
626
627 static void
628 __vma_link(struct mm_struct *mm, struct vm_area_struct *vma,
629         struct vm_area_struct *prev, struct rb_node **rb_link,
630         struct rb_node *rb_parent)
631 {
632         __vma_link_list(mm, vma, prev, rb_parent);
633         __vma_link_rb(mm, vma, rb_link, rb_parent);
634 }
635
636 static void vma_link(struct mm_struct *mm, struct vm_area_struct *vma,
637                         struct vm_area_struct *prev, struct rb_node **rb_link,
638                         struct rb_node *rb_parent)
639 {
640         struct address_space *mapping = NULL;
641
642         if (vma->vm_file)
643                 mapping = vma->vm_file->f_mapping;
644
645         if (mapping)
646                 mutex_lock(&mapping->i_mmap_mutex);
647
648         __vma_link(mm, vma, prev, rb_link, rb_parent);
649         __vma_link_file(vma);
650
651         if (mapping)
652                 mutex_unlock(&mapping->i_mmap_mutex);
653
654         mm->map_count++;
655         validate_mm(mm);
656 }
657
658 /*
659  * Helper for vma_adjust() in the split_vma insert case: insert a vma into the
660  * mm's list and rbtree.  It has already been inserted into the interval tree.
661  */
662 static void __insert_vm_struct(struct mm_struct *mm, struct vm_area_struct *vma)
663 {
664         struct vm_area_struct *prev;
665         struct rb_node **rb_link, *rb_parent;
666
667         if (find_vma_links(mm, vma->vm_start, vma->vm_end,
668                            &prev, &rb_link, &rb_parent))
669                 BUG();
670         __vma_link(mm, vma, prev, rb_link, rb_parent);
671         mm->map_count++;
672 }
673
674 static inline void
675 __vma_unlink(struct mm_struct *mm, struct vm_area_struct *vma,
676                 struct vm_area_struct *prev)
677 {
678         struct vm_area_struct *next;
679
680         vma_rb_erase(vma, &mm->mm_rb);
681         prev->vm_next = next = vma->vm_next;
682         if (next)
683                 next->vm_prev = prev;
684         if (mm->mmap_cache == vma)
685                 mm->mmap_cache = prev;
686 }
687
688 /*
689  * We cannot adjust vm_start, vm_end, vm_pgoff fields of a vma that
690  * is already present in an i_mmap tree without adjusting the tree.
691  * The following helper function should be used when such adjustments
692  * are necessary.  The "insert" vma (if any) is to be inserted
693  * before we drop the necessary locks.
694  */
695 int vma_adjust(struct vm_area_struct *vma, unsigned long start,
696         unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert)
697 {
698         struct mm_struct *mm = vma->vm_mm;
699         struct vm_area_struct *next = vma->vm_next;
700         struct vm_area_struct *importer = NULL;
701         struct address_space *mapping = NULL;
702         struct rb_root *root = NULL;
703         struct anon_vma *anon_vma = NULL;
704         struct file *file = vma->vm_file;
705         bool start_changed = false, end_changed = false;
706         long adjust_next = 0;
707         int remove_next = 0;
708
709         if (next && !insert) {
710                 struct vm_area_struct *exporter = NULL;
711
712                 if (end >= next->vm_end) {
713                         /*
714                          * vma expands, overlapping all the next, and
715                          * perhaps the one after too (mprotect case 6).
716                          */
717 again:                  remove_next = 1 + (end > next->vm_end);
718                         end = next->vm_end;
719                         exporter = next;
720                         importer = vma;
721                 } else if (end > next->vm_start) {
722                         /*
723                          * vma expands, overlapping part of the next:
724                          * mprotect case 5 shifting the boundary up.
725                          */
726                         adjust_next = (end - next->vm_start) >> PAGE_SHIFT;
727                         exporter = next;
728                         importer = vma;
729                 } else if (end < vma->vm_end) {
730                         /*
731                          * vma shrinks, and !insert tells it's not
732                          * split_vma inserting another: so it must be
733                          * mprotect case 4 shifting the boundary down.
734                          */
735                         adjust_next = - ((vma->vm_end - end) >> PAGE_SHIFT);
736                         exporter = vma;
737                         importer = next;
738                 }
739
740                 /*
741                  * Easily overlooked: when mprotect shifts the boundary,
742                  * make sure the expanding vma has anon_vma set if the
743                  * shrinking vma had, to cover any anon pages imported.
744                  */
745                 if (exporter && exporter->anon_vma && !importer->anon_vma) {
746                         if (anon_vma_clone(importer, exporter))
747                                 return -ENOMEM;
748                         importer->anon_vma = exporter->anon_vma;
749                 }
750         }
751
752         if (file) {
753                 mapping = file->f_mapping;
754                 if (!(vma->vm_flags & VM_NONLINEAR)) {
755                         root = &mapping->i_mmap;
756                         uprobe_munmap(vma, vma->vm_start, vma->vm_end);
757
758                         if (adjust_next)
759                                 uprobe_munmap(next, next->vm_start,
760                                                         next->vm_end);
761                 }
762
763                 mutex_lock(&mapping->i_mmap_mutex);
764                 if (insert) {
765                         /*
766                          * Put into interval tree now, so instantiated pages
767                          * are visible to arm/parisc __flush_dcache_page
768                          * throughout; but we cannot insert into address
769                          * space until vma start or end is updated.
770                          */
771                         __vma_link_file(insert);
772                 }
773         }
774
775         vma_adjust_trans_huge(vma, start, end, adjust_next);
776
777         anon_vma = vma->anon_vma;
778         if (!anon_vma && adjust_next)
779                 anon_vma = next->anon_vma;
780         if (anon_vma) {
781                 VM_BUG_ON(adjust_next && next->anon_vma &&
782                           anon_vma != next->anon_vma);
783                 anon_vma_lock_write(anon_vma);
784                 anon_vma_interval_tree_pre_update_vma(vma);
785                 if (adjust_next)
786                         anon_vma_interval_tree_pre_update_vma(next);
787         }
788
789         if (root) {
790                 flush_dcache_mmap_lock(mapping);
791                 vma_interval_tree_remove(vma, root);
792                 if (adjust_next)
793                         vma_interval_tree_remove(next, root);
794         }
795
796         if (start != vma->vm_start) {
797                 vma->vm_start = start;
798                 start_changed = true;
799         }
800         if (end != vma->vm_end) {
801                 vma->vm_end = end;
802                 end_changed = true;
803         }
804         vma->vm_pgoff = pgoff;
805         if (adjust_next) {
806                 next->vm_start += adjust_next << PAGE_SHIFT;
807                 next->vm_pgoff += adjust_next;
808         }
809
810         if (root) {
811                 if (adjust_next)
812                         vma_interval_tree_insert(next, root);
813                 vma_interval_tree_insert(vma, root);
814                 flush_dcache_mmap_unlock(mapping);
815         }
816
817         if (remove_next) {
818                 /*
819                  * vma_merge has merged next into vma, and needs
820                  * us to remove next before dropping the locks.
821                  */
822                 __vma_unlink(mm, next, vma);
823                 if (file)
824                         __remove_shared_vm_struct(next, file, mapping);
825         } else if (insert) {
826                 /*
827                  * split_vma has split insert from vma, and needs
828                  * us to insert it before dropping the locks
829                  * (it may either follow vma or precede it).
830                  */
831                 __insert_vm_struct(mm, insert);
832         } else {
833                 if (start_changed)
834                         vma_gap_update(vma);
835                 if (end_changed) {
836                         if (!next)
837                                 mm->highest_vm_end = end;
838                         else if (!adjust_next)
839                                 vma_gap_update(next);
840                 }
841         }
842
843         if (anon_vma) {
844                 anon_vma_interval_tree_post_update_vma(vma);
845                 if (adjust_next)
846                         anon_vma_interval_tree_post_update_vma(next);
847                 anon_vma_unlock_write(anon_vma);
848         }
849         if (mapping)
850                 mutex_unlock(&mapping->i_mmap_mutex);
851
852         if (root) {
853                 uprobe_mmap(vma);
854
855                 if (adjust_next)
856                         uprobe_mmap(next);
857         }
858
859         if (remove_next) {
860                 if (file) {
861                         uprobe_munmap(next, next->vm_start, next->vm_end);
862                         fput(file);
863                 }
864                 if (next->anon_vma)
865                         anon_vma_merge(vma, next);
866                 mm->map_count--;
867                 mpol_put(vma_policy(next));
868                 kmem_cache_free(vm_area_cachep, next);
869                 /*
870                  * In mprotect's case 6 (see comments on vma_merge),
871                  * we must remove another next too. It would clutter
872                  * up the code too much to do both in one go.
873                  */
874                 next = vma->vm_next;
875                 if (remove_next == 2)
876                         goto again;
877                 else if (next)
878                         vma_gap_update(next);
879                 else
880                         mm->highest_vm_end = end;
881         }
882         if (insert && file)
883                 uprobe_mmap(insert);
884
885         validate_mm(mm);
886
887         return 0;
888 }
889
890 /*
891  * If the vma has a ->close operation then the driver probably needs to release
892  * per-vma resources, so we don't attempt to merge those.
893  */
894 static inline int is_mergeable_vma(struct vm_area_struct *vma,
895                         struct file *file, unsigned long vm_flags)
896 {
897         /*
898          * VM_SOFTDIRTY should not prevent from VMA merging, if we
899          * match the flags but dirty bit -- the caller should mark
900          * merged VMA as dirty. If dirty bit won't be excluded from
901          * comparison, we increase pressue on the memory system forcing
902          * the kernel to generate new VMAs when old one could be
903          * extended instead.
904          */
905         if ((vma->vm_flags ^ vm_flags) & ~VM_SOFTDIRTY)
906                 return 0;
907         if (vma->vm_file != file)
908                 return 0;
909         if (vma->vm_ops && vma->vm_ops->close)
910                 return 0;
911         return 1;
912 }
913
914 static inline int is_mergeable_anon_vma(struct anon_vma *anon_vma1,
915                                         struct anon_vma *anon_vma2,
916                                         struct vm_area_struct *vma)
917 {
918         /*
919          * The list_is_singular() test is to avoid merging VMA cloned from
920          * parents. This can improve scalability caused by anon_vma lock.
921          */
922         if ((!anon_vma1 || !anon_vma2) && (!vma ||
923                 list_is_singular(&vma->anon_vma_chain)))
924                 return 1;
925         return anon_vma1 == anon_vma2;
926 }
927
928 /*
929  * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
930  * in front of (at a lower virtual address and file offset than) the vma.
931  *
932  * We cannot merge two vmas if they have differently assigned (non-NULL)
933  * anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
934  *
935  * We don't check here for the merged mmap wrapping around the end of pagecache
936  * indices (16TB on ia32) because do_mmap_pgoff() does not permit mmap's which
937  * wrap, nor mmaps which cover the final page at index -1UL.
938  */
939 static int
940 can_vma_merge_before(struct vm_area_struct *vma, unsigned long vm_flags,
941         struct anon_vma *anon_vma, struct file *file, pgoff_t vm_pgoff)
942 {
943         if (is_mergeable_vma(vma, file, vm_flags) &&
944             is_mergeable_anon_vma(anon_vma, vma->anon_vma, vma)) {
945                 if (vma->vm_pgoff == vm_pgoff)
946                         return 1;
947         }
948         return 0;
949 }
950
951 /*
952  * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
953  * beyond (at a higher virtual address and file offset than) the vma.
954  *
955  * We cannot merge two vmas if they have differently assigned (non-NULL)
956  * anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
957  */
958 static int
959 can_vma_merge_after(struct vm_area_struct *vma, unsigned long vm_flags,
960         struct anon_vma *anon_vma, struct file *file, pgoff_t vm_pgoff)
961 {
962         if (is_mergeable_vma(vma, file, vm_flags) &&
963             is_mergeable_anon_vma(anon_vma, vma->anon_vma, vma)) {
964                 pgoff_t vm_pglen;
965                 vm_pglen = vma_pages(vma);
966                 if (vma->vm_pgoff + vm_pglen == vm_pgoff)
967                         return 1;
968         }
969         return 0;
970 }
971
972 /*
973  * Given a mapping request (addr,end,vm_flags,file,pgoff), figure out
974  * whether that can be merged with its predecessor or its successor.
975  * Or both (it neatly fills a hole).
976  *
977  * In most cases - when called for mmap, brk or mremap - [addr,end) is
978  * certain not to be mapped by the time vma_merge is called; but when
979  * called for mprotect, it is certain to be already mapped (either at
980  * an offset within prev, or at the start of next), and the flags of
981  * this area are about to be changed to vm_flags - and the no-change
982  * case has already been eliminated.
