Merge tag 'f2fs-for-5.15-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/jaegeu...
[platform/kernel/linux-starfive.git] / mm / mmap.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * mm/mmap.c
4  *
5  * Written by obz.
6  *
7  * Address space accounting code        <alan@lxorguk.ukuu.org.uk>
8  */
9
10 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
11
12 #include <linux/kernel.h>
13 #include <linux/slab.h>
14 #include <linux/backing-dev.h>
15 #include <linux/mm.h>
16 #include <linux/vmacache.h>
17 #include <linux/shm.h>
18 #include <linux/mman.h>
19 #include <linux/pagemap.h>
20 #include <linux/swap.h>
21 #include <linux/syscalls.h>
22 #include <linux/capability.h>
23 #include <linux/init.h>
24 #include <linux/file.h>
25 #include <linux/fs.h>
26 #include <linux/personality.h>
27 #include <linux/security.h>
28 #include <linux/hugetlb.h>
29 #include <linux/shmem_fs.h>
30 #include <linux/profile.h>
31 #include <linux/export.h>
32 #include <linux/mount.h>
33 #include <linux/mempolicy.h>
34 #include <linux/rmap.h>
35 #include <linux/mmu_notifier.h>
36 #include <linux/mmdebug.h>
37 #include <linux/perf_event.h>
38 #include <linux/audit.h>
39 #include <linux/khugepaged.h>
40 #include <linux/uprobes.h>
41 #include <linux/rbtree_augmented.h>
42 #include <linux/notifier.h>
43 #include <linux/memory.h>
44 #include <linux/printk.h>
45 #include <linux/userfaultfd_k.h>
46 #include <linux/moduleparam.h>
47 #include <linux/pkeys.h>
48 #include <linux/oom.h>
49 #include <linux/sched/mm.h>
50
51 #include <linux/uaccess.h>
52 #include <asm/cacheflush.h>
53 #include <asm/tlb.h>
54 #include <asm/mmu_context.h>
55
56 #define CREATE_TRACE_POINTS
57 #include <trace/events/mmap.h>
58
59 #include "internal.h"
60
61 #ifndef arch_mmap_check
62 #define arch_mmap_check(addr, len, flags)       (0)
63 #endif
64
65 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_BITS
66 const int mmap_rnd_bits_min = CONFIG_ARCH_MMAP_RND_BITS_MIN;
67 const int mmap_rnd_bits_max = CONFIG_ARCH_MMAP_RND_BITS_MAX;
68 int mmap_rnd_bits __read_mostly = CONFIG_ARCH_MMAP_RND_BITS;
69 #endif
70 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS
71 const int mmap_rnd_compat_bits_min = CONFIG_ARCH_MMAP_RND_COMPAT_BITS_MIN;
72 const int mmap_rnd_compat_bits_max = CONFIG_ARCH_MMAP_RND_COMPAT_BITS_MAX;
73 int mmap_rnd_compat_bits __read_mostly = CONFIG_ARCH_MMAP_RND_COMPAT_BITS;
74 #endif
75
76 static bool ignore_rlimit_data;
77 core_param(ignore_rlimit_data, ignore_rlimit_data, bool, 0644);
78
79 static void unmap_region(struct mm_struct *mm,
80                 struct vm_area_struct *vma, struct vm_area_struct *prev,
81                 unsigned long start, unsigned long end);
82
83 /* description of effects of mapping type and prot in current implementation.
84  * this is due to the limited x86 page protection hardware.  The expected
85  * behavior is in parens:
86  *
87  * map_type     prot
88  *              PROT_NONE       PROT_READ       PROT_WRITE      PROT_EXEC
89  * MAP_SHARED   r: (no) no      r: (yes) yes    r: (no) yes     r: (no) yes
90  *              w: (no) no      w: (no) no      w: (yes) yes    w: (no) no
91  *              x: (no) no      x: (no) yes     x: (no) yes     x: (yes) yes
92  *
93  * MAP_PRIVATE  r: (no) no      r: (yes) yes    r: (no) yes     r: (no) yes
94  *              w: (no) no      w: (no) no      w: (copy) copy  w: (no) no
95  *              x: (no) no      x: (no) yes     x: (no) yes     x: (yes) yes
96  *
97  * On arm64, PROT_EXEC has the following behaviour for both MAP_SHARED and
98  * MAP_PRIVATE (with Enhanced PAN supported):
99  *                                                              r: (no) no
100  *                                                              w: (no) no
101  *                                                              x: (yes) yes
102  */
103 pgprot_t protection_map[16] __ro_after_init = {
104         __P000, __P001, __P010, __P011, __P100, __P101, __P110, __P111,
105         __S000, __S001, __S010, __S011, __S100, __S101, __S110, __S111
106 };
107
108 #ifndef CONFIG_ARCH_HAS_FILTER_PGPROT
109 static inline pgprot_t arch_filter_pgprot(pgprot_t prot)
110 {
111         return prot;
112 }
113 #endif
114
115 pgprot_t vm_get_page_prot(unsigned long vm_flags)
116 {
117         pgprot_t ret = __pgprot(pgprot_val(protection_map[vm_flags &
118                                 (VM_READ|VM_WRITE|VM_EXEC|VM_SHARED)]) |
119                         pgprot_val(arch_vm_get_page_prot(vm_flags)));
120
121         return arch_filter_pgprot(ret);
122 }
123 EXPORT_SYMBOL(vm_get_page_prot);
124
125 static pgprot_t vm_pgprot_modify(pgprot_t oldprot, unsigned long vm_flags)
126 {
127         return pgprot_modify(oldprot, vm_get_page_prot(vm_flags));
128 }
129
130 /* Update vma->vm_page_prot to reflect vma->vm_flags. */
131 void vma_set_page_prot(struct vm_area_struct *vma)
132 {
133         unsigned long vm_flags = vma->vm_flags;
134         pgprot_t vm_page_prot;
135
136         vm_page_prot = vm_pgprot_modify(vma->vm_page_prot, vm_flags);
137         if (vma_wants_writenotify(vma, vm_page_prot)) {
138                 vm_flags &= ~VM_SHARED;
139                 vm_page_prot = vm_pgprot_modify(vm_page_prot, vm_flags);
140         }
141         /* remove_protection_ptes reads vma->vm_page_prot without mmap_lock */
142         WRITE_ONCE(vma->vm_page_prot, vm_page_prot);
143 }
144
145 /*
146  * Requires inode->i_mapping->i_mmap_rwsem
147  */
148 static void __remove_shared_vm_struct(struct vm_area_struct *vma,
149                 struct file *file, struct address_space *mapping)
150 {
151         if (vma->vm_flags & VM_DENYWRITE)
152                 allow_write_access(file);
153         if (vma->vm_flags & VM_SHARED)
154                 mapping_unmap_writable(mapping);
155
156         flush_dcache_mmap_lock(mapping);
157         vma_interval_tree_remove(vma, &mapping->i_mmap);
158         flush_dcache_mmap_unlock(mapping);
159 }
160
161 /*
162  * Unlink a file-based vm structure from its interval tree, to hide
163  * vma from rmap and vmtruncate before freeing its page tables.
164  */
165 void unlink_file_vma(struct vm_area_struct *vma)
166 {
167         struct file *file = vma->vm_file;
168
169         if (file) {
170                 struct address_space *mapping = file->f_mapping;
171                 i_mmap_lock_write(mapping);
172                 __remove_shared_vm_struct(vma, file, mapping);
173                 i_mmap_unlock_write(mapping);
174         }
175 }
176
177 /*
178  * Close a vm structure and free it, returning the next.
179  */
180 static struct vm_area_struct *remove_vma(struct vm_area_struct *vma)
181 {
182         struct vm_area_struct *next = vma->vm_next;
183
184         might_sleep();
185         if (vma->vm_ops && vma->vm_ops->close)
186                 vma->vm_ops->close(vma);
187         if (vma->vm_file)
188                 fput(vma->vm_file);
189         mpol_put(vma_policy(vma));
190         vm_area_free(vma);
191         return next;
192 }
193
194 static int do_brk_flags(unsigned long addr, unsigned long request, unsigned long flags,
195                 struct list_head *uf);
196 SYSCALL_DEFINE1(brk, unsigned long, brk)
197 {
198         unsigned long newbrk, oldbrk, origbrk;
199         struct mm_struct *mm = current->mm;
200         struct vm_area_struct *next;
201         unsigned long min_brk;
202         bool populate;
203         bool downgraded = false;
204         LIST_HEAD(uf);
205
206         if (mmap_write_lock_killable(mm))
207                 return -EINTR;
208
209         origbrk = mm->brk;
210
211 #ifdef CONFIG_COMPAT_BRK
212         /*
213          * CONFIG_COMPAT_BRK can still be overridden by setting
214          * randomize_va_space to 2, which will still cause mm->start_brk
215          * to be arbitrarily shifted
216          */
217         if (current->brk_randomized)
218                 min_brk = mm->start_brk;
219         else
220                 min_brk = mm->end_data;
221 #else
222         min_brk = mm->start_brk;
223 #endif
224         if (brk < min_brk)
225                 goto out;
226
227         /*
228          * Check against rlimit here. If this check is done later after the test
229          * of oldbrk with newbrk then it can escape the test and let the data
230          * segment grow beyond its set limit the in case where the limit is
231          * not page aligned -Ram Gupta
232          */
233         if (check_data_rlimit(rlimit(RLIMIT_DATA), brk, mm->start_brk,
234                               mm->end_data, mm->start_data))
235                 goto out;
236
237         newbrk = PAGE_ALIGN(brk);
238         oldbrk = PAGE_ALIGN(mm->brk);
239         if (oldbrk == newbrk) {
240                 mm->brk = brk;
241                 goto success;
242         }
243
244         /*
245          * Always allow shrinking brk.
246          * __do_munmap() may downgrade mmap_lock to read.
247          */
248         if (brk <= mm->brk) {
249                 int ret;
250
251                 /*
252                  * mm->brk must to be protected by write mmap_lock so update it
253                  * before downgrading mmap_lock. When __do_munmap() fails,
254                  * mm->brk will be restored from origbrk.
255                  */
256                 mm->brk = brk;
257                 ret = __do_munmap(mm, newbrk, oldbrk-newbrk, &uf, true);
258                 if (ret < 0) {
259                         mm->brk = origbrk;
260                         goto out;
261                 } else if (ret == 1) {
262                         downgraded = true;
263                 }
264                 goto success;
265         }
266
267         /* Check against existing mmap mappings. */
268         next = find_vma(mm, oldbrk);
269         if (next && newbrk + PAGE_SIZE > vm_start_gap(next))
270                 goto out;
271
272         /* Ok, looks good - let it rip. */
273         if (do_brk_flags(oldbrk, newbrk-oldbrk, 0, &uf) < 0)
274                 goto out;
275         mm->brk = brk;
276
277 success:
278         populate = newbrk > oldbrk && (mm->def_flags & VM_LOCKED) != 0;
279         if (downgraded)
280                 mmap_read_unlock(mm);
281         else
282                 mmap_write_unlock(mm);
283         userfaultfd_unmap_complete(mm, &uf);
284         if (populate)
285                 mm_populate(oldbrk, newbrk - oldbrk);
286         return brk;
287
288 out:
289         mmap_write_unlock(mm);
290         return origbrk;
291 }
292
293 static inline unsigned long vma_compute_gap(struct vm_area_struct *vma)
294 {
295         unsigned long gap, prev_end;
296
297         /*
298          * Note: in the rare case of a VM_GROWSDOWN above a VM_GROWSUP, we
299          * allow two stack_guard_gaps between them here, and when choosing
300          * an unmapped area; whereas when expanding we only require one.
301          * That's a little inconsistent, but keeps the code here simpler.
302          */
303         gap = vm_start_gap(vma);
304         if (vma->vm_prev) {
305                 prev_end = vm_end_gap(vma->vm_prev);
306                 if (gap > prev_end)
307                         gap -= prev_end;
308                 else
309                         gap = 0;
310         }
311         return gap;
312 }
313
314 #ifdef CONFIG_DEBUG_VM_RB
315 static unsigned long vma_compute_subtree_gap(struct vm_area_struct *vma)
316 {
317         unsigned long max = vma_compute_gap(vma), subtree_gap;
318         if (vma->vm_rb.rb_left) {
319                 subtree_gap = rb_entry(vma->vm_rb.rb_left,
320                                 struct vm_area_struct, vm_rb)->rb_subtree_gap;
321                 if (subtree_gap > max)
322                         max = subtree_gap;
323         }
324         if (vma->vm_rb.rb_right) {
325                 subtree_gap = rb_entry(vma->vm_rb.rb_right,
326                                 struct vm_area_struct, vm_rb)->rb_subtree_gap;
327                 if (subtree_gap > max)
328                         max = subtree_gap;
329         }
330         return max;
331 }
332
333 static int browse_rb(struct mm_struct *mm)
334 {
335         struct rb_root *root = &mm->mm_rb;
336         int i = 0, j, bug = 0;
337         struct rb_node *nd, *pn = NULL;
338         unsigned long prev = 0, pend = 0;
339
340         for (nd = rb_first(root); nd; nd = rb_next(nd)) {
341                 struct vm_area_struct *vma;
342                 vma = rb_entry(nd, struct vm_area_struct, vm_rb);
343                 if (vma->vm_start < prev) {
344                         pr_emerg("vm_start %lx < prev %lx\n",
345                                   vma->vm_start, prev);
346                         bug = 1;
347                 }
348                 if (vma->vm_start < pend) {
349                         pr_emerg("vm_start %lx < pend %lx\n",
350                                   vma->vm_start, pend);
351                         bug = 1;
352                 }
353                 if (vma->vm_start > vma->vm_end) {
354                         pr_emerg("vm_start %lx > vm_end %lx\n",
355                                   vma->vm_start, vma->vm_end);
356                         bug = 1;
357                 }
358                 spin_lock(&mm->page_table_lock);
359                 if (vma->rb_subtree_gap != vma_compute_subtree_gap(vma)) {
360                         pr_emerg("free gap %lx, correct %lx\n",
361                                vma->rb_subtree_gap,
362                                vma_compute_subtree_gap(vma));
363                         bug = 1;
364                 }
365                 spin_unlock(&mm->page_table_lock);
366                 i++;
367                 pn = nd;
368                 prev = vma->vm_start;
369                 pend = vma->vm_end;
370         }
371         j = 0;
372         for (nd = pn; nd; nd = rb_prev(nd))
373                 j++;
374         if (i != j) {
375                 pr_emerg("backwards %d, forwards %d\n", j, i);
376                 bug = 1;
377         }
378         return bug ? -1 : i;
379 }
380
381 static void validate_mm_rb(struct rb_root *root, struct vm_area_struct *ignore)
382 {
383         struct rb_node *nd;
384
385         for (nd = rb_first(root); nd; nd = rb_next(nd)) {
386                 struct vm_area_struct *vma;
387                 vma = rb_entry(nd, struct vm_area_struct, vm_rb);
388                 VM_BUG_ON_VMA(vma != ignore &&
389                         vma->rb_subtree_gap != vma_compute_subtree_gap(vma),
390                         vma);
391         }
392 }
393
394 static void validate_mm(struct mm_struct *mm)
395 {
396         int bug = 0;
397         int i = 0;
398         unsigned long highest_address = 0;
399         struct vm_area_struct *vma = mm->mmap;
400
401         while (vma) {
402                 struct anon_vma *anon_vma = vma->anon_vma;
403                 struct anon_vma_chain *avc;
404
405                 if (anon_vma) {
406                         anon_vma_lock_read(anon_vma);
407                         list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
408                                 anon_vma_interval_tree_verify(avc);
409                         anon_vma_unlock_read(anon_vma);
410                 }
411
412                 highest_address = vm_end_gap(vma);
413                 vma = vma->vm_next;
414                 i++;
415         }
416         if (i != mm->map_count) {
417                 pr_emerg("map_count %d vm_next %d\n", mm->map_count, i);
418                 bug = 1;
419         }
420         if (highest_address != mm->highest_vm_end) {
421                 pr_emerg("mm->highest_vm_end %lx, found %lx\n",
422                           mm->highest_vm_end, highest_address);
423                 bug = 1;
424         }
425         i = browse_rb(mm);
426         if (i != mm->map_count) {
427                 if (i != -1)
428                         pr_emerg("map_count %d rb %d\n", mm->map_count, i);
429                 bug = 1;
430         }
431         VM_BUG_ON_MM(bug, mm);
432 }
433 #else
434 #define validate_mm_rb(root, ignore) do { } while (0)
435 #define validate_mm(mm) do { } while (0)
436 #endif
437
438 RB_DECLARE_CALLBACKS_MAX(static, vma_gap_callbacks,
439                          struct vm_area_struct, vm_rb,
440                          unsigned long, rb_subtree_gap, vma_compute_gap)
441
442 /*
443  * Update augmented rbtree rb_subtree_gap values after vma->vm_start or
444  * vma->vm_prev->vm_end values changed, without modifying the vma's position
445  * in the rbtree.
446  */
447 static void vma_gap_update(struct vm_area_struct *vma)
448 {
449         /*
450          * As it turns out, RB_DECLARE_CALLBACKS_MAX() already created
451          * a callback function that does exactly what we want.
452          */
453         vma_gap_callbacks_propagate(&vma->vm_rb, NULL);
454 }
455
456 static inline void vma_rb_insert(struct vm_area_struct *vma,
457                                  struct rb_root *root)
458 {
459         /* All rb_subtree_gap values must be consistent prior to insertion */
460         validate_mm_rb(root, NULL);
461
462         rb_insert_augmented(&vma->vm_rb, root, &vma_gap_callbacks);
463 }
464
465 static void __vma_rb_erase(struct vm_area_struct *vma, struct rb_root *root)
466 {
467         /*
468          * Note rb_erase_augmented is a fairly large inline function,
469          * so make sure we instantiate it only once with our desired
470          * augmented rbtree callbacks.
