Merge tag 'drm-msm-fixes-2023-03-09' of https://gitlab.freedesktop.org/drm/msm into...
[platform/kernel/linux-starfive.git] / mm / mmap.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * mm/mmap.c
4  *
5  * Written by obz.
6  *
7  * Address space accounting code        <alan@lxorguk.ukuu.org.uk>
8  */
9
10 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
11
12 #include <linux/kernel.h>
13 #include <linux/slab.h>
14 #include <linux/backing-dev.h>
15 #include <linux/mm.h>
16 #include <linux/mm_inline.h>
17 #include <linux/shm.h>
18 #include <linux/mman.h>
19 #include <linux/pagemap.h>
20 #include <linux/swap.h>
21 #include <linux/syscalls.h>
22 #include <linux/capability.h>
23 #include <linux/init.h>
24 #include <linux/file.h>
25 #include <linux/fs.h>
26 #include <linux/personality.h>
27 #include <linux/security.h>
28 #include <linux/hugetlb.h>
29 #include <linux/shmem_fs.h>
30 #include <linux/profile.h>
31 #include <linux/export.h>
32 #include <linux/mount.h>
33 #include <linux/mempolicy.h>
34 #include <linux/rmap.h>
35 #include <linux/mmu_notifier.h>
36 #include <linux/mmdebug.h>
37 #include <linux/perf_event.h>
38 #include <linux/audit.h>
39 #include <linux/khugepaged.h>
40 #include <linux/uprobes.h>
41 #include <linux/notifier.h>
42 #include <linux/memory.h>
43 #include <linux/printk.h>
44 #include <linux/userfaultfd_k.h>
45 #include <linux/moduleparam.h>
46 #include <linux/pkeys.h>
47 #include <linux/oom.h>
48 #include <linux/sched/mm.h>
49
50 #include <linux/uaccess.h>
51 #include <asm/cacheflush.h>
52 #include <asm/tlb.h>
53 #include <asm/mmu_context.h>
54
55 #define CREATE_TRACE_POINTS
56 #include <trace/events/mmap.h>
57
58 #include "internal.h"
59
60 #ifndef arch_mmap_check
61 #define arch_mmap_check(addr, len, flags)       (0)
62 #endif
63
64 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_BITS
65 const int mmap_rnd_bits_min = CONFIG_ARCH_MMAP_RND_BITS_MIN;
66 const int mmap_rnd_bits_max = CONFIG_ARCH_MMAP_RND_BITS_MAX;
67 int mmap_rnd_bits __read_mostly = CONFIG_ARCH_MMAP_RND_BITS;
68 #endif
69 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS
70 const int mmap_rnd_compat_bits_min = CONFIG_ARCH_MMAP_RND_COMPAT_BITS_MIN;
71 const int mmap_rnd_compat_bits_max = CONFIG_ARCH_MMAP_RND_COMPAT_BITS_MAX;
72 int mmap_rnd_compat_bits __read_mostly = CONFIG_ARCH_MMAP_RND_COMPAT_BITS;
73 #endif
74
75 static bool ignore_rlimit_data;
76 core_param(ignore_rlimit_data, ignore_rlimit_data, bool, 0644);
77
78 static void unmap_region(struct mm_struct *mm, struct maple_tree *mt,
79                 struct vm_area_struct *vma, struct vm_area_struct *prev,
80                 struct vm_area_struct *next, unsigned long start,
81                 unsigned long end, bool mm_wr_locked);
82
83 static pgprot_t vm_pgprot_modify(pgprot_t oldprot, unsigned long vm_flags)
84 {
85         return pgprot_modify(oldprot, vm_get_page_prot(vm_flags));
86 }
87
88 /* Update vma->vm_page_prot to reflect vma->vm_flags. */
89 void vma_set_page_prot(struct vm_area_struct *vma)
90 {
91         unsigned long vm_flags = vma->vm_flags;
92         pgprot_t vm_page_prot;
93
94         vm_page_prot = vm_pgprot_modify(vma->vm_page_prot, vm_flags);
95         if (vma_wants_writenotify(vma, vm_page_prot)) {
96                 vm_flags &= ~VM_SHARED;
97                 vm_page_prot = vm_pgprot_modify(vm_page_prot, vm_flags);
98         }
99         /* remove_protection_ptes reads vma->vm_page_prot without mmap_lock */
100         WRITE_ONCE(vma->vm_page_prot, vm_page_prot);
101 }
102
103 /*
104  * Requires inode->i_mapping->i_mmap_rwsem
105  */
106 static void __remove_shared_vm_struct(struct vm_area_struct *vma,
107                 struct file *file, struct address_space *mapping)
108 {
109         if (vma->vm_flags & VM_SHARED)
110                 mapping_unmap_writable(mapping);
111
112         flush_dcache_mmap_lock(mapping);
113         vma_interval_tree_remove(vma, &mapping->i_mmap);
114         flush_dcache_mmap_unlock(mapping);
115 }
116
117 /*
118  * Unlink a file-based vm structure from its interval tree, to hide
119  * vma from rmap and vmtruncate before freeing its page tables.
120  */
121 void unlink_file_vma(struct vm_area_struct *vma)
122 {
123         struct file *file = vma->vm_file;
124
125         if (file) {
126                 struct address_space *mapping = file->f_mapping;
127                 i_mmap_lock_write(mapping);
128                 __remove_shared_vm_struct(vma, file, mapping);
129                 i_mmap_unlock_write(mapping);
130         }
131 }
132
133 /*
134  * Close a vm structure and free it.
135  */
136 static void remove_vma(struct vm_area_struct *vma)
137 {
138         might_sleep();
139         if (vma->vm_ops && vma->vm_ops->close)
140                 vma->vm_ops->close(vma);
141         if (vma->vm_file)
142                 fput(vma->vm_file);
143         mpol_put(vma_policy(vma));
144         vm_area_free(vma);
145 }
146
147 static inline struct vm_area_struct *vma_prev_limit(struct vma_iterator *vmi,
148                                                     unsigned long min)
149 {
150         return mas_prev(&vmi->mas, min);
151 }
152
153 static inline int vma_iter_clear_gfp(struct vma_iterator *vmi,
154                         unsigned long start, unsigned long end, gfp_t gfp)
155 {
156         vmi->mas.index = start;
157         vmi->mas.last = end - 1;
158         mas_store_gfp(&vmi->mas, NULL, gfp);
159         if (unlikely(mas_is_err(&vmi->mas)))
160                 return -ENOMEM;
161
162         return 0;
163 }
164
165 /*
166  * check_brk_limits() - Use platform specific check of range & verify mlock
167  * limits.
168  * @addr: The address to check
169  * @len: The size of increase.
170  *
171  * Return: 0 on success.
172  */
173 static int check_brk_limits(unsigned long addr, unsigned long len)
174 {
175         unsigned long mapped_addr;
176
177         mapped_addr = get_unmapped_area(NULL, addr, len, 0, MAP_FIXED);
178         if (IS_ERR_VALUE(mapped_addr))
179                 return mapped_addr;
180
181         return mlock_future_check(current->mm, current->mm->def_flags, len);
182 }
183 static int do_brk_flags(struct vma_iterator *vmi, struct vm_area_struct *brkvma,
184                 unsigned long addr, unsigned long request, unsigned long flags);
185 SYSCALL_DEFINE1(brk, unsigned long, brk)
186 {
187         unsigned long newbrk, oldbrk, origbrk;
188         struct mm_struct *mm = current->mm;
189         struct vm_area_struct *brkvma, *next = NULL;
190         unsigned long min_brk;
191         bool populate;
192         bool downgraded = false;
193         LIST_HEAD(uf);
194         struct vma_iterator vmi;
195
196         if (mmap_write_lock_killable(mm))
197                 return -EINTR;
198
199         origbrk = mm->brk;
200
201 #ifdef CONFIG_COMPAT_BRK
202         /*
203          * CONFIG_COMPAT_BRK can still be overridden by setting
204          * randomize_va_space to 2, which will still cause mm->start_brk
205          * to be arbitrarily shifted
206          */
207         if (current->brk_randomized)
208                 min_brk = mm->start_brk;
209         else
210                 min_brk = mm->end_data;
211 #else
212         min_brk = mm->start_brk;
213 #endif
214         if (brk < min_brk)
215                 goto out;
216
217         /*
218          * Check against rlimit here. If this check is done later after the test
219          * of oldbrk with newbrk then it can escape the test and let the data
220          * segment grow beyond its set limit the in case where the limit is
221          * not page aligned -Ram Gupta
222          */
223         if (check_data_rlimit(rlimit(RLIMIT_DATA), brk, mm->start_brk,
224                               mm->end_data, mm->start_data))
225                 goto out;
226
227         newbrk = PAGE_ALIGN(brk);
228         oldbrk = PAGE_ALIGN(mm->brk);
229         if (oldbrk == newbrk) {
230                 mm->brk = brk;
231                 goto success;
232         }
233
234         /*
235          * Always allow shrinking brk.
