1 // SPDX-License-Identifier: GPL-2.0-only
7 * Address space accounting code <alan@lxorguk.ukuu.org.uk>
10 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
12 #include <linux/kernel.h>
13 #include <linux/slab.h>
14 #include <linux/backing-dev.h>
16 #include <linux/vmacache.h>
17 #include <linux/shm.h>
18 #include <linux/mman.h>
19 #include <linux/pagemap.h>
20 #include <linux/swap.h>
21 #include <linux/syscalls.h>
22 #include <linux/capability.h>
23 #include <linux/init.h>
24 #include <linux/file.h>
26 #include <linux/personality.h>
27 #include <linux/security.h>
28 #include <linux/hugetlb.h>
29 #include <linux/shmem_fs.h>
30 #include <linux/profile.h>
31 #include <linux/export.h>
32 #include <linux/mount.h>
33 #include <linux/mempolicy.h>
34 #include <linux/rmap.h>
35 #include <linux/mmu_notifier.h>
36 #include <linux/mmdebug.h>
37 #include <linux/perf_event.h>
38 #include <linux/audit.h>
39 #include <linux/khugepaged.h>
40 #include <linux/uprobes.h>
41 #include <linux/rbtree_augmented.h>
42 #include <linux/notifier.h>
43 #include <linux/memory.h>
44 #include <linux/printk.h>
45 #include <linux/userfaultfd_k.h>
46 #include <linux/moduleparam.h>
47 #include <linux/pkeys.h>
48 #include <linux/oom.h>
49 #include <linux/sched/mm.h>
51 #include <linux/uaccess.h>
52 #include <asm/cacheflush.h>
54 #include <asm/mmu_context.h>
56 #define CREATE_TRACE_POINTS
57 #include <trace/events/mmap.h>
61 #ifndef arch_mmap_check
62 #define arch_mmap_check(addr, len, flags) (0)
65 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_BITS
66 const int mmap_rnd_bits_min = CONFIG_ARCH_MMAP_RND_BITS_MIN;
67 const int mmap_rnd_bits_max = CONFIG_ARCH_MMAP_RND_BITS_MAX;
68 int mmap_rnd_bits __read_mostly = CONFIG_ARCH_MMAP_RND_BITS;
70 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS
71 const int mmap_rnd_compat_bits_min = CONFIG_ARCH_MMAP_RND_COMPAT_BITS_MIN;
72 const int mmap_rnd_compat_bits_max = CONFIG_ARCH_MMAP_RND_COMPAT_BITS_MAX;
73 int mmap_rnd_compat_bits __read_mostly = CONFIG_ARCH_MMAP_RND_COMPAT_BITS;
76 static bool ignore_rlimit_data;
77 core_param(ignore_rlimit_data, ignore_rlimit_data, bool, 0644);
79 static void unmap_region(struct mm_struct *mm,
80 struct vm_area_struct *vma, struct vm_area_struct *prev,
81 unsigned long start, unsigned long end);
83 /* description of effects of mapping type and prot in current implementation.
84 * this is due to the limited x86 page protection hardware. The expected
85 * behavior is in parens:
88 * PROT_NONE PROT_READ PROT_WRITE PROT_EXEC
89 * MAP_SHARED r: (no) no r: (yes) yes r: (no) yes r: (no) yes
90 * w: (no) no w: (no) no w: (yes) yes w: (no) no
91 * x: (no) no x: (no) yes x: (no) yes x: (yes) yes
93 * MAP_PRIVATE r: (no) no r: (yes) yes r: (no) yes r: (no) yes
94 * w: (no) no w: (no) no w: (copy) copy w: (no) no
95 * x: (no) no x: (no) yes x: (no) yes x: (yes) yes
97 * On arm64, PROT_EXEC has the following behaviour for both MAP_SHARED and
98 * MAP_PRIVATE (with Enhanced PAN supported):
103 pgprot_t protection_map[16] __ro_after_init = {
104 __P000, __P001, __P010, __P011, __P100, __P101, __P110, __P111,
105 __S000, __S001, __S010, __S011, __S100, __S101, __S110, __S111
108 #ifndef CONFIG_ARCH_HAS_FILTER_PGPROT
109 static inline pgprot_t arch_filter_pgprot(pgprot_t prot)
115 pgprot_t vm_get_page_prot(unsigned long vm_flags)
117 pgprot_t ret = __pgprot(pgprot_val(protection_map[vm_flags &
118 (VM_READ|VM_WRITE|VM_EXEC|VM_SHARED)]) |
119 pgprot_val(arch_vm_get_page_prot(vm_flags)));
121 return arch_filter_pgprot(ret);
123 EXPORT_SYMBOL(vm_get_page_prot);
125 static pgprot_t vm_pgprot_modify(pgprot_t oldprot, unsigned long vm_flags)
127 return pgprot_modify(oldprot, vm_get_page_prot(vm_flags));
130 /* Update vma->vm_page_prot to reflect vma->vm_flags. */
131 void vma_set_page_prot(struct vm_area_struct *vma)
133 unsigned long vm_flags = vma->vm_flags;
134 pgprot_t vm_page_prot;
136 vm_page_prot = vm_pgprot_modify(vma->vm_page_prot, vm_flags);
137 if (vma_wants_writenotify(vma, vm_page_prot)) {
138 vm_flags &= ~VM_SHARED;
139 vm_page_prot = vm_pgprot_modify(vm_page_prot, vm_flags);
141 /* remove_protection_ptes reads vma->vm_page_prot without mmap_lock */
142 WRITE_ONCE(vma->vm_page_prot, vm_page_prot);
146 * Requires inode->i_mapping->i_mmap_rwsem
148 static void __remove_shared_vm_struct(struct vm_area_struct *vma,
149 struct file *file, struct address_space *mapping)
151 if (vma->vm_flags & VM_DENYWRITE)
152 allow_write_access(file);
153 if (vma->vm_flags & VM_SHARED)
154 mapping_unmap_writable(mapping);
156 flush_dcache_mmap_lock(mapping);
157 vma_interval_tree_remove(vma, &mapping->i_mmap);
158 flush_dcache_mmap_unlock(mapping);
162 * Unlink a file-based vm structure from its interval tree, to hide
163 * vma from rmap and vmtruncate before freeing its page tables.
165 void unlink_file_vma(struct vm_area_struct *vma)
167 struct file *file = vma->vm_file;
170 struct address_space *mapping = file->f_mapping;
171 i_mmap_lock_write(mapping);
172 __remove_shared_vm_struct(vma, file, mapping);
173 i_mmap_unlock_write(mapping);
178 * Close a vm structure and free it, returning the next.
180 static struct vm_area_struct *remove_vma(struct vm_area_struct *vma)
182 struct vm_area_struct *next = vma->vm_next;
185 if (vma->vm_ops && vma->vm_ops->close)
186 vma->vm_ops->close(vma);
189 mpol_put(vma_policy(vma));
194 static int do_brk_flags(unsigned long addr, unsigned long request, unsigned long flags,
195 struct list_head *uf);
196 SYSCALL_DEFINE1(brk, unsigned long, brk)
198 unsigned long newbrk, oldbrk, origbrk;
199 struct mm_struct *mm = current->mm;
200 struct vm_area_struct *next;
201 unsigned long min_brk;
203 bool downgraded = false;
206 if (mmap_write_lock_killable(mm))
211 #ifdef CONFIG_COMPAT_BRK
213 * CONFIG_COMPAT_BRK can still be overridden by setting
214 * randomize_va_space to 2, which will still cause mm->start_brk
215 * to be arbitrarily shifted
217 if (current->brk_randomized)
218 min_brk = mm->start_brk;
220 min_brk = mm->end_data;
222 min_brk = mm->start_brk;
228 * Check against rlimit here. If this check is done later after the test
229 * of oldbrk with newbrk then it can escape the test and let the data
230 * segment grow beyond its set limit the in case where the limit is
231 * not page aligned -Ram Gupta
233 if (check_data_rlimit(rlimit(RLIMIT_DATA), brk, mm->start_brk,
234 mm->end_data, mm->start_data))
237 newbrk = PAGE_ALIGN(brk);
238 oldbrk = PAGE_ALIGN(mm->brk);
239 if (oldbrk == newbrk) {
245 * Always allow shrinking brk.
246 * __do_munmap() may downgrade mmap_lock to read.
248 if (brk <= mm->brk) {
252 * mm->brk must to be protected by write mmap_lock so update it
253 * before downgrading mmap_lock. When __do_munmap() fails,
254 * mm->brk will be restored from origbrk.
257 ret = __do_munmap(mm, newbrk, oldbrk-newbrk, &uf, true);
261 } else if (ret == 1) {
267 /* Check against existing mmap mappings. */
268 next = find_vma(mm, oldbrk);
269 if (next && newbrk + PAGE_SIZE > vm_start_gap(next))
272 /* Ok, looks good - let it rip. */
273 if (do_brk_flags(oldbrk, newbrk-oldbrk, 0, &uf) < 0)
278 populate = newbrk > oldbrk && (mm->def_flags & VM_LOCKED) != 0;
280 mmap_read_unlock(mm);
282 mmap_write_unlock(mm);
283 userfaultfd_unmap_complete(mm, &uf);
285 mm_populate(oldbrk, newbrk - oldbrk);
289 mmap_write_unlock(mm);
293 static inline unsigned long vma_compute_gap(struct vm_area_struct *vma)
295 unsigned long gap, prev_end;
298 * Note: in the rare case of a VM_GROWSDOWN above a VM_GROWSUP, we
299 * allow two stack_guard_gaps between them here, and when choosing
300 * an unmapped area; whereas when expanding we only require one.
301 * That's a little inconsistent, but keeps the code here simpler.
303 gap = vm_start_gap(vma);
305 prev_end = vm_end_gap(vma->vm_prev);
314 #ifdef CONFIG_DEBUG_VM_RB
315 static unsigned long vma_compute_subtree_gap(struct vm_area_struct *vma)
317 unsigned long max = vma_compute_gap(vma), subtree_gap;
318 if (vma->vm_rb.rb_left) {
319 subtree_gap = rb_entry(vma->vm_rb.rb_left,
320 struct vm_area_struct, vm_rb)->rb_subtree_gap;
321 if (subtree_gap > max)
324 if (vma->vm_rb.rb_right) {
325 subtree_gap = rb_entry(vma->vm_rb.rb_right,
326 struct vm_area_struct, vm_rb)->rb_subtree_gap;
327 if (subtree_gap > max)
333 static int browse_rb(struct mm_struct *mm)
335 struct rb_root *root = &mm->mm_rb;
336 int i = 0, j, bug = 0;
337 struct rb_node *nd, *pn = NULL;
338 unsigned long prev = 0, pend = 0;
340 for (nd = rb_first(root); nd; nd = rb_next(nd)) {
341 struct vm_area_struct *vma;
342 vma = rb_entry(nd, struct vm_area_struct, vm_rb);
343 if (vma->vm_start < prev) {
344 pr_emerg("vm_start %lx < prev %lx\n",
345 vma->vm_start, prev);
348 if (vma->vm_start < pend) {
349 pr_emerg("vm_start %lx < pend %lx\n",
350 vma->vm_start, pend);
353 if (vma->vm_start > vma->vm_end) {
354 pr_emerg("vm_start %lx > vm_end %lx\n",
355 vma->vm_start, vma->vm_end);
358 spin_lock(&mm->page_table_lock);
359 if (vma->rb_subtree_gap != vma_compute_subtree_gap(vma)) {
360 pr_emerg("free gap %lx, correct %lx\n",
362 vma_compute_subtree_gap(vma));
365 spin_unlock(&mm->page_table_lock);
368 prev = vma->vm_start;
372 for (nd = pn; nd; nd = rb_prev(nd))
375 pr_emerg("backwards %d, forwards %d\n", j, i);
381 static void validate_mm_rb(struct rb_root *root, struct vm_area_struct *ignore)
385 for (nd = rb_first(root); nd; nd = rb_next(nd)) {
386 struct vm_area_struct *vma;
387 vma = rb_entry(nd, struct vm_area_struct, vm_rb);
388 VM_BUG_ON_VMA(vma != ignore &&
389 vma->rb_subtree_gap != vma_compute_subtree_gap(vma),
394 static void validate_mm(struct mm_struct *mm)
398 unsigned long highest_address = 0;
399 struct vm_area_struct *vma = mm->mmap;
402 struct anon_vma *anon_vma = vma->anon_vma;
403 struct anon_vma_chain *avc;
406 anon_vma_lock_read(anon_vma);
407 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
408 anon_vma_interval_tree_verify(avc);
409 anon_vma_unlock_read(anon_vma);
412 highest_address = vm_end_gap(vma);
416 if (i != mm->map_count) {
417 pr_emerg("map_count %d vm_next %d\n", mm->map_count, i);
420 if (highest_address != mm->highest_vm_end) {
421 pr_emerg("mm->highest_vm_end %lx, found %lx\n",
422 mm->highest_vm_end, highest_address);
426 if (i != mm->map_count) {
428 pr_emerg("map_count %d rb %d\n", mm->map_count, i);
431 VM_BUG_ON_MM(bug, mm);
434 #define validate_mm_rb(root, ignore) do { } while (0)
435 #define validate_mm(mm) do { } while (0)
438 RB_DECLARE_CALLBACKS_MAX(static, vma_gap_callbacks,
439 struct vm_area_struct, vm_rb,
440 unsigned long, rb_subtree_gap, vma_compute_gap)
443 * Update augmented rbtree rb_subtree_gap values after vma->vm_start or
444 * vma->vm_prev->vm_end values changed, without modifying the vma's position
447 static void vma_gap_update(struct vm_area_struct *vma)
450 * As it turns out, RB_DECLARE_CALLBACKS_MAX() already created
451 * a callback function that does exactly what we want.
453 vma_gap_callbacks_propagate(&vma->vm_rb, NULL);
456 static inline void vma_rb_insert(struct vm_area_struct *vma,
457 struct rb_root *root)
459 /* All rb_subtree_gap values must be consistent prior to insertion */
460 validate_mm_rb(root, NULL);
462 rb_insert_augmented(&vma->vm_rb, root, &vma_gap_callbacks);
465 static void __vma_rb_erase(struct vm_area_struct *vma, struct rb_root *root)
468 * Note rb_erase_augmented is a fairly large inline function,
469 * so make sure we instantiate it only once with our desired
470 * augmented rbtree callbacks.