471          */
472         rb_erase_augmented(&vma->vm_rb, root, &vma_gap_callbacks);
473 }
474
475 static __always_inline void vma_rb_erase_ignore(struct vm_area_struct *vma,
476                                                 struct rb_root *root,
477                                                 struct vm_area_struct *ignore)
478 {
479         /*
480          * All rb_subtree_gap values must be consistent prior to erase,
481          * with the possible exception of
482          *
483          * a. the "next" vma being erased if next->vm_start was reduced in
484          *    __vma_adjust() -> __vma_unlink()
485          * b. the vma being erased in detach_vmas_to_be_unmapped() ->
486          *    vma_rb_erase()
487          */
488         validate_mm_rb(root, ignore);
489
490         __vma_rb_erase(vma, root);
491 }
492
493 static __always_inline void vma_rb_erase(struct vm_area_struct *vma,
494                                          struct rb_root *root)
495 {
496         vma_rb_erase_ignore(vma, root, vma);
497 }
498
499 /*
500  * vma has some anon_vma assigned, and is already inserted on that
501  * anon_vma's interval trees.
502  *
503  * Before updating the vma's vm_start / vm_end / vm_pgoff fields, the
504  * vma must be removed from the anon_vma's interval trees using
505  * anon_vma_interval_tree_pre_update_vma().
506  *
507  * After the update, the vma will be reinserted using
508  * anon_vma_interval_tree_post_update_vma().
509  *
510  * The entire update must be protected by exclusive mmap_lock and by
511  * the root anon_vma's mutex.
512  */
513 static inline void
514 anon_vma_interval_tree_pre_update_vma(struct vm_area_struct *vma)
515 {
516         struct anon_vma_chain *avc;
517
518         list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
519                 anon_vma_interval_tree_remove(avc, &avc->anon_vma->rb_root);
520 }
521
522 static inline void
523 anon_vma_interval_tree_post_update_vma(struct vm_area_struct *vma)
524 {
525         struct anon_vma_chain *avc;
526
527         list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
528                 anon_vma_interval_tree_insert(avc, &avc->anon_vma->rb_root);
529 }
530
531 static int find_vma_links(struct mm_struct *mm, unsigned long addr,
532                 unsigned long end, struct vm_area_struct **pprev,
533                 struct rb_node ***rb_link, struct rb_node **rb_parent)
534 {
535         struct rb_node **__rb_link, *__rb_parent, *rb_prev;
536
537         mmap_assert_locked(mm);
538         __rb_link = &mm->mm_rb.rb_node;
539         rb_prev = __rb_parent = NULL;
540
541         while (*__rb_link) {
542                 struct vm_area_struct *vma_tmp;
543
544                 __rb_parent = *__rb_link;
545                 vma_tmp = rb_entry(__rb_parent, struct vm_area_struct, vm_rb);
546
547                 if (vma_tmp->vm_end > addr) {
548                         /* Fail if an existing vma overlaps the area */
549                         if (vma_tmp->vm_start < end)
550                                 return -ENOMEM;
551                         __rb_link = &__rb_parent->rb_left;
552                 } else {
553                         rb_prev = __rb_parent;
554                         __rb_link = &__rb_parent->rb_right;
555                 }
556         }
557
558         *pprev = NULL;
559         if (rb_prev)
560                 *pprev = rb_entry(rb_prev, struct vm_area_struct, vm_rb);
561         *rb_link = __rb_link;
562         *rb_parent = __rb_parent;
563         return 0;
564 }
565
566 /*
567  * vma_next() - Get the next VMA.
568  * @mm: The mm_struct.
569  * @vma: The current vma.
570  *
571  * If @vma is NULL, return the first vma in the mm.
572  *
573  * Returns: The next VMA after @vma.
574  */
575 static inline struct vm_area_struct *vma_next(struct mm_struct *mm,
576                                          struct vm_area_struct *vma)
577 {
578         if (!vma)
579                 return mm->mmap;
580
581         return vma->vm_next;
582 }
583
584 /*
585  * munmap_vma_range() - munmap VMAs that overlap a range.
586  * @mm: The mm struct
587  * @start: The start of the range.
588  * @len: The length of the range.
589  * @pprev: pointer to the pointer that will be set to previous vm_area_struct
590  * @rb_link: the rb_node
591  * @rb_parent: the parent rb_node
592  *
593  * Find all the vm_area_struct that overlap from @start to
594  * @end and munmap them.  Set @pprev to the previous vm_area_struct.
595  *
596  * Returns: -ENOMEM on munmap failure or 0 on success.
597  */
598 static inline int
599 munmap_vma_range(struct mm_struct *mm, unsigned long start, unsigned long len,
600                  struct vm_area_struct **pprev, struct rb_node ***link,
601                  struct rb_node **parent, struct list_head *uf)
602 {
603
604         while (find_vma_links(mm, start, start + len, pprev, link, parent))
605                 if (do_munmap(mm, start, len, uf))
606                         return -ENOMEM;
607
608         return 0;
609 }
610 static unsigned long count_vma_pages_range(struct mm_struct *mm,
611                 unsigned long addr, unsigned long end)
612 {
613         unsigned long nr_pages = 0;
614         struct vm_area_struct *vma;
615
616         /* Find first overlapping mapping */
617         vma = find_vma_intersection(mm, addr, end);
618         if (!vma)
619                 return 0;
620
621         nr_pages = (min(end, vma->vm_end) -
622                 max(addr, vma->vm_start)) >> PAGE_SHIFT;
623
624         /* Iterate over the rest of the overlaps */
625         for (vma = vma->vm_next; vma; vma = vma->vm_next) {
626                 unsigned long overlap_len;
627
628                 if (vma->vm_start > end)
629                         break;
630
631                 overlap_len = min(end, vma->vm_end) - vma->vm_start;
632                 nr_pages += overlap_len >> PAGE_SHIFT;
633         }
634
635         return nr_pages;
636 }
637
638 void __vma_link_rb(struct mm_struct *mm, struct vm_area_struct *vma,
639                 struct rb_node **rb_link, struct rb_node *rb_parent)
640 {
641         /* Update tracking information for the gap following the new vma. */
642         if (vma->vm_next)
643                 vma_gap_update(vma->vm_next);
644         else
645                 mm->highest_vm_end = vm_end_gap(vma);
646
647         /*
648          * vma->vm_prev wasn't known when we followed the rbtree to find the
649          * correct insertion point for that vma. As a result, we could not
650          * update the vma vm_rb parents rb_subtree_gap values on the way down.
651          * So, we first insert the vma with a zero rb_subtree_gap value
652          * (to be consistent with what we did on the way down), and then
653          * immediately update the gap to the correct value. Finally we
654          * rebalance the rbtree after all augmented values have been set.
655          */
656         rb_link_node(&vma->vm_rb, rb_parent, rb_link);
657         vma->rb_subtree_gap = 0;
658         vma_gap_update(vma);
659         vma_rb_insert(vma, &mm->mm_rb);
660 }
661
662 static void __vma_link_file(struct vm_area_struct *vma)
663 {
664         struct file *file;
665
666         file = vma->vm_file;
667         if (file) {
668                 struct address_space *mapping = file->f_mapping;
669
670                 if (vma->vm_flags & VM_DENYWRITE)
671                         put_write_access(file_inode(file));
672                 if (vma->vm_flags & VM_SHARED)
673                         mapping_allow_writable(mapping);
674
675                 flush_dcache_mmap_lock(mapping);
676                 vma_interval_tree_insert(vma, &mapping->i_mmap);
677                 flush_dcache_mmap_unlock(mapping);
678         }
679 }
680
681 static void
682 __vma_link(struct mm_struct *mm, struct vm_area_struct *vma,
683         struct vm_area_struct *prev, struct rb_node **rb_link,
684         struct rb_node *rb_parent)
685 {
686         __vma_link_list(mm, vma, prev);
687         __vma_link_rb(mm, vma, rb_link, rb_parent);
688 }
689
690 static void vma_link(struct mm_struct *mm, struct vm_area_struct *vma,
691                         struct vm_area_struct *prev, struct rb_node **rb_link,
692                         struct rb_node *rb_parent)
693 {
694         struct address_space *mapping = NULL;
695
696         if (vma->vm_file) {
697                 mapping = vma->vm_file->f_mapping;
698                 i_mmap_lock_write(mapping);
699         }
700
701         __vma_link(mm, vma, prev, rb_link, rb_parent);
702         __vma_link_file(vma);
703
704         if (mapping)
705                 i_mmap_unlock_write(mapping);
706
707         mm->map_count++;
708         validate_mm(mm);
709 }
710
711 /*
712  * Helper for vma_adjust() in the split_vma insert case: insert a vma into the
713  * mm's list and rbtree.  It has already been inserted into the interval tree.
714  */
715 static void __insert_vm_struct(struct mm_struct *mm, struct vm_area_struct *vma)
716 {
717         struct vm_area_struct *prev;
718         struct rb_node **rb_link, *rb_parent;
719
720         if (find_vma_links(mm, vma->vm_start, vma->vm_end,
721                            &prev, &rb_link, &rb_parent))
722                 BUG();
723         __vma_link(mm, vma, prev, rb_link, rb_parent);
724         mm->map_count++;
725 }
726
727 static __always_inline void __vma_unlink(struct mm_struct *mm,
728                                                 struct vm_area_struct *vma,
729                                                 struct vm_area_struct *ignore)
730 {
731         vma_rb_erase_ignore(vma, &mm->mm_rb, ignore);
732         __vma_unlink_list(mm, vma);
733         /* Kill the cache */
734         vmacache_invalidate(mm);
735 }
736
737 /*
738  * We cannot adjust vm_start, vm_end, vm_pgoff fields of a vma that
739  * is already present in an i_mmap tree without adjusting the tree.
740  * The following helper function should be used when such adjustments
741  * are necessary.  The "insert" vma (if any) is to be inserted
742  * before we drop the necessary locks.
743  */
744 int __vma_adjust(struct vm_area_struct *vma, unsigned long start,
745         unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert,
746         struct vm_area_struct *expand)
747 {
748         struct mm_struct *mm = vma->vm_mm;
749         struct vm_area_struct *next = vma->vm_next, *orig_vma = vma;
750         struct address_space *mapping = NULL;
751         struct rb_root_cached *root = NULL;
752         struct anon_vma *anon_vma = NULL;
753         struct file *file = vma->vm_file;
754         bool start_changed = false, end_changed = false;
755         long adjust_next = 0;
756         int remove_next = 0;
757
758         if (next && !insert) {
759                 struct vm_area_struct *exporter = NULL, *importer = NULL;
760
761                 if (end >= next->vm_end) {
762                         /*
763                          * vma expands, overlapping all the next, and
764                          * perhaps the one after too (mprotect case 6).
765                          * The only other cases that gets here are
766                          * case 1, case 7 and case 8.
767                          */
768                         if (next == expand) {
769                                 /*
770                                  * The only case where we don't expand "vma"
771                                  * and we expand "next" instead is case 8.
772                                  */
773                                 VM_WARN_ON(end != next->vm_end);
774                                 /*
775                                  * remove_next == 3 means we're
776                                  * removing "vma" and that to do so we
777                                  * swapped "vma" and "next".
778                                  */
779                                 remove_next = 3;
780                                 VM_WARN_ON(file != next->vm_file);
781                                 swap(vma, next);
782                         } else {
783                                 VM_WARN_ON(expand != vma);
784                                 /*
785                                  * case 1, 6, 7, remove_next == 2 is case 6,
786                                  * remove_next == 1 is case 1 or 7.
787                                  */
788                                 remove_next = 1 + (end > next->vm_end);
789                                 VM_WARN_ON(remove_next == 2 &&
790                                            end != next->vm_next->vm_end);
791                                 /* trim end to next, for case 6 first pass */
792                                 end = next->vm_end;
793                         }
794
795                         exporter = next;
796                         importer = vma;
797
798                         /*
799                          * If next doesn't have anon_vma, import from vma after
800                          * next, if the vma overlaps with it.
801                          */
802                         if (remove_next == 2 && !next->anon_vma)
803                                 exporter = next->vm_next;
804
805                 } else if (end > next->vm_start) {
806                         /*
807                          * vma expands, overlapping part of the next:
808                          * mprotect case 5 shifting the boundary up.
809                          */
810                         adjust_next = (end - next->vm_start);
811                         exporter = next;
812                         importer = vma;
813                         VM_WARN_ON(expand != importer);
814                 } else if (end < vma->vm_end) {
815                         /*
816                          * vma shrinks, and !insert tells it's not
817                          * split_vma inserting another: so it must be
818                          * mprotect case 4 shifting the boundary down.
819                          */
820                         adjust_next = -(vma->vm_end - end);
821                         exporter = vma;
822                         importer = next;
823                         VM_WARN_ON(expand != importer);
824                 }
825
826                 /*
827                  * Easily overlooked: when mprotect shifts the boundary,
828                  * make sure the expanding vma has anon_vma set if the
829                  * shrinking vma had, to cover any anon pages imported.
830                  */
831                 if (exporter && exporter->anon_vma && !importer->anon_vma) {
832                         int error;
833
834                         importer->anon_vma = exporter->anon_vma;
835                         error = anon_vma_clone(importer, exporter);
836                         if (error)
837                                 return error;
838                 }
839         }
840 again:
841         vma_adjust_trans_huge(orig_vma, start, end, adjust_next);
842
843         if (file) {
844                 mapping = file->f_mapping;
845                 root = &mapping->i_mmap;
846                 uprobe_munmap(vma, vma->vm_start, vma->vm_end);
847
848                 if (adjust_next)
849                         uprobe_munmap(next, next->vm_start, next->vm_end);
850
851                 i_mmap_lock_write(mapping);
852                 if (insert) {
853                         /*
854                          * Put into interval tree now, so instantiated pages
855                          * are visible to arm/parisc __flush_dcache_page
856                          * throughout; but we cannot insert into address
857                          * space until vma start or end is updated.
858                          */
859                         __vma_link_file(insert);
860                 }
861         }
862
863         anon_vma = vma->anon_vma;
864         if (!anon_vma && adjust_next)
865                 anon_vma = next->anon_vma;
866         if (anon_vma) {
867                 VM_WARN_ON(adjust_next && next->anon_vma &&
868                            anon_vma != next->anon_vma);
869                 anon_vma_lock_write(anon_vma);
870                 anon_vma_interval_tree_pre_update_vma(vma);
871                 if (adjust_next)
872                         anon_vma_interval_tree_pre_update_vma(next);
873         }
874
875         if (file) {
876                 flush_dcache_mmap_lock(mapping);
877                 vma_interval_tree_remove(vma, root);
878                 if (adjust_next)
879                         vma_interval_tree_remove(next, root);
880         }
881
882         if (start != vma->vm_start) {
883                 vma->vm_start = start;
884                 start_changed = true;
885         }
886         if (end != vma->vm_end) {
887                 vma->vm_end = end;
888                 end_changed = true;
889         }
890         vma->vm_pgoff = pgoff;
891         if (adjust_next) {
892                 next->vm_start += adjust_next;
893                 next->vm_pgoff += adjust_next >> PAGE_SHIFT;
894         }
895
896         if (file) {
897                 if (adjust_next)
898                         vma_interval_tree_insert(next, root);
899                 vma_interval_tree_insert(vma, root);
900                 flush_dcache_mmap_unlock(mapping);
901         }
902
903         if (remove_next) {
904                 /*
905                  * vma_merge has merged next into vma, and needs
906                  * us to remove next before dropping the locks.
907                  */
908                 if (remove_next != 3)
909                         __vma_unlink(mm, next, next);
910                 else
911                         /*
912                          * vma is not before next if they've been
913                          * swapped.
914                          *
915                          * pre-swap() next->vm_start was reduced so
916                          * tell validate_mm_rb to ignore pre-swap()
917                          * "next" (which is stored in post-swap()
918                          * "vma").
919                          */
920                         __vma_unlink(mm, next, vma);
921                 if (file)
922                         __remove_shared_vm_struct(next, file, mapping);
923         } else if (insert) {
924                 /*
925                  * split_vma has split insert from vma, and needs
926                  * us to insert it before dropping the locks
927                  * (it may either follow vma or precede it).
928                  */
929                 __insert_vm_struct(mm, insert);
930         } else {
931                 if (start_changed)
932                         vma_gap_update(vma);
933                 if (end_changed) {
934                         if (!next)
935                                 mm->highest_vm_end = vm_end_gap(vma);
936                         else if (!adjust_next)
937                                 vma_gap_update(next);
938                 }
939         }
940
941         if (anon_vma) {
942                 anon_vma_interval_tree_post_update_vma(vma);
943                 if (adjust_next)
944                         anon_vma_interval_tree_post_update_vma(next);
945                 anon_vma_unlock_write(anon_vma);
946         }
947
948         if (file) {
949                 i_mmap_unlock_write(mapping);
950                 uprobe_mmap(vma);
951
952                 if (adjust_next)
953                         uprobe_mmap(next);
954         }
955
956         if (remove_next) {
957                 if (file) {
958                         uprobe_munmap(next, next->vm_start, next->vm_end);
959                         fput(file);
960                 }
961                 if (next->anon_vma)
962                         anon_vma_merge(vma, next);
963                 mm->map_count--;
964                 mpol_put(vma_policy(next));
965                 vm_area_free(next);
966                 /*
967                  * In mprotect's case 6 (see comments on vma_merge),
968                  * we must remove another next too. It would clutter
969                  * up the code too much to do both in one go.
970                  */
971                 if (remove_next != 3) {
972                         /*
973                          * If "next" was removed and vma->vm_end was
974                          * expanded (up) over it, in turn
975                          * "next->vm_prev->vm_end" changed and the
976                          * "vma->vm_next" gap must be updated.
977                          */
978                         next = vma->vm_next;
979                 } else {
980                         /*
981                          * For the scope of the comment "next" and
982                          * "vma" considered pre-swap(): if "vma" was
983                          * removed, next->vm_start was expanded (down)
984                          * over it and the "next" gap must be updated.
985                          * Because of the swap() the post-swap() "vma"
986                          * actually points to pre-swap() "next"
987                          * (post-swap() "next" as opposed is now a
988                          * dangling pointer).
989                          */
990                         next = vma;
991                 }
992                 if (remove_next == 2) {
993                         remove_next = 1;
994                         end = next->vm_end;
995                         goto again;
996                 }
997                 else if (next)
998                         vma_gap_update(next);
999                 else {
1000                         /*
1001                          * If remove_next == 2 we obviously can't
1002                          * reach this path.
1003                          *
1004                          * If remove_next == 3 we can't reach this
1005                          * path because pre-swap() next is always not
1006                          * NULL. pre-swap() "next" is not being
1007                          * removed and its next->vm_end is not altered
1008                          * (and furthermore "end" already matches
1009                          * next->vm_end in remove_next == 3).
