6 * Address space accounting code <alan@lxorguk.ukuu.org.uk>
9 #include <linux/slab.h>
10 #include <linux/backing-dev.h>
12 #include <linux/shm.h>
13 #include <linux/mman.h>
14 #include <linux/pagemap.h>
15 #include <linux/swap.h>
16 #include <linux/syscalls.h>
17 #include <linux/capability.h>
18 #include <linux/init.h>
19 #include <linux/file.h>
21 #include <linux/personality.h>
22 #include <linux/security.h>
23 #include <linux/hugetlb.h>
24 #include <linux/profile.h>
25 #include <linux/module.h>
26 #include <linux/mount.h>
27 #include <linux/mempolicy.h>
28 #include <linux/rmap.h>
29 #include <linux/mmu_notifier.h>
30 #include <linux/perf_event.h>
31 #include <linux/audit.h>
32 #include <linux/khugepaged.h>
34 #include <asm/uaccess.h>
35 #include <asm/cacheflush.h>
37 #include <asm/mmu_context.h>
41 #ifndef arch_mmap_check
42 #define arch_mmap_check(addr, len, flags) (0)
45 #ifndef arch_rebalance_pgtables
46 #define arch_rebalance_pgtables(addr, len) (addr)
49 static void unmap_region(struct mm_struct *mm,
50 struct vm_area_struct *vma, struct vm_area_struct *prev,
51 unsigned long start, unsigned long end);
54 * WARNING: the debugging will use recursive algorithms so never enable this
55 * unless you know what you are doing.
59 /* description of effects of mapping type and prot in current implementation.
60 * this is due to the limited x86 page protection hardware. The expected
61 * behavior is in parens:
64 * PROT_NONE PROT_READ PROT_WRITE PROT_EXEC
65 * MAP_SHARED r: (no) no r: (yes) yes r: (no) yes r: (no) yes
66 * w: (no) no w: (no) no w: (yes) yes w: (no) no
67 * x: (no) no x: (no) yes x: (no) yes x: (yes) yes
69 * MAP_PRIVATE r: (no) no r: (yes) yes r: (no) yes r: (no) yes
70 * w: (no) no w: (no) no w: (copy) copy w: (no) no
71 * x: (no) no x: (no) yes x: (no) yes x: (yes) yes
74 pgprot_t protection_map[16] = {
75 __P000, __P001, __P010, __P011, __P100, __P101, __P110, __P111,
76 __S000, __S001, __S010, __S011, __S100, __S101, __S110, __S111
79 pgprot_t vm_get_page_prot(unsigned long vm_flags)
81 return __pgprot(pgprot_val(protection_map[vm_flags &
82 (VM_READ|VM_WRITE|VM_EXEC|VM_SHARED)]) |
83 pgprot_val(arch_vm_get_page_prot(vm_flags)));
85 EXPORT_SYMBOL(vm_get_page_prot);
87 int sysctl_overcommit_memory = OVERCOMMIT_GUESS; /* heuristic overcommit */
88 int sysctl_overcommit_ratio = 50; /* default is 50% */
89 int sysctl_max_map_count __read_mostly = DEFAULT_MAX_MAP_COUNT;
90 struct percpu_counter vm_committed_as;
93 * Check that a process has enough memory to allocate a new virtual
94 * mapping. 0 means there is enough memory for the allocation to
95 * succeed and -ENOMEM implies there is not.
97 * We currently support three overcommit policies, which are set via the
98 * vm.overcommit_memory sysctl. See Documentation/vm/overcommit-accounting
100 * Strict overcommit modes added 2002 Feb 26 by Alan Cox.
101 * Additional code 2002 Jul 20 by Robert Love.
103 * cap_sys_admin is 1 if the process has admin privileges, 0 otherwise.
105 * Note this is a helper function intended to be used by LSMs which
106 * wish to use this logic.
108 int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin)
110 unsigned long free, allowed;
112 vm_acct_memory(pages);
115 * Sometimes we want to use more memory than we have
117 if (sysctl_overcommit_memory == OVERCOMMIT_ALWAYS)
120 if (sysctl_overcommit_memory == OVERCOMMIT_GUESS) {
123 free = global_page_state(NR_FILE_PAGES);
124 free += nr_swap_pages;
127 * Any slabs which are created with the
128 * SLAB_RECLAIM_ACCOUNT flag claim to have contents
129 * which are reclaimable, under pressure. The dentry
130 * cache and most inode caches should fall into this
132 free += global_page_state(NR_SLAB_RECLAIMABLE);
135 * Leave the last 3% for root
144 * nr_free_pages() is very expensive on large systems,
145 * only call if we're about to fail.
150 * Leave reserved pages. The pages are not for anonymous pages.
152 if (n <= totalreserve_pages)
155 n -= totalreserve_pages;
158 * Leave the last 3% for root
170 allowed = (totalram_pages - hugetlb_total_pages())
171 * sysctl_overcommit_ratio / 100;
173 * Leave the last 3% for root
176 allowed -= allowed / 32;
177 allowed += total_swap_pages;
179 /* Don't let a single process grow too big:
180 leave 3% of the size of this process for other processes */
182 allowed -= mm->total_vm / 32;
184 if (percpu_counter_read_positive(&vm_committed_as) < allowed)
187 vm_unacct_memory(pages);
193 * Requires inode->i_mapping->i_mmap_lock
195 static void __remove_shared_vm_struct(struct vm_area_struct *vma,
196 struct file *file, struct address_space *mapping)
198 if (vma->vm_flags & VM_DENYWRITE)
199 atomic_inc(&file->f_path.dentry->d_inode->i_writecount);
200 if (vma->vm_flags & VM_SHARED)
201 mapping->i_mmap_writable--;
203 flush_dcache_mmap_lock(mapping);
204 if (unlikely(vma->vm_flags & VM_NONLINEAR))
205 list_del_init(&vma->shared.vm_set.list);
207 vma_prio_tree_remove(vma, &mapping->i_mmap);
208 flush_dcache_mmap_unlock(mapping);
212 * Unlink a file-based vm structure from its prio_tree, to hide
213 * vma from rmap and vmtruncate before freeing its page tables.
215 void unlink_file_vma(struct vm_area_struct *vma)
217 struct file *file = vma->vm_file;
220 struct address_space *mapping = file->f_mapping;
221 spin_lock(&mapping->i_mmap_lock);
222 __remove_shared_vm_struct(vma, file, mapping);
223 spin_unlock(&mapping->i_mmap_lock);
228 * Close a vm structure and free it, returning the next.
230 static struct vm_area_struct *remove_vma(struct vm_area_struct *vma)
232 struct vm_area_struct *next = vma->vm_next;
235 if (vma->vm_ops && vma->vm_ops->close)
236 vma->vm_ops->close(vma);
239 if (vma->vm_flags & VM_EXECUTABLE)
240 removed_exe_file_vma(vma->vm_mm);
242 mpol_put(vma_policy(vma));
243 kmem_cache_free(vm_area_cachep, vma);
247 SYSCALL_DEFINE1(brk, unsigned long, brk)
249 unsigned long rlim, retval;
250 unsigned long newbrk, oldbrk;
251 struct mm_struct *mm = current->mm;
252 unsigned long min_brk;
254 down_write(&mm->mmap_sem);
256 #ifdef CONFIG_COMPAT_BRK
258 * CONFIG_COMPAT_BRK can still be overridden by setting
259 * randomize_va_space to 2, which will still cause mm->start_brk
260 * to be arbitrarily shifted
262 if (current->brk_randomized)
263 min_brk = mm->start_brk;
265 min_brk = mm->end_data;
267 min_brk = mm->start_brk;
273 * Check against rlimit here. If this check is done later after the test
274 * of oldbrk with newbrk then it can escape the test and let the data
275 * segment grow beyond its set limit the in case where the limit is
276 * not page aligned -Ram Gupta
278 rlim = rlimit(RLIMIT_DATA);
279 if (rlim < RLIM_INFINITY && (brk - mm->start_brk) +
280 (mm->end_data - mm->start_data) > rlim)
283 newbrk = PAGE_ALIGN(brk);
284 oldbrk = PAGE_ALIGN(mm->brk);
285 if (oldbrk == newbrk)
288 /* Always allow shrinking brk. */
289 if (brk <= mm->brk) {
290 if (!do_munmap(mm, newbrk, oldbrk-newbrk))
295 /* Check against existing mmap mappings. */
296 if (find_vma_intersection(mm, oldbrk, newbrk+PAGE_SIZE))
299 /* Ok, looks good - let it rip. */
300 if (do_brk(oldbrk, newbrk-oldbrk) != oldbrk)
306 up_write(&mm->mmap_sem);
311 static int browse_rb(struct rb_root *root)
314 struct rb_node *nd, *pn = NULL;
315 unsigned long prev = 0, pend = 0;
317 for (nd = rb_first(root); nd; nd = rb_next(nd)) {
318 struct vm_area_struct *vma;
319 vma = rb_entry(nd, struct vm_area_struct, vm_rb);
320 if (vma->vm_start < prev)
321 printk("vm_start %lx prev %lx\n", vma->vm_start, prev), i = -1;
322 if (vma->vm_start < pend)
323 printk("vm_start %lx pend %lx\n", vma->vm_start, pend);
324 if (vma->vm_start > vma->vm_end)
325 printk("vm_end %lx < vm_start %lx\n", vma->vm_end, vma->vm_start);
328 prev = vma->vm_start;
332 for (nd = pn; nd; nd = rb_prev(nd)) {
336 printk("backwards %d, forwards %d\n", j, i), i = 0;
340 void validate_mm(struct mm_struct *mm)
344 struct vm_area_struct *tmp = mm->mmap;
349 if (i != mm->map_count)
350 printk("map_count %d vm_next %d\n", mm->map_count, i), bug = 1;
351 i = browse_rb(&mm->mm_rb);
352 if (i != mm->map_count)
353 printk("map_count %d rb %d\n", mm->map_count, i), bug = 1;
357 #define validate_mm(mm) do { } while (0)
360 static struct vm_area_struct *
361 find_vma_prepare(struct mm_struct *mm, unsigned long addr,
362 struct vm_area_struct **pprev, struct rb_node ***rb_link,
