1 // SPDX-License-Identifier: GPL-2.0-only
7 * Address space accounting code <alan@lxorguk.ukuu.org.uk>
10 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
12 #include <linux/kernel.h>
13 #include <linux/slab.h>
14 #include <linux/backing-dev.h>
16 #include <linux/mm_inline.h>
17 #include <linux/shm.h>
18 #include <linux/mman.h>
19 #include <linux/pagemap.h>
20 #include <linux/swap.h>
21 #include <linux/syscalls.h>
22 #include <linux/capability.h>
23 #include <linux/init.h>
24 #include <linux/file.h>
26 #include <linux/personality.h>
27 #include <linux/security.h>
28 #include <linux/hugetlb.h>
29 #include <linux/shmem_fs.h>
30 #include <linux/profile.h>
31 #include <linux/export.h>
32 #include <linux/mount.h>
33 #include <linux/mempolicy.h>
34 #include <linux/rmap.h>
35 #include <linux/mmu_notifier.h>
36 #include <linux/mmdebug.h>
37 #include <linux/perf_event.h>
38 #include <linux/audit.h>
39 #include <linux/khugepaged.h>
40 #include <linux/uprobes.h>
41 #include <linux/notifier.h>
42 #include <linux/memory.h>
43 #include <linux/printk.h>
44 #include <linux/userfaultfd_k.h>
45 #include <linux/moduleparam.h>
46 #include <linux/pkeys.h>
47 #include <linux/oom.h>
48 #include <linux/sched/mm.h>
49 #include <linux/ksm.h>
51 #include <linux/uaccess.h>
52 #include <asm/cacheflush.h>
54 #include <asm/mmu_context.h>
56 #define CREATE_TRACE_POINTS
57 #include <trace/events/mmap.h>
61 #ifndef arch_mmap_check
62 #define arch_mmap_check(addr, len, flags) (0)
65 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_BITS
66 const int mmap_rnd_bits_min = CONFIG_ARCH_MMAP_RND_BITS_MIN;
67 const int mmap_rnd_bits_max = CONFIG_ARCH_MMAP_RND_BITS_MAX;
68 int mmap_rnd_bits __read_mostly = CONFIG_ARCH_MMAP_RND_BITS;
70 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS
71 const int mmap_rnd_compat_bits_min = CONFIG_ARCH_MMAP_RND_COMPAT_BITS_MIN;
72 const int mmap_rnd_compat_bits_max = CONFIG_ARCH_MMAP_RND_COMPAT_BITS_MAX;
73 int mmap_rnd_compat_bits __read_mostly = CONFIG_ARCH_MMAP_RND_COMPAT_BITS;
76 static bool ignore_rlimit_data;
77 core_param(ignore_rlimit_data, ignore_rlimit_data, bool, 0644);
79 static void unmap_region(struct mm_struct *mm, struct maple_tree *mt,
80 struct vm_area_struct *vma, struct vm_area_struct *prev,
81 struct vm_area_struct *next, unsigned long start,
82 unsigned long end, bool mm_wr_locked);
84 static pgprot_t vm_pgprot_modify(pgprot_t oldprot, unsigned long vm_flags)
86 return pgprot_modify(oldprot, vm_get_page_prot(vm_flags));
89 /* Update vma->vm_page_prot to reflect vma->vm_flags. */
90 void vma_set_page_prot(struct vm_area_struct *vma)
92 unsigned long vm_flags = vma->vm_flags;
93 pgprot_t vm_page_prot;
95 vm_page_prot = vm_pgprot_modify(vma->vm_page_prot, vm_flags);
96 if (vma_wants_writenotify(vma, vm_page_prot)) {
97 vm_flags &= ~VM_SHARED;
98 vm_page_prot = vm_pgprot_modify(vm_page_prot, vm_flags);
100 /* remove_protection_ptes reads vma->vm_page_prot without mmap_lock */
101 WRITE_ONCE(vma->vm_page_prot, vm_page_prot);
105 * Requires inode->i_mapping->i_mmap_rwsem
107 static void __remove_shared_vm_struct(struct vm_area_struct *vma,
108 struct file *file, struct address_space *mapping)
110 if (vma->vm_flags & VM_SHARED)
111 mapping_unmap_writable(mapping);
113 flush_dcache_mmap_lock(mapping);
114 vma_interval_tree_remove(vma, &mapping->i_mmap);
115 flush_dcache_mmap_unlock(mapping);
119 * Unlink a file-based vm structure from its interval tree, to hide
120 * vma from rmap and vmtruncate before freeing its page tables.
122 void unlink_file_vma(struct vm_area_struct *vma)
124 struct file *file = vma->vm_file;
127 struct address_space *mapping = file->f_mapping;
128 i_mmap_lock_write(mapping);
129 __remove_shared_vm_struct(vma, file, mapping);
130 i_mmap_unlock_write(mapping);
135 * Close a vm structure and free it.
137 static void remove_vma(struct vm_area_struct *vma, bool unreachable)
140 if (vma->vm_ops && vma->vm_ops->close)
141 vma->vm_ops->close(vma);
144 mpol_put(vma_policy(vma));
151 static inline struct vm_area_struct *vma_prev_limit(struct vma_iterator *vmi,
154 return mas_prev(&vmi->mas, min);
157 static inline int vma_iter_clear_gfp(struct vma_iterator *vmi,
158 unsigned long start, unsigned long end, gfp_t gfp)
160 vmi->mas.index = start;
161 vmi->mas.last = end - 1;
162 mas_store_gfp(&vmi->mas, NULL, gfp);
163 if (unlikely(mas_is_err(&vmi->mas)))
170 * check_brk_limits() - Use platform specific check of range & verify mlock
172 * @addr: The address to check
173 * @len: The size of increase.
175 * Return: 0 on success.
177 static int check_brk_limits(unsigned long addr, unsigned long len)
179 unsigned long mapped_addr;
181 mapped_addr = get_unmapped_area(NULL, addr, len, 0, MAP_FIXED);
182 if (IS_ERR_VALUE(mapped_addr))
185 return mlock_future_ok(current->mm, current->mm->def_flags, len)
188 static int do_brk_flags(struct vma_iterator *vmi, struct vm_area_struct *brkvma,
189 unsigned long addr, unsigned long request, unsigned long flags);
190 SYSCALL_DEFINE1(brk, unsigned long, brk)
192 unsigned long newbrk, oldbrk, origbrk;
193 struct mm_struct *mm = current->mm;
194 struct vm_area_struct *brkvma, *next = NULL;
195 unsigned long min_brk;
197 bool downgraded = false;
199 struct vma_iterator vmi;
201 if (mmap_write_lock_killable(mm))
206 #ifdef CONFIG_COMPAT_BRK
208 * CONFIG_COMPAT_BRK can still be overridden by setting
209 * randomize_va_space to 2, which will still cause mm->start_brk
210 * to be arbitrarily shifted
212 if (current->brk_randomized)
213 min_brk = mm->start_brk;
215 min_brk = mm->end_data;
217 min_brk = mm->start_brk;
223 * Check against rlimit here. If this check is done later after the test
224 * of oldbrk with newbrk then it can escape the test and let the data
225 * segment grow beyond its set limit the in case where the limit is
226 * not page aligned -Ram Gupta
228 if (check_data_rlimit(rlimit(RLIMIT_DATA), brk, mm->start_brk,
229 mm->end_data, mm->start_data))
232 newbrk = PAGE_ALIGN(brk);
233 oldbrk = PAGE_ALIGN(mm->brk);
234 if (oldbrk == newbrk) {
240 * Always allow shrinking brk.
241 * do_vma_munmap() may downgrade mmap_lock to read.
243 if (brk <= mm->brk) {
246 /* Search one past newbrk */
247 vma_iter_init(&vmi, mm, newbrk);
248 brkvma = vma_find(&vmi, oldbrk);
249 if (!brkvma || brkvma->vm_start >= oldbrk)
250 goto out; /* mapping intersects with an existing non-brk vma. */
252 * mm->brk must be protected by write mmap_lock.
253 * do_vma_munmap() may downgrade the lock, so update it
254 * before calling do_vma_munmap().
257 ret = do_vma_munmap(&vmi, brkvma, newbrk, oldbrk, &uf, true);
268 if (check_brk_limits(oldbrk, newbrk - oldbrk))
272 * Only check if the next VMA is within the stack_guard_gap of the
275 vma_iter_init(&vmi, mm, oldbrk);
276 next = vma_find(&vmi, newbrk + PAGE_SIZE + stack_guard_gap);
277 if (next && newbrk + PAGE_SIZE > vm_start_gap(next))
280 brkvma = vma_prev_limit(&vmi, mm->start_brk);
281 /* Ok, looks good - let it rip. */
282 if (do_brk_flags(&vmi, brkvma, oldbrk, newbrk - oldbrk, 0) < 0)
288 populate = newbrk > oldbrk && (mm->def_flags & VM_LOCKED) != 0;
290 mmap_read_unlock(mm);
292 mmap_write_unlock(mm);
293 userfaultfd_unmap_complete(mm, &uf);
295 mm_populate(oldbrk, newbrk - oldbrk);
299 mmap_write_unlock(mm);
303 #if defined(CONFIG_DEBUG_VM_MAPLE_TREE)
304 static void validate_mm(struct mm_struct *mm)
308 struct vm_area_struct *vma;
309 VMA_ITERATOR(vmi, mm, 0);
311 mt_validate(&mm->mm_mt);
312 for_each_vma(vmi, vma) {
313 #ifdef CONFIG_DEBUG_VM_RB
314 struct anon_vma *anon_vma = vma->anon_vma;
315 struct anon_vma_chain *avc;
317 unsigned long vmi_start, vmi_end;
320 vmi_start = vma_iter_addr(&vmi);
321 vmi_end = vma_iter_end(&vmi);
322 if (VM_WARN_ON_ONCE_MM(vma->vm_end != vmi_end, mm))
325 if (VM_WARN_ON_ONCE_MM(vma->vm_start != vmi_start, mm))
329 pr_emerg("issue in %s\n", current->comm);
332 pr_emerg("tree range: %px start %lx end %lx\n", vma,
333 vmi_start, vmi_end - 1);
334 vma_iter_dump_tree(&vmi);
337 #ifdef CONFIG_DEBUG_VM_RB
339 anon_vma_lock_read(anon_vma);
340 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
341 anon_vma_interval_tree_verify(avc);
342 anon_vma_unlock_read(anon_vma);
347 if (i != mm->map_count) {
348 pr_emerg("map_count %d vma iterator %d\n", mm->map_count, i);
351 VM_BUG_ON_MM(bug, mm);
354 #else /* !CONFIG_DEBUG_VM_MAPLE_TREE */
355 #define validate_mm(mm) do { } while (0)
356 #endif /* CONFIG_DEBUG_VM_MAPLE_TREE */
359 * vma has some anon_vma assigned, and is already inserted on that
360 * anon_vma's interval trees.
362 * Before updating the vma's vm_start / vm_end / vm_pgoff fields, the
363 * vma must be removed from the anon_vma's interval trees using
364 * anon_vma_interval_tree_pre_update_vma().
366 * After the update, the vma will be reinserted using
367 * anon_vma_interval_tree_post_update_vma().
369 * The entire update must be protected by exclusive mmap_lock and by
370 * the root anon_vma's mutex.
373 anon_vma_interval_tree_pre_update_vma(struct vm_area_struct *vma)
375 struct anon_vma_chain *avc;
377 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
378 anon_vma_interval_tree_remove(avc, &avc->anon_vma->rb_root);
382 anon_vma_interval_tree_post_update_vma(struct vm_area_struct *vma)
384 struct anon_vma_chain *avc;
386 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
387 anon_vma_interval_tree_insert(avc, &avc->anon_vma->rb_root);
390 static unsigned long count_vma_pages_range(struct mm_struct *mm,
391 unsigned long addr, unsigned long end)
393 VMA_ITERATOR(vmi, mm, addr);
394 struct vm_area_struct *vma;
395 unsigned long nr_pages = 0;
397 for_each_vma_range(vmi, vma, end) {
398 unsigned long vm_start = max(addr, vma->vm_start);
399 unsigned long vm_end = min(end, vma->vm_end);
401 nr_pages += PHYS_PFN(vm_end - vm_start);
407 static void __vma_link_file(struct vm_area_struct *vma,
408 struct address_space *mapping)
410 if (vma->vm_flags & VM_SHARED)
411 mapping_allow_writable(mapping);
413 flush_dcache_mmap_lock(mapping);
414 vma_interval_tree_insert(vma, &mapping->i_mmap);
415 flush_dcache_mmap_unlock(mapping);
418 static int vma_link(struct mm_struct *mm, struct vm_area_struct *vma)
420 VMA_ITERATOR(vmi, mm, 0);
421 struct address_space *mapping = NULL;
423 if (vma_iter_prealloc(&vmi))
427 mapping = vma->vm_file->f_mapping;
428 i_mmap_lock_write(mapping);
431 vma_iter_store(&vmi, vma);
434 __vma_link_file(vma, mapping);
435 i_mmap_unlock_write(mapping);
444 * init_multi_vma_prep() - Initializer for struct vma_prepare
445 * @vp: The vma_prepare struct
446 * @vma: The vma that will be altered once locked
447 * @next: The next vma if it is to be adjusted
448 * @remove: The first vma to be removed
449 * @remove2: The second vma to be removed
451 static inline void init_multi_vma_prep(struct vma_prepare *vp,
452 struct vm_area_struct *vma, struct vm_area_struct *next,
453 struct vm_area_struct *remove, struct vm_area_struct *remove2)
455 memset(vp, 0, sizeof(struct vma_prepare));
457 vp->anon_vma = vma->anon_vma;
459 vp->remove2 = remove2;
461 if (!vp->anon_vma && next)
462 vp->anon_vma = next->anon_vma;
464 vp->file = vma->vm_file;
466 vp->mapping = vma->vm_file->f_mapping;
471 * init_vma_prep() - Initializer wrapper for vma_prepare struct
472 * @vp: The vma_prepare struct
473 * @vma: The vma that will be altered once locked
475 static inline void init_vma_prep(struct vma_prepare *vp,
476 struct vm_area_struct *vma)
478 init_multi_vma_prep(vp, vma, NULL, NULL, NULL);
483 * vma_prepare() - Helper function for handling locking VMAs prior to altering
484 * @vp: The initialized vma_prepare struct
486 static inline void vma_prepare(struct vma_prepare *vp)
488 vma_start_write(vp->vma);
490 vma_start_write(vp->adj_next);
491 /* vp->insert is always a newly created VMA, no need for locking */
493 vma_start_write(vp->remove);
495 vma_start_write(vp->remove2);
498 uprobe_munmap(vp->vma, vp->vma->vm_start, vp->vma->vm_end);
501 uprobe_munmap(vp->adj_next, vp->adj_next->vm_start,
502 vp->adj_next->vm_end);
504 i_mmap_lock_write(vp->mapping);
505 if (vp->insert && vp->insert->vm_file) {
507 * Put into interval tree now, so instantiated pages
508 * are visible to arm/parisc __flush_dcache_page
509 * throughout; but we cannot insert into address
510 * space until vma start or end is updated.