1010                          *
1011                          * We reach this only in the remove_next == 1
1012                          * case if the "next" vma that was removed was
1013                          * the highest vma of the mm. However in such
1014                          * case next->vm_end == "end" and the extended
1015                          * "vma" has vma->vm_end == next->vm_end so
1016                          * mm->highest_vm_end doesn't need any update
1017                          * in remove_next == 1 case.
1018                          */
1019                         VM_WARN_ON(mm->highest_vm_end != vm_end_gap(vma));
1020                 }
1021         }
1022         if (insert && file)
1023                 uprobe_mmap(insert);
1024
1025         validate_mm(mm);
1026
1027         return 0;
1028 }
1029
1030 /*
1031  * If the vma has a ->close operation then the driver probably needs to release
1032  * per-vma resources, so we don't attempt to merge those.
1033  */
1034 static inline int is_mergeable_vma(struct vm_area_struct *vma,
1035                                 struct file *file, unsigned long vm_flags,
1036                                 struct vm_userfaultfd_ctx vm_userfaultfd_ctx)
1037 {
1038         /*
1039          * VM_SOFTDIRTY should not prevent from VMA merging, if we
1040          * match the flags but dirty bit -- the caller should mark
1041          * merged VMA as dirty. If dirty bit won't be excluded from
1042          * comparison, we increase pressure on the memory system forcing
1043          * the kernel to generate new VMAs when old one could be
1044          * extended instead.
1045          */
1046         if ((vma->vm_flags ^ vm_flags) & ~VM_SOFTDIRTY)
1047                 return 0;
1048         if (vma->vm_file != file)
1049                 return 0;
1050         if (vma->vm_ops && vma->vm_ops->close)
1051                 return 0;
1052         if (!is_mergeable_vm_userfaultfd_ctx(vma, vm_userfaultfd_ctx))
1053                 return 0;
1054         return 1;
1055 }
1056
1057 static inline int is_mergeable_anon_vma(struct anon_vma *anon_vma1,
1058                                         struct anon_vma *anon_vma2,
1059                                         struct vm_area_struct *vma)
1060 {
1061         /*
1062          * The list_is_singular() test is to avoid merging VMA cloned from
1063          * parents. This can improve scalability caused by anon_vma lock.
1064          */
1065         if ((!anon_vma1 || !anon_vma2) && (!vma ||
1066                 list_is_singular(&vma->anon_vma_chain)))
1067                 return 1;
1068         return anon_vma1 == anon_vma2;
1069 }
1070
1071 /*
1072  * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
1073  * in front of (at a lower virtual address and file offset than) the vma.
1074  *
1075  * We cannot merge two vmas if they have differently assigned (non-NULL)
1076  * anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
1077  *
1078  * We don't check here for the merged mmap wrapping around the end of pagecache
1079  * indices (16TB on ia32) because do_mmap() does not permit mmap's which
1080  * wrap, nor mmaps which cover the final page at index -1UL.
1081  */
1082 static int
1083 can_vma_merge_before(struct vm_area_struct *vma, unsigned long vm_flags,
1084                      struct anon_vma *anon_vma, struct file *file,
1085                      pgoff_t vm_pgoff,
1086                      struct vm_userfaultfd_ctx vm_userfaultfd_ctx)
1087 {
1088         if (is_mergeable_vma(vma, file, vm_flags, vm_userfaultfd_ctx) &&
1089             is_mergeable_anon_vma(anon_vma, vma->anon_vma, vma)) {
1090                 if (vma->vm_pgoff == vm_pgoff)
1091                         return 1;
1092         }
1093         return 0;
1094 }
1095
1096 /*
1097  * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
1098  * beyond (at a higher virtual address and file offset than) the vma.
1099  *
1100  * We cannot merge two vmas if they have differently assigned (non-NULL)
1101  * anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
1102  */
1103 static int
1104 can_vma_merge_after(struct vm_area_struct *vma, unsigned long vm_flags,
1105                     struct anon_vma *anon_vma, struct file *file,
1106                     pgoff_t vm_pgoff,
1107                     struct vm_userfaultfd_ctx vm_userfaultfd_ctx)
1108 {
1109         if (is_mergeable_vma(vma, file, vm_flags, vm_userfaultfd_ctx) &&
1110             is_mergeable_anon_vma(anon_vma, vma->anon_vma, vma)) {
1111                 pgoff_t vm_pglen;
1112                 vm_pglen = vma_pages(vma);
1113                 if (vma->vm_pgoff + vm_pglen == vm_pgoff)
1114                         return 1;
1115         }
1116         return 0;
1117 }
1118
1119 /*
1120  * Given a mapping request (addr,end,vm_flags,file,pgoff), figure out
1121  * whether that can be merged with its predecessor or its successor.
1122  * Or both (it neatly fills a hole).
1123  *
1124  * In most cases - when called for mmap, brk or mremap - [addr,end) is
1125  * certain not to be mapped by the time vma_merge is called; but when
1126  * called for mprotect, it is certain to be already mapped (either at
1127  * an offset within prev, or at the start of next), and the flags of
1128  * this area are about to be changed to vm_flags - and the no-change
1129  * case has already been eliminated.
1130  *
1131  * The following mprotect cases have to be considered, where AAAA is
1132  * the area passed down from mprotect_fixup, never extending beyond one
1133  * vma, PPPPPP is the prev vma specified, and NNNNNN the next vma after:
1134  *
1135  *     AAAA             AAAA                   AAAA
1136  *    PPPPPPNNNNNN    PPPPPPNNNNNN       PPPPPPNNNNNN
1137  *    cannot merge    might become       might become
1138  *                    PPNNNNNNNNNN       PPPPPPPPPPNN
1139  *    mmap, brk or    case 4 below       case 5 below
1140  *    mremap move:
1141  *                        AAAA               AAAA
1142  *                    PPPP    NNNN       PPPPNNNNXXXX
1143  *                    might become       might become
1144  *                    PPPPPPPPPPPP 1 or  PPPPPPPPPPPP 6 or
1145  *                    PPPPPPPPNNNN 2 or  PPPPPPPPXXXX 7 or
1146  *                    PPPPNNNNNNNN 3     PPPPXXXXXXXX 8
1147  *
1148  * It is important for case 8 that the vma NNNN overlapping the
1149  * region AAAA is never going to extended over XXXX. Instead XXXX must
1150  * be extended in region AAAA and NNNN must be removed. This way in
1151  * all cases where vma_merge succeeds, the moment vma_adjust drops the
1152  * rmap_locks, the properties of the merged vma will be already
1153  * correct for the whole merged range. Some of those properties like
1154  * vm_page_prot/vm_flags may be accessed by rmap_walks and they must
1155  * be correct for the whole merged range immediately after the
1156  * rmap_locks are released. Otherwise if XXXX would be removed and
1157  * NNNN would be extended over the XXXX range, remove_migration_ptes
1158  * or other rmap walkers (if working on addresses beyond the "end"
1159  * parameter) may establish ptes with the wrong permissions of NNNN
1160  * instead of the right permissions of XXXX.
1161  */
1162 struct vm_area_struct *vma_merge(struct mm_struct *mm,
1163                         struct vm_area_struct *prev, unsigned long addr,
1164                         unsigned long end, unsigned long vm_flags,
1165                         struct anon_vma *anon_vma, struct file *file,
1166                         pgoff_t pgoff, struct mempolicy *policy,
1167                         struct vm_userfaultfd_ctx vm_userfaultfd_ctx)
1168 {
1169         pgoff_t pglen = (end - addr) >> PAGE_SHIFT;
1170         struct vm_area_struct *area, *next;
1171         int err;
1172
1173         /*
1174          * We later require that vma->vm_flags == vm_flags,
1175          * so this tests vma->vm_flags & VM_SPECIAL, too.
1176          */
1177         if (vm_flags & VM_SPECIAL)
1178                 return NULL;
1179
1180         next = vma_next(mm, prev);
1181         area = next;
1182         if (area && area->vm_end == end)                /* cases 6, 7, 8 */
1183                 next = next->vm_next;
1184
1185         /* verify some invariant that must be enforced by the caller */
1186         VM_WARN_ON(prev && addr <= prev->vm_start);
1187         VM_WARN_ON(area && end > area->vm_end);
1188         VM_WARN_ON(addr >= end);
1189
1190         /*
1191          * Can it merge with the predecessor?
1192          */
1193         if (prev && prev->vm_end == addr &&
1194                         mpol_equal(vma_policy(prev), policy) &&
1195                         can_vma_merge_after(prev, vm_flags,
1196                                             anon_vma, file, pgoff,
1197                                             vm_userfaultfd_ctx)) {
1198                 /*
1199                  * OK, it can.  Can we now merge in the successor as well?
1200                  */
1201                 if (next && end == next->vm_start &&
1202                                 mpol_equal(policy, vma_policy(next)) &&
1203                                 can_vma_merge_before(next, vm_flags,
1204                                                      anon_vma, file,
1205                                                      pgoff+pglen,
1206                                                      vm_userfaultfd_ctx) &&
1207                                 is_mergeable_anon_vma(prev->anon_vma,
1208                                                       next->anon_vma, NULL)) {
1209                                                         /* cases 1, 6 */
1210                         err = __vma_adjust(prev, prev->vm_start,
1211                                          next->vm_end, prev->vm_pgoff, NULL,
1212                                          prev);
1213                 } else                                  /* cases 2, 5, 7 */
1214                         err = __vma_adjust(prev, prev->vm_start,
1215                                          end, prev->vm_pgoff, NULL, prev);
1216                 if (err)
1217                         return NULL;
1218                 khugepaged_enter_vma_merge(prev, vm_flags);
1219                 return prev;
1220         }
1221
1222         /*
1223          * Can this new request be merged in front of next?
1224          */
1225         if (next && end == next->vm_start &&
1226                         mpol_equal(policy, vma_policy(next)) &&
1227                         can_vma_merge_before(next, vm_flags,
1228                                              anon_vma, file, pgoff+pglen,
1229                                              vm_userfaultfd_ctx)) {
1230                 if (prev && addr < prev->vm_end)        /* case 4 */
1231                         err = __vma_adjust(prev, prev->vm_start,
1232                                          addr, prev->vm_pgoff, NULL, next);
1233                 else {                                  /* cases 3, 8 */
1234                         err = __vma_adjust(area, addr, next->vm_end,
1235                                          next->vm_pgoff - pglen, NULL, next);
1236                         /*
1237                          * In case 3 area is already equal to next and
1238                          * this is a noop, but in case 8 "area" has
1239                          * been removed and next was expanded over it.
1240                          */
1241                         area = next;
1242                 }
1243                 if (err)
1244                         return NULL;
1245                 khugepaged_enter_vma_merge(area, vm_flags);
1246                 return area;
1247         }
1248
1249         return NULL;
1250 }
1251
1252 /*
1253  * Rough compatibility check to quickly see if it's even worth looking
1254  * at sharing an anon_vma.
1255  *
1256  * They need to have the same vm_file, and the flags can only differ
1257  * in things that mprotect may change.
1258  *
1259  * NOTE! The fact that we share an anon_vma doesn't _have_ to mean that
1260  * we can merge the two vma's. For example, we refuse to merge a vma if
1261  * there is a vm_ops->close() function, because that indicates that the
1262  * driver is doing some kind of reference counting. But that doesn't
1263  * really matter for the anon_vma sharing case.
1264  */
1265 static int anon_vma_compatible(struct vm_area_struct *a, struct vm_area_struct *b)
1266 {
1267         return a->vm_end == b->vm_start &&
1268                 mpol_equal(vma_policy(a), vma_policy(b)) &&
1269                 a->vm_file == b->vm_file &&
1270                 !((a->vm_flags ^ b->vm_flags) & ~(VM_ACCESS_FLAGS | VM_SOFTDIRTY)) &&
1271                 b->vm_pgoff == a->vm_pgoff + ((b->vm_start - a->vm_start) >> PAGE_SHIFT);
1272 }
1273
1274 /*
1275  * Do some basic sanity checking to see if we can re-use the anon_vma
1276  * from 'old'. The 'a'/'b' vma's are in VM order - one of them will be
1277  * the same as 'old', the other will be the new one that is trying
1278  * to share the anon_vma.
1279  *
1280  * NOTE! This runs with mm_sem held for reading, so it is possible that
1281  * the anon_vma of 'old' is concurrently in the process of being set up
1282  * by another page fault trying to merge _that_. But that's ok: if it
1283  * is being set up, that automatically means that it will be a singleton
1284  * acceptable for merging, so we can do all of this optimistically. But
1285  * we do that READ_ONCE() to make sure that we never re-load the pointer.
1286  *
1287  * IOW: that the "list_is_singular()" test on the anon_vma_chain only
1288  * matters for the 'stable anon_vma' case (ie the thing we want to avoid
1289  * is to return an anon_vma that is "complex" due to having gone through
1290  * a fork).
1291  *
1292  * We also make sure that the two vma's are compatible (adjacent,
1293  * and with the same memory policies). That's all stable, even with just
1294  * a read lock on the mm_sem.
1295  */
1296 static struct anon_vma *reusable_anon_vma(struct vm_area_struct *old, struct vm_area_struct *a, struct vm_area_struct *b)
1297 {
1298         if (anon_vma_compatible(a, b)) {
1299                 struct anon_vma *anon_vma = READ_ONCE(old->anon_vma);
1300
1301                 if (anon_vma && list_is_singular(&old->anon_vma_chain))
1302                         return anon_vma;
1303         }
1304         return NULL;
1305 }
1306
1307 /*
1308  * find_mergeable_anon_vma is used by anon_vma_prepare, to check
1309  * neighbouring vmas for a suitable anon_vma, before it goes off
1310  * to allocate a new anon_vma.  It checks because a repetitive
1311  * sequence of mprotects and faults may otherwise lead to distinct
1312  * anon_vmas being allocated, preventing vma merge in subsequent
1313  * mprotect.
1314  */
1315 struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *vma)
1316 {
1317         struct anon_vma *anon_vma = NULL;
1318
1319         /* Try next first. */
1320         if (vma->vm_next) {
1321                 anon_vma = reusable_anon_vma(vma->vm_next, vma, vma->vm_next);
1322                 if (anon_vma)
1323                         return anon_vma;
1324         }
1325
1326         /* Try prev next. */
1327         if (vma->vm_prev)
1328                 anon_vma = reusable_anon_vma(vma->vm_prev, vma->vm_prev, vma);
1329
1330         /*
1331          * We might reach here with anon_vma == NULL if we can't find
1332          * any reusable anon_vma.
1333          * There's no absolute need to look only at touching neighbours:
1334          * we could search further afield for "compatible" anon_vmas.
1335          * But it would probably just be a waste of time searching,
1336          * or lead to too many vmas hanging off the same anon_vma.
1337          * We're trying to allow mprotect remerging later on,
1338          * not trying to minimize memory used for anon_vmas.
1339          */
1340         return anon_vma;
1341 }
1342
1343 /*
1344  * If a hint addr is less than mmap_min_addr change hint to be as
1345  * low as possible but still greater than mmap_min_addr
1346  */
1347 static inline unsigned long round_hint_to_min(unsigned long hint)
1348 {
1349         hint &= PAGE_MASK;
1350         if (((void *)hint != NULL) &&
1351             (hint < mmap_min_addr))
1352                 return PAGE_ALIGN(mmap_min_addr);
1353         return hint;
1354 }
1355
1356 int mlock_future_check(struct mm_struct *mm, unsigned long flags,
1357                        unsigned long len)
1358 {
1359         unsigned long locked, lock_limit;
1360
1361         /*  mlock MCL_FUTURE? */
1362         if (flags & VM_LOCKED) {
1363                 locked = len >> PAGE_SHIFT;
1364                 locked += mm->locked_vm;
1365                 lock_limit = rlimit(RLIMIT_MEMLOCK);
1366                 lock_limit >>= PAGE_SHIFT;
1367                 if (locked > lock_limit && !capable(CAP_IPC_LOCK))
1368                         return -EAGAIN;
1369         }
1370         return 0;
1371 }
1372
1373 static inline u64 file_mmap_size_max(struct file *file, struct inode *inode)
1374 {
1375         if (S_ISREG(inode->i_mode))
1376                 return MAX_LFS_FILESIZE;
1377
1378         if (S_ISBLK(inode->i_mode))
1379                 return MAX_LFS_FILESIZE;
1380
1381         if (S_ISSOCK(inode->i_mode))
1382                 return MAX_LFS_FILESIZE;
1383
1384         /* Special "we do even unsigned file positions" case */
1385         if (file->f_mode & FMODE_UNSIGNED_OFFSET)
1386                 return 0;
1387
1388         /* Yes, random drivers might want more. But I'm tired of buggy drivers */
1389         return ULONG_MAX;
1390 }
1391
1392 static inline bool file_mmap_ok(struct file *file, struct inode *inode,
1393                                 unsigned long pgoff, unsigned long len)
1394 {
1395         u64 maxsize = file_mmap_size_max(file, inode);
1396
1397         if (maxsize && len > maxsize)
1398                 return false;
1399         maxsize -= len;
1400         if (pgoff > maxsize >> PAGE_SHIFT)
1401                 return false;
1402         return true;
1403 }
1404
1405 /*
1406  * The caller must write-lock current->mm->mmap_lock.
1407  */
1408 unsigned long do_mmap(struct file *file, unsigned long addr,
1409                         unsigned long len, unsigned long prot,
1410                         unsigned long flags, unsigned long pgoff,
1411                         unsigned long *populate, struct list_head *uf)
1412 {
1413         struct mm_struct *mm = current->mm;
1414         vm_flags_t vm_flags;
1415         int pkey = 0;
1416
1417         *populate = 0;
1418
1419         if (!len)
1420                 return -EINVAL;
1421
1422         /*
1423          * Does the application expect PROT_READ to imply PROT_EXEC?
1424          *
1425          * (the exception is when the underlying filesystem is noexec
1426          *  mounted, in which case we dont add PROT_EXEC.)
1427          */
1428         if ((prot & PROT_READ) && (current->personality & READ_IMPLIES_EXEC))
1429                 if (!(file && path_noexec(&file->f_path)))
1430                         prot |= PROT_EXEC;
1431
1432         /* force arch specific MAP_FIXED handling in get_unmapped_area */
1433         if (flags & MAP_FIXED_NOREPLACE)
1434                 flags |= MAP_FIXED;
1435
1436         if (!(flags & MAP_FIXED))
1437                 addr = round_hint_to_min(addr);
1438
1439         /* Careful about overflows.. */
1440         len = PAGE_ALIGN(len);
1441         if (!len)
1442                 return -ENOMEM;
1443
1444         /* offset overflow? */
1445         if ((pgoff + (len >> PAGE_SHIFT)) < pgoff)
1446                 return -EOVERFLOW;
1447
1448         /* Too many mappings? */
1449         if (mm->map_count > sysctl_max_map_count)
1450                 return -ENOMEM;
1451
1452         /* Obtain the address to map to. we verify (or select) it and ensure
1453          * that it represents a valid section of the address space.