472 rb_erase_augmented(&vma->vm_rb, root, &vma_gap_callbacks);
475 static __always_inline void vma_rb_erase_ignore(struct vm_area_struct *vma,
476 struct rb_root *root,
477 struct vm_area_struct *ignore)
480 * All rb_subtree_gap values must be consistent prior to erase,
481 * with the possible exception of
483 * a. the "next" vma being erased if next->vm_start was reduced in
484 * __vma_adjust() -> __vma_unlink()
485 * b. the vma being erased in detach_vmas_to_be_unmapped() ->
488 validate_mm_rb(root, ignore);
490 __vma_rb_erase(vma, root);
493 static __always_inline void vma_rb_erase(struct vm_area_struct *vma,
494 struct rb_root *root)
496 vma_rb_erase_ignore(vma, root, vma);
500 * vma has some anon_vma assigned, and is already inserted on that
501 * anon_vma's interval trees.
503 * Before updating the vma's vm_start / vm_end / vm_pgoff fields, the
504 * vma must be removed from the anon_vma's interval trees using
505 * anon_vma_interval_tree_pre_update_vma().
507 * After the update, the vma will be reinserted using
508 * anon_vma_interval_tree_post_update_vma().
510 * The entire update must be protected by exclusive mmap_lock and by
511 * the root anon_vma's mutex.
514 anon_vma_interval_tree_pre_update_vma(struct vm_area_struct *vma)
516 struct anon_vma_chain *avc;
518 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
519 anon_vma_interval_tree_remove(avc, &avc->anon_vma->rb_root);
523 anon_vma_interval_tree_post_update_vma(struct vm_area_struct *vma)
525 struct anon_vma_chain *avc;
527 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
528 anon_vma_interval_tree_insert(avc, &avc->anon_vma->rb_root);
531 static int find_vma_links(struct mm_struct *mm, unsigned long addr,
532 unsigned long end, struct vm_area_struct **pprev,
533 struct rb_node ***rb_link, struct rb_node **rb_parent)
535 struct rb_node **__rb_link, *__rb_parent, *rb_prev;
537 mmap_assert_locked(mm);
538 __rb_link = &mm->mm_rb.rb_node;
539 rb_prev = __rb_parent = NULL;
542 struct vm_area_struct *vma_tmp;
544 __rb_parent = *__rb_link;
545 vma_tmp = rb_entry(__rb_parent, struct vm_area_struct, vm_rb);
547 if (vma_tmp->vm_end > addr) {
548 /* Fail if an existing vma overlaps the area */
549 if (vma_tmp->vm_start < end)
551 __rb_link = &__rb_parent->rb_left;
553 rb_prev = __rb_parent;
554 __rb_link = &__rb_parent->rb_right;
560 *pprev = rb_entry(rb_prev, struct vm_area_struct, vm_rb);
561 *rb_link = __rb_link;
562 *rb_parent = __rb_parent;
567 * vma_next() - Get the next VMA.
568 * @mm: The mm_struct.
569 * @vma: The current vma.
571 * If @vma is NULL, return the first vma in the mm.
573 * Returns: The next VMA after @vma.
575 static inline struct vm_area_struct *vma_next(struct mm_struct *mm,
576 struct vm_area_struct *vma)
585 * munmap_vma_range() - munmap VMAs that overlap a range.
587 * @start: The start of the range.
588 * @len: The length of the range.
589 * @pprev: pointer to the pointer that will be set to previous vm_area_struct
590 * @rb_link: the rb_node
591 * @rb_parent: the parent rb_node
593 * Find all the vm_area_struct that overlap from @start to
594 * @end and munmap them. Set @pprev to the previous vm_area_struct.
596 * Returns: -ENOMEM on munmap failure or 0 on success.
599 munmap_vma_range(struct mm_struct *mm, unsigned long start, unsigned long len,
600 struct vm_area_struct **pprev, struct rb_node ***link,
601 struct rb_node **parent, struct list_head *uf)
604 while (find_vma_links(mm, start, start + len, pprev, link, parent))
605 if (do_munmap(mm, start, len, uf))
610 static unsigned long count_vma_pages_range(struct mm_struct *mm,
611 unsigned long addr, unsigned long end)
613 unsigned long nr_pages = 0;
614 struct vm_area_struct *vma;
616 /* Find first overlapping mapping */
617 vma = find_vma_intersection(mm, addr, end);
621 nr_pages = (min(end, vma->vm_end) -
622 max(addr, vma->vm_start)) >> PAGE_SHIFT;
624 /* Iterate over the rest of the overlaps */
625 for (vma = vma->vm_next; vma; vma = vma->vm_next) {
626 unsigned long overlap_len;
628 if (vma->vm_start > end)
631 overlap_len = min(end, vma->vm_end) - vma->vm_start;
632 nr_pages += overlap_len >> PAGE_SHIFT;
638 void __vma_link_rb(struct mm_struct *mm, struct vm_area_struct *vma,
639 struct rb_node **rb_link, struct rb_node *rb_parent)
641 /* Update tracking information for the gap following the new vma. */
643 vma_gap_update(vma->vm_next);
645 mm->highest_vm_end = vm_end_gap(vma);
648 * vma->vm_prev wasn't known when we followed the rbtree to find the
649 * correct insertion point for that vma. As a result, we could not
650 * update the vma vm_rb parents rb_subtree_gap values on the way down.
651 * So, we first insert the vma with a zero rb_subtree_gap value
652 * (to be consistent with what we did on the way down), and then
653 * immediately update the gap to the correct value. Finally we
654 * rebalance the rbtree after all augmented values have been set.
656 rb_link_node(&vma->vm_rb, rb_parent, rb_link);
657 vma->rb_subtree_gap = 0;
659 vma_rb_insert(vma, &mm->mm_rb);
662 static void __vma_link_file(struct vm_area_struct *vma)
668 struct address_space *mapping = file->f_mapping;
670 if (vma->vm_flags & VM_DENYWRITE)
671 put_write_access(file_inode(file));
672 if (vma->vm_flags & VM_SHARED)
673 mapping_allow_writable(mapping);
675 flush_dcache_mmap_lock(mapping);
676 vma_interval_tree_insert(vma, &mapping->i_mmap);
677 flush_dcache_mmap_unlock(mapping);
682 __vma_link(struct mm_struct *mm, struct vm_area_struct *vma,
683 struct vm_area_struct *prev, struct rb_node **rb_link,
684 struct rb_node *rb_parent)
686 __vma_link_list(mm, vma, prev);
687 __vma_link_rb(mm, vma, rb_link, rb_parent);
690 static void vma_link(struct mm_struct *mm, struct vm_area_struct *vma,
691 struct vm_area_struct *prev, struct rb_node **rb_link,
692 struct rb_node *rb_parent)
694 struct address_space *mapping = NULL;
697 mapping = vma->vm_file->f_mapping;
698 i_mmap_lock_write(mapping);
701 __vma_link(mm, vma, prev, rb_link, rb_parent);
702 __vma_link_file(vma);
705 i_mmap_unlock_write(mapping);
712 * Helper for vma_adjust() in the split_vma insert case: insert a vma into the
713 * mm's list and rbtree. It has already been inserted into the interval tree.
715 static void __insert_vm_struct(struct mm_struct *mm, struct vm_area_struct *vma)
717 struct vm_area_struct *prev;
718 struct rb_node **rb_link, *rb_parent;
720 if (find_vma_links(mm, vma->vm_start, vma->vm_end,
721 &prev, &rb_link, &rb_parent))
723 __vma_link(mm, vma, prev, rb_link, rb_parent);
727 static __always_inline void __vma_unlink(struct mm_struct *mm,
728 struct vm_area_struct *vma,
729 struct vm_area_struct *ignore)
731 vma_rb_erase_ignore(vma, &mm->mm_rb, ignore);
732 __vma_unlink_list(mm, vma);
734 vmacache_invalidate(mm);
738 * We cannot adjust vm_start, vm_end, vm_pgoff fields of a vma that
739 * is already present in an i_mmap tree without adjusting the tree.
740 * The following helper function should be used when such adjustments
741 * are necessary. The "insert" vma (if any) is to be inserted
742 * before we drop the necessary locks.
744 int __vma_adjust(struct vm_area_struct *vma, unsigned long start,
745 unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert,
746 struct vm_area_struct *expand)
748 struct mm_struct *mm = vma->vm_mm;
749 struct vm_area_struct *next = vma->vm_next, *orig_vma = vma;
750 struct address_space *mapping = NULL;
751 struct rb_root_cached *root = NULL;
752 struct anon_vma *anon_vma = NULL;
753 struct file *file = vma->vm_file;
754 bool start_changed = false, end_changed = false;
755 long adjust_next = 0;
758 if (next && !insert) {
759 struct vm_area_struct *exporter = NULL, *importer = NULL;
761 if (end >= next->vm_end) {
763 * vma expands, overlapping all the next, and
764 * perhaps the one after too (mprotect case 6).
765 * The only other cases that gets here are
766 * case 1, case 7 and case 8.
768 if (next == expand) {
770 * The only case where we don't expand "vma"
771 * and we expand "next" instead is case 8.
773 VM_WARN_ON(end != next->vm_end);
775 * remove_next == 3 means we're
776 * removing "vma" and that to do so we
777 * swapped "vma" and "next".
780 VM_WARN_ON(file != next->vm_file);
783 VM_WARN_ON(expand != vma);
785 * case 1, 6, 7, remove_next == 2 is case 6,
786 * remove_next == 1 is case 1 or 7.
788 remove_next = 1 + (end > next->vm_end);
789 VM_WARN_ON(remove_next == 2 &&
790 end != next->vm_next->vm_end);
791 /* trim end to next, for case 6 first pass */
799 * If next doesn't have anon_vma, import from vma after
800 * next, if the vma overlaps with it.
802 if (remove_next == 2 && !next->anon_vma)
803 exporter = next->vm_next;
805 } else if (end > next->vm_start) {
807 * vma expands, overlapping part of the next:
808 * mprotect case 5 shifting the boundary up.
810 adjust_next = (end - next->vm_start);
813 VM_WARN_ON(expand != importer);
814 } else if (end < vma->vm_end) {
816 * vma shrinks, and !insert tells it's not
817 * split_vma inserting another: so it must be
818 * mprotect case 4 shifting the boundary down.
820 adjust_next = -(vma->vm_end - end);
823 VM_WARN_ON(expand != importer);
827 * Easily overlooked: when mprotect shifts the boundary,
828 * make sure the expanding vma has anon_vma set if the
829 * shrinking vma had, to cover any anon pages imported.
831 if (exporter && exporter->anon_vma && !importer->anon_vma) {
834 importer->anon_vma = exporter->anon_vma;
835 error = anon_vma_clone(importer, exporter);
841 vma_adjust_trans_huge(orig_vma, start, end, adjust_next);
844 mapping = file->f_mapping;
845 root = &mapping->i_mmap;
846 uprobe_munmap(vma, vma->vm_start, vma->vm_end);
849 uprobe_munmap(next, next->vm_start, next->vm_end);
851 i_mmap_lock_write(mapping);
854 * Put into interval tree now, so instantiated pages
855 * are visible to arm/parisc __flush_dcache_page
856 * throughout; but we cannot insert into address
857 * space until vma start or end is updated.
859 __vma_link_file(insert);
863 anon_vma = vma->anon_vma;
864 if (!anon_vma && adjust_next)
865 anon_vma = next->anon_vma;
867 VM_WARN_ON(adjust_next && next->anon_vma &&
868 anon_vma != next->anon_vma);
869 anon_vma_lock_write(anon_vma);
870 anon_vma_interval_tree_pre_update_vma(vma);
872 anon_vma_interval_tree_pre_update_vma(next);
876 flush_dcache_mmap_lock(mapping);
877 vma_interval_tree_remove(vma, root);
879 vma_interval_tree_remove(next, root);
882 if (start != vma->vm_start) {
883 vma->vm_start = start;
884 start_changed = true;
886 if (end != vma->vm_end) {
890 vma->vm_pgoff = pgoff;
892 next->vm_start += adjust_next;
893 next->vm_pgoff += adjust_next >> PAGE_SHIFT;
898 vma_interval_tree_insert(next, root);
899 vma_interval_tree_insert(vma, root);
900 flush_dcache_mmap_unlock(mapping);
905 * vma_merge has merged next into vma, and needs
906 * us to remove next before dropping the locks.
908 if (remove_next != 3)
909 __vma_unlink(mm, next, next);
912 * vma is not before next if they've been
915 * pre-swap() next->vm_start was reduced so
916 * tell validate_mm_rb to ignore pre-swap()
917 * "next" (which is stored in post-swap()
920 __vma_unlink(mm, next, vma);
922 __remove_shared_vm_struct(next, file, mapping);
925 * split_vma has split insert from vma, and needs
926 * us to insert it before dropping the locks
927 * (it may either follow vma or precede it).
929 __insert_vm_struct(mm, insert);
935 mm->highest_vm_end = vm_end_gap(vma);
936 else if (!adjust_next)
937 vma_gap_update(next);
942 anon_vma_interval_tree_post_update_vma(vma);
944 anon_vma_interval_tree_post_update_vma(next);
945 anon_vma_unlock_write(anon_vma);
949 i_mmap_unlock_write(mapping);
958 uprobe_munmap(next, next->vm_start, next->vm_end);
962 anon_vma_merge(vma, next);
964 mpol_put(vma_policy(next));
967 * In mprotect's case 6 (see comments on vma_merge),
968 * we must remove another next too. It would clutter
969 * up the code too much to do both in one go.
971 if (remove_next != 3) {
973 * If "next" was removed and vma->vm_end was
974 * expanded (up) over it, in turn
975 * "next->vm_prev->vm_end" changed and the
976 * "vma->vm_next" gap must be updated.
981 * For the scope of the comment "next" and
982 * "vma" considered pre-swap(): if "vma" was
983 * removed, next->vm_start was expanded (down)
984 * over it and the "next" gap must be updated.
985 * Because of the swap() the post-swap() "vma"
986 * actually points to pre-swap() "next"
987 * (post-swap() "next" as opposed is now a
992 if (remove_next == 2) {
998 vma_gap_update(next);
1001 * If remove_next == 2 we obviously can't
1004 * If remove_next == 3 we can't reach this
1005 * path because pre-swap() next is always not
1006 * NULL. pre-swap() "next" is not being
1007 * removed and its next->vm_end is not altered
1008 * (and furthermore "end" already matches
1009 * next->vm_end in remove_next == 3).
1011 * We reach this only in the remove_next == 1
1012 * case if the "next" vma that was removed was
1013 * the highest vma of the mm. However in such
1014 * case next->vm_end == "end" and the extended
1015 * "vma" has vma->vm_end == next->vm_end so
1016 * mm->highest_vm_end doesn't need any update
1017 * in remove_next == 1 case.