363 struct rb_node ** rb_parent)
365 struct vm_area_struct * vma;
366 struct rb_node ** __rb_link, * __rb_parent, * rb_prev;
368 __rb_link = &mm->mm_rb.rb_node;
369 rb_prev = __rb_parent = NULL;
373 struct vm_area_struct *vma_tmp;
375 __rb_parent = *__rb_link;
376 vma_tmp = rb_entry(__rb_parent, struct vm_area_struct, vm_rb);
378 if (vma_tmp->vm_end > addr) {
380 if (vma_tmp->vm_start <= addr)
382 __rb_link = &__rb_parent->rb_left;
384 rb_prev = __rb_parent;
385 __rb_link = &__rb_parent->rb_right;
391 *pprev = rb_entry(rb_prev, struct vm_area_struct, vm_rb);
392 *rb_link = __rb_link;
393 *rb_parent = __rb_parent;
398 __vma_link_list(struct mm_struct *mm, struct vm_area_struct *vma,
399 struct vm_area_struct *prev, struct rb_node *rb_parent)
401 struct vm_area_struct *next;
405 next = prev->vm_next;
410 next = rb_entry(rb_parent,
411 struct vm_area_struct, vm_rb);
420 void __vma_link_rb(struct mm_struct *mm, struct vm_area_struct *vma,
421 struct rb_node **rb_link, struct rb_node *rb_parent)
423 rb_link_node(&vma->vm_rb, rb_parent, rb_link);
424 rb_insert_color(&vma->vm_rb, &mm->mm_rb);
427 static void __vma_link_file(struct vm_area_struct *vma)
433 struct address_space *mapping = file->f_mapping;
435 if (vma->vm_flags & VM_DENYWRITE)
436 atomic_dec(&file->f_path.dentry->d_inode->i_writecount);
437 if (vma->vm_flags & VM_SHARED)
438 mapping->i_mmap_writable++;
440 flush_dcache_mmap_lock(mapping);
441 if (unlikely(vma->vm_flags & VM_NONLINEAR))
442 vma_nonlinear_insert(vma, &mapping->i_mmap_nonlinear);
444 vma_prio_tree_insert(vma, &mapping->i_mmap);
445 flush_dcache_mmap_unlock(mapping);
450 __vma_link(struct mm_struct *mm, struct vm_area_struct *vma,
451 struct vm_area_struct *prev, struct rb_node **rb_link,
452 struct rb_node *rb_parent)
454 __vma_link_list(mm, vma, prev, rb_parent);
455 __vma_link_rb(mm, vma, rb_link, rb_parent);
458 static void vma_link(struct mm_struct *mm, struct vm_area_struct *vma,
459 struct vm_area_struct *prev, struct rb_node **rb_link,
460 struct rb_node *rb_parent)
462 struct address_space *mapping = NULL;
465 mapping = vma->vm_file->f_mapping;
468 spin_lock(&mapping->i_mmap_lock);
469 vma->vm_truncate_count = mapping->truncate_count;
472 __vma_link(mm, vma, prev, rb_link, rb_parent);
473 __vma_link_file(vma);
476 spin_unlock(&mapping->i_mmap_lock);
483 * Helper for vma_adjust in the split_vma insert case:
484 * insert vm structure into list and rbtree and anon_vma,
485 * but it has already been inserted into prio_tree earlier.
487 static void __insert_vm_struct(struct mm_struct *mm, struct vm_area_struct *vma)
489 struct vm_area_struct *__vma, *prev;
490 struct rb_node **rb_link, *rb_parent;
492 __vma = find_vma_prepare(mm, vma->vm_start,&prev, &rb_link, &rb_parent);
493 BUG_ON(__vma && __vma->vm_start < vma->vm_end);
494 __vma_link(mm, vma, prev, rb_link, rb_parent);
499 __vma_unlink(struct mm_struct *mm, struct vm_area_struct *vma,
500 struct vm_area_struct *prev)
502 struct vm_area_struct *next = vma->vm_next;
504 prev->vm_next = next;
506 next->vm_prev = prev;
507 rb_erase(&vma->vm_rb, &mm->mm_rb);
508 if (mm->mmap_cache == vma)
509 mm->mmap_cache = prev;
513 * We cannot adjust vm_start, vm_end, vm_pgoff fields of a vma that
514 * is already present in an i_mmap tree without adjusting the tree.
515 * The following helper function should be used when such adjustments
516 * are necessary. The "insert" vma (if any) is to be inserted
517 * before we drop the necessary locks.
519 int vma_adjust(struct vm_area_struct *vma, unsigned long start,
520 unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert)
522 struct mm_struct *mm = vma->vm_mm;
523 struct vm_area_struct *next = vma->vm_next;
524 struct vm_area_struct *importer = NULL;
525 struct address_space *mapping = NULL;
526 struct prio_tree_root *root = NULL;
527 struct anon_vma *anon_vma = NULL;
528 struct file *file = vma->vm_file;
529 long adjust_next = 0;
532 if (next && !insert) {
533 struct vm_area_struct *exporter = NULL;
535 if (end >= next->vm_end) {
537 * vma expands, overlapping all the next, and
538 * perhaps the one after too (mprotect case 6).
540 again: remove_next = 1 + (end > next->vm_end);
544 } else if (end > next->vm_start) {
546 * vma expands, overlapping part of the next:
547 * mprotect case 5 shifting the boundary up.
549 adjust_next = (end - next->vm_start) >> PAGE_SHIFT;
552 } else if (end < vma->vm_end) {
554 * vma shrinks, and !insert tells it's not
555 * split_vma inserting another: so it must be
556 * mprotect case 4 shifting the boundary down.
558 adjust_next = - ((vma->vm_end - end) >> PAGE_SHIFT);
564 * Easily overlooked: when mprotect shifts the boundary,
565 * make sure the expanding vma has anon_vma set if the
566 * shrinking vma had, to cover any anon pages imported.
568 if (exporter && exporter->anon_vma && !importer->anon_vma) {
569 if (anon_vma_clone(importer, exporter))
571 importer->anon_vma = exporter->anon_vma;
576 mapping = file->f_mapping;
577 if (!(vma->vm_flags & VM_NONLINEAR))
578 root = &mapping->i_mmap;
579 spin_lock(&mapping->i_mmap_lock);
581 vma->vm_truncate_count != next->vm_truncate_count) {
583 * unmap_mapping_range might be in progress:
584 * ensure that the expanding vma is rescanned.
586 importer->vm_truncate_count = 0;
589 insert->vm_truncate_count = vma->vm_truncate_count;
591 * Put into prio_tree now, so instantiated pages
592 * are visible to arm/parisc __flush_dcache_page
593 * throughout; but we cannot insert into address
594 * space until vma start or end is updated.
596 __vma_link_file(insert);
600 vma_adjust_trans_huge(vma, start, end, adjust_next);
603 * When changing only vma->vm_end, we don't really need anon_vma
604 * lock. This is a fairly rare case by itself, but the anon_vma
605 * lock may be shared between many sibling processes. Skipping
606 * the lock for brk adjustments makes a difference sometimes.
608 if (vma->anon_vma && (insert || importer || start != vma->vm_start)) {
609 anon_vma = vma->anon_vma;
610 anon_vma_lock(anon_vma);
614 flush_dcache_mmap_lock(mapping);
615 vma_prio_tree_remove(vma, root);
617 vma_prio_tree_remove(next, root);
620 vma->vm_start = start;
622 vma->vm_pgoff = pgoff;
624 next->vm_start += adjust_next << PAGE_SHIFT;
625 next->vm_pgoff += adjust_next;
630 vma_prio_tree_insert(next, root);
631 vma_prio_tree_insert(vma, root);
632 flush_dcache_mmap_unlock(mapping);
637 * vma_merge has merged next into vma, and needs
638 * us to remove next before dropping the locks.
640 __vma_unlink(mm, next, vma);
642 __remove_shared_vm_struct(next, file, mapping);
645 * split_vma has split insert from vma, and needs
646 * us to insert it before dropping the locks
647 * (it may either follow vma or precede it).
649 __insert_vm_struct(mm, insert);
653 anon_vma_unlock(anon_vma);
655 spin_unlock(&mapping->i_mmap_lock);
660 if (next->vm_flags & VM_EXECUTABLE)
661 removed_exe_file_vma(mm);
664 anon_vma_merge(vma, next);
666 mpol_put(vma_policy(next));
667 kmem_cache_free(vm_area_cachep, next);
669 * In mprotect's case 6 (see comments on vma_merge),
670 * we must remove another next too. It would clutter
671 * up the code too much to do both in one go.
673 if (remove_next == 2) {
685 * If the vma has a ->close operation then the driver probably needs to release
686 * per-vma resources, so we don't attempt to merge those.
688 static inline int is_mergeable_vma(struct vm_area_struct *vma,
689 struct file *file, unsigned long vm_flags)
691 /* VM_CAN_NONLINEAR may get set later by f_op->mmap() */
692 if ((vma->vm_flags ^ vm_flags) & ~VM_CAN_NONLINEAR)
694 if (vma->vm_file != file)
696 if (vma->vm_ops && vma->vm_ops->close)
701 static inline int is_mergeable_anon_vma(struct anon_vma *anon_vma1,
702 struct anon_vma *anon_vma2)
704 return !anon_vma1 || !anon_vma2 || (anon_vma1 == anon_vma2);
708 * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
709 * in front of (at a lower virtual address and file offset than) the vma.
711 * We cannot merge two vmas if they have differently assigned (non-NULL)
712 * anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
714 * We don't check here for the merged mmap wrapping around the end of pagecache
715 * indices (16TB on ia32) because do_mmap_pgoff() does not permit mmap's which
716 * wrap, nor mmaps which cover the final page at index -1UL.