512 __vma_link_file(vp->insert,
513 vp->insert->vm_file->f_mapping);
518 anon_vma_lock_write(vp->anon_vma);
519 anon_vma_interval_tree_pre_update_vma(vp->vma);
521 anon_vma_interval_tree_pre_update_vma(vp->adj_next);
525 flush_dcache_mmap_lock(vp->mapping);
526 vma_interval_tree_remove(vp->vma, &vp->mapping->i_mmap);
528 vma_interval_tree_remove(vp->adj_next,
529 &vp->mapping->i_mmap);
535 * vma_complete- Helper function for handling the unlocking after altering VMAs,
536 * or for inserting a VMA.
538 * @vp: The vma_prepare struct
539 * @vmi: The vma iterator
542 static inline void vma_complete(struct vma_prepare *vp,
543 struct vma_iterator *vmi, struct mm_struct *mm)
547 vma_interval_tree_insert(vp->adj_next,
548 &vp->mapping->i_mmap);
549 vma_interval_tree_insert(vp->vma, &vp->mapping->i_mmap);
550 flush_dcache_mmap_unlock(vp->mapping);
553 if (vp->remove && vp->file) {
554 __remove_shared_vm_struct(vp->remove, vp->file, vp->mapping);
556 __remove_shared_vm_struct(vp->remove2, vp->file,
558 } else if (vp->insert) {
560 * split_vma has split insert from vma, and needs
561 * us to insert it before dropping the locks
562 * (it may either follow vma or precede it).
564 vma_iter_store(vmi, vp->insert);
569 anon_vma_interval_tree_post_update_vma(vp->vma);
571 anon_vma_interval_tree_post_update_vma(vp->adj_next);
572 anon_vma_unlock_write(vp->anon_vma);
576 i_mmap_unlock_write(vp->mapping);
577 uprobe_mmap(vp->vma);
580 uprobe_mmap(vp->adj_next);
585 vma_mark_detached(vp->remove, true);
587 uprobe_munmap(vp->remove, vp->remove->vm_start,
591 if (vp->remove->anon_vma)
592 anon_vma_merge(vp->vma, vp->remove);
594 mpol_put(vma_policy(vp->remove));
596 WARN_ON_ONCE(vp->vma->vm_end < vp->remove->vm_end);
597 vm_area_free(vp->remove);
600 * In mprotect's case 6 (see comments on vma_merge),
601 * we are removing both mid and next vmas
604 vp->remove = vp->remove2;
609 if (vp->insert && vp->file)
610 uprobe_mmap(vp->insert);
614 * dup_anon_vma() - Helper function to duplicate anon_vma
615 * @dst: The destination VMA
616 * @src: The source VMA
618 * Returns: 0 on success.
620 static inline int dup_anon_vma(struct vm_area_struct *dst,
621 struct vm_area_struct *src)
624 * Easily overlooked: when mprotect shifts the boundary, make sure the
625 * expanding vma has anon_vma set if the shrinking vma had, to cover any
626 * anon pages imported.
628 if (src->anon_vma && !dst->anon_vma) {
629 dst->anon_vma = src->anon_vma;
630 return anon_vma_clone(dst, src);
637 * vma_expand - Expand an existing VMA
639 * @vmi: The vma iterator
640 * @vma: The vma to expand
641 * @start: The start of the vma
642 * @end: The exclusive end of the vma
643 * @pgoff: The page offset of vma
644 * @next: The current of next vma.
646 * Expand @vma to @start and @end. Can expand off the start and end. Will
647 * expand over @next if it's different from @vma and @end == @next->vm_end.
648 * Checking if the @vma can expand and merge with @next needs to be handled by
651 * Returns: 0 on success
653 int vma_expand(struct vma_iterator *vmi, struct vm_area_struct *vma,
654 unsigned long start, unsigned long end, pgoff_t pgoff,
655 struct vm_area_struct *next)
657 bool remove_next = false;
658 struct vma_prepare vp;
660 if (next && (vma != next) && (end == next->vm_end)) {
664 ret = dup_anon_vma(vma, next);
669 init_multi_vma_prep(&vp, vma, NULL, remove_next ? next : NULL, NULL);
670 /* Not merging but overwriting any part of next is not handled. */
671 VM_WARN_ON(next && !vp.remove &&
672 next != vma && end > next->vm_start);
673 /* Only handles expanding */
674 VM_WARN_ON(vma->vm_start < start || vma->vm_end > end);
676 if (vma_iter_prealloc(vmi))
680 vma_adjust_trans_huge(vma, start, end, 0);
681 /* VMA iterator points to previous, so set to start if necessary */
682 if (vma_iter_addr(vmi) != start)
683 vma_iter_set(vmi, start);
685 vma->vm_start = start;
687 vma->vm_pgoff = pgoff;
688 /* Note: mas must be pointing to the expanding VMA */
689 vma_iter_store(vmi, vma);
691 vma_complete(&vp, vmi, vma->vm_mm);
692 validate_mm(vma->vm_mm);
700 * vma_shrink() - Reduce an existing VMAs memory area
701 * @vmi: The vma iterator
702 * @vma: The VMA to modify
703 * @start: The new start
706 * Returns: 0 on success, -ENOMEM otherwise
708 int vma_shrink(struct vma_iterator *vmi, struct vm_area_struct *vma,
709 unsigned long start, unsigned long end, pgoff_t pgoff)
711 struct vma_prepare vp;
713 WARN_ON((vma->vm_start != start) && (vma->vm_end != end));
715 if (vma_iter_prealloc(vmi))
718 init_vma_prep(&vp, vma);
720 vma_adjust_trans_huge(vma, start, end, 0);
722 if (vma->vm_start < start)
723 vma_iter_clear(vmi, vma->vm_start, start);
725 if (vma->vm_end > end)
726 vma_iter_clear(vmi, end, vma->vm_end);
728 vma->vm_start = start;
730 vma->vm_pgoff = pgoff;
731 vma_complete(&vp, vmi, vma->vm_mm);
732 validate_mm(vma->vm_mm);
737 * If the vma has a ->close operation then the driver probably needs to release
738 * per-vma resources, so we don't attempt to merge those if the caller indicates
739 * the current vma may be removed as part of the merge.
741 static inline bool is_mergeable_vma(struct vm_area_struct *vma,
742 struct file *file, unsigned long vm_flags,
743 struct vm_userfaultfd_ctx vm_userfaultfd_ctx,
744 struct anon_vma_name *anon_name, bool may_remove_vma)
747 * VM_SOFTDIRTY should not prevent from VMA merging, if we
748 * match the flags but dirty bit -- the caller should mark
749 * merged VMA as dirty. If dirty bit won't be excluded from
750 * comparison, we increase pressure on the memory system forcing
751 * the kernel to generate new VMAs when old one could be
754 if ((vma->vm_flags ^ vm_flags) & ~VM_SOFTDIRTY)
756 if (vma->vm_file != file)
758 if (may_remove_vma && vma->vm_ops && vma->vm_ops->close)
760 if (!is_mergeable_vm_userfaultfd_ctx(vma, vm_userfaultfd_ctx))
762 if (!anon_vma_name_eq(anon_vma_name(vma), anon_name))
767 static inline bool is_mergeable_anon_vma(struct anon_vma *anon_vma1,
768 struct anon_vma *anon_vma2, struct vm_area_struct *vma)
771 * The list_is_singular() test is to avoid merging VMA cloned from
772 * parents. This can improve scalability caused by anon_vma lock.
774 if ((!anon_vma1 || !anon_vma2) && (!vma ||
775 list_is_singular(&vma->anon_vma_chain)))
777 return anon_vma1 == anon_vma2;
781 * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
782 * in front of (at a lower virtual address and file offset than) the vma.
784 * We cannot merge two vmas if they have differently assigned (non-NULL)
785 * anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
787 * We don't check here for the merged mmap wrapping around the end of pagecache
788 * indices (16TB on ia32) because do_mmap() does not permit mmap's which
789 * wrap, nor mmaps which cover the final page at index -1UL.
791 * We assume the vma may be removed as part of the merge.
794 can_vma_merge_before(struct vm_area_struct *vma, unsigned long vm_flags,
795 struct anon_vma *anon_vma, struct file *file,
796 pgoff_t vm_pgoff, struct vm_userfaultfd_ctx vm_userfaultfd_ctx,
797 struct anon_vma_name *anon_name)
799 if (is_mergeable_vma(vma, file, vm_flags, vm_userfaultfd_ctx, anon_name, true) &&
800 is_mergeable_anon_vma(anon_vma, vma->anon_vma, vma)) {
801 if (vma->vm_pgoff == vm_pgoff)
808 * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
809 * beyond (at a higher virtual address and file offset than) the vma.
811 * We cannot merge two vmas if they have differently assigned (non-NULL)
812 * anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
814 * We assume that vma is not removed as part of the merge.
817 can_vma_merge_after(struct vm_area_struct *vma, unsigned long vm_flags,
818 struct anon_vma *anon_vma, struct file *file,
819 pgoff_t vm_pgoff, struct vm_userfaultfd_ctx vm_userfaultfd_ctx,
820 struct anon_vma_name *anon_name)
822 if (is_mergeable_vma(vma, file, vm_flags, vm_userfaultfd_ctx, anon_name, false) &&
823 is_mergeable_anon_vma(anon_vma, vma->anon_vma, vma)) {
825 vm_pglen = vma_pages(vma);
826 if (vma->vm_pgoff + vm_pglen == vm_pgoff)
833 * Given a mapping request (addr,end,vm_flags,file,pgoff,anon_name),
834 * figure out whether that can be merged with its predecessor or its
835 * successor. Or both (it neatly fills a hole).
837 * In most cases - when called for mmap, brk or mremap - [addr,end) is
838 * certain not to be mapped by the time vma_merge is called; but when
839 * called for mprotect, it is certain to be already mapped (either at
840 * an offset within prev, or at the start of next), and the flags of
841 * this area are about to be changed to vm_flags - and the no-change
842 * case has already been eliminated.
844 * The following mprotect cases have to be considered, where **** is
845 * the area passed down from mprotect_fixup, never extending beyond one
846 * vma, PPPP is the previous vma, CCCC is a concurrent vma that starts
847 * at the same address as **** and is of the same or larger span, and
848 * NNNN the next vma after ****:
851 * PPPPPPNNNNNN PPPPPPNNNNNN PPPPPPCCCCCC
852 * cannot merge might become might become
853 * PPNNNNNNNNNN PPPPPPPPPPCC
854 * mmap, brk or case 4 below case 5 below
857 * PPPP NNNN PPPPCCCCNNNN
858 * might become might become
859 * PPPPPPPPPPPP 1 or PPPPPPPPPPPP 6 or
860 * PPPPPPPPNNNN 2 or PPPPPPPPNNNN 7 or
861 * PPPPNNNNNNNN 3 PPPPNNNNNNNN 8
863 * It is important for case 8 that the vma CCCC overlapping the
864 * region **** is never going to extended over NNNN. Instead NNNN must
865 * be extended in region **** and CCCC must be removed. This way in
866 * all cases where vma_merge succeeds, the moment vma_merge drops the
867 * rmap_locks, the properties of the merged vma will be already
868 * correct for the whole merged range. Some of those properties like
869 * vm_page_prot/vm_flags may be accessed by rmap_walks and they must
870 * be correct for the whole merged range immediately after the
871 * rmap_locks are released. Otherwise if NNNN would be removed and
872 * CCCC would be extended over the NNNN range, remove_migration_ptes
873 * or other rmap walkers (if working on addresses beyond the "end"
874 * parameter) may establish ptes with the wrong permissions of CCCC
875 * instead of the right permissions of NNNN.
878 * PPPP is represented by *prev
879 * CCCC is represented by *curr or not represented at all (NULL)
880 * NNNN is represented by *next or not represented at all (NULL)
881 * **** is not represented - it will be merged and the vma containing the
882 * area is returned, or the function will return NULL
884 struct vm_area_struct *vma_merge(struct vma_iterator *vmi, struct mm_struct *mm,
885 struct vm_area_struct *prev, unsigned long addr,
886 unsigned long end, unsigned long vm_flags,
887 struct anon_vma *anon_vma, struct file *file,
888 pgoff_t pgoff, struct mempolicy *policy,
889 struct vm_userfaultfd_ctx vm_userfaultfd_ctx,
890 struct anon_vma_name *anon_name)
892 struct vm_area_struct *curr, *next, *res;
893 struct vm_area_struct *vma, *adjust, *remove, *remove2;
894 struct vma_prepare vp;
897 bool merge_prev = false;
898 bool merge_next = false;
899 bool vma_expanded = false;
900 unsigned long vma_start = addr;
901 unsigned long vma_end = end;
902 pgoff_t pglen = (end - addr) >> PAGE_SHIFT;
907 * We later require that vma->vm_flags == vm_flags,
908 * so this tests vma->vm_flags & VM_SPECIAL, too.