1019 VM_WARN_ON(mm->highest_vm_end != vm_end_gap(vma));
1023 uprobe_mmap(insert);
1031 * If the vma has a ->close operation then the driver probably needs to release
1032 * per-vma resources, so we don't attempt to merge those.
1034 static inline int is_mergeable_vma(struct vm_area_struct *vma,
1035 struct file *file, unsigned long vm_flags,
1036 struct vm_userfaultfd_ctx vm_userfaultfd_ctx)
1039 * VM_SOFTDIRTY should not prevent from VMA merging, if we
1040 * match the flags but dirty bit -- the caller should mark
1041 * merged VMA as dirty. If dirty bit won't be excluded from
1042 * comparison, we increase pressure on the memory system forcing
1043 * the kernel to generate new VMAs when old one could be
1046 if ((vma->vm_flags ^ vm_flags) & ~VM_SOFTDIRTY)
1048 if (vma->vm_file != file)
1050 if (vma->vm_ops && vma->vm_ops->close)
1052 if (!is_mergeable_vm_userfaultfd_ctx(vma, vm_userfaultfd_ctx))
1057 static inline int is_mergeable_anon_vma(struct anon_vma *anon_vma1,
1058 struct anon_vma *anon_vma2,
1059 struct vm_area_struct *vma)
1062 * The list_is_singular() test is to avoid merging VMA cloned from
1063 * parents. This can improve scalability caused by anon_vma lock.
1065 if ((!anon_vma1 || !anon_vma2) && (!vma ||
1066 list_is_singular(&vma->anon_vma_chain)))
1068 return anon_vma1 == anon_vma2;
1072 * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
1073 * in front of (at a lower virtual address and file offset than) the vma.
1075 * We cannot merge two vmas if they have differently assigned (non-NULL)
1076 * anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
1078 * We don't check here for the merged mmap wrapping around the end of pagecache
1079 * indices (16TB on ia32) because do_mmap() does not permit mmap's which
1080 * wrap, nor mmaps which cover the final page at index -1UL.
1083 can_vma_merge_before(struct vm_area_struct *vma, unsigned long vm_flags,
1084 struct anon_vma *anon_vma, struct file *file,
1086 struct vm_userfaultfd_ctx vm_userfaultfd_ctx)
1088 if (is_mergeable_vma(vma, file, vm_flags, vm_userfaultfd_ctx) &&
1089 is_mergeable_anon_vma(anon_vma, vma->anon_vma, vma)) {
1090 if (vma->vm_pgoff == vm_pgoff)
1097 * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
1098 * beyond (at a higher virtual address and file offset than) the vma.
1100 * We cannot merge two vmas if they have differently assigned (non-NULL)
1101 * anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
1104 can_vma_merge_after(struct vm_area_struct *vma, unsigned long vm_flags,
1105 struct anon_vma *anon_vma, struct file *file,
1107 struct vm_userfaultfd_ctx vm_userfaultfd_ctx)
1109 if (is_mergeable_vma(vma, file, vm_flags, vm_userfaultfd_ctx) &&
1110 is_mergeable_anon_vma(anon_vma, vma->anon_vma, vma)) {
1112 vm_pglen = vma_pages(vma);
1113 if (vma->vm_pgoff + vm_pglen == vm_pgoff)
1120 * Given a mapping request (addr,end,vm_flags,file,pgoff), figure out
1121 * whether that can be merged with its predecessor or its successor.
1122 * Or both (it neatly fills a hole).
1124 * In most cases - when called for mmap, brk or mremap - [addr,end) is
1125 * certain not to be mapped by the time vma_merge is called; but when
1126 * called for mprotect, it is certain to be already mapped (either at
1127 * an offset within prev, or at the start of next), and the flags of
1128 * this area are about to be changed to vm_flags - and the no-change
1129 * case has already been eliminated.
1131 * The following mprotect cases have to be considered, where AAAA is
1132 * the area passed down from mprotect_fixup, never extending beyond one
1133 * vma, PPPPPP is the prev vma specified, and NNNNNN the next vma after:
1136 * PPPPPPNNNNNN PPPPPPNNNNNN PPPPPPNNNNNN
1137 * cannot merge might become might become
1138 * PPNNNNNNNNNN PPPPPPPPPPNN
1139 * mmap, brk or case 4 below case 5 below
1142 * PPPP NNNN PPPPNNNNXXXX
1143 * might become might become
1144 * PPPPPPPPPPPP 1 or PPPPPPPPPPPP 6 or
1145 * PPPPPPPPNNNN 2 or PPPPPPPPXXXX 7 or
1146 * PPPPNNNNNNNN 3 PPPPXXXXXXXX 8
1148 * It is important for case 8 that the vma NNNN overlapping the
1149 * region AAAA is never going to extended over XXXX. Instead XXXX must
1150 * be extended in region AAAA and NNNN must be removed. This way in
1151 * all cases where vma_merge succeeds, the moment vma_adjust drops the
1152 * rmap_locks, the properties of the merged vma will be already
1153 * correct for the whole merged range. Some of those properties like
1154 * vm_page_prot/vm_flags may be accessed by rmap_walks and they must
1155 * be correct for the whole merged range immediately after the
1156 * rmap_locks are released. Otherwise if XXXX would be removed and
1157 * NNNN would be extended over the XXXX range, remove_migration_ptes
1158 * or other rmap walkers (if working on addresses beyond the "end"
1159 * parameter) may establish ptes with the wrong permissions of NNNN
1160 * instead of the right permissions of XXXX.
1162 struct vm_area_struct *vma_merge(struct mm_struct *mm,
1163 struct vm_area_struct *prev, unsigned long addr,
1164 unsigned long end, unsigned long vm_flags,
1165 struct anon_vma *anon_vma, struct file *file,
1166 pgoff_t pgoff, struct mempolicy *policy,
1167 struct vm_userfaultfd_ctx vm_userfaultfd_ctx)
1169 pgoff_t pglen = (end - addr) >> PAGE_SHIFT;
1170 struct vm_area_struct *area, *next;
1174 * We later require that vma->vm_flags == vm_flags,
1175 * so this tests vma->vm_flags & VM_SPECIAL, too.
1177 if (vm_flags & VM_SPECIAL)
1180 next = vma_next(mm, prev);
1182 if (area && area->vm_end == end) /* cases 6, 7, 8 */
1183 next = next->vm_next;
1185 /* verify some invariant that must be enforced by the caller */
1186 VM_WARN_ON(prev && addr <= prev->vm_start);
1187 VM_WARN_ON(area && end > area->vm_end);
1188 VM_WARN_ON(addr >= end);
1191 * Can it merge with the predecessor?
1193 if (prev && prev->vm_end == addr &&
1194 mpol_equal(vma_policy(prev), policy) &&
1195 can_vma_merge_after(prev, vm_flags,
1196 anon_vma, file, pgoff,
1197 vm_userfaultfd_ctx)) {
1199 * OK, it can. Can we now merge in the successor as well?
1201 if (next && end == next->vm_start &&
1202 mpol_equal(policy, vma_policy(next)) &&
1203 can_vma_merge_before(next, vm_flags,
1206 vm_userfaultfd_ctx) &&
1207 is_mergeable_anon_vma(prev->anon_vma,
1208 next->anon_vma, NULL)) {
1210 err = __vma_adjust(prev, prev->vm_start,
1211 next->vm_end, prev->vm_pgoff, NULL,
1213 } else /* cases 2, 5, 7 */
1214 err = __vma_adjust(prev, prev->vm_start,
1215 end, prev->vm_pgoff, NULL, prev);
1218 khugepaged_enter_vma_merge(prev, vm_flags);
1223 * Can this new request be merged in front of next?
1225 if (next && end == next->vm_start &&
1226 mpol_equal(policy, vma_policy(next)) &&
1227 can_vma_merge_before(next, vm_flags,
1228 anon_vma, file, pgoff+pglen,
1229 vm_userfaultfd_ctx)) {
1230 if (prev && addr < prev->vm_end) /* case 4 */
1231 err = __vma_adjust(prev, prev->vm_start,
1232 addr, prev->vm_pgoff, NULL, next);
1233 else { /* cases 3, 8 */
1234 err = __vma_adjust(area, addr, next->vm_end,
1235 next->vm_pgoff - pglen, NULL, next);
1237 * In case 3 area is already equal to next and
1238 * this is a noop, but in case 8 "area" has
1239 * been removed and next was expanded over it.
1245 khugepaged_enter_vma_merge(area, vm_flags);
1253 * Rough compatibility check to quickly see if it's even worth looking
1254 * at sharing an anon_vma.
1256 * They need to have the same vm_file, and the flags can only differ
1257 * in things that mprotect may change.
1259 * NOTE! The fact that we share an anon_vma doesn't _have_ to mean that
1260 * we can merge the two vma's. For example, we refuse to merge a vma if
1261 * there is a vm_ops->close() function, because that indicates that the
1262 * driver is doing some kind of reference counting. But that doesn't
1263 * really matter for the anon_vma sharing case.
1265 static int anon_vma_compatible(struct vm_area_struct *a, struct vm_area_struct *b)
1267 return a->vm_end == b->vm_start &&
1268 mpol_equal(vma_policy(a), vma_policy(b)) &&
1269 a->vm_file == b->vm_file &&
1270 !((a->vm_flags ^ b->vm_flags) & ~(VM_ACCESS_FLAGS | VM_SOFTDIRTY)) &&
1271 b->vm_pgoff == a->vm_pgoff + ((b->vm_start - a->vm_start) >> PAGE_SHIFT);
1275 * Do some basic sanity checking to see if we can re-use the anon_vma
1276 * from 'old'. The 'a'/'b' vma's are in VM order - one of them will be
1277 * the same as 'old', the other will be the new one that is trying
1278 * to share the anon_vma.
1280 * NOTE! This runs with mm_sem held for reading, so it is possible that
1281 * the anon_vma of 'old' is concurrently in the process of being set up
1282 * by another page fault trying to merge _that_. But that's ok: if it
1283 * is being set up, that automatically means that it will be a singleton
1284 * acceptable for merging, so we can do all of this optimistically. But
1285 * we do that READ_ONCE() to make sure that we never re-load the pointer.
1287 * IOW: that the "list_is_singular()" test on the anon_vma_chain only
1288 * matters for the 'stable anon_vma' case (ie the thing we want to avoid
1289 * is to return an anon_vma that is "complex" due to having gone through
1292 * We also make sure that the two vma's are compatible (adjacent,
1293 * and with the same memory policies). That's all stable, even with just
1294 * a read lock on the mm_sem.
1296 static struct anon_vma *reusable_anon_vma(struct vm_area_struct *old, struct vm_area_struct *a, struct vm_area_struct *b)
1298 if (anon_vma_compatible(a, b)) {
1299 struct anon_vma *anon_vma = READ_ONCE(old->anon_vma);
1301 if (anon_vma && list_is_singular(&old->anon_vma_chain))
1308 * find_mergeable_anon_vma is used by anon_vma_prepare, to check
1309 * neighbouring vmas for a suitable anon_vma, before it goes off
1310 * to allocate a new anon_vma. It checks because a repetitive
1311 * sequence of mprotects and faults may otherwise lead to distinct
1312 * anon_vmas being allocated, preventing vma merge in subsequent
1315 struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *vma)
1317 struct anon_vma *anon_vma = NULL;
1319 /* Try next first. */
1321 anon_vma = reusable_anon_vma(vma->vm_next, vma, vma->vm_next);
1326 /* Try prev next. */
1328 anon_vma = reusable_anon_vma(vma->vm_prev, vma->vm_prev, vma);
1331 * We might reach here with anon_vma == NULL if we can't find
1332 * any reusable anon_vma.
1333 * There's no absolute need to look only at touching neighbours:
1334 * we could search further afield for "compatible" anon_vmas.
1335 * But it would probably just be a waste of time searching,
1336 * or lead to too many vmas hanging off the same anon_vma.
1337 * We're trying to allow mprotect remerging later on,
1338 * not trying to minimize memory used for anon_vmas.
1344 * If a hint addr is less than mmap_min_addr change hint to be as
1345 * low as possible but still greater than mmap_min_addr
1347 static inline unsigned long round_hint_to_min(unsigned long hint)
1350 if (((void *)hint != NULL) &&
1351 (hint < mmap_min_addr))
1352 return PAGE_ALIGN(mmap_min_addr);
1356 int mlock_future_check(struct mm_struct *mm, unsigned long flags,
1359 unsigned long locked, lock_limit;
1361 /* mlock MCL_FUTURE? */
1362 if (flags & VM_LOCKED) {
1363 locked = len >> PAGE_SHIFT;
1364 locked += mm->locked_vm;
1365 lock_limit = rlimit(RLIMIT_MEMLOCK);
1366 lock_limit >>= PAGE_SHIFT;
1367 if (locked > lock_limit && !capable(CAP_IPC_LOCK))
1373 static inline u64 file_mmap_size_max(struct file *file, struct inode *inode)
1375 if (S_ISREG(inode->i_mode))
1376 return MAX_LFS_FILESIZE;
1378 if (S_ISBLK(inode->i_mode))
1379 return MAX_LFS_FILESIZE;
1381 if (S_ISSOCK(inode->i_mode))
1382 return MAX_LFS_FILESIZE;
1384 /* Special "we do even unsigned file positions" case */
1385 if (file->f_mode & FMODE_UNSIGNED_OFFSET)
1388 /* Yes, random drivers might want more. But I'm tired of buggy drivers */
1392 static inline bool file_mmap_ok(struct file *file, struct inode *inode,
1393 unsigned long pgoff, unsigned long len)
1395 u64 maxsize = file_mmap_size_max(file, inode);
1397 if (maxsize && len > maxsize)
1400 if (pgoff > maxsize >> PAGE_SHIFT)
1406 * The caller must write-lock current->mm->mmap_lock.
1408 unsigned long do_mmap(struct file *file, unsigned long addr,
1409 unsigned long len, unsigned long prot,
1410 unsigned long flags, unsigned long pgoff,
1411 unsigned long *populate, struct list_head *uf)
1413 struct mm_struct *mm = current->mm;
1414 vm_flags_t vm_flags;
1423 * Does the application expect PROT_READ to imply PROT_EXEC?
1425 * (the exception is when the underlying filesystem is noexec
1426 * mounted, in which case we dont add PROT_EXEC.)