983  *
984  * The following mprotect cases have to be considered, where AAAA is
985  * the area passed down from mprotect_fixup, never extending beyond one
986  * vma, PPPPPP is the prev vma specified, and NNNNNN the next vma after:
987  *
988  *     AAAA             AAAA                AAAA          AAAA
989  *    PPPPPPNNNNNN    PPPPPPNNNNNN    PPPPPPNNNNNN    PPPPNNNNXXXX
990  *    cannot merge    might become    might become    might become
991  *                    PPNNNNNNNNNN    PPPPPPPPPPNN    PPPPPPPPPPPP 6 or
992  *    mmap, brk or    case 4 below    case 5 below    PPPPPPPPXXXX 7 or
993  *    mremap move:                                    PPPPNNNNNNNN 8
994  *        AAAA
995  *    PPPP    NNNN    PPPPPPPPPPPP    PPPPPPPPNNNN    PPPPNNNNNNNN
996  *    might become    case 1 below    case 2 below    case 3 below
997  *
998  * Odd one out? Case 8, because it extends NNNN but needs flags of XXXX:
999  * mprotect_fixup updates vm_flags & vm_page_prot on successful return.
1000  */
1001 struct vm_area_struct *vma_merge(struct mm_struct *mm,
1002                         struct vm_area_struct *prev, unsigned long addr,
1003                         unsigned long end, unsigned long vm_flags,
1004                         struct anon_vma *anon_vma, struct file *file,
1005                         pgoff_t pgoff, struct mempolicy *policy)
1006 {
1007         pgoff_t pglen = (end - addr) >> PAGE_SHIFT;
1008         struct vm_area_struct *area, *next;
1009         int err;
1010
1011         /*
1012          * We later require that vma->vm_flags == vm_flags,
1013          * so this tests vma->vm_flags & VM_SPECIAL, too.
1014          */
1015         if (vm_flags & VM_SPECIAL)
1016                 return NULL;
1017
1018         if (prev)
1019                 next = prev->vm_next;
1020         else
1021                 next = mm->mmap;
1022         area = next;
1023         if (next && next->vm_end == end)                /* cases 6, 7, 8 */
1024                 next = next->vm_next;
1025
1026         /*
1027          * Can it merge with the predecessor?
1028          */
1029         if (prev && prev->vm_end == addr &&
1030                         mpol_equal(vma_policy(prev), policy) &&
1031                         can_vma_merge_after(prev, vm_flags,
1032                                                 anon_vma, file, pgoff)) {
1033                 /*
1034                  * OK, it can.  Can we now merge in the successor as well?
1035                  */
1036                 if (next && end == next->vm_start &&
1037                                 mpol_equal(policy, vma_policy(next)) &&
1038                                 can_vma_merge_before(next, vm_flags,
1039                                         anon_vma, file, pgoff+pglen) &&
1040                                 is_mergeable_anon_vma(prev->anon_vma,
1041                                                       next->anon_vma, NULL)) {
1042                                                         /* cases 1, 6 */
1043                         err = vma_adjust(prev, prev->vm_start,
1044                                 next->vm_end, prev->vm_pgoff, NULL);
1045                 } else                                  /* cases 2, 5, 7 */
1046                         err = vma_adjust(prev, prev->vm_start,
1047                                 end, prev->vm_pgoff, NULL);
1048                 if (err)
1049                         return NULL;
1050                 khugepaged_enter_vma_merge(prev);
1051                 return prev;
1052         }
1053
1054         /*
1055          * Can this new request be merged in front of next?
1056          */
1057         if (next && end == next->vm_start &&
1058                         mpol_equal(policy, vma_policy(next)) &&
1059                         can_vma_merge_before(next, vm_flags,
1060                                         anon_vma, file, pgoff+pglen)) {
1061                 if (prev && addr < prev->vm_end)        /* case 4 */
1062                         err = vma_adjust(prev, prev->vm_start,
1063                                 addr, prev->vm_pgoff, NULL);
1064                 else                                    /* cases 3, 8 */
1065                         err = vma_adjust(area, addr, next->vm_end,
1066                                 next->vm_pgoff - pglen, NULL);
1067                 if (err)
1068                         return NULL;
1069                 khugepaged_enter_vma_merge(area);
1070                 return area;
1071         }
1072
1073         return NULL;
1074 }
1075
1076 /*
1077  * Rough compatbility check to quickly see if it's even worth looking
1078  * at sharing an anon_vma.
1079  *
1080  * They need to have the same vm_file, and the flags can only differ
1081  * in things that mprotect may change.
1082  *
1083  * NOTE! The fact that we share an anon_vma doesn't _have_ to mean that
1084  * we can merge the two vma's. For example, we refuse to merge a vma if
1085  * there is a vm_ops->close() function, because that indicates that the
1086  * driver is doing some kind of reference counting. But that doesn't
1087  * really matter for the anon_vma sharing case.
1088  */
1089 static int anon_vma_compatible(struct vm_area_struct *a, struct vm_area_struct *b)
1090 {
1091         return a->vm_end == b->vm_start &&
1092                 mpol_equal(vma_policy(a), vma_policy(b)) &&
1093                 a->vm_file == b->vm_file &&
1094                 !((a->vm_flags ^ b->vm_flags) & ~(VM_READ|VM_WRITE|VM_EXEC|VM_SOFTDIRTY)) &&
1095                 b->vm_pgoff == a->vm_pgoff + ((b->vm_start - a->vm_start) >> PAGE_SHIFT);
1096 }
1097
1098 /*
1099  * Do some basic sanity checking to see if we can re-use the anon_vma
1100  * from 'old'. The 'a'/'b' vma's are in VM order - one of them will be
1101  * the same as 'old', the other will be the new one that is trying
1102  * to share the anon_vma.
1103  *
1104  * NOTE! This runs with mm_sem held for reading, so it is possible that
1105  * the anon_vma of 'old' is concurrently in the process of being set up
1106  * by another page fault trying to merge _that_. But that's ok: if it
1107  * is being set up, that automatically means that it will be a singleton
1108  * acceptable for merging, so we can do all of this optimistically. But
1109  * we do that ACCESS_ONCE() to make sure that we never re-load the pointer.
1110  *
1111  * IOW: that the "list_is_singular()" test on the anon_vma_chain only
1112  * matters for the 'stable anon_vma' case (ie the thing we want to avoid
1113  * is to return an anon_vma that is "complex" due to having gone through
1114  * a fork).
1115  *
1116  * We also make sure that the two vma's are compatible (adjacent,
1117  * and with the same memory policies). That's all stable, even with just
1118  * a read lock on the mm_sem.
1119  */
1120 static struct anon_vma *reusable_anon_vma(struct vm_area_struct *old, struct vm_area_struct *a, struct vm_area_struct *b)
1121 {
1122         if (anon_vma_compatible(a, b)) {
1123                 struct anon_vma *anon_vma = ACCESS_ONCE(old->anon_vma);
1124
1125                 if (anon_vma && list_is_singular(&old->anon_vma_chain))
1126                         return anon_vma;
1127         }
1128         return NULL;
1129 }
1130
1131 /*
1132  * find_mergeable_anon_vma is used by anon_vma_prepare, to check
1133  * neighbouring vmas for a suitable anon_vma, before it goes off
1134  * to allocate a new anon_vma.  It checks because a repetitive
1135  * sequence of mprotects and faults may otherwise lead to distinct
1136  * anon_vmas being allocated, preventing vma merge in subsequent
1137  * mprotect.
1138  */
1139 struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *vma)
1140 {
1141         struct anon_vma *anon_vma;
1142         struct vm_area_struct *near;
1143
1144         near = vma->vm_next;
1145         if (!near)
1146                 goto try_prev;
1147
1148         anon_vma = reusable_anon_vma(near, vma, near);
1149         if (anon_vma)
1150                 return anon_vma;
1151 try_prev:
1152         near = vma->vm_prev;
1153         if (!near)
1154                 goto none;
1155
1156         anon_vma = reusable_anon_vma(near, near, vma);
1157         if (anon_vma)
1158                 return anon_vma;
1159 none:
1160         /*
1161          * There's no absolute need to look only at touching neighbours:
1162          * we could search further afield for "compatible" anon_vmas.
1163          * But it would probably just be a waste of time searching,
1164          * or lead to too many vmas hanging off the same anon_vma.
1165          * We're trying to allow mprotect remerging later on,
1166          * not trying to minimize memory used for anon_vmas.
1167          */
1168         return NULL;
1169 }
1170
1171 #ifdef CONFIG_PROC_FS
1172 void vm_stat_account(struct mm_struct *mm, unsigned long flags,
1173                                                 struct file *file, long pages)
1174 {
1175         const unsigned long stack_flags
1176                 = VM_STACK_FLAGS & (VM_GROWSUP|VM_GROWSDOWN);
1177
1178         mm->total_vm += pages;
1179
1180         if (file) {
1181                 mm->shared_vm += pages;
1182                 if ((flags & (VM_EXEC|VM_WRITE)) == VM_EXEC)
1183                         mm->exec_vm += pages;
1184         } else if (flags & stack_flags)
1185                 mm->stack_vm += pages;
1186 }
1187 #endif /* CONFIG_PROC_FS */
1188
1189 /*
1190  * If a hint addr is less than mmap_min_addr change hint to be as
1191  * low as possible but still greater than mmap_min_addr
1192  */
1193 static inline unsigned long round_hint_to_min(unsigned long hint)
1194 {
1195         hint &= PAGE_MASK;
1196         if (((void *)hint != NULL) &&
1197             (hint < mmap_min_addr))
1198                 return PAGE_ALIGN(mmap_min_addr);
1199         return hint;
1200 }
1201
1202 static inline int mlock_future_check(struct mm_struct *mm,
1203                                      unsigned long flags,
1204                                      unsigned long len)
1205 {
1206         unsigned long locked, lock_limit;
1207
1208         /*  mlock MCL_FUTURE? */
1209         if (flags & VM_LOCKED) {
1210                 locked = len >> PAGE_SHIFT;
1211                 locked += mm->locked_vm;
1212                 lock_limit = rlimit(RLIMIT_MEMLOCK);
1213                 lock_limit >>= PAGE_SHIFT;
1214                 if (locked > lock_limit && !capable(CAP_IPC_LOCK))
1215                         return -EAGAIN;
1216         }
1217         return 0;
1218 }
1219
1220 /*
1221  * The caller must hold down_write(&current->mm->mmap_sem).
1222  */
1223
1224 unsigned long do_mmap_pgoff(struct file *file, unsigned long addr,
1225                         unsigned long len, unsigned long prot,
1226                         unsigned long flags, unsigned long pgoff,
1227                         unsigned long *populate)
1228 {
1229         struct mm_struct * mm = current->mm;
1230         vm_flags_t vm_flags;
1231
1232         *populate = 0;
1233
1234         /*
1235          * Does the application expect PROT_READ to imply PROT_EXEC?
1236          *
1237          * (the exception is when the underlying filesystem is noexec
1238          *  mounted, in which case we dont add PROT_EXEC.)
1239          */
1240         if ((prot & PROT_READ) && (current->personality & READ_IMPLIES_EXEC))
1241                 if (!(file && (file->f_path.mnt->mnt_flags & MNT_NOEXEC)))
1242                         prot |= PROT_EXEC;
1243
1244         if (!len)
1245                 return -EINVAL;
1246
1247         if (!(flags & MAP_FIXED))
1248                 addr = round_hint_to_min(addr);
1249
1250         /* Careful about overflows.. */
1251         len = PAGE_ALIGN(len);
1252         if (!len)
1253                 return -ENOMEM;
1254
1255         /* offset overflow? */
1256         if ((pgoff + (len >> PAGE_SHIFT)) < pgoff)
1257                return -EOVERFLOW;
1258
1259         /* Too many mappings? */
1260         if (mm->map_count > sysctl_max_map_count)
1261                 return -ENOMEM;
1262
1263         /* Obtain the address to map to. we verify (or select) it and ensure
1264          * that it represents a valid section of the address space.
1265          */
1266         addr = get_unmapped_area(file, addr, len, pgoff, flags);
1267         if (addr & ~PAGE_MASK)
1268                 return addr;
1269
1270         /* Do simple checking here so the lower-level routines won't have
1271          * to. we assume access permissions have been handled by the open
1272          * of the memory object, so we don't do any here.