236          * do_vma_munmap() may downgrade mmap_lock to read.
237          */
238         if (brk <= mm->brk) {
239                 int ret;
240
241                 /* Search one past newbrk */
242                 vma_iter_init(&vmi, mm, newbrk);
243                 brkvma = vma_find(&vmi, oldbrk);
244                 if (!brkvma || brkvma->vm_start >= oldbrk)
245                         goto out; /* mapping intersects with an existing non-brk vma. */
246                 /*
247                  * mm->brk must be protected by write mmap_lock.
248                  * do_vma_munmap() may downgrade the lock,  so update it
249                  * before calling do_vma_munmap().
250                  */
251                 mm->brk = brk;
252                 ret = do_vma_munmap(&vmi, brkvma, newbrk, oldbrk, &uf, true);
253                 if (ret == 1)  {
254                         downgraded = true;
255                         goto success;
256                 } else if (!ret)
257                         goto success;
258
259                 mm->brk = origbrk;
260                 goto out;
261         }
262
263         if (check_brk_limits(oldbrk, newbrk - oldbrk))
264                 goto out;
265
266         /*
267          * Only check if the next VMA is within the stack_guard_gap of the
268          * expansion area
269          */
270         vma_iter_init(&vmi, mm, oldbrk);
271         next = vma_find(&vmi, newbrk + PAGE_SIZE + stack_guard_gap);
272         if (next && newbrk + PAGE_SIZE > vm_start_gap(next))
273                 goto out;
274
275         brkvma = vma_prev_limit(&vmi, mm->start_brk);
276         /* Ok, looks good - let it rip. */
277         if (do_brk_flags(&vmi, brkvma, oldbrk, newbrk - oldbrk, 0) < 0)
278                 goto out;
279
280         mm->brk = brk;
281
282 success:
283         populate = newbrk > oldbrk && (mm->def_flags & VM_LOCKED) != 0;
284         if (downgraded)
285                 mmap_read_unlock(mm);
286         else
287                 mmap_write_unlock(mm);
288         userfaultfd_unmap_complete(mm, &uf);
289         if (populate)
290                 mm_populate(oldbrk, newbrk - oldbrk);
291         return brk;
292
293 out:
294         mmap_write_unlock(mm);
295         return origbrk;
296 }
297
298 #if defined(CONFIG_DEBUG_VM_MAPLE_TREE)
299 extern void mt_validate(struct maple_tree *mt);
300 extern void mt_dump(const struct maple_tree *mt);
301
302 /* Validate the maple tree */
303 static void validate_mm_mt(struct mm_struct *mm)
304 {
305         struct maple_tree *mt = &mm->mm_mt;
306         struct vm_area_struct *vma_mt;
307
308         MA_STATE(mas, mt, 0, 0);
309
310         mt_validate(&mm->mm_mt);
311         mas_for_each(&mas, vma_mt, ULONG_MAX) {
312                 if ((vma_mt->vm_start != mas.index) ||
313                     (vma_mt->vm_end - 1 != mas.last)) {
314                         pr_emerg("issue in %s\n", current->comm);
315                         dump_stack();
316                         dump_vma(vma_mt);
317                         pr_emerg("mt piv: %p %lu - %lu\n", vma_mt,
318                                  mas.index, mas.last);
319                         pr_emerg("mt vma: %p %lu - %lu\n", vma_mt,
320                                  vma_mt->vm_start, vma_mt->vm_end);
321
322                         mt_dump(mas.tree);
323                         if (vma_mt->vm_end != mas.last + 1) {
324                                 pr_err("vma: %p vma_mt %lu-%lu\tmt %lu-%lu\n",
325                                                 mm, vma_mt->vm_start, vma_mt->vm_end,
326                                                 mas.index, mas.last);
327                                 mt_dump(mas.tree);
328                         }
329                         VM_BUG_ON_MM(vma_mt->vm_end != mas.last + 1, mm);
330                         if (vma_mt->vm_start != mas.index) {
331                                 pr_err("vma: %p vma_mt %p %lu - %lu doesn't match\n",
332                                                 mm, vma_mt, vma_mt->vm_start, vma_mt->vm_end);
333                                 mt_dump(mas.tree);
334                         }
335                         VM_BUG_ON_MM(vma_mt->vm_start != mas.index, mm);
336                 }
337         }
338 }
339
340 static void validate_mm(struct mm_struct *mm)
341 {
342         int bug = 0;
343         int i = 0;
344         struct vm_area_struct *vma;
345         MA_STATE(mas, &mm->mm_mt, 0, 0);
346
347         validate_mm_mt(mm);
348
349         mas_for_each(&mas, vma, ULONG_MAX) {
350 #ifdef CONFIG_DEBUG_VM_RB
351                 struct anon_vma *anon_vma = vma->anon_vma;
352                 struct anon_vma_chain *avc;
353
354                 if (anon_vma) {
355                         anon_vma_lock_read(anon_vma);
356                         list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
357                                 anon_vma_interval_tree_verify(avc);
358                         anon_vma_unlock_read(anon_vma);
359                 }
360 #endif
361                 i++;
362         }
363         if (i != mm->map_count) {
364                 pr_emerg("map_count %d mas_for_each %d\n", mm->map_count, i);
365                 bug = 1;
366         }
367         VM_BUG_ON_MM(bug, mm);
368 }
369
370 #else /* !CONFIG_DEBUG_VM_MAPLE_TREE */
371 #define validate_mm_mt(root) do { } while (0)
372 #define validate_mm(mm) do { } while (0)
373 #endif /* CONFIG_DEBUG_VM_MAPLE_TREE */
374
375 /*
376  * vma has some anon_vma assigned, and is already inserted on that
377  * anon_vma's interval trees.
378  *
379  * Before updating the vma's vm_start / vm_end / vm_pgoff fields, the
380  * vma must be removed from the anon_vma's interval trees using
381  * anon_vma_interval_tree_pre_update_vma().
382  *
383  * After the update, the vma will be reinserted using
384  * anon_vma_interval_tree_post_update_vma().
385  *
386  * The entire update must be protected by exclusive mmap_lock and by
387  * the root anon_vma's mutex.
388  */
389 static inline void
390 anon_vma_interval_tree_pre_update_vma(struct vm_area_struct *vma)
391 {
392         struct anon_vma_chain *avc;
393
394         list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
395                 anon_vma_interval_tree_remove(avc, &avc->anon_vma->rb_root);
396 }
397
398 static inline void
399 anon_vma_interval_tree_post_update_vma(struct vm_area_struct *vma)
400 {
401         struct anon_vma_chain *avc;
402
403         list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
404                 anon_vma_interval_tree_insert(avc, &avc->anon_vma->rb_root);
405 }
406
407 static unsigned long count_vma_pages_range(struct mm_struct *mm,
408                 unsigned long addr, unsigned long end)
409 {
410         VMA_ITERATOR(vmi, mm, addr);
411         struct vm_area_struct *vma;
412         unsigned long nr_pages = 0;
413
414         for_each_vma_range(vmi, vma, end) {
415                 unsigned long vm_start = max(addr, vma->vm_start);
416                 unsigned long vm_end = min(end, vma->vm_end);
417
418                 nr_pages += PHYS_PFN(vm_end - vm_start);
419         }
420
421         return nr_pages;
422 }
423
424 static void __vma_link_file(struct vm_area_struct *vma,
425                             struct address_space *mapping)
426 {
427         if (vma->vm_flags & VM_SHARED)
428                 mapping_allow_writable(mapping);
429
430         flush_dcache_mmap_lock(mapping);
431         vma_interval_tree_insert(vma, &mapping->i_mmap);
432         flush_dcache_mmap_unlock(mapping);
433 }
434
435 static int vma_link(struct mm_struct *mm, struct vm_area_struct *vma)
436 {
437         VMA_ITERATOR(vmi, mm, 0);
438         struct address_space *mapping = NULL;
439
440         if (vma_iter_prealloc(&vmi))
441                 return -ENOMEM;
442
443         if (vma->vm_file) {
444                 mapping = vma->vm_file->f_mapping;
445                 i_mmap_lock_write(mapping);
446         }
447
448         vma_iter_store(&vmi, vma);
449
450         if (mapping) {
451                 __vma_link_file(vma, mapping);
452                 i_mmap_unlock_write(mapping);
453         }
454
455         mm->map_count++;
456         validate_mm(mm);
457         return 0;
458 }
459
460 /*
461  * init_multi_vma_prep() - Initializer for struct vma_prepare
462  * @vp: The vma_prepare struct
463  * @vma: The vma that will be altered once locked
464  * @next: The next vma if it is to be adjusted
465  * @remove: The first vma to be removed
466  * @remove2: The second vma to be removed
467  */
468 static inline void init_multi_vma_prep(struct vma_prepare *vp,
469                 struct vm_area_struct *vma, struct vm_area_struct *next,
470                 struct vm_area_struct *remove, struct vm_area_struct *remove2)
471 {
472         memset(vp, 0, sizeof(struct vma_prepare));
473         vp->vma = vma;
474         vp->anon_vma = vma->anon_vma;
475         vp->remove = remove;
476         vp->remove2 = remove2;
477         vp->adj_next = next;
478         if (!vp->anon_vma && next)
479                 vp->anon_vma = next->anon_vma;
480
481         vp->file = vma->vm_file;
482         if (vp->file)
483                 vp->mapping = vma->vm_file->f_mapping;
484
485 }
486
487 /*
488  * init_vma_prep() - Initializer wrapper for vma_prepare struct
489  * @vp: The vma_prepare struct
490  * @vma: The vma that will be altered once locked
491  */
492 static inline void init_vma_prep(struct vma_prepare *vp,
493                                  struct vm_area_struct *vma)
494 {
495         init_multi_vma_prep(vp, vma, NULL, NULL, NULL);
496 }
497
498
499 /*
500  * vma_prepare() - Helper function for handling locking VMAs prior to altering
501  * @vp: The initialized vma_prepare struct
502  */
503 static inline void vma_prepare(struct vma_prepare *vp)
504 {
505         if (vp->file) {
506                 uprobe_munmap(vp->vma, vp->vma->vm_start, vp->vma->vm_end);
507
508                 if (vp->adj_next)
509                         uprobe_munmap(vp->adj_next, vp->adj_next->vm_start,
510                                       vp->adj_next->vm_end);
511
512                 i_mmap_lock_write(vp->mapping);
513                 if (vp->insert && vp->insert->vm_file) {
514                         /*
515                          * Put into interval tree now, so instantiated pages
516                          * are visible to arm/parisc __flush_dcache_page
517                          * throughout; but we cannot insert into address
518                          * space until vma start or end is updated.