1454          */
1455         addr = get_unmapped_area(file, addr, len, pgoff, flags);
1456         if (IS_ERR_VALUE(addr))
1457                 return addr;
1458
1459         if (flags & MAP_FIXED_NOREPLACE) {
1460                 if (find_vma_intersection(mm, addr, addr + len))
1461                         return -EEXIST;
1462         }
1463
1464         if (prot == PROT_EXEC) {
1465                 pkey = execute_only_pkey(mm);
1466                 if (pkey < 0)
1467                         pkey = 0;
1468         }
1469
1470         /* Do simple checking here so the lower-level routines won't have
1471          * to. we assume access permissions have been handled by the open
1472          * of the memory object, so we don't do any here.
1473          */
1474         vm_flags = calc_vm_prot_bits(prot, pkey) | calc_vm_flag_bits(flags) |
1475                         mm->def_flags | VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC;
1476
1477         if (flags & MAP_LOCKED)
1478                 if (!can_do_mlock())
1479                         return -EPERM;
1480
1481         if (mlock_future_check(mm, vm_flags, len))
1482                 return -EAGAIN;
1483
1484         if (file) {
1485                 struct inode *inode = file_inode(file);
1486                 unsigned long flags_mask;
1487
1488                 if (!file_mmap_ok(file, inode, pgoff, len))
1489                         return -EOVERFLOW;
1490
1491                 flags_mask = LEGACY_MAP_MASK | file->f_op->mmap_supported_flags;
1492
1493                 switch (flags & MAP_TYPE) {
1494                 case MAP_SHARED:
1495                         /*
1496                          * Force use of MAP_SHARED_VALIDATE with non-legacy
1497                          * flags. E.g. MAP_SYNC is dangerous to use with
1498                          * MAP_SHARED as you don't know which consistency model
1499                          * you will get. We silently ignore unsupported flags
1500                          * with MAP_SHARED to preserve backward compatibility.
1501                          */
1502                         flags &= LEGACY_MAP_MASK;
1503                         fallthrough;
1504                 case MAP_SHARED_VALIDATE:
1505                         if (flags & ~flags_mask)
1506                                 return -EOPNOTSUPP;
1507                         if (prot & PROT_WRITE) {
1508                                 if (!(file->f_mode & FMODE_WRITE))
1509                                         return -EACCES;
1510                                 if (IS_SWAPFILE(file->f_mapping->host))
1511                                         return -ETXTBSY;
1512                         }
1513
1514                         /*
1515                          * Make sure we don't allow writing to an append-only
1516                          * file..
1517                          */
1518                         if (IS_APPEND(inode) && (file->f_mode & FMODE_WRITE))
1519                                 return -EACCES;
1520
1521                         vm_flags |= VM_SHARED | VM_MAYSHARE;
1522                         if (!(file->f_mode & FMODE_WRITE))
1523                                 vm_flags &= ~(VM_MAYWRITE | VM_SHARED);
1524                         fallthrough;
1525                 case MAP_PRIVATE:
1526                         if (!(file->f_mode & FMODE_READ))
1527                                 return -EACCES;
1528                         if (path_noexec(&file->f_path)) {
1529                                 if (vm_flags & VM_EXEC)
1530                                         return -EPERM;
1531                                 vm_flags &= ~VM_MAYEXEC;
1532                         }
1533
1534                         if (!file->f_op->mmap)
1535                                 return -ENODEV;
1536                         if (vm_flags & (VM_GROWSDOWN|VM_GROWSUP))
1537                                 return -EINVAL;
1538                         break;
1539
1540                 default:
1541                         return -EINVAL;
1542                 }
1543         } else {
1544                 switch (flags & MAP_TYPE) {
1545                 case MAP_SHARED:
1546                         if (vm_flags & (VM_GROWSDOWN|VM_GROWSUP))
1547                                 return -EINVAL;
1548                         /*
1549                          * Ignore pgoff.
1550                          */
1551                         pgoff = 0;
1552                         vm_flags |= VM_SHARED | VM_MAYSHARE;
1553                         break;
1554                 case MAP_PRIVATE:
1555                         /*
1556                          * Set pgoff according to addr for anon_vma.
1557                          */
1558                         pgoff = addr >> PAGE_SHIFT;
1559                         break;
1560                 default:
1561                         return -EINVAL;
1562                 }
1563         }
1564
1565         /*
1566          * Set 'VM_NORESERVE' if we should not account for the
1567          * memory use of this mapping.
1568          */
1569         if (flags & MAP_NORESERVE) {
1570                 /* We honor MAP_NORESERVE if allowed to overcommit */
1571                 if (sysctl_overcommit_memory != OVERCOMMIT_NEVER)
1572                         vm_flags |= VM_NORESERVE;
1573
1574                 /* hugetlb applies strict overcommit unless MAP_NORESERVE */
1575                 if (file && is_file_hugepages(file))
1576                         vm_flags |= VM_NORESERVE;
1577         }
1578
1579         addr = mmap_region(file, addr, len, vm_flags, pgoff, uf);
1580         if (!IS_ERR_VALUE(addr) &&
1581             ((vm_flags & VM_LOCKED) ||
1582              (flags & (MAP_POPULATE | MAP_NONBLOCK)) == MAP_POPULATE))
1583                 *populate = len;
1584         return addr;
1585 }
1586
1587 unsigned long ksys_mmap_pgoff(unsigned long addr, unsigned long len,
1588                               unsigned long prot, unsigned long flags,
1589                               unsigned long fd, unsigned long pgoff)
1590 {
1591         struct file *file = NULL;
1592         unsigned long retval;
1593
1594         if (!(flags & MAP_ANONYMOUS)) {
1595                 audit_mmap_fd(fd, flags);
1596                 file = fget(fd);
1597                 if (!file)
1598                         return -EBADF;
1599                 if (is_file_hugepages(file)) {
1600                         len = ALIGN(len, huge_page_size(hstate_file(file)));
1601                 } else if (unlikely(flags & MAP_HUGETLB)) {
1602                         retval = -EINVAL;
1603                         goto out_fput;
1604                 }
1605         } else if (flags & MAP_HUGETLB) {
1606                 struct ucounts *ucounts = NULL;
1607                 struct hstate *hs;
1608
1609                 hs = hstate_sizelog((flags >> MAP_HUGE_SHIFT) & MAP_HUGE_MASK);
1610                 if (!hs)
1611                         return -EINVAL;
1612
1613                 len = ALIGN(len, huge_page_size(hs));
1614                 /*
1615                  * VM_NORESERVE is used because the reservations will be
1616                  * taken when vm_ops->mmap() is called
1617                  * A dummy user value is used because we are not locking
1618                  * memory so no accounting is necessary
1619                  */
1620                 file = hugetlb_file_setup(HUGETLB_ANON_FILE, len,
1621                                 VM_NORESERVE,
1622                                 &ucounts, HUGETLB_ANONHUGE_INODE,
1623                                 (flags >> MAP_HUGE_SHIFT) & MAP_HUGE_MASK);
1624                 if (IS_ERR(file))
1625                         return PTR_ERR(file);
1626         }
1627
1628         flags &= ~MAP_DENYWRITE;
1629
1630         retval = vm_mmap_pgoff(file, addr, len, prot, flags, pgoff);
1631 out_fput:
1632         if (file)
1633                 fput(file);
1634         return retval;
1635 }
1636
1637 SYSCALL_DEFINE6(mmap_pgoff, unsigned long, addr, unsigned long, len,
1638                 unsigned long, prot, unsigned long, flags,
1639                 unsigned long, fd, unsigned long, pgoff)
1640 {
1641         return ksys_mmap_pgoff(addr, len, prot, flags, fd, pgoff);
1642 }
1643
1644 #ifdef __ARCH_WANT_SYS_OLD_MMAP
1645 struct mmap_arg_struct {
1646         unsigned long addr;
1647         unsigned long len;
1648         unsigned long prot;
1649         unsigned long flags;
1650         unsigned long fd;
1651         unsigned long offset;
1652 };
1653
1654 SYSCALL_DEFINE1(old_mmap, struct mmap_arg_struct __user *, arg)
1655 {
1656         struct mmap_arg_struct a;
1657
1658         if (copy_from_user(&a, arg, sizeof(a)))
1659                 return -EFAULT;
1660         if (offset_in_page(a.offset))
1661                 return -EINVAL;
1662
1663         return ksys_mmap_pgoff(a.addr, a.len, a.prot, a.flags, a.fd,
1664                                a.offset >> PAGE_SHIFT);
1665 }
1666 #endif /* __ARCH_WANT_SYS_OLD_MMAP */
1667
1668 /*
1669  * Some shared mappings will want the pages marked read-only
1670  * to track write events. If so, we'll downgrade vm_page_prot
1671  * to the private version (using protection_map[] without the
1672  * VM_SHARED bit).
1673  */
1674 int vma_wants_writenotify(struct vm_area_struct *vma, pgprot_t vm_page_prot)
1675 {
1676         vm_flags_t vm_flags = vma->vm_flags;
1677         const struct vm_operations_struct *vm_ops = vma->vm_ops;
1678
1679         /* If it was private or non-writable, the write bit is already clear */
1680         if ((vm_flags & (VM_WRITE|VM_SHARED)) != ((VM_WRITE|VM_SHARED)))
1681                 return 0;
1682
1683         /* The backer wishes to know when pages are first written to? */
1684         if (vm_ops && (vm_ops->page_mkwrite || vm_ops->pfn_mkwrite))
1685                 return 1;
1686
1687         /* The open routine did something to the protections that pgprot_modify
1688          * won't preserve? */
1689         if (pgprot_val(vm_page_prot) !=
1690             pgprot_val(vm_pgprot_modify(vm_page_prot, vm_flags)))
1691                 return 0;
1692
1693         /* Do we need to track softdirty? */
1694         if (IS_ENABLED(CONFIG_MEM_SOFT_DIRTY) && !(vm_flags & VM_SOFTDIRTY))
1695                 return 1;
1696
1697         /* Specialty mapping? */
1698         if (vm_flags & VM_PFNMAP)
1699                 return 0;
1700
1701         /* Can the mapping track the dirty pages? */
1702         return vma->vm_file && vma->vm_file->f_mapping &&
1703                 mapping_can_writeback(vma->vm_file->f_mapping);
1704 }
1705
1706 /*
1707  * We account for memory if it's a private writeable mapping,
1708  * not hugepages and VM_NORESERVE wasn't set.
1709  */
1710 static inline int accountable_mapping(struct file *file, vm_flags_t vm_flags)
1711 {
1712         /*
1713          * hugetlb has its own accounting separate from the core VM
1714          * VM_HUGETLB may not be set yet so we cannot check for that flag.
1715          */
1716         if (file && is_file_hugepages(file))
1717                 return 0;
1718
1719         return (vm_flags & (VM_NORESERVE | VM_SHARED | VM_WRITE)) == VM_WRITE;
1720 }
1721
1722 unsigned long mmap_region(struct file *file, unsigned long addr,
1723                 unsigned long len, vm_flags_t vm_flags, unsigned long pgoff,
1724                 struct list_head *uf)
1725 {
1726         struct mm_struct *mm = current->mm;
1727         struct vm_area_struct *vma, *prev, *merge;
1728         int error;
1729         struct rb_node **rb_link, *rb_parent;
1730         unsigned long charged = 0;
1731
1732         /* Check against address space limit. */
1733         if (!may_expand_vm(mm, vm_flags, len >> PAGE_SHIFT)) {
1734                 unsigned long nr_pages;
1735
1736                 /*
1737                  * MAP_FIXED may remove pages of mappings that intersects with
1738                  * requested mapping. Account for the pages it would unmap.
1739                  */
1740                 nr_pages = count_vma_pages_range(mm, addr, addr + len);
1741
1742                 if (!may_expand_vm(mm, vm_flags,
1743                                         (len >> PAGE_SHIFT) - nr_pages))
1744                         return -ENOMEM;
1745         }
1746
1747         /* Clear old maps, set up prev, rb_link, rb_parent, and uf */
1748         if (munmap_vma_range(mm, addr, len, &prev, &rb_link, &rb_parent, uf))
1749                 return -ENOMEM;
1750         /*
1751          * Private writable mapping: check memory availability
1752          */
1753         if (accountable_mapping(file, vm_flags)) {
1754                 charged = len >> PAGE_SHIFT;
1755                 if (security_vm_enough_memory_mm(mm, charged))
1756                         return -ENOMEM;
1757                 vm_flags |= VM_ACCOUNT;
1758         }
1759
1760         /*
1761          * Can we just expand an old mapping?
1762          */
1763         vma = vma_merge(mm, prev, addr, addr + len, vm_flags,
1764                         NULL, file, pgoff, NULL, NULL_VM_UFFD_CTX);
1765         if (vma)
1766                 goto out;
1767
1768         /*
1769          * Determine the object being mapped and call the appropriate
1770          * specific mapper. the address has already been validated, but
1771          * not unmapped, but the maps are removed from the list.
1772          */
1773         vma = vm_area_alloc(mm);
1774         if (!vma) {
1775                 error = -ENOMEM;
1776                 goto unacct_error;
1777         }
1778
1779         vma->vm_start = addr;
1780         vma->vm_end = addr + len;
1781         vma->vm_flags = vm_flags;
1782         vma->vm_page_prot = vm_get_page_prot(vm_flags);
1783         vma->vm_pgoff = pgoff;
1784
1785         if (file) {
1786                 if (vm_flags & VM_DENYWRITE) {
1787                         error = deny_write_access(file);
1788                         if (error)
1789                                 goto free_vma;
1790                 }
1791                 if (vm_flags & VM_SHARED) {
1792                         error = mapping_map_writable(file->f_mapping);
1793                         if (error)
1794                                 goto allow_write_and_free_vma;
1795                 }
1796
1797                 /* ->mmap() can change vma->vm_file, but must guarantee that
1798                  * vma_link() below can deny write-access if VM_DENYWRITE is set
1799                  * and map writably if VM_SHARED is set. This usually means the
1800                  * new file must not have been exposed to user-space, yet.
1801                  */
1802                 vma->vm_file = get_file(file);
1803                 error = call_mmap(file, vma);
1804                 if (error)
1805                         goto unmap_and_free_vma;
1806
1807                 /* Can addr have changed??
1808                  *
1809                  * Answer: Yes, several device drivers can do it in their
1810                  *         f_op->mmap method. -DaveM
1811                  * Bug: If addr is changed, prev, rb_link, rb_parent should
1812                  *      be updated for vma_link()
1813                  */
1814                 WARN_ON_ONCE(addr != vma->vm_start);
1815
1816                 addr = vma->vm_start;
1817
1818                 /* If vm_flags changed after call_mmap(), we should try merge vma again
1819                  * as we may succeed this time.
1820                  */
1821                 if (unlikely(vm_flags != vma->vm_flags && prev)) {
1822                         merge = vma_merge(mm, prev, vma->vm_start, vma->vm_end, vma->vm_flags,
1823                                 NULL, vma->vm_file, vma->vm_pgoff, NULL, NULL_VM_UFFD_CTX);
1824                         if (merge) {
1825                                 /* ->mmap() can change vma->vm_file and fput the original file. So
1826                                  * fput the vma->vm_file here or we would add an extra fput for file
1827                                  * and cause general protection fault ultimately.
1828                                  */
1829                                 fput(vma->vm_file);
1830                                 vm_area_free(vma);
1831                                 vma = merge;
1832                                 /* Update vm_flags to pick up the change. */
1833                                 vm_flags = vma->vm_flags;
1834                                 goto unmap_writable;
1835                         }
1836                 }
1837
1838                 vm_flags = vma->vm_flags;
1839         } else if (vm_flags & VM_SHARED) {
1840                 error = shmem_zero_setup(vma);
1841                 if (error)
1842                         goto free_vma;
1843         } else {
1844                 vma_set_anonymous(vma);
1845         }
1846
1847         /* Allow architectures to sanity-check the vm_flags */
1848         if (!arch_validate_flags(vma->vm_flags)) {
1849                 error = -EINVAL;
1850                 if (file)
1851                         goto unmap_and_free_vma;
1852                 else
1853                         goto free_vma;
1854         }
1855
1856         vma_link(mm, vma, prev, rb_link, rb_parent);
1857         /* Once vma denies write, undo our temporary denial count */
1858         if (file) {
1859 unmap_writable:
1860                 if (vm_flags & VM_SHARED)
1861                         mapping_unmap_writable(file->f_mapping);
1862                 if (vm_flags & VM_DENYWRITE)
1863                         allow_write_access(file);
1864         }
1865         file = vma->vm_file;
1866 out:
1867         perf_event_mmap(vma);
1868
1869         vm_stat_account(mm, vm_flags, len >> PAGE_SHIFT);
1870         if (vm_flags & VM_LOCKED) {
1871                 if ((vm_flags & VM_SPECIAL) || vma_is_dax(vma) ||
1872                                         is_vm_hugetlb_page(vma) ||
1873                                         vma == get_gate_vma(current->mm))
1874                         vma->vm_flags &= VM_LOCKED_CLEAR_MASK;
1875                 else
1876                         mm->locked_vm += (len >> PAGE_SHIFT);
1877         }
1878
1879         if (file)
1880                 uprobe_mmap(vma);
1881
1882         /*
1883          * New (or expanded) vma always get soft dirty status.
1884          * Otherwise user-space soft-dirty page tracker won't
1885          * be able to distinguish situation when vma area unmapped,
1886          * then new mapped in-place (which must be aimed as
1887          * a completely new data area).