1273          */
1274         vm_flags = calc_vm_prot_bits(prot) | calc_vm_flag_bits(flags) |
1275                         mm->def_flags | VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC;
1276
1277         if (flags & MAP_LOCKED)
1278                 if (!can_do_mlock())
1279                         return -EPERM;
1280
1281         if (mlock_future_check(mm, vm_flags, len))
1282                 return -EAGAIN;
1283
1284         if (file) {
1285                 struct inode *inode = file_inode(file);
1286
1287                 switch (flags & MAP_TYPE) {
1288                 case MAP_SHARED:
1289                         if ((prot&PROT_WRITE) && !(file->f_mode&FMODE_WRITE))
1290                                 return -EACCES;
1291
1292                         /*
1293                          * Make sure we don't allow writing to an append-only
1294                          * file..
1295                          */
1296                         if (IS_APPEND(inode) && (file->f_mode & FMODE_WRITE))
1297                                 return -EACCES;
1298
1299                         /*
1300                          * Make sure there are no mandatory locks on the file.
1301                          */
1302                         if (locks_verify_locked(inode))
1303                                 return -EAGAIN;
1304
1305                         vm_flags |= VM_SHARED | VM_MAYSHARE;
1306                         if (!(file->f_mode & FMODE_WRITE))
1307                                 vm_flags &= ~(VM_MAYWRITE | VM_SHARED);
1308
1309                         /* fall through */
1310                 case MAP_PRIVATE:
1311                         if (!(file->f_mode & FMODE_READ))
1312                                 return -EACCES;
1313                         if (file->f_path.mnt->mnt_flags & MNT_NOEXEC) {
1314                                 if (vm_flags & VM_EXEC)
1315                                         return -EPERM;
1316                                 vm_flags &= ~VM_MAYEXEC;
1317                         }
1318
1319                         if (!file->f_op->mmap)
1320                                 return -ENODEV;
1321                         if (vm_flags & (VM_GROWSDOWN|VM_GROWSUP))
1322                                 return -EINVAL;
1323                         break;
1324
1325                 default:
1326                         return -EINVAL;
1327                 }
1328         } else {
1329                 switch (flags & MAP_TYPE) {
1330                 case MAP_SHARED:
1331                         if (vm_flags & (VM_GROWSDOWN|VM_GROWSUP))
1332                                 return -EINVAL;
1333                         /*
1334                          * Ignore pgoff.
1335                          */
1336                         pgoff = 0;
1337                         vm_flags |= VM_SHARED | VM_MAYSHARE;
1338                         break;
1339                 case MAP_PRIVATE:
1340                         /*
1341                          * Set pgoff according to addr for anon_vma.
1342                          */
1343                         pgoff = addr >> PAGE_SHIFT;
1344                         break;
1345                 default:
1346                         return -EINVAL;
1347                 }
1348         }
1349
1350         /*
1351          * Set 'VM_NORESERVE' if we should not account for the
1352          * memory use of this mapping.
1353          */
1354         if (flags & MAP_NORESERVE) {
1355                 /* We honor MAP_NORESERVE if allowed to overcommit */
1356                 if (sysctl_overcommit_memory != OVERCOMMIT_NEVER)
1357                         vm_flags |= VM_NORESERVE;
1358
1359                 /* hugetlb applies strict overcommit unless MAP_NORESERVE */
1360                 if (file && is_file_hugepages(file))
1361                         vm_flags |= VM_NORESERVE;
1362         }
1363
1364         addr = mmap_region(file, addr, len, vm_flags, pgoff);
1365         if (!IS_ERR_VALUE(addr) &&
1366             ((vm_flags & VM_LOCKED) ||
1367              (flags & (MAP_POPULATE | MAP_NONBLOCK)) == MAP_POPULATE))
1368                 *populate = len;
1369         return addr;
1370 }
1371
1372 SYSCALL_DEFINE6(mmap_pgoff, unsigned long, addr, unsigned long, len,
1373                 unsigned long, prot, unsigned long, flags,
1374                 unsigned long, fd, unsigned long, pgoff)
1375 {
1376         struct file *file = NULL;
1377         unsigned long retval = -EBADF;
1378
1379         if (!(flags & MAP_ANONYMOUS)) {
1380                 audit_mmap_fd(fd, flags);
1381                 file = fget(fd);
1382                 if (!file)
1383                         goto out;
1384                 if (is_file_hugepages(file))
1385                         len = ALIGN(len, huge_page_size(hstate_file(file)));
1386                 retval = -EINVAL;
1387                 if (unlikely(flags & MAP_HUGETLB && !is_file_hugepages(file)))
1388                         goto out_fput;
1389         } else if (flags & MAP_HUGETLB) {
1390                 struct user_struct *user = NULL;
1391                 struct hstate *hs;
1392
1393                 hs = hstate_sizelog((flags >> MAP_HUGE_SHIFT) & SHM_HUGE_MASK);
1394                 if (!hs)
1395                         return -EINVAL;
1396
1397                 len = ALIGN(len, huge_page_size(hs));
1398                 /*
1399                  * VM_NORESERVE is used because the reservations will be
1400                  * taken when vm_ops->mmap() is called
1401                  * A dummy user value is used because we are not locking
1402                  * memory so no accounting is necessary
1403                  */
1404                 file = hugetlb_file_setup(HUGETLB_ANON_FILE, len,
1405                                 VM_NORESERVE,
1406                                 &user, HUGETLB_ANONHUGE_INODE,
1407                                 (flags >> MAP_HUGE_SHIFT) & MAP_HUGE_MASK);
1408                 if (IS_ERR(file))
1409                         return PTR_ERR(file);
1410         }
1411
1412         flags &= ~(MAP_EXECUTABLE | MAP_DENYWRITE);
1413
1414         retval = vm_mmap_pgoff(file, addr, len, prot, flags, pgoff);
1415 out_fput:
1416         if (file)
1417                 fput(file);
1418 out:
1419         return retval;
1420 }
1421
1422 #ifdef __ARCH_WANT_SYS_OLD_MMAP
1423 struct mmap_arg_struct {
1424         unsigned long addr;
1425         unsigned long len;
1426         unsigned long prot;
1427         unsigned long flags;
1428         unsigned long fd;
1429         unsigned long offset;
1430 };
1431
1432 SYSCALL_DEFINE1(old_mmap, struct mmap_arg_struct __user *, arg)
1433 {
1434         struct mmap_arg_struct a;
1435
1436         if (copy_from_user(&a, arg, sizeof(a)))
1437                 return -EFAULT;
1438         if (a.offset & ~PAGE_MASK)
1439                 return -EINVAL;
1440
1441         return sys_mmap_pgoff(a.addr, a.len, a.prot, a.flags, a.fd,
1442                               a.offset >> PAGE_SHIFT);
1443 }
1444 #endif /* __ARCH_WANT_SYS_OLD_MMAP */
1445
1446 /*
1447  * Some shared mappigns will want the pages marked read-only
1448  * to track write events. If so, we'll downgrade vm_page_prot
1449  * to the private version (using protection_map[] without the
1450  * VM_SHARED bit).
1451  */
1452 int vma_wants_writenotify(struct vm_area_struct *vma)
1453 {
1454         vm_flags_t vm_flags = vma->vm_flags;
1455
1456         /* If it was private or non-writable, the write bit is already clear */
1457         if ((vm_flags & (VM_WRITE|VM_SHARED)) != ((VM_WRITE|VM_SHARED)))
1458                 return 0;
1459
1460         /* The backer wishes to know when pages are first written to? */
1461         if (vma->vm_ops && vma->vm_ops->page_mkwrite)
1462                 return 1;
1463
1464         /* The open routine did something to the protections already? */
1465         if (pgprot_val(vma->vm_page_prot) !=
1466             pgprot_val(vm_get_page_prot(vm_flags)))
1467                 return 0;
1468
1469         /* Specialty mapping? */
1470         if (vm_flags & VM_PFNMAP)
1471                 return 0;
1472
1473         /* Can the mapping track the dirty pages? */
1474         return vma->vm_file && vma->vm_file->f_mapping &&
1475                 mapping_cap_account_dirty(vma->vm_file->f_mapping);
1476 }
1477
1478 /*
1479  * We account for memory if it's a private writeable mapping,
1480  * not hugepages and VM_NORESERVE wasn't set.
1481  */
1482 static inline int accountable_mapping(struct file *file, vm_flags_t vm_flags)
1483 {
1484         /*
1485          * hugetlb has its own accounting separate from the core VM
1486          * VM_HUGETLB may not be set yet so we cannot check for that flag.
1487          */
1488         if (file && is_file_hugepages(file))
1489                 return 0;
1490
1491         return (vm_flags & (VM_NORESERVE | VM_SHARED | VM_WRITE)) == VM_WRITE;
1492 }
1493
1494 unsigned long mmap_region(struct file *file, unsigned long addr,
1495                 unsigned long len, vm_flags_t vm_flags, unsigned long pgoff)
1496 {
1497         struct mm_struct *mm = current->mm;
1498         struct vm_area_struct *vma, *prev;
1499         int error;
1500         struct rb_node **rb_link, *rb_parent;
1501         unsigned long charged = 0;
1502
1503         /* Check against address space limit. */
1504         if (!may_expand_vm(mm, len >> PAGE_SHIFT)) {
1505                 unsigned long nr_pages;
1506
1507                 /*
1508                  * MAP_FIXED may remove pages of mappings that intersects with
1509                  * requested mapping. Account for the pages it would unmap.
1510                  */
1511                 if (!(vm_flags & MAP_FIXED))
1512                         return -ENOMEM;
1513
1514                 nr_pages = count_vma_pages_range(mm, addr, addr + len);
1515
1516                 if (!may_expand_vm(mm, (len >> PAGE_SHIFT) - nr_pages))
1517                         return -ENOMEM;
1518         }
1519
1520         /* Clear old maps */
1521         error = -ENOMEM;
1522 munmap_back:
1523         if (find_vma_links(mm, addr, addr + len, &prev, &rb_link, &rb_parent)) {
1524                 if (do_munmap(mm, addr, len))
1525                         return -ENOMEM;
1526                 goto munmap_back;
1527         }
1528
1529         /*
1530          * Private writable mapping: check memory availability
1531          */
1532         if (accountable_mapping(file, vm_flags)) {
1533                 charged = len >> PAGE_SHIFT;
1534                 if (security_vm_enough_memory_mm(mm, charged))
1535                         return -ENOMEM;
1536                 vm_flags |= VM_ACCOUNT;
1537         }
1538
1539         /*
1540          * Can we just expand an old mapping?
1541          */
1542         vma = vma_merge(mm, prev, addr, addr + len, vm_flags, NULL, file, pgoff, NULL);
1543         if (vma)
1544                 goto out;
1545
1546         /*
1547          * Determine the object being mapped and call the appropriate
1548          * specific mapper. the address has already been validated, but
1549          * not unmapped, but the maps are removed from the list.
1550          */
1551         vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
1552         if (!vma) {
1553                 error = -ENOMEM;
1554                 goto unacct_error;
1555         }
1556
1557         vma->vm_mm = mm;
1558         vma->vm_start = addr;
1559         vma->vm_end = addr + len;
1560         vma->vm_flags = vm_flags;
1561         vma->vm_page_prot = vm_get_page_prot(vm_flags);
1562         vma->vm_pgoff = pgoff;
1563         INIT_LIST_HEAD(&vma->anon_vma_chain);
1564
1565         if (file) {
1566                 if (vm_flags & VM_DENYWRITE) {
1567                         error = deny_write_access(file);
1568                         if (error)
1569                                 goto free_vma;
1570                 }
1571                 vma->vm_file = get_file(file);
1572                 error = file->f_op->mmap(file, vma);
1573                 if (error)
1574                         goto unmap_and_free_vma;
1575
1576                 /* Can addr have changed??
1577                  *
1578                  * Answer: Yes, several device drivers can do it in their
1579                  *         f_op->mmap method. -DaveM
1580                  * Bug: If addr is changed, prev, rb_link, rb_parent should
1581                  *      be updated for vma_link()
1582                  */
1583                 WARN_ON_ONCE(addr != vma->vm_start);
1584
1585                 addr = vma->vm_start;
1586                 vm_flags = vma->vm_flags;
1587         } else if (vm_flags & VM_SHARED) {
1588                 error = shmem_zero_setup(vma);
1589                 if (error)
1590                         goto free_vma;
1591         }
1592
1593         if (vma_wants_writenotify(vma)) {
1594                 pgprot_t pprot = vma->vm_page_prot;
1595
1596                 /* Can vma->vm_page_prot have changed??
1597                  *
1598                  * Answer: Yes, drivers may have changed it in their
1599                  *         f_op->mmap method.
1600                  *
1601                  * Ensures that vmas marked as uncached stay that way.