519                          */
520                         __vma_link_file(vp->insert,
521                                         vp->insert->vm_file->f_mapping);
522                 }
523         }
524
525         if (vp->anon_vma) {
526                 anon_vma_lock_write(vp->anon_vma);
527                 anon_vma_interval_tree_pre_update_vma(vp->vma);
528                 if (vp->adj_next)
529                         anon_vma_interval_tree_pre_update_vma(vp->adj_next);
530         }
531
532         if (vp->file) {
533                 flush_dcache_mmap_lock(vp->mapping);
534                 vma_interval_tree_remove(vp->vma, &vp->mapping->i_mmap);
535                 if (vp->adj_next)
536                         vma_interval_tree_remove(vp->adj_next,
537                                                  &vp->mapping->i_mmap);
538         }
539
540 }
541
542 /*
543  * vma_complete- Helper function for handling the unlocking after altering VMAs,
544  * or for inserting a VMA.
545  *
546  * @vp: The vma_prepare struct
547  * @vmi: The vma iterator
548  * @mm: The mm_struct
549  */
550 static inline void vma_complete(struct vma_prepare *vp,
551                                 struct vma_iterator *vmi, struct mm_struct *mm)
552 {
553         if (vp->file) {
554                 if (vp->adj_next)
555                         vma_interval_tree_insert(vp->adj_next,
556                                                  &vp->mapping->i_mmap);
557                 vma_interval_tree_insert(vp->vma, &vp->mapping->i_mmap);
558                 flush_dcache_mmap_unlock(vp->mapping);
559         }
560
561         if (vp->remove && vp->file) {
562                 __remove_shared_vm_struct(vp->remove, vp->file, vp->mapping);
563                 if (vp->remove2)
564                         __remove_shared_vm_struct(vp->remove2, vp->file,
565                                                   vp->mapping);
566         } else if (vp->insert) {
567                 /*
568                  * split_vma has split insert from vma, and needs
569                  * us to insert it before dropping the locks
570                  * (it may either follow vma or precede it).
571                  */
572                 vma_iter_store(vmi, vp->insert);
573                 mm->map_count++;
574         }
575
576         if (vp->anon_vma) {
577                 anon_vma_interval_tree_post_update_vma(vp->vma);
578                 if (vp->adj_next)
579                         anon_vma_interval_tree_post_update_vma(vp->adj_next);
580                 anon_vma_unlock_write(vp->anon_vma);
581         }
582
583         if (vp->file) {
584                 i_mmap_unlock_write(vp->mapping);
585                 uprobe_mmap(vp->vma);
586
587                 if (vp->adj_next)
588                         uprobe_mmap(vp->adj_next);
589         }
590
591         if (vp->remove) {
592 again:
593                 if (vp->file) {
594                         uprobe_munmap(vp->remove, vp->remove->vm_start,
595                                       vp->remove->vm_end);
596                         fput(vp->file);
597                 }
598                 if (vp->remove->anon_vma)
599                         anon_vma_merge(vp->vma, vp->remove);
600                 mm->map_count--;
601                 mpol_put(vma_policy(vp->remove));
602                 if (!vp->remove2)
603                         WARN_ON_ONCE(vp->vma->vm_end < vp->remove->vm_end);
604                 vm_area_free(vp->remove);
605
606                 /*
607                  * In mprotect's case 6 (see comments on vma_merge),
608                  * we must remove the one after next as well.
609                  */
610                 if (vp->remove2) {
611                         vp->remove = vp->remove2;
612                         vp->remove2 = NULL;
613                         goto again;
614                 }
615         }
616         if (vp->insert && vp->file)
617                 uprobe_mmap(vp->insert);
618 }
619
620 /*
621  * dup_anon_vma() - Helper function to duplicate anon_vma
622  * @dst: The destination VMA
623  * @src: The source VMA
624  *
625  * Returns: 0 on success.
626  */
627 static inline int dup_anon_vma(struct vm_area_struct *dst,
628                                struct vm_area_struct *src)
629 {
630         /*
631          * Easily overlooked: when mprotect shifts the boundary, make sure the
632          * expanding vma has anon_vma set if the shrinking vma had, to cover any
633          * anon pages imported.
634          */
635         if (src->anon_vma && !dst->anon_vma) {
636                 dst->anon_vma = src->anon_vma;
637                 return anon_vma_clone(dst, src);
638         }
639
640         return 0;
641 }
642
643 /*
644  * vma_expand - Expand an existing VMA
645  *
646  * @vmi: The vma iterator
647  * @vma: The vma to expand
648  * @start: The start of the vma
649  * @end: The exclusive end of the vma
650  * @pgoff: The page offset of vma
651  * @next: The current of next vma.
652  *
653  * Expand @vma to @start and @end.  Can expand off the start and end.  Will
654  * expand over @next if it's different from @vma and @end == @next->vm_end.
655  * Checking if the @vma can expand and merge with @next needs to be handled by
656  * the caller.
657  *
658  * Returns: 0 on success
659  */
660 int vma_expand(struct vma_iterator *vmi, struct vm_area_struct *vma,
661                unsigned long start, unsigned long end, pgoff_t pgoff,
662                struct vm_area_struct *next)
663 {
664         bool remove_next = false;
665         struct vma_prepare vp;
666
667         if (next && (vma != next) && (end == next->vm_end)) {
668                 int ret;
669
670                 remove_next = true;
671                 ret = dup_anon_vma(vma, next);
672                 if (ret)
673                         return ret;
674         }
675
676         init_multi_vma_prep(&vp, vma, NULL, remove_next ? next : NULL, NULL);
677         /* Not merging but overwriting any part of next is not handled. */
678         VM_WARN_ON(next && !vp.remove &&
679                   next != vma && end > next->vm_start);
680         /* Only handles expanding */
681         VM_WARN_ON(vma->vm_start < start || vma->vm_end > end);
682
683         if (vma_iter_prealloc(vmi))
684                 goto nomem;
685
686         vma_adjust_trans_huge(vma, start, end, 0);
687         /* VMA iterator points to previous, so set to start if necessary */
688         if (vma_iter_addr(vmi) != start)
689                 vma_iter_set(vmi, start);
690
691         vma_prepare(&vp);
692         vma->vm_start = start;
693         vma->vm_end = end;
694         vma->vm_pgoff = pgoff;
695         /* Note: mas must be pointing to the expanding VMA */
696         vma_iter_store(vmi, vma);
697
698         vma_complete(&vp, vmi, vma->vm_mm);
699         validate_mm(vma->vm_mm);
700         return 0;
701
702 nomem:
703         return -ENOMEM;
704 }
705
706 /*
707  * vma_shrink() - Reduce an existing VMAs memory area
708  * @vmi: The vma iterator
709  * @vma: The VMA to modify
710  * @start: The new start
711  * @end: The new end
712  *
713  * Returns: 0 on success, -ENOMEM otherwise
714  */
715 int vma_shrink(struct vma_iterator *vmi, struct vm_area_struct *vma,
716                unsigned long start, unsigned long end, pgoff_t pgoff)
717 {
718         struct vma_prepare vp;
719
720         WARN_ON((vma->vm_start != start) && (vma->vm_end != end));
721
722         if (vma_iter_prealloc(vmi))
723                 return -ENOMEM;
724
725         init_vma_prep(&vp, vma);
726         vma_adjust_trans_huge(vma, start, end, 0);
727         vma_prepare(&vp);
728
729         if (vma->vm_start < start)
730                 vma_iter_clear(vmi, vma->vm_start, start);
731
732         if (vma->vm_end > end)
733                 vma_iter_clear(vmi, end, vma->vm_end);
734
735         vma->vm_start = start;
736         vma->vm_end = end;
737         vma->vm_pgoff = pgoff;
738         vma_complete(&vp, vmi, vma->vm_mm);
739         validate_mm(vma->vm_mm);
740         return 0;
741 }
742
743 /*
744  * If the vma has a ->close operation then the driver probably needs to release
745  * per-vma resources, so we don't attempt to merge those.