910 if (vm_flags & VM_SPECIAL)
913 /* Does the input range span an existing VMA? (cases 5 - 8) */
914 curr = find_vma_intersection(mm, prev ? prev->vm_end : 0, end);
916 if (!curr || /* cases 1 - 4 */
917 end == curr->vm_end) /* cases 6 - 8, adjacent VMA */
918 next = vma_lookup(mm, end);
920 next = NULL; /* case 5 */
923 vma_start = prev->vm_start;
924 vma_pgoff = prev->vm_pgoff;
926 /* Can we merge the predecessor? */
927 if (addr == prev->vm_end && mpol_equal(vma_policy(prev), policy)
928 && can_vma_merge_after(prev, vm_flags, anon_vma, file,
929 pgoff, vm_userfaultfd_ctx, anon_name)) {
935 /* Can we merge the successor? */
936 if (next && mpol_equal(policy, vma_policy(next)) &&
937 can_vma_merge_before(next, vm_flags, anon_vma, file, pgoff+pglen,
938 vm_userfaultfd_ctx, anon_name)) {
942 /* Verify some invariant that must be enforced by the caller. */
943 VM_WARN_ON(prev && addr <= prev->vm_start);
944 VM_WARN_ON(curr && (addr != curr->vm_start || end > curr->vm_end));
945 VM_WARN_ON(addr >= end);
947 if (!merge_prev && !merge_next)
948 return NULL; /* Not mergeable. */
951 remove = remove2 = adjust = NULL;
953 /* Can we merge both the predecessor and the successor? */
954 if (merge_prev && merge_next &&
955 is_mergeable_anon_vma(prev->anon_vma, next->anon_vma, NULL)) {
956 remove = next; /* case 1 */
957 vma_end = next->vm_end;
958 err = dup_anon_vma(prev, next);
959 if (curr) { /* case 6 */
963 err = dup_anon_vma(prev, curr);
965 } else if (merge_prev) { /* case 2 */
967 err = dup_anon_vma(prev, curr);
968 if (end == curr->vm_end) { /* case 7 */
970 } else { /* case 5 */
972 adj_start = (end - curr->vm_start);
975 } else { /* merge_next */
977 if (prev && addr < prev->vm_end) { /* case 4 */
980 adj_start = -(prev->vm_end - addr);
981 err = dup_anon_vma(next, prev);
984 * Note that cases 3 and 8 are the ONLY ones where prev
985 * is permitted to be (but is not necessarily) NULL.
987 vma = next; /* case 3 */
989 vma_end = next->vm_end;
990 vma_pgoff = next->vm_pgoff - pglen;
991 if (curr) { /* case 8 */
992 vma_pgoff = curr->vm_pgoff;
994 err = dup_anon_vma(next, curr);
999 /* Error in anon_vma clone. */
1003 if (vma_iter_prealloc(vmi))
1006 init_multi_vma_prep(&vp, vma, adjust, remove, remove2);
1007 VM_WARN_ON(vp.anon_vma && adjust && adjust->anon_vma &&
1008 vp.anon_vma != adjust->anon_vma);
1011 vma_adjust_trans_huge(vma, vma_start, vma_end, adj_start);
1012 if (vma_start < vma->vm_start || vma_end > vma->vm_end)
1013 vma_expanded = true;
1015 vma->vm_start = vma_start;
1016 vma->vm_end = vma_end;
1017 vma->vm_pgoff = vma_pgoff;
1020 vma_iter_store(vmi, vma);
1023 adjust->vm_start += adj_start;
1024 adjust->vm_pgoff += adj_start >> PAGE_SHIFT;
1025 if (adj_start < 0) {
1026 WARN_ON(vma_expanded);
1027 vma_iter_store(vmi, next);
1031 vma_complete(&vp, vmi, mm);
1034 khugepaged_enter_vma(res, vm_flags);
1040 * Rough compatibility check to quickly see if it's even worth looking
1041 * at sharing an anon_vma.
1043 * They need to have the same vm_file, and the flags can only differ
1044 * in things that mprotect may change.
1046 * NOTE! The fact that we share an anon_vma doesn't _have_ to mean that
1047 * we can merge the two vma's. For example, we refuse to merge a vma if
1048 * there is a vm_ops->close() function, because that indicates that the
1049 * driver is doing some kind of reference counting. But that doesn't
1050 * really matter for the anon_vma sharing case.
1052 static int anon_vma_compatible(struct vm_area_struct *a, struct vm_area_struct *b)
1054 return a->vm_end == b->vm_start &&
1055 mpol_equal(vma_policy(a), vma_policy(b)) &&
1056 a->vm_file == b->vm_file &&
1057 !((a->vm_flags ^ b->vm_flags) & ~(VM_ACCESS_FLAGS | VM_SOFTDIRTY)) &&
1058 b->vm_pgoff == a->vm_pgoff + ((b->vm_start - a->vm_start) >> PAGE_SHIFT);
1062 * Do some basic sanity checking to see if we can re-use the anon_vma
1063 * from 'old'. The 'a'/'b' vma's are in VM order - one of them will be
1064 * the same as 'old', the other will be the new one that is trying
1065 * to share the anon_vma.
1067 * NOTE! This runs with mmap_lock held for reading, so it is possible that
1068 * the anon_vma of 'old' is concurrently in the process of being set up
1069 * by another page fault trying to merge _that_. But that's ok: if it
1070 * is being set up, that automatically means that it will be a singleton
1071 * acceptable for merging, so we can do all of this optimistically. But
1072 * we do that READ_ONCE() to make sure that we never re-load the pointer.
1074 * IOW: that the "list_is_singular()" test on the anon_vma_chain only
1075 * matters for the 'stable anon_vma' case (ie the thing we want to avoid
1076 * is to return an anon_vma that is "complex" due to having gone through
1079 * We also make sure that the two vma's are compatible (adjacent,
1080 * and with the same memory policies). That's all stable, even with just
1081 * a read lock on the mmap_lock.
1083 static struct anon_vma *reusable_anon_vma(struct vm_area_struct *old, struct vm_area_struct *a, struct vm_area_struct *b)
1085 if (anon_vma_compatible(a, b)) {
1086 struct anon_vma *anon_vma = READ_ONCE(old->anon_vma);
1088 if (anon_vma && list_is_singular(&old->anon_vma_chain))
1095 * find_mergeable_anon_vma is used by anon_vma_prepare, to check
1096 * neighbouring vmas for a suitable anon_vma, before it goes off
1097 * to allocate a new anon_vma. It checks because a repetitive
1098 * sequence of mprotects and faults may otherwise lead to distinct
1099 * anon_vmas being allocated, preventing vma merge in subsequent
1102 struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *vma)
1104 MA_STATE(mas, &vma->vm_mm->mm_mt, vma->vm_end, vma->vm_end);
1105 struct anon_vma *anon_vma = NULL;
1106 struct vm_area_struct *prev, *next;
1108 /* Try next first. */
1109 next = mas_walk(&mas);
1111 anon_vma = reusable_anon_vma(next, vma, next);
1116 prev = mas_prev(&mas, 0);
1117 VM_BUG_ON_VMA(prev != vma, vma);
1118 prev = mas_prev(&mas, 0);
1119 /* Try prev next. */
1121 anon_vma = reusable_anon_vma(prev, prev, vma);
1124 * We might reach here with anon_vma == NULL if we can't find
1125 * any reusable anon_vma.
1126 * There's no absolute need to look only at touching neighbours:
1127 * we could search further afield for "compatible" anon_vmas.
1128 * But it would probably just be a waste of time searching,
1129 * or lead to too many vmas hanging off the same anon_vma.
1130 * We're trying to allow mprotect remerging later on,
1131 * not trying to minimize memory used for anon_vmas.
1137 * If a hint addr is less than mmap_min_addr change hint to be as
1138 * low as possible but still greater than mmap_min_addr
1140 static inline unsigned long round_hint_to_min(unsigned long hint)
1143 if (((void *)hint != NULL) &&
1144 (hint < mmap_min_addr))
1145 return PAGE_ALIGN(mmap_min_addr);
1149 bool mlock_future_ok(struct mm_struct *mm, unsigned long flags,
1150 unsigned long bytes)
1152 unsigned long locked_pages, limit_pages;
1154 if (!(flags & VM_LOCKED) || capable(CAP_IPC_LOCK))
1157 locked_pages = bytes >> PAGE_SHIFT;
1158 locked_pages += mm->locked_vm;
1160 limit_pages = rlimit(RLIMIT_MEMLOCK);
1161 limit_pages >>= PAGE_SHIFT;
1163 return locked_pages <= limit_pages;
1166 static inline u64 file_mmap_size_max(struct file *file, struct inode *inode)
1168 if (S_ISREG(inode->i_mode))
1169 return MAX_LFS_FILESIZE;
1171 if (S_ISBLK(inode->i_mode))
1172 return MAX_LFS_FILESIZE;
1174 if (S_ISSOCK(inode->i_mode))
1175 return MAX_LFS_FILESIZE;
1177 /* Special "we do even unsigned file positions" case */
1178 if (file->f_mode & FMODE_UNSIGNED_OFFSET)
1181 /* Yes, random drivers might want more. But I'm tired of buggy drivers */
1185 static inline bool file_mmap_ok(struct file *file, struct inode *inode,
1186 unsigned long pgoff, unsigned long len)
1188 u64 maxsize = file_mmap_size_max(file, inode);
1190 if (maxsize && len > maxsize)
1193 if (pgoff > maxsize >> PAGE_SHIFT)
1199 * The caller must write-lock current->mm->mmap_lock.
1201 unsigned long do_mmap(struct file *file, unsigned long addr,
1202 unsigned long len, unsigned long prot,
1203 unsigned long flags, unsigned long pgoff,
1204 unsigned long *populate, struct list_head *uf)
1206 struct mm_struct *mm = current->mm;
1207 vm_flags_t vm_flags;
1217 * Does the application expect PROT_READ to imply PROT_EXEC?
1219 * (the exception is when the underlying filesystem is noexec
1220 * mounted, in which case we dont add PROT_EXEC.)
1222 if ((prot & PROT_READ) && (current->personality & READ_IMPLIES_EXEC))
1223 if (!(file && path_noexec(&file->f_path)))
1226 /* force arch specific MAP_FIXED handling in get_unmapped_area */
1227 if (flags & MAP_FIXED_NOREPLACE)
1230 if (!(flags & MAP_FIXED))
1231 addr = round_hint_to_min(addr);
1233 /* Careful about overflows.. */
1234 len = PAGE_ALIGN(len);
1238 /* offset overflow? */
1239 if ((pgoff + (len >> PAGE_SHIFT)) < pgoff)
1242 /* Too many mappings? */
1243 if (mm->map_count > sysctl_max_map_count)
1246 /* Obtain the address to map to. we verify (or select) it and ensure
1247 * that it represents a valid section of the address space.
1249 addr = get_unmapped_area(file, addr, len, pgoff, flags);
1250 if (IS_ERR_VALUE(addr))
1253 if (flags & MAP_FIXED_NOREPLACE) {
1254 if (find_vma_intersection(mm, addr, addr + len))
1258 if (prot == PROT_EXEC) {
1259 pkey = execute_only_pkey(mm);
1264 /* Do simple checking here so the lower-level routines won't have
1265 * to. we assume access permissions have been handled by the open
1266 * of the memory object, so we don't do any here.
1268 vm_flags = calc_vm_prot_bits(prot, pkey) | calc_vm_flag_bits(flags) |
1269 mm->def_flags | VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC;
1271 if (flags & MAP_LOCKED)
1272 if (!can_do_mlock())
1275 if (!mlock_future_ok(mm, vm_flags, len))
1279 struct inode *inode = file_inode(file);
1280 unsigned long flags_mask;
1282 if (!file_mmap_ok(file, inode, pgoff, len))
1285 flags_mask = LEGACY_MAP_MASK | file->f_op->mmap_supported_flags;
1287 switch (flags & MAP_TYPE) {
1290 * Force use of MAP_SHARED_VALIDATE with non-legacy
1291 * flags. E.g. MAP_SYNC is dangerous to use with
1292 * MAP_SHARED as you don't know which consistency model
1293 * you will get. We silently ignore unsupported flags
1294 * with MAP_SHARED to preserve backward compatibility.
1296 flags &= LEGACY_MAP_MASK;
1298 case MAP_SHARED_VALIDATE:
1299 if (flags & ~flags_mask)
1301 if (prot & PROT_WRITE) {
1302 if (!(file->f_mode & FMODE_WRITE))
1304 if (IS_SWAPFILE(file->f_mapping->host))
1309 * Make sure we don't allow writing to an append-only
1312 if (IS_APPEND(inode) && (file->f_mode & FMODE_WRITE))
1315 vm_flags |= VM_SHARED | VM_MAYSHARE;
1316 if (!(file->f_mode & FMODE_WRITE))
1317 vm_flags &= ~(VM_MAYWRITE | VM_SHARED);
1320 if (!(file->f_mode & FMODE_READ))
1322 if (path_noexec(&file->f_path)) {
1323 if (vm_flags & VM_EXEC)
1325 vm_flags &= ~VM_MAYEXEC;
1328 if (!file->f_op->mmap)
1330 if (vm_flags & (VM_GROWSDOWN|VM_GROWSUP))
1338 switch (flags & MAP_TYPE) {
1340 if (vm_flags & (VM_GROWSDOWN|VM_GROWSUP))
1346 vm_flags |= VM_SHARED | VM_MAYSHARE;
1350 * Set pgoff according to addr for anon_vma.
1352 pgoff = addr >> PAGE_SHIFT;
1360 * Set 'VM_NORESERVE' if we should not account for the
1361 * memory use of this mapping.