1428 if ((prot & PROT_READ) && (current->personality & READ_IMPLIES_EXEC))
1429 if (!(file && path_noexec(&file->f_path)))
1432 /* force arch specific MAP_FIXED handling in get_unmapped_area */
1433 if (flags & MAP_FIXED_NOREPLACE)
1436 if (!(flags & MAP_FIXED))
1437 addr = round_hint_to_min(addr);
1439 /* Careful about overflows.. */
1440 len = PAGE_ALIGN(len);
1444 /* offset overflow? */
1445 if ((pgoff + (len >> PAGE_SHIFT)) < pgoff)
1448 /* Too many mappings? */
1449 if (mm->map_count > sysctl_max_map_count)
1452 /* Obtain the address to map to. we verify (or select) it and ensure
1453 * that it represents a valid section of the address space.
1455 addr = get_unmapped_area(file, addr, len, pgoff, flags);
1456 if (IS_ERR_VALUE(addr))
1459 if (flags & MAP_FIXED_NOREPLACE) {
1460 if (find_vma_intersection(mm, addr, addr + len))
1464 if (prot == PROT_EXEC) {
1465 pkey = execute_only_pkey(mm);
1470 /* Do simple checking here so the lower-level routines won't have
1471 * to. we assume access permissions have been handled by the open
1472 * of the memory object, so we don't do any here.
1474 vm_flags = calc_vm_prot_bits(prot, pkey) | calc_vm_flag_bits(flags) |
1475 mm->def_flags | VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC;
1477 if (flags & MAP_LOCKED)
1478 if (!can_do_mlock())
1481 if (mlock_future_check(mm, vm_flags, len))
1485 struct inode *inode = file_inode(file);
1486 unsigned long flags_mask;
1488 if (!file_mmap_ok(file, inode, pgoff, len))
1491 flags_mask = LEGACY_MAP_MASK | file->f_op->mmap_supported_flags;
1493 switch (flags & MAP_TYPE) {
1496 * Force use of MAP_SHARED_VALIDATE with non-legacy
1497 * flags. E.g. MAP_SYNC is dangerous to use with
1498 * MAP_SHARED as you don't know which consistency model
1499 * you will get. We silently ignore unsupported flags
1500 * with MAP_SHARED to preserve backward compatibility.
1502 flags &= LEGACY_MAP_MASK;
1504 case MAP_SHARED_VALIDATE:
1505 if (flags & ~flags_mask)
1507 if (prot & PROT_WRITE) {
1508 if (!(file->f_mode & FMODE_WRITE))
1510 if (IS_SWAPFILE(file->f_mapping->host))
1515 * Make sure we don't allow writing to an append-only
1518 if (IS_APPEND(inode) && (file->f_mode & FMODE_WRITE))
1521 vm_flags |= VM_SHARED | VM_MAYSHARE;
1522 if (!(file->f_mode & FMODE_WRITE))
1523 vm_flags &= ~(VM_MAYWRITE | VM_SHARED);
1526 if (!(file->f_mode & FMODE_READ))
1528 if (path_noexec(&file->f_path)) {
1529 if (vm_flags & VM_EXEC)
1531 vm_flags &= ~VM_MAYEXEC;
1534 if (!file->f_op->mmap)
1536 if (vm_flags & (VM_GROWSDOWN|VM_GROWSUP))
1544 switch (flags & MAP_TYPE) {
1546 if (vm_flags & (VM_GROWSDOWN|VM_GROWSUP))
1552 vm_flags |= VM_SHARED | VM_MAYSHARE;
1556 * Set pgoff according to addr for anon_vma.
1558 pgoff = addr >> PAGE_SHIFT;
1566 * Set 'VM_NORESERVE' if we should not account for the
1567 * memory use of this mapping.
1569 if (flags & MAP_NORESERVE) {
1570 /* We honor MAP_NORESERVE if allowed to overcommit */
1571 if (sysctl_overcommit_memory != OVERCOMMIT_NEVER)
1572 vm_flags |= VM_NORESERVE;
1574 /* hugetlb applies strict overcommit unless MAP_NORESERVE */
1575 if (file && is_file_hugepages(file))
1576 vm_flags |= VM_NORESERVE;
1579 addr = mmap_region(file, addr, len, vm_flags, pgoff, uf);
1580 if (!IS_ERR_VALUE(addr) &&
1581 ((vm_flags & VM_LOCKED) ||
1582 (flags & (MAP_POPULATE | MAP_NONBLOCK)) == MAP_POPULATE))
1587 unsigned long ksys_mmap_pgoff(unsigned long addr, unsigned long len,
1588 unsigned long prot, unsigned long flags,
1589 unsigned long fd, unsigned long pgoff)
1591 struct file *file = NULL;
1592 unsigned long retval;
1594 if (!(flags & MAP_ANONYMOUS)) {
1595 audit_mmap_fd(fd, flags);
1599 if (is_file_hugepages(file)) {
1600 len = ALIGN(len, huge_page_size(hstate_file(file)));
1601 } else if (unlikely(flags & MAP_HUGETLB)) {
1605 } else if (flags & MAP_HUGETLB) {
1606 struct ucounts *ucounts = NULL;
1609 hs = hstate_sizelog((flags >> MAP_HUGE_SHIFT) & MAP_HUGE_MASK);
1613 len = ALIGN(len, huge_page_size(hs));
1615 * VM_NORESERVE is used because the reservations will be
1616 * taken when vm_ops->mmap() is called
1617 * A dummy user value is used because we are not locking
1618 * memory so no accounting is necessary
1620 file = hugetlb_file_setup(HUGETLB_ANON_FILE, len,
1622 &ucounts, HUGETLB_ANONHUGE_INODE,
1623 (flags >> MAP_HUGE_SHIFT) & MAP_HUGE_MASK);
1625 return PTR_ERR(file);
1628 flags &= ~MAP_DENYWRITE;
1630 retval = vm_mmap_pgoff(file, addr, len, prot, flags, pgoff);
1637 SYSCALL_DEFINE6(mmap_pgoff, unsigned long, addr, unsigned long, len,
1638 unsigned long, prot, unsigned long, flags,
1639 unsigned long, fd, unsigned long, pgoff)
1641 return ksys_mmap_pgoff(addr, len, prot, flags, fd, pgoff);
1644 #ifdef __ARCH_WANT_SYS_OLD_MMAP
1645 struct mmap_arg_struct {
1649 unsigned long flags;
1651 unsigned long offset;
1654 SYSCALL_DEFINE1(old_mmap, struct mmap_arg_struct __user *, arg)
1656 struct mmap_arg_struct a;
1658 if (copy_from_user(&a, arg, sizeof(a)))
1660 if (offset_in_page(a.offset))
1663 return ksys_mmap_pgoff(a.addr, a.len, a.prot, a.flags, a.fd,
1664 a.offset >> PAGE_SHIFT);
1666 #endif /* __ARCH_WANT_SYS_OLD_MMAP */
1669 * Some shared mappings will want the pages marked read-only
1670 * to track write events. If so, we'll downgrade vm_page_prot
1671 * to the private version (using protection_map[] without the
1674 int vma_wants_writenotify(struct vm_area_struct *vma, pgprot_t vm_page_prot)
1676 vm_flags_t vm_flags = vma->vm_flags;
1677 const struct vm_operations_struct *vm_ops = vma->vm_ops;
1679 /* If it was private or non-writable, the write bit is already clear */
1680 if ((vm_flags & (VM_WRITE|VM_SHARED)) != ((VM_WRITE|VM_SHARED)))
1683 /* The backer wishes to know when pages are first written to? */
1684 if (vm_ops && (vm_ops->page_mkwrite || vm_ops->pfn_mkwrite))
1687 /* The open routine did something to the protections that pgprot_modify
1688 * won't preserve? */
1689 if (pgprot_val(vm_page_prot) !=
1690 pgprot_val(vm_pgprot_modify(vm_page_prot, vm_flags)))
1693 /* Do we need to track softdirty? */
1694 if (IS_ENABLED(CONFIG_MEM_SOFT_DIRTY) && !(vm_flags & VM_SOFTDIRTY))
1697 /* Specialty mapping? */
1698 if (vm_flags & VM_PFNMAP)
1701 /* Can the mapping track the dirty pages? */
1702 return vma->vm_file && vma->vm_file->f_mapping &&
1703 mapping_can_writeback(vma->vm_file->f_mapping);
1707 * We account for memory if it's a private writeable mapping,
1708 * not hugepages and VM_NORESERVE wasn't set.
1710 static inline int accountable_mapping(struct file *file, vm_flags_t vm_flags)
1713 * hugetlb has its own accounting separate from the core VM
1714 * VM_HUGETLB may not be set yet so we cannot check for that flag.
1716 if (file && is_file_hugepages(file))
1719 return (vm_flags & (VM_NORESERVE | VM_SHARED | VM_WRITE)) == VM_WRITE;
1722 unsigned long mmap_region(struct file *file, unsigned long addr,
1723 unsigned long len, vm_flags_t vm_flags, unsigned long pgoff,
1724 struct list_head *uf)
1726 struct mm_struct *mm = current->mm;
1727 struct vm_area_struct *vma, *prev, *merge;
1729 struct rb_node **rb_link, *rb_parent;
1730 unsigned long charged = 0;
1732 /* Check against address space limit. */
1733 if (!may_expand_vm(mm, vm_flags, len >> PAGE_SHIFT)) {
1734 unsigned long nr_pages;
1737 * MAP_FIXED may remove pages of mappings that intersects with
1738 * requested mapping. Account for the pages it would unmap.
1740 nr_pages = count_vma_pages_range(mm, addr, addr + len);
1742 if (!may_expand_vm(mm, vm_flags,
1743 (len >> PAGE_SHIFT) - nr_pages))
1747 /* Clear old maps, set up prev, rb_link, rb_parent, and uf */
1748 if (munmap_vma_range(mm, addr, len, &prev, &rb_link, &rb_parent, uf))
1751 * Private writable mapping: check memory availability
1753 if (accountable_mapping(file, vm_flags)) {
1754 charged = len >> PAGE_SHIFT;
1755 if (security_vm_enough_memory_mm(mm, charged))
1757 vm_flags |= VM_ACCOUNT;
1761 * Can we just expand an old mapping?
1763 vma = vma_merge(mm, prev, addr, addr + len, vm_flags,
1764 NULL, file, pgoff, NULL, NULL_VM_UFFD_CTX);
1769 * Determine the object being mapped and call the appropriate
1770 * specific mapper. the address has already been validated, but
1771 * not unmapped, but the maps are removed from the list.
1773 vma = vm_area_alloc(mm);
1779 vma->vm_start = addr;
1780 vma->vm_end = addr + len;
1781 vma->vm_flags = vm_flags;
1782 vma->vm_page_prot = vm_get_page_prot(vm_flags);
1783 vma->vm_pgoff = pgoff;
1786 if (vm_flags & VM_DENYWRITE) {
1787 error = deny_write_access(file);
1791 if (vm_flags & VM_SHARED) {
1792 error = mapping_map_writable(file->f_mapping);
1794 goto allow_write_and_free_vma;
1797 /* ->mmap() can change vma->vm_file, but must guarantee that
1798 * vma_link() below can deny write-access if VM_DENYWRITE is set
1799 * and map writably if VM_SHARED is set. This usually means the
1800 * new file must not have been exposed to user-space, yet.
1802 vma->vm_file = get_file(file);
1803 error = call_mmap(file, vma);
1805 goto unmap_and_free_vma;
1807 /* Can addr have changed??
1809 * Answer: Yes, several device drivers can do it in their
1810 * f_op->mmap method. -DaveM
1811 * Bug: If addr is changed, prev, rb_link, rb_parent should
1812 * be updated for vma_link()
1814 WARN_ON_ONCE(addr != vma->vm_start);
1816 addr = vma->vm_start;
1818 /* If vm_flags changed after call_mmap(), we should try merge vma again
1819 * as we may succeed this time.
1821 if (unlikely(vm_flags != vma->vm_flags && prev)) {
1822 merge = vma_merge(mm, prev, vma->vm_start, vma->vm_end, vma->vm_flags,
1823 NULL, vma->vm_file, vma->vm_pgoff, NULL, NULL_VM_UFFD_CTX);
1825 /* ->mmap() can change vma->vm_file and fput the original file. So
1826 * fput the vma->vm_file here or we would add an extra fput for file
1827 * and cause general protection fault ultimately.
1832 /* Update vm_flags to pick up the change. */
1833 vm_flags = vma->vm_flags;
1834 goto unmap_writable;
1838 vm_flags = vma->vm_flags;
1839 } else if (vm_flags & VM_SHARED) {
1840 error = shmem_zero_setup(vma);
1844 vma_set_anonymous(vma);
1847 /* Allow architectures to sanity-check the vm_flags */
1848 if (!arch_validate_flags(vma->vm_flags)) {
1851 goto unmap_and_free_vma;
1856 vma_link(mm, vma, prev, rb_link, rb_parent);
1857 /* Once vma denies write, undo our temporary denial count */
1860 if (vm_flags & VM_SHARED)
1861 mapping_unmap_writable(file->f_mapping);
1862 if (vm_flags & VM_DENYWRITE)
1863 allow_write_access(file);
1865 file = vma->vm_file;
1867 perf_event_mmap(vma);
1869 vm_stat_account(mm, vm_flags, len >> PAGE_SHIFT);
1870 if (vm_flags & VM_LOCKED) {
1871 if ((vm_flags & VM_SPECIAL) || vma_is_dax(vma) ||
1872 is_vm_hugetlb_page(vma) ||
1873 vma == get_gate_vma(current->mm))
1874 vma->vm_flags &= VM_LOCKED_CLEAR_MASK;
1876 mm->locked_vm += (len >> PAGE_SHIFT);
1883 * New (or expanded) vma always get soft dirty status.
1884 * Otherwise user-space soft-dirty page tracker won't
1885 * be able to distinguish situation when vma area unmapped,
1886 * then new mapped in-place (which must be aimed as
1887 * a completely new data area).