746  */
747 static inline int is_mergeable_vma(struct vm_area_struct *vma,
748                                    struct file *file, unsigned long vm_flags,
749                                    struct vm_userfaultfd_ctx vm_userfaultfd_ctx,
750                                    struct anon_vma_name *anon_name)
751 {
752         /*
753          * VM_SOFTDIRTY should not prevent from VMA merging, if we
754          * match the flags but dirty bit -- the caller should mark
755          * merged VMA as dirty. If dirty bit won't be excluded from
756          * comparison, we increase pressure on the memory system forcing
757          * the kernel to generate new VMAs when old one could be
758          * extended instead.
759          */
760         if ((vma->vm_flags ^ vm_flags) & ~VM_SOFTDIRTY)
761                 return 0;
762         if (vma->vm_file != file)
763                 return 0;
764         if (vma->vm_ops && vma->vm_ops->close)
765                 return 0;
766         if (!is_mergeable_vm_userfaultfd_ctx(vma, vm_userfaultfd_ctx))
767                 return 0;
768         if (!anon_vma_name_eq(anon_vma_name(vma), anon_name))
769                 return 0;
770         return 1;
771 }
772
773 static inline int is_mergeable_anon_vma(struct anon_vma *anon_vma1,
774                                         struct anon_vma *anon_vma2,
775                                         struct vm_area_struct *vma)
776 {
777         /*
778          * The list_is_singular() test is to avoid merging VMA cloned from
779          * parents. This can improve scalability caused by anon_vma lock.
780          */
781         if ((!anon_vma1 || !anon_vma2) && (!vma ||
782                 list_is_singular(&vma->anon_vma_chain)))
783                 return 1;
784         return anon_vma1 == anon_vma2;
785 }
786
787 /*
788  * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
789  * in front of (at a lower virtual address and file offset than) the vma.
790  *
791  * We cannot merge two vmas if they have differently assigned (non-NULL)
792  * anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
793  *
794  * We don't check here for the merged mmap wrapping around the end of pagecache
795  * indices (16TB on ia32) because do_mmap() does not permit mmap's which
796  * wrap, nor mmaps which cover the final page at index -1UL.
797  */
798 static int
799 can_vma_merge_before(struct vm_area_struct *vma, unsigned long vm_flags,
800                      struct anon_vma *anon_vma, struct file *file,
801                      pgoff_t vm_pgoff,
802                      struct vm_userfaultfd_ctx vm_userfaultfd_ctx,
803                      struct anon_vma_name *anon_name)
804 {
805         if (is_mergeable_vma(vma, file, vm_flags, vm_userfaultfd_ctx, anon_name) &&
806             is_mergeable_anon_vma(anon_vma, vma->anon_vma, vma)) {
807                 if (vma->vm_pgoff == vm_pgoff)
808                         return 1;
809         }
810         return 0;
811 }
812
813 /*
814  * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
815  * beyond (at a higher virtual address and file offset than) the vma.
816  *
817  * We cannot merge two vmas if they have differently assigned (non-NULL)
818  * anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
819  */
820 static int
821 can_vma_merge_after(struct vm_area_struct *vma, unsigned long vm_flags,
822                     struct anon_vma *anon_vma, struct file *file,
823                     pgoff_t vm_pgoff,
824                     struct vm_userfaultfd_ctx vm_userfaultfd_ctx,
825                     struct anon_vma_name *anon_name)
826 {
827         if (is_mergeable_vma(vma, file, vm_flags, vm_userfaultfd_ctx, anon_name) &&
828             is_mergeable_anon_vma(anon_vma, vma->anon_vma, vma)) {
829                 pgoff_t vm_pglen;
830                 vm_pglen = vma_pages(vma);
831                 if (vma->vm_pgoff + vm_pglen == vm_pgoff)
832                         return 1;
833         }
834         return 0;
835 }
836
837 /*
838  * Given a mapping request (addr,end,vm_flags,file,pgoff,anon_name),
839  * figure out whether that can be merged with its predecessor or its
840  * successor.  Or both (it neatly fills a hole).
841  *
842  * In most cases - when called for mmap, brk or mremap - [addr,end) is
843  * certain not to be mapped by the time vma_merge is called; but when
844  * called for mprotect, it is certain to be already mapped (either at
845  * an offset within prev, or at the start of next), and the flags of
846  * this area are about to be changed to vm_flags - and the no-change
847  * case has already been eliminated.
848  *
849  * The following mprotect cases have to be considered, where AAAA is
850  * the area passed down from mprotect_fixup, never extending beyond one
851  * vma, PPPPPP is the prev vma specified, and NNNNNN the next vma after:
852  *
853  *     AAAA             AAAA                   AAAA
854  *    PPPPPPNNNNNN    PPPPPPNNNNNN       PPPPPPNNNNNN
855  *    cannot merge    might become       might become
856  *                    PPNNNNNNNNNN       PPPPPPPPPPNN
857  *    mmap, brk or    case 4 below       case 5 below
858  *    mremap move:
859  *                        AAAA               AAAA
860  *                    PPPP    NNNN       PPPPNNNNXXXX
861  *                    might become       might become
862  *                    PPPPPPPPPPPP 1 or  PPPPPPPPPPPP 6 or
863  *                    PPPPPPPPNNNN 2 or  PPPPPPPPXXXX 7 or
864  *                    PPPPNNNNNNNN 3     PPPPXXXXXXXX 8
865  *
866  * It is important for case 8 that the vma NNNN overlapping the
867  * region AAAA is never going to extended over XXXX. Instead XXXX must
868  * be extended in region AAAA and NNNN must be removed. This way in
869  * all cases where vma_merge succeeds, the moment vma_merge drops the
870  * rmap_locks, the properties of the merged vma will be already
871  * correct for the whole merged range. Some of those properties like
872  * vm_page_prot/vm_flags may be accessed by rmap_walks and they must
873  * be correct for the whole merged range immediately after the
874  * rmap_locks are released. Otherwise if XXXX would be removed and
875  * NNNN would be extended over the XXXX range, remove_migration_ptes
876  * or other rmap walkers (if working on addresses beyond the "end"
877  * parameter) may establish ptes with the wrong permissions of NNNN
878  * instead of the right permissions of XXXX.
879  *
880  * In the code below:
881  * PPPP is represented by *prev
882  * NNNN is represented by *mid (and possibly equal to *next)
883  * XXXX is represented by *next or not represented at all.
884  * AAAA is not represented - it will be merged or the function will return NULL
885  */
886 struct vm_area_struct *vma_merge(struct vma_iterator *vmi, struct mm_struct *mm,
887                         struct vm_area_struct *prev, unsigned long addr,
888                         unsigned long end, unsigned long vm_flags,
889                         struct anon_vma *anon_vma, struct file *file,
890                         pgoff_t pgoff, struct mempolicy *policy,
891                         struct vm_userfaultfd_ctx vm_userfaultfd_ctx,
892                         struct anon_vma_name *anon_name)
893 {
894         pgoff_t pglen = (end - addr) >> PAGE_SHIFT;
895         pgoff_t vma_pgoff;
896         struct vm_area_struct *mid, *next, *res = NULL;
897         struct vm_area_struct *vma, *adjust, *remove, *remove2;
898         int err = -1;
899         bool merge_prev = false;
900         bool merge_next = false;
901         bool vma_expanded = false;
902         struct vma_prepare vp;
903         unsigned long vma_end = end;
904         long adj_next = 0;
905         unsigned long vma_start = addr;
906
907         validate_mm(mm);
908         /*
909          * We later require that vma->vm_flags == vm_flags,
910          * so this tests vma->vm_flags & VM_SPECIAL, too.