1363 if (flags & MAP_NORESERVE) {
1364 /* We honor MAP_NORESERVE if allowed to overcommit */
1365 if (sysctl_overcommit_memory != OVERCOMMIT_NEVER)
1366 vm_flags |= VM_NORESERVE;
1368 /* hugetlb applies strict overcommit unless MAP_NORESERVE */
1369 if (file && is_file_hugepages(file))
1370 vm_flags |= VM_NORESERVE;
1373 addr = mmap_region(file, addr, len, vm_flags, pgoff, uf);
1374 if (!IS_ERR_VALUE(addr) &&
1375 ((vm_flags & VM_LOCKED) ||
1376 (flags & (MAP_POPULATE | MAP_NONBLOCK)) == MAP_POPULATE))
1381 unsigned long ksys_mmap_pgoff(unsigned long addr, unsigned long len,
1382 unsigned long prot, unsigned long flags,
1383 unsigned long fd, unsigned long pgoff)
1385 struct file *file = NULL;
1386 unsigned long retval;
1388 if (!(flags & MAP_ANONYMOUS)) {
1389 audit_mmap_fd(fd, flags);
1393 if (is_file_hugepages(file)) {
1394 len = ALIGN(len, huge_page_size(hstate_file(file)));
1395 } else if (unlikely(flags & MAP_HUGETLB)) {
1399 } else if (flags & MAP_HUGETLB) {
1402 hs = hstate_sizelog((flags >> MAP_HUGE_SHIFT) & MAP_HUGE_MASK);
1406 len = ALIGN(len, huge_page_size(hs));
1408 * VM_NORESERVE is used because the reservations will be
1409 * taken when vm_ops->mmap() is called
1411 file = hugetlb_file_setup(HUGETLB_ANON_FILE, len,
1413 HUGETLB_ANONHUGE_INODE,
1414 (flags >> MAP_HUGE_SHIFT) & MAP_HUGE_MASK);
1416 return PTR_ERR(file);
1419 retval = vm_mmap_pgoff(file, addr, len, prot, flags, pgoff);
1426 SYSCALL_DEFINE6(mmap_pgoff, unsigned long, addr, unsigned long, len,
1427 unsigned long, prot, unsigned long, flags,
1428 unsigned long, fd, unsigned long, pgoff)
1430 return ksys_mmap_pgoff(addr, len, prot, flags, fd, pgoff);
1433 #ifdef __ARCH_WANT_SYS_OLD_MMAP
1434 struct mmap_arg_struct {
1438 unsigned long flags;
1440 unsigned long offset;
1443 SYSCALL_DEFINE1(old_mmap, struct mmap_arg_struct __user *, arg)
1445 struct mmap_arg_struct a;
1447 if (copy_from_user(&a, arg, sizeof(a)))
1449 if (offset_in_page(a.offset))
1452 return ksys_mmap_pgoff(a.addr, a.len, a.prot, a.flags, a.fd,
1453 a.offset >> PAGE_SHIFT);
1455 #endif /* __ARCH_WANT_SYS_OLD_MMAP */
1457 static bool vm_ops_needs_writenotify(const struct vm_operations_struct *vm_ops)
1459 return vm_ops && (vm_ops->page_mkwrite || vm_ops->pfn_mkwrite);
1462 static bool vma_is_shared_writable(struct vm_area_struct *vma)
1464 return (vma->vm_flags & (VM_WRITE | VM_SHARED)) ==
1465 (VM_WRITE | VM_SHARED);
1468 static bool vma_fs_can_writeback(struct vm_area_struct *vma)
1470 /* No managed pages to writeback. */
1471 if (vma->vm_flags & VM_PFNMAP)
1474 return vma->vm_file && vma->vm_file->f_mapping &&
1475 mapping_can_writeback(vma->vm_file->f_mapping);
1479 * Does this VMA require the underlying folios to have their dirty state
1482 bool vma_needs_dirty_tracking(struct vm_area_struct *vma)
1484 /* Only shared, writable VMAs require dirty tracking. */
1485 if (!vma_is_shared_writable(vma))
1488 /* Does the filesystem need to be notified? */
1489 if (vm_ops_needs_writenotify(vma->vm_ops))
1493 * Even if the filesystem doesn't indicate a need for writenotify, if it
1494 * can writeback, dirty tracking is still required.
1496 return vma_fs_can_writeback(vma);
1500 * Some shared mappings will want the pages marked read-only
1501 * to track write events. If so, we'll downgrade vm_page_prot
1502 * to the private version (using protection_map[] without the
1505 int vma_wants_writenotify(struct vm_area_struct *vma, pgprot_t vm_page_prot)
1507 /* If it was private or non-writable, the write bit is already clear */
1508 if (!vma_is_shared_writable(vma))
1511 /* The backer wishes to know when pages are first written to? */
1512 if (vm_ops_needs_writenotify(vma->vm_ops))
1515 /* The open routine did something to the protections that pgprot_modify
1516 * won't preserve? */
1517 if (pgprot_val(vm_page_prot) !=
1518 pgprot_val(vm_pgprot_modify(vm_page_prot, vma->vm_flags)))
1522 * Do we need to track softdirty? hugetlb does not support softdirty
1525 if (vma_soft_dirty_enabled(vma) && !is_vm_hugetlb_page(vma))
1528 /* Do we need write faults for uffd-wp tracking? */
1529 if (userfaultfd_wp(vma))
1532 /* Can the mapping track the dirty pages? */
1533 return vma_fs_can_writeback(vma);
1537 * We account for memory if it's a private writeable mapping,
1538 * not hugepages and VM_NORESERVE wasn't set.
1540 static inline int accountable_mapping(struct file *file, vm_flags_t vm_flags)
1543 * hugetlb has its own accounting separate from the core VM
1544 * VM_HUGETLB may not be set yet so we cannot check for that flag.
1546 if (file && is_file_hugepages(file))
1549 return (vm_flags & (VM_NORESERVE | VM_SHARED | VM_WRITE)) == VM_WRITE;
1553 * unmapped_area() - Find an area between the low_limit and the high_limit with
1554 * the correct alignment and offset, all from @info. Note: current->mm is used
1557 * @info: The unmapped area information including the range [low_limit -
1558 * high_limit), the alignment offset and mask.
1560 * Return: A memory address or -ENOMEM.
1562 static unsigned long unmapped_area(struct vm_unmapped_area_info *info)
1564 unsigned long length, gap;
1565 unsigned long low_limit, high_limit;
1566 struct vm_area_struct *tmp;
1568 MA_STATE(mas, ¤t->mm->mm_mt, 0, 0);
1570 /* Adjust search length to account for worst case alignment overhead */
1571 length = info->length + info->align_mask;
1572 if (length < info->length)
1575 low_limit = info->low_limit;
1576 if (low_limit < mmap_min_addr)
1577 low_limit = mmap_min_addr;
1578 high_limit = info->high_limit;
1580 if (mas_empty_area(&mas, low_limit, high_limit - 1, length))
1584 gap += (info->align_offset - gap) & info->align_mask;
1585 tmp = mas_next(&mas, ULONG_MAX);
1586 if (tmp && (tmp->vm_flags & VM_GROWSDOWN)) { /* Avoid prev check if possible */
1587 if (vm_start_gap(tmp) < gap + length - 1) {
1588 low_limit = tmp->vm_end;
1593 tmp = mas_prev(&mas, 0);
1594 if (tmp && vm_end_gap(tmp) > gap) {
1595 low_limit = vm_end_gap(tmp);
1605 * unmapped_area_topdown() - Find an area between the low_limit and the
1606 * high_limit with the correct alignment and offset at the highest available
1607 * address, all from @info. Note: current->mm is used for the search.
1609 * @info: The unmapped area information including the range [low_limit -
1610 * high_limit), the alignment offset and mask.
1612 * Return: A memory address or -ENOMEM.
1614 static unsigned long unmapped_area_topdown(struct vm_unmapped_area_info *info)
1616 unsigned long length, gap, gap_end;
1617 unsigned long low_limit, high_limit;
1618 struct vm_area_struct *tmp;
1620 MA_STATE(mas, ¤t->mm->mm_mt, 0, 0);
1621 /* Adjust search length to account for worst case alignment overhead */
1622 length = info->length + info->align_mask;
1623 if (length < info->length)
1626 low_limit = info->low_limit;
1627 if (low_limit < mmap_min_addr)
1628 low_limit = mmap_min_addr;
1629 high_limit = info->high_limit;
1631 if (mas_empty_area_rev(&mas, low_limit, high_limit - 1, length))
1634 gap = mas.last + 1 - info->length;
1635 gap -= (gap - info->align_offset) & info->align_mask;
1637 tmp = mas_next(&mas, ULONG_MAX);
1638 if (tmp && (tmp->vm_flags & VM_GROWSDOWN)) { /* Avoid prev check if possible */
1639 if (vm_start_gap(tmp) <= gap_end) {
1640 high_limit = vm_start_gap(tmp);
1645 tmp = mas_prev(&mas, 0);
1646 if (tmp && vm_end_gap(tmp) > gap) {
1647 high_limit = tmp->vm_start;
1657 * Search for an unmapped address range.
1659 * We are looking for a range that:
1660 * - does not intersect with any VMA;
1661 * - is contained within the [low_limit, high_limit) interval;
1662 * - is at least the desired size.
1663 * - satisfies (begin_addr & align_mask) == (align_offset & align_mask)
1665 unsigned long vm_unmapped_area(struct vm_unmapped_area_info *info)
1669 if (info->flags & VM_UNMAPPED_AREA_TOPDOWN)
1670 addr = unmapped_area_topdown(info);
1672 addr = unmapped_area(info);
1674 trace_vm_unmapped_area(addr, info);
1678 /* Get an address range which is currently unmapped.
1679 * For shmat() with addr=0.
1681 * Ugly calling convention alert:
1682 * Return value with the low bits set means error value,
1684 * if (ret & ~PAGE_MASK)
1687 * This function "knows" that -ENOMEM has the bits set.
1690 generic_get_unmapped_area(struct file *filp, unsigned long addr,
1691 unsigned long len, unsigned long pgoff,
1692 unsigned long flags)
1694 struct mm_struct *mm = current->mm;
1695 struct vm_area_struct *vma, *prev;
1696 struct vm_unmapped_area_info info;
1697 const unsigned long mmap_end = arch_get_mmap_end(addr, len, flags);
1699 if (len > mmap_end - mmap_min_addr)
1702 if (flags & MAP_FIXED)
1706 addr = PAGE_ALIGN(addr);
1707 vma = find_vma_prev(mm, addr, &prev);
1708 if (mmap_end - len >= addr && addr >= mmap_min_addr &&
1709 (!vma || addr + len <= vm_start_gap(vma)) &&
1710 (!prev || addr >= vm_end_gap(prev)))
1716 info.low_limit = mm->mmap_base;
1717 info.high_limit = mmap_end;
1718 info.align_mask = 0;
1719 info.align_offset = 0;
1720 return vm_unmapped_area(&info);
1723 #ifndef HAVE_ARCH_UNMAPPED_AREA
1725 arch_get_unmapped_area(struct file *filp, unsigned long addr,
1726 unsigned long len, unsigned long pgoff,
1727 unsigned long flags)
1729 return generic_get_unmapped_area(filp, addr, len, pgoff, flags);
1734 * This mmap-allocator allocates new areas top-down from below the
1735 * stack's low limit (the base):
1738 generic_get_unmapped_area_topdown(struct file *filp, unsigned long addr,
1739 unsigned long len, unsigned long pgoff,
1740 unsigned long flags)
1742 struct vm_area_struct *vma, *prev;
1743 struct mm_struct *mm = current->mm;
1744 struct vm_unmapped_area_info info;
1745 const unsigned long mmap_end = arch_get_mmap_end(addr, len, flags);
1747 /* requested length too big for entire address space */
1748 if (len > mmap_end - mmap_min_addr)
1751 if (flags & MAP_FIXED)
1754 /* requesting a specific address */
1756 addr = PAGE_ALIGN(addr);
1757 vma = find_vma_prev(mm, addr, &prev);
1758 if (mmap_end - len >= addr && addr >= mmap_min_addr &&
1759 (!vma || addr + len <= vm_start_gap(vma)) &&
1760 (!prev || addr >= vm_end_gap(prev)))
1764 info.flags = VM_UNMAPPED_AREA_TOPDOWN;
1766 info.low_limit = PAGE_SIZE;
1767 info.high_limit = arch_get_mmap_base(addr, mm->mmap_base);
1768 info.align_mask = 0;
1769 info.align_offset = 0;
1770 addr = vm_unmapped_area(&info);
1773 * A failed mmap() very likely causes application failure,
1774 * so fall back to the bottom-up function here. This scenario
1775 * can happen with large stack limits and large mmap()
1778 if (offset_in_page(addr)) {
1779 VM_BUG_ON(addr != -ENOMEM);
1781 info.low_limit = TASK_UNMAPPED_BASE;
1782 info.high_limit = mmap_end;
1783 addr = vm_unmapped_area(&info);
1789 #ifndef HAVE_ARCH_UNMAPPED_AREA_TOPDOWN
1791 arch_get_unmapped_area_topdown(struct file *filp, unsigned long addr,
1792 unsigned long len, unsigned long pgoff,
1793 unsigned long flags)
1795 return generic_get_unmapped_area_topdown(filp, addr, len, pgoff, flags);
1800 get_unmapped_area(struct file *file, unsigned long addr, unsigned long len,
1801 unsigned long pgoff, unsigned long flags)
1803 unsigned long (*get_area)(struct file *, unsigned long,
1804 unsigned long, unsigned long, unsigned long);
1806 unsigned long error = arch_mmap_check(addr, len, flags);
1810 /* Careful about overflows.. */
1811 if (len > TASK_SIZE)
1814 get_area = current->mm->get_unmapped_area;
1816 if (file->f_op->get_unmapped_area)
1817 get_area = file->f_op->get_unmapped_area;
1818 } else if (flags & MAP_SHARED) {
1820 * mmap_region() will call shmem_zero_setup() to create a file,
1821 * so use shmem's get_unmapped_area in case it can be huge.
1822 * do_mmap() will clear pgoff, so match alignment.
1825 get_area = shmem_get_unmapped_area;
1828 addr = get_area(file, addr, len, pgoff, flags);
1829 if (IS_ERR_VALUE(addr))
1832 if (addr > TASK_SIZE - len)
1834 if (offset_in_page(addr))
1837 error = security_mmap_addr(addr);
1838 return error ? error : addr;
1841 EXPORT_SYMBOL(get_unmapped_area);
1844 * find_vma_intersection() - Look up the first VMA which intersects the interval
1845 * @mm: The process address space.
1846 * @start_addr: The inclusive start user address.
1847 * @end_addr: The exclusive end user address.
1849 * Returns: The first VMA within the provided range, %NULL otherwise. Assumes
1850 * start_addr < end_addr.
1852 struct vm_area_struct *find_vma_intersection(struct mm_struct *mm,
1853 unsigned long start_addr,
1854 unsigned long end_addr)
1856 unsigned long index = start_addr;
1858 mmap_assert_locked(mm);
1859 return mt_find(&mm->mm_mt, &index, end_addr - 1);
1861 EXPORT_SYMBOL(find_vma_intersection);
1864 * find_vma() - Find the VMA for a given address, or the next VMA.
1865 * @mm: The mm_struct to check
1866 * @addr: The address
1868 * Returns: The VMA associated with addr, or the next VMA.
1869 * May return %NULL in the case of no VMA at addr or above.
1871 struct vm_area_struct *find_vma(struct mm_struct *mm, unsigned long addr)
1873 unsigned long index = addr;
1875 mmap_assert_locked(mm);
1876 return mt_find(&mm->mm_mt, &index, ULONG_MAX);
1878 EXPORT_SYMBOL(find_vma);
1881 * find_vma_prev() - Find the VMA for a given address, or the next vma and
1882 * set %pprev to the previous VMA, if any.
1883 * @mm: The mm_struct to check
1884 * @addr: The address
1885 * @pprev: The pointer to set to the previous VMA
1887 * Note that RCU lock is missing here since the external mmap_lock() is used
1890 * Returns: The VMA associated with @addr, or the next vma.
1891 * May return %NULL in the case of no vma at addr or above.
1893 struct vm_area_struct *
1894 find_vma_prev(struct mm_struct *mm, unsigned long addr,
1895 struct vm_area_struct **pprev)
1897 struct vm_area_struct *vma;
1898 MA_STATE(mas, &mm->mm_mt, addr, addr);
1900 vma = mas_walk(&mas);
1901 *pprev = mas_prev(&mas, 0);
1903 vma = mas_next(&mas, ULONG_MAX);
1908 * Verify that the stack growth is acceptable and
1909 * update accounting. This is shared with both the
1910 * grow-up and grow-down cases.