719 can_vma_merge_before(struct vm_area_struct *vma, unsigned long vm_flags,
720 struct anon_vma *anon_vma, struct file *file, pgoff_t vm_pgoff)
722 if (is_mergeable_vma(vma, file, vm_flags) &&
723 is_mergeable_anon_vma(anon_vma, vma->anon_vma)) {
724 if (vma->vm_pgoff == vm_pgoff)
731 * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
732 * beyond (at a higher virtual address and file offset than) the vma.
734 * We cannot merge two vmas if they have differently assigned (non-NULL)
735 * anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
738 can_vma_merge_after(struct vm_area_struct *vma, unsigned long vm_flags,
739 struct anon_vma *anon_vma, struct file *file, pgoff_t vm_pgoff)
741 if (is_mergeable_vma(vma, file, vm_flags) &&
742 is_mergeable_anon_vma(anon_vma, vma->anon_vma)) {
744 vm_pglen = (vma->vm_end - vma->vm_start) >> PAGE_SHIFT;
745 if (vma->vm_pgoff + vm_pglen == vm_pgoff)
752 * Given a mapping request (addr,end,vm_flags,file,pgoff), figure out
753 * whether that can be merged with its predecessor or its successor.
754 * Or both (it neatly fills a hole).
756 * In most cases - when called for mmap, brk or mremap - [addr,end) is
757 * certain not to be mapped by the time vma_merge is called; but when
758 * called for mprotect, it is certain to be already mapped (either at
759 * an offset within prev, or at the start of next), and the flags of
760 * this area are about to be changed to vm_flags - and the no-change
761 * case has already been eliminated.
763 * The following mprotect cases have to be considered, where AAAA is
764 * the area passed down from mprotect_fixup, never extending beyond one
765 * vma, PPPPPP is the prev vma specified, and NNNNNN the next vma after:
767 * AAAA AAAA AAAA AAAA
768 * PPPPPPNNNNNN PPPPPPNNNNNN PPPPPPNNNNNN PPPPNNNNXXXX
769 * cannot merge might become might become might become
770 * PPNNNNNNNNNN PPPPPPPPPPNN PPPPPPPPPPPP 6 or
771 * mmap, brk or case 4 below case 5 below PPPPPPPPXXXX 7 or
772 * mremap move: PPPPNNNNNNNN 8
774 * PPPP NNNN PPPPPPPPPPPP PPPPPPPPNNNN PPPPNNNNNNNN
775 * might become case 1 below case 2 below case 3 below
777 * Odd one out? Case 8, because it extends NNNN but needs flags of XXXX:
778 * mprotect_fixup updates vm_flags & vm_page_prot on successful return.
780 struct vm_area_struct *vma_merge(struct mm_struct *mm,
781 struct vm_area_struct *prev, unsigned long addr,
782 unsigned long end, unsigned long vm_flags,
783 struct anon_vma *anon_vma, struct file *file,
784 pgoff_t pgoff, struct mempolicy *policy)
786 pgoff_t pglen = (end - addr) >> PAGE_SHIFT;
787 struct vm_area_struct *area, *next;
791 * We later require that vma->vm_flags == vm_flags,
792 * so this tests vma->vm_flags & VM_SPECIAL, too.
794 if (vm_flags & VM_SPECIAL)
798 next = prev->vm_next;
802 if (next && next->vm_end == end) /* cases 6, 7, 8 */
803 next = next->vm_next;
806 * Can it merge with the predecessor?
808 if (prev && prev->vm_end == addr &&
809 mpol_equal(vma_policy(prev), policy) &&
810 can_vma_merge_after(prev, vm_flags,
811 anon_vma, file, pgoff)) {
813 * OK, it can. Can we now merge in the successor as well?
815 if (next && end == next->vm_start &&
816 mpol_equal(policy, vma_policy(next)) &&
817 can_vma_merge_before(next, vm_flags,
818 anon_vma, file, pgoff+pglen) &&
819 is_mergeable_anon_vma(prev->anon_vma,
822 err = vma_adjust(prev, prev->vm_start,
823 next->vm_end, prev->vm_pgoff, NULL);
824 } else /* cases 2, 5, 7 */
825 err = vma_adjust(prev, prev->vm_start,
826 end, prev->vm_pgoff, NULL);
829 khugepaged_enter_vma_merge(prev);
834 * Can this new request be merged in front of next?
836 if (next && end == next->vm_start &&
837 mpol_equal(policy, vma_policy(next)) &&
838 can_vma_merge_before(next, vm_flags,
839 anon_vma, file, pgoff+pglen)) {
840 if (prev && addr < prev->vm_end) /* case 4 */
841 err = vma_adjust(prev, prev->vm_start,
842 addr, prev->vm_pgoff, NULL);
843 else /* cases 3, 8 */
844 err = vma_adjust(area, addr, next->vm_end,
845 next->vm_pgoff - pglen, NULL);
848 khugepaged_enter_vma_merge(area);
856 * Rough compatbility check to quickly see if it's even worth looking
857 * at sharing an anon_vma.
859 * They need to have the same vm_file, and the flags can only differ
860 * in things that mprotect may change.
862 * NOTE! The fact that we share an anon_vma doesn't _have_ to mean that
863 * we can merge the two vma's. For example, we refuse to merge a vma if
864 * there is a vm_ops->close() function, because that indicates that the
865 * driver is doing some kind of reference counting. But that doesn't
866 * really matter for the anon_vma sharing case.
868 static int anon_vma_compatible(struct vm_area_struct *a, struct vm_area_struct *b)
870 return a->vm_end == b->vm_start &&
871 mpol_equal(vma_policy(a), vma_policy(b)) &&
872 a->vm_file == b->vm_file &&
873 !((a->vm_flags ^ b->vm_flags) & ~(VM_READ|VM_WRITE|VM_EXEC)) &&
874 b->vm_pgoff == a->vm_pgoff + ((b->vm_start - a->vm_start) >> PAGE_SHIFT);
878 * Do some basic sanity checking to see if we can re-use the anon_vma
879 * from 'old'. The 'a'/'b' vma's are in VM order - one of them will be
880 * the same as 'old', the other will be the new one that is trying
881 * to share the anon_vma.
883 * NOTE! This runs with mm_sem held for reading, so it is possible that
884 * the anon_vma of 'old' is concurrently in the process of being set up
885 * by another page fault trying to merge _that_. But that's ok: if it
886 * is being set up, that automatically means that it will be a singleton
887 * acceptable for merging, so we can do all of this optimistically. But
888 * we do that ACCESS_ONCE() to make sure that we never re-load the pointer.
890 * IOW: that the "list_is_singular()" test on the anon_vma_chain only
891 * matters for the 'stable anon_vma' case (ie the thing we want to avoid
892 * is to return an anon_vma that is "complex" due to having gone through
895 * We also make sure that the two vma's are compatible (adjacent,
896 * and with the same memory policies). That's all stable, even with just
897 * a read lock on the mm_sem.
899 static struct anon_vma *reusable_anon_vma(struct vm_area_struct *old, struct vm_area_struct *a, struct vm_area_struct *b)
901 if (anon_vma_compatible(a, b)) {
902 struct anon_vma *anon_vma = ACCESS_ONCE(old->anon_vma);
904 if (anon_vma && list_is_singular(&old->anon_vma_chain))
911 * find_mergeable_anon_vma is used by anon_vma_prepare, to check
912 * neighbouring vmas for a suitable anon_vma, before it goes off
913 * to allocate a new anon_vma. It checks because a repetitive
914 * sequence of mprotects and faults may otherwise lead to distinct
915 * anon_vmas being allocated, preventing vma merge in subsequent
918 struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *vma)
920 struct anon_vma *anon_vma;
921 struct vm_area_struct *near;
927 anon_vma = reusable_anon_vma(near, vma, near);
932 * It is potentially slow to have to call find_vma_prev here.
933 * But it's only on the first write fault on the vma, not
934 * every time, and we could devise a way to avoid it later
935 * (e.g. stash info in next's anon_vma_node when assigning
936 * an anon_vma, or when trying vma_merge). Another time.
938 BUG_ON(find_vma_prev(vma->vm_mm, vma->vm_start, &near) != vma);
942 anon_vma = reusable_anon_vma(near, near, vma);
947 * There's no absolute need to look only at touching neighbours:
948 * we could search further afield for "compatible" anon_vmas.
949 * But it would probably just be a waste of time searching,
950 * or lead to too many vmas hanging off the same anon_vma.
951 * We're trying to allow mprotect remerging later on,
952 * not trying to minimize memory used for anon_vmas.
957 #ifdef CONFIG_PROC_FS
958 void vm_stat_account(struct mm_struct *mm, unsigned long flags,
959 struct file *file, long pages)
961 const unsigned long stack_flags
962 = VM_STACK_FLAGS & (VM_GROWSUP|VM_GROWSDOWN);
965 mm->shared_vm += pages;
966 if ((flags & (VM_EXEC|VM_WRITE)) == VM_EXEC)
967 mm->exec_vm += pages;
968 } else if (flags & stack_flags)
969 mm->stack_vm += pages;
970 if (flags & (VM_RESERVED|VM_IO))
971 mm->reserved_vm += pages;
973 #endif /* CONFIG_PROC_FS */
976 * The caller must hold down_write(¤t->mm->mmap_sem).
979 unsigned long do_mmap_pgoff(struct file *file, unsigned long addr,
980 unsigned long len, unsigned long prot,
981 unsigned long flags, unsigned long pgoff)
983 struct mm_struct * mm = current->mm;
985 unsigned int vm_flags;
987 unsigned long reqprot = prot;
990 * Does the application expect PROT_READ to imply PROT_EXEC?
992 * (the exception is when the underlying filesystem is noexec
993 * mounted, in which case we dont add PROT_EXEC.)