1888          */
1889         vma->vm_flags |= VM_SOFTDIRTY;
1890
1891         vma_set_page_prot(vma);
1892
1893         return addr;
1894
1895 unmap_and_free_vma:
1896         fput(vma->vm_file);
1897         vma->vm_file = NULL;
1898
1899         /* Undo any partial mapping done by a device driver. */
1900         unmap_region(mm, vma, prev, vma->vm_start, vma->vm_end);
1901         charged = 0;
1902         if (vm_flags & VM_SHARED)
1903                 mapping_unmap_writable(file->f_mapping);
1904 allow_write_and_free_vma:
1905         if (vm_flags & VM_DENYWRITE)
1906                 allow_write_access(file);
1907 free_vma:
1908         vm_area_free(vma);
1909 unacct_error:
1910         if (charged)
1911                 vm_unacct_memory(charged);
1912         return error;
1913 }
1914
1915 static unsigned long unmapped_area(struct vm_unmapped_area_info *info)
1916 {
1917         /*
1918          * We implement the search by looking for an rbtree node that
1919          * immediately follows a suitable gap. That is,
1920          * - gap_start = vma->vm_prev->vm_end <= info->high_limit - length;
1921          * - gap_end   = vma->vm_start        >= info->low_limit  + length;
1922          * - gap_end - gap_start >= length
1923          */
1924
1925         struct mm_struct *mm = current->mm;
1926         struct vm_area_struct *vma;
1927         unsigned long length, low_limit, high_limit, gap_start, gap_end;
1928
1929         /* Adjust search length to account for worst case alignment overhead */
1930         length = info->length + info->align_mask;
1931         if (length < info->length)
1932                 return -ENOMEM;
1933
1934         /* Adjust search limits by the desired length */
1935         if (info->high_limit < length)
1936                 return -ENOMEM;
1937         high_limit = info->high_limit - length;
1938
1939         if (info->low_limit > high_limit)
1940                 return -ENOMEM;
1941         low_limit = info->low_limit + length;
1942
1943         /* Check if rbtree root looks promising */
1944         if (RB_EMPTY_ROOT(&mm->mm_rb))
1945                 goto check_highest;
1946         vma = rb_entry(mm->mm_rb.rb_node, struct vm_area_struct, vm_rb);
1947         if (vma->rb_subtree_gap < length)
1948                 goto check_highest;
1949
1950         while (true) {
1951                 /* Visit left subtree if it looks promising */
1952                 gap_end = vm_start_gap(vma);
1953                 if (gap_end >= low_limit && vma->vm_rb.rb_left) {
1954                         struct vm_area_struct *left =
1955                                 rb_entry(vma->vm_rb.rb_left,
1956                                          struct vm_area_struct, vm_rb);
1957                         if (left->rb_subtree_gap >= length) {
1958                                 vma = left;
1959                                 continue;
1960                         }
1961                 }
1962
1963                 gap_start = vma->vm_prev ? vm_end_gap(vma->vm_prev) : 0;
1964 check_current:
1965                 /* Check if current node has a suitable gap */
1966                 if (gap_start > high_limit)
1967                         return -ENOMEM;
1968                 if (gap_end >= low_limit &&
1969                     gap_end > gap_start && gap_end - gap_start >= length)
1970                         goto found;
1971
1972                 /* Visit right subtree if it looks promising */
1973                 if (vma->vm_rb.rb_right) {
1974                         struct vm_area_struct *right =
1975                                 rb_entry(vma->vm_rb.rb_right,
1976                                          struct vm_area_struct, vm_rb);
1977                         if (right->rb_subtree_gap >= length) {
1978                                 vma = right;
1979                                 continue;
1980                         }
1981                 }
1982
1983                 /* Go back up the rbtree to find next candidate node */
1984                 while (true) {
1985                         struct rb_node *prev = &vma->vm_rb;
1986                         if (!rb_parent(prev))
1987                                 goto check_highest;
1988                         vma = rb_entry(rb_parent(prev),
1989                                        struct vm_area_struct, vm_rb);
1990                         if (prev == vma->vm_rb.rb_left) {
1991                                 gap_start = vm_end_gap(vma->vm_prev);
1992                                 gap_end = vm_start_gap(vma);
1993                                 goto check_current;
1994                         }
1995                 }
1996         }
1997
1998 check_highest:
1999         /* Check highest gap, which does not precede any rbtree node */
2000         gap_start = mm->highest_vm_end;
2001         gap_end = ULONG_MAX;  /* Only for VM_BUG_ON below */
2002         if (gap_start > high_limit)
2003                 return -ENOMEM;
2004
2005 found:
2006         /* We found a suitable gap. Clip it with the original low_limit. */
2007         if (gap_start < info->low_limit)
2008                 gap_start = info->low_limit;
2009
2010         /* Adjust gap address to the desired alignment */
2011         gap_start += (info->align_offset - gap_start) & info->align_mask;
2012
2013         VM_BUG_ON(gap_start + info->length > info->high_limit);
2014         VM_BUG_ON(gap_start + info->length > gap_end);
2015         return gap_start;
2016 }
2017
2018 static unsigned long unmapped_area_topdown(struct vm_unmapped_area_info *info)
2019 {
2020         struct mm_struct *mm = current->mm;
2021         struct vm_area_struct *vma;
2022         unsigned long length, low_limit, high_limit, gap_start, gap_end;
2023
2024         /* Adjust search length to account for worst case alignment overhead */
2025         length = info->length + info->align_mask;
2026         if (length < info->length)
2027                 return -ENOMEM;
2028
2029         /*
2030          * Adjust search limits by the desired length.
2031          * See implementation comment at top of unmapped_area().
2032          */
2033         gap_end = info->high_limit;
2034         if (gap_end < length)
2035                 return -ENOMEM;
2036         high_limit = gap_end - length;
2037
2038         if (info->low_limit > high_limit)
2039                 return -ENOMEM;
2040         low_limit = info->low_limit + length;
2041
2042         /* Check highest gap, which does not precede any rbtree node */
2043         gap_start = mm->highest_vm_end;
2044         if (gap_start <= high_limit)
2045                 goto found_highest;
2046
2047         /* Check if rbtree root looks promising */
2048         if (RB_EMPTY_ROOT(&mm->mm_rb))
2049                 return -ENOMEM;
2050         vma = rb_entry(mm->mm_rb.rb_node, struct vm_area_struct, vm_rb);
2051         if (vma->rb_subtree_gap < length)
2052                 return -ENOMEM;
2053
2054         while (true) {
2055                 /* Visit right subtree if it looks promising */
2056                 gap_start = vma->vm_prev ? vm_end_gap(vma->vm_prev) : 0;
2057                 if (gap_start <= high_limit && vma->vm_rb.rb_right) {
2058                         struct vm_area_struct *right =
2059                                 rb_entry(vma->vm_rb.rb_right,
2060                                          struct vm_area_struct, vm_rb);
2061                         if (right->rb_subtree_gap >= length) {
2062                                 vma = right;
2063                                 continue;
2064                         }
2065                 }
2066
2067 check_current:
2068                 /* Check if current node has a suitable gap */
2069                 gap_end = vm_start_gap(vma);
2070                 if (gap_end < low_limit)
2071                         return -ENOMEM;
2072                 if (gap_start <= high_limit &&
2073                     gap_end > gap_start && gap_end - gap_start >= length)
2074                         goto found;
2075
2076                 /* Visit left subtree if it looks promising */
2077                 if (vma->vm_rb.rb_left) {
2078                         struct vm_area_struct *left =
2079                                 rb_entry(vma->vm_rb.rb_left,
2080                                          struct vm_area_struct, vm_rb);
2081                         if (left->rb_subtree_gap >= length) {
2082                                 vma = left;
2083                                 continue;
2084                         }
2085                 }
2086
2087                 /* Go back up the rbtree to find next candidate node */
2088                 while (true) {
2089                         struct rb_node *prev = &vma->vm_rb;
2090                         if (!rb_parent(prev))
2091                                 return -ENOMEM;
2092                         vma = rb_entry(rb_parent(prev),
2093                                        struct vm_area_struct, vm_rb);
2094                         if (prev == vma->vm_rb.rb_right) {
2095                                 gap_start = vma->vm_prev ?
2096                                         vm_end_gap(vma->vm_prev) : 0;
2097                                 goto check_current;
2098                         }
2099                 }
2100         }
2101
2102 found:
2103         /* We found a suitable gap. Clip it with the original high_limit. */
2104         if (gap_end > info->high_limit)
2105                 gap_end = info->high_limit;
2106
2107 found_highest:
2108         /* Compute highest gap address at the desired alignment */
2109         gap_end -= info->length;
2110         gap_end -= (gap_end - info->align_offset) & info->align_mask;
2111
2112         VM_BUG_ON(gap_end < info->low_limit);
2113         VM_BUG_ON(gap_end < gap_start);
2114         return gap_end;
2115 }
2116
2117 /*
2118  * Search for an unmapped address range.
2119  *
2120  * We are looking for a range that:
2121  * - does not intersect with any VMA;
2122  * - is contained within the [low_limit, high_limit) interval;
2123  * - is at least the desired size.
2124  * - satisfies (begin_addr & align_mask) == (align_offset & align_mask)
2125  */
2126 unsigned long vm_unmapped_area(struct vm_unmapped_area_info *info)
2127 {
2128         unsigned long addr;
2129
2130         if (info->flags & VM_UNMAPPED_AREA_TOPDOWN)
2131                 addr = unmapped_area_topdown(info);
2132         else
2133                 addr = unmapped_area(info);
2134
2135         trace_vm_unmapped_area(addr, info);
2136         return addr;
2137 }
2138
2139 #ifndef arch_get_mmap_end
2140 #define arch_get_mmap_end(addr) (TASK_SIZE)
2141 #endif
2142
2143 #ifndef arch_get_mmap_base
2144 #define arch_get_mmap_base(addr, base) (base)
2145 #endif
2146
2147 /* Get an address range which is currently unmapped.
2148  * For shmat() with addr=0.
2149  *
2150  * Ugly calling convention alert:
2151  * Return value with the low bits set means error value,
2152  * ie
2153  *      if (ret & ~PAGE_MASK)
2154  *              error = ret;
2155  *
2156  * This function "knows" that -ENOMEM has the bits set.
2157  */
2158 #ifndef HAVE_ARCH_UNMAPPED_AREA
2159 unsigned long
2160 arch_get_unmapped_area(struct file *filp, unsigned long addr,
2161                 unsigned long len, unsigned long pgoff, unsigned long flags)
2162 {
2163         struct mm_struct *mm = current->mm;
2164         struct vm_area_struct *vma, *prev;
2165         struct vm_unmapped_area_info info;
2166         const unsigned long mmap_end = arch_get_mmap_end(addr);
2167
2168         if (len > mmap_end - mmap_min_addr)
2169                 return -ENOMEM;
2170
2171         if (flags & MAP_FIXED)
2172                 return addr;
2173
2174         if (addr) {
2175                 addr = PAGE_ALIGN(addr);
2176                 vma = find_vma_prev(mm, addr, &prev);
2177                 if (mmap_end - len >= addr && addr >= mmap_min_addr &&
2178                     (!vma || addr + len <= vm_start_gap(vma)) &&
2179                     (!prev || addr >= vm_end_gap(prev)))
2180                         return addr;
2181         }
2182
2183         info.flags = 0;
2184         info.length = len;
2185         info.low_limit = mm->mmap_base;
2186         info.high_limit = mmap_end;
2187         info.align_mask = 0;
2188         info.align_offset = 0;
2189         return vm_unmapped_area(&info);
2190 }
2191 #endif
2192
2193 /*
2194  * This mmap-allocator allocates new areas top-down from below the
2195  * stack's low limit (the base):
2196  */
2197 #ifndef HAVE_ARCH_UNMAPPED_AREA_TOPDOWN
2198 unsigned long
2199 arch_get_unmapped_area_topdown(struct file *filp, unsigned long addr,
2200                           unsigned long len, unsigned long pgoff,
2201                           unsigned long flags)
2202 {
2203         struct vm_area_struct *vma, *prev;
2204         struct mm_struct *mm = current->mm;
2205         struct vm_unmapped_area_info info;
2206         const unsigned long mmap_end = arch_get_mmap_end(addr);
2207
2208         /* requested length too big for entire address space */
2209         if (len > mmap_end - mmap_min_addr)
2210                 return -ENOMEM;
2211
2212         if (flags & MAP_FIXED)
2213                 return addr;
2214
2215         /* requesting a specific address */
2216         if (addr) {
2217                 addr = PAGE_ALIGN(addr);
2218                 vma = find_vma_prev(mm, addr, &prev);
2219                 if (mmap_end - len >= addr && addr >= mmap_min_addr &&
2220                                 (!vma || addr + len <= vm_start_gap(vma)) &&
2221                                 (!prev || addr >= vm_end_gap(prev)))
2222                         return addr;
2223         }
2224
2225         info.flags = VM_UNMAPPED_AREA_TOPDOWN;
2226         info.length = len;
2227         info.low_limit = max(PAGE_SIZE, mmap_min_addr);
2228         info.high_limit = arch_get_mmap_base(addr, mm->mmap_base);
2229         info.align_mask = 0;
2230         info.align_offset = 0;
2231         addr = vm_unmapped_area(&info);
2232
2233         /*
2234          * A failed mmap() very likely causes application failure,
2235          * so fall back to the bottom-up function here. This scenario
2236          * can happen with large stack limits and large mmap()
2237          * allocations.
2238          */
2239         if (offset_in_page(addr)) {
2240                 VM_BUG_ON(addr != -ENOMEM);
2241                 info.flags = 0;
2242                 info.low_limit = TASK_UNMAPPED_BASE;
2243                 info.high_limit = mmap_end;
2244                 addr = vm_unmapped_area(&info);
2245         }
2246
2247         return addr;
2248 }
2249 #endif
2250
2251 unsigned long
2252 get_unmapped_area(struct file *file, unsigned long addr, unsigned long len,
2253                 unsigned long pgoff, unsigned long flags)
2254 {
2255         unsigned long (*get_area)(struct file *, unsigned long,
2256                                   unsigned long, unsigned long, unsigned long);
2257
2258         unsigned long error = arch_mmap_check(addr, len, flags);
2259         if (error)
2260                 return error;
2261
2262         /* Careful about overflows.. */
2263         if (len > TASK_SIZE)
2264                 return -ENOMEM;
2265
2266         get_area = current->mm->get_unmapped_area;
2267         if (file) {
2268                 if (file->f_op->get_unmapped_area)
2269                         get_area = file->f_op->get_unmapped_area;
2270         } else if (flags & MAP_SHARED) {
2271                 /*
2272                  * mmap_region() will call shmem_zero_setup() to create a file,
2273                  * so use shmem's get_unmapped_area in case it can be huge.
2274                  * do_mmap() will clear pgoff, so match alignment.
2275                  */
2276                 pgoff = 0;
2277                 get_area = shmem_get_unmapped_area;
2278         }
2279
2280         addr = get_area(file, addr, len, pgoff, flags);
2281         if (IS_ERR_VALUE(addr))
2282                 return addr;
2283
2284         if (addr > TASK_SIZE - len)
2285                 return -ENOMEM;
2286         if (offset_in_page(addr))
2287                 return -EINVAL;
2288
2289         error = security_mmap_addr(addr);
2290         return error ? error : addr;
2291 }
2292
2293 EXPORT_SYMBOL(get_unmapped_area);
2294
2295 /* Look up the first VMA which satisfies  addr < vm_end,  NULL if none. */
2296 struct vm_area_struct *find_vma(struct mm_struct *mm, unsigned long addr)
2297 {
2298         struct rb_node *rb_node;
2299         struct vm_area_struct *vma;
2300
2301         mmap_assert_locked(mm);
2302         /* Check the cache first. */
2303         vma = vmacache_find(mm, addr);
2304         if (likely(vma))
2305                 return vma;
2306
2307         rb_node = mm->mm_rb.rb_node;
2308
2309         while (rb_node) {
2310                 struct vm_area_struct *tmp;
2311
2312                 tmp = rb_entry(rb_node, struct vm_area_struct, vm_rb);
2313
2314                 if (tmp->vm_end > addr) {
2315                         vma = tmp;
2316                         if (tmp->vm_start <= addr)
2317                                 break;
2318                         rb_node = rb_node->rb_left;
2319                 } else
2320                         rb_node = rb_node->rb_right;
2321         }
2322
2323         if (vma)
2324                 vmacache_update(addr, vma);
2325         return vma;
2326 }
2327
2328 EXPORT_SYMBOL(find_vma);
2329
2330 /*
2331  * Same as find_vma, but also return a pointer to the previous VMA in *pprev.
2332  */
2333 struct vm_area_struct *
2334 find_vma_prev(struct mm_struct *mm, unsigned long addr,
2335                         struct vm_area_struct **pprev)
2336 {
2337         struct vm_area_struct *vma;
2338
2339         vma = find_vma(mm, addr);
2340         if (vma) {
2341                 *pprev = vma->vm_prev;
2342         } else {
2343                 struct rb_node *rb_node = rb_last(&mm->mm_rb);
2344
2345                 *pprev = rb_node ? rb_entry(rb_node, struct vm_area_struct, vm_rb) : NULL;
2346         }
2347         return vma;
2348 }
2349
2350 /*
2351  * Verify that the stack growth is acceptable and
2352  * update accounting. This is shared with both the
2353  * grow-up and grow-down cases.
2354  */
2355 static int acct_stack_growth(struct vm_area_struct *vma,
2356                              unsigned long size, unsigned long grow)
2357 {
2358         struct mm_struct *mm = vma->vm_mm;
2359         unsigned long new_start;
2360
2361         /* address space limit tests */
2362         if (!may_expand_vm(mm, vma->vm_flags, grow))
2363                 return -ENOMEM;
2364
2365         /* Stack limit test */
2366         if (size > rlimit(RLIMIT_STACK))
2367                 return -ENOMEM;
2368
2369         /* mlock limit tests */
2370         if (vma->vm_flags & VM_LOCKED) {
2371                 unsigned long locked;
2372                 unsigned long limit;
2373                 locked = mm->locked_vm + grow;
2374                 limit = rlimit(RLIMIT_MEMLOCK);
2375                 limit >>= PAGE_SHIFT;
2376                 if (locked > limit && !capable(CAP_IPC_LOCK))
2377                         return -ENOMEM;
2378         }
2379
2380         /* Check to ensure the stack will not grow into a hugetlb-only region */
2381         new_start = (vma->vm_flags & VM_GROWSUP) ? vma->vm_start :
2382                         vma->vm_end - size;
2383         if (is_hugepage_only_range(vma->vm_mm, new_start, size))
2384                 return -EFAULT;
2385
2386         /*
2387          * Overcommit..  This must be the final test, as it will
2388          * update security statistics.