1912 static int acct_stack_growth(struct vm_area_struct *vma,
1913 unsigned long size, unsigned long grow)
1915 struct mm_struct *mm = vma->vm_mm;
1916 unsigned long new_start;
1918 /* address space limit tests */
1919 if (!may_expand_vm(mm, vma->vm_flags, grow))
1922 /* Stack limit test */
1923 if (size > rlimit(RLIMIT_STACK))
1926 /* mlock limit tests */
1927 if (!mlock_future_ok(mm, vma->vm_flags, grow << PAGE_SHIFT))
1930 /* Check to ensure the stack will not grow into a hugetlb-only region */
1931 new_start = (vma->vm_flags & VM_GROWSUP) ? vma->vm_start :
1933 if (is_hugepage_only_range(vma->vm_mm, new_start, size))
1937 * Overcommit.. This must be the final test, as it will
1938 * update security statistics.
1940 if (security_vm_enough_memory_mm(mm, grow))
1946 #if defined(CONFIG_STACK_GROWSUP) || defined(CONFIG_IA64)
1948 * PA-RISC uses this for its stack; IA64 for its Register Backing Store.
1949 * vma is the last one with address > vma->vm_end. Have to extend vma.
1951 int expand_upwards(struct vm_area_struct *vma, unsigned long address)
1953 struct mm_struct *mm = vma->vm_mm;
1954 struct vm_area_struct *next;
1955 unsigned long gap_addr;
1957 MA_STATE(mas, &mm->mm_mt, 0, 0);
1959 if (!(vma->vm_flags & VM_GROWSUP))
1962 /* Guard against exceeding limits of the address space. */
1963 address &= PAGE_MASK;
1964 if (address >= (TASK_SIZE & PAGE_MASK))
1966 address += PAGE_SIZE;
1968 /* Enforce stack_guard_gap */
1969 gap_addr = address + stack_guard_gap;
1971 /* Guard against overflow */
1972 if (gap_addr < address || gap_addr > TASK_SIZE)
1973 gap_addr = TASK_SIZE;
1975 next = find_vma_intersection(mm, vma->vm_end, gap_addr);
1976 if (next && vma_is_accessible(next)) {
1977 if (!(next->vm_flags & VM_GROWSUP))
1979 /* Check that both stack segments have the same anon_vma? */
1982 if (mas_preallocate(&mas, GFP_KERNEL))
1985 /* We must make sure the anon_vma is allocated. */
1986 if (unlikely(anon_vma_prepare(vma))) {
1992 * vma->vm_start/vm_end cannot change under us because the caller
1993 * is required to hold the mmap_lock in read mode. We need the
1994 * anon_vma lock to serialize against concurrent expand_stacks.
1996 anon_vma_lock_write(vma->anon_vma);
1998 /* Somebody else might have raced and expanded it already */
1999 if (address > vma->vm_end) {
2000 unsigned long size, grow;
2002 size = address - vma->vm_start;
2003 grow = (address - vma->vm_end) >> PAGE_SHIFT;
2006 if (vma->vm_pgoff + (size >> PAGE_SHIFT) >= vma->vm_pgoff) {
2007 error = acct_stack_growth(vma, size, grow);
2010 * We only hold a shared mmap_lock lock here, so
2011 * we need to protect against concurrent vma
2012 * expansions. anon_vma_lock_write() doesn't
2013 * help here, as we don't guarantee that all
2014 * growable vmas in a mm share the same root
2015 * anon vma. So, we reuse mm->page_table_lock
2016 * to guard against concurrent vma expansions.
2018 spin_lock(&mm->page_table_lock);
2019 if (vma->vm_flags & VM_LOCKED)
2020 mm->locked_vm += grow;
2021 vm_stat_account(mm, vma->vm_flags, grow);
2022 anon_vma_interval_tree_pre_update_vma(vma);
2023 vma->vm_end = address;
2024 /* Overwrite old entry in mtree. */
2025 mas_set_range(&mas, vma->vm_start, address - 1);
2026 mas_store_prealloc(&mas, vma);
2027 anon_vma_interval_tree_post_update_vma(vma);
2028 spin_unlock(&mm->page_table_lock);
2030 perf_event_mmap(vma);
2034 anon_vma_unlock_write(vma->anon_vma);
2035 khugepaged_enter_vma(vma, vma->vm_flags);
2039 #endif /* CONFIG_STACK_GROWSUP || CONFIG_IA64 */
2042 * vma is the first one with address < vma->vm_start. Have to extend vma.
2044 int expand_downwards(struct vm_area_struct *vma, unsigned long address)
2046 struct mm_struct *mm = vma->vm_mm;
2047 MA_STATE(mas, &mm->mm_mt, vma->vm_start, vma->vm_start);
2048 struct vm_area_struct *prev;
2051 address &= PAGE_MASK;
2052 if (address < mmap_min_addr)
2055 /* Enforce stack_guard_gap */
2056 prev = mas_prev(&mas, 0);
2057 /* Check that both stack segments have the same anon_vma? */
2058 if (prev && !(prev->vm_flags & VM_GROWSDOWN) &&
2059 vma_is_accessible(prev)) {
2060 if (address - prev->vm_end < stack_guard_gap)
2064 if (mas_preallocate(&mas, GFP_KERNEL))
2067 /* We must make sure the anon_vma is allocated. */
2068 if (unlikely(anon_vma_prepare(vma))) {
2074 * vma->vm_start/vm_end cannot change under us because the caller
2075 * is required to hold the mmap_lock in read mode. We need the
2076 * anon_vma lock to serialize against concurrent expand_stacks.
2078 anon_vma_lock_write(vma->anon_vma);
2080 /* Somebody else might have raced and expanded it already */
2081 if (address < vma->vm_start) {
2082 unsigned long size, grow;
2084 size = vma->vm_end - address;
2085 grow = (vma->vm_start - address) >> PAGE_SHIFT;
2088 if (grow <= vma->vm_pgoff) {
2089 error = acct_stack_growth(vma, size, grow);
2092 * We only hold a shared mmap_lock lock here, so
2093 * we need to protect against concurrent vma
2094 * expansions. anon_vma_lock_write() doesn't
2095 * help here, as we don't guarantee that all
2096 * growable vmas in a mm share the same root
2097 * anon vma. So, we reuse mm->page_table_lock
2098 * to guard against concurrent vma expansions.
2100 spin_lock(&mm->page_table_lock);
2101 if (vma->vm_flags & VM_LOCKED)
2102 mm->locked_vm += grow;
2103 vm_stat_account(mm, vma->vm_flags, grow);
2104 anon_vma_interval_tree_pre_update_vma(vma);
2105 vma->vm_start = address;
2106 vma->vm_pgoff -= grow;
2107 /* Overwrite old entry in mtree. */
2108 mas_set_range(&mas, address, vma->vm_end - 1);
2109 mas_store_prealloc(&mas, vma);
2110 anon_vma_interval_tree_post_update_vma(vma);
2111 spin_unlock(&mm->page_table_lock);
2113 perf_event_mmap(vma);
2117 anon_vma_unlock_write(vma->anon_vma);
2118 khugepaged_enter_vma(vma, vma->vm_flags);
2123 /* enforced gap between the expanding stack and other mappings. */
2124 unsigned long stack_guard_gap = 256UL<<PAGE_SHIFT;
2126 static int __init cmdline_parse_stack_guard_gap(char *p)
2131 val = simple_strtoul(p, &endptr, 10);
2133 stack_guard_gap = val << PAGE_SHIFT;
2137 __setup("stack_guard_gap=", cmdline_parse_stack_guard_gap);
2139 #ifdef CONFIG_STACK_GROWSUP
2140 int expand_stack(struct vm_area_struct *vma, unsigned long address)
2142 return expand_upwards(vma, address);
2145 struct vm_area_struct *
2146 find_extend_vma(struct mm_struct *mm, unsigned long addr)
2148 struct vm_area_struct *vma, *prev;
2151 vma = find_vma_prev(mm, addr, &prev);
2152 if (vma && (vma->vm_start <= addr))
2154 if (!prev || expand_stack(prev, addr))
2156 if (prev->vm_flags & VM_LOCKED)
2157 populate_vma_page_range(prev, addr, prev->vm_end, NULL);
2161 int expand_stack(struct vm_area_struct *vma, unsigned long address)
2163 return expand_downwards(vma, address);
2166 struct vm_area_struct *
2167 find_extend_vma(struct mm_struct *mm, unsigned long addr)
2169 struct vm_area_struct *vma;
2170 unsigned long start;
2173 vma = find_vma(mm, addr);
2176 if (vma->vm_start <= addr)
2178 if (!(vma->vm_flags & VM_GROWSDOWN))
2180 start = vma->vm_start;
2181 if (expand_stack(vma, addr))
2183 if (vma->vm_flags & VM_LOCKED)
2184 populate_vma_page_range(vma, addr, start, NULL);
2189 EXPORT_SYMBOL_GPL(find_extend_vma);
2192 * Ok - we have the memory areas we should free on a maple tree so release them,
2193 * and do the vma updates.
2195 * Called with the mm semaphore held.
2197 static inline void remove_mt(struct mm_struct *mm, struct ma_state *mas)
2199 unsigned long nr_accounted = 0;
2200 struct vm_area_struct *vma;
2202 /* Update high watermark before we lower total_vm */
2203 update_hiwater_vm(mm);
2204 mas_for_each(mas, vma, ULONG_MAX) {
2205 long nrpages = vma_pages(vma);
2207 if (vma->vm_flags & VM_ACCOUNT)
2208 nr_accounted += nrpages;
2209 vm_stat_account(mm, vma->vm_flags, -nrpages);
2210 remove_vma(vma, false);
2212 vm_unacct_memory(nr_accounted);
2217 * Get rid of page table information in the indicated region.
2219 * Called with the mm semaphore held.
2221 static void unmap_region(struct mm_struct *mm, struct maple_tree *mt,
2222 struct vm_area_struct *vma, struct vm_area_struct *prev,
2223 struct vm_area_struct *next,
2224 unsigned long start, unsigned long end, bool mm_wr_locked)
2226 struct mmu_gather tlb;
2229 tlb_gather_mmu(&tlb, mm);
2230 update_hiwater_rss(mm);
2231 unmap_vmas(&tlb, mt, vma, start, end, mm_wr_locked);
2232 free_pgtables(&tlb, mt, vma, prev ? prev->vm_end : FIRST_USER_ADDRESS,
2233 next ? next->vm_start : USER_PGTABLES_CEILING,
2235 tlb_finish_mmu(&tlb);
2239 * __split_vma() bypasses sysctl_max_map_count checking. We use this where it
2240 * has already been checked or doesn't make sense to fail.
2241 * VMA Iterator will point to the end VMA.
2243 int __split_vma(struct vma_iterator *vmi, struct vm_area_struct *vma,
2244 unsigned long addr, int new_below)
2246 struct vma_prepare vp;
2247 struct vm_area_struct *new;
2250 validate_mm(vma->vm_mm);
2252 WARN_ON(vma->vm_start >= addr);
2253 WARN_ON(vma->vm_end <= addr);
2255 if (vma->vm_ops && vma->vm_ops->may_split) {
2256 err = vma->vm_ops->may_split(vma, addr);
2261 new = vm_area_dup(vma);
2266 if (vma_iter_prealloc(vmi))
2272 new->vm_start = addr;
2273 new->vm_pgoff += ((addr - vma->vm_start) >> PAGE_SHIFT);
2276 err = vma_dup_policy(vma, new);
2280 err = anon_vma_clone(new, vma);
2285 get_file(new->vm_file);
2287 if (new->vm_ops && new->vm_ops->open)
2288 new->vm_ops->open(new);
2290 init_vma_prep(&vp, vma);
2293 vma_adjust_trans_huge(vma, vma->vm_start, addr, 0);
2296 vma->vm_start = addr;
2297 vma->vm_pgoff += (addr - new->vm_start) >> PAGE_SHIFT;
2302 /* vma_complete stores the new vma */
2303 vma_complete(&vp, vmi, vma->vm_mm);
2308 validate_mm(vma->vm_mm);
2312 mpol_put(vma_policy(new));
2317 validate_mm(vma->vm_mm);
2322 * Split a vma into two pieces at address 'addr', a new vma is allocated
2323 * either for the first part or the tail.
2325 int split_vma(struct vma_iterator *vmi, struct vm_area_struct *vma,
2326 unsigned long addr, int new_below)
2328 if (vma->vm_mm->map_count >= sysctl_max_map_count)
2331 return __split_vma(vmi, vma, addr, new_below);
2335 * do_vmi_align_munmap() - munmap the aligned region from @start to @end.
2336 * @vmi: The vma iterator
2337 * @vma: The starting vm_area_struct
2338 * @mm: The mm_struct
2339 * @start: The aligned start address to munmap.
2340 * @end: The aligned end address to munmap.
2341 * @uf: The userfaultfd list_head
2342 * @downgrade: Set to true to attempt a write downgrade of the mmap_lock
2344 * If @downgrade is true, check return code for potential release of the lock.
2347 do_vmi_align_munmap(struct vma_iterator *vmi, struct vm_area_struct *vma,
2348 struct mm_struct *mm, unsigned long start,
2349 unsigned long end, struct list_head *uf, bool downgrade)
2351 struct vm_area_struct *prev, *next = NULL;
2352 struct maple_tree mt_detach;
2354 int error = -ENOMEM;
2355 unsigned long locked_vm = 0;
2356 MA_STATE(mas_detach, &mt_detach, 0, 0);
2357 mt_init_flags(&mt_detach, vmi->mas.tree->ma_flags & MT_FLAGS_LOCK_MASK);
2358 mt_set_external_lock(&mt_detach, &mm->mmap_lock);
2361 * If we need to split any vma, do it now to save pain later.
2363 * Note: mremap's move_vma VM_ACCOUNT handling assumes a partially
2364 * unmapped vm_area_struct will remain in use: so lower split_vma
2365 * places tmp vma above, and higher split_vma places tmp vma below.
2368 /* Does it split the first one? */
2369 if (start > vma->vm_start) {
2372 * Make sure that map_count on return from munmap() will
2373 * not exceed its limit; but let map_count go just above
2374 * its limit temporarily, to help free resources as expected.