995 if ((prot & PROT_READ) && (current->personality & READ_IMPLIES_EXEC))
996 if (!(file && (file->f_path.mnt->mnt_flags & MNT_NOEXEC)))
1002 if (!(flags & MAP_FIXED))
1003 addr = round_hint_to_min(addr);
1005 /* Careful about overflows.. */
1006 len = PAGE_ALIGN(len);
1010 /* offset overflow? */
1011 if ((pgoff + (len >> PAGE_SHIFT)) < pgoff)
1014 /* Too many mappings? */
1015 if (mm->map_count > sysctl_max_map_count)
1018 /* Obtain the address to map to. we verify (or select) it and ensure
1019 * that it represents a valid section of the address space.
1021 addr = get_unmapped_area(file, addr, len, pgoff, flags);
1022 if (addr & ~PAGE_MASK)
1025 /* Do simple checking here so the lower-level routines won't have
1026 * to. we assume access permissions have been handled by the open
1027 * of the memory object, so we don't do any here.
1029 vm_flags = calc_vm_prot_bits(prot) | calc_vm_flag_bits(flags) |
1030 mm->def_flags | VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC;
1032 if (flags & MAP_LOCKED)
1033 if (!can_do_mlock())
1036 /* mlock MCL_FUTURE? */
1037 if (vm_flags & VM_LOCKED) {
1038 unsigned long locked, lock_limit;
1039 locked = len >> PAGE_SHIFT;
1040 locked += mm->locked_vm;
1041 lock_limit = rlimit(RLIMIT_MEMLOCK);
1042 lock_limit >>= PAGE_SHIFT;
1043 if (locked > lock_limit && !capable(CAP_IPC_LOCK))
1047 inode = file ? file->f_path.dentry->d_inode : NULL;
1050 switch (flags & MAP_TYPE) {
1052 if ((prot&PROT_WRITE) && !(file->f_mode&FMODE_WRITE))
1056 * Make sure we don't allow writing to an append-only
1059 if (IS_APPEND(inode) && (file->f_mode & FMODE_WRITE))
1063 * Make sure there are no mandatory locks on the file.
1065 if (locks_verify_locked(inode))
1068 vm_flags |= VM_SHARED | VM_MAYSHARE;
1069 if (!(file->f_mode & FMODE_WRITE))
1070 vm_flags &= ~(VM_MAYWRITE | VM_SHARED);
1074 if (!(file->f_mode & FMODE_READ))
1076 if (file->f_path.mnt->mnt_flags & MNT_NOEXEC) {
1077 if (vm_flags & VM_EXEC)
1079 vm_flags &= ~VM_MAYEXEC;
1082 if (!file->f_op || !file->f_op->mmap)
1090 switch (flags & MAP_TYPE) {
1096 vm_flags |= VM_SHARED | VM_MAYSHARE;
1100 * Set pgoff according to addr for anon_vma.
1102 pgoff = addr >> PAGE_SHIFT;
1109 error = security_file_mmap(file, reqprot, prot, flags, addr, 0);
1113 return mmap_region(file, addr, len, flags, vm_flags, pgoff);
1115 EXPORT_SYMBOL(do_mmap_pgoff);
1117 SYSCALL_DEFINE6(mmap_pgoff, unsigned long, addr, unsigned long, len,
1118 unsigned long, prot, unsigned long, flags,
1119 unsigned long, fd, unsigned long, pgoff)
1121 struct file *file = NULL;
1122 unsigned long retval = -EBADF;
1124 if (!(flags & MAP_ANONYMOUS)) {
1125 audit_mmap_fd(fd, flags);
1126 if (unlikely(flags & MAP_HUGETLB))
1131 } else if (flags & MAP_HUGETLB) {
1132 struct user_struct *user = NULL;
1134 * VM_NORESERVE is used because the reservations will be
1135 * taken when vm_ops->mmap() is called
1136 * A dummy user value is used because we are not locking
1137 * memory so no accounting is necessary
1139 len = ALIGN(len, huge_page_size(&default_hstate));
1140 file = hugetlb_file_setup(HUGETLB_ANON_FILE, len, VM_NORESERVE,
1141 &user, HUGETLB_ANONHUGE_INODE);
1143 return PTR_ERR(file);
1146 flags &= ~(MAP_EXECUTABLE | MAP_DENYWRITE);
1148 down_write(¤t->mm->mmap_sem);
1149 retval = do_mmap_pgoff(file, addr, len, prot, flags, pgoff);
1150 up_write(¤t->mm->mmap_sem);
1158 #ifdef __ARCH_WANT_SYS_OLD_MMAP
1159 struct mmap_arg_struct {
1163 unsigned long flags;
1165 unsigned long offset;
1168 SYSCALL_DEFINE1(old_mmap, struct mmap_arg_struct __user *, arg)
1170 struct mmap_arg_struct a;
1172 if (copy_from_user(&a, arg, sizeof(a)))
1174 if (a.offset & ~PAGE_MASK)
1177 return sys_mmap_pgoff(a.addr, a.len, a.prot, a.flags, a.fd,
1178 a.offset >> PAGE_SHIFT);
1180 #endif /* __ARCH_WANT_SYS_OLD_MMAP */
1183 * Some shared mappigns will want the pages marked read-only
1184 * to track write events. If so, we'll downgrade vm_page_prot
1185 * to the private version (using protection_map[] without the
1188 int vma_wants_writenotify(struct vm_area_struct *vma)
1190 unsigned int vm_flags = vma->vm_flags;
1192 /* If it was private or non-writable, the write bit is already clear */
1193 if ((vm_flags & (VM_WRITE|VM_SHARED)) != ((VM_WRITE|VM_SHARED)))
1196 /* The backer wishes to know when pages are first written to? */
1197 if (vma->vm_ops && vma->vm_ops->page_mkwrite)
1200 /* The open routine did something to the protections already? */
1201 if (pgprot_val(vma->vm_page_prot) !=
1202 pgprot_val(vm_get_page_prot(vm_flags)))
1205 /* Specialty mapping? */
1206 if (vm_flags & (VM_PFNMAP|VM_INSERTPAGE))
1209 /* Can the mapping track the dirty pages? */
1210 return vma->vm_file && vma->vm_file->f_mapping &&
1211 mapping_cap_account_dirty(vma->vm_file->f_mapping);
1215 * We account for memory if it's a private writeable mapping,
1216 * not hugepages and VM_NORESERVE wasn't set.
1218 static inline int accountable_mapping(struct file *file, unsigned int vm_flags)
1221 * hugetlb has its own accounting separate from the core VM
1222 * VM_HUGETLB may not be set yet so we cannot check for that flag.
1224 if (file && is_file_hugepages(file))
1227 return (vm_flags & (VM_NORESERVE | VM_SHARED | VM_WRITE)) == VM_WRITE;
1230 unsigned long mmap_region(struct file *file, unsigned long addr,
1231 unsigned long len, unsigned long flags,
1232 unsigned int vm_flags, unsigned long pgoff)
1234 struct mm_struct *mm = current->mm;
1235 struct vm_area_struct *vma, *prev;
1236 int correct_wcount = 0;
1238 struct rb_node **rb_link, *rb_parent;
1239 unsigned long charged = 0;
1240 struct inode *inode = file ? file->f_path.dentry->d_inode : NULL;
1242 /* Clear old maps */
1245 vma = find_vma_prepare(mm, addr, &prev, &rb_link, &rb_parent);
1246 if (vma && vma->vm_start < addr + len) {
1247 if (do_munmap(mm, addr, len))
1252 /* Check against address space limit. */
1253 if (!may_expand_vm(mm, len >> PAGE_SHIFT))
1257 * Set 'VM_NORESERVE' if we should not account for the
1258 * memory use of this mapping.
1260 if ((flags & MAP_NORESERVE)) {
1261 /* We honor MAP_NORESERVE if allowed to overcommit */
1262 if (sysctl_overcommit_memory != OVERCOMMIT_NEVER)
1263 vm_flags |= VM_NORESERVE;
1265 /* hugetlb applies strict overcommit unless MAP_NORESERVE */
1266 if (file && is_file_hugepages(file))
1267 vm_flags |= VM_NORESERVE;
1271 * Private writable mapping: check memory availability
1273 if (accountable_mapping(file, vm_flags)) {
1274 charged = len >> PAGE_SHIFT;
1275 if (security_vm_enough_memory(charged))
1277 vm_flags |= VM_ACCOUNT;
1281 * Can we just expand an old mapping?
1283 vma = vma_merge(mm, prev, addr, addr + len, vm_flags, NULL, file, pgoff, NULL);
1288 * Determine the object being mapped and call the appropriate
1289 * specific mapper. the address has already been validated, but
1290 * not unmapped, but the maps are removed from the list.
1292 vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
1299 vma->vm_start = addr;
1300 vma->vm_end = addr + len;
1301 vma->vm_flags = vm_flags;
1302 vma->vm_page_prot = vm_get_page_prot(vm_flags);
1303 vma->vm_pgoff = pgoff;
1304 INIT_LIST_HEAD(&vma->anon_vma_chain);
1308 if (vm_flags & (VM_GROWSDOWN|VM_GROWSUP))
1310 if (vm_flags & VM_DENYWRITE) {
1311 error = deny_write_access(file);
1316 vma->vm_file = file;
1318 error = file->f_op->mmap(file, vma);
1320 goto unmap_and_free_vma;
1321 if (vm_flags & VM_EXECUTABLE)
1322 added_exe_file_vma(mm);
1324 /* Can addr have changed??
1326 * Answer: Yes, several device drivers can do it in their
1327 * f_op->mmap method. -DaveM
1329 addr = vma->vm_start;
1330 pgoff = vma->vm_pgoff;
1331 vm_flags = vma->vm_flags;
1332 } else if (vm_flags & VM_SHARED) {
1333 error = shmem_zero_setup(vma);
1338 if (vma_wants_writenotify(vma)) {
1339 pgprot_t pprot = vma->vm_page_prot;
1341 /* Can vma->vm_page_prot have changed??