1602                  */
1603                 vma->vm_page_prot = vm_get_page_prot(vm_flags & ~VM_SHARED);
1604                 if (pgprot_val(pprot) == pgprot_val(pgprot_noncached(pprot)))
1605                         vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot);
1606         }
1607
1608         vma_link(mm, vma, prev, rb_link, rb_parent);
1609         /* Once vma denies write, undo our temporary denial count */
1610         if (vm_flags & VM_DENYWRITE)
1611                 allow_write_access(file);
1612         file = vma->vm_file;
1613 out:
1614         perf_event_mmap(vma);
1615
1616         vm_stat_account(mm, vm_flags, file, len >> PAGE_SHIFT);
1617         if (vm_flags & VM_LOCKED) {
1618                 if (!((vm_flags & VM_SPECIAL) || is_vm_hugetlb_page(vma) ||
1619                                         vma == get_gate_vma(current->mm)))
1620                         mm->locked_vm += (len >> PAGE_SHIFT);
1621                 else
1622                         vma->vm_flags &= ~VM_LOCKED;
1623         }
1624
1625         if (file)
1626                 uprobe_mmap(vma);
1627
1628         /*
1629          * New (or expanded) vma always get soft dirty status.
1630          * Otherwise user-space soft-dirty page tracker won't
1631          * be able to distinguish situation when vma area unmapped,
1632          * then new mapped in-place (which must be aimed as
1633          * a completely new data area).
1634          */
1635         vma->vm_flags |= VM_SOFTDIRTY;
1636
1637         return addr;
1638
1639 unmap_and_free_vma:
1640         if (vm_flags & VM_DENYWRITE)
1641                 allow_write_access(file);
1642         vma->vm_file = NULL;
1643         fput(file);
1644
1645         /* Undo any partial mapping done by a device driver. */
1646         unmap_region(mm, vma, prev, vma->vm_start, vma->vm_end);
1647         charged = 0;
1648 free_vma:
1649         kmem_cache_free(vm_area_cachep, vma);
1650 unacct_error:
1651         if (charged)
1652                 vm_unacct_memory(charged);
1653         return error;
1654 }
1655
1656 unsigned long unmapped_area(struct vm_unmapped_area_info *info)
1657 {
1658         /*
1659          * We implement the search by looking for an rbtree node that
1660          * immediately follows a suitable gap. That is,
1661          * - gap_start = vma->vm_prev->vm_end <= info->high_limit - length;
1662          * - gap_end   = vma->vm_start        >= info->low_limit  + length;
1663          * - gap_end - gap_start >= length
1664          */
1665
1666         struct mm_struct *mm = current->mm;
1667         struct vm_area_struct *vma;
1668         unsigned long length, low_limit, high_limit, gap_start, gap_end;
1669
1670         /* Adjust search length to account for worst case alignment overhead */
1671         length = info->length + info->align_mask;
1672         if (length < info->length)
1673                 return -ENOMEM;
1674
1675         /* Adjust search limits by the desired length */
1676         if (info->high_limit < length)
1677                 return -ENOMEM;
1678         high_limit = info->high_limit - length;
1679
1680         if (info->low_limit > high_limit)
1681                 return -ENOMEM;
1682         low_limit = info->low_limit + length;
1683
1684         /* Check if rbtree root looks promising */
1685         if (RB_EMPTY_ROOT(&mm->mm_rb))
1686                 goto check_highest;
1687         vma = rb_entry(mm->mm_rb.rb_node, struct vm_area_struct, vm_rb);
1688         if (vma->rb_subtree_gap < length)
1689                 goto check_highest;
1690
1691         while (true) {
1692                 /* Visit left subtree if it looks promising */
1693                 gap_end = vma->vm_start;
1694                 if (gap_end >= low_limit && vma->vm_rb.rb_left) {
1695                         struct vm_area_struct *left =
1696                                 rb_entry(vma->vm_rb.rb_left,
1697                                          struct vm_area_struct, vm_rb);
1698                         if (left->rb_subtree_gap >= length) {
1699                                 vma = left;
1700                                 continue;
1701                         }
1702                 }
1703
1704                 gap_start = vma->vm_prev ? vma->vm_prev->vm_end : 0;
1705 check_current:
1706                 /* Check if current node has a suitable gap */
1707                 if (gap_start > high_limit)
1708                         return -ENOMEM;
1709                 if (gap_end >= low_limit && gap_end - gap_start >= length)
1710                         goto found;
1711
1712                 /* Visit right subtree if it looks promising */
1713                 if (vma->vm_rb.rb_right) {
1714                         struct vm_area_struct *right =
1715                                 rb_entry(vma->vm_rb.rb_right,
1716                                          struct vm_area_struct, vm_rb);
1717                         if (right->rb_subtree_gap >= length) {
1718                                 vma = right;
1719                                 continue;
1720                         }
1721                 }
1722
1723                 /* Go back up the rbtree to find next candidate node */
1724                 while (true) {
1725                         struct rb_node *prev = &vma->vm_rb;
1726                         if (!rb_parent(prev))
1727                                 goto check_highest;
1728                         vma = rb_entry(rb_parent(prev),
1729                                        struct vm_area_struct, vm_rb);
1730                         if (prev == vma->vm_rb.rb_left) {
1731                                 gap_start = vma->vm_prev->vm_end;
1732                                 gap_end = vma->vm_start;
1733                                 goto check_current;
1734                         }
1735                 }
1736         }
1737
1738 check_highest:
1739         /* Check highest gap, which does not precede any rbtree node */
1740         gap_start = mm->highest_vm_end;
1741         gap_end = ULONG_MAX;  /* Only for VM_BUG_ON below */
1742         if (gap_start > high_limit)
1743                 return -ENOMEM;
1744
1745 found:
1746         /* We found a suitable gap. Clip it with the original low_limit. */
1747         if (gap_start < info->low_limit)
1748                 gap_start = info->low_limit;
1749
1750         /* Adjust gap address to the desired alignment */
1751         gap_start += (info->align_offset - gap_start) & info->align_mask;
1752
1753         VM_BUG_ON(gap_start + info->length > info->high_limit);
1754         VM_BUG_ON(gap_start + info->length > gap_end);
1755         return gap_start;
1756 }
1757
1758 unsigned long unmapped_area_topdown(struct vm_unmapped_area_info *info)
1759 {
1760         struct mm_struct *mm = current->mm;
1761         struct vm_area_struct *vma;
1762         unsigned long length, low_limit, high_limit, gap_start, gap_end;
1763
1764         /* Adjust search length to account for worst case alignment overhead */
1765         length = info->length + info->align_mask;
1766         if (length < info->length)
1767                 return -ENOMEM;
1768
1769         /*
1770          * Adjust search limits by the desired length.
1771          * See implementation comment at top of unmapped_area().
1772          */
1773         gap_end = info->high_limit;
1774         if (gap_end < length)
1775                 return -ENOMEM;
1776         high_limit = gap_end - length;
1777
1778         if (info->low_limit > high_limit)
1779                 return -ENOMEM;
1780         low_limit = info->low_limit + length;
1781
1782         /* Check highest gap, which does not precede any rbtree node */
1783         gap_start = mm->highest_vm_end;
1784         if (gap_start <= high_limit)
1785                 goto found_highest;
1786
1787         /* Check if rbtree root looks promising */
1788         if (RB_EMPTY_ROOT(&mm->mm_rb))
1789                 return -ENOMEM;
1790         vma = rb_entry(mm->mm_rb.rb_node, struct vm_area_struct, vm_rb);
1791         if (vma->rb_subtree_gap < length)
1792                 return -ENOMEM;
1793
1794         while (true) {
1795                 /* Visit right subtree if it looks promising */
1796                 gap_start = vma->vm_prev ? vma->vm_prev->vm_end : 0;
1797                 if (gap_start <= high_limit && vma->vm_rb.rb_right) {
1798                         struct vm_area_struct *right =
1799                                 rb_entry(vma->vm_rb.rb_right,
1800                                          struct vm_area_struct, vm_rb);
1801                         if (right->rb_subtree_gap >= length) {
1802                                 vma = right;
1803                                 continue;
1804                         }
1805                 }
1806
1807 check_current:
1808                 /* Check if current node has a suitable gap */
1809                 gap_end = vma->vm_start;
1810                 if (gap_end < low_limit)
1811                         return -ENOMEM;
1812                 if (gap_start <= high_limit && gap_end - gap_start >= length)
1813                         goto found;
1814
1815                 /* Visit left subtree if it looks promising */
1816                 if (vma->vm_rb.rb_left) {
1817                         struct vm_area_struct *left =
1818                                 rb_entry(vma->vm_rb.rb_left,
1819                                          struct vm_area_struct, vm_rb);
1820                         if (left->rb_subtree_gap >= length) {
1821                                 vma = left;
1822                                 continue;
1823                         }
1824                 }
1825
1826                 /* Go back up the rbtree to find next candidate node */
1827                 while (true) {
1828                         struct rb_node *prev = &vma->vm_rb;
1829                         if (!rb_parent(prev))
1830                                 return -ENOMEM;
1831                         vma = rb_entry(rb_parent(prev),
1832                                        struct vm_area_struct, vm_rb);
1833                         if (prev == vma->vm_rb.rb_right) {
1834                                 gap_start = vma->vm_prev ?
1835                                         vma->vm_prev->vm_end : 0;
1836                                 goto check_current;
1837                         }
1838                 }
1839         }
1840
1841 found:
1842         /* We found a suitable gap. Clip it with the original high_limit. */
1843         if (gap_end > info->high_limit)
1844                 gap_end = info->high_limit;
1845
1846 found_highest:
1847         /* Compute highest gap address at the desired alignment */
1848         gap_end -= info->length;
1849         gap_end -= (gap_end - info->align_offset) & info->align_mask;
1850
1851         VM_BUG_ON(gap_end < info->low_limit);
1852         VM_BUG_ON(gap_end < gap_start);
1853         return gap_end;
1854 }
1855
1856 /* Get an address range which is currently unmapped.
1857  * For shmat() with addr=0.
1858  *
1859  * Ugly calling convention alert:
1860  * Return value with the low bits set means error value,
1861  * ie
1862  *      if (ret & ~PAGE_MASK)
1863  *              error = ret;
1864  *
1865  * This function "knows" that -ENOMEM has the bits set.
1866  */
1867 #ifndef HAVE_ARCH_UNMAPPED_AREA
1868 unsigned long
1869 arch_get_unmapped_area(struct file *filp, unsigned long addr,
1870                 unsigned long len, unsigned long pgoff, unsigned long flags)
1871 {
1872         struct mm_struct *mm = current->mm;
1873         struct vm_area_struct *vma;
1874         struct vm_unmapped_area_info info;
1875
1876         if (len > TASK_SIZE - mmap_min_addr)
1877                 return -ENOMEM;
1878
1879         if (flags & MAP_FIXED)
1880                 return addr;
1881
1882         if (addr) {
1883                 addr = PAGE_ALIGN(addr);
1884                 vma = find_vma(mm, addr);
1885                 if (TASK_SIZE - len >= addr && addr >= mmap_min_addr &&
1886                     (!vma || addr + len <= vma->vm_start))
1887                         return addr;
1888         }
1889
1890         info.flags = 0;
1891         info.length = len;
1892         info.low_limit = mm->mmap_base;
1893         info.high_limit = TASK_SIZE;
1894         info.align_mask = 0;
1895         return vm_unmapped_area(&info);
1896 }
1897 #endif  
1898
1899 /*
1900  * This mmap-allocator allocates new areas top-down from below the
1901  * stack's low limit (the base):
1902  */
1903 #ifndef HAVE_ARCH_UNMAPPED_AREA_TOPDOWN
1904 unsigned long
1905 arch_get_unmapped_area_topdown(struct file *filp, const unsigned long addr0,
1906                           const unsigned long len, const unsigned long pgoff,
1907                           const unsigned long flags)
1908 {
1909         struct vm_area_struct *vma;
1910         struct mm_struct *mm = current->mm;
1911         unsigned long addr = addr0;
1912         struct vm_unmapped_area_info info;
1913
1914         /* requested length too big for entire address space */
1915         if (len > TASK_SIZE - mmap_min_addr)
1916                 return -ENOMEM;
1917
1918         if (flags & MAP_FIXED)
1919                 return addr;
1920
1921         /* requesting a specific address */
1922         if (addr) {
1923                 addr = PAGE_ALIGN(addr);
1924                 vma = find_vma(mm, addr);
1925                 if (TASK_SIZE - len >= addr && addr >= mmap_min_addr &&
1926                                 (!vma || addr + len <= vma->vm_start))
1927                         return addr;
1928         }
1929
1930         info.flags = VM_UNMAPPED_AREA_TOPDOWN;
1931         info.length = len;
1932         info.low_limit = max(PAGE_SIZE, mmap_min_addr);
1933         info.high_limit = mm->mmap_base;
1934         info.align_mask = 0;
1935         addr = vm_unmapped_area(&info);
1936
1937         /*
1938          * A failed mmap() very likely causes application failure,
1939          * so fall back to the bottom-up function here. This scenario
1940          * can happen with large stack limits and large mmap()
1941          * allocations.