2376 if (end < vma->vm_end && mm->map_count >= sysctl_max_map_count)
2377 goto map_count_exceeded;
2379 error = __split_vma(vmi, vma, start, 0);
2381 goto start_split_failed;
2383 vma = vma_iter_load(vmi);
2386 prev = vma_prev(vmi);
2387 if (unlikely((!prev)))
2388 vma_iter_set(vmi, start);
2391 * Detach a range of VMAs from the mm. Using next as a temp variable as
2392 * it is always overwritten.
2394 for_each_vma_range(*vmi, next, end) {
2395 /* Does it split the end? */
2396 if (next->vm_end > end) {
2397 error = __split_vma(vmi, next, end, 0);
2399 goto end_split_failed;
2401 vma_start_write(next);
2402 mas_set_range(&mas_detach, next->vm_start, next->vm_end - 1);
2403 if (mas_store_gfp(&mas_detach, next, GFP_KERNEL))
2404 goto munmap_gather_failed;
2405 vma_mark_detached(next, true);
2406 if (next->vm_flags & VM_LOCKED)
2407 locked_vm += vma_pages(next);
2412 * If userfaultfd_unmap_prep returns an error the vmas
2413 * will remain split, but userland will get a
2414 * highly unexpected error anyway. This is no
2415 * different than the case where the first of the two
2416 * __split_vma fails, but we don't undo the first
2417 * split, despite we could. This is unlikely enough
2418 * failure that it's not worth optimizing it for.
2420 error = userfaultfd_unmap_prep(next, start, end, uf);
2423 goto userfaultfd_error;
2425 #ifdef CONFIG_DEBUG_VM_MAPLE_TREE
2426 BUG_ON(next->vm_start < start);
2427 BUG_ON(next->vm_start > end);
2431 if (vma_iter_end(vmi) > end)
2432 next = vma_iter_load(vmi);
2435 next = vma_next(vmi);
2437 #if defined(CONFIG_DEBUG_VM_MAPLE_TREE)
2438 /* Make sure no VMAs are about to be lost. */
2440 MA_STATE(test, &mt_detach, start, end - 1);
2441 struct vm_area_struct *vma_mas, *vma_test;
2444 vma_iter_set(vmi, start);
2446 vma_test = mas_find(&test, end - 1);
2447 for_each_vma_range(*vmi, vma_mas, end) {
2448 BUG_ON(vma_mas != vma_test);
2450 vma_test = mas_next(&test, end - 1);
2453 BUG_ON(count != test_count);
2456 /* Point of no return */
2458 vma_iter_set(vmi, start);
2459 if (vma_iter_clear_gfp(vmi, start, end, GFP_KERNEL))
2460 goto clear_tree_failed;
2462 mm->locked_vm -= locked_vm;
2463 mm->map_count -= count;
2465 * Do not downgrade mmap_lock if we are next to VM_GROWSDOWN or
2466 * VM_GROWSUP VMA. Such VMAs can change their size under
2467 * down_read(mmap_lock) and collide with the VMA we are about to unmap.
2470 if (next && (next->vm_flags & VM_GROWSDOWN))
2472 else if (prev && (prev->vm_flags & VM_GROWSUP))
2475 mmap_write_downgrade(mm);
2479 * We can free page tables without write-locking mmap_lock because VMAs
2480 * were isolated before we downgraded mmap_lock.
2482 unmap_region(mm, &mt_detach, vma, prev, next, start, end, !downgrade);
2483 /* Statistics and freeing VMAs */
2484 mas_set(&mas_detach, start);
2485 remove_mt(mm, &mas_detach);
2486 __mt_destroy(&mt_detach);
2490 return downgrade ? 1 : 0;
2494 munmap_gather_failed:
2496 mas_set(&mas_detach, 0);
2497 mas_for_each(&mas_detach, next, end)
2498 vma_mark_detached(next, false);
2500 __mt_destroy(&mt_detach);
2507 * do_vmi_munmap() - munmap a given range.
2508 * @vmi: The vma iterator
2509 * @mm: The mm_struct
2510 * @start: The start address to munmap
2511 * @len: The length of the range to munmap
2512 * @uf: The userfaultfd list_head
2513 * @downgrade: set to true if the user wants to attempt to write_downgrade the
2516 * This function takes a @mas that is either pointing to the previous VMA or set
2517 * to MA_START and sets it up to remove the mapping(s). The @len will be
2518 * aligned and any arch_unmap work will be preformed.
2520 * Returns: -EINVAL on failure, 1 on success and unlock, 0 otherwise.
2522 int do_vmi_munmap(struct vma_iterator *vmi, struct mm_struct *mm,
2523 unsigned long start, size_t len, struct list_head *uf,
2527 struct vm_area_struct *vma;
2529 if ((offset_in_page(start)) || start > TASK_SIZE || len > TASK_SIZE-start)
2532 end = start + PAGE_ALIGN(len);
2536 /* arch_unmap() might do unmaps itself. */
2537 arch_unmap(mm, start, end);
2539 /* Find the first overlapping VMA */
2540 vma = vma_find(vmi, end);
2544 return do_vmi_align_munmap(vmi, vma, mm, start, end, uf, downgrade);
2547 /* do_munmap() - Wrapper function for non-maple tree aware do_munmap() calls.
2548 * @mm: The mm_struct
2549 * @start: The start address to munmap
2550 * @len: The length to be munmapped.
2551 * @uf: The userfaultfd list_head
2553 int do_munmap(struct mm_struct *mm, unsigned long start, size_t len,
2554 struct list_head *uf)
2556 VMA_ITERATOR(vmi, mm, start);
2558 return do_vmi_munmap(&vmi, mm, start, len, uf, false);
2561 unsigned long mmap_region(struct file *file, unsigned long addr,
2562 unsigned long len, vm_flags_t vm_flags, unsigned long pgoff,
2563 struct list_head *uf)
2565 struct mm_struct *mm = current->mm;
2566 struct vm_area_struct *vma = NULL;
2567 struct vm_area_struct *next, *prev, *merge;
2568 pgoff_t pglen = len >> PAGE_SHIFT;
2569 unsigned long charged = 0;
2570 unsigned long end = addr + len;
2571 unsigned long merge_start = addr, merge_end = end;
2574 VMA_ITERATOR(vmi, mm, addr);
2576 /* Check against address space limit. */
2577 if (!may_expand_vm(mm, vm_flags, len >> PAGE_SHIFT)) {
2578 unsigned long nr_pages;
2581 * MAP_FIXED may remove pages of mappings that intersects with
2582 * requested mapping. Account for the pages it would unmap.
2584 nr_pages = count_vma_pages_range(mm, addr, end);
2586 if (!may_expand_vm(mm, vm_flags,
2587 (len >> PAGE_SHIFT) - nr_pages))
2591 /* Unmap any existing mapping in the area */
2592 if (do_vmi_munmap(&vmi, mm, addr, len, uf, false))
2596 * Private writable mapping: check memory availability
2598 if (accountable_mapping(file, vm_flags)) {
2599 charged = len >> PAGE_SHIFT;
2600 if (security_vm_enough_memory_mm(mm, charged))
2602 vm_flags |= VM_ACCOUNT;
2605 next = vma_next(&vmi);
2606 prev = vma_prev(&vmi);
2607 if (vm_flags & VM_SPECIAL)
2610 /* Attempt to expand an old mapping */
2612 if (next && next->vm_start == end && !vma_policy(next) &&
2613 can_vma_merge_before(next, vm_flags, NULL, file, pgoff+pglen,
2614 NULL_VM_UFFD_CTX, NULL)) {
2615 merge_end = next->vm_end;
2617 vm_pgoff = next->vm_pgoff - pglen;
2621 if (prev && prev->vm_end == addr && !vma_policy(prev) &&
2622 (vma ? can_vma_merge_after(prev, vm_flags, vma->anon_vma, file,
2623 pgoff, vma->vm_userfaultfd_ctx, NULL) :
2624 can_vma_merge_after(prev, vm_flags, NULL, file, pgoff,
2625 NULL_VM_UFFD_CTX, NULL))) {
2626 merge_start = prev->vm_start;
2628 vm_pgoff = prev->vm_pgoff;
2632 /* Actually expand, if possible */
2634 !vma_expand(&vmi, vma, merge_start, merge_end, vm_pgoff, next)) {
2635 khugepaged_enter_vma(vma, vm_flags);
2641 vma_iter_next_range(&vmi);
2644 * Determine the object being mapped and call the appropriate
2645 * specific mapper. the address has already been validated, but
2646 * not unmapped, but the maps are removed from the list.
2648 vma = vm_area_alloc(mm);
2654 vma_iter_set(&vmi, addr);
2655 vma->vm_start = addr;
2657 vm_flags_init(vma, vm_flags);
2658 vma->vm_page_prot = vm_get_page_prot(vm_flags);
2659 vma->vm_pgoff = pgoff;
2662 if (vm_flags & VM_SHARED) {
2663 error = mapping_map_writable(file->f_mapping);
2668 vma->vm_file = get_file(file);
2669 error = call_mmap(file, vma);
2671 goto unmap_and_free_vma;
2674 * Expansion is handled above, merging is handled below.
2675 * Drivers should not alter the address of the VMA.
2678 if (WARN_ON((addr != vma->vm_start)))
2679 goto close_and_free_vma;
2681 vma_iter_set(&vmi, addr);
2683 * If vm_flags changed after call_mmap(), we should try merge
2684 * vma again as we may succeed this time.
2686 if (unlikely(vm_flags != vma->vm_flags && prev)) {
2687 merge = vma_merge(&vmi, mm, prev, vma->vm_start,
2688 vma->vm_end, vma->vm_flags, NULL,
2689 vma->vm_file, vma->vm_pgoff, NULL,
2690 NULL_VM_UFFD_CTX, NULL);
2693 * ->mmap() can change vma->vm_file and fput
2694 * the original file. So fput the vma->vm_file
2695 * here or we would add an extra fput for file
2696 * and cause general protection fault
2702 /* Update vm_flags to pick up the change. */
2703 vm_flags = vma->vm_flags;
2704 goto unmap_writable;
2708 vm_flags = vma->vm_flags;
2709 } else if (vm_flags & VM_SHARED) {
2710 error = shmem_zero_setup(vma);
2714 vma_set_anonymous(vma);
2717 if (map_deny_write_exec(vma, vma->vm_flags)) {
2719 goto close_and_free_vma;
2722 /* Allow architectures to sanity-check the vm_flags */
2724 if (!arch_validate_flags(vma->vm_flags))
2725 goto close_and_free_vma;
2728 if (vma_iter_prealloc(&vmi))
2729 goto close_and_free_vma;
2732 i_mmap_lock_write(vma->vm_file->f_mapping);
2734 vma_iter_store(&vmi, vma);
2737 if (vma->vm_flags & VM_SHARED)
2738 mapping_allow_writable(vma->vm_file->f_mapping);
2740 flush_dcache_mmap_lock(vma->vm_file->f_mapping);
2741 vma_interval_tree_insert(vma, &vma->vm_file->f_mapping->i_mmap);
2742 flush_dcache_mmap_unlock(vma->vm_file->f_mapping);
2743 i_mmap_unlock_write(vma->vm_file->f_mapping);
2747 * vma_merge() calls khugepaged_enter_vma() either, the below
2748 * call covers the non-merge case.
2750 khugepaged_enter_vma(vma, vma->vm_flags);
2752 /* Once vma denies write, undo our temporary denial count */
2754 if (file && vm_flags & VM_SHARED)
2755 mapping_unmap_writable(file->f_mapping);
2756 file = vma->vm_file;
2759 perf_event_mmap(vma);
2761 vm_stat_account(mm, vm_flags, len >> PAGE_SHIFT);
2762 if (vm_flags & VM_LOCKED) {
2763 if ((vm_flags & VM_SPECIAL) || vma_is_dax(vma) ||
2764 is_vm_hugetlb_page(vma) ||
2765 vma == get_gate_vma(current->mm))
2766 vm_flags_clear(vma, VM_LOCKED_MASK);
2768 mm->locked_vm += (len >> PAGE_SHIFT);
2775 * New (or expanded) vma always get soft dirty status.
2776 * Otherwise user-space soft-dirty page tracker won't
2777 * be able to distinguish situation when vma area unmapped,
2778 * then new mapped in-place (which must be aimed as
2779 * a completely new data area).
2781 vm_flags_set(vma, VM_SOFTDIRTY);
2783 vma_set_page_prot(vma);
2789 if (file && vma->vm_ops && vma->vm_ops->close)
2790 vma->vm_ops->close(vma);
2792 if (file || vma->vm_file) {
2795 vma->vm_file = NULL;
2797 /* Undo any partial mapping done by a device driver. */
2798 unmap_region(mm, &mm->mm_mt, vma, prev, next, vma->vm_start,
2801 if (file && (vm_flags & VM_SHARED))
2802 mapping_unmap_writable(file->f_mapping);
2807 vm_unacct_memory(charged);
2812 static int __vm_munmap(unsigned long start, size_t len, bool downgrade)
2815 struct mm_struct *mm = current->mm;
2817 VMA_ITERATOR(vmi, mm, start);
2819 if (mmap_write_lock_killable(mm))
2822 ret = do_vmi_munmap(&vmi, mm, start, len, &uf, downgrade);
2824 * Returning 1 indicates mmap_lock is downgraded.
2825 * But 1 is not legal return value of vm_munmap() and munmap(), reset
2826 * it to 0 before return.
2829 mmap_read_unlock(mm);
2832 mmap_write_unlock(mm);
2834 userfaultfd_unmap_complete(mm, &uf);
2838 int vm_munmap(unsigned long start, size_t len)
2840 return __vm_munmap(start, len, false);
2842 EXPORT_SYMBOL(vm_munmap);
2844 SYSCALL_DEFINE2(munmap, unsigned long, addr, size_t, len)
2846 addr = untagged_addr(addr);
2847 return __vm_munmap(addr, len, true);
2852 * Emulation of deprecated remap_file_pages() syscall.