2389          */
2390         if (security_vm_enough_memory_mm(mm, grow))
2391                 return -ENOMEM;
2392
2393         return 0;
2394 }
2395
2396 #if defined(CONFIG_STACK_GROWSUP) || defined(CONFIG_IA64)
2397 /*
2398  * PA-RISC uses this for its stack; IA64 for its Register Backing Store.
2399  * vma is the last one with address > vma->vm_end.  Have to extend vma.
2400  */
2401 int expand_upwards(struct vm_area_struct *vma, unsigned long address)
2402 {
2403         struct mm_struct *mm = vma->vm_mm;
2404         struct vm_area_struct *next;
2405         unsigned long gap_addr;
2406         int error = 0;
2407
2408         if (!(vma->vm_flags & VM_GROWSUP))
2409                 return -EFAULT;
2410
2411         /* Guard against exceeding limits of the address space. */
2412         address &= PAGE_MASK;
2413         if (address >= (TASK_SIZE & PAGE_MASK))
2414                 return -ENOMEM;
2415         address += PAGE_SIZE;
2416
2417         /* Enforce stack_guard_gap */
2418         gap_addr = address + stack_guard_gap;
2419
2420         /* Guard against overflow */
2421         if (gap_addr < address || gap_addr > TASK_SIZE)
2422                 gap_addr = TASK_SIZE;
2423
2424         next = vma->vm_next;
2425         if (next && next->vm_start < gap_addr && vma_is_accessible(next)) {
2426                 if (!(next->vm_flags & VM_GROWSUP))
2427                         return -ENOMEM;
2428                 /* Check that both stack segments have the same anon_vma? */
2429         }
2430
2431         /* We must make sure the anon_vma is allocated. */
2432         if (unlikely(anon_vma_prepare(vma)))
2433                 return -ENOMEM;
2434
2435         /*
2436          * vma->vm_start/vm_end cannot change under us because the caller
2437          * is required to hold the mmap_lock in read mode.  We need the
2438          * anon_vma lock to serialize against concurrent expand_stacks.
2439          */
2440         anon_vma_lock_write(vma->anon_vma);
2441
2442         /* Somebody else might have raced and expanded it already */
2443         if (address > vma->vm_end) {
2444                 unsigned long size, grow;
2445
2446                 size = address - vma->vm_start;
2447                 grow = (address - vma->vm_end) >> PAGE_SHIFT;
2448
2449                 error = -ENOMEM;
2450                 if (vma->vm_pgoff + (size >> PAGE_SHIFT) >= vma->vm_pgoff) {
2451                         error = acct_stack_growth(vma, size, grow);
2452                         if (!error) {
2453                                 /*
2454                                  * vma_gap_update() doesn't support concurrent
2455                                  * updates, but we only hold a shared mmap_lock
2456                                  * lock here, so we need to protect against
2457                                  * concurrent vma expansions.
2458                                  * anon_vma_lock_write() doesn't help here, as
2459                                  * we don't guarantee that all growable vmas
2460                                  * in a mm share the same root anon vma.
2461                                  * So, we reuse mm->page_table_lock to guard
2462                                  * against concurrent vma expansions.
2463                                  */
2464                                 spin_lock(&mm->page_table_lock);
2465                                 if (vma->vm_flags & VM_LOCKED)
2466                                         mm->locked_vm += grow;
2467                                 vm_stat_account(mm, vma->vm_flags, grow);
2468                                 anon_vma_interval_tree_pre_update_vma(vma);
2469                                 vma->vm_end = address;
2470                                 anon_vma_interval_tree_post_update_vma(vma);
2471                                 if (vma->vm_next)
2472                                         vma_gap_update(vma->vm_next);
2473                                 else
2474                                         mm->highest_vm_end = vm_end_gap(vma);
2475                                 spin_unlock(&mm->page_table_lock);
2476
2477                                 perf_event_mmap(vma);
2478                         }
2479                 }
2480         }
2481         anon_vma_unlock_write(vma->anon_vma);
2482         khugepaged_enter_vma_merge(vma, vma->vm_flags);
2483         validate_mm(mm);
2484         return error;
2485 }
2486 #endif /* CONFIG_STACK_GROWSUP || CONFIG_IA64 */
2487
2488 /*
2489  * vma is the first one with address < vma->vm_start.  Have to extend vma.
2490  */
2491 int expand_downwards(struct vm_area_struct *vma,
2492                                    unsigned long address)
2493 {
2494         struct mm_struct *mm = vma->vm_mm;
2495         struct vm_area_struct *prev;
2496         int error = 0;
2497
2498         address &= PAGE_MASK;
2499         if (address < mmap_min_addr)
2500                 return -EPERM;
2501
2502         /* Enforce stack_guard_gap */
2503         prev = vma->vm_prev;
2504         /* Check that both stack segments have the same anon_vma? */
2505         if (prev && !(prev->vm_flags & VM_GROWSDOWN) &&
2506                         vma_is_accessible(prev)) {
2507                 if (address - prev->vm_end < stack_guard_gap)
2508                         return -ENOMEM;
2509         }
2510
2511         /* We must make sure the anon_vma is allocated. */
2512         if (unlikely(anon_vma_prepare(vma)))
2513                 return -ENOMEM;
2514
2515         /*
2516          * vma->vm_start/vm_end cannot change under us because the caller
2517          * is required to hold the mmap_lock in read mode.  We need the
2518          * anon_vma lock to serialize against concurrent expand_stacks.
2519          */
2520         anon_vma_lock_write(vma->anon_vma);
2521
2522         /* Somebody else might have raced and expanded it already */
2523         if (address < vma->vm_start) {
2524                 unsigned long size, grow;
2525
2526                 size = vma->vm_end - address;
2527                 grow = (vma->vm_start - address) >> PAGE_SHIFT;
2528
2529                 error = -ENOMEM;
2530                 if (grow <= vma->vm_pgoff) {
2531                         error = acct_stack_growth(vma, size, grow);
2532                         if (!error) {
2533                                 /*
2534                                  * vma_gap_update() doesn't support concurrent
2535                                  * updates, but we only hold a shared mmap_lock
2536                                  * lock here, so we need to protect against
2537                                  * concurrent vma expansions.
2538                                  * anon_vma_lock_write() doesn't help here, as
2539                                  * we don't guarantee that all growable vmas
2540                                  * in a mm share the same root anon vma.
2541                                  * So, we reuse mm->page_table_lock to guard
2542                                  * against concurrent vma expansions.
2543                                  */
2544                                 spin_lock(&mm->page_table_lock);
2545                                 if (vma->vm_flags & VM_LOCKED)
2546                                         mm->locked_vm += grow;
2547                                 vm_stat_account(mm, vma->vm_flags, grow);
2548                                 anon_vma_interval_tree_pre_update_vma(vma);
2549                                 vma->vm_start = address;
2550                                 vma->vm_pgoff -= grow;
2551                                 anon_vma_interval_tree_post_update_vma(vma);
2552                                 vma_gap_update(vma);
2553                                 spin_unlock(&mm->page_table_lock);
2554
2555                                 perf_event_mmap(vma);
2556                         }
2557                 }
2558         }
2559         anon_vma_unlock_write(vma->anon_vma);
2560         khugepaged_enter_vma_merge(vma, vma->vm_flags);
2561         validate_mm(mm);
2562         return error;
2563 }
2564
2565 /* enforced gap between the expanding stack and other mappings. */
2566 unsigned long stack_guard_gap = 256UL<<PAGE_SHIFT;
2567
2568 static int __init cmdline_parse_stack_guard_gap(char *p)
2569 {
2570         unsigned long val;
2571         char *endptr;
2572
2573         val = simple_strtoul(p, &endptr, 10);
2574         if (!*endptr)
2575                 stack_guard_gap = val << PAGE_SHIFT;
2576
2577         return 0;
2578 }
2579 __setup("stack_guard_gap=", cmdline_parse_stack_guard_gap);
2580
2581 #ifdef CONFIG_STACK_GROWSUP
2582 int expand_stack(struct vm_area_struct *vma, unsigned long address)
2583 {
2584         return expand_upwards(vma, address);
2585 }
2586
2587 struct vm_area_struct *
2588 find_extend_vma(struct mm_struct *mm, unsigned long addr)
2589 {
2590         struct vm_area_struct *vma, *prev;
2591
2592         addr &= PAGE_MASK;
2593         vma = find_vma_prev(mm, addr, &prev);
2594         if (vma && (vma->vm_start <= addr))
2595                 return vma;
2596         /* don't alter vm_end if the coredump is running */
2597         if (!prev || expand_stack(prev, addr))
2598                 return NULL;
2599         if (prev->vm_flags & VM_LOCKED)
2600                 populate_vma_page_range(prev, addr, prev->vm_end, NULL);
2601         return prev;
2602 }
2603 #else
2604 int expand_stack(struct vm_area_struct *vma, unsigned long address)
2605 {
2606         return expand_downwards(vma, address);
2607 }
2608
2609 struct vm_area_struct *
2610 find_extend_vma(struct mm_struct *mm, unsigned long addr)
2611 {
2612         struct vm_area_struct *vma;
2613         unsigned long start;
2614
2615         addr &= PAGE_MASK;
2616         vma = find_vma(mm, addr);
2617         if (!vma)
2618                 return NULL;
2619         if (vma->vm_start <= addr)
2620                 return vma;
2621         if (!(vma->vm_flags & VM_GROWSDOWN))
2622                 return NULL;
2623         start = vma->vm_start;
2624         if (expand_stack(vma, addr))
2625                 return NULL;
2626         if (vma->vm_flags & VM_LOCKED)
2627                 populate_vma_page_range(vma, addr, start, NULL);
2628         return vma;
2629 }
2630 #endif
2631
2632 EXPORT_SYMBOL_GPL(find_extend_vma);
2633
2634 /*
2635  * Ok - we have the memory areas we should free on the vma list,
2636  * so release them, and do the vma updates.
2637  *
2638  * Called with the mm semaphore held.
2639  */
2640 static void remove_vma_list(struct mm_struct *mm, struct vm_area_struct *vma)
2641 {
2642         unsigned long nr_accounted = 0;
2643
2644         /* Update high watermark before we lower total_vm */
2645         update_hiwater_vm(mm);
2646         do {
2647                 long nrpages = vma_pages(vma);
2648
2649                 if (vma->vm_flags & VM_ACCOUNT)
2650                         nr_accounted += nrpages;
2651                 vm_stat_account(mm, vma->vm_flags, -nrpages);
2652                 vma = remove_vma(vma);
2653         } while (vma);
2654         vm_unacct_memory(nr_accounted);
2655         validate_mm(mm);
2656 }
2657
2658 /*
2659  * Get rid of page table information in the indicated region.
2660  *
2661  * Called with the mm semaphore held.
2662  */
2663 static void unmap_region(struct mm_struct *mm,
2664                 struct vm_area_struct *vma, struct vm_area_struct *prev,
2665                 unsigned long start, unsigned long end)
2666 {
2667         struct vm_area_struct *next = vma_next(mm, prev);
2668         struct mmu_gather tlb;
2669
2670         lru_add_drain();
2671         tlb_gather_mmu(&tlb, mm);
2672         update_hiwater_rss(mm);
2673         unmap_vmas(&tlb, vma, start, end);
2674         free_pgtables(&tlb, vma, prev ? prev->vm_end : FIRST_USER_ADDRESS,
2675                                  next ? next->vm_start : USER_PGTABLES_CEILING);
2676         tlb_finish_mmu(&tlb);
2677 }
2678
2679 /*
2680  * Create a list of vma's touched by the unmap, removing them from the mm's
2681  * vma list as we go..
2682  */
2683 static bool
2684 detach_vmas_to_be_unmapped(struct mm_struct *mm, struct vm_area_struct *vma,
2685         struct vm_area_struct *prev, unsigned long end)
2686 {
2687         struct vm_area_struct **insertion_point;
2688         struct vm_area_struct *tail_vma = NULL;
2689
2690         insertion_point = (prev ? &prev->vm_next : &mm->mmap);
2691         vma->vm_prev = NULL;
2692         do {
2693                 vma_rb_erase(vma, &mm->mm_rb);
2694                 mm->map_count--;
2695                 tail_vma = vma;
2696                 vma = vma->vm_next;
2697         } while (vma && vma->vm_start < end);
2698         *insertion_point = vma;
2699         if (vma) {
2700                 vma->vm_prev = prev;
2701                 vma_gap_update(vma);
2702         } else
2703                 mm->highest_vm_end = prev ? vm_end_gap(prev) : 0;
2704         tail_vma->vm_next = NULL;
2705
2706         /* Kill the cache */
2707         vmacache_invalidate(mm);
2708
2709         /*
2710          * Do not downgrade mmap_lock if we are next to VM_GROWSDOWN or
2711          * VM_GROWSUP VMA. Such VMAs can change their size under
2712          * down_read(mmap_lock) and collide with the VMA we are about to unmap.
2713          */
2714         if (vma && (vma->vm_flags & VM_GROWSDOWN))
2715                 return false;
2716         if (prev && (prev->vm_flags & VM_GROWSUP))
2717                 return false;
2718         return true;
2719 }
2720
2721 /*
2722  * __split_vma() bypasses sysctl_max_map_count checking.  We use this where it
2723  * has already been checked or doesn't make sense to fail.
2724  */
2725 int __split_vma(struct mm_struct *mm, struct vm_area_struct *vma,
2726                 unsigned long addr, int new_below)
2727 {
2728         struct vm_area_struct *new;
2729         int err;
2730
2731         if (vma->vm_ops && vma->vm_ops->may_split) {
2732                 err = vma->vm_ops->may_split(vma, addr);
2733                 if (err)
2734                         return err;
2735         }
2736
2737         new = vm_area_dup(vma);
2738         if (!new)
2739                 return -ENOMEM;
2740
2741         if (new_below)
2742                 new->vm_end = addr;
2743         else {
2744                 new->vm_start = addr;
2745                 new->vm_pgoff += ((addr - vma->vm_start) >> PAGE_SHIFT);
2746         }
2747
2748         err = vma_dup_policy(vma, new);
2749         if (err)
2750                 goto out_free_vma;
2751
2752         err = anon_vma_clone(new, vma);
2753         if (err)
2754                 goto out_free_mpol;
2755
2756         if (new->vm_file)
2757                 get_file(new->vm_file);
2758
2759         if (new->vm_ops && new->vm_ops->open)
2760                 new->vm_ops->open(new);
2761
2762         if (new_below)
2763                 err = vma_adjust(vma, addr, vma->vm_end, vma->vm_pgoff +
2764                         ((addr - new->vm_start) >> PAGE_SHIFT), new);
2765         else
2766                 err = vma_adjust(vma, vma->vm_start, addr, vma->vm_pgoff, new);
2767
2768         /* Success. */
2769         if (!err)
2770                 return 0;
2771
2772         /* Clean everything up if vma_adjust failed. */
2773         if (new->vm_ops && new->vm_ops->close)
2774                 new->vm_ops->close(new);
2775         if (new->vm_file)
2776                 fput(new->vm_file);
2777         unlink_anon_vmas(new);
2778  out_free_mpol:
2779         mpol_put(vma_policy(new));
2780  out_free_vma:
2781         vm_area_free(new);
2782         return err;
2783 }
2784
2785 /*
2786  * Split a vma into two pieces at address 'addr', a new vma is allocated
2787  * either for the first part or the tail.
2788  */
2789 int split_vma(struct mm_struct *mm, struct vm_area_struct *vma,
2790               unsigned long addr, int new_below)
2791 {
2792         if (mm->map_count >= sysctl_max_map_count)
2793                 return -ENOMEM;
2794
2795         return __split_vma(mm, vma, addr, new_below);
2796 }
2797
2798 static inline void
2799 unlock_range(struct vm_area_struct *start, unsigned long limit)
2800 {
2801         struct mm_struct *mm = start->vm_mm;
2802         struct vm_area_struct *tmp = start;
2803
2804         while (tmp && tmp->vm_start < limit) {
2805                 if (tmp->vm_flags & VM_LOCKED) {
2806                         mm->locked_vm -= vma_pages(tmp);
2807                         munlock_vma_pages_all(tmp);
2808                 }
2809
2810                 tmp = tmp->vm_next;
2811         }
2812 }
2813
2814 /* Munmap is split into 2 main parts -- this part which finds
2815  * what needs doing, and the areas themselves, which do the
2816  * work.  This now handles partial unmappings.
2817  * Jeremy Fitzhardinge <jeremy@goop.org>
2818  */
2819 int __do_munmap(struct mm_struct *mm, unsigned long start, size_t len,
2820                 struct list_head *uf, bool downgrade)
2821 {
2822         unsigned long end;
2823         struct vm_area_struct *vma, *prev, *last;
2824
2825         if ((offset_in_page(start)) || start > TASK_SIZE || len > TASK_SIZE-start)
2826                 return -EINVAL;
2827
2828         len = PAGE_ALIGN(len);
2829         end = start + len;
2830         if (len == 0)
2831                 return -EINVAL;
2832
2833         /*
2834          * arch_unmap() might do unmaps itself.  It must be called
2835          * and finish any rbtree manipulation before this code
2836          * runs and also starts to manipulate the rbtree.
2837          */
2838         arch_unmap(mm, start, end);
2839
2840         /* Find the first overlapping VMA where start < vma->vm_end */
2841         vma = find_vma_intersection(mm, start, end);
2842         if (!vma)
2843                 return 0;
2844         prev = vma->vm_prev;
2845
2846         /*
2847          * If we need to split any vma, do it now to save pain later.
2848          *
2849          * Note: mremap's move_vma VM_ACCOUNT handling assumes a partially
2850          * unmapped vm_area_struct will remain in use: so lower split_vma
2851          * places tmp vma above, and higher split_vma places tmp vma below.
2852          */
2853         if (start > vma->vm_start) {
2854                 int error;
2855
2856                 /*
2857                  * Make sure that map_count on return from munmap() will
2858                  * not exceed its limit; but let map_count go just above
2859                  * its limit temporarily, to help free resources as expected.
2860                  */
2861                 if (end < vma->vm_end && mm->map_count >= sysctl_max_map_count)
2862                         return -ENOMEM;
2863
2864                 error = __split_vma(mm, vma, start, 0);
2865                 if (error)
2866                         return error;
2867                 prev = vma;
2868         }
2869
2870         /* Does it split the last one? */
2871         last = find_vma(mm, end);
2872         if (last && end > last->vm_start) {
2873                 int error = __split_vma(mm, last, end, 1);
2874                 if (error)
2875                         return error;
2876         }
2877         vma = vma_next(mm, prev);
2878
2879         if (unlikely(uf)) {
2880                 /*
2881                  * If userfaultfd_unmap_prep returns an error the vmas
2882                  * will remain split, but userland will get a
2883                  * highly unexpected error anyway. This is no
2884                  * different than the case where the first of the two
2885                  * __split_vma fails, but we don't undo the first
2886                  * split, despite we could. This is unlikely enough
2887                  * failure that it's not worth optimizing it for.