1942          */
1943         if (addr & ~PAGE_MASK) {
1944                 VM_BUG_ON(addr != -ENOMEM);
1945                 info.flags = 0;
1946                 info.low_limit = TASK_UNMAPPED_BASE;
1947                 info.high_limit = TASK_SIZE;
1948                 addr = vm_unmapped_area(&info);
1949         }
1950
1951         return addr;
1952 }
1953 #endif
1954
1955 unsigned long
1956 get_unmapped_area(struct file *file, unsigned long addr, unsigned long len,
1957                 unsigned long pgoff, unsigned long flags)
1958 {
1959         unsigned long (*get_area)(struct file *, unsigned long,
1960                                   unsigned long, unsigned long, unsigned long);
1961
1962         unsigned long error = arch_mmap_check(addr, len, flags);
1963         if (error)
1964                 return error;
1965
1966         /* Careful about overflows.. */
1967         if (len > TASK_SIZE)
1968                 return -ENOMEM;
1969
1970         get_area = current->mm->get_unmapped_area;
1971         if (file && file->f_op->get_unmapped_area)
1972                 get_area = file->f_op->get_unmapped_area;
1973         addr = get_area(file, addr, len, pgoff, flags);
1974         if (IS_ERR_VALUE(addr))
1975                 return addr;
1976
1977         if (addr > TASK_SIZE - len)
1978                 return -ENOMEM;
1979         if (addr & ~PAGE_MASK)
1980                 return -EINVAL;
1981
1982         addr = arch_rebalance_pgtables(addr, len);
1983         error = security_mmap_addr(addr);
1984         return error ? error : addr;
1985 }
1986
1987 EXPORT_SYMBOL(get_unmapped_area);
1988
1989 /* Look up the first VMA which satisfies  addr < vm_end,  NULL if none. */
1990 struct vm_area_struct *find_vma(struct mm_struct *mm, unsigned long addr)
1991 {
1992         struct vm_area_struct *vma = NULL;
1993
1994         /* Check the cache first. */
1995         /* (Cache hit rate is typically around 35%.) */
1996         vma = ACCESS_ONCE(mm->mmap_cache);
1997         if (!(vma && vma->vm_end > addr && vma->vm_start <= addr)) {
1998                 struct rb_node *rb_node;
1999
2000                 rb_node = mm->mm_rb.rb_node;
2001                 vma = NULL;
2002
2003                 while (rb_node) {
2004                         struct vm_area_struct *vma_tmp;
2005
2006                         vma_tmp = rb_entry(rb_node,
2007                                            struct vm_area_struct, vm_rb);
2008
2009                         if (vma_tmp->vm_end > addr) {
2010                                 vma = vma_tmp;
2011                                 if (vma_tmp->vm_start <= addr)
2012                                         break;
2013                                 rb_node = rb_node->rb_left;
2014                         } else
2015                                 rb_node = rb_node->rb_right;
2016                 }
2017                 if (vma)
2018                         mm->mmap_cache = vma;
2019         }
2020         return vma;
2021 }
2022
2023 EXPORT_SYMBOL(find_vma);
2024
2025 /*
2026  * Same as find_vma, but also return a pointer to the previous VMA in *pprev.
2027  */
2028 struct vm_area_struct *
2029 find_vma_prev(struct mm_struct *mm, unsigned long addr,
2030                         struct vm_area_struct **pprev)
2031 {
2032         struct vm_area_struct *vma;
2033
2034         vma = find_vma(mm, addr);
2035         if (vma) {
2036                 *pprev = vma->vm_prev;
2037         } else {
2038                 struct rb_node *rb_node = mm->mm_rb.rb_node;
2039                 *pprev = NULL;
2040                 while (rb_node) {
2041                         *pprev = rb_entry(rb_node, struct vm_area_struct, vm_rb);
2042                         rb_node = rb_node->rb_right;
2043                 }
2044         }
2045         return vma;
2046 }
2047
2048 /*
2049  * Verify that the stack growth is acceptable and
2050  * update accounting. This is shared with both the
2051  * grow-up and grow-down cases.
2052  */
2053 static int acct_stack_growth(struct vm_area_struct *vma, unsigned long size, unsigned long grow)
2054 {
2055         struct mm_struct *mm = vma->vm_mm;
2056         struct rlimit *rlim = current->signal->rlim;
2057         unsigned long new_start;
2058
2059         /* address space limit tests */
2060         if (!may_expand_vm(mm, grow))
2061                 return -ENOMEM;
2062
2063         /* Stack limit test */
2064         if (size > ACCESS_ONCE(rlim[RLIMIT_STACK].rlim_cur))
2065                 return -ENOMEM;
2066
2067         /* mlock limit tests */
2068         if (vma->vm_flags & VM_LOCKED) {
2069                 unsigned long locked;
2070                 unsigned long limit;
2071                 locked = mm->locked_vm + grow;
2072                 limit = ACCESS_ONCE(rlim[RLIMIT_MEMLOCK].rlim_cur);
2073                 limit >>= PAGE_SHIFT;
2074                 if (locked > limit && !capable(CAP_IPC_LOCK))
2075                         return -ENOMEM;
2076         }
2077
2078         /* Check to ensure the stack will not grow into a hugetlb-only region */
2079         new_start = (vma->vm_flags & VM_GROWSUP) ? vma->vm_start :
2080                         vma->vm_end - size;
2081         if (is_hugepage_only_range(vma->vm_mm, new_start, size))
2082                 return -EFAULT;
2083
2084         /*
2085          * Overcommit..  This must be the final test, as it will
2086          * update security statistics.
2087          */
2088         if (security_vm_enough_memory_mm(mm, grow))
2089                 return -ENOMEM;
2090
2091         /* Ok, everything looks good - let it rip */
2092         if (vma->vm_flags & VM_LOCKED)
2093                 mm->locked_vm += grow;
2094         vm_stat_account(mm, vma->vm_flags, vma->vm_file, grow);
2095         return 0;
2096 }
2097
2098 #if defined(CONFIG_STACK_GROWSUP) || defined(CONFIG_IA64)
2099 /*
2100  * PA-RISC uses this for its stack; IA64 for its Register Backing Store.
2101  * vma is the last one with address > vma->vm_end.  Have to extend vma.
2102  */
2103 int expand_upwards(struct vm_area_struct *vma, unsigned long address)
2104 {
2105         int error;
2106
2107         if (!(vma->vm_flags & VM_GROWSUP))
2108                 return -EFAULT;
2109
2110         /*
2111          * We must make sure the anon_vma is allocated
2112          * so that the anon_vma locking is not a noop.
2113          */
2114         if (unlikely(anon_vma_prepare(vma)))
2115                 return -ENOMEM;
2116         vma_lock_anon_vma(vma);
2117
2118         /*
2119          * vma->vm_start/vm_end cannot change under us because the caller
2120          * is required to hold the mmap_sem in read mode.  We need the
2121          * anon_vma lock to serialize against concurrent expand_stacks.
2122          * Also guard against wrapping around to address 0.
2123          */
2124         if (address < PAGE_ALIGN(address+4))
2125                 address = PAGE_ALIGN(address+4);
2126         else {
2127                 vma_unlock_anon_vma(vma);
2128                 return -ENOMEM;
2129         }
2130         error = 0;
2131
2132         /* Somebody else might have raced and expanded it already */
2133         if (address > vma->vm_end) {
2134                 unsigned long size, grow;
2135
2136                 size = address - vma->vm_start;
2137                 grow = (address - vma->vm_end) >> PAGE_SHIFT;
2138
2139                 error = -ENOMEM;
2140                 if (vma->vm_pgoff + (size >> PAGE_SHIFT) >= vma->vm_pgoff) {
2141                         error = acct_stack_growth(vma, size, grow);
2142                         if (!error) {
2143                                 /*
2144                                  * vma_gap_update() doesn't support concurrent
2145                                  * updates, but we only hold a shared mmap_sem
2146                                  * lock here, so we need to protect against
2147                                  * concurrent vma expansions.
2148                                  * vma_lock_anon_vma() doesn't help here, as
2149                                  * we don't guarantee that all growable vmas
2150                                  * in a mm share the same root anon vma.
2151                                  * So, we reuse mm->page_table_lock to guard
2152                                  * against concurrent vma expansions.
2153                                  */
2154                                 spin_lock(&vma->vm_mm->page_table_lock);
2155                                 anon_vma_interval_tree_pre_update_vma(vma);
2156                                 vma->vm_end = address;
2157                                 anon_vma_interval_tree_post_update_vma(vma);
2158                                 if (vma->vm_next)
2159                                         vma_gap_update(vma->vm_next);
2160                                 else
2161                                         vma->vm_mm->highest_vm_end = address;
2162                                 spin_unlock(&vma->vm_mm->page_table_lock);
2163
2164                                 perf_event_mmap(vma);
2165                         }
2166                 }
2167         }
2168         vma_unlock_anon_vma(vma);
2169         khugepaged_enter_vma_merge(vma);
2170         validate_mm(vma->vm_mm);
2171         return error;
2172 }
2173 #endif /* CONFIG_STACK_GROWSUP || CONFIG_IA64 */
2174
2175 /*
2176  * vma is the first one with address < vma->vm_start.  Have to extend vma.
2177  */
2178 int expand_downwards(struct vm_area_struct *vma,
2179                                    unsigned long address)
2180 {
2181         int error;
2182
2183         /*
2184          * We must make sure the anon_vma is allocated
2185          * so that the anon_vma locking is not a noop.
2186          */
2187         if (unlikely(anon_vma_prepare(vma)))
2188                 return -ENOMEM;
2189
2190         address &= PAGE_MASK;
2191         error = security_mmap_addr(address);
2192         if (error)
2193                 return error;
2194
2195         vma_lock_anon_vma(vma);
2196
2197         /*
2198          * vma->vm_start/vm_end cannot change under us because the caller
2199          * is required to hold the mmap_sem in read mode.  We need the
2200          * anon_vma lock to serialize against concurrent expand_stacks.
2201          */
2202
2203         /* Somebody else might have raced and expanded it already */
2204         if (address < vma->vm_start) {
2205                 unsigned long size, grow;
2206
2207                 size = vma->vm_end - address;
2208                 grow = (vma->vm_start - address) >> PAGE_SHIFT;
2209
2210                 error = -ENOMEM;
2211                 if (grow <= vma->vm_pgoff) {
2212                         error = acct_stack_growth(vma, size, grow);
2213                         if (!error) {
2214                                 /*
2215                                  * vma_gap_update() doesn't support concurrent
2216                                  * updates, but we only hold a shared mmap_sem
2217                                  * lock here, so we need to protect against
2218                                  * concurrent vma expansions.
2219                                  * vma_lock_anon_vma() doesn't help here, as
2220                                  * we don't guarantee that all growable vmas
2221                                  * in a mm share the same root anon vma.
2222                                  * So, we reuse mm->page_table_lock to guard
2223                                  * against concurrent vma expansions.
2224                                  */
2225                                 spin_lock(&vma->vm_mm->page_table_lock);
2226                                 anon_vma_interval_tree_pre_update_vma(vma);
2227                                 vma->vm_start = address;
2228                                 vma->vm_pgoff -= grow;
2229                                 anon_vma_interval_tree_post_update_vma(vma);
2230                                 vma_gap_update(vma);
2231                                 spin_unlock(&vma->vm_mm->page_table_lock);
2232
2233                                 perf_event_mmap(vma);
2234                         }
2235                 }
2236         }
2237         vma_unlock_anon_vma(vma);
2238         khugepaged_enter_vma_merge(vma);
2239         validate_mm(vma->vm_mm);
2240         return error;
2241 }
2242
2243 /*
2244  * Note how expand_stack() refuses to expand the stack all the way to
2245  * abut the next virtual mapping, *unless* that mapping itself is also
2246  * a stack mapping. We want to leave room for a guard page, after all
2247  * (the guard page itself is not added here, that is done by the
2248  * actual page faulting logic)
2249  *
2250  * This matches the behavior of the guard page logic (see mm/memory.c:
2251  * check_stack_guard_page()), which only allows the guard page to be
2252  * removed under these circumstances.
