Merge tag 'rproc-v4.15' of git://github.com/andersson/remoteproc
[platform/kernel/linux-starfive.git] / mm / mmap.c
1 /*
2  * mm/mmap.c
3  *
4  * Written by obz.
5  *
6  * Address space accounting code        <alan@lxorguk.ukuu.org.uk>
7  */
8
9 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
10
11 #include <linux/kernel.h>
12 #include <linux/slab.h>
13 #include <linux/backing-dev.h>
14 #include <linux/mm.h>
15 #include <linux/vmacache.h>
16 #include <linux/shm.h>
17 #include <linux/mman.h>
18 #include <linux/pagemap.h>
19 #include <linux/swap.h>
20 #include <linux/syscalls.h>
21 #include <linux/capability.h>
22 #include <linux/init.h>
23 #include <linux/file.h>
24 #include <linux/fs.h>
25 #include <linux/personality.h>
26 #include <linux/security.h>
27 #include <linux/hugetlb.h>
28 #include <linux/shmem_fs.h>
29 #include <linux/profile.h>
30 #include <linux/export.h>
31 #include <linux/mount.h>
32 #include <linux/mempolicy.h>
33 #include <linux/rmap.h>
34 #include <linux/mmu_notifier.h>
35 #include <linux/mmdebug.h>
36 #include <linux/perf_event.h>
37 #include <linux/audit.h>
38 #include <linux/khugepaged.h>
39 #include <linux/uprobes.h>
40 #include <linux/rbtree_augmented.h>
41 #include <linux/notifier.h>
42 #include <linux/memory.h>
43 #include <linux/printk.h>
44 #include <linux/userfaultfd_k.h>
45 #include <linux/moduleparam.h>
46 #include <linux/pkeys.h>
47 #include <linux/oom.h>
48
49 #include <linux/uaccess.h>
50 #include <asm/cacheflush.h>
51 #include <asm/tlb.h>
52 #include <asm/mmu_context.h>
53
54 #include "internal.h"
55
56 #ifndef arch_mmap_check
57 #define arch_mmap_check(addr, len, flags)       (0)
58 #endif
59
60 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_BITS
61 const int mmap_rnd_bits_min = CONFIG_ARCH_MMAP_RND_BITS_MIN;
62 const int mmap_rnd_bits_max = CONFIG_ARCH_MMAP_RND_BITS_MAX;
63 int mmap_rnd_bits __read_mostly = CONFIG_ARCH_MMAP_RND_BITS;
64 #endif
65 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS
66 const int mmap_rnd_compat_bits_min = CONFIG_ARCH_MMAP_RND_COMPAT_BITS_MIN;
67 const int mmap_rnd_compat_bits_max = CONFIG_ARCH_MMAP_RND_COMPAT_BITS_MAX;
68 int mmap_rnd_compat_bits __read_mostly = CONFIG_ARCH_MMAP_RND_COMPAT_BITS;
69 #endif
70
71 static bool ignore_rlimit_data;
72 core_param(ignore_rlimit_data, ignore_rlimit_data, bool, 0644);
73
74 static void unmap_region(struct mm_struct *mm,
75                 struct vm_area_struct *vma, struct vm_area_struct *prev,
76                 unsigned long start, unsigned long end);
77
78 /* description of effects of mapping type and prot in current implementation.
79  * this is due to the limited x86 page protection hardware.  The expected
80  * behavior is in parens:
81  *
82  * map_type     prot
83  *              PROT_NONE       PROT_READ       PROT_WRITE      PROT_EXEC
84  * MAP_SHARED   r: (no) no      r: (yes) yes    r: (no) yes     r: (no) yes
85  *              w: (no) no      w: (no) no      w: (yes) yes    w: (no) no
86  *              x: (no) no      x: (no) yes     x: (no) yes     x: (yes) yes
87  *
88  * MAP_PRIVATE  r: (no) no      r: (yes) yes    r: (no) yes     r: (no) yes
89  *              w: (no) no      w: (no) no      w: (copy) copy  w: (no) no
90  *              x: (no) no      x: (no) yes     x: (no) yes     x: (yes) yes
91  *
92  * On arm64, PROT_EXEC has the following behaviour for both MAP_SHARED and
93  * MAP_PRIVATE:
94  *                                                              r: (no) no
95  *                                                              w: (no) no
96  *                                                              x: (yes) yes
97  */
98 pgprot_t protection_map[16] __ro_after_init = {
99         __P000, __P001, __P010, __P011, __P100, __P101, __P110, __P111,
100         __S000, __S001, __S010, __S011, __S100, __S101, __S110, __S111
101 };
102
103 pgprot_t vm_get_page_prot(unsigned long vm_flags)
104 {
105         return __pgprot(pgprot_val(protection_map[vm_flags &
106                                 (VM_READ|VM_WRITE|VM_EXEC|VM_SHARED)]) |
107                         pgprot_val(arch_vm_get_page_prot(vm_flags)));
108 }
109 EXPORT_SYMBOL(vm_get_page_prot);
110
111 static pgprot_t vm_pgprot_modify(pgprot_t oldprot, unsigned long vm_flags)
112 {
113         return pgprot_modify(oldprot, vm_get_page_prot(vm_flags));
114 }
115
116 /* Update vma->vm_page_prot to reflect vma->vm_flags. */
117 void vma_set_page_prot(struct vm_area_struct *vma)
118 {
119         unsigned long vm_flags = vma->vm_flags;
120         pgprot_t vm_page_prot;
121
122         vm_page_prot = vm_pgprot_modify(vma->vm_page_prot, vm_flags);
123         if (vma_wants_writenotify(vma, vm_page_prot)) {
124                 vm_flags &= ~VM_SHARED;
125                 vm_page_prot = vm_pgprot_modify(vm_page_prot, vm_flags);
126         }
127         /* remove_protection_ptes reads vma->vm_page_prot without mmap_sem */
128         WRITE_ONCE(vma->vm_page_prot, vm_page_prot);
129 }
130
131 /*
132  * Requires inode->i_mapping->i_mmap_rwsem
133  */
134 static void __remove_shared_vm_struct(struct vm_area_struct *vma,
135                 struct file *file, struct address_space *mapping)
136 {
137         if (vma->vm_flags & VM_DENYWRITE)
138                 atomic_inc(&file_inode(file)->i_writecount);
139         if (vma->vm_flags & VM_SHARED)
140                 mapping_unmap_writable(mapping);
141
142         flush_dcache_mmap_lock(mapping);
143         vma_interval_tree_remove(vma, &mapping->i_mmap);
144         flush_dcache_mmap_unlock(mapping);
145 }
146
147 /*
148  * Unlink a file-based vm structure from its interval tree, to hide
149  * vma from rmap and vmtruncate before freeing its page tables.
150  */
151 void unlink_file_vma(struct vm_area_struct *vma)
152 {
153         struct file *file = vma->vm_file;
154
155         if (file) {
156                 struct address_space *mapping = file->f_mapping;
157                 i_mmap_lock_write(mapping);
158                 __remove_shared_vm_struct(vma, file, mapping);
159                 i_mmap_unlock_write(mapping);
160         }
161 }
162
163 /*
164  * Close a vm structure and free it, returning the next.
165  */
166 static struct vm_area_struct *remove_vma(struct vm_area_struct *vma)
167 {
168         struct vm_area_struct *next = vma->vm_next;
169
170         might_sleep();
171         if (vma->vm_ops && vma->vm_ops->close)
172                 vma->vm_ops->close(vma);
173         if (vma->vm_file)
174                 fput(vma->vm_file);
175         mpol_put(vma_policy(vma));
176         kmem_cache_free(vm_area_cachep, vma);
177         return next;
178 }
179
180 static int do_brk(unsigned long addr, unsigned long len, struct list_head *uf);
181
182 SYSCALL_DEFINE1(brk, unsigned long, brk)
183 {
184         unsigned long retval;
185         unsigned long newbrk, oldbrk;
186         struct mm_struct *mm = current->mm;
187         struct vm_area_struct *next;
188         unsigned long min_brk;
189         bool populate;
190         LIST_HEAD(uf);
191
192         if (down_write_killable(&mm->mmap_sem))
193                 return -EINTR;
194
195 #ifdef CONFIG_COMPAT_BRK
196         /*
197          * CONFIG_COMPAT_BRK can still be overridden by setting
198          * randomize_va_space to 2, which will still cause mm->start_brk
199          * to be arbitrarily shifted
200          */
201         if (current->brk_randomized)
202                 min_brk = mm->start_brk;
203         else
204                 min_brk = mm->end_data;
205 #else
206         min_brk = mm->start_brk;
207 #endif
208         if (brk < min_brk)
209                 goto out;
210
211         /*
212          * Check against rlimit here. If this check is done later after the test
213          * of oldbrk with newbrk then it can escape the test and let the data
214          * segment grow beyond its set limit the in case where the limit is
215          * not page aligned -Ram Gupta
216          */
217         if (check_data_rlimit(rlimit(RLIMIT_DATA), brk, mm->start_brk,
218                               mm->end_data, mm->start_data))
219                 goto out;
220
221         newbrk = PAGE_ALIGN(brk);
222         oldbrk = PAGE_ALIGN(mm->brk);
223         if (oldbrk == newbrk)
224                 goto set_brk;
225
226         /* Always allow shrinking brk. */
227         if (brk <= mm->brk) {
228                 if (!do_munmap(mm, newbrk, oldbrk-newbrk, &uf))
229                         goto set_brk;
230                 goto out;
231         }
232
233         /* Check against existing mmap mappings. */
234         next = find_vma(mm, oldbrk);
235         if (next && newbrk + PAGE_SIZE > vm_start_gap(next))
236                 goto out;
237
238         /* Ok, looks good - let it rip. */
239         if (do_brk(oldbrk, newbrk-oldbrk, &uf) < 0)
240                 goto out;
241
242 set_brk:
243         mm->brk = brk;
244         populate = newbrk > oldbrk && (mm->def_flags & VM_LOCKED) != 0;
245         up_write(&mm->mmap_sem);
246         userfaultfd_unmap_complete(mm, &uf);
247         if (populate)
248                 mm_populate(oldbrk, newbrk - oldbrk);
249         return brk;
250
251 out:
252         retval = mm->brk;
253         up_write(&mm->mmap_sem);
254         return retval;
255 }
256
257 static long vma_compute_subtree_gap(struct vm_area_struct *vma)
258 {
259         unsigned long max, prev_end, subtree_gap;
260
261         /*
262          * Note: in the rare case of a VM_GROWSDOWN above a VM_GROWSUP, we
263          * allow two stack_guard_gaps between them here, and when choosing
264          * an unmapped area; whereas when expanding we only require one.
265          * That's a little inconsistent, but keeps the code here simpler.
266          */
267         max = vm_start_gap(vma);
268         if (vma->vm_prev) {
269                 prev_end = vm_end_gap(vma->vm_prev);
270                 if (max > prev_end)
271                         max -= prev_end;
272                 else
273                         max = 0;
274         }
275         if (vma->vm_rb.rb_left) {
276                 subtree_gap = rb_entry(vma->vm_rb.rb_left,
277                                 struct vm_area_struct, vm_rb)->rb_subtree_gap;
278                 if (subtree_gap > max)
279                         max = subtree_gap;
280         }
281         if (vma->vm_rb.rb_right) {
282                 subtree_gap = rb_entry(vma->vm_rb.rb_right,
283                                 struct vm_area_struct, vm_rb)->rb_subtree_gap;
284                 if (subtree_gap > max)
285                         max = subtree_gap;
286         }
287         return max;
288 }
289
290 #ifdef CONFIG_DEBUG_VM_RB
291 static int browse_rb(struct mm_struct *mm)
292 {
293         struct rb_root *root = &mm->mm_rb;
294         int i = 0, j, bug = 0;
295         struct rb_node *nd, *pn = NULL;
296         unsigned long prev = 0, pend = 0;
297
298         for (nd = rb_first(root); nd; nd = rb_next(nd)) {
299                 struct vm_area_struct *vma;
300                 vma = rb_entry(nd, struct vm_area_struct, vm_rb);
301                 if (vma->vm_start < prev) {
302                         pr_emerg("vm_start %lx < prev %lx\n",
303                                   vma->vm_start, prev);
304                         bug = 1;
305                 }
306                 if (vma->vm_start < pend) {
307                         pr_emerg("vm_start %lx < pend %lx\n",
308                                   vma->vm_start, pend);
309                         bug = 1;
310                 }
311                 if (vma->vm_start > vma->vm_end) {
312                         pr_emerg("vm_start %lx > vm_end %lx\n",
313                                   vma->vm_start, vma->vm_end);
314                         bug = 1;
315                 }
316                 spin_lock(&mm->page_table_lock);
317                 if (vma->rb_subtree_gap != vma_compute_subtree_gap(vma)) {
318                         pr_emerg("free gap %lx, correct %lx\n",
319                                vma->rb_subtree_gap,
320                                vma_compute_subtree_gap(vma));
321                         bug = 1;
322                 }
323                 spin_unlock(&mm->page_table_lock);
324                 i++;
325                 pn = nd;
326                 prev = vma->vm_start;
327                 pend = vma->vm_end;
328         }
329         j = 0;
330         for (nd = pn; nd; nd = rb_prev(nd))
331                 j++;
332         if (i != j) {
333                 pr_emerg("backwards %d, forwards %d\n", j, i);
334                 bug = 1;
335         }
336         return bug ? -1 : i;
337 }
338
339 static void validate_mm_rb(struct rb_root *root, struct vm_area_struct *ignore)
340 {
341         struct rb_node *nd;
342
343         for (nd = rb_first(root); nd; nd = rb_next(nd)) {
344                 struct vm_area_struct *vma;
345                 vma = rb_entry(nd, struct vm_area_struct, vm_rb);
346                 VM_BUG_ON_VMA(vma != ignore &&
347                         vma->rb_subtree_gap != vma_compute_subtree_gap(vma),
348                         vma);
349         }
350 }
351
352 static void validate_mm(struct mm_struct *mm)
353 {
354         int bug = 0;
355         int i = 0;
356         unsigned long highest_address = 0;
357         struct vm_area_struct *vma = mm->mmap;
358
359         while (vma) {
360                 struct anon_vma *anon_vma = vma->anon_vma;
361                 struct anon_vma_chain *avc;
362
363                 if (anon_vma) {
364                         anon_vma_lock_read(anon_vma);
365                         list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
366                                 anon_vma_interval_tree_verify(avc);
367                         anon_vma_unlock_read(anon_vma);
368                 }
369
370                 highest_address = vm_end_gap(vma);
371                 vma = vma->vm_next;
372                 i++;
373         }
374         if (i != mm->map_count) {
375                 pr_emerg("map_count %d vm_next %d\n", mm->map_count, i);
376                 bug = 1;
377         }
378         if (highest_address != mm->highest_vm_end) {
379                 pr_emerg("mm->highest_vm_end %lx, found %lx\n",
380                           mm->highest_vm_end, highest_address);
381                 bug = 1;
382         }
383         i = browse_rb(mm);
384         if (i != mm->map_count) {
385                 if (i != -1)
386                         pr_emerg("map_count %d rb %d\n", mm->map_count, i);
387                 bug = 1;
388         }
389         VM_BUG_ON_MM(bug, mm);
390 }
391 #else
392 #define validate_mm_rb(root, ignore) do { } while (0)
393 #define validate_mm(mm) do { } while (0)
394 #endif
395
396 RB_DECLARE_CALLBACKS(static, vma_gap_callbacks, struct vm_area_struct, vm_rb,
397                      unsigned long, rb_subtree_gap, vma_compute_subtree_gap)
398
399 /*
400  * Update augmented rbtree rb_subtree_gap values after vma->vm_start or
401  * vma->vm_prev->vm_end values changed, without modifying the vma's position
402  * in the rbtree.
403  */
404 static void vma_gap_update(struct vm_area_struct *vma)
405 {
406         /*
407          * As it turns out, RB_DECLARE_CALLBACKS() already created a callback
408          * function that does exacltly what we want.
409          */
410         vma_gap_callbacks_propagate(&vma->vm_rb, NULL);
411 }
412
413 static inline void vma_rb_insert(struct vm_area_struct *vma,
414                                  struct rb_root *root)
415 {
416         /* All rb_subtree_gap values must be consistent prior to insertion */
417         validate_mm_rb(root, NULL);
418
419         rb_insert_augmented(&vma->vm_rb, root, &vma_gap_callbacks);
420 }
421
422 static void __vma_rb_erase(struct vm_area_struct *vma, struct rb_root *root)
423 {
424         /*
425          * Note rb_erase_augmented is a fairly large inline function,
426          * so make sure we instantiate it only once with our desired
427          * augmented rbtree callbacks.
428          */
429         rb_erase_augmented(&vma->vm_rb, root, &vma_gap_callbacks);
430 }
431
432 static __always_inline void vma_rb_erase_ignore(struct vm_area_struct *vma,
433                                                 struct rb_root *root,
434                                                 struct vm_area_struct *ignore)
435 {
436         /*
437          * All rb_subtree_gap values must be consistent prior to erase,
438          * with the possible exception of the "next" vma being erased if
439          * next->vm_start was reduced.
440          */
441         validate_mm_rb(root, ignore);
442
443         __vma_rb_erase(vma, root);
444 }
445
446 static __always_inline void vma_rb_erase(struct vm_area_struct *vma,
447                                          struct rb_root *root)
448 {
449         /*
450          * All rb_subtree_gap values must be consistent prior to erase,
451          * with the possible exception of the vma being erased.