2854 SYSCALL_DEFINE5(remap_file_pages, unsigned long, start, unsigned long, size,
2855 unsigned long, prot, unsigned long, pgoff, unsigned long, flags)
2858 struct mm_struct *mm = current->mm;
2859 struct vm_area_struct *vma;
2860 unsigned long populate = 0;
2861 unsigned long ret = -EINVAL;
2864 pr_warn_once("%s (%d) uses deprecated remap_file_pages() syscall. See Documentation/mm/remap_file_pages.rst.\n",
2865 current->comm, current->pid);
2869 start = start & PAGE_MASK;
2870 size = size & PAGE_MASK;
2872 if (start + size <= start)
2875 /* Does pgoff wrap? */
2876 if (pgoff + (size >> PAGE_SHIFT) < pgoff)
2879 if (mmap_write_lock_killable(mm))
2882 vma = vma_lookup(mm, start);
2884 if (!vma || !(vma->vm_flags & VM_SHARED))
2887 if (start + size > vma->vm_end) {
2888 VMA_ITERATOR(vmi, mm, vma->vm_end);
2889 struct vm_area_struct *next, *prev = vma;
2891 for_each_vma_range(vmi, next, start + size) {
2892 /* hole between vmas ? */
2893 if (next->vm_start != prev->vm_end)
2896 if (next->vm_file != vma->vm_file)
2899 if (next->vm_flags != vma->vm_flags)
2902 if (start + size <= next->vm_end)
2912 prot |= vma->vm_flags & VM_READ ? PROT_READ : 0;
2913 prot |= vma->vm_flags & VM_WRITE ? PROT_WRITE : 0;
2914 prot |= vma->vm_flags & VM_EXEC ? PROT_EXEC : 0;
2916 flags &= MAP_NONBLOCK;
2917 flags |= MAP_SHARED | MAP_FIXED | MAP_POPULATE;
2918 if (vma->vm_flags & VM_LOCKED)
2919 flags |= MAP_LOCKED;
2921 file = get_file(vma->vm_file);
2922 ret = do_mmap(vma->vm_file, start, size,
2923 prot, flags, pgoff, &populate, NULL);
2926 mmap_write_unlock(mm);
2928 mm_populate(ret, populate);
2929 if (!IS_ERR_VALUE(ret))
2935 * do_vma_munmap() - Unmap a full or partial vma.
2936 * @vmi: The vma iterator pointing at the vma
2937 * @vma: The first vma to be munmapped
2938 * @start: the start of the address to unmap
2939 * @end: The end of the address to unmap
2940 * @uf: The userfaultfd list_head
2941 * @downgrade: Attempt to downgrade or not
2943 * Returns: 0 on success and not downgraded, 1 on success and downgraded.
2944 * unmaps a VMA mapping when the vma iterator is already in position.
2945 * Does not handle alignment.
2947 int do_vma_munmap(struct vma_iterator *vmi, struct vm_area_struct *vma,
2948 unsigned long start, unsigned long end,
2949 struct list_head *uf, bool downgrade)
2951 struct mm_struct *mm = vma->vm_mm;
2954 arch_unmap(mm, start, end);
2955 ret = do_vmi_align_munmap(vmi, vma, mm, start, end, uf, downgrade);
2961 * do_brk_flags() - Increase the brk vma if the flags match.
2962 * @vmi: The vma iterator
2963 * @addr: The start address
2964 * @len: The length of the increase
2966 * @flags: The VMA Flags
2968 * Extend the brk VMA from addr to addr + len. If the VMA is NULL or the flags
2969 * do not match then create a new anonymous VMA. Eventually we may be able to
2970 * do some brk-specific accounting here.
2972 static int do_brk_flags(struct vma_iterator *vmi, struct vm_area_struct *vma,
2973 unsigned long addr, unsigned long len, unsigned long flags)
2975 struct mm_struct *mm = current->mm;
2976 struct vma_prepare vp;
2980 * Check against address space limits by the changed size
2981 * Note: This happens *after* clearing old mappings in some code paths.
2983 flags |= VM_DATA_DEFAULT_FLAGS | VM_ACCOUNT | mm->def_flags;
2984 if (!may_expand_vm(mm, flags, len >> PAGE_SHIFT))
2987 if (mm->map_count > sysctl_max_map_count)
2990 if (security_vm_enough_memory_mm(mm, len >> PAGE_SHIFT))
2994 * Expand the existing vma if possible; Note that singular lists do not
2995 * occur after forking, so the expand will only happen on new VMAs.
2997 if (vma && vma->vm_end == addr && !vma_policy(vma) &&
2998 can_vma_merge_after(vma, flags, NULL, NULL,
2999 addr >> PAGE_SHIFT, NULL_VM_UFFD_CTX, NULL)) {
3000 if (vma_iter_prealloc(vmi))
3003 init_vma_prep(&vp, vma);
3005 vma_adjust_trans_huge(vma, vma->vm_start, addr + len, 0);
3006 vma->vm_end = addr + len;
3007 vm_flags_set(vma, VM_SOFTDIRTY);
3008 vma_iter_store(vmi, vma);
3010 vma_complete(&vp, vmi, mm);
3011 khugepaged_enter_vma(vma, flags);
3015 /* create a vma struct for an anonymous mapping */
3016 vma = vm_area_alloc(mm);
3020 vma_set_anonymous(vma);
3021 vma->vm_start = addr;
3022 vma->vm_end = addr + len;
3023 vma->vm_pgoff = addr >> PAGE_SHIFT;
3024 vm_flags_init(vma, flags);
3025 vma->vm_page_prot = vm_get_page_prot(flags);
3026 if (vma_iter_store_gfp(vmi, vma, GFP_KERNEL))
3027 goto mas_store_fail;
3032 perf_event_mmap(vma);
3033 mm->total_vm += len >> PAGE_SHIFT;
3034 mm->data_vm += len >> PAGE_SHIFT;
3035 if (flags & VM_LOCKED)
3036 mm->locked_vm += (len >> PAGE_SHIFT);
3037 vm_flags_set(vma, VM_SOFTDIRTY);
3044 vm_unacct_memory(len >> PAGE_SHIFT);
3048 int vm_brk_flags(unsigned long addr, unsigned long request, unsigned long flags)
3050 struct mm_struct *mm = current->mm;
3051 struct vm_area_struct *vma = NULL;
3056 VMA_ITERATOR(vmi, mm, addr);
3058 len = PAGE_ALIGN(request);
3064 if (mmap_write_lock_killable(mm))
3067 /* Until we need other flags, refuse anything except VM_EXEC. */
3068 if ((flags & (~VM_EXEC)) != 0)
3071 ret = check_brk_limits(addr, len);
3075 ret = do_vmi_munmap(&vmi, mm, addr, len, &uf, 0);
3079 vma = vma_prev(&vmi);
3080 ret = do_brk_flags(&vmi, vma, addr, len, flags);
3081 populate = ((mm->def_flags & VM_LOCKED) != 0);
3082 mmap_write_unlock(mm);
3083 userfaultfd_unmap_complete(mm, &uf);
3084 if (populate && !ret)
3085 mm_populate(addr, len);
3090 mmap_write_unlock(mm);
3093 EXPORT_SYMBOL(vm_brk_flags);
3095 int vm_brk(unsigned long addr, unsigned long len)
3097 return vm_brk_flags(addr, len, 0);
3099 EXPORT_SYMBOL(vm_brk);
3101 /* Release all mmaps. */
3102 void exit_mmap(struct mm_struct *mm)
3104 struct mmu_gather tlb;
3105 struct vm_area_struct *vma;
3106 unsigned long nr_accounted = 0;
3107 MA_STATE(mas, &mm->mm_mt, 0, 0);
3110 /* mm's last user has gone, and its about to be pulled down */
3111 mmu_notifier_release(mm);
3116 vma = mas_find(&mas, ULONG_MAX);
3118 /* Can happen if dup_mmap() received an OOM */
3119 mmap_read_unlock(mm);
3125 tlb_gather_mmu_fullmm(&tlb, mm);
3126 /* update_hiwater_rss(mm) here? but nobody should be looking */
3127 /* Use ULONG_MAX here to ensure all VMAs in the mm are unmapped */
3128 unmap_vmas(&tlb, &mm->mm_mt, vma, 0, ULONG_MAX, false);
3129 mmap_read_unlock(mm);
3132 * Set MMF_OOM_SKIP to hide this task from the oom killer/reaper
3133 * because the memory has been already freed.
3135 set_bit(MMF_OOM_SKIP, &mm->flags);
3136 mmap_write_lock(mm);
3137 mt_clear_in_rcu(&mm->mm_mt);
3138 free_pgtables(&tlb, &mm->mm_mt, vma, FIRST_USER_ADDRESS,
3139 USER_PGTABLES_CEILING, true);
3140 tlb_finish_mmu(&tlb);
3143 * Walk the list again, actually closing and freeing it, with preemption
3144 * enabled, without holding any MM locks besides the unreachable
3148 if (vma->vm_flags & VM_ACCOUNT)
3149 nr_accounted += vma_pages(vma);
3150 remove_vma(vma, true);
3153 } while ((vma = mas_find(&mas, ULONG_MAX)) != NULL);
3155 BUG_ON(count != mm->map_count);
3157 trace_exit_mmap(mm);
3158 __mt_destroy(&mm->mm_mt);
3159 mmap_write_unlock(mm);
3160 vm_unacct_memory(nr_accounted);
3163 /* Insert vm structure into process list sorted by address
3164 * and into the inode's i_mmap tree. If vm_file is non-NULL
3165 * then i_mmap_rwsem is taken here.
3167 int insert_vm_struct(struct mm_struct *mm, struct vm_area_struct *vma)
3169 unsigned long charged = vma_pages(vma);
3172 if (find_vma_intersection(mm, vma->vm_start, vma->vm_end))
3175 if ((vma->vm_flags & VM_ACCOUNT) &&
3176 security_vm_enough_memory_mm(mm, charged))
3180 * The vm_pgoff of a purely anonymous vma should be irrelevant
3181 * until its first write fault, when page's anon_vma and index
3182 * are set. But now set the vm_pgoff it will almost certainly
3183 * end up with (unless mremap moves it elsewhere before that
3184 * first wfault), so /proc/pid/maps tells a consistent story.
3186 * By setting it to reflect the virtual start address of the
3187 * vma, merges and splits can happen in a seamless way, just
3188 * using the existing file pgoff checks and manipulations.
3189 * Similarly in do_mmap and in do_brk_flags.
3191 if (vma_is_anonymous(vma)) {
3192 BUG_ON(vma->anon_vma);
3193 vma->vm_pgoff = vma->vm_start >> PAGE_SHIFT;
3196 if (vma_link(mm, vma)) {
3197 vm_unacct_memory(charged);
3205 * Copy the vma structure to a new location in the same mm,
3206 * prior to moving page table entries, to effect an mremap move.
3208 struct vm_area_struct *copy_vma(struct vm_area_struct **vmap,
3209 unsigned long addr, unsigned long len, pgoff_t pgoff,
3210 bool *need_rmap_locks)
3212 struct vm_area_struct *vma = *vmap;
3213 unsigned long vma_start = vma->vm_start;
3214 struct mm_struct *mm = vma->vm_mm;
3215 struct vm_area_struct *new_vma, *prev;
3216 bool faulted_in_anon_vma = true;
3217 VMA_ITERATOR(vmi, mm, addr);
3221 * If anonymous vma has not yet been faulted, update new pgoff
3222 * to match new location, to increase its chance of merging.
3224 if (unlikely(vma_is_anonymous(vma) && !vma->anon_vma)) {
3225 pgoff = addr >> PAGE_SHIFT;
3226 faulted_in_anon_vma = false;
3229 new_vma = find_vma_prev(mm, addr, &prev);
3230 if (new_vma && new_vma->vm_start < addr + len)
3231 return NULL; /* should never get here */
3233 new_vma = vma_merge(&vmi, mm, prev, addr, addr + len, vma->vm_flags,
3234 vma->anon_vma, vma->vm_file, pgoff, vma_policy(vma),
3235 vma->vm_userfaultfd_ctx, anon_vma_name(vma));
3238 * Source vma may have been merged into new_vma
3240 if (unlikely(vma_start >= new_vma->vm_start &&
3241 vma_start < new_vma->vm_end)) {
3243 * The only way we can get a vma_merge with
3244 * self during an mremap is if the vma hasn't
3245 * been faulted in yet and we were allowed to
3246 * reset the dst vma->vm_pgoff to the
3247 * destination address of the mremap to allow
3248 * the merge to happen. mremap must change the
3249 * vm_pgoff linearity between src and dst vmas
3250 * (in turn preventing a vma_merge) to be
3251 * safe. It is only safe to keep the vm_pgoff
3252 * linear if there are no pages mapped yet.
3254 VM_BUG_ON_VMA(faulted_in_anon_vma, new_vma);
3255 *vmap = vma = new_vma;
3257 *need_rmap_locks = (new_vma->vm_pgoff <= vma->vm_pgoff);
3259 new_vma = vm_area_dup(vma);
3262 new_vma->vm_start = addr;
3263 new_vma->vm_end = addr + len;
3264 new_vma->vm_pgoff = pgoff;
3265 if (vma_dup_policy(vma, new_vma))
3267 if (anon_vma_clone(new_vma, vma))
3268 goto out_free_mempol;
3269 if (new_vma->vm_file)
3270 get_file(new_vma->vm_file);
3271 if (new_vma->vm_ops && new_vma->vm_ops->open)
3272 new_vma->vm_ops->open(new_vma);
3273 vma_start_write(new_vma);
3274 if (vma_link(mm, new_vma))
3276 *need_rmap_locks = false;
3282 if (new_vma->vm_ops && new_vma->vm_ops->close)
3283 new_vma->vm_ops->close(new_vma);
3285 if (new_vma->vm_file)
3286 fput(new_vma->vm_file);
3288 unlink_anon_vmas(new_vma);
3290 mpol_put(vma_policy(new_vma));
3292 vm_area_free(new_vma);
3299 * Return true if the calling process may expand its vm space by the passed
3302 bool may_expand_vm(struct mm_struct *mm, vm_flags_t flags, unsigned long npages)
3304 if (mm->total_vm + npages > rlimit(RLIMIT_AS) >> PAGE_SHIFT)
3307 if (is_data_mapping(flags) &&
3308 mm->data_vm + npages > rlimit(RLIMIT_DATA) >> PAGE_SHIFT) {
3309 /* Workaround for Valgrind */
3310 if (rlimit(RLIMIT_DATA) == 0 &&
3311 mm->data_vm + npages <= rlimit_max(RLIMIT_DATA) >> PAGE_SHIFT)
3314 pr_warn_once("%s (%d): VmData %lu exceed data ulimit %lu. Update limits%s.\n",
3315 current->comm, current->pid,
3316 (mm->data_vm + npages) << PAGE_SHIFT,
3317 rlimit(RLIMIT_DATA),
3318 ignore_rlimit_data ? "" : " or use boot option ignore_rlimit_data");
3320 if (!ignore_rlimit_data)
3327 void vm_stat_account(struct mm_struct *mm, vm_flags_t flags, long npages)
3329 WRITE_ONCE(mm->total_vm, READ_ONCE(mm->total_vm)+npages);
3331 if (is_exec_mapping(flags))
3332 mm->exec_vm += npages;
3333 else if (is_stack_mapping(flags))
3334 mm->stack_vm += npages;
3335 else if (is_data_mapping(flags))
3336 mm->data_vm += npages;
3339 static vm_fault_t special_mapping_fault(struct vm_fault *vmf);
3342 * Having a close hook prevents vma merging regardless of flags.