2253  */
2254 #ifdef CONFIG_STACK_GROWSUP
2255 int expand_stack(struct vm_area_struct *vma, unsigned long address)
2256 {
2257         struct vm_area_struct *next;
2258
2259         address &= PAGE_MASK;
2260         next = vma->vm_next;
2261         if (next && next->vm_start == address + PAGE_SIZE) {
2262                 if (!(next->vm_flags & VM_GROWSUP))
2263                         return -ENOMEM;
2264         }
2265         return expand_upwards(vma, address);
2266 }
2267
2268 struct vm_area_struct *
2269 find_extend_vma(struct mm_struct *mm, unsigned long addr)
2270 {
2271         struct vm_area_struct *vma, *prev;
2272
2273         addr &= PAGE_MASK;
2274         vma = find_vma_prev(mm, addr, &prev);
2275         if (vma && (vma->vm_start <= addr))
2276                 return vma;
2277         if (!prev || expand_stack(prev, addr))
2278                 return NULL;
2279         if (prev->vm_flags & VM_LOCKED)
2280                 __mlock_vma_pages_range(prev, addr, prev->vm_end, NULL);
2281         return prev;
2282 }
2283 #else
2284 int expand_stack(struct vm_area_struct *vma, unsigned long address)
2285 {
2286         struct vm_area_struct *prev;
2287
2288         address &= PAGE_MASK;
2289         prev = vma->vm_prev;
2290         if (prev && prev->vm_end == address) {
2291                 if (!(prev->vm_flags & VM_GROWSDOWN))
2292                         return -ENOMEM;
2293         }
2294         return expand_downwards(vma, address);
2295 }
2296
2297 struct vm_area_struct *
2298 find_extend_vma(struct mm_struct * mm, unsigned long addr)
2299 {
2300         struct vm_area_struct * vma;
2301         unsigned long start;
2302
2303         addr &= PAGE_MASK;
2304         vma = find_vma(mm,addr);
2305         if (!vma)
2306                 return NULL;
2307         if (vma->vm_start <= addr)
2308                 return vma;
2309         if (!(vma->vm_flags & VM_GROWSDOWN))
2310                 return NULL;
2311         start = vma->vm_start;
2312         if (expand_stack(vma, addr))
2313                 return NULL;
2314         if (vma->vm_flags & VM_LOCKED)
2315                 __mlock_vma_pages_range(vma, addr, start, NULL);
2316         return vma;
2317 }
2318 #endif
2319
2320 /*
2321  * Ok - we have the memory areas we should free on the vma list,
2322  * so release them, and do the vma updates.
2323  *
2324  * Called with the mm semaphore held.
2325  */
2326 static void remove_vma_list(struct mm_struct *mm, struct vm_area_struct *vma)
2327 {
2328         unsigned long nr_accounted = 0;
2329
2330         /* Update high watermark before we lower total_vm */
2331         update_hiwater_vm(mm);
2332         do {
2333                 long nrpages = vma_pages(vma);
2334
2335                 if (vma->vm_flags & VM_ACCOUNT)
2336                         nr_accounted += nrpages;
2337                 vm_stat_account(mm, vma->vm_flags, vma->vm_file, -nrpages);
2338                 vma = remove_vma(vma);
2339         } while (vma);
2340         vm_unacct_memory(nr_accounted);
2341         validate_mm(mm);
2342 }
2343
2344 /*
2345  * Get rid of page table information in the indicated region.
2346  *
2347  * Called with the mm semaphore held.
2348  */
2349 static void unmap_region(struct mm_struct *mm,
2350                 struct vm_area_struct *vma, struct vm_area_struct *prev,
2351                 unsigned long start, unsigned long end)
2352 {
2353         struct vm_area_struct *next = prev? prev->vm_next: mm->mmap;
2354         struct mmu_gather tlb;
2355
2356         lru_add_drain();
2357         tlb_gather_mmu(&tlb, mm, start, end);
2358         update_hiwater_rss(mm);
2359         unmap_vmas(&tlb, vma, start, end);
2360         free_pgtables(&tlb, vma, prev ? prev->vm_end : FIRST_USER_ADDRESS,
2361                                  next ? next->vm_start : USER_PGTABLES_CEILING);
2362         tlb_finish_mmu(&tlb, start, end);
2363 }
2364
2365 /*
2366  * Create a list of vma's touched by the unmap, removing them from the mm's
2367  * vma list as we go..
2368  */
2369 static void
2370 detach_vmas_to_be_unmapped(struct mm_struct *mm, struct vm_area_struct *vma,
2371         struct vm_area_struct *prev, unsigned long end)
2372 {
2373         struct vm_area_struct **insertion_point;
2374         struct vm_area_struct *tail_vma = NULL;
2375
2376         insertion_point = (prev ? &prev->vm_next : &mm->mmap);
2377         vma->vm_prev = NULL;
2378         do {
2379                 vma_rb_erase(vma, &mm->mm_rb);
2380                 mm->map_count--;
2381                 tail_vma = vma;
2382                 vma = vma->vm_next;
2383         } while (vma && vma->vm_start < end);
2384         *insertion_point = vma;
2385         if (vma) {
2386                 vma->vm_prev = prev;
2387                 vma_gap_update(vma);
2388         } else
2389                 mm->highest_vm_end = prev ? prev->vm_end : 0;
2390         tail_vma->vm_next = NULL;
2391         mm->mmap_cache = NULL;          /* Kill the cache. */
2392 }
2393
2394 /*
2395  * __split_vma() bypasses sysctl_max_map_count checking.  We use this on the
2396  * munmap path where it doesn't make sense to fail.
2397  */
2398 static int __split_vma(struct mm_struct * mm, struct vm_area_struct * vma,
2399               unsigned long addr, int new_below)
2400 {
2401         struct vm_area_struct *new;
2402         int err = -ENOMEM;
2403
2404         if (is_vm_hugetlb_page(vma) && (addr &
2405                                         ~(huge_page_mask(hstate_vma(vma)))))
2406                 return -EINVAL;
2407
2408         new = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
2409         if (!new)
2410                 goto out_err;
2411
2412         /* most fields are the same, copy all, and then fixup */
2413         *new = *vma;
2414
2415         INIT_LIST_HEAD(&new->anon_vma_chain);
2416
2417         if (new_below)
2418                 new->vm_end = addr;
2419         else {
2420                 new->vm_start = addr;
2421                 new->vm_pgoff += ((addr - vma->vm_start) >> PAGE_SHIFT);
2422         }
2423
2424         err = vma_dup_policy(vma, new);
2425         if (err)
2426                 goto out_free_vma;
2427
2428         if (anon_vma_clone(new, vma))
2429                 goto out_free_mpol;
2430
2431         if (new->vm_file)
2432                 get_file(new->vm_file);
2433
2434         if (new->vm_ops && new->vm_ops->open)
2435                 new->vm_ops->open(new);
2436
2437         if (new_below)
2438                 err = vma_adjust(vma, addr, vma->vm_end, vma->vm_pgoff +
2439                         ((addr - new->vm_start) >> PAGE_SHIFT), new);
2440         else
2441                 err = vma_adjust(vma, vma->vm_start, addr, vma->vm_pgoff, new);
2442
2443         /* Success. */
2444         if (!err)
2445                 return 0;
2446
2447         /* Clean everything up if vma_adjust failed. */
2448         if (new->vm_ops && new->vm_ops->close)
2449                 new->vm_ops->close(new);
2450         if (new->vm_file)
2451                 fput(new->vm_file);
2452         unlink_anon_vmas(new);
2453  out_free_mpol:
2454         mpol_put(vma_policy(new));
2455  out_free_vma:
2456         kmem_cache_free(vm_area_cachep, new);
2457  out_err:
2458         return err;
2459 }
2460
2461 /*
2462  * Split a vma into two pieces at address 'addr', a new vma is allocated
2463  * either for the first part or the tail.
2464  */
2465 int split_vma(struct mm_struct *mm, struct vm_area_struct *vma,
2466               unsigned long addr, int new_below)
2467 {
2468         if (mm->map_count >= sysctl_max_map_count)
2469                 return -ENOMEM;
2470
2471         return __split_vma(mm, vma, addr, new_below);
2472 }
2473
2474 /* Munmap is split into 2 main parts -- this part which finds
2475  * what needs doing, and the areas themselves, which do the
2476  * work.  This now handles partial unmappings.
2477  * Jeremy Fitzhardinge <jeremy@goop.org>
2478  */
2479 int do_munmap(struct mm_struct *mm, unsigned long start, size_t len)
2480 {
2481         unsigned long end;
2482         struct vm_area_struct *vma, *prev, *last;
2483
2484         if ((start & ~PAGE_MASK) || start > TASK_SIZE || len > TASK_SIZE-start)
2485                 return -EINVAL;
2486
2487         if ((len = PAGE_ALIGN(len)) == 0)
2488                 return -EINVAL;
2489
2490         /* Find the first overlapping VMA */
2491         vma = find_vma(mm, start);
2492         if (!vma)
2493                 return 0;
2494         prev = vma->vm_prev;
2495         /* we have  start < vma->vm_end  */
2496
2497         /* if it doesn't overlap, we have nothing.. */
2498         end = start + len;
2499         if (vma->vm_start >= end)
2500                 return 0;
2501
2502         /*
2503          * If we need to split any vma, do it now to save pain later.
2504          *
2505          * Note: mremap's move_vma VM_ACCOUNT handling assumes a partially
2506          * unmapped vm_area_struct will remain in use: so lower split_vma
2507          * places tmp vma above, and higher split_vma places tmp vma below.
2508          */
2509         if (start > vma->vm_start) {
2510                 int error;
2511
2512                 /*
2513                  * Make sure that map_count on return from munmap() will
2514                  * not exceed its limit; but let map_count go just above
2515                  * its limit temporarily, to help free resources as expected.
2516                  */
2517                 if (end < vma->vm_end && mm->map_count >= sysctl_max_map_count)
2518                         return -ENOMEM;
2519
2520                 error = __split_vma(mm, vma, start, 0);
2521                 if (error)
2522                         return error;
2523                 prev = vma;
2524         }
2525
2526         /* Does it split the last one? */
2527         last = find_vma(mm, end);
2528         if (last && end > last->vm_start) {
2529                 int error = __split_vma(mm, last, end, 1);
2530                 if (error)
2531                         return error;
2532         }
2533         vma = prev? prev->vm_next: mm->mmap;
2534
2535         /*
2536          * unlock any mlock()ed ranges before detaching vmas
2537          */
2538         if (mm->locked_vm) {
2539                 struct vm_area_struct *tmp = vma;
2540                 while (tmp && tmp->vm_start < end) {
2541                         if (tmp->vm_flags & VM_LOCKED) {
2542                                 mm->locked_vm -= vma_pages(tmp);
2543                                 munlock_vma_pages_all(tmp);
2544                         }
2545                         tmp = tmp->vm_next;
2546                 }
2547         }
2548
2549         /*
2550          * Remove the vma's, and unmap the actual pages
2551          */
2552         detach_vmas_to_be_unmapped(mm, vma, prev, end);
2553         unmap_region(mm, vma, prev, start, end);
2554
2555         /* Fix up all other VM information */
2556         remove_vma_list(mm, vma);
2557
2558         return 0;
2559 }
2560
2561 int vm_munmap(unsigned long start, size_t len)
2562 {
2563         int ret;
2564         struct mm_struct *mm = current->mm;
2565
2566         down_write(&mm->mmap_sem);
2567         ret = do_munmap(mm, start, len);
2568         up_write(&mm->mmap_sem);
2569         return ret;
2570 }
2571 EXPORT_SYMBOL(vm_munmap);
2572
2573 SYSCALL_DEFINE2(munmap, unsigned long, addr, size_t, len)
2574 {
2575         profile_munmap(addr);
2576         return vm_munmap(addr, len);
2577 }
2578
2579 static inline void verify_mm_writelocked(struct mm_struct *mm)
2580 {
2581 #ifdef CONFIG_DEBUG_VM
2582         if (unlikely(down_read_trylock(&mm->mmap_sem))) {
2583                 WARN_ON(1);
2584                 up_read(&mm->mmap_sem);
2585         }
2586 #endif
2587 }
2588
2589 /*
2590  *  this is really a simplified "do_mmap".  it only handles
2591  *  anonymous maps.  eventually we may be able to do some
2592  *  brk-specific accounting here.