452          */
453         validate_mm_rb(root, vma);
454
455         __vma_rb_erase(vma, root);
456 }
457
458 /*
459  * vma has some anon_vma assigned, and is already inserted on that
460  * anon_vma's interval trees.
461  *
462  * Before updating the vma's vm_start / vm_end / vm_pgoff fields, the
463  * vma must be removed from the anon_vma's interval trees using
464  * anon_vma_interval_tree_pre_update_vma().
465  *
466  * After the update, the vma will be reinserted using
467  * anon_vma_interval_tree_post_update_vma().
468  *
469  * The entire update must be protected by exclusive mmap_sem and by
470  * the root anon_vma's mutex.
471  */
472 static inline void
473 anon_vma_interval_tree_pre_update_vma(struct vm_area_struct *vma)
474 {
475         struct anon_vma_chain *avc;
476
477         list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
478                 anon_vma_interval_tree_remove(avc, &avc->anon_vma->rb_root);
479 }
480
481 static inline void
482 anon_vma_interval_tree_post_update_vma(struct vm_area_struct *vma)
483 {
484         struct anon_vma_chain *avc;
485
486         list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
487                 anon_vma_interval_tree_insert(avc, &avc->anon_vma->rb_root);
488 }
489
490 static int find_vma_links(struct mm_struct *mm, unsigned long addr,
491                 unsigned long end, struct vm_area_struct **pprev,
492                 struct rb_node ***rb_link, struct rb_node **rb_parent)
493 {
494         struct rb_node **__rb_link, *__rb_parent, *rb_prev;
495
496         __rb_link = &mm->mm_rb.rb_node;
497         rb_prev = __rb_parent = NULL;
498
499         while (*__rb_link) {
500                 struct vm_area_struct *vma_tmp;
501
502                 __rb_parent = *__rb_link;
503                 vma_tmp = rb_entry(__rb_parent, struct vm_area_struct, vm_rb);
504
505                 if (vma_tmp->vm_end > addr) {
506                         /* Fail if an existing vma overlaps the area */
507                         if (vma_tmp->vm_start < end)
508                                 return -ENOMEM;
509                         __rb_link = &__rb_parent->rb_left;
510                 } else {
511                         rb_prev = __rb_parent;
512                         __rb_link = &__rb_parent->rb_right;
513                 }
514         }
515
516         *pprev = NULL;
517         if (rb_prev)
518                 *pprev = rb_entry(rb_prev, struct vm_area_struct, vm_rb);
519         *rb_link = __rb_link;
520         *rb_parent = __rb_parent;
521         return 0;
522 }
523
524 static unsigned long count_vma_pages_range(struct mm_struct *mm,
525                 unsigned long addr, unsigned long end)
526 {
527         unsigned long nr_pages = 0;
528         struct vm_area_struct *vma;
529
530         /* Find first overlaping mapping */
531         vma = find_vma_intersection(mm, addr, end);
532         if (!vma)
533                 return 0;
534
535         nr_pages = (min(end, vma->vm_end) -
536                 max(addr, vma->vm_start)) >> PAGE_SHIFT;
537
538         /* Iterate over the rest of the overlaps */
539         for (vma = vma->vm_next; vma; vma = vma->vm_next) {
540                 unsigned long overlap_len;
541
542                 if (vma->vm_start > end)
543                         break;
544
545                 overlap_len = min(end, vma->vm_end) - vma->vm_start;
546                 nr_pages += overlap_len >> PAGE_SHIFT;
547         }
548
549         return nr_pages;
550 }
551
552 void __vma_link_rb(struct mm_struct *mm, struct vm_area_struct *vma,
553                 struct rb_node **rb_link, struct rb_node *rb_parent)
554 {
555         /* Update tracking information for the gap following the new vma. */
556         if (vma->vm_next)
557                 vma_gap_update(vma->vm_next);
558         else
559                 mm->highest_vm_end = vm_end_gap(vma);
560
561         /*
562          * vma->vm_prev wasn't known when we followed the rbtree to find the
563          * correct insertion point for that vma. As a result, we could not
564          * update the vma vm_rb parents rb_subtree_gap values on the way down.
565          * So, we first insert the vma with a zero rb_subtree_gap value
566          * (to be consistent with what we did on the way down), and then
567          * immediately update the gap to the correct value. Finally we
568          * rebalance the rbtree after all augmented values have been set.
569          */
570         rb_link_node(&vma->vm_rb, rb_parent, rb_link);
571         vma->rb_subtree_gap = 0;
572         vma_gap_update(vma);
573         vma_rb_insert(vma, &mm->mm_rb);
574 }
575
576 static void __vma_link_file(struct vm_area_struct *vma)
577 {
578         struct file *file;
579
580         file = vma->vm_file;
581         if (file) {
582                 struct address_space *mapping = file->f_mapping;
583
584                 if (vma->vm_flags & VM_DENYWRITE)
585                         atomic_dec(&file_inode(file)->i_writecount);
586                 if (vma->vm_flags & VM_SHARED)
587                         atomic_inc(&mapping->i_mmap_writable);
588
589                 flush_dcache_mmap_lock(mapping);
590                 vma_interval_tree_insert(vma, &mapping->i_mmap);
591                 flush_dcache_mmap_unlock(mapping);
592         }
593 }
594
595 static void
596 __vma_link(struct mm_struct *mm, struct vm_area_struct *vma,
597         struct vm_area_struct *prev, struct rb_node **rb_link,
598         struct rb_node *rb_parent)
599 {
600         __vma_link_list(mm, vma, prev, rb_parent);
601         __vma_link_rb(mm, vma, rb_link, rb_parent);
602 }
603
604 static void vma_link(struct mm_struct *mm, struct vm_area_struct *vma,
605                         struct vm_area_struct *prev, struct rb_node **rb_link,
606                         struct rb_node *rb_parent)
607 {
608         struct address_space *mapping = NULL;
609
610         if (vma->vm_file) {
611                 mapping = vma->vm_file->f_mapping;
612                 i_mmap_lock_write(mapping);
613         }
614
615         __vma_link(mm, vma, prev, rb_link, rb_parent);
616         __vma_link_file(vma);
617
618         if (mapping)
619                 i_mmap_unlock_write(mapping);
620
621         mm->map_count++;
622         validate_mm(mm);
623 }
624
625 /*
626  * Helper for vma_adjust() in the split_vma insert case: insert a vma into the
627  * mm's list and rbtree.  It has already been inserted into the interval tree.
628  */
629 static void __insert_vm_struct(struct mm_struct *mm, struct vm_area_struct *vma)
630 {
631         struct vm_area_struct *prev;
632         struct rb_node **rb_link, *rb_parent;
633
634         if (find_vma_links(mm, vma->vm_start, vma->vm_end,
635                            &prev, &rb_link, &rb_parent))
636                 BUG();
637         __vma_link(mm, vma, prev, rb_link, rb_parent);
638         mm->map_count++;
639 }
640
641 static __always_inline void __vma_unlink_common(struct mm_struct *mm,
642                                                 struct vm_area_struct *vma,
643                                                 struct vm_area_struct *prev,
644                                                 bool has_prev,
645                                                 struct vm_area_struct *ignore)
646 {
647         struct vm_area_struct *next;
648
649         vma_rb_erase_ignore(vma, &mm->mm_rb, ignore);
650         next = vma->vm_next;
651         if (has_prev)
652                 prev->vm_next = next;
653         else {
654                 prev = vma->vm_prev;
655                 if (prev)
656                         prev->vm_next = next;
657                 else
658                         mm->mmap = next;
659         }
660         if (next)
661                 next->vm_prev = prev;
662
663         /* Kill the cache */
664         vmacache_invalidate(mm);
665 }
666
667 static inline void __vma_unlink_prev(struct mm_struct *mm,
668                                      struct vm_area_struct *vma,
669                                      struct vm_area_struct *prev)
670 {
671         __vma_unlink_common(mm, vma, prev, true, vma);
672 }
673
674 /*
675  * We cannot adjust vm_start, vm_end, vm_pgoff fields of a vma that
676  * is already present in an i_mmap tree without adjusting the tree.
677  * The following helper function should be used when such adjustments
678  * are necessary.  The "insert" vma (if any) is to be inserted
679  * before we drop the necessary locks.
680  */
681 int __vma_adjust(struct vm_area_struct *vma, unsigned long start,
682         unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert,
683         struct vm_area_struct *expand)
684 {
685         struct mm_struct *mm = vma->vm_mm;
686         struct vm_area_struct *next = vma->vm_next, *orig_vma = vma;
687         struct address_space *mapping = NULL;
688         struct rb_root_cached *root = NULL;
689         struct anon_vma *anon_vma = NULL;
690         struct file *file = vma->vm_file;
691         bool start_changed = false, end_changed = false;
692         long adjust_next = 0;
693         int remove_next = 0;
694
695         if (next && !insert) {
696                 struct vm_area_struct *exporter = NULL, *importer = NULL;
697
698                 if (end >= next->vm_end) {
699                         /*
700                          * vma expands, overlapping all the next, and
701                          * perhaps the one after too (mprotect case 6).
702                          * The only other cases that gets here are
703                          * case 1, case 7 and case 8.
704                          */
705                         if (next == expand) {
706                                 /*
707                                  * The only case where we don't expand "vma"
708                                  * and we expand "next" instead is case 8.
709                                  */
710                                 VM_WARN_ON(end != next->vm_end);
711                                 /*
712                                  * remove_next == 3 means we're
713                                  * removing "vma" and that to do so we
714                                  * swapped "vma" and "next".
715                                  */
716                                 remove_next = 3;
717                                 VM_WARN_ON(file != next->vm_file);
718                                 swap(vma, next);
719                         } else {
720                                 VM_WARN_ON(expand != vma);
721                                 /*
722                                  * case 1, 6, 7, remove_next == 2 is case 6,
723                                  * remove_next == 1 is case 1 or 7.
724                                  */
725                                 remove_next = 1 + (end > next->vm_end);
726                                 VM_WARN_ON(remove_next == 2 &&
727                                            end != next->vm_next->vm_end);
728                                 VM_WARN_ON(remove_next == 1 &&
729                                            end != next->vm_end);
730                                 /* trim end to next, for case 6 first pass */
731                                 end = next->vm_end;
732                         }
733
734                         exporter = next;
735                         importer = vma;
736
737                         /*
738                          * If next doesn't have anon_vma, import from vma after
739                          * next, if the vma overlaps with it.
740                          */
741                         if (remove_next == 2 && !next->anon_vma)
742                                 exporter = next->vm_next;
743
744                 } else if (end > next->vm_start) {
745                         /*
746                          * vma expands, overlapping part of the next:
747                          * mprotect case 5 shifting the boundary up.
748                          */
749                         adjust_next = (end - next->vm_start) >> PAGE_SHIFT;
750                         exporter = next;
751                         importer = vma;
752                         VM_WARN_ON(expand != importer);
753                 } else if (end < vma->vm_end) {
754                         /*
755                          * vma shrinks, and !insert tells it's not
756                          * split_vma inserting another: so it must be
757                          * mprotect case 4 shifting the boundary down.
758                          */
759                         adjust_next = -((vma->vm_end - end) >> PAGE_SHIFT);
760                         exporter = vma;
761                         importer = next;
762                         VM_WARN_ON(expand != importer);
763                 }
764
765                 /*
766                  * Easily overlooked: when mprotect shifts the boundary,
767                  * make sure the expanding vma has anon_vma set if the
768                  * shrinking vma had, to cover any anon pages imported.
769                  */
770                 if (exporter && exporter->anon_vma && !importer->anon_vma) {
771                         int error;
772
773                         importer->anon_vma = exporter->anon_vma;
774                         error = anon_vma_clone(importer, exporter);
775                         if (error)
776                                 return error;
777                 }
778         }
779 again:
780         vma_adjust_trans_huge(orig_vma, start, end, adjust_next);
781
782         if (file) {
783                 mapping = file->f_mapping;
784                 root = &mapping->i_mmap;
785                 uprobe_munmap(vma, vma->vm_start, vma->vm_end);
786
787                 if (adjust_next)
788                         uprobe_munmap(next, next->vm_start, next->vm_end);
789
790                 i_mmap_lock_write(mapping);
791                 if (insert) {
792                         /*
793                          * Put into interval tree now, so instantiated pages
794                          * are visible to arm/parisc __flush_dcache_page
795                          * throughout; but we cannot insert into address
796                          * space until vma start or end is updated.
797                          */
798                         __vma_link_file(insert);
799                 }
800         }
801
802         anon_vma = vma->anon_vma;
803         if (!anon_vma && adjust_next)
804                 anon_vma = next->anon_vma;
805         if (anon_vma) {
806                 VM_WARN_ON(adjust_next && next->anon_vma &&
807                            anon_vma != next->anon_vma);
808                 anon_vma_lock_write(anon_vma);
809                 anon_vma_interval_tree_pre_update_vma(vma);
810                 if (adjust_next)
811                         anon_vma_interval_tree_pre_update_vma(next);
812         }
813
814         if (root) {
815                 flush_dcache_mmap_lock(mapping);
816                 vma_interval_tree_remove(vma, root);
817                 if (adjust_next)
818                         vma_interval_tree_remove(next, root);
819         }
820
821         if (start != vma->vm_start) {
822                 vma->vm_start = start;
823                 start_changed = true;
824         }
825         if (end != vma->vm_end) {
826                 vma->vm_end = end;
827                 end_changed = true;
828         }
829         vma->vm_pgoff = pgoff;
830         if (adjust_next) {
831                 next->vm_start += adjust_next << PAGE_SHIFT;
832                 next->vm_pgoff += adjust_next;
833         }
834
835         if (root) {
836                 if (adjust_next)
837                         vma_interval_tree_insert(next, root);
838                 vma_interval_tree_insert(vma, root);
839                 flush_dcache_mmap_unlock(mapping);
840         }
841
842         if (remove_next) {
843                 /*
844                  * vma_merge has merged next into vma, and needs
845                  * us to remove next before dropping the locks.
846                  */
847                 if (remove_next != 3)
848                         __vma_unlink_prev(mm, next, vma);
849                 else
850                         /*
851                          * vma is not before next if they've been
852                          * swapped.
853                          *
854                          * pre-swap() next->vm_start was reduced so
855                          * tell validate_mm_rb to ignore pre-swap()
856                          * "next" (which is stored in post-swap()
857                          * "vma").
858                          */
859                         __vma_unlink_common(mm, next, NULL, false, vma);
860                 if (file)
861                         __remove_shared_vm_struct(next, file, mapping);
862         } else if (insert) {
863                 /*
864                  * split_vma has split insert from vma, and needs
865                  * us to insert it before dropping the locks
866                  * (it may either follow vma or precede it).
867                  */
868                 __insert_vm_struct(mm, insert);
869         } else {
870                 if (start_changed)
871                         vma_gap_update(vma);
872                 if (end_changed) {
873                         if (!next)
874                                 mm->highest_vm_end = vm_end_gap(vma);
875                         else if (!adjust_next)
876                                 vma_gap_update(next);
877                 }
878         }
879
880         if (anon_vma) {
881                 anon_vma_interval_tree_post_update_vma(vma);
882                 if (adjust_next)
883                         anon_vma_interval_tree_post_update_vma(next);
884                 anon_vma_unlock_write(anon_vma);
885         }
886         if (mapping)
887                 i_mmap_unlock_write(mapping);
888
889         if (root) {
890                 uprobe_mmap(vma);
891
892                 if (adjust_next)
893                         uprobe_mmap(next);
894         }
895
896         if (remove_next) {
897                 if (file) {
898                         uprobe_munmap(next, next->vm_start, next->vm_end);
899                         fput(file);
900                 }
901                 if (next->anon_vma)
902                         anon_vma_merge(vma, next);
903                 mm->map_count--;
904                 mpol_put(vma_policy(next));
905                 kmem_cache_free(vm_area_cachep, next);
906                 /*
907                  * In mprotect's case 6 (see comments on vma_merge),
908                  * we must remove another next too. It would clutter
909                  * up the code too much to do both in one go.
910                  */
911                 if (remove_next != 3) {
912                         /*
913                          * If "next" was removed and vma->vm_end was
914                          * expanded (up) over it, in turn
915                          * "next->vm_prev->vm_end" changed and the
916                          * "vma->vm_next" gap must be updated.
917                          */
918                         next = vma->vm_next;
919                 } else {
920                         /*
921                          * For the scope of the comment "next" and
922                          * "vma" considered pre-swap(): if "vma" was
923                          * removed, next->vm_start was expanded (down)
924                          * over it and the "next" gap must be updated.
925                          * Because of the swap() the post-swap() "vma"
926                          * actually points to pre-swap() "next"
927                          * (post-swap() "next" as opposed is now a
928                          * dangling pointer).
929                          */
930                         next = vma;
931                 }
932                 if (remove_next == 2) {
933                         remove_next = 1;
934                         end = next->vm_end;
935                         goto again;
936                 }
937                 else if (next)
938                         vma_gap_update(next);
939                 else {
940                         /*
941                          * If remove_next == 2 we obviously can't
942                          * reach this path.
943                          *
944                          * If remove_next == 3 we can't reach this
945                          * path because pre-swap() next is always not
946                          * NULL. pre-swap() "next" is not being
947                          * removed and its next->vm_end is not altered
948                          * (and furthermore "end" already matches
949                          * next->vm_end in remove_next == 3).
950                          *
951                          * We reach this only in the remove_next == 1
952                          * case if the "next" vma that was removed was
953                          * the highest vma of the mm. However in such
954                          * case next->vm_end == "end" and the extended
955                          * "vma" has vma->vm_end == next->vm_end so
956                          * mm->highest_vm_end doesn't need any update
957                          * in remove_next == 1 case.