3344 static void special_mapping_close(struct vm_area_struct *vma)
3348 static const char *special_mapping_name(struct vm_area_struct *vma)
3350 return ((struct vm_special_mapping *)vma->vm_private_data)->name;
3353 static int special_mapping_mremap(struct vm_area_struct *new_vma)
3355 struct vm_special_mapping *sm = new_vma->vm_private_data;
3357 if (WARN_ON_ONCE(current->mm != new_vma->vm_mm))
3361 return sm->mremap(sm, new_vma);
3366 static int special_mapping_split(struct vm_area_struct *vma, unsigned long addr)
3369 * Forbid splitting special mappings - kernel has expectations over
3370 * the number of pages in mapping. Together with VM_DONTEXPAND
3371 * the size of vma should stay the same over the special mapping's
3377 static const struct vm_operations_struct special_mapping_vmops = {
3378 .close = special_mapping_close,
3379 .fault = special_mapping_fault,
3380 .mremap = special_mapping_mremap,
3381 .name = special_mapping_name,
3382 /* vDSO code relies that VVAR can't be accessed remotely */
3384 .may_split = special_mapping_split,
3387 static const struct vm_operations_struct legacy_special_mapping_vmops = {
3388 .close = special_mapping_close,
3389 .fault = special_mapping_fault,
3392 static vm_fault_t special_mapping_fault(struct vm_fault *vmf)
3394 struct vm_area_struct *vma = vmf->vma;
3396 struct page **pages;
3398 if (vma->vm_ops == &legacy_special_mapping_vmops) {
3399 pages = vma->vm_private_data;
3401 struct vm_special_mapping *sm = vma->vm_private_data;
3404 return sm->fault(sm, vmf->vma, vmf);
3409 for (pgoff = vmf->pgoff; pgoff && *pages; ++pages)
3413 struct page *page = *pages;
3419 return VM_FAULT_SIGBUS;
3422 static struct vm_area_struct *__install_special_mapping(
3423 struct mm_struct *mm,
3424 unsigned long addr, unsigned long len,
3425 unsigned long vm_flags, void *priv,
3426 const struct vm_operations_struct *ops)
3429 struct vm_area_struct *vma;
3432 vma = vm_area_alloc(mm);
3433 if (unlikely(vma == NULL))
3434 return ERR_PTR(-ENOMEM);
3436 vma->vm_start = addr;
3437 vma->vm_end = addr + len;
3439 vm_flags_init(vma, (vm_flags | mm->def_flags |
3440 VM_DONTEXPAND | VM_SOFTDIRTY) & ~VM_LOCKED_MASK);
3441 vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
3444 vma->vm_private_data = priv;
3446 ret = insert_vm_struct(mm, vma);
3450 vm_stat_account(mm, vma->vm_flags, len >> PAGE_SHIFT);
3452 perf_event_mmap(vma);
3460 return ERR_PTR(ret);
3463 bool vma_is_special_mapping(const struct vm_area_struct *vma,
3464 const struct vm_special_mapping *sm)
3466 return vma->vm_private_data == sm &&
3467 (vma->vm_ops == &special_mapping_vmops ||
3468 vma->vm_ops == &legacy_special_mapping_vmops);
3472 * Called with mm->mmap_lock held for writing.
3473 * Insert a new vma covering the given region, with the given flags.
3474 * Its pages are supplied by the given array of struct page *.
3475 * The array can be shorter than len >> PAGE_SHIFT if it's null-terminated.
3476 * The region past the last page supplied will always produce SIGBUS.
3477 * The array pointer and the pages it points to are assumed to stay alive
3478 * for as long as this mapping might exist.
3480 struct vm_area_struct *_install_special_mapping(
3481 struct mm_struct *mm,
3482 unsigned long addr, unsigned long len,
3483 unsigned long vm_flags, const struct vm_special_mapping *spec)
3485 return __install_special_mapping(mm, addr, len, vm_flags, (void *)spec,
3486 &special_mapping_vmops);
3489 int install_special_mapping(struct mm_struct *mm,
3490 unsigned long addr, unsigned long len,
3491 unsigned long vm_flags, struct page **pages)
3493 struct vm_area_struct *vma = __install_special_mapping(
3494 mm, addr, len, vm_flags, (void *)pages,
3495 &legacy_special_mapping_vmops);
3497 return PTR_ERR_OR_ZERO(vma);
3500 static DEFINE_MUTEX(mm_all_locks_mutex);
3502 static void vm_lock_anon_vma(struct mm_struct *mm, struct anon_vma *anon_vma)
3504 if (!test_bit(0, (unsigned long *) &anon_vma->root->rb_root.rb_root.rb_node)) {
3506 * The LSB of head.next can't change from under us
3507 * because we hold the mm_all_locks_mutex.
3509 down_write_nest_lock(&anon_vma->root->rwsem, &mm->mmap_lock);
3511 * We can safely modify head.next after taking the
3512 * anon_vma->root->rwsem. If some other vma in this mm shares
3513 * the same anon_vma we won't take it again.
3515 * No need of atomic instructions here, head.next
3516 * can't change from under us thanks to the
3517 * anon_vma->root->rwsem.
3519 if (__test_and_set_bit(0, (unsigned long *)
3520 &anon_vma->root->rb_root.rb_root.rb_node))
3525 static void vm_lock_mapping(struct mm_struct *mm, struct address_space *mapping)
3527 if (!test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) {
3529 * AS_MM_ALL_LOCKS can't change from under us because
3530 * we hold the mm_all_locks_mutex.
3532 * Operations on ->flags have to be atomic because
3533 * even if AS_MM_ALL_LOCKS is stable thanks to the
3534 * mm_all_locks_mutex, there may be other cpus
3535 * changing other bitflags in parallel to us.
3537 if (test_and_set_bit(AS_MM_ALL_LOCKS, &mapping->flags))
3539 down_write_nest_lock(&mapping->i_mmap_rwsem, &mm->mmap_lock);
3544 * This operation locks against the VM for all pte/vma/mm related
3545 * operations that could ever happen on a certain mm. This includes
3546 * vmtruncate, try_to_unmap, and all page faults.
3548 * The caller must take the mmap_lock in write mode before calling
3549 * mm_take_all_locks(). The caller isn't allowed to release the
3550 * mmap_lock until mm_drop_all_locks() returns.
3552 * mmap_lock in write mode is required in order to block all operations
3553 * that could modify pagetables and free pages without need of
3554 * altering the vma layout. It's also needed in write mode to avoid new
3555 * anon_vmas to be associated with existing vmas.
3557 * A single task can't take more than one mm_take_all_locks() in a row
3558 * or it would deadlock.
3560 * The LSB in anon_vma->rb_root.rb_node and the AS_MM_ALL_LOCKS bitflag in
3561 * mapping->flags avoid to take the same lock twice, if more than one
3562 * vma in this mm is backed by the same anon_vma or address_space.
3564 * We take locks in following order, accordingly to comment at beginning
3566 * - all hugetlbfs_i_mmap_rwsem_key locks (aka mapping->i_mmap_rwsem for
3568 * - all vmas marked locked
3569 * - all i_mmap_rwsem locks;
3570 * - all anon_vma->rwseml
3572 * We can take all locks within these types randomly because the VM code
3573 * doesn't nest them and we protected from parallel mm_take_all_locks() by
3574 * mm_all_locks_mutex.
3576 * mm_take_all_locks() and mm_drop_all_locks are expensive operations
3577 * that may have to take thousand of locks.
3579 * mm_take_all_locks() can fail if it's interrupted by signals.
3581 int mm_take_all_locks(struct mm_struct *mm)
3583 struct vm_area_struct *vma;
3584 struct anon_vma_chain *avc;
3585 MA_STATE(mas, &mm->mm_mt, 0, 0);
3587 mmap_assert_write_locked(mm);
3589 mutex_lock(&mm_all_locks_mutex);
3591 mas_for_each(&mas, vma, ULONG_MAX) {
3592 if (signal_pending(current))
3594 vma_start_write(vma);
3598 mas_for_each(&mas, vma, ULONG_MAX) {
3599 if (signal_pending(current))
3601 if (vma->vm_file && vma->vm_file->f_mapping &&
3602 is_vm_hugetlb_page(vma))
3603 vm_lock_mapping(mm, vma->vm_file->f_mapping);
3607 mas_for_each(&mas, vma, ULONG_MAX) {
3608 if (signal_pending(current))
3610 if (vma->vm_file && vma->vm_file->f_mapping &&
3611 !is_vm_hugetlb_page(vma))
3612 vm_lock_mapping(mm, vma->vm_file->f_mapping);
3616 mas_for_each(&mas, vma, ULONG_MAX) {
3617 if (signal_pending(current))
3620 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
3621 vm_lock_anon_vma(mm, avc->anon_vma);
3627 mm_drop_all_locks(mm);
3631 static void vm_unlock_anon_vma(struct anon_vma *anon_vma)
3633 if (test_bit(0, (unsigned long *) &anon_vma->root->rb_root.rb_root.rb_node)) {
3635 * The LSB of head.next can't change to 0 from under
3636 * us because we hold the mm_all_locks_mutex.
3638 * We must however clear the bitflag before unlocking
3639 * the vma so the users using the anon_vma->rb_root will
3640 * never see our bitflag.
3642 * No need of atomic instructions here, head.next
3643 * can't change from under us until we release the
3644 * anon_vma->root->rwsem.
3646 if (!__test_and_clear_bit(0, (unsigned long *)
3647 &anon_vma->root->rb_root.rb_root.rb_node))
3649 anon_vma_unlock_write(anon_vma);
3653 static void vm_unlock_mapping(struct address_space *mapping)
3655 if (test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) {
3657 * AS_MM_ALL_LOCKS can't change to 0 from under us
3658 * because we hold the mm_all_locks_mutex.
3660 i_mmap_unlock_write(mapping);
3661 if (!test_and_clear_bit(AS_MM_ALL_LOCKS,
3668 * The mmap_lock cannot be released by the caller until
3669 * mm_drop_all_locks() returns.
3671 void mm_drop_all_locks(struct mm_struct *mm)
3673 struct vm_area_struct *vma;
3674 struct anon_vma_chain *avc;
3675 MA_STATE(mas, &mm->mm_mt, 0, 0);
3677 mmap_assert_write_locked(mm);
3678 BUG_ON(!mutex_is_locked(&mm_all_locks_mutex));
3680 mas_for_each(&mas, vma, ULONG_MAX) {
3682 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
3683 vm_unlock_anon_vma(avc->anon_vma);
3684 if (vma->vm_file && vma->vm_file->f_mapping)
3685 vm_unlock_mapping(vma->vm_file->f_mapping);
3687 vma_end_write_all(mm);
3689 mutex_unlock(&mm_all_locks_mutex);
3693 * initialise the percpu counter for VM
3695 void __init mmap_init(void)
3699 ret = percpu_counter_init(&vm_committed_as, 0, GFP_KERNEL);
3704 * Initialise sysctl_user_reserve_kbytes.
3706 * This is intended to prevent a user from starting a single memory hogging
3707 * process, such that they cannot recover (kill the hog) in OVERCOMMIT_NEVER
3710 * The default value is min(3% of free memory, 128MB)
3711 * 128MB is enough to recover with sshd/login, bash, and top/kill.
3713 static int init_user_reserve(void)
3715 unsigned long free_kbytes;
3717 free_kbytes = global_zone_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
3719 sysctl_user_reserve_kbytes = min(free_kbytes / 32, 1UL << 17);
3722 subsys_initcall(init_user_reserve);
3725 * Initialise sysctl_admin_reserve_kbytes.
3727 * The purpose of sysctl_admin_reserve_kbytes is to allow the sys admin
3728 * to log in and kill a memory hogging process.
3730 * Systems with more than 256MB will reserve 8MB, enough to recover
3731 * with sshd, bash, and top in OVERCOMMIT_GUESS. Smaller systems will
3732 * only reserve 3% of free pages by default.
3734 static int init_admin_reserve(void)
3736 unsigned long free_kbytes;
3738 free_kbytes = global_zone_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
3740 sysctl_admin_reserve_kbytes = min(free_kbytes / 32, 1UL << 13);
3743 subsys_initcall(init_admin_reserve);
3746 * Reinititalise user and admin reserves if memory is added or removed.
3748 * The default user reserve max is 128MB, and the default max for the
3749 * admin reserve is 8MB. These are usually, but not always, enough to
3750 * enable recovery from a memory hogging process using login/sshd, a shell,
3751 * and tools like top. It may make sense to increase or even disable the
3752 * reserve depending on the existence of swap or variations in the recovery
3753 * tools. So, the admin may have changed them.
3755 * If memory is added and the reserves have been eliminated or increased above
3756 * the default max, then we'll trust the admin.
3758 * If memory is removed and there isn't enough free memory, then we
3759 * need to reset the reserves.
3761 * Otherwise keep the reserve set by the admin.
3763 static int reserve_mem_notifier(struct notifier_block *nb,
3764 unsigned long action, void *data)
3766 unsigned long tmp, free_kbytes;
3770 /* Default max is 128MB. Leave alone if modified by operator. */
3771 tmp = sysctl_user_reserve_kbytes;
3772 if (0 < tmp && tmp < (1UL << 17))
3773 init_user_reserve();
3775 /* Default max is 8MB. Leave alone if modified by operator. */
3776 tmp = sysctl_admin_reserve_kbytes;
3777 if (0 < tmp && tmp < (1UL << 13))
3778 init_admin_reserve();
3782 free_kbytes = global_zone_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
3784 if (sysctl_user_reserve_kbytes > free_kbytes) {
3785 init_user_reserve();
3786 pr_info("vm.user_reserve_kbytes reset to %lu\n",
3787 sysctl_user_reserve_kbytes);
3790 if (sysctl_admin_reserve_kbytes > free_kbytes) {
3791 init_admin_reserve();
3792 pr_info("vm.admin_reserve_kbytes reset to %lu\n",
3793 sysctl_admin_reserve_kbytes);
3802 static int __meminit init_reserve_notifier(void)
3804 if (hotplug_memory_notifier(reserve_mem_notifier, DEFAULT_CALLBACK_PRI))
3805 pr_err("Failed registering memory add/remove notifier for admin reserve\n");
3809 subsys_initcall(init_reserve_notifier);