1343 * Answer: Yes, drivers may have changed it in their
1344 * f_op->mmap method.
1346 * Ensures that vmas marked as uncached stay that way.
1348 vma->vm_page_prot = vm_get_page_prot(vm_flags & ~VM_SHARED);
1349 if (pgprot_val(pprot) == pgprot_val(pgprot_noncached(pprot)))
1350 vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot);
1353 vma_link(mm, vma, prev, rb_link, rb_parent);
1354 file = vma->vm_file;
1356 /* Once vma denies write, undo our temporary denial count */
1358 atomic_inc(&inode->i_writecount);
1360 perf_event_mmap(vma);
1362 mm->total_vm += len >> PAGE_SHIFT;
1363 vm_stat_account(mm, vm_flags, file, len >> PAGE_SHIFT);
1364 if (vm_flags & VM_LOCKED) {
1365 if (!mlock_vma_pages_range(vma, addr, addr + len))
1366 mm->locked_vm += (len >> PAGE_SHIFT);
1367 } else if ((flags & MAP_POPULATE) && !(flags & MAP_NONBLOCK))
1368 make_pages_present(addr, addr + len);
1373 atomic_inc(&inode->i_writecount);
1374 vma->vm_file = NULL;
1377 /* Undo any partial mapping done by a device driver. */
1378 unmap_region(mm, vma, prev, vma->vm_start, vma->vm_end);
1381 kmem_cache_free(vm_area_cachep, vma);
1384 vm_unacct_memory(charged);
1388 /* Get an address range which is currently unmapped.
1389 * For shmat() with addr=0.
1391 * Ugly calling convention alert:
1392 * Return value with the low bits set means error value,
1394 * if (ret & ~PAGE_MASK)
1397 * This function "knows" that -ENOMEM has the bits set.
1399 #ifndef HAVE_ARCH_UNMAPPED_AREA
1401 arch_get_unmapped_area(struct file *filp, unsigned long addr,
1402 unsigned long len, unsigned long pgoff, unsigned long flags)
1404 struct mm_struct *mm = current->mm;
1405 struct vm_area_struct *vma;
1406 unsigned long start_addr;
1408 if (len > TASK_SIZE)
1411 if (flags & MAP_FIXED)
1415 addr = PAGE_ALIGN(addr);
1416 vma = find_vma(mm, addr);
1417 if (TASK_SIZE - len >= addr &&
1418 (!vma || addr + len <= vma->vm_start))
1421 if (len > mm->cached_hole_size) {
1422 start_addr = addr = mm->free_area_cache;
1424 start_addr = addr = TASK_UNMAPPED_BASE;
1425 mm->cached_hole_size = 0;
1429 for (vma = find_vma(mm, addr); ; vma = vma->vm_next) {
1430 /* At this point: (!vma || addr < vma->vm_end). */
1431 if (TASK_SIZE - len < addr) {
1433 * Start a new search - just in case we missed
1436 if (start_addr != TASK_UNMAPPED_BASE) {
1437 addr = TASK_UNMAPPED_BASE;
1439 mm->cached_hole_size = 0;
1444 if (!vma || addr + len <= vma->vm_start) {
1446 * Remember the place where we stopped the search:
1448 mm->free_area_cache = addr + len;
1451 if (addr + mm->cached_hole_size < vma->vm_start)
1452 mm->cached_hole_size = vma->vm_start - addr;
1458 void arch_unmap_area(struct mm_struct *mm, unsigned long addr)
1461 * Is this a new hole at the lowest possible address?
1463 if (addr >= TASK_UNMAPPED_BASE && addr < mm->free_area_cache) {
1464 mm->free_area_cache = addr;
1465 mm->cached_hole_size = ~0UL;
1470 * This mmap-allocator allocates new areas top-down from below the
1471 * stack's low limit (the base):
1473 #ifndef HAVE_ARCH_UNMAPPED_AREA_TOPDOWN
1475 arch_get_unmapped_area_topdown(struct file *filp, const unsigned long addr0,
1476 const unsigned long len, const unsigned long pgoff,
1477 const unsigned long flags)
1479 struct vm_area_struct *vma;
1480 struct mm_struct *mm = current->mm;
1481 unsigned long addr = addr0;
1483 /* requested length too big for entire address space */
1484 if (len > TASK_SIZE)
1487 if (flags & MAP_FIXED)
1490 /* requesting a specific address */
1492 addr = PAGE_ALIGN(addr);
1493 vma = find_vma(mm, addr);
1494 if (TASK_SIZE - len >= addr &&
1495 (!vma || addr + len <= vma->vm_start))
1499 /* check if free_area_cache is useful for us */
1500 if (len <= mm->cached_hole_size) {
1501 mm->cached_hole_size = 0;
1502 mm->free_area_cache = mm->mmap_base;
1505 /* either no address requested or can't fit in requested address hole */
1506 addr = mm->free_area_cache;
1508 /* make sure it can fit in the remaining address space */
1510 vma = find_vma(mm, addr-len);
1511 if (!vma || addr <= vma->vm_start)
1512 /* remember the address as a hint for next time */
1513 return (mm->free_area_cache = addr-len);
1516 if (mm->mmap_base < len)
1519 addr = mm->mmap_base-len;
1523 * Lookup failure means no vma is above this address,
1524 * else if new region fits below vma->vm_start,
1525 * return with success:
1527 vma = find_vma(mm, addr);
1528 if (!vma || addr+len <= vma->vm_start)
1529 /* remember the address as a hint for next time */
1530 return (mm->free_area_cache = addr);
1532 /* remember the largest hole we saw so far */
1533 if (addr + mm->cached_hole_size < vma->vm_start)
1534 mm->cached_hole_size = vma->vm_start - addr;
1536 /* try just below the current vma->vm_start */
1537 addr = vma->vm_start-len;
1538 } while (len < vma->vm_start);
1542 * A failed mmap() very likely causes application failure,
1543 * so fall back to the bottom-up function here. This scenario
1544 * can happen with large stack limits and large mmap()
1547 mm->cached_hole_size = ~0UL;
1548 mm->free_area_cache = TASK_UNMAPPED_BASE;
1549 addr = arch_get_unmapped_area(filp, addr0, len, pgoff, flags);
1551 * Restore the topdown base:
1553 mm->free_area_cache = mm->mmap_base;
1554 mm->cached_hole_size = ~0UL;
1560 void arch_unmap_area_topdown(struct mm_struct *mm, unsigned long addr)
1563 * Is this a new hole at the highest possible address?
1565 if (addr > mm->free_area_cache)
1566 mm->free_area_cache = addr;
1568 /* dont allow allocations above current base */
1569 if (mm->free_area_cache > mm->mmap_base)
1570 mm->free_area_cache = mm->mmap_base;
1574 get_unmapped_area(struct file *file, unsigned long addr, unsigned long len,
1575 unsigned long pgoff, unsigned long flags)
1577 unsigned long (*get_area)(struct file *, unsigned long,
1578 unsigned long, unsigned long, unsigned long);
1580 unsigned long error = arch_mmap_check(addr, len, flags);
1584 /* Careful about overflows.. */
1585 if (len > TASK_SIZE)
1588 get_area = current->mm->get_unmapped_area;
1589 if (file && file->f_op && file->f_op->get_unmapped_area)
1590 get_area = file->f_op->get_unmapped_area;
1591 addr = get_area(file, addr, len, pgoff, flags);
1592 if (IS_ERR_VALUE(addr))
1595 if (addr > TASK_SIZE - len)
1597 if (addr & ~PAGE_MASK)
1600 return arch_rebalance_pgtables(addr, len);
1603 EXPORT_SYMBOL(get_unmapped_area);
1605 /* Look up the first VMA which satisfies addr < vm_end, NULL if none. */
1606 struct vm_area_struct *find_vma(struct mm_struct *mm, unsigned long addr)
1608 struct vm_area_struct *vma = NULL;
1611 /* Check the cache first. */
1612 /* (Cache hit rate is typically around 35%.) */
1613 vma = mm->mmap_cache;
1614 if (!(vma && vma->vm_end > addr && vma->vm_start <= addr)) {
1615 struct rb_node * rb_node;
1617 rb_node = mm->mm_rb.rb_node;
1621 struct vm_area_struct * vma_tmp;
1623 vma_tmp = rb_entry(rb_node,
1624 struct vm_area_struct, vm_rb);
1626 if (vma_tmp->vm_end > addr) {
1628 if (vma_tmp->vm_start <= addr)
1630 rb_node = rb_node->rb_left;
1632 rb_node = rb_node->rb_right;
1635 mm->mmap_cache = vma;
1641 EXPORT_SYMBOL(find_vma);
1643 /* Same as find_vma, but also return a pointer to the previous VMA in *pprev. */
1644 struct vm_area_struct *
1645 find_vma_prev(struct mm_struct *mm, unsigned long addr,
1646 struct vm_area_struct **pprev)
1648 struct vm_area_struct *vma = NULL, *prev = NULL;
1649 struct rb_node *rb_node;
1653 /* Guard against addr being lower than the first VMA */
1656 /* Go through the RB tree quickly. */
1657 rb_node = mm->mm_rb.rb_node;
1660 struct vm_area_struct *vma_tmp;
1661 vma_tmp = rb_entry(rb_node, struct vm_area_struct, vm_rb);
1663 if (addr < vma_tmp->vm_end) {
1664 rb_node = rb_node->rb_left;
1667 if (!prev->vm_next || (addr < prev->vm_next->vm_end))
1669 rb_node = rb_node->rb_right;
1675 return prev ? prev->vm_next : vma;
1679 * Verify that the stack growth is acceptable and
1680 * update accounting. This is shared with both the
1681 * grow-up and grow-down cases.