911          */
912         if (vm_flags & VM_SPECIAL)
913                 return NULL;
914
915         next = find_vma(mm, prev ? prev->vm_end : 0);
916         mid = next;
917         if (next && next->vm_end == end)                /* cases 6, 7, 8 */
918                 next = find_vma(mm, next->vm_end);
919
920         /* verify some invariant that must be enforced by the caller */
921         VM_WARN_ON(prev && addr <= prev->vm_start);
922         VM_WARN_ON(mid && end > mid->vm_end);
923         VM_WARN_ON(addr >= end);
924
925         if (prev) {
926                 res = prev;
927                 vma = prev;
928                 vma_start = prev->vm_start;
929                 vma_pgoff = prev->vm_pgoff;
930                 /* Can we merge the predecessor? */
931                 if (prev->vm_end == addr && mpol_equal(vma_policy(prev), policy)
932                     && can_vma_merge_after(prev, vm_flags, anon_vma, file,
933                                    pgoff, vm_userfaultfd_ctx, anon_name)) {
934                         merge_prev = true;
935                         vma_prev(vmi);
936                 }
937         }
938         /* Can we merge the successor? */
939         if (next && end == next->vm_start &&
940                         mpol_equal(policy, vma_policy(next)) &&
941                         can_vma_merge_before(next, vm_flags,
942                                              anon_vma, file, pgoff+pglen,
943                                              vm_userfaultfd_ctx, anon_name)) {
944                 merge_next = true;
945         }
946
947         remove = remove2 = adjust = NULL;
948         /* Can we merge both the predecessor and the successor? */
949         if (merge_prev && merge_next &&
950             is_mergeable_anon_vma(prev->anon_vma, next->anon_vma, NULL)) {
951                 remove = mid;                           /* case 1 */
952                 vma_end = next->vm_end;
953                 err = dup_anon_vma(res, remove);
954                 if (mid != next) {                      /* case 6 */
955                         remove2 = next;
956                         if (!remove->anon_vma)
957                                 err = dup_anon_vma(res, remove2);
958                 }
959         } else if (merge_prev) {
960                 err = 0;                                /* case 2 */
961                 if (mid && end > mid->vm_start) {
962                         err = dup_anon_vma(res, mid);
963                         if (end == mid->vm_end) {       /* case 7 */
964                                 remove = mid;
965                         } else {                        /* case 5 */
966                                 adjust = mid;
967                                 adj_next = (end - mid->vm_start);
968                         }
969                 }
970         } else if (merge_next) {
971                 res = next;
972                 if (prev && addr < prev->vm_end) {      /* case 4 */
973                         vma_end = addr;
974                         adjust = mid;
975                         adj_next = -(vma->vm_end - addr);
976                         err = dup_anon_vma(adjust, prev);
977                 } else {
978                         vma = next;                     /* case 3 */
979                         vma_start = addr;
980                         vma_end = next->vm_end;
981                         vma_pgoff = mid->vm_pgoff;
982                         err = 0;
983                         if (mid != next) {              /* case 8 */
984                                 remove = mid;
985                                 err = dup_anon_vma(res, remove);
986                         }
987                 }
988         }
989
990         /* Cannot merge or error in anon_vma clone */
991         if (err)
992                 return NULL;
993
994         if (vma_iter_prealloc(vmi))
995                 return NULL;
996
997         vma_adjust_trans_huge(vma, vma_start, vma_end, adj_next);
998         init_multi_vma_prep(&vp, vma, adjust, remove, remove2);
999         VM_WARN_ON(vp.anon_vma && adjust && adjust->anon_vma &&
1000                    vp.anon_vma != adjust->anon_vma);
1001
1002         vma_prepare(&vp);
1003         if (vma_start < vma->vm_start || vma_end > vma->vm_end)
1004                 vma_expanded = true;
1005
1006         vma->vm_start = vma_start;
1007         vma->vm_end = vma_end;
1008         vma->vm_pgoff = vma_pgoff;
1009
1010         if (vma_expanded)
1011                 vma_iter_store(vmi, vma);
1012
1013         if (adj_next) {
1014                 adjust->vm_start += adj_next;
1015                 adjust->vm_pgoff += adj_next >> PAGE_SHIFT;
1016                 if (adj_next < 0) {
1017                         WARN_ON(vma_expanded);
1018                         vma_iter_store(vmi, next);
1019                 }
1020         }
1021
1022         vma_complete(&vp, vmi, mm);
1023         vma_iter_free(vmi);
1024         validate_mm(mm);
1025         khugepaged_enter_vma(res, vm_flags);
1026
1027         return res;
1028 }
1029
1030 /*
1031  * Rough compatibility check to quickly see if it's even worth looking
1032  * at sharing an anon_vma.
1033  *
1034  * They need to have the same vm_file, and the flags can only differ
1035  * in things that mprotect may change.
1036  *
1037  * NOTE! The fact that we share an anon_vma doesn't _have_ to mean that
1038  * we can merge the two vma's. For example, we refuse to merge a vma if
1039  * there is a vm_ops->close() function, because that indicates that the
1040  * driver is doing some kind of reference counting. But that doesn't
1041  * really matter for the anon_vma sharing case.
1042  */
1043 static int anon_vma_compatible(struct vm_area_struct *a, struct vm_area_struct *b)
1044 {
1045         return a->vm_end == b->vm_start &&
1046                 mpol_equal(vma_policy(a), vma_policy(b)) &&
1047                 a->vm_file == b->vm_file &&
1048                 !((a->vm_flags ^ b->vm_flags) & ~(VM_ACCESS_FLAGS | VM_SOFTDIRTY)) &&
1049                 b->vm_pgoff == a->vm_pgoff + ((b->vm_start - a->vm_start) >> PAGE_SHIFT);
1050 }
1051
1052 /*
1053  * Do some basic sanity checking to see if we can re-use the anon_vma
1054  * from 'old'. The 'a'/'b' vma's are in VM order - one of them will be
1055  * the same as 'old', the other will be the new one that is trying
1056  * to share the anon_vma.
1057  *
1058  * NOTE! This runs with mmap_lock held for reading, so it is possible that
1059  * the anon_vma of 'old' is concurrently in the process of being set up
1060  * by another page fault trying to merge _that_. But that's ok: if it
1061  * is being set up, that automatically means that it will be a singleton
1062  * acceptable for merging, so we can do all of this optimistically. But
1063  * we do that READ_ONCE() to make sure that we never re-load the pointer.
1064  *
1065  * IOW: that the "list_is_singular()" test on the anon_vma_chain only
1066  * matters for the 'stable anon_vma' case (ie the thing we want to avoid
1067  * is to return an anon_vma that is "complex" due to having gone through
1068  * a fork).
1069  *
1070  * We also make sure that the two vma's are compatible (adjacent,
1071  * and with the same memory policies). That's all stable, even with just
1072  * a read lock on the mmap_lock.
1073  */
1074 static struct anon_vma *reusable_anon_vma(struct vm_area_struct *old, struct vm_area_struct *a, struct vm_area_struct *b)
1075 {
1076         if (anon_vma_compatible(a, b)) {
1077                 struct anon_vma *anon_vma = READ_ONCE(old->anon_vma);
1078
1079                 if (anon_vma && list_is_singular(&old->anon_vma_chain))
1080                         return anon_vma;
1081         }
1082         return NULL;
1083 }
1084
1085 /*
1086  * find_mergeable_anon_vma is used by anon_vma_prepare, to check
1087  * neighbouring vmas for a suitable anon_vma, before it goes off
1088  * to allocate a new anon_vma.  It checks because a repetitive
1089  * sequence of mprotects and faults may otherwise lead to distinct
1090  * anon_vmas being allocated, preventing vma merge in subsequent
1091  * mprotect.
1092  */
1093 struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *vma)
1094 {
1095         MA_STATE(mas, &vma->vm_mm->mm_mt, vma->vm_end, vma->vm_end);
1096         struct anon_vma *anon_vma = NULL;
1097         struct vm_area_struct *prev, *next;
1098
1099         /* Try next first. */
1100         next = mas_walk(&mas);
1101         if (next) {
1102                 anon_vma = reusable_anon_vma(next, vma, next);
1103                 if (anon_vma)
1104                         return anon_vma;
1105         }
1106
1107         prev = mas_prev(&mas, 0);
1108         VM_BUG_ON_VMA(prev != vma, vma);
1109         prev = mas_prev(&mas, 0);
1110         /* Try prev next. */
1111         if (prev)
1112                 anon_vma = reusable_anon_vma(prev, prev, vma);
1113
1114         /*
1115          * We might reach here with anon_vma == NULL if we can't find
1116          * any reusable anon_vma.
1117          * There's no absolute need to look only at touching neighbours:
1118          * we could search further afield for "compatible" anon_vmas.
1119          * But it would probably just be a waste of time searching,
1120          * or lead to too many vmas hanging off the same anon_vma.
1121          * We're trying to allow mprotect remerging later on,
1122          * not trying to minimize memory used for anon_vmas.