958                          */
959                         VM_WARN_ON(mm->highest_vm_end != vm_end_gap(vma));
960                 }
961         }
962         if (insert && file)
963                 uprobe_mmap(insert);
964
965         validate_mm(mm);
966
967         return 0;
968 }
969
970 /*
971  * If the vma has a ->close operation then the driver probably needs to release
972  * per-vma resources, so we don't attempt to merge those.
973  */
974 static inline int is_mergeable_vma(struct vm_area_struct *vma,
975                                 struct file *file, unsigned long vm_flags,
976                                 struct vm_userfaultfd_ctx vm_userfaultfd_ctx)
977 {
978         /*
979          * VM_SOFTDIRTY should not prevent from VMA merging, if we
980          * match the flags but dirty bit -- the caller should mark
981          * merged VMA as dirty. If dirty bit won't be excluded from
982          * comparison, we increase pressue on the memory system forcing
983          * the kernel to generate new VMAs when old one could be
984          * extended instead.
985          */
986         if ((vma->vm_flags ^ vm_flags) & ~VM_SOFTDIRTY)
987                 return 0;
988         if (vma->vm_file != file)
989                 return 0;
990         if (vma->vm_ops && vma->vm_ops->close)
991                 return 0;
992         if (!is_mergeable_vm_userfaultfd_ctx(vma, vm_userfaultfd_ctx))
993                 return 0;
994         return 1;
995 }
996
997 static inline int is_mergeable_anon_vma(struct anon_vma *anon_vma1,
998                                         struct anon_vma *anon_vma2,
999                                         struct vm_area_struct *vma)
1000 {
1001         /*
1002          * The list_is_singular() test is to avoid merging VMA cloned from
1003          * parents. This can improve scalability caused by anon_vma lock.
1004          */
1005         if ((!anon_vma1 || !anon_vma2) && (!vma ||
1006                 list_is_singular(&vma->anon_vma_chain)))
1007                 return 1;
1008         return anon_vma1 == anon_vma2;
1009 }
1010
1011 /*
1012  * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
1013  * in front of (at a lower virtual address and file offset than) the vma.
1014  *
1015  * We cannot merge two vmas if they have differently assigned (non-NULL)
1016  * anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
1017  *
1018  * We don't check here for the merged mmap wrapping around the end of pagecache
1019  * indices (16TB on ia32) because do_mmap_pgoff() does not permit mmap's which
1020  * wrap, nor mmaps which cover the final page at index -1UL.
1021  */
1022 static int
1023 can_vma_merge_before(struct vm_area_struct *vma, unsigned long vm_flags,
1024                      struct anon_vma *anon_vma, struct file *file,
1025                      pgoff_t vm_pgoff,
1026                      struct vm_userfaultfd_ctx vm_userfaultfd_ctx)
1027 {
1028         if (is_mergeable_vma(vma, file, vm_flags, vm_userfaultfd_ctx) &&
1029             is_mergeable_anon_vma(anon_vma, vma->anon_vma, vma)) {
1030                 if (vma->vm_pgoff == vm_pgoff)
1031                         return 1;
1032         }
1033         return 0;
1034 }
1035
1036 /*
1037  * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
1038  * beyond (at a higher virtual address and file offset than) the vma.
1039  *
1040  * We cannot merge two vmas if they have differently assigned (non-NULL)
1041  * anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
1042  */
1043 static int
1044 can_vma_merge_after(struct vm_area_struct *vma, unsigned long vm_flags,
1045                     struct anon_vma *anon_vma, struct file *file,
1046                     pgoff_t vm_pgoff,
1047                     struct vm_userfaultfd_ctx vm_userfaultfd_ctx)
1048 {
1049         if (is_mergeable_vma(vma, file, vm_flags, vm_userfaultfd_ctx) &&
1050             is_mergeable_anon_vma(anon_vma, vma->anon_vma, vma)) {
1051                 pgoff_t vm_pglen;
1052                 vm_pglen = vma_pages(vma);
1053                 if (vma->vm_pgoff + vm_pglen == vm_pgoff)
1054                         return 1;
1055         }
1056         return 0;
1057 }
1058
1059 /*
1060  * Given a mapping request (addr,end,vm_flags,file,pgoff), figure out
1061  * whether that can be merged with its predecessor or its successor.
1062  * Or both (it neatly fills a hole).
1063  *
1064  * In most cases - when called for mmap, brk or mremap - [addr,end) is
1065  * certain not to be mapped by the time vma_merge is called; but when
1066  * called for mprotect, it is certain to be already mapped (either at
1067  * an offset within prev, or at the start of next), and the flags of
1068  * this area are about to be changed to vm_flags - and the no-change
1069  * case has already been eliminated.
1070  *
1071  * The following mprotect cases have to be considered, where AAAA is
1072  * the area passed down from mprotect_fixup, never extending beyond one
1073  * vma, PPPPPP is the prev vma specified, and NNNNNN the next vma after:
1074  *
1075  *     AAAA             AAAA                AAAA          AAAA
1076  *    PPPPPPNNNNNN    PPPPPPNNNNNN    PPPPPPNNNNNN    PPPPNNNNXXXX
1077  *    cannot merge    might become    might become    might become
1078  *                    PPNNNNNNNNNN    PPPPPPPPPPNN    PPPPPPPPPPPP 6 or
1079  *    mmap, brk or    case 4 below    case 5 below    PPPPPPPPXXXX 7 or
1080  *    mremap move:                                    PPPPXXXXXXXX 8
1081  *        AAAA
1082  *    PPPP    NNNN    PPPPPPPPPPPP    PPPPPPPPNNNN    PPPPNNNNNNNN
1083  *    might become    case 1 below    case 2 below    case 3 below
1084  *
1085  * It is important for case 8 that the the vma NNNN overlapping the
1086  * region AAAA is never going to extended over XXXX. Instead XXXX must
1087  * be extended in region AAAA and NNNN must be removed. This way in
1088  * all cases where vma_merge succeeds, the moment vma_adjust drops the
1089  * rmap_locks, the properties of the merged vma will be already
1090  * correct for the whole merged range. Some of those properties like
1091  * vm_page_prot/vm_flags may be accessed by rmap_walks and they must
1092  * be correct for the whole merged range immediately after the
1093  * rmap_locks are released. Otherwise if XXXX would be removed and
1094  * NNNN would be extended over the XXXX range, remove_migration_ptes
1095  * or other rmap walkers (if working on addresses beyond the "end"
1096  * parameter) may establish ptes with the wrong permissions of NNNN
1097  * instead of the right permissions of XXXX.
1098  */
1099 struct vm_area_struct *vma_merge(struct mm_struct *mm,
1100                         struct vm_area_struct *prev, unsigned long addr,
1101                         unsigned long end, unsigned long vm_flags,
1102                         struct anon_vma *anon_vma, struct file *file,
1103                         pgoff_t pgoff, struct mempolicy *policy,
1104                         struct vm_userfaultfd_ctx vm_userfaultfd_ctx)
1105 {
1106         pgoff_t pglen = (end - addr) >> PAGE_SHIFT;
1107         struct vm_area_struct *area, *next;
1108         int err;
1109
1110         /*
1111          * We later require that vma->vm_flags == vm_flags,
1112          * so this tests vma->vm_flags & VM_SPECIAL, too.
1113          */
1114         if (vm_flags & VM_SPECIAL)
1115                 return NULL;
1116
1117         if (prev)
1118                 next = prev->vm_next;
1119         else
1120                 next = mm->mmap;
1121         area = next;
1122         if (area && area->vm_end == end)                /* cases 6, 7, 8 */
1123                 next = next->vm_next;
1124
1125         /* verify some invariant that must be enforced by the caller */
1126         VM_WARN_ON(prev && addr <= prev->vm_start);
1127         VM_WARN_ON(area && end > area->vm_end);
1128         VM_WARN_ON(addr >= end);
1129
1130         /*
1131          * Can it merge with the predecessor?
1132          */
1133         if (prev && prev->vm_end == addr &&
1134                         mpol_equal(vma_policy(prev), policy) &&
1135                         can_vma_merge_after(prev, vm_flags,
1136                                             anon_vma, file, pgoff,
1137                                             vm_userfaultfd_ctx)) {
1138                 /*
1139                  * OK, it can.  Can we now merge in the successor as well?
1140                  */
1141                 if (next && end == next->vm_start &&
1142                                 mpol_equal(policy, vma_policy(next)) &&
1143                                 can_vma_merge_before(next, vm_flags,
1144                                                      anon_vma, file,
1145                                                      pgoff+pglen,
1146                                                      vm_userfaultfd_ctx) &&
1147                                 is_mergeable_anon_vma(prev->anon_vma,
1148                                                       next->anon_vma, NULL)) {
1149                                                         /* cases 1, 6 */
1150                         err = __vma_adjust(prev, prev->vm_start,
1151                                          next->vm_end, prev->vm_pgoff, NULL,
1152                                          prev);
1153                 } else                                  /* cases 2, 5, 7 */
1154                         err = __vma_adjust(prev, prev->vm_start,
1155                                          end, prev->vm_pgoff, NULL, prev);
1156                 if (err)
1157                         return NULL;
1158                 khugepaged_enter_vma_merge(prev, vm_flags);
1159                 return prev;
1160         }
1161
1162         /*
1163          * Can this new request be merged in front of next?
1164          */
1165         if (next && end == next->vm_start &&
1166                         mpol_equal(policy, vma_policy(next)) &&
1167                         can_vma_merge_before(next, vm_flags,
1168                                              anon_vma, file, pgoff+pglen,
1169                                              vm_userfaultfd_ctx)) {
1170                 if (prev && addr < prev->vm_end)        /* case 4 */
1171                         err = __vma_adjust(prev, prev->vm_start,
1172                                          addr, prev->vm_pgoff, NULL, next);
1173                 else {                                  /* cases 3, 8 */
1174                         err = __vma_adjust(area, addr, next->vm_end,
1175                                          next->vm_pgoff - pglen, NULL, next);
1176                         /*
1177                          * In case 3 area is already equal to next and
1178                          * this is a noop, but in case 8 "area" has
1179                          * been removed and next was expanded over it.
1180                          */
1181                         area = next;
1182                 }
1183                 if (err)
1184                         return NULL;
1185                 khugepaged_enter_vma_merge(area, vm_flags);
1186                 return area;
1187         }
1188
1189         return NULL;
1190 }
1191
1192 /*
1193  * Rough compatbility check to quickly see if it's even worth looking
1194  * at sharing an anon_vma.
1195  *
1196  * They need to have the same vm_file, and the flags can only differ
1197  * in things that mprotect may change.
1198  *
1199  * NOTE! The fact that we share an anon_vma doesn't _have_ to mean that
1200  * we can merge the two vma's. For example, we refuse to merge a vma if
1201  * there is a vm_ops->close() function, because that indicates that the
1202  * driver is doing some kind of reference counting. But that doesn't
1203  * really matter for the anon_vma sharing case.
1204  */
1205 static int anon_vma_compatible(struct vm_area_struct *a, struct vm_area_struct *b)
1206 {
1207         return a->vm_end == b->vm_start &&
1208                 mpol_equal(vma_policy(a), vma_policy(b)) &&
1209                 a->vm_file == b->vm_file &&
1210                 !((a->vm_flags ^ b->vm_flags) & ~(VM_READ|VM_WRITE|VM_EXEC|VM_SOFTDIRTY)) &&
1211                 b->vm_pgoff == a->vm_pgoff + ((b->vm_start - a->vm_start) >> PAGE_SHIFT);
1212 }
1213
1214 /*
1215  * Do some basic sanity checking to see if we can re-use the anon_vma
1216  * from 'old'. The 'a'/'b' vma's are in VM order - one of them will be
1217  * the same as 'old', the other will be the new one that is trying
1218  * to share the anon_vma.
1219  *
1220  * NOTE! This runs with mm_sem held for reading, so it is possible that
1221  * the anon_vma of 'old' is concurrently in the process of being set up
1222  * by another page fault trying to merge _that_. But that's ok: if it
1223  * is being set up, that automatically means that it will be a singleton
1224  * acceptable for merging, so we can do all of this optimistically. But
1225  * we do that READ_ONCE() to make sure that we never re-load the pointer.
1226  *
1227  * IOW: that the "list_is_singular()" test on the anon_vma_chain only
1228  * matters for the 'stable anon_vma' case (ie the thing we want to avoid
1229  * is to return an anon_vma that is "complex" due to having gone through
1230  * a fork).
1231  *
1232  * We also make sure that the two vma's are compatible (adjacent,
1233  * and with the same memory policies). That's all stable, even with just
1234  * a read lock on the mm_sem.
1235  */
1236 static struct anon_vma *reusable_anon_vma(struct vm_area_struct *old, struct vm_area_struct *a, struct vm_area_struct *b)
1237 {
1238         if (anon_vma_compatible(a, b)) {
1239                 struct anon_vma *anon_vma = READ_ONCE(old->anon_vma);
1240
1241                 if (anon_vma && list_is_singular(&old->anon_vma_chain))
1242                         return anon_vma;
1243         }
1244         return NULL;
1245 }
1246
1247 /*
1248  * find_mergeable_anon_vma is used by anon_vma_prepare, to check
1249  * neighbouring vmas for a suitable anon_vma, before it goes off
1250  * to allocate a new anon_vma.  It checks because a repetitive
1251  * sequence of mprotects and faults may otherwise lead to distinct
1252  * anon_vmas being allocated, preventing vma merge in subsequent
1253  * mprotect.
1254  */
1255 struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *vma)
1256 {
1257         struct anon_vma *anon_vma;
1258         struct vm_area_struct *near;
1259
1260         near = vma->vm_next;
1261         if (!near)
1262                 goto try_prev;
1263
1264         anon_vma = reusable_anon_vma(near, vma, near);
1265         if (anon_vma)
1266                 return anon_vma;
1267 try_prev:
1268         near = vma->vm_prev;
1269         if (!near)
1270                 goto none;
1271
1272         anon_vma = reusable_anon_vma(near, near, vma);
1273         if (anon_vma)
1274                 return anon_vma;
1275 none:
1276         /*
1277          * There's no absolute need to look only at touching neighbours:
1278          * we could search further afield for "compatible" anon_vmas.
1279          * But it would probably just be a waste of time searching,
1280          * or lead to too many vmas hanging off the same anon_vma.
1281          * We're trying to allow mprotect remerging later on,
1282          * not trying to minimize memory used for anon_vmas.
1283          */
1284         return NULL;
1285 }
1286
1287 /*
1288  * If a hint addr is less than mmap_min_addr change hint to be as
1289  * low as possible but still greater than mmap_min_addr
1290  */
1291 static inline unsigned long round_hint_to_min(unsigned long hint)
1292 {
1293         hint &= PAGE_MASK;
1294         if (((void *)hint != NULL) &&
1295             (hint < mmap_min_addr))
1296                 return PAGE_ALIGN(mmap_min_addr);
1297         return hint;
1298 }
1299
1300 static inline int mlock_future_check(struct mm_struct *mm,
1301                                      unsigned long flags,
1302                                      unsigned long len)
1303 {
1304         unsigned long locked, lock_limit;
1305
1306         /*  mlock MCL_FUTURE? */
1307         if (flags & VM_LOCKED) {
1308                 locked = len >> PAGE_SHIFT;
1309                 locked += mm->locked_vm;
1310                 lock_limit = rlimit(RLIMIT_MEMLOCK);
1311                 lock_limit >>= PAGE_SHIFT;
1312                 if (locked > lock_limit && !capable(CAP_IPC_LOCK))
1313                         return -EAGAIN;
1314         }
1315         return 0;
1316 }
1317
1318 /*
1319  * The caller must hold down_write(&current->mm->mmap_sem).
1320  */
1321 unsigned long do_mmap(struct file *file, unsigned long addr,
1322                         unsigned long len, unsigned long prot,
1323                         unsigned long flags, vm_flags_t vm_flags,
1324                         unsigned long pgoff, unsigned long *populate,
1325                         struct list_head *uf)
1326 {
1327         struct mm_struct *mm = current->mm;
1328         int pkey = 0;
1329
1330         *populate = 0;
1331
1332         if (!len)
1333                 return -EINVAL;
1334
1335         /*
1336          * Does the application expect PROT_READ to imply PROT_EXEC?
1337          *
1338          * (the exception is when the underlying filesystem is noexec
1339          *  mounted, in which case we dont add PROT_EXEC.)
1340          */
1341         if ((prot & PROT_READ) && (current->personality & READ_IMPLIES_EXEC))
1342                 if (!(file && path_noexec(&file->f_path)))
1343                         prot |= PROT_EXEC;
1344
1345         if (!(flags & MAP_FIXED))
1346                 addr = round_hint_to_min(addr);
1347
1348         /* Careful about overflows.. */
1349         len = PAGE_ALIGN(len);
1350         if (!len)
1351                 return -ENOMEM;
1352
1353         /* offset overflow? */
1354         if ((pgoff + (len >> PAGE_SHIFT)) < pgoff)
1355                 return -EOVERFLOW;
1356
1357         /* Too many mappings? */
1358         if (mm->map_count > sysctl_max_map_count)
1359                 return -ENOMEM;
1360
1361         /* Obtain the address to map to. we verify (or select) it and ensure
1362          * that it represents a valid section of the address space.
1363          */
1364         addr = get_unmapped_area(file, addr, len, pgoff, flags);
1365         if (offset_in_page(addr))
1366                 return addr;
1367
1368         if (prot == PROT_EXEC) {
1369                 pkey = execute_only_pkey(mm);
1370                 if (pkey < 0)
1371                         pkey = 0;
1372         }
1373
1374         /* Do simple checking here so the lower-level routines won't have
1375          * to. we assume access permissions have been handled by the open
1376          * of the memory object, so we don't do any here.