1683 static int acct_stack_growth(struct vm_area_struct *vma, unsigned long size, unsigned long grow)
1685 struct mm_struct *mm = vma->vm_mm;
1686 struct rlimit *rlim = current->signal->rlim;
1687 unsigned long new_start;
1689 /* address space limit tests */
1690 if (!may_expand_vm(mm, grow))
1693 /* Stack limit test */
1694 if (size > ACCESS_ONCE(rlim[RLIMIT_STACK].rlim_cur))
1697 /* mlock limit tests */
1698 if (vma->vm_flags & VM_LOCKED) {
1699 unsigned long locked;
1700 unsigned long limit;
1701 locked = mm->locked_vm + grow;
1702 limit = ACCESS_ONCE(rlim[RLIMIT_MEMLOCK].rlim_cur);
1703 limit >>= PAGE_SHIFT;
1704 if (locked > limit && !capable(CAP_IPC_LOCK))
1708 /* Check to ensure the stack will not grow into a hugetlb-only region */
1709 new_start = (vma->vm_flags & VM_GROWSUP) ? vma->vm_start :
1711 if (is_hugepage_only_range(vma->vm_mm, new_start, size))
1715 * Overcommit.. This must be the final test, as it will
1716 * update security statistics.
1718 if (security_vm_enough_memory_mm(mm, grow))
1721 /* Ok, everything looks good - let it rip */
1722 mm->total_vm += grow;
1723 if (vma->vm_flags & VM_LOCKED)
1724 mm->locked_vm += grow;
1725 vm_stat_account(mm, vma->vm_flags, vma->vm_file, grow);
1729 #if defined(CONFIG_STACK_GROWSUP) || defined(CONFIG_IA64)
1731 * PA-RISC uses this for its stack; IA64 for its Register Backing Store.
1732 * vma is the last one with address > vma->vm_end. Have to extend vma.
1734 int expand_upwards(struct vm_area_struct *vma, unsigned long address)
1738 if (!(vma->vm_flags & VM_GROWSUP))
1742 * We must make sure the anon_vma is allocated
1743 * so that the anon_vma locking is not a noop.
1745 if (unlikely(anon_vma_prepare(vma)))
1747 vma_lock_anon_vma(vma);
1750 * vma->vm_start/vm_end cannot change under us because the caller
1751 * is required to hold the mmap_sem in read mode. We need the
1752 * anon_vma lock to serialize against concurrent expand_stacks.
1753 * Also guard against wrapping around to address 0.
1755 if (address < PAGE_ALIGN(address+4))
1756 address = PAGE_ALIGN(address+4);
1758 vma_unlock_anon_vma(vma);
1763 /* Somebody else might have raced and expanded it already */
1764 if (address > vma->vm_end) {
1765 unsigned long size, grow;
1767 size = address - vma->vm_start;
1768 grow = (address - vma->vm_end) >> PAGE_SHIFT;
1771 if (vma->vm_pgoff + (size >> PAGE_SHIFT) >= vma->vm_pgoff) {
1772 error = acct_stack_growth(vma, size, grow);
1774 vma->vm_end = address;
1775 perf_event_mmap(vma);
1779 vma_unlock_anon_vma(vma);
1780 khugepaged_enter_vma_merge(vma);
1783 #endif /* CONFIG_STACK_GROWSUP || CONFIG_IA64 */
1786 * vma is the first one with address < vma->vm_start. Have to extend vma.
1788 static int expand_downwards(struct vm_area_struct *vma,
1789 unsigned long address)
1794 * We must make sure the anon_vma is allocated
1795 * so that the anon_vma locking is not a noop.
1797 if (unlikely(anon_vma_prepare(vma)))
1800 address &= PAGE_MASK;
1801 error = security_file_mmap(NULL, 0, 0, 0, address, 1);
1805 vma_lock_anon_vma(vma);
1808 * vma->vm_start/vm_end cannot change under us because the caller
1809 * is required to hold the mmap_sem in read mode. We need the
1810 * anon_vma lock to serialize against concurrent expand_stacks.
1813 /* Somebody else might have raced and expanded it already */
1814 if (address < vma->vm_start) {
1815 unsigned long size, grow;
1817 size = vma->vm_end - address;
1818 grow = (vma->vm_start - address) >> PAGE_SHIFT;
1821 if (grow <= vma->vm_pgoff) {
1822 error = acct_stack_growth(vma, size, grow);
1824 vma->vm_start = address;
1825 vma->vm_pgoff -= grow;
1826 perf_event_mmap(vma);
1830 vma_unlock_anon_vma(vma);
1831 khugepaged_enter_vma_merge(vma);
1835 int expand_stack_downwards(struct vm_area_struct *vma, unsigned long address)
1837 return expand_downwards(vma, address);
1840 #ifdef CONFIG_STACK_GROWSUP
1841 int expand_stack(struct vm_area_struct *vma, unsigned long address)
1843 return expand_upwards(vma, address);
1846 struct vm_area_struct *
1847 find_extend_vma(struct mm_struct *mm, unsigned long addr)
1849 struct vm_area_struct *vma, *prev;
1852 vma = find_vma_prev(mm, addr, &prev);
1853 if (vma && (vma->vm_start <= addr))
1855 if (!prev || expand_stack(prev, addr))
1857 if (prev->vm_flags & VM_LOCKED) {
1858 mlock_vma_pages_range(prev, addr, prev->vm_end);
1863 int expand_stack(struct vm_area_struct *vma, unsigned long address)
1865 return expand_downwards(vma, address);
1868 struct vm_area_struct *
1869 find_extend_vma(struct mm_struct * mm, unsigned long addr)
1871 struct vm_area_struct * vma;
1872 unsigned long start;
1875 vma = find_vma(mm,addr);
1878 if (vma->vm_start <= addr)
1880 if (!(vma->vm_flags & VM_GROWSDOWN))
1882 start = vma->vm_start;
1883 if (expand_stack(vma, addr))
1885 if (vma->vm_flags & VM_LOCKED) {
1886 mlock_vma_pages_range(vma, addr, start);
1893 * Ok - we have the memory areas we should free on the vma list,
1894 * so release them, and do the vma updates.
1896 * Called with the mm semaphore held.
1898 static void remove_vma_list(struct mm_struct *mm, struct vm_area_struct *vma)
1900 /* Update high watermark before we lower total_vm */
1901 update_hiwater_vm(mm);
1903 long nrpages = vma_pages(vma);
1905 mm->total_vm -= nrpages;
1906 vm_stat_account(mm, vma->vm_flags, vma->vm_file, -nrpages);
1907 vma = remove_vma(vma);
1913 * Get rid of page table information in the indicated region.
1915 * Called with the mm semaphore held.
1917 static void unmap_region(struct mm_struct *mm,
1918 struct vm_area_struct *vma, struct vm_area_struct *prev,
1919 unsigned long start, unsigned long end)
1921 struct vm_area_struct *next = prev? prev->vm_next: mm->mmap;
1922 struct mmu_gather *tlb;
1923 unsigned long nr_accounted = 0;
1926 tlb = tlb_gather_mmu(mm, 0);
1927 update_hiwater_rss(mm);
1928 unmap_vmas(&tlb, vma, start, end, &nr_accounted, NULL);
1929 vm_unacct_memory(nr_accounted);
1930 free_pgtables(tlb, vma, prev? prev->vm_end: FIRST_USER_ADDRESS,
1931 next? next->vm_start: 0);
1932 tlb_finish_mmu(tlb, start, end);
1936 * Create a list of vma's touched by the unmap, removing them from the mm's
1937 * vma list as we go..
1940 detach_vmas_to_be_unmapped(struct mm_struct *mm, struct vm_area_struct *vma,
1941 struct vm_area_struct *prev, unsigned long end)
1943 struct vm_area_struct **insertion_point;
1944 struct vm_area_struct *tail_vma = NULL;
1947 insertion_point = (prev ? &prev->vm_next : &mm->mmap);
1948 vma->vm_prev = NULL;
1950 rb_erase(&vma->vm_rb, &mm->mm_rb);
1954 } while (vma && vma->vm_start < end);
1955 *insertion_point = vma;
1957 vma->vm_prev = prev;
1958 tail_vma->vm_next = NULL;
1959 if (mm->unmap_area == arch_unmap_area)
1960 addr = prev ? prev->vm_end : mm->mmap_base;
1962 addr = vma ? vma->vm_start : mm->mmap_base;
1963 mm->unmap_area(mm, addr);
1964 mm->mmap_cache = NULL; /* Kill the cache. */
1968 * __split_vma() bypasses sysctl_max_map_count checking. We use this on the
1969 * munmap path where it doesn't make sense to fail.
1971 static int __split_vma(struct mm_struct * mm, struct vm_area_struct * vma,
1972 unsigned long addr, int new_below)
1974 struct mempolicy *pol;
1975 struct vm_area_struct *new;
1978 if (is_vm_hugetlb_page(vma) && (addr &
1979 ~(huge_page_mask(hstate_vma(vma)))))
1982 new = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
1986 /* most fields are the same, copy all, and then fixup */
1989 INIT_LIST_HEAD(&new->anon_vma_chain);
1994 new->vm_start = addr;
1995 new->vm_pgoff += ((addr - vma->vm_start) >> PAGE_SHIFT);
1998 pol = mpol_dup(vma_policy(vma));
2003 vma_set_policy(new, pol);
2005 if (anon_vma_clone(new, vma))
2009 get_file(new->vm_file);
2010 if (vma->vm_flags & VM_EXECUTABLE)
2011 added_exe_file_vma(mm);
2014 if (new->vm_ops && new->vm_ops->open)
2015 new->vm_ops->open(new);
2018 err = vma_adjust(vma, addr, vma->vm_end, vma->vm_pgoff +
2019 ((addr - new->vm_start) >> PAGE_SHIFT), new);
2021 err = vma_adjust(vma, vma->vm_start, addr, vma->vm_pgoff, new);
2027 /* Clean everything up if vma_adjust failed. */
2028 if (new->vm_ops && new->vm_ops->close)
2029 new->vm_ops->close(new);
2031 if (vma->vm_flags & VM_EXECUTABLE)
2032 removed_exe_file_vma(mm);
2035 unlink_anon_vmas(new);
2039 kmem_cache_free(vm_area_cachep, new);
2045 * Split a vma into two pieces at address 'addr', a new vma is allocated
2046 * either for the first part or the tail.