1123          */
1124         return anon_vma;
1125 }
1126
1127 /*
1128  * If a hint addr is less than mmap_min_addr change hint to be as
1129  * low as possible but still greater than mmap_min_addr
1130  */
1131 static inline unsigned long round_hint_to_min(unsigned long hint)
1132 {
1133         hint &= PAGE_MASK;
1134         if (((void *)hint != NULL) &&
1135             (hint < mmap_min_addr))
1136                 return PAGE_ALIGN(mmap_min_addr);
1137         return hint;
1138 }
1139
1140 int mlock_future_check(struct mm_struct *mm, unsigned long flags,
1141                        unsigned long len)
1142 {
1143         unsigned long locked, lock_limit;
1144
1145         /*  mlock MCL_FUTURE? */
1146         if (flags & VM_LOCKED) {
1147                 locked = len >> PAGE_SHIFT;
1148                 locked += mm->locked_vm;
1149                 lock_limit = rlimit(RLIMIT_MEMLOCK);
1150                 lock_limit >>= PAGE_SHIFT;
1151                 if (locked > lock_limit && !capable(CAP_IPC_LOCK))
1152                         return -EAGAIN;
1153         }
1154         return 0;
1155 }
1156
1157 static inline u64 file_mmap_size_max(struct file *file, struct inode *inode)
1158 {
1159         if (S_ISREG(inode->i_mode))
1160                 return MAX_LFS_FILESIZE;
1161
1162         if (S_ISBLK(inode->i_mode))
1163                 return MAX_LFS_FILESIZE;
1164
1165         if (S_ISSOCK(inode->i_mode))
1166                 return MAX_LFS_FILESIZE;
1167
1168         /* Special "we do even unsigned file positions" case */
1169         if (file->f_mode & FMODE_UNSIGNED_OFFSET)
1170                 return 0;
1171
1172         /* Yes, random drivers might want more. But I'm tired of buggy drivers */
1173         return ULONG_MAX;
1174 }
1175
1176 static inline bool file_mmap_ok(struct file *file, struct inode *inode,
1177                                 unsigned long pgoff, unsigned long len)
1178 {
1179         u64 maxsize = file_mmap_size_max(file, inode);
1180
1181         if (maxsize && len > maxsize)
1182                 return false;
1183         maxsize -= len;
1184         if (pgoff > maxsize >> PAGE_SHIFT)
1185                 return false;
1186         return true;
1187 }
1188
1189 /*
1190  * The caller must write-lock current->mm->mmap_lock.
1191  */
1192 unsigned long do_mmap(struct file *file, unsigned long addr,
1193                         unsigned long len, unsigned long prot,
1194                         unsigned long flags, unsigned long pgoff,
1195                         unsigned long *populate, struct list_head *uf)
1196 {
1197         struct mm_struct *mm = current->mm;
1198         vm_flags_t vm_flags;
1199         int pkey = 0;
1200
1201         validate_mm(mm);
1202         *populate = 0;
1203
1204         if (!len)
1205                 return -EINVAL;
1206
1207         /*
1208          * Does the application expect PROT_READ to imply PROT_EXEC?
1209          *
1210          * (the exception is when the underlying filesystem is noexec
1211          *  mounted, in which case we dont add PROT_EXEC.)
1212          */
1213         if ((prot & PROT_READ) && (current->personality & READ_IMPLIES_EXEC))
1214                 if (!(file && path_noexec(&file->f_path)))
1215                         prot |= PROT_EXEC;
1216
1217         /* force arch specific MAP_FIXED handling in get_unmapped_area */
1218         if (flags & MAP_FIXED_NOREPLACE)
1219                 flags |= MAP_FIXED;
1220
1221         if (!(flags & MAP_FIXED))
1222                 addr = round_hint_to_min(addr);
1223
1224         /* Careful about overflows.. */
1225         len = PAGE_ALIGN(len);
1226         if (!len)
1227                 return -ENOMEM;
1228
1229         /* offset overflow? */
1230         if ((pgoff + (len >> PAGE_SHIFT)) < pgoff)
1231                 return -EOVERFLOW;
1232
1233         /* Too many mappings? */
1234         if (mm->map_count > sysctl_max_map_count)
1235                 return -ENOMEM;
1236
1237         /* Obtain the address to map to. we verify (or select) it and ensure
1238          * that it represents a valid section of the address space.
1239          */
1240         addr = get_unmapped_area(file, addr, len, pgoff, flags);
1241         if (IS_ERR_VALUE(addr))
1242                 return addr;
1243
1244         if (flags & MAP_FIXED_NOREPLACE) {
1245                 if (find_vma_intersection(mm, addr, addr + len))
1246                         return -EEXIST;
1247         }
1248
1249         if (prot == PROT_EXEC) {
1250                 pkey = execute_only_pkey(mm);
1251                 if (pkey < 0)
1252                         pkey = 0;
1253         }
1254
1255         /* Do simple checking here so the lower-level routines won't have
1256          * to. we assume access permissions have been handled by the open
1257          * of the memory object, so we don't do any here.
1258          */
1259         vm_flags = calc_vm_prot_bits(prot, pkey) | calc_vm_flag_bits(flags) |
1260                         mm->def_flags | VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC;
1261
1262         if (flags & MAP_LOCKED)
1263                 if (!can_do_mlock())
1264                         return -EPERM;
1265
1266         if (mlock_future_check(mm, vm_flags, len))
1267                 return -EAGAIN;
1268
1269         if (file) {
1270                 struct inode *inode = file_inode(file);
1271                 unsigned long flags_mask;
1272
1273                 if (!file_mmap_ok(file, inode, pgoff, len))
1274                         return -EOVERFLOW;
1275
1276                 flags_mask = LEGACY_MAP_MASK | file->f_op->mmap_supported_flags;
1277
1278                 switch (flags & MAP_TYPE) {
1279                 case MAP_SHARED:
1280                         /*
1281                          * Force use of MAP_SHARED_VALIDATE with non-legacy
1282                          * flags. E.g. MAP_SYNC is dangerous to use with
1283                          * MAP_SHARED as you don't know which consistency model
1284                          * you will get. We silently ignore unsupported flags
1285                          * with MAP_SHARED to preserve backward compatibility.
1286                          */
1287                         flags &= LEGACY_MAP_MASK;
1288                         fallthrough;
1289                 case MAP_SHARED_VALIDATE:
1290                         if (flags & ~flags_mask)
1291                                 return -EOPNOTSUPP;
1292                         if (prot & PROT_WRITE) {
1293                                 if (!(file->f_mode & FMODE_WRITE))
1294                                         return -EACCES;
1295                                 if (IS_SWAPFILE(file->f_mapping->host))
1296                                         return -ETXTBSY;
1297                         }
1298
1299                         /*
1300                          * Make sure we don't allow writing to an append-only
1301                          * file..
1302                          */
1303                         if (IS_APPEND(inode) && (file->f_mode & FMODE_WRITE))
1304                                 return -EACCES;
1305
1306                         vm_flags |= VM_SHARED | VM_MAYSHARE;
1307                         if (!(file->f_mode & FMODE_WRITE))
1308                                 vm_flags &= ~(VM_MAYWRITE | VM_SHARED);
1309                         fallthrough;
1310                 case MAP_PRIVATE:
1311                         if (!(file->f_mode & FMODE_READ))
1312                                 return -EACCES;
1313                         if (path_noexec(&file->f_path)) {
1314                                 if (vm_flags & VM_EXEC)
1315                                         return -EPERM;
1316                                 vm_flags &= ~VM_MAYEXEC;
1317                         }
1318
1319                         if (!file->f_op->mmap)
1320                                 return -ENODEV;
1321                         if (vm_flags & (VM_GROWSDOWN|VM_GROWSUP))
1322                                 return -EINVAL;
1323                         break;
1324
1325                 default:
1326                         return -EINVAL;
1327                 }
1328         } else {
1329                 switch (flags & MAP_TYPE) {
1330                 case MAP_SHARED:
1331                         if (vm_flags & (VM_GROWSDOWN|VM_GROWSUP))
1332                                 return -EINVAL;
1333                         /*
1334                          * Ignore pgoff.
1335                          */
1336                         pgoff = 0;
1337                         vm_flags |= VM_SHARED | VM_MAYSHARE;
1338                         break;
1339                 case MAP_PRIVATE:
1340                         /*
1341                          * Set pgoff according to addr for anon_vma.
1342                          */
1343                         pgoff = addr >> PAGE_SHIFT;
1344                         break;
1345                 default:
1346                         return -EINVAL;
1347                 }
1348         }
1349
1350         /*
1351          * Set 'VM_NORESERVE' if we should not account for the
1352          * memory use of this mapping.