1889 vma->vm_flags |= VM_SOFTDIRTY;
1891 vma_set_page_prot(vma);
1897 vma->vm_file = NULL;
1899 /* Undo any partial mapping done by a device driver. */
1900 unmap_region(mm, vma, prev, vma->vm_start, vma->vm_end);
1902 if (vm_flags & VM_SHARED)
1903 mapping_unmap_writable(file->f_mapping);
1904 allow_write_and_free_vma:
1905 if (vm_flags & VM_DENYWRITE)
1906 allow_write_access(file);
1911 vm_unacct_memory(charged);
1915 static unsigned long unmapped_area(struct vm_unmapped_area_info *info)
1918 * We implement the search by looking for an rbtree node that
1919 * immediately follows a suitable gap. That is,
1920 * - gap_start = vma->vm_prev->vm_end <= info->high_limit - length;
1921 * - gap_end = vma->vm_start >= info->low_limit + length;
1922 * - gap_end - gap_start >= length
1925 struct mm_struct *mm = current->mm;
1926 struct vm_area_struct *vma;
1927 unsigned long length, low_limit, high_limit, gap_start, gap_end;
1929 /* Adjust search length to account for worst case alignment overhead */
1930 length = info->length + info->align_mask;
1931 if (length < info->length)
1934 /* Adjust search limits by the desired length */
1935 if (info->high_limit < length)
1937 high_limit = info->high_limit - length;
1939 if (info->low_limit > high_limit)
1941 low_limit = info->low_limit + length;
1943 /* Check if rbtree root looks promising */
1944 if (RB_EMPTY_ROOT(&mm->mm_rb))
1946 vma = rb_entry(mm->mm_rb.rb_node, struct vm_area_struct, vm_rb);
1947 if (vma->rb_subtree_gap < length)
1951 /* Visit left subtree if it looks promising */
1952 gap_end = vm_start_gap(vma);
1953 if (gap_end >= low_limit && vma->vm_rb.rb_left) {
1954 struct vm_area_struct *left =
1955 rb_entry(vma->vm_rb.rb_left,
1956 struct vm_area_struct, vm_rb);
1957 if (left->rb_subtree_gap >= length) {
1963 gap_start = vma->vm_prev ? vm_end_gap(vma->vm_prev) : 0;
1965 /* Check if current node has a suitable gap */
1966 if (gap_start > high_limit)
1968 if (gap_end >= low_limit &&
1969 gap_end > gap_start && gap_end - gap_start >= length)
1972 /* Visit right subtree if it looks promising */
1973 if (vma->vm_rb.rb_right) {
1974 struct vm_area_struct *right =
1975 rb_entry(vma->vm_rb.rb_right,
1976 struct vm_area_struct, vm_rb);
1977 if (right->rb_subtree_gap >= length) {
1983 /* Go back up the rbtree to find next candidate node */
1985 struct rb_node *prev = &vma->vm_rb;
1986 if (!rb_parent(prev))
1988 vma = rb_entry(rb_parent(prev),
1989 struct vm_area_struct, vm_rb);
1990 if (prev == vma->vm_rb.rb_left) {
1991 gap_start = vm_end_gap(vma->vm_prev);
1992 gap_end = vm_start_gap(vma);
1999 /* Check highest gap, which does not precede any rbtree node */
2000 gap_start = mm->highest_vm_end;
2001 gap_end = ULONG_MAX; /* Only for VM_BUG_ON below */
2002 if (gap_start > high_limit)
2006 /* We found a suitable gap. Clip it with the original low_limit. */
2007 if (gap_start < info->low_limit)
2008 gap_start = info->low_limit;
2010 /* Adjust gap address to the desired alignment */
2011 gap_start += (info->align_offset - gap_start) & info->align_mask;
2013 VM_BUG_ON(gap_start + info->length > info->high_limit);
2014 VM_BUG_ON(gap_start + info->length > gap_end);
2018 static unsigned long unmapped_area_topdown(struct vm_unmapped_area_info *info)
2020 struct mm_struct *mm = current->mm;
2021 struct vm_area_struct *vma;
2022 unsigned long length, low_limit, high_limit, gap_start, gap_end;
2024 /* Adjust search length to account for worst case alignment overhead */
2025 length = info->length + info->align_mask;
2026 if (length < info->length)
2030 * Adjust search limits by the desired length.
2031 * See implementation comment at top of unmapped_area().
2033 gap_end = info->high_limit;
2034 if (gap_end < length)
2036 high_limit = gap_end - length;
2038 if (info->low_limit > high_limit)
2040 low_limit = info->low_limit + length;
2042 /* Check highest gap, which does not precede any rbtree node */
2043 gap_start = mm->highest_vm_end;
2044 if (gap_start <= high_limit)
2047 /* Check if rbtree root looks promising */
2048 if (RB_EMPTY_ROOT(&mm->mm_rb))
2050 vma = rb_entry(mm->mm_rb.rb_node, struct vm_area_struct, vm_rb);
2051 if (vma->rb_subtree_gap < length)
2055 /* Visit right subtree if it looks promising */
2056 gap_start = vma->vm_prev ? vm_end_gap(vma->vm_prev) : 0;
2057 if (gap_start <= high_limit && vma->vm_rb.rb_right) {
2058 struct vm_area_struct *right =
2059 rb_entry(vma->vm_rb.rb_right,
2060 struct vm_area_struct, vm_rb);
2061 if (right->rb_subtree_gap >= length) {
2068 /* Check if current node has a suitable gap */
2069 gap_end = vm_start_gap(vma);
2070 if (gap_end < low_limit)
2072 if (gap_start <= high_limit &&
2073 gap_end > gap_start && gap_end - gap_start >= length)
2076 /* Visit left subtree if it looks promising */
2077 if (vma->vm_rb.rb_left) {
2078 struct vm_area_struct *left =
2079 rb_entry(vma->vm_rb.rb_left,
2080 struct vm_area_struct, vm_rb);
2081 if (left->rb_subtree_gap >= length) {
2087 /* Go back up the rbtree to find next candidate node */
2089 struct rb_node *prev = &vma->vm_rb;
2090 if (!rb_parent(prev))
2092 vma = rb_entry(rb_parent(prev),
2093 struct vm_area_struct, vm_rb);
2094 if (prev == vma->vm_rb.rb_right) {
2095 gap_start = vma->vm_prev ?
2096 vm_end_gap(vma->vm_prev) : 0;
2103 /* We found a suitable gap. Clip it with the original high_limit. */
2104 if (gap_end > info->high_limit)
2105 gap_end = info->high_limit;
2108 /* Compute highest gap address at the desired alignment */
2109 gap_end -= info->length;
2110 gap_end -= (gap_end - info->align_offset) & info->align_mask;
2112 VM_BUG_ON(gap_end < info->low_limit);
2113 VM_BUG_ON(gap_end < gap_start);
2118 * Search for an unmapped address range.
2120 * We are looking for a range that:
2121 * - does not intersect with any VMA;
2122 * - is contained within the [low_limit, high_limit) interval;
2123 * - is at least the desired size.
2124 * - satisfies (begin_addr & align_mask) == (align_offset & align_mask)
2126 unsigned long vm_unmapped_area(struct vm_unmapped_area_info *info)
2130 if (info->flags & VM_UNMAPPED_AREA_TOPDOWN)
2131 addr = unmapped_area_topdown(info);
2133 addr = unmapped_area(info);
2135 trace_vm_unmapped_area(addr, info);
2139 #ifndef arch_get_mmap_end
2140 #define arch_get_mmap_end(addr) (TASK_SIZE)
2143 #ifndef arch_get_mmap_base
2144 #define arch_get_mmap_base(addr, base) (base)
2147 /* Get an address range which is currently unmapped.
2148 * For shmat() with addr=0.
2150 * Ugly calling convention alert:
2151 * Return value with the low bits set means error value,
2153 * if (ret & ~PAGE_MASK)
2156 * This function "knows" that -ENOMEM has the bits set.
2158 #ifndef HAVE_ARCH_UNMAPPED_AREA
2160 arch_get_unmapped_area(struct file *filp, unsigned long addr,
2161 unsigned long len, unsigned long pgoff, unsigned long flags)
2163 struct mm_struct *mm = current->mm;
2164 struct vm_area_struct *vma, *prev;
2165 struct vm_unmapped_area_info info;
2166 const unsigned long mmap_end = arch_get_mmap_end(addr);
2168 if (len > mmap_end - mmap_min_addr)
2171 if (flags & MAP_FIXED)
2175 addr = PAGE_ALIGN(addr);
2176 vma = find_vma_prev(mm, addr, &prev);
2177 if (mmap_end - len >= addr && addr >= mmap_min_addr &&
2178 (!vma || addr + len <= vm_start_gap(vma)) &&
2179 (!prev || addr >= vm_end_gap(prev)))
2185 info.low_limit = mm->mmap_base;
2186 info.high_limit = mmap_end;
2187 info.align_mask = 0;
2188 info.align_offset = 0;
2189 return vm_unmapped_area(&info);
2194 * This mmap-allocator allocates new areas top-down from below the
2195 * stack's low limit (the base):
2197 #ifndef HAVE_ARCH_UNMAPPED_AREA_TOPDOWN
2199 arch_get_unmapped_area_topdown(struct file *filp, unsigned long addr,
2200 unsigned long len, unsigned long pgoff,
2201 unsigned long flags)
2203 struct vm_area_struct *vma, *prev;
2204 struct mm_struct *mm = current->mm;
2205 struct vm_unmapped_area_info info;
2206 const unsigned long mmap_end = arch_get_mmap_end(addr);
2208 /* requested length too big for entire address space */
2209 if (len > mmap_end - mmap_min_addr)
2212 if (flags & MAP_FIXED)
2215 /* requesting a specific address */
2217 addr = PAGE_ALIGN(addr);
2218 vma = find_vma_prev(mm, addr, &prev);
2219 if (mmap_end - len >= addr && addr >= mmap_min_addr &&
2220 (!vma || addr + len <= vm_start_gap(vma)) &&
2221 (!prev || addr >= vm_end_gap(prev)))
2225 info.flags = VM_UNMAPPED_AREA_TOPDOWN;
2227 info.low_limit = max(PAGE_SIZE, mmap_min_addr);
2228 info.high_limit = arch_get_mmap_base(addr, mm->mmap_base);
2229 info.align_mask = 0;
2230 info.align_offset = 0;
2231 addr = vm_unmapped_area(&info);
2234 * A failed mmap() very likely causes application failure,
2235 * so fall back to the bottom-up function here. This scenario
2236 * can happen with large stack limits and large mmap()
2239 if (offset_in_page(addr)) {
2240 VM_BUG_ON(addr != -ENOMEM);
2242 info.low_limit = TASK_UNMAPPED_BASE;
2243 info.high_limit = mmap_end;
2244 addr = vm_unmapped_area(&info);
2252 get_unmapped_area(struct file *file, unsigned long addr, unsigned long len,
2253 unsigned long pgoff, unsigned long flags)
2255 unsigned long (*get_area)(struct file *, unsigned long,
2256 unsigned long, unsigned long, unsigned long);
2258 unsigned long error = arch_mmap_check(addr, len, flags);
2262 /* Careful about overflows.. */
2263 if (len > TASK_SIZE)
2266 get_area = current->mm->get_unmapped_area;
2268 if (file->f_op->get_unmapped_area)
2269 get_area = file->f_op->get_unmapped_area;
2270 } else if (flags & MAP_SHARED) {
2272 * mmap_region() will call shmem_zero_setup() to create a file,
2273 * so use shmem's get_unmapped_area in case it can be huge.
2274 * do_mmap() will clear pgoff, so match alignment.
2277 get_area = shmem_get_unmapped_area;
2280 addr = get_area(file, addr, len, pgoff, flags);
2281 if (IS_ERR_VALUE(addr))
2284 if (addr > TASK_SIZE - len)
2286 if (offset_in_page(addr))
2289 error = security_mmap_addr(addr);
2290 return error ? error : addr;
2293 EXPORT_SYMBOL(get_unmapped_area);
2295 /* Look up the first VMA which satisfies addr < vm_end, NULL if none. */
2296 struct vm_area_struct *find_vma(struct mm_struct *mm, unsigned long addr)
2298 struct rb_node *rb_node;
2299 struct vm_area_struct *vma;
2301 mmap_assert_locked(mm);
2302 /* Check the cache first. */
2303 vma = vmacache_find(mm, addr);
2307 rb_node = mm->mm_rb.rb_node;
2310 struct vm_area_struct *tmp;
2312 tmp = rb_entry(rb_node, struct vm_area_struct, vm_rb);
2314 if (tmp->vm_end > addr) {
2316 if (tmp->vm_start <= addr)
2318 rb_node = rb_node->rb_left;
2320 rb_node = rb_node->rb_right;
2324 vmacache_update(addr, vma);
2328 EXPORT_SYMBOL(find_vma);
2331 * Same as find_vma, but also return a pointer to the previous VMA in *pprev.
2333 struct vm_area_struct *
2334 find_vma_prev(struct mm_struct *mm, unsigned long addr,
2335 struct vm_area_struct **pprev)
2337 struct vm_area_struct *vma;
2339 vma = find_vma(mm, addr);
2341 *pprev = vma->vm_prev;
2343 struct rb_node *rb_node = rb_last(&mm->mm_rb);
2345 *pprev = rb_node ? rb_entry(rb_node, struct vm_area_struct, vm_rb) : NULL;
2351 * Verify that the stack growth is acceptable and
2352 * update accounting. This is shared with both the
2353 * grow-up and grow-down cases.
2355 static int acct_stack_growth(struct vm_area_struct *vma,
2356 unsigned long size, unsigned long grow)
2358 struct mm_struct *mm = vma->vm_mm;
2359 unsigned long new_start;
2361 /* address space limit tests */
2362 if (!may_expand_vm(mm, vma->vm_flags, grow))
2365 /* Stack limit test */
2366 if (size > rlimit(RLIMIT_STACK))
2369 /* mlock limit tests */
2370 if (vma->vm_flags & VM_LOCKED) {
2371 unsigned long locked;
2372 unsigned long limit;
2373 locked = mm->locked_vm + grow;
2374 limit = rlimit(RLIMIT_MEMLOCK);
2375 limit >>= PAGE_SHIFT;
2376 if (locked > limit && !capable(CAP_IPC_LOCK))
2380 /* Check to ensure the stack will not grow into a hugetlb-only region */
2381 new_start = (vma->vm_flags & VM_GROWSUP) ? vma->vm_start :
2383 if (is_hugepage_only_range(vma->vm_mm, new_start, size))
2387 * Overcommit.. This must be the final test, as it will
2388 * update security statistics.
2390 if (security_vm_enough_memory_mm(mm, grow))
2396 #if defined(CONFIG_STACK_GROWSUP) || defined(CONFIG_IA64)
2398 * PA-RISC uses this for its stack; IA64 for its Register Backing Store.
2399 * vma is the last one with address > vma->vm_end. Have to extend vma.