1377          */
1378         vm_flags |= calc_vm_prot_bits(prot, pkey) | calc_vm_flag_bits(flags) |
1379                         mm->def_flags | VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC;
1380
1381         if (flags & MAP_LOCKED)
1382                 if (!can_do_mlock())
1383                         return -EPERM;
1384
1385         if (mlock_future_check(mm, vm_flags, len))
1386                 return -EAGAIN;
1387
1388         if (file) {
1389                 struct inode *inode = file_inode(file);
1390                 unsigned long flags_mask;
1391
1392                 flags_mask = LEGACY_MAP_MASK | file->f_op->mmap_supported_flags;
1393
1394                 switch (flags & MAP_TYPE) {
1395                 case MAP_SHARED:
1396                         /*
1397                          * Force use of MAP_SHARED_VALIDATE with non-legacy
1398                          * flags. E.g. MAP_SYNC is dangerous to use with
1399                          * MAP_SHARED as you don't know which consistency model
1400                          * you will get. We silently ignore unsupported flags
1401                          * with MAP_SHARED to preserve backward compatibility.
1402                          */
1403                         flags &= LEGACY_MAP_MASK;
1404                         /* fall through */
1405                 case MAP_SHARED_VALIDATE:
1406                         if (flags & ~flags_mask)
1407                                 return -EOPNOTSUPP;
1408                         if ((prot&PROT_WRITE) && !(file->f_mode&FMODE_WRITE))
1409                                 return -EACCES;
1410
1411                         /*
1412                          * Make sure we don't allow writing to an append-only
1413                          * file..
1414                          */
1415                         if (IS_APPEND(inode) && (file->f_mode & FMODE_WRITE))
1416                                 return -EACCES;
1417
1418                         /*
1419                          * Make sure there are no mandatory locks on the file.
1420                          */
1421                         if (locks_verify_locked(file))
1422                                 return -EAGAIN;
1423
1424                         vm_flags |= VM_SHARED | VM_MAYSHARE;
1425                         if (!(file->f_mode & FMODE_WRITE))
1426                                 vm_flags &= ~(VM_MAYWRITE | VM_SHARED);
1427
1428                         /* fall through */
1429                 case MAP_PRIVATE:
1430                         if (!(file->f_mode & FMODE_READ))
1431                                 return -EACCES;
1432                         if (path_noexec(&file->f_path)) {
1433                                 if (vm_flags & VM_EXEC)
1434                                         return -EPERM;
1435                                 vm_flags &= ~VM_MAYEXEC;
1436                         }
1437
1438                         if (!file->f_op->mmap)
1439                                 return -ENODEV;
1440                         if (vm_flags & (VM_GROWSDOWN|VM_GROWSUP))
1441                                 return -EINVAL;
1442                         break;
1443
1444                 default:
1445                         return -EINVAL;
1446                 }
1447         } else {
1448                 switch (flags & MAP_TYPE) {
1449                 case MAP_SHARED:
1450                         if (vm_flags & (VM_GROWSDOWN|VM_GROWSUP))
1451                                 return -EINVAL;
1452                         /*
1453                          * Ignore pgoff.
1454                          */
1455                         pgoff = 0;
1456                         vm_flags |= VM_SHARED | VM_MAYSHARE;
1457                         break;
1458                 case MAP_PRIVATE:
1459                         /*
1460                          * Set pgoff according to addr for anon_vma.
1461                          */
1462                         pgoff = addr >> PAGE_SHIFT;
1463                         break;
1464                 default:
1465                         return -EINVAL;
1466                 }
1467         }
1468
1469         /*
1470          * Set 'VM_NORESERVE' if we should not account for the
1471          * memory use of this mapping.
1472          */
1473         if (flags & MAP_NORESERVE) {
1474                 /* We honor MAP_NORESERVE if allowed to overcommit */
1475                 if (sysctl_overcommit_memory != OVERCOMMIT_NEVER)
1476                         vm_flags |= VM_NORESERVE;
1477
1478                 /* hugetlb applies strict overcommit unless MAP_NORESERVE */
1479                 if (file && is_file_hugepages(file))
1480                         vm_flags |= VM_NORESERVE;
1481         }
1482
1483         addr = mmap_region(file, addr, len, vm_flags, pgoff, uf);
1484         if (!IS_ERR_VALUE(addr) &&
1485             ((vm_flags & VM_LOCKED) ||
1486              (flags & (MAP_POPULATE | MAP_NONBLOCK)) == MAP_POPULATE))
1487                 *populate = len;
1488         return addr;
1489 }
1490
1491 SYSCALL_DEFINE6(mmap_pgoff, unsigned long, addr, unsigned long, len,
1492                 unsigned long, prot, unsigned long, flags,
1493                 unsigned long, fd, unsigned long, pgoff)
1494 {
1495         struct file *file = NULL;
1496         unsigned long retval;
1497
1498         if (!(flags & MAP_ANONYMOUS)) {
1499                 audit_mmap_fd(fd, flags);
1500                 file = fget(fd);
1501                 if (!file)
1502                         return -EBADF;
1503                 if (is_file_hugepages(file))
1504                         len = ALIGN(len, huge_page_size(hstate_file(file)));
1505                 retval = -EINVAL;
1506                 if (unlikely(flags & MAP_HUGETLB && !is_file_hugepages(file)))
1507                         goto out_fput;
1508         } else if (flags & MAP_HUGETLB) {
1509                 struct user_struct *user = NULL;
1510                 struct hstate *hs;
1511
1512                 hs = hstate_sizelog((flags >> MAP_HUGE_SHIFT) & MAP_HUGE_MASK);
1513                 if (!hs)
1514                         return -EINVAL;
1515
1516                 len = ALIGN(len, huge_page_size(hs));
1517                 /*
1518                  * VM_NORESERVE is used because the reservations will be
1519                  * taken when vm_ops->mmap() is called
1520                  * A dummy user value is used because we are not locking
1521                  * memory so no accounting is necessary
1522                  */
1523                 file = hugetlb_file_setup(HUGETLB_ANON_FILE, len,
1524                                 VM_NORESERVE,
1525                                 &user, HUGETLB_ANONHUGE_INODE,
1526                                 (flags >> MAP_HUGE_SHIFT) & MAP_HUGE_MASK);
1527                 if (IS_ERR(file))
1528                         return PTR_ERR(file);
1529         }
1530
1531         flags &= ~(MAP_EXECUTABLE | MAP_DENYWRITE);
1532
1533         retval = vm_mmap_pgoff(file, addr, len, prot, flags, pgoff);
1534 out_fput:
1535         if (file)
1536                 fput(file);
1537         return retval;
1538 }
1539
1540 #ifdef __ARCH_WANT_SYS_OLD_MMAP
1541 struct mmap_arg_struct {
1542         unsigned long addr;
1543         unsigned long len;
1544         unsigned long prot;
1545         unsigned long flags;
1546         unsigned long fd;
1547         unsigned long offset;
1548 };
1549
1550 SYSCALL_DEFINE1(old_mmap, struct mmap_arg_struct __user *, arg)
1551 {
1552         struct mmap_arg_struct a;
1553
1554         if (copy_from_user(&a, arg, sizeof(a)))
1555                 return -EFAULT;
1556         if (offset_in_page(a.offset))
1557                 return -EINVAL;
1558
1559         return sys_mmap_pgoff(a.addr, a.len, a.prot, a.flags, a.fd,
1560                               a.offset >> PAGE_SHIFT);
1561 }
1562 #endif /* __ARCH_WANT_SYS_OLD_MMAP */
1563
1564 /*
1565  * Some shared mappigns will want the pages marked read-only
1566  * to track write events. If so, we'll downgrade vm_page_prot
1567  * to the private version (using protection_map[] without the
1568  * VM_SHARED bit).
1569  */
1570 int vma_wants_writenotify(struct vm_area_struct *vma, pgprot_t vm_page_prot)
1571 {
1572         vm_flags_t vm_flags = vma->vm_flags;
1573         const struct vm_operations_struct *vm_ops = vma->vm_ops;
1574
1575         /* If it was private or non-writable, the write bit is already clear */
1576         if ((vm_flags & (VM_WRITE|VM_SHARED)) != ((VM_WRITE|VM_SHARED)))
1577                 return 0;
1578
1579         /* The backer wishes to know when pages are first written to? */
1580         if (vm_ops && (vm_ops->page_mkwrite || vm_ops->pfn_mkwrite))
1581                 return 1;
1582
1583         /* The open routine did something to the protections that pgprot_modify
1584          * won't preserve? */
1585         if (pgprot_val(vm_page_prot) !=
1586             pgprot_val(vm_pgprot_modify(vm_page_prot, vm_flags)))
1587                 return 0;
1588
1589         /* Do we need to track softdirty? */
1590         if (IS_ENABLED(CONFIG_MEM_SOFT_DIRTY) && !(vm_flags & VM_SOFTDIRTY))
1591                 return 1;
1592
1593         /* Specialty mapping? */
1594         if (vm_flags & VM_PFNMAP)
1595                 return 0;
1596
1597         /* Can the mapping track the dirty pages? */
1598         return vma->vm_file && vma->vm_file->f_mapping &&
1599                 mapping_cap_account_dirty(vma->vm_file->f_mapping);
1600 }
1601
1602 /*
1603  * We account for memory if it's a private writeable mapping,
1604  * not hugepages and VM_NORESERVE wasn't set.
1605  */
1606 static inline int accountable_mapping(struct file *file, vm_flags_t vm_flags)
1607 {
1608         /*
1609          * hugetlb has its own accounting separate from the core VM
1610          * VM_HUGETLB may not be set yet so we cannot check for that flag.
1611          */
1612         if (file && is_file_hugepages(file))
1613                 return 0;
1614
1615         return (vm_flags & (VM_NORESERVE | VM_SHARED | VM_WRITE)) == VM_WRITE;
1616 }
1617
1618 unsigned long mmap_region(struct file *file, unsigned long addr,
1619                 unsigned long len, vm_flags_t vm_flags, unsigned long pgoff,
1620                 struct list_head *uf)
1621 {
1622         struct mm_struct *mm = current->mm;
1623         struct vm_area_struct *vma, *prev;
1624         int error;
1625         struct rb_node **rb_link, *rb_parent;
1626         unsigned long charged = 0;
1627
1628         /* Check against address space limit. */
1629         if (!may_expand_vm(mm, vm_flags, len >> PAGE_SHIFT)) {
1630                 unsigned long nr_pages;
1631
1632                 /*
1633                  * MAP_FIXED may remove pages of mappings that intersects with
1634                  * requested mapping. Account for the pages it would unmap.
1635                  */
1636                 nr_pages = count_vma_pages_range(mm, addr, addr + len);
1637
1638                 if (!may_expand_vm(mm, vm_flags,
1639                                         (len >> PAGE_SHIFT) - nr_pages))
1640                         return -ENOMEM;
1641         }
1642
1643         /* Clear old maps */
1644         while (find_vma_links(mm, addr, addr + len, &prev, &rb_link,
1645                               &rb_parent)) {
1646                 if (do_munmap(mm, addr, len, uf))
1647                         return -ENOMEM;
1648         }
1649
1650         /*
1651          * Private writable mapping: check memory availability
1652          */
1653         if (accountable_mapping(file, vm_flags)) {
1654                 charged = len >> PAGE_SHIFT;
1655                 if (security_vm_enough_memory_mm(mm, charged))
1656                         return -ENOMEM;
1657                 vm_flags |= VM_ACCOUNT;
1658         }
1659
1660         /*
1661          * Can we just expand an old mapping?
1662          */
1663         vma = vma_merge(mm, prev, addr, addr + len, vm_flags,
1664                         NULL, file, pgoff, NULL, NULL_VM_UFFD_CTX);
1665         if (vma)
1666                 goto out;
1667
1668         /*
1669          * Determine the object being mapped and call the appropriate
1670          * specific mapper. the address has already been validated, but
1671          * not unmapped, but the maps are removed from the list.
1672          */
1673         vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
1674         if (!vma) {
1675                 error = -ENOMEM;
1676                 goto unacct_error;
1677         }
1678
1679         vma->vm_mm = mm;
1680         vma->vm_start = addr;
1681         vma->vm_end = addr + len;
1682         vma->vm_flags = vm_flags;
1683         vma->vm_page_prot = vm_get_page_prot(vm_flags);
1684         vma->vm_pgoff = pgoff;
1685         INIT_LIST_HEAD(&vma->anon_vma_chain);
1686
1687         if (file) {
1688                 if (vm_flags & VM_DENYWRITE) {
1689                         error = deny_write_access(file);
1690                         if (error)
1691                                 goto free_vma;
1692                 }
1693                 if (vm_flags & VM_SHARED) {
1694                         error = mapping_map_writable(file->f_mapping);
1695                         if (error)
1696                                 goto allow_write_and_free_vma;
1697                 }
1698
1699                 /* ->mmap() can change vma->vm_file, but must guarantee that
1700                  * vma_link() below can deny write-access if VM_DENYWRITE is set
1701                  * and map writably if VM_SHARED is set. This usually means the
1702                  * new file must not have been exposed to user-space, yet.
1703                  */
1704                 vma->vm_file = get_file(file);
1705                 error = call_mmap(file, vma);
1706                 if (error)
1707                         goto unmap_and_free_vma;
1708
1709                 /* Can addr have changed??
1710                  *
1711                  * Answer: Yes, several device drivers can do it in their
1712                  *         f_op->mmap method. -DaveM
1713                  * Bug: If addr is changed, prev, rb_link, rb_parent should
1714                  *      be updated for vma_link()
1715                  */
1716                 WARN_ON_ONCE(addr != vma->vm_start);
1717
1718                 addr = vma->vm_start;
1719                 vm_flags = vma->vm_flags;
1720         } else if (vm_flags & VM_SHARED) {
1721                 error = shmem_zero_setup(vma);
1722                 if (error)
1723                         goto free_vma;
1724         }
1725
1726         vma_link(mm, vma, prev, rb_link, rb_parent);
1727         /* Once vma denies write, undo our temporary denial count */
1728         if (file) {
1729                 if (vm_flags & VM_SHARED)
1730                         mapping_unmap_writable(file->f_mapping);
1731                 if (vm_flags & VM_DENYWRITE)
1732                         allow_write_access(file);
1733         }
1734         file = vma->vm_file;
1735 out:
1736         perf_event_mmap(vma);
1737
1738         vm_stat_account(mm, vm_flags, len >> PAGE_SHIFT);
1739         if (vm_flags & VM_LOCKED) {
1740                 if (!((vm_flags & VM_SPECIAL) || is_vm_hugetlb_page(vma) ||
1741                                         vma == get_gate_vma(current->mm)))
1742                         mm->locked_vm += (len >> PAGE_SHIFT);
1743                 else
1744                         vma->vm_flags &= VM_LOCKED_CLEAR_MASK;
1745         }
1746
1747         if (file)
1748                 uprobe_mmap(vma);
1749
1750         /*
1751          * New (or expanded) vma always get soft dirty status.
1752          * Otherwise user-space soft-dirty page tracker won't
1753          * be able to distinguish situation when vma area unmapped,
1754          * then new mapped in-place (which must be aimed as
1755          * a completely new data area).