2593  */
2594 static unsigned long do_brk(unsigned long addr, unsigned long len)
2595 {
2596         struct mm_struct * mm = current->mm;
2597         struct vm_area_struct * vma, * prev;
2598         unsigned long flags;
2599         struct rb_node ** rb_link, * rb_parent;
2600         pgoff_t pgoff = addr >> PAGE_SHIFT;
2601         int error;
2602
2603         len = PAGE_ALIGN(len);
2604         if (!len)
2605                 return addr;
2606
2607         flags = VM_DATA_DEFAULT_FLAGS | VM_ACCOUNT | mm->def_flags;
2608
2609         error = get_unmapped_area(NULL, addr, len, 0, MAP_FIXED);
2610         if (error & ~PAGE_MASK)
2611                 return error;
2612
2613         error = mlock_future_check(mm, mm->def_flags, len);
2614         if (error)
2615                 return error;
2616
2617         /*
2618          * mm->mmap_sem is required to protect against another thread
2619          * changing the mappings in case we sleep.
2620          */
2621         verify_mm_writelocked(mm);
2622
2623         /*
2624          * Clear old maps.  this also does some error checking for us
2625          */
2626  munmap_back:
2627         if (find_vma_links(mm, addr, addr + len, &prev, &rb_link, &rb_parent)) {
2628                 if (do_munmap(mm, addr, len))
2629                         return -ENOMEM;
2630                 goto munmap_back;
2631         }
2632
2633         /* Check against address space limits *after* clearing old maps... */
2634         if (!may_expand_vm(mm, len >> PAGE_SHIFT))
2635                 return -ENOMEM;
2636
2637         if (mm->map_count > sysctl_max_map_count)
2638                 return -ENOMEM;
2639
2640         if (security_vm_enough_memory_mm(mm, len >> PAGE_SHIFT))
2641                 return -ENOMEM;
2642
2643         /* Can we just expand an old private anonymous mapping? */
2644         vma = vma_merge(mm, prev, addr, addr + len, flags,
2645                                         NULL, NULL, pgoff, NULL);
2646         if (vma)
2647                 goto out;
2648
2649         /*
2650          * create a vma struct for an anonymous mapping
2651          */
2652         vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
2653         if (!vma) {
2654                 vm_unacct_memory(len >> PAGE_SHIFT);
2655                 return -ENOMEM;
2656         }
2657
2658         INIT_LIST_HEAD(&vma->anon_vma_chain);
2659         vma->vm_mm = mm;
2660         vma->vm_start = addr;
2661         vma->vm_end = addr + len;
2662         vma->vm_pgoff = pgoff;
2663         vma->vm_flags = flags;
2664         vma->vm_page_prot = vm_get_page_prot(flags);
2665         vma_link(mm, vma, prev, rb_link, rb_parent);
2666 out:
2667         perf_event_mmap(vma);
2668         mm->total_vm += len >> PAGE_SHIFT;
2669         if (flags & VM_LOCKED)
2670                 mm->locked_vm += (len >> PAGE_SHIFT);
2671         vma->vm_flags |= VM_SOFTDIRTY;
2672         return addr;
2673 }
2674
2675 unsigned long vm_brk(unsigned long addr, unsigned long len)
2676 {
2677         struct mm_struct *mm = current->mm;
2678         unsigned long ret;
2679         bool populate;
2680
2681         down_write(&mm->mmap_sem);
2682         ret = do_brk(addr, len);
2683         populate = ((mm->def_flags & VM_LOCKED) != 0);
2684         up_write(&mm->mmap_sem);
2685         if (populate)
2686                 mm_populate(addr, len);
2687         return ret;
2688 }
2689 EXPORT_SYMBOL(vm_brk);
2690
2691 /* Release all mmaps. */
2692 void exit_mmap(struct mm_struct *mm)
2693 {
2694         struct mmu_gather tlb;
2695         struct vm_area_struct *vma;
2696         unsigned long nr_accounted = 0;
2697
2698         /* mm's last user has gone, and its about to be pulled down */
2699         mmu_notifier_release(mm);
2700
2701         if (mm->locked_vm) {
2702                 vma = mm->mmap;
2703                 while (vma) {
2704                         if (vma->vm_flags & VM_LOCKED)
2705                                 munlock_vma_pages_all(vma);
2706                         vma = vma->vm_next;
2707                 }
2708         }
2709
2710         arch_exit_mmap(mm);
2711
2712         vma = mm->mmap;
2713         if (!vma)       /* Can happen if dup_mmap() received an OOM */
2714                 return;
2715
2716         lru_add_drain();
2717         flush_cache_mm(mm);
2718         tlb_gather_mmu(&tlb, mm, 0, -1);
2719         /* update_hiwater_rss(mm) here? but nobody should be looking */
2720         /* Use -1 here to ensure all VMAs in the mm are unmapped */
2721         unmap_vmas(&tlb, vma, 0, -1);
2722
2723         free_pgtables(&tlb, vma, FIRST_USER_ADDRESS, USER_PGTABLES_CEILING);
2724         tlb_finish_mmu(&tlb, 0, -1);
2725
2726         /*
2727          * Walk the list again, actually closing and freeing it,
2728          * with preemption enabled, without holding any MM locks.
2729          */
2730         while (vma) {
2731                 if (vma->vm_flags & VM_ACCOUNT)
2732                         nr_accounted += vma_pages(vma);
2733                 vma = remove_vma(vma);
2734         }
2735         vm_unacct_memory(nr_accounted);
2736
2737         WARN_ON(atomic_long_read(&mm->nr_ptes) >
2738                         (FIRST_USER_ADDRESS+PMD_SIZE-1)>>PMD_SHIFT);
2739 }
2740
2741 /* Insert vm structure into process list sorted by address
2742  * and into the inode's i_mmap tree.  If vm_file is non-NULL
2743  * then i_mmap_mutex is taken here.
2744  */
2745 int insert_vm_struct(struct mm_struct *mm, struct vm_area_struct *vma)
2746 {
2747         struct vm_area_struct *prev;
2748         struct rb_node **rb_link, *rb_parent;
2749
2750         /*
2751          * The vm_pgoff of a purely anonymous vma should be irrelevant
2752          * until its first write fault, when page's anon_vma and index
2753          * are set.  But now set the vm_pgoff it will almost certainly
2754          * end up with (unless mremap moves it elsewhere before that
2755          * first wfault), so /proc/pid/maps tells a consistent story.
2756          *
2757          * By setting it to reflect the virtual start address of the
2758          * vma, merges and splits can happen in a seamless way, just
2759          * using the existing file pgoff checks and manipulations.
2760          * Similarly in do_mmap_pgoff and in do_brk.
2761          */
2762         if (!vma->vm_file) {
2763                 BUG_ON(vma->anon_vma);
2764                 vma->vm_pgoff = vma->vm_start >> PAGE_SHIFT;
2765         }
2766         if (find_vma_links(mm, vma->vm_start, vma->vm_end,
2767                            &prev, &rb_link, &rb_parent))
2768                 return -ENOMEM;
2769         if ((vma->vm_flags & VM_ACCOUNT) &&
2770              security_vm_enough_memory_mm(mm, vma_pages(vma)))
2771                 return -ENOMEM;
2772
2773         vma_link(mm, vma, prev, rb_link, rb_parent);
2774         return 0;
2775 }
2776
2777 /*
2778  * Copy the vma structure to a new location in the same mm,
2779  * prior to moving page table entries, to effect an mremap move.
2780  */
2781 struct vm_area_struct *copy_vma(struct vm_area_struct **vmap,
2782         unsigned long addr, unsigned long len, pgoff_t pgoff,
2783         bool *need_rmap_locks)
2784 {
2785         struct vm_area_struct *vma = *vmap;
2786         unsigned long vma_start = vma->vm_start;
2787         struct mm_struct *mm = vma->vm_mm;
2788         struct vm_area_struct *new_vma, *prev;
2789         struct rb_node **rb_link, *rb_parent;
2790         bool faulted_in_anon_vma = true;
2791
2792         /*
2793          * If anonymous vma has not yet been faulted, update new pgoff
2794          * to match new location, to increase its chance of merging.
2795          */
2796         if (unlikely(!vma->vm_file && !vma->anon_vma)) {
2797                 pgoff = addr >> PAGE_SHIFT;
2798                 faulted_in_anon_vma = false;
2799         }
2800
2801         if (find_vma_links(mm, addr, addr + len, &prev, &rb_link, &rb_parent))
2802                 return NULL;    /* should never get here */
2803         new_vma = vma_merge(mm, prev, addr, addr + len, vma->vm_flags,
2804                         vma->anon_vma, vma->vm_file, pgoff, vma_policy(vma));
2805         if (new_vma) {
2806                 /*
2807                  * Source vma may have been merged into new_vma
2808                  */
2809                 if (unlikely(vma_start >= new_vma->vm_start &&
2810                              vma_start < new_vma->vm_end)) {
2811                         /*
2812                          * The only way we can get a vma_merge with
2813                          * self during an mremap is if the vma hasn't
2814                          * been faulted in yet and we were allowed to
2815                          * reset the dst vma->vm_pgoff to the
2816                          * destination address of the mremap to allow
2817                          * the merge to happen. mremap must change the
2818                          * vm_pgoff linearity between src and dst vmas
2819                          * (in turn preventing a vma_merge) to be
2820                          * safe. It is only safe to keep the vm_pgoff
2821                          * linear if there are no pages mapped yet.
2822                          */
2823                         VM_BUG_ON(faulted_in_anon_vma);
2824                         *vmap = vma = new_vma;
2825                 }
2826                 *need_rmap_locks = (new_vma->vm_pgoff <= vma->vm_pgoff);
2827         } else {
2828                 new_vma = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
2829                 if (new_vma) {
2830                         *new_vma = *vma;
2831                         new_vma->vm_start = addr;
2832                         new_vma->vm_end = addr + len;
2833                         new_vma->vm_pgoff = pgoff;
2834                         if (vma_dup_policy(vma, new_vma))
2835                                 goto out_free_vma;
2836                         INIT_LIST_HEAD(&new_vma->anon_vma_chain);
2837                         if (anon_vma_clone(new_vma, vma))
2838                                 goto out_free_mempol;
2839                         if (new_vma->vm_file)
2840                                 get_file(new_vma->vm_file);
2841                         if (new_vma->vm_ops && new_vma->vm_ops->open)
2842                                 new_vma->vm_ops->open(new_vma);
2843                         vma_link(mm, new_vma, prev, rb_link, rb_parent);
2844                         *need_rmap_locks = false;
2845                 }
2846         }
2847         return new_vma;
2848
2849  out_free_mempol:
2850         mpol_put(vma_policy(new_vma));
2851  out_free_vma:
2852         kmem_cache_free(vm_area_cachep, new_vma);
2853         return NULL;
2854 }
2855
2856 /*
2857  * Return true if the calling process may expand its vm space by the passed
2858  * number of pages
2859  */
2860 int may_expand_vm(struct mm_struct *mm, unsigned long npages)
2861 {
2862         unsigned long cur = mm->total_vm;       /* pages */
2863         unsigned long lim;
2864
2865         lim = rlimit(RLIMIT_AS) >> PAGE_SHIFT;
2866
2867         if (cur + npages > lim)
2868                 return 0;
2869         return 1;
2870 }
2871
2872
2873 static int special_mapping_fault(struct vm_area_struct *vma,
2874                                 struct vm_fault *vmf)
2875 {
2876         pgoff_t pgoff;
2877         struct page **pages;
2878
2879         /*
2880          * special mappings have no vm_file, and in that case, the mm
2881          * uses vm_pgoff internally. So we have to subtract it from here.
2882          * We are allowed to do this because we are the mm; do not copy
2883          * this code into drivers!
2884          */
2885         pgoff = vmf->pgoff - vma->vm_pgoff;
2886
2887         for (pages = vma->vm_private_data; pgoff && *pages; ++pages)
2888                 pgoff--;
2889
2890         if (*pages) {
2891                 struct page *page = *pages;
2892                 get_page(page);
2893                 vmf->page = page;
2894                 return 0;
2895         }
2896
2897         return VM_FAULT_SIGBUS;
2898 }
2899
2900 /*
2901  * Having a close hook prevents vma merging regardless of flags.
2902  */
2903 static void special_mapping_close(struct vm_area_struct *vma)
2904 {
2905 }
2906
2907 static const struct vm_operations_struct special_mapping_vmops = {
2908         .close = special_mapping_close,
2909         .fault = special_mapping_fault,
2910 };
2911
2912 /*
2913  * Called with mm->mmap_sem held for writing.
2914  * Insert a new vma covering the given region, with the given flags.
2915  * Its pages are supplied by the given array of struct page *.
2916  * The array can be shorter than len >> PAGE_SHIFT if it's null-terminated.
2917  * The region past the last page supplied will always produce SIGBUS.