2048 int split_vma(struct mm_struct *mm, struct vm_area_struct *vma,
2049 unsigned long addr, int new_below)
2051 if (mm->map_count >= sysctl_max_map_count)
2054 return __split_vma(mm, vma, addr, new_below);
2057 /* Munmap is split into 2 main parts -- this part which finds
2058 * what needs doing, and the areas themselves, which do the
2059 * work. This now handles partial unmappings.
2060 * Jeremy Fitzhardinge <jeremy@goop.org>
2062 int do_munmap(struct mm_struct *mm, unsigned long start, size_t len)
2065 struct vm_area_struct *vma, *prev, *last;
2067 if ((start & ~PAGE_MASK) || start > TASK_SIZE || len > TASK_SIZE-start)
2070 if ((len = PAGE_ALIGN(len)) == 0)
2073 /* Find the first overlapping VMA */
2074 vma = find_vma_prev(mm, start, &prev);
2077 /* we have start < vma->vm_end */
2079 /* if it doesn't overlap, we have nothing.. */
2081 if (vma->vm_start >= end)
2085 * If we need to split any vma, do it now to save pain later.
2087 * Note: mremap's move_vma VM_ACCOUNT handling assumes a partially
2088 * unmapped vm_area_struct will remain in use: so lower split_vma
2089 * places tmp vma above, and higher split_vma places tmp vma below.
2091 if (start > vma->vm_start) {
2095 * Make sure that map_count on return from munmap() will
2096 * not exceed its limit; but let map_count go just above
2097 * its limit temporarily, to help free resources as expected.
2099 if (end < vma->vm_end && mm->map_count >= sysctl_max_map_count)
2102 error = __split_vma(mm, vma, start, 0);
2108 /* Does it split the last one? */
2109 last = find_vma(mm, end);
2110 if (last && end > last->vm_start) {
2111 int error = __split_vma(mm, last, end, 1);
2115 vma = prev? prev->vm_next: mm->mmap;
2118 * unlock any mlock()ed ranges before detaching vmas
2120 if (mm->locked_vm) {
2121 struct vm_area_struct *tmp = vma;
2122 while (tmp && tmp->vm_start < end) {
2123 if (tmp->vm_flags & VM_LOCKED) {
2124 mm->locked_vm -= vma_pages(tmp);
2125 munlock_vma_pages_all(tmp);
2132 * Remove the vma's, and unmap the actual pages
2134 detach_vmas_to_be_unmapped(mm, vma, prev, end);
2135 unmap_region(mm, vma, prev, start, end);
2137 /* Fix up all other VM information */
2138 remove_vma_list(mm, vma);
2143 EXPORT_SYMBOL(do_munmap);
2145 SYSCALL_DEFINE2(munmap, unsigned long, addr, size_t, len)
2148 struct mm_struct *mm = current->mm;
2150 profile_munmap(addr);
2152 down_write(&mm->mmap_sem);
2153 ret = do_munmap(mm, addr, len);
2154 up_write(&mm->mmap_sem);
2158 static inline void verify_mm_writelocked(struct mm_struct *mm)
2160 #ifdef CONFIG_DEBUG_VM
2161 if (unlikely(down_read_trylock(&mm->mmap_sem))) {
2163 up_read(&mm->mmap_sem);
2169 * this is really a simplified "do_mmap". it only handles
2170 * anonymous maps. eventually we may be able to do some
2171 * brk-specific accounting here.
2173 unsigned long do_brk(unsigned long addr, unsigned long len)
2175 struct mm_struct * mm = current->mm;
2176 struct vm_area_struct * vma, * prev;
2177 unsigned long flags;
2178 struct rb_node ** rb_link, * rb_parent;
2179 pgoff_t pgoff = addr >> PAGE_SHIFT;
2182 len = PAGE_ALIGN(len);
2186 error = security_file_mmap(NULL, 0, 0, 0, addr, 1);
2190 flags = VM_DATA_DEFAULT_FLAGS | VM_ACCOUNT | mm->def_flags;
2192 error = get_unmapped_area(NULL, addr, len, 0, MAP_FIXED);
2193 if (error & ~PAGE_MASK)
2199 if (mm->def_flags & VM_LOCKED) {
2200 unsigned long locked, lock_limit;
2201 locked = len >> PAGE_SHIFT;
2202 locked += mm->locked_vm;
2203 lock_limit = rlimit(RLIMIT_MEMLOCK);
2204 lock_limit >>= PAGE_SHIFT;
2205 if (locked > lock_limit && !capable(CAP_IPC_LOCK))
2210 * mm->mmap_sem is required to protect against another thread
2211 * changing the mappings in case we sleep.
2213 verify_mm_writelocked(mm);
2216 * Clear old maps. this also does some error checking for us
2219 vma = find_vma_prepare(mm, addr, &prev, &rb_link, &rb_parent);
2220 if (vma && vma->vm_start < addr + len) {
2221 if (do_munmap(mm, addr, len))
2226 /* Check against address space limits *after* clearing old maps... */
2227 if (!may_expand_vm(mm, len >> PAGE_SHIFT))
2230 if (mm->map_count > sysctl_max_map_count)
2233 if (security_vm_enough_memory(len >> PAGE_SHIFT))
2236 /* Can we just expand an old private anonymous mapping? */
2237 vma = vma_merge(mm, prev, addr, addr + len, flags,
2238 NULL, NULL, pgoff, NULL);
2243 * create a vma struct for an anonymous mapping
2245 vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
2247 vm_unacct_memory(len >> PAGE_SHIFT);
2251 INIT_LIST_HEAD(&vma->anon_vma_chain);
2253 vma->vm_start = addr;
2254 vma->vm_end = addr + len;
2255 vma->vm_pgoff = pgoff;
2256 vma->vm_flags = flags;
2257 vma->vm_page_prot = vm_get_page_prot(flags);
2258 vma_link(mm, vma, prev, rb_link, rb_parent);
2260 perf_event_mmap(vma);
2261 mm->total_vm += len >> PAGE_SHIFT;
2262 if (flags & VM_LOCKED) {
2263 if (!mlock_vma_pages_range(vma, addr, addr + len))
2264 mm->locked_vm += (len >> PAGE_SHIFT);
2269 EXPORT_SYMBOL(do_brk);
2271 /* Release all mmaps. */
2272 void exit_mmap(struct mm_struct *mm)
2274 struct mmu_gather *tlb;
2275 struct vm_area_struct *vma;
2276 unsigned long nr_accounted = 0;
2279 /* mm's last user has gone, and its about to be pulled down */
2280 mmu_notifier_release(mm);
2282 if (mm->locked_vm) {
2285 if (vma->vm_flags & VM_LOCKED)
2286 munlock_vma_pages_all(vma);
2294 if (!vma) /* Can happen if dup_mmap() received an OOM */
2299 tlb = tlb_gather_mmu(mm, 1);
2300 /* update_hiwater_rss(mm) here? but nobody should be looking */
2301 /* Use -1 here to ensure all VMAs in the mm are unmapped */
2302 end = unmap_vmas(&tlb, vma, 0, -1, &nr_accounted, NULL);
2303 vm_unacct_memory(nr_accounted);
2305 free_pgtables(tlb, vma, FIRST_USER_ADDRESS, 0);
2306 tlb_finish_mmu(tlb, 0, end);
2309 * Walk the list again, actually closing and freeing it,
2310 * with preemption enabled, without holding any MM locks.
2313 vma = remove_vma(vma);
2315 BUG_ON(mm->nr_ptes > (FIRST_USER_ADDRESS+PMD_SIZE-1)>>PMD_SHIFT);
2318 /* Insert vm structure into process list sorted by address
2319 * and into the inode's i_mmap tree. If vm_file is non-NULL
2320 * then i_mmap_lock is taken here.
2322 int insert_vm_struct(struct mm_struct * mm, struct vm_area_struct * vma)
2324 struct vm_area_struct * __vma, * prev;
2325 struct rb_node ** rb_link, * rb_parent;
2328 * The vm_pgoff of a purely anonymous vma should be irrelevant
2329 * until its first write fault, when page's anon_vma and index
2330 * are set. But now set the vm_pgoff it will almost certainly
2331 * end up with (unless mremap moves it elsewhere before that
2332 * first wfault), so /proc/pid/maps tells a consistent story.
2334 * By setting it to reflect the virtual start address of the
2335 * vma, merges and splits can happen in a seamless way, just
2336 * using the existing file pgoff checks and manipulations.
2337 * Similarly in do_mmap_pgoff and in do_brk.
2339 if (!vma->vm_file) {
2340 BUG_ON(vma->anon_vma);
2341 vma->vm_pgoff = vma->vm_start >> PAGE_SHIFT;
2343 __vma = find_vma_prepare(mm,vma->vm_start,&prev,&rb_link,&rb_parent);
2344 if (__vma && __vma->vm_start < vma->vm_end)
2346 if ((vma->vm_flags & VM_ACCOUNT) &&
2347 security_vm_enough_memory_mm(mm, vma_pages(vma)))
2349 vma_link(mm, vma, prev, rb_link, rb_parent);
2354 * Copy the vma structure to a new location in the same mm,
2355 * prior to moving page table entries, to effect an mremap move.
2357 struct vm_area_struct *copy_vma(struct vm_area_struct **vmap,
2358 unsigned long addr, unsigned long len, pgoff_t pgoff)
2360 struct vm_area_struct *vma = *vmap;
2361 unsigned long vma_start = vma->vm_start;
2362 struct mm_struct *mm = vma->vm_mm;
2363 struct vm_area_struct *new_vma, *prev;
2364 struct rb_node **rb_link, *rb_parent;
2365 struct mempolicy *pol;
2368 * If anonymous vma has not yet been faulted, update new pgoff
2369 * to match new location, to increase its chance of merging.