2401 int expand_upwards(struct vm_area_struct *vma, unsigned long address)
2403 struct mm_struct *mm = vma->vm_mm;
2404 struct vm_area_struct *next;
2405 unsigned long gap_addr;
2408 if (!(vma->vm_flags & VM_GROWSUP))
2411 /* Guard against exceeding limits of the address space. */
2412 address &= PAGE_MASK;
2413 if (address >= (TASK_SIZE & PAGE_MASK))
2415 address += PAGE_SIZE;
2417 /* Enforce stack_guard_gap */
2418 gap_addr = address + stack_guard_gap;
2420 /* Guard against overflow */
2421 if (gap_addr < address || gap_addr > TASK_SIZE)
2422 gap_addr = TASK_SIZE;
2424 next = vma->vm_next;
2425 if (next && next->vm_start < gap_addr && vma_is_accessible(next)) {
2426 if (!(next->vm_flags & VM_GROWSUP))
2428 /* Check that both stack segments have the same anon_vma? */
2431 /* We must make sure the anon_vma is allocated. */
2432 if (unlikely(anon_vma_prepare(vma)))
2436 * vma->vm_start/vm_end cannot change under us because the caller
2437 * is required to hold the mmap_lock in read mode. We need the
2438 * anon_vma lock to serialize against concurrent expand_stacks.
2440 anon_vma_lock_write(vma->anon_vma);
2442 /* Somebody else might have raced and expanded it already */
2443 if (address > vma->vm_end) {
2444 unsigned long size, grow;
2446 size = address - vma->vm_start;
2447 grow = (address - vma->vm_end) >> PAGE_SHIFT;
2450 if (vma->vm_pgoff + (size >> PAGE_SHIFT) >= vma->vm_pgoff) {
2451 error = acct_stack_growth(vma, size, grow);
2454 * vma_gap_update() doesn't support concurrent
2455 * updates, but we only hold a shared mmap_lock
2456 * lock here, so we need to protect against
2457 * concurrent vma expansions.
2458 * anon_vma_lock_write() doesn't help here, as
2459 * we don't guarantee that all growable vmas
2460 * in a mm share the same root anon vma.
2461 * So, we reuse mm->page_table_lock to guard
2462 * against concurrent vma expansions.
2464 spin_lock(&mm->page_table_lock);
2465 if (vma->vm_flags & VM_LOCKED)
2466 mm->locked_vm += grow;
2467 vm_stat_account(mm, vma->vm_flags, grow);
2468 anon_vma_interval_tree_pre_update_vma(vma);
2469 vma->vm_end = address;
2470 anon_vma_interval_tree_post_update_vma(vma);
2472 vma_gap_update(vma->vm_next);
2474 mm->highest_vm_end = vm_end_gap(vma);
2475 spin_unlock(&mm->page_table_lock);
2477 perf_event_mmap(vma);
2481 anon_vma_unlock_write(vma->anon_vma);
2482 khugepaged_enter_vma_merge(vma, vma->vm_flags);
2486 #endif /* CONFIG_STACK_GROWSUP || CONFIG_IA64 */
2489 * vma is the first one with address < vma->vm_start. Have to extend vma.
2491 int expand_downwards(struct vm_area_struct *vma,
2492 unsigned long address)
2494 struct mm_struct *mm = vma->vm_mm;
2495 struct vm_area_struct *prev;
2498 address &= PAGE_MASK;
2499 if (address < mmap_min_addr)
2502 /* Enforce stack_guard_gap */
2503 prev = vma->vm_prev;
2504 /* Check that both stack segments have the same anon_vma? */
2505 if (prev && !(prev->vm_flags & VM_GROWSDOWN) &&
2506 vma_is_accessible(prev)) {
2507 if (address - prev->vm_end < stack_guard_gap)
2511 /* We must make sure the anon_vma is allocated. */
2512 if (unlikely(anon_vma_prepare(vma)))
2516 * vma->vm_start/vm_end cannot change under us because the caller
2517 * is required to hold the mmap_lock in read mode. We need the
2518 * anon_vma lock to serialize against concurrent expand_stacks.
2520 anon_vma_lock_write(vma->anon_vma);
2522 /* Somebody else might have raced and expanded it already */
2523 if (address < vma->vm_start) {
2524 unsigned long size, grow;
2526 size = vma->vm_end - address;
2527 grow = (vma->vm_start - address) >> PAGE_SHIFT;
2530 if (grow <= vma->vm_pgoff) {
2531 error = acct_stack_growth(vma, size, grow);
2534 * vma_gap_update() doesn't support concurrent
2535 * updates, but we only hold a shared mmap_lock
2536 * lock here, so we need to protect against
2537 * concurrent vma expansions.
2538 * anon_vma_lock_write() doesn't help here, as
2539 * we don't guarantee that all growable vmas
2540 * in a mm share the same root anon vma.
2541 * So, we reuse mm->page_table_lock to guard
2542 * against concurrent vma expansions.
2544 spin_lock(&mm->page_table_lock);
2545 if (vma->vm_flags & VM_LOCKED)
2546 mm->locked_vm += grow;
2547 vm_stat_account(mm, vma->vm_flags, grow);
2548 anon_vma_interval_tree_pre_update_vma(vma);
2549 vma->vm_start = address;
2550 vma->vm_pgoff -= grow;
2551 anon_vma_interval_tree_post_update_vma(vma);
2552 vma_gap_update(vma);
2553 spin_unlock(&mm->page_table_lock);
2555 perf_event_mmap(vma);
2559 anon_vma_unlock_write(vma->anon_vma);
2560 khugepaged_enter_vma_merge(vma, vma->vm_flags);
2565 /* enforced gap between the expanding stack and other mappings. */
2566 unsigned long stack_guard_gap = 256UL<<PAGE_SHIFT;
2568 static int __init cmdline_parse_stack_guard_gap(char *p)
2573 val = simple_strtoul(p, &endptr, 10);
2575 stack_guard_gap = val << PAGE_SHIFT;
2579 __setup("stack_guard_gap=", cmdline_parse_stack_guard_gap);
2581 #ifdef CONFIG_STACK_GROWSUP
2582 int expand_stack(struct vm_area_struct *vma, unsigned long address)
2584 return expand_upwards(vma, address);
2587 struct vm_area_struct *
2588 find_extend_vma(struct mm_struct *mm, unsigned long addr)
2590 struct vm_area_struct *vma, *prev;
2593 vma = find_vma_prev(mm, addr, &prev);
2594 if (vma && (vma->vm_start <= addr))
2596 /* don't alter vm_end if the coredump is running */
2597 if (!prev || expand_stack(prev, addr))
2599 if (prev->vm_flags & VM_LOCKED)
2600 populate_vma_page_range(prev, addr, prev->vm_end, NULL);
2604 int expand_stack(struct vm_area_struct *vma, unsigned long address)
2606 return expand_downwards(vma, address);
2609 struct vm_area_struct *
2610 find_extend_vma(struct mm_struct *mm, unsigned long addr)
2612 struct vm_area_struct *vma;
2613 unsigned long start;
2616 vma = find_vma(mm, addr);
2619 if (vma->vm_start <= addr)
2621 if (!(vma->vm_flags & VM_GROWSDOWN))
2623 start = vma->vm_start;
2624 if (expand_stack(vma, addr))
2626 if (vma->vm_flags & VM_LOCKED)
2627 populate_vma_page_range(vma, addr, start, NULL);
2632 EXPORT_SYMBOL_GPL(find_extend_vma);
2635 * Ok - we have the memory areas we should free on the vma list,
2636 * so release them, and do the vma updates.
2638 * Called with the mm semaphore held.
2640 static void remove_vma_list(struct mm_struct *mm, struct vm_area_struct *vma)
2642 unsigned long nr_accounted = 0;
2644 /* Update high watermark before we lower total_vm */
2645 update_hiwater_vm(mm);
2647 long nrpages = vma_pages(vma);
2649 if (vma->vm_flags & VM_ACCOUNT)
2650 nr_accounted += nrpages;
2651 vm_stat_account(mm, vma->vm_flags, -nrpages);
2652 vma = remove_vma(vma);
2654 vm_unacct_memory(nr_accounted);
2659 * Get rid of page table information in the indicated region.
2661 * Called with the mm semaphore held.
2663 static void unmap_region(struct mm_struct *mm,
2664 struct vm_area_struct *vma, struct vm_area_struct *prev,
2665 unsigned long start, unsigned long end)
2667 struct vm_area_struct *next = vma_next(mm, prev);
2668 struct mmu_gather tlb;
2671 tlb_gather_mmu(&tlb, mm);
2672 update_hiwater_rss(mm);
2673 unmap_vmas(&tlb, vma, start, end);
2674 free_pgtables(&tlb, vma, prev ? prev->vm_end : FIRST_USER_ADDRESS,
2675 next ? next->vm_start : USER_PGTABLES_CEILING);
2676 tlb_finish_mmu(&tlb);
2680 * Create a list of vma's touched by the unmap, removing them from the mm's
2681 * vma list as we go..
2684 detach_vmas_to_be_unmapped(struct mm_struct *mm, struct vm_area_struct *vma,
2685 struct vm_area_struct *prev, unsigned long end)
2687 struct vm_area_struct **insertion_point;
2688 struct vm_area_struct *tail_vma = NULL;
2690 insertion_point = (prev ? &prev->vm_next : &mm->mmap);
2691 vma->vm_prev = NULL;
2693 vma_rb_erase(vma, &mm->mm_rb);
2697 } while (vma && vma->vm_start < end);
2698 *insertion_point = vma;
2700 vma->vm_prev = prev;
2701 vma_gap_update(vma);
2703 mm->highest_vm_end = prev ? vm_end_gap(prev) : 0;
2704 tail_vma->vm_next = NULL;
2706 /* Kill the cache */
2707 vmacache_invalidate(mm);
2710 * Do not downgrade mmap_lock if we are next to VM_GROWSDOWN or
2711 * VM_GROWSUP VMA. Such VMAs can change their size under
2712 * down_read(mmap_lock) and collide with the VMA we are about to unmap.
2714 if (vma && (vma->vm_flags & VM_GROWSDOWN))
2716 if (prev && (prev->vm_flags & VM_GROWSUP))
2722 * __split_vma() bypasses sysctl_max_map_count checking. We use this where it
2723 * has already been checked or doesn't make sense to fail.
2725 int __split_vma(struct mm_struct *mm, struct vm_area_struct *vma,
2726 unsigned long addr, int new_below)
2728 struct vm_area_struct *new;
2731 if (vma->vm_ops && vma->vm_ops->may_split) {
2732 err = vma->vm_ops->may_split(vma, addr);
2737 new = vm_area_dup(vma);
2744 new->vm_start = addr;
2745 new->vm_pgoff += ((addr - vma->vm_start) >> PAGE_SHIFT);
2748 err = vma_dup_policy(vma, new);
2752 err = anon_vma_clone(new, vma);
2757 get_file(new->vm_file);
2759 if (new->vm_ops && new->vm_ops->open)
2760 new->vm_ops->open(new);
2763 err = vma_adjust(vma, addr, vma->vm_end, vma->vm_pgoff +
2764 ((addr - new->vm_start) >> PAGE_SHIFT), new);
2766 err = vma_adjust(vma, vma->vm_start, addr, vma->vm_pgoff, new);
2772 /* Clean everything up if vma_adjust failed. */
2773 if (new->vm_ops && new->vm_ops->close)
2774 new->vm_ops->close(new);
2777 unlink_anon_vmas(new);
2779 mpol_put(vma_policy(new));
2786 * Split a vma into two pieces at address 'addr', a new vma is allocated
2787 * either for the first part or the tail.
2789 int split_vma(struct mm_struct *mm, struct vm_area_struct *vma,
2790 unsigned long addr, int new_below)
2792 if (mm->map_count >= sysctl_max_map_count)
2795 return __split_vma(mm, vma, addr, new_below);
2799 unlock_range(struct vm_area_struct *start, unsigned long limit)
2801 struct mm_struct *mm = start->vm_mm;
2802 struct vm_area_struct *tmp = start;
2804 while (tmp && tmp->vm_start < limit) {
2805 if (tmp->vm_flags & VM_LOCKED) {
2806 mm->locked_vm -= vma_pages(tmp);
2807 munlock_vma_pages_all(tmp);
2814 /* Munmap is split into 2 main parts -- this part which finds
2815 * what needs doing, and the areas themselves, which do the
2816 * work. This now handles partial unmappings.
2817 * Jeremy Fitzhardinge <jeremy@goop.org>
2819 int __do_munmap(struct mm_struct *mm, unsigned long start, size_t len,
2820 struct list_head *uf, bool downgrade)
2823 struct vm_area_struct *vma, *prev, *last;
2825 if ((offset_in_page(start)) || start > TASK_SIZE || len > TASK_SIZE-start)
2828 len = PAGE_ALIGN(len);
2834 * arch_unmap() might do unmaps itself. It must be called
2835 * and finish any rbtree manipulation before this code
2836 * runs and also starts to manipulate the rbtree.
2838 arch_unmap(mm, start, end);
2840 /* Find the first overlapping VMA where start < vma->vm_end */
2841 vma = find_vma_intersection(mm, start, end);
2844 prev = vma->vm_prev;
2847 * If we need to split any vma, do it now to save pain later.
2849 * Note: mremap's move_vma VM_ACCOUNT handling assumes a partially
2850 * unmapped vm_area_struct will remain in use: so lower split_vma
2851 * places tmp vma above, and higher split_vma places tmp vma below.
2853 if (start > vma->vm_start) {
2857 * Make sure that map_count on return from munmap() will
2858 * not exceed its limit; but let map_count go just above
2859 * its limit temporarily, to help free resources as expected.
2861 if (end < vma->vm_end && mm->map_count >= sysctl_max_map_count)
2864 error = __split_vma(mm, vma, start, 0);
2870 /* Does it split the last one? */
2871 last = find_vma(mm, end);
2872 if (last && end > last->vm_start) {
2873 int error = __split_vma(mm, last, end, 1);
2877 vma = vma_next(mm, prev);
2881 * If userfaultfd_unmap_prep returns an error the vmas
2882 * will remain split, but userland will get a
2883 * highly unexpected error anyway. This is no
2884 * different than the case where the first of the two
2885 * __split_vma fails, but we don't undo the first
2886 * split, despite we could. This is unlikely enough
2887 * failure that it's not worth optimizing it for.