1756          */
1757         vma->vm_flags |= VM_SOFTDIRTY;
1758
1759         vma_set_page_prot(vma);
1760
1761         return addr;
1762
1763 unmap_and_free_vma:
1764         vma->vm_file = NULL;
1765         fput(file);
1766
1767         /* Undo any partial mapping done by a device driver. */
1768         unmap_region(mm, vma, prev, vma->vm_start, vma->vm_end);
1769         charged = 0;
1770         if (vm_flags & VM_SHARED)
1771                 mapping_unmap_writable(file->f_mapping);
1772 allow_write_and_free_vma:
1773         if (vm_flags & VM_DENYWRITE)
1774                 allow_write_access(file);
1775 free_vma:
1776         kmem_cache_free(vm_area_cachep, vma);
1777 unacct_error:
1778         if (charged)
1779                 vm_unacct_memory(charged);
1780         return error;
1781 }
1782
1783 unsigned long unmapped_area(struct vm_unmapped_area_info *info)
1784 {
1785         /*
1786          * We implement the search by looking for an rbtree node that
1787          * immediately follows a suitable gap. That is,
1788          * - gap_start = vma->vm_prev->vm_end <= info->high_limit - length;
1789          * - gap_end   = vma->vm_start        >= info->low_limit  + length;
1790          * - gap_end - gap_start >= length
1791          */
1792
1793         struct mm_struct *mm = current->mm;
1794         struct vm_area_struct *vma;
1795         unsigned long length, low_limit, high_limit, gap_start, gap_end;
1796
1797         /* Adjust search length to account for worst case alignment overhead */
1798         length = info->length + info->align_mask;
1799         if (length < info->length)
1800                 return -ENOMEM;
1801
1802         /* Adjust search limits by the desired length */
1803         if (info->high_limit < length)
1804                 return -ENOMEM;
1805         high_limit = info->high_limit - length;
1806
1807         if (info->low_limit > high_limit)
1808                 return -ENOMEM;
1809         low_limit = info->low_limit + length;
1810
1811         /* Check if rbtree root looks promising */
1812         if (RB_EMPTY_ROOT(&mm->mm_rb))
1813                 goto check_highest;
1814         vma = rb_entry(mm->mm_rb.rb_node, struct vm_area_struct, vm_rb);
1815         if (vma->rb_subtree_gap < length)
1816                 goto check_highest;
1817
1818         while (true) {
1819                 /* Visit left subtree if it looks promising */
1820                 gap_end = vm_start_gap(vma);
1821                 if (gap_end >= low_limit && vma->vm_rb.rb_left) {
1822                         struct vm_area_struct *left =
1823                                 rb_entry(vma->vm_rb.rb_left,
1824                                          struct vm_area_struct, vm_rb);
1825                         if (left->rb_subtree_gap >= length) {
1826                                 vma = left;
1827                                 continue;
1828                         }
1829                 }
1830
1831                 gap_start = vma->vm_prev ? vm_end_gap(vma->vm_prev) : 0;
1832 check_current:
1833                 /* Check if current node has a suitable gap */
1834                 if (gap_start > high_limit)
1835                         return -ENOMEM;
1836                 if (gap_end >= low_limit &&
1837                     gap_end > gap_start && gap_end - gap_start >= length)
1838                         goto found;
1839
1840                 /* Visit right subtree if it looks promising */
1841                 if (vma->vm_rb.rb_right) {
1842                         struct vm_area_struct *right =
1843                                 rb_entry(vma->vm_rb.rb_right,
1844                                          struct vm_area_struct, vm_rb);
1845                         if (right->rb_subtree_gap >= length) {
1846                                 vma = right;
1847                                 continue;
1848                         }
1849                 }
1850
1851                 /* Go back up the rbtree to find next candidate node */
1852                 while (true) {
1853                         struct rb_node *prev = &vma->vm_rb;
1854                         if (!rb_parent(prev))
1855                                 goto check_highest;
1856                         vma = rb_entry(rb_parent(prev),
1857                                        struct vm_area_struct, vm_rb);
1858                         if (prev == vma->vm_rb.rb_left) {
1859                                 gap_start = vm_end_gap(vma->vm_prev);
1860                                 gap_end = vm_start_gap(vma);
1861                                 goto check_current;
1862                         }
1863                 }
1864         }
1865
1866 check_highest:
1867         /* Check highest gap, which does not precede any rbtree node */
1868         gap_start = mm->highest_vm_end;
1869         gap_end = ULONG_MAX;  /* Only for VM_BUG_ON below */
1870         if (gap_start > high_limit)
1871                 return -ENOMEM;
1872
1873 found:
1874         /* We found a suitable gap. Clip it with the original low_limit. */
1875         if (gap_start < info->low_limit)
1876                 gap_start = info->low_limit;
1877
1878         /* Adjust gap address to the desired alignment */
1879         gap_start += (info->align_offset - gap_start) & info->align_mask;
1880
1881         VM_BUG_ON(gap_start + info->length > info->high_limit);
1882         VM_BUG_ON(gap_start + info->length > gap_end);
1883         return gap_start;
1884 }
1885
1886 unsigned long unmapped_area_topdown(struct vm_unmapped_area_info *info)
1887 {
1888         struct mm_struct *mm = current->mm;
1889         struct vm_area_struct *vma;
1890         unsigned long length, low_limit, high_limit, gap_start, gap_end;
1891
1892         /* Adjust search length to account for worst case alignment overhead */
1893         length = info->length + info->align_mask;
1894         if (length < info->length)
1895                 return -ENOMEM;
1896
1897         /*
1898          * Adjust search limits by the desired length.
1899          * See implementation comment at top of unmapped_area().
1900          */
1901         gap_end = info->high_limit;
1902         if (gap_end < length)
1903                 return -ENOMEM;
1904         high_limit = gap_end - length;
1905
1906         if (info->low_limit > high_limit)
1907                 return -ENOMEM;
1908         low_limit = info->low_limit + length;
1909
1910         /* Check highest gap, which does not precede any rbtree node */
1911         gap_start = mm->highest_vm_end;
1912         if (gap_start <= high_limit)
1913                 goto found_highest;
1914
1915         /* Check if rbtree root looks promising */
1916         if (RB_EMPTY_ROOT(&mm->mm_rb))
1917                 return -ENOMEM;
1918         vma = rb_entry(mm->mm_rb.rb_node, struct vm_area_struct, vm_rb);
1919         if (vma->rb_subtree_gap < length)
1920                 return -ENOMEM;
1921
1922         while (true) {
1923                 /* Visit right subtree if it looks promising */
1924                 gap_start = vma->vm_prev ? vm_end_gap(vma->vm_prev) : 0;
1925                 if (gap_start <= high_limit && vma->vm_rb.rb_right) {
1926                         struct vm_area_struct *right =
1927                                 rb_entry(vma->vm_rb.rb_right,
1928                                          struct vm_area_struct, vm_rb);
1929                         if (right->rb_subtree_gap >= length) {
1930                                 vma = right;
1931                                 continue;
1932                         }
1933                 }
1934
1935 check_current:
1936                 /* Check if current node has a suitable gap */
1937                 gap_end = vm_start_gap(vma);
1938                 if (gap_end < low_limit)
1939                         return -ENOMEM;
1940                 if (gap_start <= high_limit &&
1941                     gap_end > gap_start && gap_end - gap_start >= length)
1942                         goto found;
1943
1944                 /* Visit left subtree if it looks promising */
1945                 if (vma->vm_rb.rb_left) {
1946                         struct vm_area_struct *left =
1947                                 rb_entry(vma->vm_rb.rb_left,
1948                                          struct vm_area_struct, vm_rb);
1949                         if (left->rb_subtree_gap >= length) {
1950                                 vma = left;
1951                                 continue;
1952                         }
1953                 }
1954
1955                 /* Go back up the rbtree to find next candidate node */
1956                 while (true) {
1957                         struct rb_node *prev = &vma->vm_rb;
1958                         if (!rb_parent(prev))
1959                                 return -ENOMEM;
1960                         vma = rb_entry(rb_parent(prev),
1961                                        struct vm_area_struct, vm_rb);
1962                         if (prev == vma->vm_rb.rb_right) {
1963                                 gap_start = vma->vm_prev ?
1964                                         vm_end_gap(vma->vm_prev) : 0;
1965                                 goto check_current;
1966                         }
1967                 }
1968         }
1969
1970 found:
1971         /* We found a suitable gap. Clip it with the original high_limit. */
1972         if (gap_end > info->high_limit)
1973                 gap_end = info->high_limit;
1974
1975 found_highest:
1976         /* Compute highest gap address at the desired alignment */
1977         gap_end -= info->length;
1978         gap_end -= (gap_end - info->align_offset) & info->align_mask;
1979
1980         VM_BUG_ON(gap_end < info->low_limit);
1981         VM_BUG_ON(gap_end < gap_start);
1982         return gap_end;
1983 }
1984
1985 /* Get an address range which is currently unmapped.
1986  * For shmat() with addr=0.
1987  *
1988  * Ugly calling convention alert:
1989  * Return value with the low bits set means error value,
1990  * ie
1991  *      if (ret & ~PAGE_MASK)
1992  *              error = ret;
1993  *
1994  * This function "knows" that -ENOMEM has the bits set.
1995  */
1996 #ifndef HAVE_ARCH_UNMAPPED_AREA
1997 unsigned long
1998 arch_get_unmapped_area(struct file *filp, unsigned long addr,
1999                 unsigned long len, unsigned long pgoff, unsigned long flags)
2000 {
2001         struct mm_struct *mm = current->mm;
2002         struct vm_area_struct *vma, *prev;
2003         struct vm_unmapped_area_info info;
2004
2005         if (len > TASK_SIZE - mmap_min_addr)
2006                 return -ENOMEM;
2007
2008         if (flags & MAP_FIXED)
2009                 return addr;
2010
2011         if (addr) {
2012                 addr = PAGE_ALIGN(addr);
2013                 vma = find_vma_prev(mm, addr, &prev);
2014                 if (TASK_SIZE - len >= addr && addr >= mmap_min_addr &&
2015                     (!vma || addr + len <= vm_start_gap(vma)) &&
2016                     (!prev || addr >= vm_end_gap(prev)))
2017                         return addr;
2018         }
2019
2020         info.flags = 0;
2021         info.length = len;
2022         info.low_limit = mm->mmap_base;
2023         info.high_limit = TASK_SIZE;
2024         info.align_mask = 0;
2025         return vm_unmapped_area(&info);
2026 }
2027 #endif
2028
2029 /*
2030  * This mmap-allocator allocates new areas top-down from below the
2031  * stack's low limit (the base):
2032  */
2033 #ifndef HAVE_ARCH_UNMAPPED_AREA_TOPDOWN
2034 unsigned long
2035 arch_get_unmapped_area_topdown(struct file *filp, const unsigned long addr0,
2036                           const unsigned long len, const unsigned long pgoff,
2037                           const unsigned long flags)
2038 {
2039         struct vm_area_struct *vma, *prev;
2040         struct mm_struct *mm = current->mm;
2041         unsigned long addr = addr0;
2042         struct vm_unmapped_area_info info;
2043
2044         /* requested length too big for entire address space */
2045         if (len > TASK_SIZE - mmap_min_addr)
2046                 return -ENOMEM;
2047
2048         if (flags & MAP_FIXED)
2049                 return addr;
2050
2051         /* requesting a specific address */
2052         if (addr) {
2053                 addr = PAGE_ALIGN(addr);
2054                 vma = find_vma_prev(mm, addr, &prev);
2055                 if (TASK_SIZE - len >= addr && addr >= mmap_min_addr &&
2056                                 (!vma || addr + len <= vm_start_gap(vma)) &&
2057                                 (!prev || addr >= vm_end_gap(prev)))
2058                         return addr;
2059         }
2060
2061         info.flags = VM_UNMAPPED_AREA_TOPDOWN;
2062         info.length = len;
2063         info.low_limit = max(PAGE_SIZE, mmap_min_addr);
2064         info.high_limit = mm->mmap_base;
2065         info.align_mask = 0;
2066         addr = vm_unmapped_area(&info);
2067
2068         /*
2069          * A failed mmap() very likely causes application failure,
2070          * so fall back to the bottom-up function here. This scenario
2071          * can happen with large stack limits and large mmap()
2072          * allocations.
2073          */
2074         if (offset_in_page(addr)) {
2075                 VM_BUG_ON(addr != -ENOMEM);
2076                 info.flags = 0;
2077                 info.low_limit = TASK_UNMAPPED_BASE;
2078                 info.high_limit = TASK_SIZE;
2079                 addr = vm_unmapped_area(&info);
2080         }
2081
2082         return addr;
2083 }
2084 #endif
2085
2086 unsigned long
2087 get_unmapped_area(struct file *file, unsigned long addr, unsigned long len,
2088                 unsigned long pgoff, unsigned long flags)
2089 {
2090         unsigned long (*get_area)(struct file *, unsigned long,
2091                                   unsigned long, unsigned long, unsigned long);
2092
2093         unsigned long error = arch_mmap_check(addr, len, flags);
2094         if (error)
2095                 return error;
2096
2097         /* Careful about overflows.. */
2098         if (len > TASK_SIZE)
2099                 return -ENOMEM;
2100
2101         get_area = current->mm->get_unmapped_area;
2102         if (file) {
2103                 if (file->f_op->get_unmapped_area)
2104                         get_area = file->f_op->get_unmapped_area;
2105         } else if (flags & MAP_SHARED) {
2106                 /*
2107                  * mmap_region() will call shmem_zero_setup() to create a file,
2108                  * so use shmem's get_unmapped_area in case it can be huge.
2109                  * do_mmap_pgoff() will clear pgoff, so match alignment.
2110                  */
2111                 pgoff = 0;
2112                 get_area = shmem_get_unmapped_area;
2113         }
2114
2115         addr = get_area(file, addr, len, pgoff, flags);
2116         if (IS_ERR_VALUE(addr))
2117                 return addr;
2118
2119         if (addr > TASK_SIZE - len)
2120                 return -ENOMEM;
2121         if (offset_in_page(addr))
2122                 return -EINVAL;
2123
2124         error = security_mmap_addr(addr);
2125         return error ? error : addr;
2126 }
2127
2128 EXPORT_SYMBOL(get_unmapped_area);
2129
2130 /* Look up the first VMA which satisfies  addr < vm_end,  NULL if none. */
2131 struct vm_area_struct *find_vma(struct mm_struct *mm, unsigned long addr)
2132 {
2133         struct rb_node *rb_node;
2134         struct vm_area_struct *vma;
2135
2136         /* Check the cache first. */
2137         vma = vmacache_find(mm, addr);
2138         if (likely(vma))
2139                 return vma;
2140
2141         rb_node = mm->mm_rb.rb_node;
2142
2143         while (rb_node) {
2144                 struct vm_area_struct *tmp;
2145
2146                 tmp = rb_entry(rb_node, struct vm_area_struct, vm_rb);
2147
2148                 if (tmp->vm_end > addr) {
2149                         vma = tmp;
2150                         if (tmp->vm_start <= addr)
2151                                 break;
2152                         rb_node = rb_node->rb_left;
2153                 } else
2154                         rb_node = rb_node->rb_right;
2155         }
2156
2157         if (vma)
2158                 vmacache_update(addr, vma);
2159         return vma;
2160 }
2161
2162 EXPORT_SYMBOL(find_vma);
2163
2164 /*
2165  * Same as find_vma, but also return a pointer to the previous VMA in *pprev.
2166  */
2167 struct vm_area_struct *
2168 find_vma_prev(struct mm_struct *mm, unsigned long addr,
2169                         struct vm_area_struct **pprev)
2170 {
2171         struct vm_area_struct *vma;
2172
2173         vma = find_vma(mm, addr);
2174         if (vma) {
2175                 *pprev = vma->vm_prev;
2176         } else {
2177                 struct rb_node *rb_node = mm->mm_rb.rb_node;
2178                 *pprev = NULL;
2179                 while (rb_node) {
2180                         *pprev = rb_entry(rb_node, struct vm_area_struct, vm_rb);
2181                         rb_node = rb_node->rb_right;
2182                 }
2183         }
2184         return vma;
2185 }
2186
2187 /*
2188  * Verify that the stack growth is acceptable and
2189  * update accounting. This is shared with both the
2190  * grow-up and grow-down cases.
2191  */
2192 static int acct_stack_growth(struct vm_area_struct *vma,
2193                              unsigned long size, unsigned long grow)
2194 {
2195         struct mm_struct *mm = vma->vm_mm;
2196         unsigned long new_start;
2197
2198         /* address space limit tests */
2199         if (!may_expand_vm(mm, vma->vm_flags, grow))
2200                 return -ENOMEM;
2201
2202         /* Stack limit test */
2203         if (size > rlimit(RLIMIT_STACK))
2204                 return -ENOMEM;
2205
2206         /* mlock limit tests */
2207         if (vma->vm_flags & VM_LOCKED) {
2208                 unsigned long locked;
2209                 unsigned long limit;
2210                 locked = mm->locked_vm + grow;
2211                 limit = rlimit(RLIMIT_MEMLOCK);
2212                 limit >>= PAGE_SHIFT;
2213                 if (locked > limit && !capable(CAP_IPC_LOCK))
2214                         return -ENOMEM;
2215         }
2216
2217         /* Check to ensure the stack will not grow into a hugetlb-only region */
2218         new_start = (vma->vm_flags & VM_GROWSUP) ? vma->vm_start :
2219                         vma->vm_end - size;
2220         if (is_hugepage_only_range(vma->vm_mm, new_start, size))
2221                 return -EFAULT;
2222
2223         /*
2224          * Overcommit..  This must be the final test, as it will
2225          * update security statistics.
2226          */
2227         if (security_vm_enough_memory_mm(mm, grow))
2228                 return -ENOMEM;
2229
2230         return 0;
2231 }
2232
2233 #if defined(CONFIG_STACK_GROWSUP) || defined(CONFIG_IA64)
2234 /*
2235  * PA-RISC uses this for its stack; IA64 for its Register Backing Store.
2236  * vma is the last one with address > vma->vm_end.  Have to extend vma.
2237  */
2238 int expand_upwards(struct vm_area_struct *vma, unsigned long address)
2239 {
2240         struct mm_struct *mm = vma->vm_mm;
2241         struct vm_area_struct *next;
2242         unsigned long gap_addr;
2243         int error = 0;
2244
2245         if (!(vma->vm_flags & VM_GROWSUP))
2246                 return -EFAULT;
2247
2248         /* Guard against exceeding limits of the address space. */
2249         address &= PAGE_MASK;
2250         if (address >= (TASK_SIZE & PAGE_MASK))
2251                 return -ENOMEM;
2252         address += PAGE_SIZE;
2253
2254         /* Enforce stack_guard_gap */
2255         gap_addr = address + stack_guard_gap;
2256
2257         /* Guard against overflow */
2258         if (gap_addr < address || gap_addr > TASK_SIZE)
2259                 gap_addr = TASK_SIZE;
2260
2261         next = vma->vm_next;
2262         if (next && next->vm_start < gap_addr &&
2263                         (next->vm_flags & (VM_WRITE|VM_READ|VM_EXEC))) {
2264                 if (!(next->vm_flags & VM_GROWSUP))
2265                         return -ENOMEM;
2266                 /* Check that both stack segments have the same anon_vma? */
2267         }
2268
2269         /* We must make sure the anon_vma is allocated. */
2270         if (unlikely(anon_vma_prepare(vma)))
2271                 return -ENOMEM;
2272
2273         /*
2274          * vma->vm_start/vm_end cannot change under us because the caller
2275          * is required to hold the mmap_sem in read mode.  We need the
2276          * anon_vma lock to serialize against concurrent expand_stacks.