2371 if (!vma->vm_file && !vma->anon_vma)
2372 pgoff = addr >> PAGE_SHIFT;
2374 find_vma_prepare(mm, addr, &prev, &rb_link, &rb_parent);
2375 new_vma = vma_merge(mm, prev, addr, addr + len, vma->vm_flags,
2376 vma->anon_vma, vma->vm_file, pgoff, vma_policy(vma));
2379 * Source vma may have been merged into new_vma
2381 if (vma_start >= new_vma->vm_start &&
2382 vma_start < new_vma->vm_end)
2385 new_vma = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
2388 pol = mpol_dup(vma_policy(vma));
2391 INIT_LIST_HEAD(&new_vma->anon_vma_chain);
2392 if (anon_vma_clone(new_vma, vma))
2393 goto out_free_mempol;
2394 vma_set_policy(new_vma, pol);
2395 new_vma->vm_start = addr;
2396 new_vma->vm_end = addr + len;
2397 new_vma->vm_pgoff = pgoff;
2398 if (new_vma->vm_file) {
2399 get_file(new_vma->vm_file);
2400 if (vma->vm_flags & VM_EXECUTABLE)
2401 added_exe_file_vma(mm);
2403 if (new_vma->vm_ops && new_vma->vm_ops->open)
2404 new_vma->vm_ops->open(new_vma);
2405 vma_link(mm, new_vma, prev, rb_link, rb_parent);
2413 kmem_cache_free(vm_area_cachep, new_vma);
2418 * Return true if the calling process may expand its vm space by the passed
2421 int may_expand_vm(struct mm_struct *mm, unsigned long npages)
2423 unsigned long cur = mm->total_vm; /* pages */
2426 lim = rlimit(RLIMIT_AS) >> PAGE_SHIFT;
2428 if (cur + npages > lim)
2434 static int special_mapping_fault(struct vm_area_struct *vma,
2435 struct vm_fault *vmf)
2438 struct page **pages;
2441 * special mappings have no vm_file, and in that case, the mm
2442 * uses vm_pgoff internally. So we have to subtract it from here.
2443 * We are allowed to do this because we are the mm; do not copy
2444 * this code into drivers!
2446 pgoff = vmf->pgoff - vma->vm_pgoff;
2448 for (pages = vma->vm_private_data; pgoff && *pages; ++pages)
2452 struct page *page = *pages;
2458 return VM_FAULT_SIGBUS;
2462 * Having a close hook prevents vma merging regardless of flags.
2464 static void special_mapping_close(struct vm_area_struct *vma)
2468 static const struct vm_operations_struct special_mapping_vmops = {
2469 .close = special_mapping_close,
2470 .fault = special_mapping_fault,
2474 * Called with mm->mmap_sem held for writing.
2475 * Insert a new vma covering the given region, with the given flags.
2476 * Its pages are supplied by the given array of struct page *.
2477 * The array can be shorter than len >> PAGE_SHIFT if it's null-terminated.
2478 * The region past the last page supplied will always produce SIGBUS.
2479 * The array pointer and the pages it points to are assumed to stay alive
2480 * for as long as this mapping might exist.
2482 int install_special_mapping(struct mm_struct *mm,
2483 unsigned long addr, unsigned long len,
2484 unsigned long vm_flags, struct page **pages)
2487 struct vm_area_struct *vma;
2489 vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
2490 if (unlikely(vma == NULL))
2493 INIT_LIST_HEAD(&vma->anon_vma_chain);
2495 vma->vm_start = addr;
2496 vma->vm_end = addr + len;
2498 vma->vm_flags = vm_flags | mm->def_flags | VM_DONTEXPAND;
2499 vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
2501 vma->vm_ops = &special_mapping_vmops;
2502 vma->vm_private_data = pages;
2504 ret = security_file_mmap(NULL, 0, 0, 0, vma->vm_start, 1);
2508 ret = insert_vm_struct(mm, vma);
2512 mm->total_vm += len >> PAGE_SHIFT;
2514 perf_event_mmap(vma);
2519 kmem_cache_free(vm_area_cachep, vma);
2523 static DEFINE_MUTEX(mm_all_locks_mutex);
2525 static void vm_lock_anon_vma(struct mm_struct *mm, struct anon_vma *anon_vma)
2527 if (!test_bit(0, (unsigned long *) &anon_vma->root->head.next)) {
2529 * The LSB of head.next can't change from under us
2530 * because we hold the mm_all_locks_mutex.
2532 spin_lock_nest_lock(&anon_vma->root->lock, &mm->mmap_sem);
2534 * We can safely modify head.next after taking the
2535 * anon_vma->root->lock. If some other vma in this mm shares
2536 * the same anon_vma we won't take it again.
2538 * No need of atomic instructions here, head.next
2539 * can't change from under us thanks to the
2540 * anon_vma->root->lock.
2542 if (__test_and_set_bit(0, (unsigned long *)
2543 &anon_vma->root->head.next))
2548 static void vm_lock_mapping(struct mm_struct *mm, struct address_space *mapping)
2550 if (!test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) {
2552 * AS_MM_ALL_LOCKS can't change from under us because
2553 * we hold the mm_all_locks_mutex.
2555 * Operations on ->flags have to be atomic because
2556 * even if AS_MM_ALL_LOCKS is stable thanks to the
2557 * mm_all_locks_mutex, there may be other cpus
2558 * changing other bitflags in parallel to us.
2560 if (test_and_set_bit(AS_MM_ALL_LOCKS, &mapping->flags))
2562 spin_lock_nest_lock(&mapping->i_mmap_lock, &mm->mmap_sem);
2567 * This operation locks against the VM for all pte/vma/mm related
2568 * operations that could ever happen on a certain mm. This includes
2569 * vmtruncate, try_to_unmap, and all page faults.
2571 * The caller must take the mmap_sem in write mode before calling
2572 * mm_take_all_locks(). The caller isn't allowed to release the
2573 * mmap_sem until mm_drop_all_locks() returns.
2575 * mmap_sem in write mode is required in order to block all operations
2576 * that could modify pagetables and free pages without need of
2577 * altering the vma layout (for example populate_range() with
2578 * nonlinear vmas). It's also needed in write mode to avoid new
2579 * anon_vmas to be associated with existing vmas.
2581 * A single task can't take more than one mm_take_all_locks() in a row
2582 * or it would deadlock.
2584 * The LSB in anon_vma->head.next and the AS_MM_ALL_LOCKS bitflag in
2585 * mapping->flags avoid to take the same lock twice, if more than one
2586 * vma in this mm is backed by the same anon_vma or address_space.
2588 * We can take all the locks in random order because the VM code
2589 * taking i_mmap_lock or anon_vma->lock outside the mmap_sem never
2590 * takes more than one of them in a row. Secondly we're protected
2591 * against a concurrent mm_take_all_locks() by the mm_all_locks_mutex.
2593 * mm_take_all_locks() and mm_drop_all_locks are expensive operations
2594 * that may have to take thousand of locks.
2596 * mm_take_all_locks() can fail if it's interrupted by signals.
2598 int mm_take_all_locks(struct mm_struct *mm)
2600 struct vm_area_struct *vma;
2601 struct anon_vma_chain *avc;
2604 BUG_ON(down_read_trylock(&mm->mmap_sem));
2606 mutex_lock(&mm_all_locks_mutex);
2608 for (vma = mm->mmap; vma; vma = vma->vm_next) {
2609 if (signal_pending(current))
2611 if (vma->vm_file && vma->vm_file->f_mapping)
2612 vm_lock_mapping(mm, vma->vm_file->f_mapping);
2615 for (vma = mm->mmap; vma; vma = vma->vm_next) {
2616 if (signal_pending(current))
2619 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
2620 vm_lock_anon_vma(mm, avc->anon_vma);
2627 mm_drop_all_locks(mm);
2632 static void vm_unlock_anon_vma(struct anon_vma *anon_vma)
2634 if (test_bit(0, (unsigned long *) &anon_vma->root->head.next)) {
2636 * The LSB of head.next can't change to 0 from under
2637 * us because we hold the mm_all_locks_mutex.
2639 * We must however clear the bitflag before unlocking
2640 * the vma so the users using the anon_vma->head will
2641 * never see our bitflag.
2643 * No need of atomic instructions here, head.next
2644 * can't change from under us until we release the
2645 * anon_vma->root->lock.
2647 if (!__test_and_clear_bit(0, (unsigned long *)
2648 &anon_vma->root->head.next))
2650 anon_vma_unlock(anon_vma);
2654 static void vm_unlock_mapping(struct address_space *mapping)
2656 if (test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) {
2658 * AS_MM_ALL_LOCKS can't change to 0 from under us
2659 * because we hold the mm_all_locks_mutex.
2661 spin_unlock(&mapping->i_mmap_lock);
2662 if (!test_and_clear_bit(AS_MM_ALL_LOCKS,
2669 * The mmap_sem cannot be released by the caller until
2670 * mm_drop_all_locks() returns.
2672 void mm_drop_all_locks(struct mm_struct *mm)
2674 struct vm_area_struct *vma;
2675 struct anon_vma_chain *avc;
2677 BUG_ON(down_read_trylock(&mm->mmap_sem));
2678 BUG_ON(!mutex_is_locked(&mm_all_locks_mutex));
2680 for (vma = mm->mmap; vma; vma = vma->vm_next) {
2682 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
2683 vm_unlock_anon_vma(avc->anon_vma);
2684 if (vma->vm_file && vma->vm_file->f_mapping)
2685 vm_unlock_mapping(vma->vm_file->f_mapping);
2688 mutex_unlock(&mm_all_locks_mutex);
2692 * initialise the VMA slab
2694 void __init mmap_init(void)
2698 ret = percpu_counter_init(&vm_committed_as, 0);