1353          */
1354         if (flags & MAP_NORESERVE) {
1355                 /* We honor MAP_NORESERVE if allowed to overcommit */
1356                 if (sysctl_overcommit_memory != OVERCOMMIT_NEVER)
1357                         vm_flags |= VM_NORESERVE;
1358
1359                 /* hugetlb applies strict overcommit unless MAP_NORESERVE */
1360                 if (file && is_file_hugepages(file))
1361                         vm_flags |= VM_NORESERVE;
1362         }
1363
1364         addr = mmap_region(file, addr, len, vm_flags, pgoff, uf);
1365         if (!IS_ERR_VALUE(addr) &&
1366             ((vm_flags & VM_LOCKED) ||
1367              (flags & (MAP_POPULATE | MAP_NONBLOCK)) == MAP_POPULATE))
1368                 *populate = len;
1369         return addr;
1370 }
1371
1372 unsigned long ksys_mmap_pgoff(unsigned long addr, unsigned long len,
1373                               unsigned long prot, unsigned long flags,
1374                               unsigned long fd, unsigned long pgoff)
1375 {
1376         struct file *file = NULL;
1377         unsigned long retval;
1378
1379         if (!(flags & MAP_ANONYMOUS)) {
1380                 audit_mmap_fd(fd, flags);
1381                 file = fget(fd);
1382                 if (!file)
1383                         return -EBADF;
1384                 if (is_file_hugepages(file)) {
1385                         len = ALIGN(len, huge_page_size(hstate_file(file)));
1386                 } else if (unlikely(flags & MAP_HUGETLB)) {
1387                         retval = -EINVAL;
1388                         goto out_fput;
1389                 }
1390         } else if (flags & MAP_HUGETLB) {
1391                 struct hstate *hs;
1392
1393                 hs = hstate_sizelog((flags >> MAP_HUGE_SHIFT) & MAP_HUGE_MASK);
1394                 if (!hs)
1395                         return -EINVAL;
1396
1397                 len = ALIGN(len, huge_page_size(hs));
1398                 /*
1399                  * VM_NORESERVE is used because the reservations will be
1400                  * taken when vm_ops->mmap() is called
1401                  */
1402                 file = hugetlb_file_setup(HUGETLB_ANON_FILE, len,
1403                                 VM_NORESERVE,
1404                                 HUGETLB_ANONHUGE_INODE,
1405                                 (flags >> MAP_HUGE_SHIFT) & MAP_HUGE_MASK);
1406                 if (IS_ERR(file))
1407                         return PTR_ERR(file);
1408         }
1409
1410         retval = vm_mmap_pgoff(file, addr, len, prot, flags, pgoff);
1411 out_fput:
1412         if (file)
1413                 fput(file);
1414         return retval;
1415 }
1416
1417 SYSCALL_DEFINE6(mmap_pgoff, unsigned long, addr, unsigned long, len,
1418                 unsigned long, prot, unsigned long, flags,
1419                 unsigned long, fd, unsigned long, pgoff)
1420 {
1421         return ksys_mmap_pgoff(addr, len, prot, flags, fd, pgoff);
1422 }
1423
1424 #ifdef __ARCH_WANT_SYS_OLD_MMAP
1425 struct mmap_arg_struct {
1426         unsigned long addr;
1427         unsigned long len;
1428         unsigned long prot;
1429         unsigned long flags;
1430         unsigned long fd;
1431         unsigned long offset;
1432 };
1433
1434 SYSCALL_DEFINE1(old_mmap, struct mmap_arg_struct __user *, arg)
1435 {
1436         struct mmap_arg_struct a;
1437
1438         if (copy_from_user(&a, arg, sizeof(a)))
1439                 return -EFAULT;
1440         if (offset_in_page(a.offset))
1441                 return -EINVAL;
1442
1443         return ksys_mmap_pgoff(a.addr, a.len, a.prot, a.flags, a.fd,
1444                                a.offset >> PAGE_SHIFT);
1445 }
1446 #endif /* __ARCH_WANT_SYS_OLD_MMAP */
1447
1448 /*
1449  * Some shared mappings will want the pages marked read-only
1450  * to track write events. If so, we'll downgrade vm_page_prot
1451  * to the private version (using protection_map[] without the
1452  * VM_SHARED bit).
1453  */
1454 int vma_wants_writenotify(struct vm_area_struct *vma, pgprot_t vm_page_prot)
1455 {
1456         vm_flags_t vm_flags = vma->vm_flags;
1457         const struct vm_operations_struct *vm_ops = vma->vm_ops;
1458
1459         /* If it was private or non-writable, the write bit is already clear */
1460         if ((vm_flags & (VM_WRITE|VM_SHARED)) != ((VM_WRITE|VM_SHARED)))
1461                 return 0;
1462
1463         /* The backer wishes to know when pages are first written to? */
1464         if (vm_ops && (vm_ops->page_mkwrite || vm_ops->pfn_mkwrite))
1465                 return 1;
1466
1467         /* The open routine did something to the protections that pgprot_modify
1468          * won't preserve? */
1469         if (pgprot_val(vm_page_prot) !=
1470             pgprot_val(vm_pgprot_modify(vm_page_prot, vm_flags)))
1471                 return 0;
1472
1473         /*
1474          * Do we need to track softdirty? hugetlb does not support softdirty
1475          * tracking yet.
1476          */
1477         if (vma_soft_dirty_enabled(vma) && !is_vm_hugetlb_page(vma))
1478                 return 1;
1479
1480         /* Do we need write faults for uffd-wp tracking? */
1481         if (userfaultfd_wp(vma))
1482                 return 1;
1483
1484         /* Specialty mapping? */
1485         if (vm_flags & VM_PFNMAP)
1486                 return 0;
1487
1488         /* Can the mapping track the dirty pages? */
1489         return vma->vm_file && vma->vm_file->f_mapping &&
1490                 mapping_can_writeback(vma->vm_file->f_mapping);
1491 }
1492
1493 /*
1494  * We account for memory if it's a private writeable mapping,
1495  * not hugepages and VM_NORESERVE wasn't set.
1496  */
1497 static inline int accountable_mapping(struct file *file, vm_flags_t vm_flags)
1498 {
1499         /*
1500          * hugetlb has its own accounting separate from the core VM
1501          * VM_HUGETLB may not be set yet so we cannot check for that flag.
1502          */
1503         if (file && is_file_hugepages(file))
1504                 return 0;
1505
1506         return (vm_flags & (VM_NORESERVE | VM_SHARED | VM_WRITE)) == VM_WRITE;
1507 }
1508
1509 /**
1510  * unmapped_area() - Find an area between the low_limit and the high_limit with
1511  * the correct alignment and offset, all from @info. Note: current->mm is used
1512  * for the search.
1513  *
1514  * @info: The unmapped area information including the range [low_limit -
1515  * high_limit), the alignment offset and mask.
1516  *
1517  * Return: A memory address or -ENOMEM.
1518  */
1519 static unsigned long unmapped_area(struct vm_unmapped_area_info *info)
1520 {
1521         unsigned long length, gap;
1522
1523         MA_STATE(mas, &current->mm->mm_mt, 0, 0);
1524
1525         /* Adjust search length to account for worst case alignment overhead */
1526         length = info->length + info->align_mask;
1527         if (length < info->length)
1528                 return -ENOMEM;
1529
1530         if (mas_empty_area(&mas, info->low_limit, info->high_limit - 1,
1531                                   length))
1532                 return -ENOMEM;
1533
1534         gap = mas.index;
1535         gap += (info->align_offset - gap) & info->align_mask;
1536         return gap;
1537 }
1538
1539 /**
1540  * unmapped_area_topdown() - Find an area between the low_limit and the
1541  * high_limit with the correct alignment and offset at the highest available
1542  * address, all from @info. Note: current->mm is used for the search.
1543  *
1544  * @info: The unmapped area information including the range [low_limit -
1545  * high_limit), the alignment offset and mask.
1546  *
1547  * Return: A memory address or -ENOMEM.
1548  */
1549 static unsigned long unmapped_area_topdown(struct vm_unmapped_area_info *info)
1550 {
1551         unsigned long length, gap;
1552
1553         MA_STATE(mas, &current->mm->mm_mt, 0, 0);
1554         /* Adjust search length to account for worst case alignment overhead */
1555         length = info->length + info->align_mask;
1556         if (length < info->length)
1557                 return -ENOMEM;
1558
1559         if (mas_empty_area_rev(&mas, info->low_limit, info->high_limit - 1,
1560                                 length))
1561                 return -ENOMEM;
1562
1563         gap = mas.last + 1 - info->length;
1564         gap -= (gap - info->align_offset) & info->align_mask;
1565         return gap;
1566 }
1567
1568 /*
1569  * Search for an unmapped address range.
1570  *
1571  * We are looking for a range that:
1572  * - does not intersect with any VMA;
1573  * - is contained within the [low_limit, high_limit) interval;
1574  * - is at least the desired size.
1575  * - satisfies (begin_addr & align_mask) == (align_offset & align_mask)
1576  */
1577 unsigned long vm_unmapped_area(struct vm_unmapped_area_info *info)
1578 {
1579         unsigned long addr;
1580
1581         if (info->flags & VM_UNMAPPED_AREA_TOPDOWN)
1582                 addr = unmapped_area_topdown(info);
1583         else
1584                 addr = unmapped_area(info);
1585
1586         trace_vm_unmapped_area(addr, info);
1587         return addr;
1588 }
1589
1590 /* Get an address range which is currently unmapped.
1591  * For shmat() with addr=0.
1592  *
1593  * Ugly calling convention alert:
1594  * Return value with the low bits set means error value,
1595  * ie
1596  *      if (ret & ~PAGE_MASK)
1597  *              error = ret;
1598  *
1599  * This function "knows" that -ENOMEM has the bits set.