2277          */
2278         anon_vma_lock_write(vma->anon_vma);
2279
2280         /* Somebody else might have raced and expanded it already */
2281         if (address > vma->vm_end) {
2282                 unsigned long size, grow;
2283
2284                 size = address - vma->vm_start;
2285                 grow = (address - vma->vm_end) >> PAGE_SHIFT;
2286
2287                 error = -ENOMEM;
2288                 if (vma->vm_pgoff + (size >> PAGE_SHIFT) >= vma->vm_pgoff) {
2289                         error = acct_stack_growth(vma, size, grow);
2290                         if (!error) {
2291                                 /*
2292                                  * vma_gap_update() doesn't support concurrent
2293                                  * updates, but we only hold a shared mmap_sem
2294                                  * lock here, so we need to protect against
2295                                  * concurrent vma expansions.
2296                                  * anon_vma_lock_write() doesn't help here, as
2297                                  * we don't guarantee that all growable vmas
2298                                  * in a mm share the same root anon vma.
2299                                  * So, we reuse mm->page_table_lock to guard
2300                                  * against concurrent vma expansions.
2301                                  */
2302                                 spin_lock(&mm->page_table_lock);
2303                                 if (vma->vm_flags & VM_LOCKED)
2304                                         mm->locked_vm += grow;
2305                                 vm_stat_account(mm, vma->vm_flags, grow);
2306                                 anon_vma_interval_tree_pre_update_vma(vma);
2307                                 vma->vm_end = address;
2308                                 anon_vma_interval_tree_post_update_vma(vma);
2309                                 if (vma->vm_next)
2310                                         vma_gap_update(vma->vm_next);
2311                                 else
2312                                         mm->highest_vm_end = vm_end_gap(vma);
2313                                 spin_unlock(&mm->page_table_lock);
2314
2315                                 perf_event_mmap(vma);
2316                         }
2317                 }
2318         }
2319         anon_vma_unlock_write(vma->anon_vma);
2320         khugepaged_enter_vma_merge(vma, vma->vm_flags);
2321         validate_mm(mm);
2322         return error;
2323 }
2324 #endif /* CONFIG_STACK_GROWSUP || CONFIG_IA64 */
2325
2326 /*
2327  * vma is the first one with address < vma->vm_start.  Have to extend vma.
2328  */
2329 int expand_downwards(struct vm_area_struct *vma,
2330                                    unsigned long address)
2331 {
2332         struct mm_struct *mm = vma->vm_mm;
2333         struct vm_area_struct *prev;
2334         int error;
2335
2336         address &= PAGE_MASK;
2337         error = security_mmap_addr(address);
2338         if (error)
2339                 return error;
2340
2341         /* Enforce stack_guard_gap */
2342         prev = vma->vm_prev;
2343         /* Check that both stack segments have the same anon_vma? */
2344         if (prev && !(prev->vm_flags & VM_GROWSDOWN) &&
2345                         (prev->vm_flags & (VM_WRITE|VM_READ|VM_EXEC))) {
2346                 if (address - prev->vm_end < stack_guard_gap)
2347                         return -ENOMEM;
2348         }
2349
2350         /* We must make sure the anon_vma is allocated. */
2351         if (unlikely(anon_vma_prepare(vma)))
2352                 return -ENOMEM;
2353
2354         /*
2355          * vma->vm_start/vm_end cannot change under us because the caller
2356          * is required to hold the mmap_sem in read mode.  We need the
2357          * anon_vma lock to serialize against concurrent expand_stacks.
2358          */
2359         anon_vma_lock_write(vma->anon_vma);
2360
2361         /* Somebody else might have raced and expanded it already */
2362         if (address < vma->vm_start) {
2363                 unsigned long size, grow;
2364
2365                 size = vma->vm_end - address;
2366                 grow = (vma->vm_start - address) >> PAGE_SHIFT;
2367
2368                 error = -ENOMEM;
2369                 if (grow <= vma->vm_pgoff) {
2370                         error = acct_stack_growth(vma, size, grow);
2371                         if (!error) {
2372                                 /*
2373                                  * vma_gap_update() doesn't support concurrent
2374                                  * updates, but we only hold a shared mmap_sem
2375                                  * lock here, so we need to protect against
2376                                  * concurrent vma expansions.
2377                                  * anon_vma_lock_write() doesn't help here, as
2378                                  * we don't guarantee that all growable vmas
2379                                  * in a mm share the same root anon vma.
2380                                  * So, we reuse mm->page_table_lock to guard
2381                                  * against concurrent vma expansions.
2382                                  */
2383                                 spin_lock(&mm->page_table_lock);
2384                                 if (vma->vm_flags & VM_LOCKED)
2385                                         mm->locked_vm += grow;
2386                                 vm_stat_account(mm, vma->vm_flags, grow);
2387                                 anon_vma_interval_tree_pre_update_vma(vma);
2388                                 vma->vm_start = address;
2389                                 vma->vm_pgoff -= grow;
2390                                 anon_vma_interval_tree_post_update_vma(vma);
2391                                 vma_gap_update(vma);
2392                                 spin_unlock(&mm->page_table_lock);
2393
2394                                 perf_event_mmap(vma);
2395                         }
2396                 }
2397         }
2398         anon_vma_unlock_write(vma->anon_vma);
2399         khugepaged_enter_vma_merge(vma, vma->vm_flags);
2400         validate_mm(mm);
2401         return error;
2402 }
2403
2404 /* enforced gap between the expanding stack and other mappings. */
2405 unsigned long stack_guard_gap = 256UL<<PAGE_SHIFT;
2406
2407 static int __init cmdline_parse_stack_guard_gap(char *p)
2408 {
2409         unsigned long val;
2410         char *endptr;
2411
2412         val = simple_strtoul(p, &endptr, 10);
2413         if (!*endptr)
2414                 stack_guard_gap = val << PAGE_SHIFT;
2415
2416         return 0;
2417 }
2418 __setup("stack_guard_gap=", cmdline_parse_stack_guard_gap);
2419
2420 #ifdef CONFIG_STACK_GROWSUP
2421 int expand_stack(struct vm_area_struct *vma, unsigned long address)
2422 {
2423         return expand_upwards(vma, address);
2424 }
2425
2426 struct vm_area_struct *
2427 find_extend_vma(struct mm_struct *mm, unsigned long addr)
2428 {
2429         struct vm_area_struct *vma, *prev;
2430
2431         addr &= PAGE_MASK;
2432         vma = find_vma_prev(mm, addr, &prev);
2433         if (vma && (vma->vm_start <= addr))
2434                 return vma;
2435         if (!prev || expand_stack(prev, addr))
2436                 return NULL;
2437         if (prev->vm_flags & VM_LOCKED)
2438                 populate_vma_page_range(prev, addr, prev->vm_end, NULL);
2439         return prev;
2440 }
2441 #else
2442 int expand_stack(struct vm_area_struct *vma, unsigned long address)
2443 {
2444         return expand_downwards(vma, address);
2445 }
2446
2447 struct vm_area_struct *
2448 find_extend_vma(struct mm_struct *mm, unsigned long addr)
2449 {
2450         struct vm_area_struct *vma;
2451         unsigned long start;
2452
2453         addr &= PAGE_MASK;
2454         vma = find_vma(mm, addr);
2455         if (!vma)
2456                 return NULL;
2457         if (vma->vm_start <= addr)
2458                 return vma;
2459         if (!(vma->vm_flags & VM_GROWSDOWN))
2460                 return NULL;
2461         start = vma->vm_start;
2462         if (expand_stack(vma, addr))
2463                 return NULL;
2464         if (vma->vm_flags & VM_LOCKED)
2465                 populate_vma_page_range(vma, addr, start, NULL);
2466         return vma;
2467 }
2468 #endif
2469
2470 EXPORT_SYMBOL_GPL(find_extend_vma);
2471
2472 /*
2473  * Ok - we have the memory areas we should free on the vma list,
2474  * so release them, and do the vma updates.
2475  *
2476  * Called with the mm semaphore held.
2477  */
2478 static void remove_vma_list(struct mm_struct *mm, struct vm_area_struct *vma)
2479 {
2480         unsigned long nr_accounted = 0;
2481
2482         /* Update high watermark before we lower total_vm */
2483         update_hiwater_vm(mm);
2484         do {
2485                 long nrpages = vma_pages(vma);
2486
2487                 if (vma->vm_flags & VM_ACCOUNT)
2488                         nr_accounted += nrpages;
2489                 vm_stat_account(mm, vma->vm_flags, -nrpages);
2490                 vma = remove_vma(vma);
2491         } while (vma);
2492         vm_unacct_memory(nr_accounted);
2493         validate_mm(mm);
2494 }
2495
2496 /*
2497  * Get rid of page table information in the indicated region.
2498  *
2499  * Called with the mm semaphore held.
2500  */
2501 static void unmap_region(struct mm_struct *mm,
2502                 struct vm_area_struct *vma, struct vm_area_struct *prev,
2503                 unsigned long start, unsigned long end)
2504 {
2505         struct vm_area_struct *next = prev ? prev->vm_next : mm->mmap;
2506         struct mmu_gather tlb;
2507
2508         lru_add_drain();
2509         tlb_gather_mmu(&tlb, mm, start, end);
2510         update_hiwater_rss(mm);
2511         unmap_vmas(&tlb, vma, start, end);
2512         free_pgtables(&tlb, vma, prev ? prev->vm_end : FIRST_USER_ADDRESS,
2513                                  next ? next->vm_start : USER_PGTABLES_CEILING);
2514         tlb_finish_mmu(&tlb, start, end);
2515 }
2516
2517 /*
2518  * Create a list of vma's touched by the unmap, removing them from the mm's
2519  * vma list as we go..
2520  */
2521 static void
2522 detach_vmas_to_be_unmapped(struct mm_struct *mm, struct vm_area_struct *vma,
2523         struct vm_area_struct *prev, unsigned long end)
2524 {
2525         struct vm_area_struct **insertion_point;
2526         struct vm_area_struct *tail_vma = NULL;
2527
2528         insertion_point = (prev ? &prev->vm_next : &mm->mmap);
2529         vma->vm_prev = NULL;
2530         do {
2531                 vma_rb_erase(vma, &mm->mm_rb);
2532                 mm->map_count--;
2533                 tail_vma = vma;
2534                 vma = vma->vm_next;
2535         } while (vma && vma->vm_start < end);
2536         *insertion_point = vma;
2537         if (vma) {
2538                 vma->vm_prev = prev;
2539                 vma_gap_update(vma);
2540         } else
2541                 mm->highest_vm_end = prev ? vm_end_gap(prev) : 0;
2542         tail_vma->vm_next = NULL;
2543
2544         /* Kill the cache */
2545         vmacache_invalidate(mm);
2546 }
2547
2548 /*
2549  * __split_vma() bypasses sysctl_max_map_count checking.  We use this where it
2550  * has already been checked or doesn't make sense to fail.
2551  */
2552 int __split_vma(struct mm_struct *mm, struct vm_area_struct *vma,
2553                 unsigned long addr, int new_below)
2554 {
2555         struct vm_area_struct *new;
2556         int err;
2557
2558         if (is_vm_hugetlb_page(vma) && (addr &
2559                                         ~(huge_page_mask(hstate_vma(vma)))))
2560                 return -EINVAL;
2561
2562         new = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
2563         if (!new)
2564                 return -ENOMEM;
2565
2566         /* most fields are the same, copy all, and then fixup */
2567         *new = *vma;
2568
2569         INIT_LIST_HEAD(&new->anon_vma_chain);
2570
2571         if (new_below)
2572                 new->vm_end = addr;
2573         else {
2574                 new->vm_start = addr;
2575                 new->vm_pgoff += ((addr - vma->vm_start) >> PAGE_SHIFT);
2576         }
2577
2578         err = vma_dup_policy(vma, new);
2579         if (err)
2580                 goto out_free_vma;
2581
2582         err = anon_vma_clone(new, vma);
2583         if (err)
2584                 goto out_free_mpol;
2585
2586         if (new->vm_file)
2587                 get_file(new->vm_file);
2588
2589         if (new->vm_ops && new->vm_ops->open)
2590                 new->vm_ops->open(new);
2591
2592         if (new_below)
2593                 err = vma_adjust(vma, addr, vma->vm_end, vma->vm_pgoff +
2594                         ((addr - new->vm_start) >> PAGE_SHIFT), new);
2595         else
2596                 err = vma_adjust(vma, vma->vm_start, addr, vma->vm_pgoff, new);
2597
2598         /* Success. */
2599         if (!err)
2600                 return 0;
2601
2602         /* Clean everything up if vma_adjust failed. */
2603         if (new->vm_ops && new->vm_ops->close)
2604                 new->vm_ops->close(new);
2605         if (new->vm_file)
2606                 fput(new->vm_file);
2607         unlink_anon_vmas(new);
2608  out_free_mpol:
2609         mpol_put(vma_policy(new));
2610  out_free_vma:
2611         kmem_cache_free(vm_area_cachep, new);
2612         return err;
2613 }
2614
2615 /*
2616  * Split a vma into two pieces at address 'addr', a new vma is allocated
2617  * either for the first part or the tail.
2618  */
2619 int split_vma(struct mm_struct *mm, struct vm_area_struct *vma,
2620               unsigned long addr, int new_below)
2621 {
2622         if (mm->map_count >= sysctl_max_map_count)
2623                 return -ENOMEM;
2624
2625         return __split_vma(mm, vma, addr, new_below);
2626 }
2627
2628 /* Munmap is split into 2 main parts -- this part which finds
2629  * what needs doing, and the areas themselves, which do the
2630  * work.  This now handles partial unmappings.
2631  * Jeremy Fitzhardinge <jeremy@goop.org>
2632  */
2633 int do_munmap(struct mm_struct *mm, unsigned long start, size_t len,
2634               struct list_head *uf)
2635 {
2636         unsigned long end;
2637         struct vm_area_struct *vma, *prev, *last;
2638
2639         if ((offset_in_page(start)) || start > TASK_SIZE || len > TASK_SIZE-start)
2640                 return -EINVAL;
2641
2642         len = PAGE_ALIGN(len);
2643         if (len == 0)
2644                 return -EINVAL;
2645
2646         /* Find the first overlapping VMA */
2647         vma = find_vma(mm, start);
2648         if (!vma)
2649                 return 0;
2650         prev = vma->vm_prev;
2651         /* we have  start < vma->vm_end  */
2652
2653         /* if it doesn't overlap, we have nothing.. */
2654         end = start + len;
2655         if (vma->vm_start >= end)
2656                 return 0;
2657
2658         /*
2659          * If we need to split any vma, do it now to save pain later.
2660          *
2661          * Note: mremap's move_vma VM_ACCOUNT handling assumes a partially
2662          * unmapped vm_area_struct will remain in use: so lower split_vma
2663          * places tmp vma above, and higher split_vma places tmp vma below.
2664          */
2665         if (start > vma->vm_start) {
2666                 int error;
2667
2668                 /*
2669                  * Make sure that map_count on return from munmap() will
2670                  * not exceed its limit; but let map_count go just above
2671                  * its limit temporarily, to help free resources as expected.
2672                  */
2673                 if (end < vma->vm_end && mm->map_count >= sysctl_max_map_count)
2674                         return -ENOMEM;
2675
2676                 error = __split_vma(mm, vma, start, 0);
2677                 if (error)
2678                         return error;
2679                 prev = vma;
2680         }
2681
2682         /* Does it split the last one? */
2683         last = find_vma(mm, end);
2684         if (last && end > last->vm_start) {
2685                 int error = __split_vma(mm, last, end, 1);
2686                 if (error)
2687                         return error;
2688         }
2689         vma = prev ? prev->vm_next : mm->mmap;
2690
2691         if (unlikely(uf)) {
2692                 /*
2693                  * If userfaultfd_unmap_prep returns an error the vmas
2694                  * will remain splitted, but userland will get a
2695                  * highly unexpected error anyway. This is no
2696                  * different than the case where the first of the two
2697                  * __split_vma fails, but we don't undo the first
2698                  * split, despite we could. This is unlikely enough
2699                  * failure that it's not worth optimizing it for.
2700                  */
2701                 int error = userfaultfd_unmap_prep(vma, start, end, uf);
2702                 if (error)
2703                         return error;
2704         }
2705
2706         /*
2707          * unlock any mlock()ed ranges before detaching vmas
2708          */
2709         if (mm->locked_vm) {
2710                 struct vm_area_struct *tmp = vma;
2711                 while (tmp && tmp->vm_start < end) {
2712                         if (tmp->vm_flags & VM_LOCKED) {
2713                                 mm->locked_vm -= vma_pages(tmp);
2714                                 munlock_vma_pages_all(tmp);
2715                         }
2716                         tmp = tmp->vm_next;
2717                 }
2718         }
2719
2720         /*
2721          * Remove the vma's, and unmap the actual pages
2722          */
2723         detach_vmas_to_be_unmapped(mm, vma, prev, end);
2724         unmap_region(mm, vma, prev, start, end);
2725
2726         arch_unmap(mm, vma, start, end);
2727
2728         /* Fix up all other VM information */
2729         remove_vma_list(mm, vma);
2730
2731         return 0;
2732 }
2733
2734 int vm_munmap(unsigned long start, size_t len)
2735 {
2736         int ret;
2737         struct mm_struct *mm = current->mm;
2738         LIST_HEAD(uf);
2739
2740         if (down_write_killable(&mm->mmap_sem))
2741                 return -EINTR;
2742
2743         ret = do_munmap(mm, start, len, &uf);
2744         up_write(&mm->mmap_sem);
2745         userfaultfd_unmap_complete(mm, &uf);
2746         return ret;
2747 }
2748 EXPORT_SYMBOL(vm_munmap);
2749
2750 SYSCALL_DEFINE2(munmap, unsigned long, addr, size_t, len)
2751 {
2752         profile_munmap(addr);
2753         return vm_munmap(addr, len);
2754 }
2755
2756
2757 /*
2758  * Emulation of deprecated remap_file_pages() syscall.