2918  * The array pointer and the pages it points to are assumed to stay alive
2919  * for as long as this mapping might exist.
2920  */
2921 int install_special_mapping(struct mm_struct *mm,
2922                             unsigned long addr, unsigned long len,
2923                             unsigned long vm_flags, struct page **pages)
2924 {
2925         int ret;
2926         struct vm_area_struct *vma;
2927
2928         vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
2929         if (unlikely(vma == NULL))
2930                 return -ENOMEM;
2931
2932         INIT_LIST_HEAD(&vma->anon_vma_chain);
2933         vma->vm_mm = mm;
2934         vma->vm_start = addr;
2935         vma->vm_end = addr + len;
2936
2937         vma->vm_flags = vm_flags | mm->def_flags | VM_DONTEXPAND | VM_SOFTDIRTY;
2938         vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
2939
2940         vma->vm_ops = &special_mapping_vmops;
2941         vma->vm_private_data = pages;
2942
2943         ret = insert_vm_struct(mm, vma);
2944         if (ret)
2945                 goto out;
2946
2947         mm->total_vm += len >> PAGE_SHIFT;
2948
2949         perf_event_mmap(vma);
2950
2951         return 0;
2952
2953 out:
2954         kmem_cache_free(vm_area_cachep, vma);
2955         return ret;
2956 }
2957
2958 static DEFINE_MUTEX(mm_all_locks_mutex);
2959
2960 static void vm_lock_anon_vma(struct mm_struct *mm, struct anon_vma *anon_vma)
2961 {
2962         if (!test_bit(0, (unsigned long *) &anon_vma->root->rb_root.rb_node)) {
2963                 /*
2964                  * The LSB of head.next can't change from under us
2965                  * because we hold the mm_all_locks_mutex.
2966                  */
2967                 down_write_nest_lock(&anon_vma->root->rwsem, &mm->mmap_sem);
2968                 /*
2969                  * We can safely modify head.next after taking the
2970                  * anon_vma->root->rwsem. If some other vma in this mm shares
2971                  * the same anon_vma we won't take it again.
2972                  *
2973                  * No need of atomic instructions here, head.next
2974                  * can't change from under us thanks to the
2975                  * anon_vma->root->rwsem.
2976                  */
2977                 if (__test_and_set_bit(0, (unsigned long *)
2978                                        &anon_vma->root->rb_root.rb_node))
2979                         BUG();
2980         }
2981 }
2982
2983 static void vm_lock_mapping(struct mm_struct *mm, struct address_space *mapping)
2984 {
2985         if (!test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) {
2986                 /*
2987                  * AS_MM_ALL_LOCKS can't change from under us because
2988                  * we hold the mm_all_locks_mutex.
2989                  *
2990                  * Operations on ->flags have to be atomic because
2991                  * even if AS_MM_ALL_LOCKS is stable thanks to the
2992                  * mm_all_locks_mutex, there may be other cpus
2993                  * changing other bitflags in parallel to us.
2994                  */
2995                 if (test_and_set_bit(AS_MM_ALL_LOCKS, &mapping->flags))
2996                         BUG();
2997                 mutex_lock_nest_lock(&mapping->i_mmap_mutex, &mm->mmap_sem);
2998         }
2999 }
3000
3001 /*
3002  * This operation locks against the VM for all pte/vma/mm related
3003  * operations that could ever happen on a certain mm. This includes
3004  * vmtruncate, try_to_unmap, and all page faults.
3005  *
3006  * The caller must take the mmap_sem in write mode before calling
3007  * mm_take_all_locks(). The caller isn't allowed to release the
3008  * mmap_sem until mm_drop_all_locks() returns.
3009  *
3010  * mmap_sem in write mode is required in order to block all operations
3011  * that could modify pagetables and free pages without need of
3012  * altering the vma layout (for example populate_range() with
3013  * nonlinear vmas). It's also needed in write mode to avoid new
3014  * anon_vmas to be associated with existing vmas.
3015  *
3016  * A single task can't take more than one mm_take_all_locks() in a row
3017  * or it would deadlock.
3018  *
3019  * The LSB in anon_vma->rb_root.rb_node and the AS_MM_ALL_LOCKS bitflag in
3020  * mapping->flags avoid to take the same lock twice, if more than one
3021  * vma in this mm is backed by the same anon_vma or address_space.
3022  *
3023  * We can take all the locks in random order because the VM code
3024  * taking i_mmap_mutex or anon_vma->rwsem outside the mmap_sem never
3025  * takes more than one of them in a row. Secondly we're protected
3026  * against a concurrent mm_take_all_locks() by the mm_all_locks_mutex.
3027  *
3028  * mm_take_all_locks() and mm_drop_all_locks are expensive operations
3029  * that may have to take thousand of locks.
3030  *
3031  * mm_take_all_locks() can fail if it's interrupted by signals.
3032  */
3033 int mm_take_all_locks(struct mm_struct *mm)
3034 {
3035         struct vm_area_struct *vma;
3036         struct anon_vma_chain *avc;
3037
3038         BUG_ON(down_read_trylock(&mm->mmap_sem));
3039
3040         mutex_lock(&mm_all_locks_mutex);
3041
3042         for (vma = mm->mmap; vma; vma = vma->vm_next) {
3043                 if (signal_pending(current))
3044                         goto out_unlock;
3045                 if (vma->vm_file && vma->vm_file->f_mapping)
3046                         vm_lock_mapping(mm, vma->vm_file->f_mapping);
3047         }
3048
3049         for (vma = mm->mmap; vma; vma = vma->vm_next) {
3050                 if (signal_pending(current))
3051                         goto out_unlock;
3052                 if (vma->anon_vma)
3053                         list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
3054                                 vm_lock_anon_vma(mm, avc->anon_vma);
3055         }
3056
3057         return 0;
3058
3059 out_unlock:
3060         mm_drop_all_locks(mm);
3061         return -EINTR;
3062 }
3063
3064 static void vm_unlock_anon_vma(struct anon_vma *anon_vma)
3065 {
3066         if (test_bit(0, (unsigned long *) &anon_vma->root->rb_root.rb_node)) {
3067                 /*
3068                  * The LSB of head.next can't change to 0 from under
3069                  * us because we hold the mm_all_locks_mutex.
3070                  *
3071                  * We must however clear the bitflag before unlocking
3072                  * the vma so the users using the anon_vma->rb_root will
3073                  * never see our bitflag.
3074                  *
3075                  * No need of atomic instructions here, head.next
3076                  * can't change from under us until we release the
3077                  * anon_vma->root->rwsem.
3078                  */
3079                 if (!__test_and_clear_bit(0, (unsigned long *)
3080                                           &anon_vma->root->rb_root.rb_node))
3081                         BUG();
3082                 anon_vma_unlock_write(anon_vma);
3083         }
3084 }
3085
3086 static void vm_unlock_mapping(struct address_space *mapping)
3087 {
3088         if (test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) {
3089                 /*
3090                  * AS_MM_ALL_LOCKS can't change to 0 from under us
3091                  * because we hold the mm_all_locks_mutex.
3092                  */
3093                 mutex_unlock(&mapping->i_mmap_mutex);
3094                 if (!test_and_clear_bit(AS_MM_ALL_LOCKS,
3095                                         &mapping->flags))
3096                         BUG();
3097         }
3098 }
3099
3100 /*
3101  * The mmap_sem cannot be released by the caller until
3102  * mm_drop_all_locks() returns.
3103  */
3104 void mm_drop_all_locks(struct mm_struct *mm)
3105 {
3106         struct vm_area_struct *vma;
3107         struct anon_vma_chain *avc;
3108
3109         BUG_ON(down_read_trylock(&mm->mmap_sem));
3110         BUG_ON(!mutex_is_locked(&mm_all_locks_mutex));
3111
3112         for (vma = mm->mmap; vma; vma = vma->vm_next) {
3113                 if (vma->anon_vma)
3114                         list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
3115                                 vm_unlock_anon_vma(avc->anon_vma);
3116                 if (vma->vm_file && vma->vm_file->f_mapping)
3117                         vm_unlock_mapping(vma->vm_file->f_mapping);
3118         }
3119
3120         mutex_unlock(&mm_all_locks_mutex);
3121 }
3122
3123 /*
3124  * initialise the VMA slab
3125  */
3126 void __init mmap_init(void)
3127 {
3128         int ret;
3129
3130         ret = percpu_counter_init(&vm_committed_as, 0);
3131         VM_BUG_ON(ret);
3132 }
3133
3134 /*
3135  * Initialise sysctl_user_reserve_kbytes.
3136  *
3137  * This is intended to prevent a user from starting a single memory hogging
3138  * process, such that they cannot recover (kill the hog) in OVERCOMMIT_NEVER
3139  * mode.
3140  *
3141  * The default value is min(3% of free memory, 128MB)
3142  * 128MB is enough to recover with sshd/login, bash, and top/kill.
3143  */
3144 static int init_user_reserve(void)
3145 {
3146         unsigned long free_kbytes;
3147
3148         free_kbytes = global_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
3149
3150         sysctl_user_reserve_kbytes = min(free_kbytes / 32, 1UL << 17);
3151         return 0;
3152 }
3153 subsys_initcall(init_user_reserve);
3154
3155 /*
3156  * Initialise sysctl_admin_reserve_kbytes.
3157  *
3158  * The purpose of sysctl_admin_reserve_kbytes is to allow the sys admin
3159  * to log in and kill a memory hogging process.
3160  *
3161  * Systems with more than 256MB will reserve 8MB, enough to recover
3162  * with sshd, bash, and top in OVERCOMMIT_GUESS. Smaller systems will
3163  * only reserve 3% of free pages by default.
3164  */
3165 static int init_admin_reserve(void)
3166 {
3167         unsigned long free_kbytes;
3168
3169         free_kbytes = global_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
3170
3171         sysctl_admin_reserve_kbytes = min(free_kbytes / 32, 1UL << 13);
3172         return 0;
3173 }
3174 subsys_initcall(init_admin_reserve);
3175
3176 /*
3177  * Reinititalise user and admin reserves if memory is added or removed.
3178  *
3179  * The default user reserve max is 128MB, and the default max for the
3180  * admin reserve is 8MB. These are usually, but not always, enough to
3181  * enable recovery from a memory hogging process using login/sshd, a shell,
3182  * and tools like top. It may make sense to increase or even disable the
3183  * reserve depending on the existence of swap or variations in the recovery
3184  * tools. So, the admin may have changed them.
3185  *
3186  * If memory is added and the reserves have been eliminated or increased above
3187  * the default max, then we'll trust the admin.
3188  *
3189  * If memory is removed and there isn't enough free memory, then we
3190  * need to reset the reserves.
3191  *
3192  * Otherwise keep the reserve set by the admin.
3193  */
3194 static int reserve_mem_notifier(struct notifier_block *nb,
3195                              unsigned long action, void *data)
3196 {
3197         unsigned long tmp, free_kbytes;
3198
3199         switch (action) {
3200         case MEM_ONLINE:
3201                 /* Default max is 128MB. Leave alone if modified by operator. */
3202                 tmp = sysctl_user_reserve_kbytes;
3203                 if (0 < tmp && tmp < (1UL << 17))
3204                         init_user_reserve();
3205
3206                 /* Default max is 8MB.  Leave alone if modified by operator. */
3207                 tmp = sysctl_admin_reserve_kbytes;
3208                 if (0 < tmp && tmp < (1UL << 13))
3209                         init_admin_reserve();
3210
3211                 break;
3212         case MEM_OFFLINE:
3213                 free_kbytes = global_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
3214
3215                 if (sysctl_user_reserve_kbytes > free_kbytes) {
3216                         init_user_reserve();
3217                         pr_info("vm.user_reserve_kbytes reset to %lu\n",
3218                                 sysctl_user_reserve_kbytes);
3219                 }
3220
3221                 if (sysctl_admin_reserve_kbytes > free_kbytes) {
3222                         init_admin_reserve();
3223                         pr_info("vm.admin_reserve_kbytes reset to %lu\n",
3224                                 sysctl_admin_reserve_kbytes);
3225                 }
3226                 break;
3227         default:
3228                 break;
3229         }
3230         return NOTIFY_OK;
3231 }
3232
3233 static struct notifier_block reserve_mem_nb = {
3234         .notifier_call = reserve_mem_notifier,
3235 };
3236
3237 static int __meminit init_reserve_notifier(void)
3238 {
3239         if (register_hotmemory_notifier(&reserve_mem_nb))
3240                 printk("Failed registering memory add/remove notifier for admin reserve");
3241
3242         return 0;
3243 }
3244 subsys_initcall(init_reserve_notifier);