2888                  */
2889                 int error = userfaultfd_unmap_prep(vma, start, end, uf);
2890                 if (error)
2891                         return error;
2892         }
2893
2894         /*
2895          * unlock any mlock()ed ranges before detaching vmas
2896          */
2897         if (mm->locked_vm)
2898                 unlock_range(vma, end);
2899
2900         /* Detach vmas from rbtree */
2901         if (!detach_vmas_to_be_unmapped(mm, vma, prev, end))
2902                 downgrade = false;
2903
2904         if (downgrade)
2905                 mmap_write_downgrade(mm);
2906
2907         unmap_region(mm, vma, prev, start, end);
2908
2909         /* Fix up all other VM information */
2910         remove_vma_list(mm, vma);
2911
2912         return downgrade ? 1 : 0;
2913 }
2914
2915 int do_munmap(struct mm_struct *mm, unsigned long start, size_t len,
2916               struct list_head *uf)
2917 {
2918         return __do_munmap(mm, start, len, uf, false);
2919 }
2920
2921 static int __vm_munmap(unsigned long start, size_t len, bool downgrade)
2922 {
2923         int ret;
2924         struct mm_struct *mm = current->mm;
2925         LIST_HEAD(uf);
2926
2927         if (mmap_write_lock_killable(mm))
2928                 return -EINTR;
2929
2930         ret = __do_munmap(mm, start, len, &uf, downgrade);
2931         /*
2932          * Returning 1 indicates mmap_lock is downgraded.
2933          * But 1 is not legal return value of vm_munmap() and munmap(), reset
2934          * it to 0 before return.
2935          */
2936         if (ret == 1) {
2937                 mmap_read_unlock(mm);
2938                 ret = 0;
2939         } else
2940                 mmap_write_unlock(mm);
2941
2942         userfaultfd_unmap_complete(mm, &uf);
2943         return ret;
2944 }
2945
2946 int vm_munmap(unsigned long start, size_t len)
2947 {
2948         return __vm_munmap(start, len, false);
2949 }
2950 EXPORT_SYMBOL(vm_munmap);
2951
2952 SYSCALL_DEFINE2(munmap, unsigned long, addr, size_t, len)
2953 {
2954         addr = untagged_addr(addr);
2955         profile_munmap(addr);
2956         return __vm_munmap(addr, len, true);
2957 }
2958
2959
2960 /*
2961  * Emulation of deprecated remap_file_pages() syscall.
2962  */
2963 SYSCALL_DEFINE5(remap_file_pages, unsigned long, start, unsigned long, size,
2964                 unsigned long, prot, unsigned long, pgoff, unsigned long, flags)
2965 {
2966
2967         struct mm_struct *mm = current->mm;
2968         struct vm_area_struct *vma;
2969         unsigned long populate = 0;
2970         unsigned long ret = -EINVAL;
2971         struct file *file;
2972
2973         pr_warn_once("%s (%d) uses deprecated remap_file_pages() syscall. See Documentation/vm/remap_file_pages.rst.\n",
2974                      current->comm, current->pid);
2975
2976         if (prot)
2977                 return ret;
2978         start = start & PAGE_MASK;
2979         size = size & PAGE_MASK;
2980
2981         if (start + size <= start)
2982                 return ret;
2983
2984         /* Does pgoff wrap? */
2985         if (pgoff + (size >> PAGE_SHIFT) < pgoff)
2986                 return ret;
2987
2988         if (mmap_write_lock_killable(mm))
2989                 return -EINTR;
2990
2991         vma = vma_lookup(mm, start);
2992
2993         if (!vma || !(vma->vm_flags & VM_SHARED))
2994                 goto out;
2995
2996         if (start + size > vma->vm_end) {
2997                 struct vm_area_struct *next;
2998
2999                 for (next = vma->vm_next; next; next = next->vm_next) {
3000                         /* hole between vmas ? */
3001                         if (next->vm_start != next->vm_prev->vm_end)
3002                                 goto out;
3003
3004                         if (next->vm_file != vma->vm_file)
3005                                 goto out;
3006
3007                         if (next->vm_flags != vma->vm_flags)
3008                                 goto out;
3009
3010                         if (start + size <= next->vm_end)
3011                                 break;
3012                 }
3013
3014                 if (!next)
3015                         goto out;
3016         }
3017
3018         prot |= vma->vm_flags & VM_READ ? PROT_READ : 0;
3019         prot |= vma->vm_flags & VM_WRITE ? PROT_WRITE : 0;
3020         prot |= vma->vm_flags & VM_EXEC ? PROT_EXEC : 0;
3021
3022         flags &= MAP_NONBLOCK;
3023         flags |= MAP_SHARED | MAP_FIXED | MAP_POPULATE;
3024         if (vma->vm_flags & VM_LOCKED)
3025                 flags |= MAP_LOCKED;
3026
3027         file = get_file(vma->vm_file);
3028         ret = do_mmap(vma->vm_file, start, size,
3029                         prot, flags, pgoff, &populate, NULL);
3030         fput(file);
3031 out:
3032         mmap_write_unlock(mm);
3033         if (populate)
3034                 mm_populate(ret, populate);
3035         if (!IS_ERR_VALUE(ret))
3036                 ret = 0;
3037         return ret;
3038 }
3039
3040 /*
3041  *  this is really a simplified "do_mmap".  it only handles
3042  *  anonymous maps.  eventually we may be able to do some
3043  *  brk-specific accounting here.
3044  */
3045 static int do_brk_flags(unsigned long addr, unsigned long len, unsigned long flags, struct list_head *uf)
3046 {
3047         struct mm_struct *mm = current->mm;
3048         struct vm_area_struct *vma, *prev;
3049         struct rb_node **rb_link, *rb_parent;
3050         pgoff_t pgoff = addr >> PAGE_SHIFT;
3051         int error;
3052         unsigned long mapped_addr;
3053
3054         /* Until we need other flags, refuse anything except VM_EXEC. */
3055         if ((flags & (~VM_EXEC)) != 0)
3056                 return -EINVAL;
3057         flags |= VM_DATA_DEFAULT_FLAGS | VM_ACCOUNT | mm->def_flags;
3058
3059         mapped_addr = get_unmapped_area(NULL, addr, len, 0, MAP_FIXED);
3060         if (IS_ERR_VALUE(mapped_addr))
3061                 return mapped_addr;
3062
3063         error = mlock_future_check(mm, mm->def_flags, len);
3064         if (error)
3065                 return error;
3066
3067         /* Clear old maps, set up prev, rb_link, rb_parent, and uf */
3068         if (munmap_vma_range(mm, addr, len, &prev, &rb_link, &rb_parent, uf))
3069                 return -ENOMEM;
3070
3071         /* Check against address space limits *after* clearing old maps... */
3072         if (!may_expand_vm(mm, flags, len >> PAGE_SHIFT))
3073                 return -ENOMEM;
3074
3075         if (mm->map_count > sysctl_max_map_count)
3076                 return -ENOMEM;
3077
3078         if (security_vm_enough_memory_mm(mm, len >> PAGE_SHIFT))
3079                 return -ENOMEM;
3080
3081         /* Can we just expand an old private anonymous mapping? */
3082         vma = vma_merge(mm, prev, addr, addr + len, flags,
3083                         NULL, NULL, pgoff, NULL, NULL_VM_UFFD_CTX);
3084         if (vma)
3085                 goto out;
3086
3087         /*
3088          * create a vma struct for an anonymous mapping
3089          */
3090         vma = vm_area_alloc(mm);
3091         if (!vma) {
3092                 vm_unacct_memory(len >> PAGE_SHIFT);
3093                 return -ENOMEM;
3094         }
3095
3096         vma_set_anonymous(vma);
3097         vma->vm_start = addr;
3098         vma->vm_end = addr + len;
3099         vma->vm_pgoff = pgoff;
3100         vma->vm_flags = flags;
3101         vma->vm_page_prot = vm_get_page_prot(flags);
3102         vma_link(mm, vma, prev, rb_link, rb_parent);
3103 out:
3104         perf_event_mmap(vma);
3105         mm->total_vm += len >> PAGE_SHIFT;
3106         mm->data_vm += len >> PAGE_SHIFT;
3107         if (flags & VM_LOCKED)
3108                 mm->locked_vm += (len >> PAGE_SHIFT);
3109         vma->vm_flags |= VM_SOFTDIRTY;
3110         return 0;
3111 }
3112
3113 int vm_brk_flags(unsigned long addr, unsigned long request, unsigned long flags)
3114 {
3115         struct mm_struct *mm = current->mm;
3116         unsigned long len;
3117         int ret;
3118         bool populate;
3119         LIST_HEAD(uf);
3120
3121         len = PAGE_ALIGN(request);
3122         if (len < request)
3123                 return -ENOMEM;
3124         if (!len)
3125                 return 0;
3126
3127         if (mmap_write_lock_killable(mm))
3128                 return -EINTR;
3129
3130         ret = do_brk_flags(addr, len, flags, &uf);
3131         populate = ((mm->def_flags & VM_LOCKED) != 0);
3132         mmap_write_unlock(mm);
3133         userfaultfd_unmap_complete(mm, &uf);
3134         if (populate && !ret)
3135                 mm_populate(addr, len);
3136         return ret;
3137 }
3138 EXPORT_SYMBOL(vm_brk_flags);
3139
3140 int vm_brk(unsigned long addr, unsigned long len)
3141 {
3142         return vm_brk_flags(addr, len, 0);
3143 }
3144 EXPORT_SYMBOL(vm_brk);
3145
3146 /* Release all mmaps. */
3147 void exit_mmap(struct mm_struct *mm)
3148 {
3149         struct mmu_gather tlb;
3150         struct vm_area_struct *vma;
3151         unsigned long nr_accounted = 0;
3152
3153         /* mm's last user has gone, and its about to be pulled down */
3154         mmu_notifier_release(mm);
3155
3156         if (unlikely(mm_is_oom_victim(mm))) {
3157                 /*
3158                  * Manually reap the mm to free as much memory as possible.
3159                  * Then, as the oom reaper does, set MMF_OOM_SKIP to disregard
3160                  * this mm from further consideration.  Taking mm->mmap_lock for
3161                  * write after setting MMF_OOM_SKIP will guarantee that the oom
3162                  * reaper will not run on this mm again after mmap_lock is
3163                  * dropped.
3164                  *
3165                  * Nothing can be holding mm->mmap_lock here and the above call
3166                  * to mmu_notifier_release(mm) ensures mmu notifier callbacks in
3167                  * __oom_reap_task_mm() will not block.
3168                  *
3169                  * This needs to be done before calling munlock_vma_pages_all(),
3170                  * which clears VM_LOCKED, otherwise the oom reaper cannot
3171                  * reliably test it.
3172                  */
3173                 (void)__oom_reap_task_mm(mm);
3174
3175                 set_bit(MMF_OOM_SKIP, &mm->flags);
3176                 mmap_write_lock(mm);
3177                 mmap_write_unlock(mm);
3178         }
3179
3180         if (mm->locked_vm)
3181                 unlock_range(mm->mmap, ULONG_MAX);
3182
3183         arch_exit_mmap(mm);
3184
3185         vma = mm->mmap;
3186         if (!vma)       /* Can happen if dup_mmap() received an OOM */
3187                 return;
3188
3189         lru_add_drain();
3190         flush_cache_mm(mm);
3191         tlb_gather_mmu_fullmm(&tlb, mm);
3192         /* update_hiwater_rss(mm) here? but nobody should be looking */
3193         /* Use -1 here to ensure all VMAs in the mm are unmapped */
3194         unmap_vmas(&tlb, vma, 0, -1);
3195         free_pgtables(&tlb, vma, FIRST_USER_ADDRESS, USER_PGTABLES_CEILING);
3196         tlb_finish_mmu(&tlb);
3197
3198         /*
3199          * Walk the list again, actually closing and freeing it,
3200          * with preemption enabled, without holding any MM locks.
3201          */
3202         while (vma) {
3203                 if (vma->vm_flags & VM_ACCOUNT)
3204                         nr_accounted += vma_pages(vma);
3205                 vma = remove_vma(vma);
3206                 cond_resched();
3207         }
3208         vm_unacct_memory(nr_accounted);
3209 }
3210
3211 /* Insert vm structure into process list sorted by address
3212  * and into the inode's i_mmap tree.  If vm_file is non-NULL
3213  * then i_mmap_rwsem is taken here.
3214  */
3215 int insert_vm_struct(struct mm_struct *mm, struct vm_area_struct *vma)
3216 {
3217         struct vm_area_struct *prev;
3218         struct rb_node **rb_link, *rb_parent;
3219
3220         if (find_vma_links(mm, vma->vm_start, vma->vm_end,
3221                            &prev, &rb_link, &rb_parent))
3222                 return -ENOMEM;
3223         if ((vma->vm_flags & VM_ACCOUNT) &&
3224              security_vm_enough_memory_mm(mm, vma_pages(vma)))
3225                 return -ENOMEM;
3226
3227         /*
3228          * The vm_pgoff of a purely anonymous vma should be irrelevant
3229          * until its first write fault, when page's anon_vma and index
3230          * are set.  But now set the vm_pgoff it will almost certainly
3231          * end up with (unless mremap moves it elsewhere before that
3232          * first wfault), so /proc/pid/maps tells a consistent story.
3233          *
3234          * By setting it to reflect the virtual start address of the
3235          * vma, merges and splits can happen in a seamless way, just
3236          * using the existing file pgoff checks and manipulations.
3237          * Similarly in do_mmap and in do_brk_flags.
3238          */
3239         if (vma_is_anonymous(vma)) {
3240                 BUG_ON(vma->anon_vma);
3241                 vma->vm_pgoff = vma->vm_start >> PAGE_SHIFT;
3242         }
3243
3244         vma_link(mm, vma, prev, rb_link, rb_parent);
3245         return 0;
3246 }
3247
3248 /*
3249  * Copy the vma structure to a new location in the same mm,
3250  * prior to moving page table entries, to effect an mremap move.
3251  */
3252 struct vm_area_struct *copy_vma(struct vm_area_struct **vmap,
3253         unsigned long addr, unsigned long len, pgoff_t pgoff,
3254         bool *need_rmap_locks)
3255 {
3256         struct vm_area_struct *vma = *vmap;
3257         unsigned long vma_start = vma->vm_start;
3258         struct mm_struct *mm = vma->vm_mm;
3259         struct vm_area_struct *new_vma, *prev;
3260         struct rb_node **rb_link, *rb_parent;
3261         bool faulted_in_anon_vma = true;
3262
3263         /*
3264          * If anonymous vma has not yet been faulted, update new pgoff
3265          * to match new location, to increase its chance of merging.
3266          */
3267         if (unlikely(vma_is_anonymous(vma) && !vma->anon_vma)) {
3268                 pgoff = addr >> PAGE_SHIFT;
3269                 faulted_in_anon_vma = false;
3270         }
3271
3272         if (find_vma_links(mm, addr, addr + len, &prev, &rb_link, &rb_parent))
3273                 return NULL;    /* should never get here */
3274         new_vma = vma_merge(mm, prev, addr, addr + len, vma->vm_flags,
3275                             vma->anon_vma, vma->vm_file, pgoff, vma_policy(vma),
3276                             vma->vm_userfaultfd_ctx);
3277         if (new_vma) {
3278                 /*
3279                  * Source vma may have been merged into new_vma
3280                  */
3281                 if (unlikely(vma_start >= new_vma->vm_start &&
3282                              vma_start < new_vma->vm_end)) {
3283                         /*
3284                          * The only way we can get a vma_merge with
3285                          * self during an mremap is if the vma hasn't
3286                          * been faulted in yet and we were allowed to
3287                          * reset the dst vma->vm_pgoff to the
3288                          * destination address of the mremap to allow
3289                          * the merge to happen. mremap must change the
3290                          * vm_pgoff linearity between src and dst vmas
3291                          * (in turn preventing a vma_merge) to be
3292                          * safe. It is only safe to keep the vm_pgoff
3293                          * linear if there are no pages mapped yet.
3294                          */
3295                         VM_BUG_ON_VMA(faulted_in_anon_vma, new_vma);
3296                         *vmap = vma = new_vma;
3297                 }
3298                 *need_rmap_locks = (new_vma->vm_pgoff <= vma->vm_pgoff);
3299         } else {
3300                 new_vma = vm_area_dup(vma);
3301                 if (!new_vma)
3302                         goto out;
3303                 new_vma->vm_start = addr;
3304                 new_vma->vm_end = addr + len;
3305                 new_vma->vm_pgoff = pgoff;
3306                 if (vma_dup_policy(vma, new_vma))
3307                         goto out_free_vma;
3308                 if (anon_vma_clone(new_vma, vma))
3309                         goto out_free_mempol;
3310                 if (new_vma->vm_file)
3311                         get_file(new_vma->vm_file);
3312                 if (new_vma->vm_ops && new_vma->vm_ops->open)
3313                         new_vma->vm_ops->open(new_vma);
3314                 vma_link(mm, new_vma, prev, rb_link, rb_parent);
3315                 *need_rmap_locks = false;
3316         }
3317         return new_vma;
3318
3319 out_free_mempol:
3320         mpol_put(vma_policy(new_vma));
3321 out_free_vma:
3322         vm_area_free(new_vma);
3323 out:
3324         return NULL;
3325 }
3326
3327 /*
3328  * Return true if the calling process may expand its vm space by the passed
3329  * number of pages
3330  */
3331 bool may_expand_vm(struct mm_struct *mm, vm_flags_t flags, unsigned long npages)
3332 {
3333         if (mm->total_vm + npages > rlimit(RLIMIT_AS) >> PAGE_SHIFT)
3334                 return false;
3335
3336         if (is_data_mapping(flags) &&
3337             mm->data_vm + npages > rlimit(RLIMIT_DATA) >> PAGE_SHIFT) {
3338                 /* Workaround for Valgrind */
3339                 if (rlimit(RLIMIT_DATA) == 0 &&
3340                     mm->data_vm + npages <= rlimit_max(RLIMIT_DATA) >> PAGE_SHIFT)
3341                         return true;
3342
3343                 pr_warn_once("%s (%d): VmData %lu exceed data ulimit %lu. Update limits%s.\n",
3344                              current->comm, current->pid,
3345                              (mm->data_vm + npages) << PAGE_SHIFT,
3346                              rlimit(RLIMIT_DATA),
3347                              ignore_rlimit_data ? "" : " or use boot option ignore_rlimit_data");
3348
3349                 if (!ignore_rlimit_data)
3350                         return false;
3351         }
3352
3353         return true;
3354 }
3355
3356 void vm_stat_account(struct mm_struct *mm, vm_flags_t flags, long npages)
3357 {
3358         mm->total_vm += npages;
3359
3360         if (is_exec_mapping(flags))
3361                 mm->exec_vm += npages;
3362         else if (is_stack_mapping(flags))
3363                 mm->stack_vm += npages;
3364         else if (is_data_mapping(flags))
3365                 mm->data_vm += npages;
3366 }
3367
3368 static vm_fault_t special_mapping_fault(struct vm_fault *vmf);
3369
3370 /*
3371  * Having a close hook prevents vma merging regardless of flags.