2759  */
2760 SYSCALL_DEFINE5(remap_file_pages, unsigned long, start, unsigned long, size,
2761                 unsigned long, prot, unsigned long, pgoff, unsigned long, flags)
2762 {
2763
2764         struct mm_struct *mm = current->mm;
2765         struct vm_area_struct *vma;
2766         unsigned long populate = 0;
2767         unsigned long ret = -EINVAL;
2768         struct file *file;
2769
2770         pr_warn_once("%s (%d) uses deprecated remap_file_pages() syscall. See Documentation/vm/remap_file_pages.txt.\n",
2771                      current->comm, current->pid);
2772
2773         if (prot)
2774                 return ret;
2775         start = start & PAGE_MASK;
2776         size = size & PAGE_MASK;
2777
2778         if (start + size <= start)
2779                 return ret;
2780
2781         /* Does pgoff wrap? */
2782         if (pgoff + (size >> PAGE_SHIFT) < pgoff)
2783                 return ret;
2784
2785         if (down_write_killable(&mm->mmap_sem))
2786                 return -EINTR;
2787
2788         vma = find_vma(mm, start);
2789
2790         if (!vma || !(vma->vm_flags & VM_SHARED))
2791                 goto out;
2792
2793         if (start < vma->vm_start)
2794                 goto out;
2795
2796         if (start + size > vma->vm_end) {
2797                 struct vm_area_struct *next;
2798
2799                 for (next = vma->vm_next; next; next = next->vm_next) {
2800                         /* hole between vmas ? */
2801                         if (next->vm_start != next->vm_prev->vm_end)
2802                                 goto out;
2803
2804                         if (next->vm_file != vma->vm_file)
2805                                 goto out;
2806
2807                         if (next->vm_flags != vma->vm_flags)
2808                                 goto out;
2809
2810                         if (start + size <= next->vm_end)
2811                                 break;
2812                 }
2813
2814                 if (!next)
2815                         goto out;
2816         }
2817
2818         prot |= vma->vm_flags & VM_READ ? PROT_READ : 0;
2819         prot |= vma->vm_flags & VM_WRITE ? PROT_WRITE : 0;
2820         prot |= vma->vm_flags & VM_EXEC ? PROT_EXEC : 0;
2821
2822         flags &= MAP_NONBLOCK;
2823         flags |= MAP_SHARED | MAP_FIXED | MAP_POPULATE;
2824         if (vma->vm_flags & VM_LOCKED) {
2825                 struct vm_area_struct *tmp;
2826                 flags |= MAP_LOCKED;
2827
2828                 /* drop PG_Mlocked flag for over-mapped range */
2829                 for (tmp = vma; tmp->vm_start >= start + size;
2830                                 tmp = tmp->vm_next) {
2831                         /*
2832                          * Split pmd and munlock page on the border
2833                          * of the range.
2834                          */
2835                         vma_adjust_trans_huge(tmp, start, start + size, 0);
2836
2837                         munlock_vma_pages_range(tmp,
2838                                         max(tmp->vm_start, start),
2839                                         min(tmp->vm_end, start + size));
2840                 }
2841         }
2842
2843         file = get_file(vma->vm_file);
2844         ret = do_mmap_pgoff(vma->vm_file, start, size,
2845                         prot, flags, pgoff, &populate, NULL);
2846         fput(file);
2847 out:
2848         up_write(&mm->mmap_sem);
2849         if (populate)
2850                 mm_populate(ret, populate);
2851         if (!IS_ERR_VALUE(ret))
2852                 ret = 0;
2853         return ret;
2854 }
2855
2856 static inline void verify_mm_writelocked(struct mm_struct *mm)
2857 {
2858 #ifdef CONFIG_DEBUG_VM
2859         if (unlikely(down_read_trylock(&mm->mmap_sem))) {
2860                 WARN_ON(1);
2861                 up_read(&mm->mmap_sem);
2862         }
2863 #endif
2864 }
2865
2866 /*
2867  *  this is really a simplified "do_mmap".  it only handles
2868  *  anonymous maps.  eventually we may be able to do some
2869  *  brk-specific accounting here.
2870  */
2871 static int do_brk_flags(unsigned long addr, unsigned long request, unsigned long flags, struct list_head *uf)
2872 {
2873         struct mm_struct *mm = current->mm;
2874         struct vm_area_struct *vma, *prev;
2875         unsigned long len;
2876         struct rb_node **rb_link, *rb_parent;
2877         pgoff_t pgoff = addr >> PAGE_SHIFT;
2878         int error;
2879
2880         len = PAGE_ALIGN(request);
2881         if (len < request)
2882                 return -ENOMEM;
2883         if (!len)
2884                 return 0;
2885
2886         /* Until we need other flags, refuse anything except VM_EXEC. */
2887         if ((flags & (~VM_EXEC)) != 0)
2888                 return -EINVAL;
2889         flags |= VM_DATA_DEFAULT_FLAGS | VM_ACCOUNT | mm->def_flags;
2890
2891         error = get_unmapped_area(NULL, addr, len, 0, MAP_FIXED);
2892         if (offset_in_page(error))
2893                 return error;
2894
2895         error = mlock_future_check(mm, mm->def_flags, len);
2896         if (error)
2897                 return error;
2898
2899         /*
2900          * mm->mmap_sem is required to protect against another thread
2901          * changing the mappings in case we sleep.
2902          */
2903         verify_mm_writelocked(mm);
2904
2905         /*
2906          * Clear old maps.  this also does some error checking for us
2907          */
2908         while (find_vma_links(mm, addr, addr + len, &prev, &rb_link,
2909                               &rb_parent)) {
2910                 if (do_munmap(mm, addr, len, uf))
2911                         return -ENOMEM;
2912         }
2913
2914         /* Check against address space limits *after* clearing old maps... */
2915         if (!may_expand_vm(mm, flags, len >> PAGE_SHIFT))
2916                 return -ENOMEM;
2917
2918         if (mm->map_count > sysctl_max_map_count)
2919                 return -ENOMEM;
2920
2921         if (security_vm_enough_memory_mm(mm, len >> PAGE_SHIFT))
2922                 return -ENOMEM;
2923
2924         /* Can we just expand an old private anonymous mapping? */
2925         vma = vma_merge(mm, prev, addr, addr + len, flags,
2926                         NULL, NULL, pgoff, NULL, NULL_VM_UFFD_CTX);
2927         if (vma)
2928                 goto out;
2929
2930         /*
2931          * create a vma struct for an anonymous mapping
2932          */
2933         vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
2934         if (!vma) {
2935                 vm_unacct_memory(len >> PAGE_SHIFT);
2936                 return -ENOMEM;
2937         }
2938
2939         INIT_LIST_HEAD(&vma->anon_vma_chain);
2940         vma->vm_mm = mm;
2941         vma->vm_start = addr;
2942         vma->vm_end = addr + len;
2943         vma->vm_pgoff = pgoff;
2944         vma->vm_flags = flags;
2945         vma->vm_page_prot = vm_get_page_prot(flags);
2946         vma_link(mm, vma, prev, rb_link, rb_parent);
2947 out:
2948         perf_event_mmap(vma);
2949         mm->total_vm += len >> PAGE_SHIFT;
2950         mm->data_vm += len >> PAGE_SHIFT;
2951         if (flags & VM_LOCKED)
2952                 mm->locked_vm += (len >> PAGE_SHIFT);
2953         vma->vm_flags |= VM_SOFTDIRTY;
2954         return 0;
2955 }
2956
2957 static int do_brk(unsigned long addr, unsigned long len, struct list_head *uf)
2958 {
2959         return do_brk_flags(addr, len, 0, uf);
2960 }
2961
2962 int vm_brk_flags(unsigned long addr, unsigned long len, unsigned long flags)
2963 {
2964         struct mm_struct *mm = current->mm;
2965         int ret;
2966         bool populate;
2967         LIST_HEAD(uf);
2968
2969         if (down_write_killable(&mm->mmap_sem))
2970                 return -EINTR;
2971
2972         ret = do_brk_flags(addr, len, flags, &uf);
2973         populate = ((mm->def_flags & VM_LOCKED) != 0);
2974         up_write(&mm->mmap_sem);
2975         userfaultfd_unmap_complete(mm, &uf);
2976         if (populate && !ret)
2977                 mm_populate(addr, len);
2978         return ret;
2979 }
2980 EXPORT_SYMBOL(vm_brk_flags);
2981
2982 int vm_brk(unsigned long addr, unsigned long len)
2983 {
2984         return vm_brk_flags(addr, len, 0);
2985 }
2986 EXPORT_SYMBOL(vm_brk);
2987
2988 /* Release all mmaps. */
2989 void exit_mmap(struct mm_struct *mm)
2990 {
2991         struct mmu_gather tlb;
2992         struct vm_area_struct *vma;
2993         unsigned long nr_accounted = 0;
2994
2995         /* mm's last user has gone, and its about to be pulled down */
2996         mmu_notifier_release(mm);
2997
2998         if (mm->locked_vm) {
2999                 vma = mm->mmap;
3000                 while (vma) {
3001                         if (vma->vm_flags & VM_LOCKED)
3002                                 munlock_vma_pages_all(vma);
3003                         vma = vma->vm_next;
3004                 }
3005         }
3006
3007         arch_exit_mmap(mm);
3008
3009         vma = mm->mmap;
3010         if (!vma)       /* Can happen if dup_mmap() received an OOM */
3011                 return;
3012
3013         lru_add_drain();
3014         flush_cache_mm(mm);
3015         tlb_gather_mmu(&tlb, mm, 0, -1);
3016         /* update_hiwater_rss(mm) here? but nobody should be looking */
3017         /* Use -1 here to ensure all VMAs in the mm are unmapped */
3018         unmap_vmas(&tlb, vma, 0, -1);
3019
3020         set_bit(MMF_OOM_SKIP, &mm->flags);
3021         if (unlikely(tsk_is_oom_victim(current))) {
3022                 /*
3023                  * Wait for oom_reap_task() to stop working on this
3024                  * mm. Because MMF_OOM_SKIP is already set before
3025                  * calling down_read(), oom_reap_task() will not run
3026                  * on this "mm" post up_write().
3027                  *
3028                  * tsk_is_oom_victim() cannot be set from under us
3029                  * either because current->mm is already set to NULL
3030                  * under task_lock before calling mmput and oom_mm is
3031                  * set not NULL by the OOM killer only if current->mm
3032                  * is found not NULL while holding the task_lock.
3033                  */
3034                 down_write(&mm->mmap_sem);
3035                 up_write(&mm->mmap_sem);
3036         }
3037         free_pgtables(&tlb, vma, FIRST_USER_ADDRESS, USER_PGTABLES_CEILING);
3038         tlb_finish_mmu(&tlb, 0, -1);
3039
3040         /*
3041          * Walk the list again, actually closing and freeing it,
3042          * with preemption enabled, without holding any MM locks.
3043          */
3044         while (vma) {
3045                 if (vma->vm_flags & VM_ACCOUNT)
3046                         nr_accounted += vma_pages(vma);
3047                 vma = remove_vma(vma);
3048         }
3049         vm_unacct_memory(nr_accounted);
3050 }
3051
3052 /* Insert vm structure into process list sorted by address
3053  * and into the inode's i_mmap tree.  If vm_file is non-NULL
3054  * then i_mmap_rwsem is taken here.
3055  */
3056 int insert_vm_struct(struct mm_struct *mm, struct vm_area_struct *vma)
3057 {
3058         struct vm_area_struct *prev;
3059         struct rb_node **rb_link, *rb_parent;
3060
3061         if (find_vma_links(mm, vma->vm_start, vma->vm_end,
3062                            &prev, &rb_link, &rb_parent))
3063                 return -ENOMEM;
3064         if ((vma->vm_flags & VM_ACCOUNT) &&
3065              security_vm_enough_memory_mm(mm, vma_pages(vma)))
3066                 return -ENOMEM;
3067
3068         /*
3069          * The vm_pgoff of a purely anonymous vma should be irrelevant
3070          * until its first write fault, when page's anon_vma and index
3071          * are set.  But now set the vm_pgoff it will almost certainly
3072          * end up with (unless mremap moves it elsewhere before that
3073          * first wfault), so /proc/pid/maps tells a consistent story.
3074          *
3075          * By setting it to reflect the virtual start address of the
3076          * vma, merges and splits can happen in a seamless way, just
3077          * using the existing file pgoff checks and manipulations.
3078          * Similarly in do_mmap_pgoff and in do_brk.
3079          */
3080         if (vma_is_anonymous(vma)) {
3081                 BUG_ON(vma->anon_vma);
3082                 vma->vm_pgoff = vma->vm_start >> PAGE_SHIFT;
3083         }
3084
3085         vma_link(mm, vma, prev, rb_link, rb_parent);
3086         return 0;
3087 }
3088
3089 /*
3090  * Copy the vma structure to a new location in the same mm,
3091  * prior to moving page table entries, to effect an mremap move.
3092  */
3093 struct vm_area_struct *copy_vma(struct vm_area_struct **vmap,
3094         unsigned long addr, unsigned long len, pgoff_t pgoff,
3095         bool *need_rmap_locks)
3096 {
3097         struct vm_area_struct *vma = *vmap;
3098         unsigned long vma_start = vma->vm_start;
3099         struct mm_struct *mm = vma->vm_mm;
3100         struct vm_area_struct *new_vma, *prev;
3101         struct rb_node **rb_link, *rb_parent;
3102         bool faulted_in_anon_vma = true;
3103
3104         /*
3105          * If anonymous vma has not yet been faulted, update new pgoff
3106          * to match new location, to increase its chance of merging.
3107          */
3108         if (unlikely(vma_is_anonymous(vma) && !vma->anon_vma)) {
3109                 pgoff = addr >> PAGE_SHIFT;
3110                 faulted_in_anon_vma = false;
3111         }
3112
3113         if (find_vma_links(mm, addr, addr + len, &prev, &rb_link, &rb_parent))
3114                 return NULL;    /* should never get here */
3115         new_vma = vma_merge(mm, prev, addr, addr + len, vma->vm_flags,
3116                             vma->anon_vma, vma->vm_file, pgoff, vma_policy(vma),
3117                             vma->vm_userfaultfd_ctx);
3118         if (new_vma) {
3119                 /*
3120                  * Source vma may have been merged into new_vma
3121                  */
3122                 if (unlikely(vma_start >= new_vma->vm_start &&
3123                              vma_start < new_vma->vm_end)) {
3124                         /*
3125                          * The only way we can get a vma_merge with
3126                          * self during an mremap is if the vma hasn't
3127                          * been faulted in yet and we were allowed to
3128                          * reset the dst vma->vm_pgoff to the
3129                          * destination address of the mremap to allow
3130                          * the merge to happen. mremap must change the
3131                          * vm_pgoff linearity between src and dst vmas
3132                          * (in turn preventing a vma_merge) to be
3133                          * safe. It is only safe to keep the vm_pgoff
3134                          * linear if there are no pages mapped yet.
3135                          */
3136                         VM_BUG_ON_VMA(faulted_in_anon_vma, new_vma);
3137                         *vmap = vma = new_vma;
3138                 }
3139                 *need_rmap_locks = (new_vma->vm_pgoff <= vma->vm_pgoff);
3140         } else {
3141                 new_vma = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
3142                 if (!new_vma)
3143                         goto out;
3144                 *new_vma = *vma;
3145                 new_vma->vm_start = addr;
3146                 new_vma->vm_end = addr + len;
3147                 new_vma->vm_pgoff = pgoff;
3148                 if (vma_dup_policy(vma, new_vma))
3149                         goto out_free_vma;
3150                 INIT_LIST_HEAD(&new_vma->anon_vma_chain);
3151                 if (anon_vma_clone(new_vma, vma))
3152                         goto out_free_mempol;
3153                 if (new_vma->vm_file)
3154                         get_file(new_vma->vm_file);
3155                 if (new_vma->vm_ops && new_vma->vm_ops->open)
3156                         new_vma->vm_ops->open(new_vma);
3157                 vma_link(mm, new_vma, prev, rb_link, rb_parent);
3158                 *need_rmap_locks = false;
3159         }
3160         return new_vma;
3161
3162 out_free_mempol:
3163         mpol_put(vma_policy(new_vma));
3164 out_free_vma:
3165         kmem_cache_free(vm_area_cachep, new_vma);
3166 out:
3167         return NULL;
3168 }
3169
3170 /*
3171  * Return true if the calling process may expand its vm space by the passed
3172  * number of pages
3173  */
3174 bool may_expand_vm(struct mm_struct *mm, vm_flags_t flags, unsigned long npages)
3175 {
3176         if (mm->total_vm + npages > rlimit(RLIMIT_AS) >> PAGE_SHIFT)
3177                 return false;
3178
3179         if (is_data_mapping(flags) &&
3180             mm->data_vm + npages > rlimit(RLIMIT_DATA) >> PAGE_SHIFT) {
3181                 /* Workaround for Valgrind */
3182                 if (rlimit(RLIMIT_DATA) == 0 &&
3183                     mm->data_vm + npages <= rlimit_max(RLIMIT_DATA) >> PAGE_SHIFT)
3184                         return true;
3185                 if (!ignore_rlimit_data) {
3186                         pr_warn_once("%s (%d): VmData %lu exceed data ulimit %lu. Update limits or use boot option ignore_rlimit_data.\n",
3187                                      current->comm, current->pid,
3188                                      (mm->data_vm + npages) << PAGE_SHIFT,
3189                                      rlimit(RLIMIT_DATA));
3190                         return false;
3191                 }
3192         }
3193
3194         return true;
3195 }
3196
3197 void vm_stat_account(struct mm_struct *mm, vm_flags_t flags, long npages)
3198 {
3199         mm->total_vm += npages;
3200
3201         if (is_exec_mapping(flags))
3202                 mm->exec_vm += npages;
3203         else if (is_stack_mapping(flags))
3204                 mm->stack_vm += npages;
3205         else if (is_data_mapping(flags))
3206                 mm->data_vm += npages;
3207 }
3208
3209 static int special_mapping_fault(struct vm_fault *vmf);
3210
3211 /*
3212  * Having a close hook prevents vma merging regardless of flags.