2889 int error = userfaultfd_unmap_prep(vma, start, end, uf);
2895 * unlock any mlock()ed ranges before detaching vmas
2898 unlock_range(vma, end);
2900 /* Detach vmas from rbtree */
2901 if (!detach_vmas_to_be_unmapped(mm, vma, prev, end))
2905 mmap_write_downgrade(mm);
2907 unmap_region(mm, vma, prev, start, end);
2909 /* Fix up all other VM information */
2910 remove_vma_list(mm, vma);
2912 return downgrade ? 1 : 0;
2915 int do_munmap(struct mm_struct *mm, unsigned long start, size_t len,
2916 struct list_head *uf)
2918 return __do_munmap(mm, start, len, uf, false);
2921 static int __vm_munmap(unsigned long start, size_t len, bool downgrade)
2924 struct mm_struct *mm = current->mm;
2927 if (mmap_write_lock_killable(mm))
2930 ret = __do_munmap(mm, start, len, &uf, downgrade);
2932 * Returning 1 indicates mmap_lock is downgraded.
2933 * But 1 is not legal return value of vm_munmap() and munmap(), reset
2934 * it to 0 before return.
2937 mmap_read_unlock(mm);
2940 mmap_write_unlock(mm);
2942 userfaultfd_unmap_complete(mm, &uf);
2946 int vm_munmap(unsigned long start, size_t len)
2948 return __vm_munmap(start, len, false);
2950 EXPORT_SYMBOL(vm_munmap);
2952 SYSCALL_DEFINE2(munmap, unsigned long, addr, size_t, len)
2954 addr = untagged_addr(addr);
2955 profile_munmap(addr);
2956 return __vm_munmap(addr, len, true);
2961 * Emulation of deprecated remap_file_pages() syscall.
2963 SYSCALL_DEFINE5(remap_file_pages, unsigned long, start, unsigned long, size,
2964 unsigned long, prot, unsigned long, pgoff, unsigned long, flags)
2967 struct mm_struct *mm = current->mm;
2968 struct vm_area_struct *vma;
2969 unsigned long populate = 0;
2970 unsigned long ret = -EINVAL;
2973 pr_warn_once("%s (%d) uses deprecated remap_file_pages() syscall. See Documentation/vm/remap_file_pages.rst.\n",
2974 current->comm, current->pid);
2978 start = start & PAGE_MASK;
2979 size = size & PAGE_MASK;
2981 if (start + size <= start)
2984 /* Does pgoff wrap? */
2985 if (pgoff + (size >> PAGE_SHIFT) < pgoff)
2988 if (mmap_write_lock_killable(mm))
2991 vma = vma_lookup(mm, start);
2993 if (!vma || !(vma->vm_flags & VM_SHARED))
2996 if (start + size > vma->vm_end) {
2997 struct vm_area_struct *next;
2999 for (next = vma->vm_next; next; next = next->vm_next) {
3000 /* hole between vmas ? */
3001 if (next->vm_start != next->vm_prev->vm_end)
3004 if (next->vm_file != vma->vm_file)
3007 if (next->vm_flags != vma->vm_flags)
3010 if (start + size <= next->vm_end)
3018 prot |= vma->vm_flags & VM_READ ? PROT_READ : 0;
3019 prot |= vma->vm_flags & VM_WRITE ? PROT_WRITE : 0;
3020 prot |= vma->vm_flags & VM_EXEC ? PROT_EXEC : 0;
3022 flags &= MAP_NONBLOCK;
3023 flags |= MAP_SHARED | MAP_FIXED | MAP_POPULATE;
3024 if (vma->vm_flags & VM_LOCKED)
3025 flags |= MAP_LOCKED;
3027 file = get_file(vma->vm_file);
3028 ret = do_mmap(vma->vm_file, start, size,
3029 prot, flags, pgoff, &populate, NULL);
3032 mmap_write_unlock(mm);
3034 mm_populate(ret, populate);
3035 if (!IS_ERR_VALUE(ret))
3041 * this is really a simplified "do_mmap". it only handles
3042 * anonymous maps. eventually we may be able to do some
3043 * brk-specific accounting here.
3045 static int do_brk_flags(unsigned long addr, unsigned long len, unsigned long flags, struct list_head *uf)
3047 struct mm_struct *mm = current->mm;
3048 struct vm_area_struct *vma, *prev;
3049 struct rb_node **rb_link, *rb_parent;
3050 pgoff_t pgoff = addr >> PAGE_SHIFT;
3052 unsigned long mapped_addr;
3054 /* Until we need other flags, refuse anything except VM_EXEC. */
3055 if ((flags & (~VM_EXEC)) != 0)
3057 flags |= VM_DATA_DEFAULT_FLAGS | VM_ACCOUNT | mm->def_flags;
3059 mapped_addr = get_unmapped_area(NULL, addr, len, 0, MAP_FIXED);
3060 if (IS_ERR_VALUE(mapped_addr))
3063 error = mlock_future_check(mm, mm->def_flags, len);
3067 /* Clear old maps, set up prev, rb_link, rb_parent, and uf */
3068 if (munmap_vma_range(mm, addr, len, &prev, &rb_link, &rb_parent, uf))
3071 /* Check against address space limits *after* clearing old maps... */
3072 if (!may_expand_vm(mm, flags, len >> PAGE_SHIFT))
3075 if (mm->map_count > sysctl_max_map_count)
3078 if (security_vm_enough_memory_mm(mm, len >> PAGE_SHIFT))
3081 /* Can we just expand an old private anonymous mapping? */
3082 vma = vma_merge(mm, prev, addr, addr + len, flags,
3083 NULL, NULL, pgoff, NULL, NULL_VM_UFFD_CTX);
3088 * create a vma struct for an anonymous mapping
3090 vma = vm_area_alloc(mm);
3092 vm_unacct_memory(len >> PAGE_SHIFT);
3096 vma_set_anonymous(vma);
3097 vma->vm_start = addr;
3098 vma->vm_end = addr + len;
3099 vma->vm_pgoff = pgoff;
3100 vma->vm_flags = flags;
3101 vma->vm_page_prot = vm_get_page_prot(flags);
3102 vma_link(mm, vma, prev, rb_link, rb_parent);
3104 perf_event_mmap(vma);
3105 mm->total_vm += len >> PAGE_SHIFT;
3106 mm->data_vm += len >> PAGE_SHIFT;
3107 if (flags & VM_LOCKED)
3108 mm->locked_vm += (len >> PAGE_SHIFT);
3109 vma->vm_flags |= VM_SOFTDIRTY;
3113 int vm_brk_flags(unsigned long addr, unsigned long request, unsigned long flags)
3115 struct mm_struct *mm = current->mm;
3121 len = PAGE_ALIGN(request);
3127 if (mmap_write_lock_killable(mm))
3130 ret = do_brk_flags(addr, len, flags, &uf);
3131 populate = ((mm->def_flags & VM_LOCKED) != 0);
3132 mmap_write_unlock(mm);
3133 userfaultfd_unmap_complete(mm, &uf);
3134 if (populate && !ret)
3135 mm_populate(addr, len);
3138 EXPORT_SYMBOL(vm_brk_flags);
3140 int vm_brk(unsigned long addr, unsigned long len)
3142 return vm_brk_flags(addr, len, 0);
3144 EXPORT_SYMBOL(vm_brk);
3146 /* Release all mmaps. */
3147 void exit_mmap(struct mm_struct *mm)
3149 struct mmu_gather tlb;
3150 struct vm_area_struct *vma;
3151 unsigned long nr_accounted = 0;
3153 /* mm's last user has gone, and its about to be pulled down */
3154 mmu_notifier_release(mm);
3156 if (unlikely(mm_is_oom_victim(mm))) {
3158 * Manually reap the mm to free as much memory as possible.
3159 * Then, as the oom reaper does, set MMF_OOM_SKIP to disregard
3160 * this mm from further consideration. Taking mm->mmap_lock for
3161 * write after setting MMF_OOM_SKIP will guarantee that the oom
3162 * reaper will not run on this mm again after mmap_lock is
3165 * Nothing can be holding mm->mmap_lock here and the above call
3166 * to mmu_notifier_release(mm) ensures mmu notifier callbacks in
3167 * __oom_reap_task_mm() will not block.
3169 * This needs to be done before calling munlock_vma_pages_all(),
3170 * which clears VM_LOCKED, otherwise the oom reaper cannot
3173 (void)__oom_reap_task_mm(mm);
3175 set_bit(MMF_OOM_SKIP, &mm->flags);
3176 mmap_write_lock(mm);
3177 mmap_write_unlock(mm);
3181 unlock_range(mm->mmap, ULONG_MAX);
3186 if (!vma) /* Can happen if dup_mmap() received an OOM */
3191 tlb_gather_mmu_fullmm(&tlb, mm);
3192 /* update_hiwater_rss(mm) here? but nobody should be looking */
3193 /* Use -1 here to ensure all VMAs in the mm are unmapped */
3194 unmap_vmas(&tlb, vma, 0, -1);
3195 free_pgtables(&tlb, vma, FIRST_USER_ADDRESS, USER_PGTABLES_CEILING);
3196 tlb_finish_mmu(&tlb);
3199 * Walk the list again, actually closing and freeing it,
3200 * with preemption enabled, without holding any MM locks.
3203 if (vma->vm_flags & VM_ACCOUNT)
3204 nr_accounted += vma_pages(vma);
3205 vma = remove_vma(vma);
3208 vm_unacct_memory(nr_accounted);
3211 /* Insert vm structure into process list sorted by address
3212 * and into the inode's i_mmap tree. If vm_file is non-NULL
3213 * then i_mmap_rwsem is taken here.
3215 int insert_vm_struct(struct mm_struct *mm, struct vm_area_struct *vma)
3217 struct vm_area_struct *prev;
3218 struct rb_node **rb_link, *rb_parent;
3220 if (find_vma_links(mm, vma->vm_start, vma->vm_end,
3221 &prev, &rb_link, &rb_parent))
3223 if ((vma->vm_flags & VM_ACCOUNT) &&
3224 security_vm_enough_memory_mm(mm, vma_pages(vma)))
3228 * The vm_pgoff of a purely anonymous vma should be irrelevant
3229 * until its first write fault, when page's anon_vma and index
3230 * are set. But now set the vm_pgoff it will almost certainly
3231 * end up with (unless mremap moves it elsewhere before that
3232 * first wfault), so /proc/pid/maps tells a consistent story.
3234 * By setting it to reflect the virtual start address of the
3235 * vma, merges and splits can happen in a seamless way, just
3236 * using the existing file pgoff checks and manipulations.
3237 * Similarly in do_mmap and in do_brk_flags.
3239 if (vma_is_anonymous(vma)) {
3240 BUG_ON(vma->anon_vma);
3241 vma->vm_pgoff = vma->vm_start >> PAGE_SHIFT;
3244 vma_link(mm, vma, prev, rb_link, rb_parent);
3249 * Copy the vma structure to a new location in the same mm,
3250 * prior to moving page table entries, to effect an mremap move.
3252 struct vm_area_struct *copy_vma(struct vm_area_struct **vmap,
3253 unsigned long addr, unsigned long len, pgoff_t pgoff,
3254 bool *need_rmap_locks)
3256 struct vm_area_struct *vma = *vmap;
3257 unsigned long vma_start = vma->vm_start;
3258 struct mm_struct *mm = vma->vm_mm;
3259 struct vm_area_struct *new_vma, *prev;
3260 struct rb_node **rb_link, *rb_parent;
3261 bool faulted_in_anon_vma = true;
3264 * If anonymous vma has not yet been faulted, update new pgoff
3265 * to match new location, to increase its chance of merging.
3267 if (unlikely(vma_is_anonymous(vma) && !vma->anon_vma)) {
3268 pgoff = addr >> PAGE_SHIFT;
3269 faulted_in_anon_vma = false;
3272 if (find_vma_links(mm, addr, addr + len, &prev, &rb_link, &rb_parent))
3273 return NULL; /* should never get here */
3274 new_vma = vma_merge(mm, prev, addr, addr + len, vma->vm_flags,
3275 vma->anon_vma, vma->vm_file, pgoff, vma_policy(vma),
3276 vma->vm_userfaultfd_ctx);
3279 * Source vma may have been merged into new_vma
3281 if (unlikely(vma_start >= new_vma->vm_start &&
3282 vma_start < new_vma->vm_end)) {
3284 * The only way we can get a vma_merge with
3285 * self during an mremap is if the vma hasn't
3286 * been faulted in yet and we were allowed to
3287 * reset the dst vma->vm_pgoff to the
3288 * destination address of the mremap to allow
3289 * the merge to happen. mremap must change the
3290 * vm_pgoff linearity between src and dst vmas
3291 * (in turn preventing a vma_merge) to be
3292 * safe. It is only safe to keep the vm_pgoff
3293 * linear if there are no pages mapped yet.
3295 VM_BUG_ON_VMA(faulted_in_anon_vma, new_vma);
3296 *vmap = vma = new_vma;
3298 *need_rmap_locks = (new_vma->vm_pgoff <= vma->vm_pgoff);
3300 new_vma = vm_area_dup(vma);
3303 new_vma->vm_start = addr;
3304 new_vma->vm_end = addr + len;
3305 new_vma->vm_pgoff = pgoff;
3306 if (vma_dup_policy(vma, new_vma))
3308 if (anon_vma_clone(new_vma, vma))
3309 goto out_free_mempol;
3310 if (new_vma->vm_file)
3311 get_file(new_vma->vm_file);
3312 if (new_vma->vm_ops && new_vma->vm_ops->open)
3313 new_vma->vm_ops->open(new_vma);
3314 vma_link(mm, new_vma, prev, rb_link, rb_parent);
3315 *need_rmap_locks = false;
3320 mpol_put(vma_policy(new_vma));
3322 vm_area_free(new_vma);
3328 * Return true if the calling process may expand its vm space by the passed
3331 bool may_expand_vm(struct mm_struct *mm, vm_flags_t flags, unsigned long npages)
3333 if (mm->total_vm + npages > rlimit(RLIMIT_AS) >> PAGE_SHIFT)
3336 if (is_data_mapping(flags) &&
3337 mm->data_vm + npages > rlimit(RLIMIT_DATA) >> PAGE_SHIFT) {
3338 /* Workaround for Valgrind */
3339 if (rlimit(RLIMIT_DATA) == 0 &&
3340 mm->data_vm + npages <= rlimit_max(RLIMIT_DATA) >> PAGE_SHIFT)
3343 pr_warn_once("%s (%d): VmData %lu exceed data ulimit %lu. Update limits%s.\n",
3344 current->comm, current->pid,
3345 (mm->data_vm + npages) << PAGE_SHIFT,
3346 rlimit(RLIMIT_DATA),
3347 ignore_rlimit_data ? "" : " or use boot option ignore_rlimit_data");
3349 if (!ignore_rlimit_data)
3356 void vm_stat_account(struct mm_struct *mm, vm_flags_t flags, long npages)
3358 mm->total_vm += npages;
3360 if (is_exec_mapping(flags))
3361 mm->exec_vm += npages;
3362 else if (is_stack_mapping(flags))
3363 mm->stack_vm += npages;
3364 else if (is_data_mapping(flags))
3365 mm->data_vm += npages;
3368 static vm_fault_t special_mapping_fault(struct vm_fault *vmf);
3371 * Having a close hook prevents vma merging regardless of flags.