3372  */
3373 static void special_mapping_close(struct vm_area_struct *vma)
3374 {
3375 }
3376
3377 static const char *special_mapping_name(struct vm_area_struct *vma)
3378 {
3379         return ((struct vm_special_mapping *)vma->vm_private_data)->name;
3380 }
3381
3382 static int special_mapping_mremap(struct vm_area_struct *new_vma)
3383 {
3384         struct vm_special_mapping *sm = new_vma->vm_private_data;
3385
3386         if (WARN_ON_ONCE(current->mm != new_vma->vm_mm))
3387                 return -EFAULT;
3388
3389         if (sm->mremap)
3390                 return sm->mremap(sm, new_vma);
3391
3392         return 0;
3393 }
3394
3395 static int special_mapping_split(struct vm_area_struct *vma, unsigned long addr)
3396 {
3397         /*
3398          * Forbid splitting special mappings - kernel has expectations over
3399          * the number of pages in mapping. Together with VM_DONTEXPAND
3400          * the size of vma should stay the same over the special mapping's
3401          * lifetime.
3402          */
3403         return -EINVAL;
3404 }
3405
3406 static const struct vm_operations_struct special_mapping_vmops = {
3407         .close = special_mapping_close,
3408         .fault = special_mapping_fault,
3409         .mremap = special_mapping_mremap,
3410         .name = special_mapping_name,
3411         /* vDSO code relies that VVAR can't be accessed remotely */
3412         .access = NULL,
3413         .may_split = special_mapping_split,
3414 };
3415
3416 static const struct vm_operations_struct legacy_special_mapping_vmops = {
3417         .close = special_mapping_close,
3418         .fault = special_mapping_fault,
3419 };
3420
3421 static vm_fault_t special_mapping_fault(struct vm_fault *vmf)
3422 {
3423         struct vm_area_struct *vma = vmf->vma;
3424         pgoff_t pgoff;
3425         struct page **pages;
3426
3427         if (vma->vm_ops == &legacy_special_mapping_vmops) {
3428                 pages = vma->vm_private_data;
3429         } else {
3430                 struct vm_special_mapping *sm = vma->vm_private_data;
3431
3432                 if (sm->fault)
3433                         return sm->fault(sm, vmf->vma, vmf);
3434
3435                 pages = sm->pages;
3436         }
3437
3438         for (pgoff = vmf->pgoff; pgoff && *pages; ++pages)
3439                 pgoff--;
3440
3441         if (*pages) {
3442                 struct page *page = *pages;
3443                 get_page(page);
3444                 vmf->page = page;
3445                 return 0;
3446         }
3447
3448         return VM_FAULT_SIGBUS;
3449 }
3450
3451 static struct vm_area_struct *__install_special_mapping(
3452         struct mm_struct *mm,
3453         unsigned long addr, unsigned long len,
3454         unsigned long vm_flags, void *priv,
3455         const struct vm_operations_struct *ops)
3456 {
3457         int ret;
3458         struct vm_area_struct *vma;
3459
3460         vma = vm_area_alloc(mm);
3461         if (unlikely(vma == NULL))
3462                 return ERR_PTR(-ENOMEM);
3463
3464         vma->vm_start = addr;
3465         vma->vm_end = addr + len;
3466
3467         vma->vm_flags = vm_flags | mm->def_flags | VM_DONTEXPAND | VM_SOFTDIRTY;
3468         vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
3469
3470         vma->vm_ops = ops;
3471         vma->vm_private_data = priv;
3472
3473         ret = insert_vm_struct(mm, vma);
3474         if (ret)
3475                 goto out;
3476
3477         vm_stat_account(mm, vma->vm_flags, len >> PAGE_SHIFT);
3478
3479         perf_event_mmap(vma);
3480
3481         return vma;
3482
3483 out:
3484         vm_area_free(vma);
3485         return ERR_PTR(ret);
3486 }
3487
3488 bool vma_is_special_mapping(const struct vm_area_struct *vma,
3489         const struct vm_special_mapping *sm)
3490 {
3491         return vma->vm_private_data == sm &&
3492                 (vma->vm_ops == &special_mapping_vmops ||
3493                  vma->vm_ops == &legacy_special_mapping_vmops);
3494 }
3495
3496 /*
3497  * Called with mm->mmap_lock held for writing.
3498  * Insert a new vma covering the given region, with the given flags.
3499  * Its pages are supplied by the given array of struct page *.
3500  * The array can be shorter than len >> PAGE_SHIFT if it's null-terminated.
3501  * The region past the last page supplied will always produce SIGBUS.
3502  * The array pointer and the pages it points to are assumed to stay alive
3503  * for as long as this mapping might exist.
3504  */
3505 struct vm_area_struct *_install_special_mapping(
3506         struct mm_struct *mm,
3507         unsigned long addr, unsigned long len,
3508         unsigned long vm_flags, const struct vm_special_mapping *spec)
3509 {
3510         return __install_special_mapping(mm, addr, len, vm_flags, (void *)spec,
3511                                         &special_mapping_vmops);
3512 }
3513
3514 int install_special_mapping(struct mm_struct *mm,
3515                             unsigned long addr, unsigned long len,
3516                             unsigned long vm_flags, struct page **pages)
3517 {
3518         struct vm_area_struct *vma = __install_special_mapping(
3519                 mm, addr, len, vm_flags, (void *)pages,
3520                 &legacy_special_mapping_vmops);
3521
3522         return PTR_ERR_OR_ZERO(vma);
3523 }
3524
3525 static DEFINE_MUTEX(mm_all_locks_mutex);
3526
3527 static void vm_lock_anon_vma(struct mm_struct *mm, struct anon_vma *anon_vma)
3528 {
3529         if (!test_bit(0, (unsigned long *) &anon_vma->root->rb_root.rb_root.rb_node)) {
3530                 /*
3531                  * The LSB of head.next can't change from under us
3532                  * because we hold the mm_all_locks_mutex.
3533                  */
3534                 down_write_nest_lock(&anon_vma->root->rwsem, &mm->mmap_lock);
3535                 /*
3536                  * We can safely modify head.next after taking the
3537                  * anon_vma->root->rwsem. If some other vma in this mm shares
3538                  * the same anon_vma we won't take it again.
3539                  *
3540                  * No need of atomic instructions here, head.next
3541                  * can't change from under us thanks to the
3542                  * anon_vma->root->rwsem.
3543                  */
3544                 if (__test_and_set_bit(0, (unsigned long *)
3545                                        &anon_vma->root->rb_root.rb_root.rb_node))
3546                         BUG();
3547         }
3548 }
3549
3550 static void vm_lock_mapping(struct mm_struct *mm, struct address_space *mapping)
3551 {
3552         if (!test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) {
3553                 /*
3554                  * AS_MM_ALL_LOCKS can't change from under us because
3555                  * we hold the mm_all_locks_mutex.
3556                  *
3557                  * Operations on ->flags have to be atomic because
3558                  * even if AS_MM_ALL_LOCKS is stable thanks to the
3559                  * mm_all_locks_mutex, there may be other cpus
3560                  * changing other bitflags in parallel to us.
3561                  */
3562                 if (test_and_set_bit(AS_MM_ALL_LOCKS, &mapping->flags))
3563                         BUG();
3564                 down_write_nest_lock(&mapping->i_mmap_rwsem, &mm->mmap_lock);
3565         }
3566 }
3567
3568 /*
3569  * This operation locks against the VM for all pte/vma/mm related
3570  * operations that could ever happen on a certain mm. This includes
3571  * vmtruncate, try_to_unmap, and all page faults.
3572  *
3573  * The caller must take the mmap_lock in write mode before calling
3574  * mm_take_all_locks(). The caller isn't allowed to release the
3575  * mmap_lock until mm_drop_all_locks() returns.
3576  *
3577  * mmap_lock in write mode is required in order to block all operations
3578  * that could modify pagetables and free pages without need of
3579  * altering the vma layout. It's also needed in write mode to avoid new
3580  * anon_vmas to be associated with existing vmas.
3581  *
3582  * A single task can't take more than one mm_take_all_locks() in a row
3583  * or it would deadlock.
3584  *
3585  * The LSB in anon_vma->rb_root.rb_node and the AS_MM_ALL_LOCKS bitflag in
3586  * mapping->flags avoid to take the same lock twice, if more than one
3587  * vma in this mm is backed by the same anon_vma or address_space.
3588  *
3589  * We take locks in following order, accordingly to comment at beginning
3590  * of mm/rmap.c:
3591  *   - all hugetlbfs_i_mmap_rwsem_key locks (aka mapping->i_mmap_rwsem for
3592  *     hugetlb mapping);
3593  *   - all i_mmap_rwsem locks;
3594  *   - all anon_vma->rwseml
3595  *
3596  * We can take all locks within these types randomly because the VM code
3597  * doesn't nest them and we protected from parallel mm_take_all_locks() by
3598  * mm_all_locks_mutex.
3599  *
3600  * mm_take_all_locks() and mm_drop_all_locks are expensive operations
3601  * that may have to take thousand of locks.
3602  *
3603  * mm_take_all_locks() can fail if it's interrupted by signals.
3604  */
3605 int mm_take_all_locks(struct mm_struct *mm)
3606 {
3607         struct vm_area_struct *vma;
3608         struct anon_vma_chain *avc;
3609
3610         BUG_ON(mmap_read_trylock(mm));
3611
3612         mutex_lock(&mm_all_locks_mutex);
3613
3614         for (vma = mm->mmap; vma; vma = vma->vm_next) {
3615                 if (signal_pending(current))
3616                         goto out_unlock;
3617                 if (vma->vm_file && vma->vm_file->f_mapping &&
3618                                 is_vm_hugetlb_page(vma))
3619                         vm_lock_mapping(mm, vma->vm_file->f_mapping);
3620         }
3621
3622         for (vma = mm->mmap; vma; vma = vma->vm_next) {
3623                 if (signal_pending(current))
3624                         goto out_unlock;
3625                 if (vma->vm_file && vma->vm_file->f_mapping &&
3626                                 !is_vm_hugetlb_page(vma))
3627                         vm_lock_mapping(mm, vma->vm_file->f_mapping);
3628         }
3629
3630         for (vma = mm->mmap; vma; vma = vma->vm_next) {
3631                 if (signal_pending(current))
3632                         goto out_unlock;
3633                 if (vma->anon_vma)
3634                         list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
3635                                 vm_lock_anon_vma(mm, avc->anon_vma);
3636         }
3637
3638         return 0;
3639
3640 out_unlock:
3641         mm_drop_all_locks(mm);
3642         return -EINTR;
3643 }
3644
3645 static void vm_unlock_anon_vma(struct anon_vma *anon_vma)
3646 {
3647         if (test_bit(0, (unsigned long *) &anon_vma->root->rb_root.rb_root.rb_node)) {
3648                 /*
3649                  * The LSB of head.next can't change to 0 from under
3650                  * us because we hold the mm_all_locks_mutex.
3651                  *
3652                  * We must however clear the bitflag before unlocking
3653                  * the vma so the users using the anon_vma->rb_root will
3654                  * never see our bitflag.
3655                  *
3656                  * No need of atomic instructions here, head.next
3657                  * can't change from under us until we release the
3658                  * anon_vma->root->rwsem.
3659                  */
3660                 if (!__test_and_clear_bit(0, (unsigned long *)
3661                                           &anon_vma->root->rb_root.rb_root.rb_node))
3662                         BUG();
3663                 anon_vma_unlock_write(anon_vma);
3664         }
3665 }
3666
3667 static void vm_unlock_mapping(struct address_space *mapping)
3668 {
3669         if (test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) {
3670                 /*
3671                  * AS_MM_ALL_LOCKS can't change to 0 from under us
3672                  * because we hold the mm_all_locks_mutex.
3673                  */
3674                 i_mmap_unlock_write(mapping);
3675                 if (!test_and_clear_bit(AS_MM_ALL_LOCKS,
3676                                         &mapping->flags))
3677                         BUG();
3678         }
3679 }
3680
3681 /*
3682  * The mmap_lock cannot be released by the caller until
3683  * mm_drop_all_locks() returns.
3684  */
3685 void mm_drop_all_locks(struct mm_struct *mm)
3686 {
3687         struct vm_area_struct *vma;
3688         struct anon_vma_chain *avc;
3689
3690         BUG_ON(mmap_read_trylock(mm));
3691         BUG_ON(!mutex_is_locked(&mm_all_locks_mutex));
3692
3693         for (vma = mm->mmap; vma; vma = vma->vm_next) {
3694                 if (vma->anon_vma)
3695                         list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
3696                                 vm_unlock_anon_vma(avc->anon_vma);
3697                 if (vma->vm_file && vma->vm_file->f_mapping)
3698                         vm_unlock_mapping(vma->vm_file->f_mapping);
3699         }
3700
3701         mutex_unlock(&mm_all_locks_mutex);
3702 }
3703
3704 /*
3705  * initialise the percpu counter for VM
3706  */
3707 void __init mmap_init(void)
3708 {
3709         int ret;
3710
3711         ret = percpu_counter_init(&vm_committed_as, 0, GFP_KERNEL);
3712         VM_BUG_ON(ret);
3713 }
3714
3715 /*
3716  * Initialise sysctl_user_reserve_kbytes.
3717  *
3718  * This is intended to prevent a user from starting a single memory hogging
3719  * process, such that they cannot recover (kill the hog) in OVERCOMMIT_NEVER
3720  * mode.
3721  *
3722  * The default value is min(3% of free memory, 128MB)
3723  * 128MB is enough to recover with sshd/login, bash, and top/kill.
3724  */
3725 static int init_user_reserve(void)
3726 {
3727         unsigned long free_kbytes;
3728
3729         free_kbytes = global_zone_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
3730
3731         sysctl_user_reserve_kbytes = min(free_kbytes / 32, 1UL << 17);
3732         return 0;
3733 }
3734 subsys_initcall(init_user_reserve);
3735
3736 /*
3737  * Initialise sysctl_admin_reserve_kbytes.
3738  *
3739  * The purpose of sysctl_admin_reserve_kbytes is to allow the sys admin
3740  * to log in and kill a memory hogging process.
3741  *
3742  * Systems with more than 256MB will reserve 8MB, enough to recover
3743  * with sshd, bash, and top in OVERCOMMIT_GUESS. Smaller systems will
3744  * only reserve 3% of free pages by default.
3745  */
3746 static int init_admin_reserve(void)
3747 {
3748         unsigned long free_kbytes;
3749
3750         free_kbytes = global_zone_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
3751
3752         sysctl_admin_reserve_kbytes = min(free_kbytes / 32, 1UL << 13);
3753         return 0;
3754 }
3755 subsys_initcall(init_admin_reserve);
3756
3757 /*
3758  * Reinititalise user and admin reserves if memory is added or removed.
3759  *
3760  * The default user reserve max is 128MB, and the default max for the
3761  * admin reserve is 8MB. These are usually, but not always, enough to
3762  * enable recovery from a memory hogging process using login/sshd, a shell,
3763  * and tools like top. It may make sense to increase or even disable the
3764  * reserve depending on the existence of swap or variations in the recovery
3765  * tools. So, the admin may have changed them.
3766  *
3767  * If memory is added and the reserves have been eliminated or increased above
3768  * the default max, then we'll trust the admin.
3769  *
3770  * If memory is removed and there isn't enough free memory, then we
3771  * need to reset the reserves.
3772  *
3773  * Otherwise keep the reserve set by the admin.
3774  */
3775 static int reserve_mem_notifier(struct notifier_block *nb,
3776                              unsigned long action, void *data)
3777 {
3778         unsigned long tmp, free_kbytes;
3779
3780         switch (action) {
3781         case MEM_ONLINE:
3782                 /* Default max is 128MB. Leave alone if modified by operator. */
3783                 tmp = sysctl_user_reserve_kbytes;
3784                 if (0 < tmp && tmp < (1UL << 17))
3785                         init_user_reserve();
3786
3787                 /* Default max is 8MB.  Leave alone if modified by operator. */
3788                 tmp = sysctl_admin_reserve_kbytes;
3789                 if (0 < tmp && tmp < (1UL << 13))
3790                         init_admin_reserve();
3791
3792                 break;
3793         case MEM_OFFLINE:
3794                 free_kbytes = global_zone_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
3795
3796                 if (sysctl_user_reserve_kbytes > free_kbytes) {
3797                         init_user_reserve();
3798                         pr_info("vm.user_reserve_kbytes reset to %lu\n",
3799                                 sysctl_user_reserve_kbytes);
3800                 }
3801
3802                 if (sysctl_admin_reserve_kbytes > free_kbytes) {
3803                         init_admin_reserve();
3804                         pr_info("vm.admin_reserve_kbytes reset to %lu\n",
3805                                 sysctl_admin_reserve_kbytes);
3806                 }
3807                 break;
3808         default:
3809                 break;
3810         }
3811         return NOTIFY_OK;
3812 }
3813
3814 static struct notifier_block reserve_mem_nb = {
3815         .notifier_call = reserve_mem_notifier,
3816 };
3817
3818 static int __meminit init_reserve_notifier(void)
3819 {
3820         if (register_hotmemory_notifier(&reserve_mem_nb))
3821                 pr_err("Failed registering memory add/remove notifier for admin reserve\n");
3822
3823         return 0;
3824 }
3825 subsys_initcall(init_reserve_notifier);