3213  */
3214 static void special_mapping_close(struct vm_area_struct *vma)
3215 {
3216 }
3217
3218 static const char *special_mapping_name(struct vm_area_struct *vma)
3219 {
3220         return ((struct vm_special_mapping *)vma->vm_private_data)->name;
3221 }
3222
3223 static int special_mapping_mremap(struct vm_area_struct *new_vma)
3224 {
3225         struct vm_special_mapping *sm = new_vma->vm_private_data;
3226
3227         if (WARN_ON_ONCE(current->mm != new_vma->vm_mm))
3228                 return -EFAULT;
3229
3230         if (sm->mremap)
3231                 return sm->mremap(sm, new_vma);
3232
3233         return 0;
3234 }
3235
3236 static const struct vm_operations_struct special_mapping_vmops = {
3237         .close = special_mapping_close,
3238         .fault = special_mapping_fault,
3239         .mremap = special_mapping_mremap,
3240         .name = special_mapping_name,
3241 };
3242
3243 static const struct vm_operations_struct legacy_special_mapping_vmops = {
3244         .close = special_mapping_close,
3245         .fault = special_mapping_fault,
3246 };
3247
3248 static int special_mapping_fault(struct vm_fault *vmf)
3249 {
3250         struct vm_area_struct *vma = vmf->vma;
3251         pgoff_t pgoff;
3252         struct page **pages;
3253
3254         if (vma->vm_ops == &legacy_special_mapping_vmops) {
3255                 pages = vma->vm_private_data;
3256         } else {
3257                 struct vm_special_mapping *sm = vma->vm_private_data;
3258
3259                 if (sm->fault)
3260                         return sm->fault(sm, vmf->vma, vmf);
3261
3262                 pages = sm->pages;
3263         }
3264
3265         for (pgoff = vmf->pgoff; pgoff && *pages; ++pages)
3266                 pgoff--;
3267
3268         if (*pages) {
3269                 struct page *page = *pages;
3270                 get_page(page);
3271                 vmf->page = page;
3272                 return 0;
3273         }
3274
3275         return VM_FAULT_SIGBUS;
3276 }
3277
3278 static struct vm_area_struct *__install_special_mapping(
3279         struct mm_struct *mm,
3280         unsigned long addr, unsigned long len,
3281         unsigned long vm_flags, void *priv,
3282         const struct vm_operations_struct *ops)
3283 {
3284         int ret;
3285         struct vm_area_struct *vma;
3286
3287         vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
3288         if (unlikely(vma == NULL))
3289                 return ERR_PTR(-ENOMEM);
3290
3291         INIT_LIST_HEAD(&vma->anon_vma_chain);
3292         vma->vm_mm = mm;
3293         vma->vm_start = addr;
3294         vma->vm_end = addr + len;
3295
3296         vma->vm_flags = vm_flags | mm->def_flags | VM_DONTEXPAND | VM_SOFTDIRTY;
3297         vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
3298
3299         vma->vm_ops = ops;
3300         vma->vm_private_data = priv;
3301
3302         ret = insert_vm_struct(mm, vma);
3303         if (ret)
3304                 goto out;
3305
3306         vm_stat_account(mm, vma->vm_flags, len >> PAGE_SHIFT);
3307
3308         perf_event_mmap(vma);
3309
3310         return vma;
3311
3312 out:
3313         kmem_cache_free(vm_area_cachep, vma);
3314         return ERR_PTR(ret);
3315 }
3316
3317 bool vma_is_special_mapping(const struct vm_area_struct *vma,
3318         const struct vm_special_mapping *sm)
3319 {
3320         return vma->vm_private_data == sm &&
3321                 (vma->vm_ops == &special_mapping_vmops ||
3322                  vma->vm_ops == &legacy_special_mapping_vmops);
3323 }
3324
3325 /*
3326  * Called with mm->mmap_sem held for writing.
3327  * Insert a new vma covering the given region, with the given flags.
3328  * Its pages are supplied by the given array of struct page *.
3329  * The array can be shorter than len >> PAGE_SHIFT if it's null-terminated.
3330  * The region past the last page supplied will always produce SIGBUS.
3331  * The array pointer and the pages it points to are assumed to stay alive
3332  * for as long as this mapping might exist.
3333  */
3334 struct vm_area_struct *_install_special_mapping(
3335         struct mm_struct *mm,
3336         unsigned long addr, unsigned long len,
3337         unsigned long vm_flags, const struct vm_special_mapping *spec)
3338 {
3339         return __install_special_mapping(mm, addr, len, vm_flags, (void *)spec,
3340                                         &special_mapping_vmops);
3341 }
3342
3343 int install_special_mapping(struct mm_struct *mm,
3344                             unsigned long addr, unsigned long len,
3345                             unsigned long vm_flags, struct page **pages)
3346 {
3347         struct vm_area_struct *vma = __install_special_mapping(
3348                 mm, addr, len, vm_flags, (void *)pages,
3349                 &legacy_special_mapping_vmops);
3350
3351         return PTR_ERR_OR_ZERO(vma);
3352 }
3353
3354 static DEFINE_MUTEX(mm_all_locks_mutex);
3355
3356 static void vm_lock_anon_vma(struct mm_struct *mm, struct anon_vma *anon_vma)
3357 {
3358         if (!test_bit(0, (unsigned long *) &anon_vma->root->rb_root.rb_root.rb_node)) {
3359                 /*
3360                  * The LSB of head.next can't change from under us
3361                  * because we hold the mm_all_locks_mutex.
3362                  */
3363                 down_write_nest_lock(&anon_vma->root->rwsem, &mm->mmap_sem);
3364                 /*
3365                  * We can safely modify head.next after taking the
3366                  * anon_vma->root->rwsem. If some other vma in this mm shares
3367                  * the same anon_vma we won't take it again.
3368                  *
3369                  * No need of atomic instructions here, head.next
3370                  * can't change from under us thanks to the
3371                  * anon_vma->root->rwsem.
3372                  */
3373                 if (__test_and_set_bit(0, (unsigned long *)
3374                                        &anon_vma->root->rb_root.rb_root.rb_node))
3375                         BUG();
3376         }
3377 }
3378
3379 static void vm_lock_mapping(struct mm_struct *mm, struct address_space *mapping)
3380 {
3381         if (!test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) {
3382                 /*
3383                  * AS_MM_ALL_LOCKS can't change from under us because
3384                  * we hold the mm_all_locks_mutex.
3385                  *
3386                  * Operations on ->flags have to be atomic because
3387                  * even if AS_MM_ALL_LOCKS is stable thanks to the
3388                  * mm_all_locks_mutex, there may be other cpus
3389                  * changing other bitflags in parallel to us.
3390                  */
3391                 if (test_and_set_bit(AS_MM_ALL_LOCKS, &mapping->flags))
3392                         BUG();
3393                 down_write_nest_lock(&mapping->i_mmap_rwsem, &mm->mmap_sem);
3394         }
3395 }
3396
3397 /*
3398  * This operation locks against the VM for all pte/vma/mm related
3399  * operations that could ever happen on a certain mm. This includes
3400  * vmtruncate, try_to_unmap, and all page faults.
3401  *
3402  * The caller must take the mmap_sem in write mode before calling
3403  * mm_take_all_locks(). The caller isn't allowed to release the
3404  * mmap_sem until mm_drop_all_locks() returns.
3405  *
3406  * mmap_sem in write mode is required in order to block all operations
3407  * that could modify pagetables and free pages without need of
3408  * altering the vma layout. It's also needed in write mode to avoid new
3409  * anon_vmas to be associated with existing vmas.
3410  *
3411  * A single task can't take more than one mm_take_all_locks() in a row
3412  * or it would deadlock.
3413  *
3414  * The LSB in anon_vma->rb_root.rb_node and the AS_MM_ALL_LOCKS bitflag in
3415  * mapping->flags avoid to take the same lock twice, if more than one
3416  * vma in this mm is backed by the same anon_vma or address_space.
3417  *
3418  * We take locks in following order, accordingly to comment at beginning
3419  * of mm/rmap.c:
3420  *   - all hugetlbfs_i_mmap_rwsem_key locks (aka mapping->i_mmap_rwsem for
3421  *     hugetlb mapping);
3422  *   - all i_mmap_rwsem locks;
3423  *   - all anon_vma->rwseml
3424  *
3425  * We can take all locks within these types randomly because the VM code
3426  * doesn't nest them and we protected from parallel mm_take_all_locks() by
3427  * mm_all_locks_mutex.
3428  *
3429  * mm_take_all_locks() and mm_drop_all_locks are expensive operations
3430  * that may have to take thousand of locks.
3431  *
3432  * mm_take_all_locks() can fail if it's interrupted by signals.
3433  */
3434 int mm_take_all_locks(struct mm_struct *mm)
3435 {
3436         struct vm_area_struct *vma;
3437         struct anon_vma_chain *avc;
3438
3439         BUG_ON(down_read_trylock(&mm->mmap_sem));
3440
3441         mutex_lock(&mm_all_locks_mutex);
3442
3443         for (vma = mm->mmap; vma; vma = vma->vm_next) {
3444                 if (signal_pending(current))
3445                         goto out_unlock;
3446                 if (vma->vm_file && vma->vm_file->f_mapping &&
3447                                 is_vm_hugetlb_page(vma))
3448                         vm_lock_mapping(mm, vma->vm_file->f_mapping);
3449         }
3450
3451         for (vma = mm->mmap; vma; vma = vma->vm_next) {
3452                 if (signal_pending(current))
3453                         goto out_unlock;
3454                 if (vma->vm_file && vma->vm_file->f_mapping &&
3455                                 !is_vm_hugetlb_page(vma))
3456                         vm_lock_mapping(mm, vma->vm_file->f_mapping);
3457         }
3458
3459         for (vma = mm->mmap; vma; vma = vma->vm_next) {
3460                 if (signal_pending(current))
3461                         goto out_unlock;
3462                 if (vma->anon_vma)
3463                         list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
3464                                 vm_lock_anon_vma(mm, avc->anon_vma);
3465         }
3466
3467         return 0;
3468
3469 out_unlock:
3470         mm_drop_all_locks(mm);
3471         return -EINTR;
3472 }
3473
3474 static void vm_unlock_anon_vma(struct anon_vma *anon_vma)
3475 {
3476         if (test_bit(0, (unsigned long *) &anon_vma->root->rb_root.rb_root.rb_node)) {
3477                 /*
3478                  * The LSB of head.next can't change to 0 from under
3479                  * us because we hold the mm_all_locks_mutex.
3480                  *
3481                  * We must however clear the bitflag before unlocking
3482                  * the vma so the users using the anon_vma->rb_root will
3483                  * never see our bitflag.
3484                  *
3485                  * No need of atomic instructions here, head.next
3486                  * can't change from under us until we release the
3487                  * anon_vma->root->rwsem.
3488                  */
3489                 if (!__test_and_clear_bit(0, (unsigned long *)
3490                                           &anon_vma->root->rb_root.rb_root.rb_node))
3491                         BUG();
3492                 anon_vma_unlock_write(anon_vma);
3493         }
3494 }
3495
3496 static void vm_unlock_mapping(struct address_space *mapping)
3497 {
3498         if (test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) {
3499                 /*
3500                  * AS_MM_ALL_LOCKS can't change to 0 from under us
3501                  * because we hold the mm_all_locks_mutex.
3502                  */
3503                 i_mmap_unlock_write(mapping);
3504                 if (!test_and_clear_bit(AS_MM_ALL_LOCKS,
3505                                         &mapping->flags))
3506                         BUG();
3507         }
3508 }
3509
3510 /*
3511  * The mmap_sem cannot be released by the caller until
3512  * mm_drop_all_locks() returns.
3513  */
3514 void mm_drop_all_locks(struct mm_struct *mm)
3515 {
3516         struct vm_area_struct *vma;
3517         struct anon_vma_chain *avc;
3518
3519         BUG_ON(down_read_trylock(&mm->mmap_sem));
3520         BUG_ON(!mutex_is_locked(&mm_all_locks_mutex));
3521
3522         for (vma = mm->mmap; vma; vma = vma->vm_next) {
3523                 if (vma->anon_vma)
3524                         list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
3525                                 vm_unlock_anon_vma(avc->anon_vma);
3526                 if (vma->vm_file && vma->vm_file->f_mapping)
3527                         vm_unlock_mapping(vma->vm_file->f_mapping);
3528         }
3529
3530         mutex_unlock(&mm_all_locks_mutex);
3531 }
3532
3533 /*
3534  * initialise the percpu counter for VM
3535  */
3536 void __init mmap_init(void)
3537 {
3538         int ret;
3539
3540         ret = percpu_counter_init(&vm_committed_as, 0, GFP_KERNEL);
3541         VM_BUG_ON(ret);
3542 }
3543
3544 /*
3545  * Initialise sysctl_user_reserve_kbytes.
3546  *
3547  * This is intended to prevent a user from starting a single memory hogging
3548  * process, such that they cannot recover (kill the hog) in OVERCOMMIT_NEVER
3549  * mode.
3550  *
3551  * The default value is min(3% of free memory, 128MB)
3552  * 128MB is enough to recover with sshd/login, bash, and top/kill.
3553  */
3554 static int init_user_reserve(void)
3555 {
3556         unsigned long free_kbytes;
3557
3558         free_kbytes = global_zone_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
3559
3560         sysctl_user_reserve_kbytes = min(free_kbytes / 32, 1UL << 17);
3561         return 0;
3562 }
3563 subsys_initcall(init_user_reserve);
3564
3565 /*
3566  * Initialise sysctl_admin_reserve_kbytes.
3567  *
3568  * The purpose of sysctl_admin_reserve_kbytes is to allow the sys admin
3569  * to log in and kill a memory hogging process.
3570  *
3571  * Systems with more than 256MB will reserve 8MB, enough to recover
3572  * with sshd, bash, and top in OVERCOMMIT_GUESS. Smaller systems will
3573  * only reserve 3% of free pages by default.
3574  */
3575 static int init_admin_reserve(void)
3576 {
3577         unsigned long free_kbytes;
3578
3579         free_kbytes = global_zone_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
3580
3581         sysctl_admin_reserve_kbytes = min(free_kbytes / 32, 1UL << 13);
3582         return 0;
3583 }
3584 subsys_initcall(init_admin_reserve);
3585
3586 /*
3587  * Reinititalise user and admin reserves if memory is added or removed.
3588  *
3589  * The default user reserve max is 128MB, and the default max for the
3590  * admin reserve is 8MB. These are usually, but not always, enough to
3591  * enable recovery from a memory hogging process using login/sshd, a shell,
3592  * and tools like top. It may make sense to increase or even disable the
3593  * reserve depending on the existence of swap or variations in the recovery
3594  * tools. So, the admin may have changed them.
3595  *
3596  * If memory is added and the reserves have been eliminated or increased above
3597  * the default max, then we'll trust the admin.
3598  *
3599  * If memory is removed and there isn't enough free memory, then we
3600  * need to reset the reserves.
3601  *
3602  * Otherwise keep the reserve set by the admin.
3603  */
3604 static int reserve_mem_notifier(struct notifier_block *nb,
3605                              unsigned long action, void *data)
3606 {
3607         unsigned long tmp, free_kbytes;
3608
3609         switch (action) {
3610         case MEM_ONLINE:
3611                 /* Default max is 128MB. Leave alone if modified by operator. */
3612                 tmp = sysctl_user_reserve_kbytes;
3613                 if (0 < tmp && tmp < (1UL << 17))
3614                         init_user_reserve();
3615
3616                 /* Default max is 8MB.  Leave alone if modified by operator. */
3617                 tmp = sysctl_admin_reserve_kbytes;
3618                 if (0 < tmp && tmp < (1UL << 13))
3619                         init_admin_reserve();
3620
3621                 break;
3622         case MEM_OFFLINE:
3623                 free_kbytes = global_zone_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
3624
3625                 if (sysctl_user_reserve_kbytes > free_kbytes) {
3626                         init_user_reserve();
3627                         pr_info("vm.user_reserve_kbytes reset to %lu\n",
3628                                 sysctl_user_reserve_kbytes);
3629                 }
3630
3631                 if (sysctl_admin_reserve_kbytes > free_kbytes) {
3632                         init_admin_reserve();
3633                         pr_info("vm.admin_reserve_kbytes reset to %lu\n",
3634                                 sysctl_admin_reserve_kbytes);
3635                 }
3636                 break;
3637         default:
3638                 break;
3639         }
3640         return NOTIFY_OK;
3641 }
3642
3643 static struct notifier_block reserve_mem_nb = {
3644         .notifier_call = reserve_mem_notifier,
3645 };
3646
3647 static int __meminit init_reserve_notifier(void)
3648 {
3649         if (register_hotmemory_notifier(&reserve_mem_nb))
3650                 pr_err("Failed registering memory add/remove notifier for admin reserve\n");
3651
3652         return 0;
3653 }
3654 subsys_initcall(init_reserve_notifier);