3373 static void special_mapping_close(struct vm_area_struct *vma)
3377 static const char *special_mapping_name(struct vm_area_struct *vma)
3379 return ((struct vm_special_mapping *)vma->vm_private_data)->name;
3382 static int special_mapping_mremap(struct vm_area_struct *new_vma)
3384 struct vm_special_mapping *sm = new_vma->vm_private_data;
3386 if (WARN_ON_ONCE(current->mm != new_vma->vm_mm))
3390 return sm->mremap(sm, new_vma);
3395 static int special_mapping_split(struct vm_area_struct *vma, unsigned long addr)
3398 * Forbid splitting special mappings - kernel has expectations over
3399 * the number of pages in mapping. Together with VM_DONTEXPAND
3400 * the size of vma should stay the same over the special mapping's
3406 static const struct vm_operations_struct special_mapping_vmops = {
3407 .close = special_mapping_close,
3408 .fault = special_mapping_fault,
3409 .mremap = special_mapping_mremap,
3410 .name = special_mapping_name,
3411 /* vDSO code relies that VVAR can't be accessed remotely */
3413 .may_split = special_mapping_split,
3416 static const struct vm_operations_struct legacy_special_mapping_vmops = {
3417 .close = special_mapping_close,
3418 .fault = special_mapping_fault,
3421 static vm_fault_t special_mapping_fault(struct vm_fault *vmf)
3423 struct vm_area_struct *vma = vmf->vma;
3425 struct page **pages;
3427 if (vma->vm_ops == &legacy_special_mapping_vmops) {
3428 pages = vma->vm_private_data;
3430 struct vm_special_mapping *sm = vma->vm_private_data;
3433 return sm->fault(sm, vmf->vma, vmf);
3438 for (pgoff = vmf->pgoff; pgoff && *pages; ++pages)
3442 struct page *page = *pages;
3448 return VM_FAULT_SIGBUS;
3451 static struct vm_area_struct *__install_special_mapping(
3452 struct mm_struct *mm,
3453 unsigned long addr, unsigned long len,
3454 unsigned long vm_flags, void *priv,
3455 const struct vm_operations_struct *ops)
3458 struct vm_area_struct *vma;
3460 vma = vm_area_alloc(mm);
3461 if (unlikely(vma == NULL))
3462 return ERR_PTR(-ENOMEM);
3464 vma->vm_start = addr;
3465 vma->vm_end = addr + len;
3467 vma->vm_flags = vm_flags | mm->def_flags | VM_DONTEXPAND | VM_SOFTDIRTY;
3468 vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
3471 vma->vm_private_data = priv;
3473 ret = insert_vm_struct(mm, vma);
3477 vm_stat_account(mm, vma->vm_flags, len >> PAGE_SHIFT);
3479 perf_event_mmap(vma);
3485 return ERR_PTR(ret);
3488 bool vma_is_special_mapping(const struct vm_area_struct *vma,
3489 const struct vm_special_mapping *sm)
3491 return vma->vm_private_data == sm &&
3492 (vma->vm_ops == &special_mapping_vmops ||
3493 vma->vm_ops == &legacy_special_mapping_vmops);
3497 * Called with mm->mmap_lock held for writing.
3498 * Insert a new vma covering the given region, with the given flags.
3499 * Its pages are supplied by the given array of struct page *.
3500 * The array can be shorter than len >> PAGE_SHIFT if it's null-terminated.
3501 * The region past the last page supplied will always produce SIGBUS.
3502 * The array pointer and the pages it points to are assumed to stay alive
3503 * for as long as this mapping might exist.
3505 struct vm_area_struct *_install_special_mapping(
3506 struct mm_struct *mm,
3507 unsigned long addr, unsigned long len,
3508 unsigned long vm_flags, const struct vm_special_mapping *spec)
3510 return __install_special_mapping(mm, addr, len, vm_flags, (void *)spec,
3511 &special_mapping_vmops);
3514 int install_special_mapping(struct mm_struct *mm,
3515 unsigned long addr, unsigned long len,
3516 unsigned long vm_flags, struct page **pages)
3518 struct vm_area_struct *vma = __install_special_mapping(
3519 mm, addr, len, vm_flags, (void *)pages,
3520 &legacy_special_mapping_vmops);
3522 return PTR_ERR_OR_ZERO(vma);
3525 static DEFINE_MUTEX(mm_all_locks_mutex);
3527 static void vm_lock_anon_vma(struct mm_struct *mm, struct anon_vma *anon_vma)
3529 if (!test_bit(0, (unsigned long *) &anon_vma->root->rb_root.rb_root.rb_node)) {
3531 * The LSB of head.next can't change from under us
3532 * because we hold the mm_all_locks_mutex.
3534 down_write_nest_lock(&anon_vma->root->rwsem, &mm->mmap_lock);
3536 * We can safely modify head.next after taking the
3537 * anon_vma->root->rwsem. If some other vma in this mm shares
3538 * the same anon_vma we won't take it again.
3540 * No need of atomic instructions here, head.next
3541 * can't change from under us thanks to the
3542 * anon_vma->root->rwsem.
3544 if (__test_and_set_bit(0, (unsigned long *)
3545 &anon_vma->root->rb_root.rb_root.rb_node))
3550 static void vm_lock_mapping(struct mm_struct *mm, struct address_space *mapping)
3552 if (!test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) {
3554 * AS_MM_ALL_LOCKS can't change from under us because
3555 * we hold the mm_all_locks_mutex.
3557 * Operations on ->flags have to be atomic because
3558 * even if AS_MM_ALL_LOCKS is stable thanks to the
3559 * mm_all_locks_mutex, there may be other cpus
3560 * changing other bitflags in parallel to us.
3562 if (test_and_set_bit(AS_MM_ALL_LOCKS, &mapping->flags))
3564 down_write_nest_lock(&mapping->i_mmap_rwsem, &mm->mmap_lock);
3569 * This operation locks against the VM for all pte/vma/mm related
3570 * operations that could ever happen on a certain mm. This includes
3571 * vmtruncate, try_to_unmap, and all page faults.
3573 * The caller must take the mmap_lock in write mode before calling
3574 * mm_take_all_locks(). The caller isn't allowed to release the
3575 * mmap_lock until mm_drop_all_locks() returns.
3577 * mmap_lock in write mode is required in order to block all operations
3578 * that could modify pagetables and free pages without need of
3579 * altering the vma layout. It's also needed in write mode to avoid new
3580 * anon_vmas to be associated with existing vmas.
3582 * A single task can't take more than one mm_take_all_locks() in a row
3583 * or it would deadlock.
3585 * The LSB in anon_vma->rb_root.rb_node and the AS_MM_ALL_LOCKS bitflag in
3586 * mapping->flags avoid to take the same lock twice, if more than one
3587 * vma in this mm is backed by the same anon_vma or address_space.
3589 * We take locks in following order, accordingly to comment at beginning
3591 * - all hugetlbfs_i_mmap_rwsem_key locks (aka mapping->i_mmap_rwsem for
3593 * - all i_mmap_rwsem locks;
3594 * - all anon_vma->rwseml
3596 * We can take all locks within these types randomly because the VM code
3597 * doesn't nest them and we protected from parallel mm_take_all_locks() by
3598 * mm_all_locks_mutex.
3600 * mm_take_all_locks() and mm_drop_all_locks are expensive operations
3601 * that may have to take thousand of locks.
3603 * mm_take_all_locks() can fail if it's interrupted by signals.
3605 int mm_take_all_locks(struct mm_struct *mm)
3607 struct vm_area_struct *vma;
3608 struct anon_vma_chain *avc;
3610 BUG_ON(mmap_read_trylock(mm));
3612 mutex_lock(&mm_all_locks_mutex);
3614 for (vma = mm->mmap; vma; vma = vma->vm_next) {
3615 if (signal_pending(current))
3617 if (vma->vm_file && vma->vm_file->f_mapping &&
3618 is_vm_hugetlb_page(vma))
3619 vm_lock_mapping(mm, vma->vm_file->f_mapping);
3622 for (vma = mm->mmap; vma; vma = vma->vm_next) {
3623 if (signal_pending(current))
3625 if (vma->vm_file && vma->vm_file->f_mapping &&
3626 !is_vm_hugetlb_page(vma))
3627 vm_lock_mapping(mm, vma->vm_file->f_mapping);
3630 for (vma = mm->mmap; vma; vma = vma->vm_next) {
3631 if (signal_pending(current))
3634 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
3635 vm_lock_anon_vma(mm, avc->anon_vma);
3641 mm_drop_all_locks(mm);
3645 static void vm_unlock_anon_vma(struct anon_vma *anon_vma)
3647 if (test_bit(0, (unsigned long *) &anon_vma->root->rb_root.rb_root.rb_node)) {
3649 * The LSB of head.next can't change to 0 from under
3650 * us because we hold the mm_all_locks_mutex.
3652 * We must however clear the bitflag before unlocking
3653 * the vma so the users using the anon_vma->rb_root will
3654 * never see our bitflag.
3656 * No need of atomic instructions here, head.next
3657 * can't change from under us until we release the
3658 * anon_vma->root->rwsem.
3660 if (!__test_and_clear_bit(0, (unsigned long *)
3661 &anon_vma->root->rb_root.rb_root.rb_node))
3663 anon_vma_unlock_write(anon_vma);
3667 static void vm_unlock_mapping(struct address_space *mapping)
3669 if (test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) {
3671 * AS_MM_ALL_LOCKS can't change to 0 from under us
3672 * because we hold the mm_all_locks_mutex.
3674 i_mmap_unlock_write(mapping);
3675 if (!test_and_clear_bit(AS_MM_ALL_LOCKS,
3682 * The mmap_lock cannot be released by the caller until
3683 * mm_drop_all_locks() returns.
3685 void mm_drop_all_locks(struct mm_struct *mm)
3687 struct vm_area_struct *vma;
3688 struct anon_vma_chain *avc;
3690 BUG_ON(mmap_read_trylock(mm));
3691 BUG_ON(!mutex_is_locked(&mm_all_locks_mutex));
3693 for (vma = mm->mmap; vma; vma = vma->vm_next) {
3695 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
3696 vm_unlock_anon_vma(avc->anon_vma);
3697 if (vma->vm_file && vma->vm_file->f_mapping)
3698 vm_unlock_mapping(vma->vm_file->f_mapping);
3701 mutex_unlock(&mm_all_locks_mutex);
3705 * initialise the percpu counter for VM
3707 void __init mmap_init(void)
3711 ret = percpu_counter_init(&vm_committed_as, 0, GFP_KERNEL);
3716 * Initialise sysctl_user_reserve_kbytes.
3718 * This is intended to prevent a user from starting a single memory hogging
3719 * process, such that they cannot recover (kill the hog) in OVERCOMMIT_NEVER
3722 * The default value is min(3% of free memory, 128MB)
3723 * 128MB is enough to recover with sshd/login, bash, and top/kill.
3725 static int init_user_reserve(void)
3727 unsigned long free_kbytes;
3729 free_kbytes = global_zone_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
3731 sysctl_user_reserve_kbytes = min(free_kbytes / 32, 1UL << 17);
3734 subsys_initcall(init_user_reserve);
3737 * Initialise sysctl_admin_reserve_kbytes.
3739 * The purpose of sysctl_admin_reserve_kbytes is to allow the sys admin
3740 * to log in and kill a memory hogging process.
3742 * Systems with more than 256MB will reserve 8MB, enough to recover
3743 * with sshd, bash, and top in OVERCOMMIT_GUESS. Smaller systems will
3744 * only reserve 3% of free pages by default.
3746 static int init_admin_reserve(void)
3748 unsigned long free_kbytes;
3750 free_kbytes = global_zone_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
3752 sysctl_admin_reserve_kbytes = min(free_kbytes / 32, 1UL << 13);
3755 subsys_initcall(init_admin_reserve);
3758 * Reinititalise user and admin reserves if memory is added or removed.
3760 * The default user reserve max is 128MB, and the default max for the
3761 * admin reserve is 8MB. These are usually, but not always, enough to
3762 * enable recovery from a memory hogging process using login/sshd, a shell,
3763 * and tools like top. It may make sense to increase or even disable the
3764 * reserve depending on the existence of swap or variations in the recovery
3765 * tools. So, the admin may have changed them.
3767 * If memory is added and the reserves have been eliminated or increased above
3768 * the default max, then we'll trust the admin.
3770 * If memory is removed and there isn't enough free memory, then we
3771 * need to reset the reserves.
3773 * Otherwise keep the reserve set by the admin.
3775 static int reserve_mem_notifier(struct notifier_block *nb,
3776 unsigned long action, void *data)
3778 unsigned long tmp, free_kbytes;
3782 /* Default max is 128MB. Leave alone if modified by operator. */
3783 tmp = sysctl_user_reserve_kbytes;
3784 if (0 < tmp && tmp < (1UL << 17))
3785 init_user_reserve();
3787 /* Default max is 8MB. Leave alone if modified by operator. */
3788 tmp = sysctl_admin_reserve_kbytes;
3789 if (0 < tmp && tmp < (1UL << 13))
3790 init_admin_reserve();
3794 free_kbytes = global_zone_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
3796 if (sysctl_user_reserve_kbytes > free_kbytes) {
3797 init_user_reserve();
3798 pr_info("vm.user_reserve_kbytes reset to %lu\n",
3799 sysctl_user_reserve_kbytes);
3802 if (sysctl_admin_reserve_kbytes > free_kbytes) {
3803 init_admin_reserve();
3804 pr_info("vm.admin_reserve_kbytes reset to %lu\n",
3805 sysctl_admin_reserve_kbytes);
3814 static struct notifier_block reserve_mem_nb = {
3815 .notifier_call = reserve_mem_notifier,
3818 static int __meminit init_reserve_notifier(void)
3820 if (register_hotmemory_notifier(&reserve_mem_nb))
3821 pr_err("Failed registering memory add/remove notifier for admin reserve\n");
3825 subsys_initcall(init_reserve_notifier);