1600  */
1601 unsigned long
1602 generic_get_unmapped_area(struct file *filp, unsigned long addr,
1603                           unsigned long len, unsigned long pgoff,
1604                           unsigned long flags)
1605 {
1606         struct mm_struct *mm = current->mm;
1607         struct vm_area_struct *vma, *prev;
1608         struct vm_unmapped_area_info info;
1609         const unsigned long mmap_end = arch_get_mmap_end(addr, len, flags);
1610
1611         if (len > mmap_end - mmap_min_addr)
1612                 return -ENOMEM;
1613
1614         if (flags & MAP_FIXED)
1615                 return addr;
1616
1617         if (addr) {
1618                 addr = PAGE_ALIGN(addr);
1619                 vma = find_vma_prev(mm, addr, &prev);
1620                 if (mmap_end - len >= addr && addr >= mmap_min_addr &&
1621                     (!vma || addr + len <= vm_start_gap(vma)) &&
1622                     (!prev || addr >= vm_end_gap(prev)))
1623                         return addr;
1624         }
1625
1626         info.flags = 0;
1627         info.length = len;
1628         info.low_limit = mm->mmap_base;
1629         info.high_limit = mmap_end;
1630         info.align_mask = 0;
1631         info.align_offset = 0;
1632         return vm_unmapped_area(&info);
1633 }
1634
1635 #ifndef HAVE_ARCH_UNMAPPED_AREA
1636 unsigned long
1637 arch_get_unmapped_area(struct file *filp, unsigned long addr,
1638                        unsigned long len, unsigned long pgoff,
1639                        unsigned long flags)
1640 {
1641         return generic_get_unmapped_area(filp, addr, len, pgoff, flags);
1642 }
1643 #endif
1644
1645 /*
1646  * This mmap-allocator allocates new areas top-down from below the
1647  * stack's low limit (the base):
1648  */
1649 unsigned long
1650 generic_get_unmapped_area_topdown(struct file *filp, unsigned long addr,
1651                                   unsigned long len, unsigned long pgoff,
1652                                   unsigned long flags)
1653 {
1654         struct vm_area_struct *vma, *prev;
1655         struct mm_struct *mm = current->mm;
1656         struct vm_unmapped_area_info info;
1657         const unsigned long mmap_end = arch_get_mmap_end(addr, len, flags);
1658
1659         /* requested length too big for entire address space */
1660         if (len > mmap_end - mmap_min_addr)
1661                 return -ENOMEM;
1662
1663         if (flags & MAP_FIXED)
1664                 return addr;
1665
1666         /* requesting a specific address */
1667         if (addr) {
1668                 addr = PAGE_ALIGN(addr);
1669                 vma = find_vma_prev(mm, addr, &prev);
1670                 if (mmap_end - len >= addr && addr >= mmap_min_addr &&
1671                                 (!vma || addr + len <= vm_start_gap(vma)) &&
1672                                 (!prev || addr >= vm_end_gap(prev)))
1673                         return addr;
1674         }
1675
1676         info.flags = VM_UNMAPPED_AREA_TOPDOWN;
1677         info.length = len;
1678         info.low_limit = max(PAGE_SIZE, mmap_min_addr);
1679         info.high_limit = arch_get_mmap_base(addr, mm->mmap_base);
1680         info.align_mask = 0;
1681         info.align_offset = 0;
1682         addr = vm_unmapped_area(&info);
1683
1684         /*
1685          * A failed mmap() very likely causes application failure,
1686          * so fall back to the bottom-up function here. This scenario
1687          * can happen with large stack limits and large mmap()
1688          * allocations.
1689          */
1690         if (offset_in_page(addr)) {
1691                 VM_BUG_ON(addr != -ENOMEM);
1692                 info.flags = 0;
1693                 info.low_limit = TASK_UNMAPPED_BASE;
1694                 info.high_limit = mmap_end;
1695                 addr = vm_unmapped_area(&info);
1696         }
1697
1698         return addr;
1699 }
1700
1701 #ifndef HAVE_ARCH_UNMAPPED_AREA_TOPDOWN
1702 unsigned long
1703 arch_get_unmapped_area_topdown(struct file *filp, unsigned long addr,
1704                                unsigned long len, unsigned long pgoff,
1705                                unsigned long flags)
1706 {
1707         return generic_get_unmapped_area_topdown(filp, addr, len, pgoff, flags);
1708 }
1709 #endif
1710
1711 unsigned long
1712 get_unmapped_area(struct file *file, unsigned long addr, unsigned long len,
1713                 unsigned long pgoff, unsigned long flags)
1714 {
1715         unsigned long (*get_area)(struct file *, unsigned long,
1716                                   unsigned long, unsigned long, unsigned long);
1717
1718         unsigned long error = arch_mmap_check(addr, len, flags);
1719         if (error)
1720                 return error;
1721
1722         /* Careful about overflows.. */
1723         if (len > TASK_SIZE)
1724                 return -ENOMEM;
1725
1726         get_area = current->mm->get_unmapped_area;
1727         if (file) {
1728                 if (file->f_op->get_unmapped_area)
1729                         get_area = file->f_op->get_unmapped_area;
1730         } else if (flags & MAP_SHARED) {
1731                 /*
1732                  * mmap_region() will call shmem_zero_setup() to create a file,
1733                  * so use shmem's get_unmapped_area in case it can be huge.
1734                  * do_mmap() will clear pgoff, so match alignment.
1735                  */
1736                 pgoff = 0;
1737                 get_area = shmem_get_unmapped_area;
1738         }
1739
1740         addr = get_area(file, addr, len, pgoff, flags);
1741         if (IS_ERR_VALUE(addr))
1742                 return addr;
1743
1744         if (addr > TASK_SIZE - len)
1745                 return -ENOMEM;
1746         if (offset_in_page(addr))
1747                 return -EINVAL;
1748
1749         error = security_mmap_addr(addr);
1750         return error ? error : addr;
1751 }
1752
1753 EXPORT_SYMBOL(get_unmapped_area);
1754
1755 /**
1756  * find_vma_intersection() - Look up the first VMA which intersects the interval
1757  * @mm: The process address space.
1758  * @start_addr: The inclusive start user address.
1759  * @end_addr: The exclusive end user address.
1760  *
1761  * Returns: The first VMA within the provided range, %NULL otherwise.  Assumes
1762  * start_addr < end_addr.
1763  */
1764 struct vm_area_struct *find_vma_intersection(struct mm_struct *mm,
1765                                              unsigned long start_addr,
1766                                              unsigned long end_addr)
1767 {
1768         unsigned long index = start_addr;
1769
1770         mmap_assert_locked(mm);
1771         return mt_find(&mm->mm_mt, &index, end_addr - 1);
1772 }
1773 EXPORT_SYMBOL(find_vma_intersection);
1774
1775 /**
1776  * find_vma() - Find the VMA for a given address, or the next VMA.
1777  * @mm: The mm_struct to check
1778  * @addr: The address
1779  *
1780  * Returns: The VMA associated with addr, or the next VMA.
1781  * May return %NULL in the case of no VMA at addr or above.
1782  */
1783 struct vm_area_struct *find_vma(struct mm_struct *mm, unsigned long addr)
1784 {
1785         unsigned long index = addr;
1786
1787         mmap_assert_locked(mm);
1788         return mt_find(&mm->mm_mt, &index, ULONG_MAX);
1789 }
1790 EXPORT_SYMBOL(find_vma);
1791
1792 /**
1793  * find_vma_prev() - Find the VMA for a given address, or the next vma and
1794  * set %pprev to the previous VMA, if any.
1795  * @mm: The mm_struct to check
1796  * @addr: The address
1797  * @pprev: The pointer to set to the previous VMA
1798  *
1799  * Note that RCU lock is missing here since the external mmap_lock() is used
1800  * instead.
1801  *
1802  * Returns: The VMA associated with @addr, or the next vma.
1803  * May return %NULL in the case of no vma at addr or above.
1804  */
1805 struct vm_area_struct *
1806 find_vma_prev(struct mm_struct *mm, unsigned long addr,
1807                         struct vm_area_struct **pprev)
1808 {
1809         struct vm_area_struct *vma;
1810         MA_STATE(mas, &mm->mm_mt, addr, addr);
1811
1812         vma = mas_walk(&mas);
1813         *pprev = mas_prev(&mas, 0);
1814         if (!vma)
1815                 vma = mas_next(&mas, ULONG_MAX);
1816         return vma;
1817 }
1818
1819 /*
1820  * Verify that the stack growth is acceptable and
1821  * update accounting. This is shared with both the
1822  * grow-up and grow-down cases.
1823  */
1824 static int acct_stack_growth(struct vm_area_struct *vma,
1825                              unsigned long size, unsigned long grow)
1826 {
1827         struct mm_struct *mm = vma->vm_mm;
1828         unsigned long new_start;
1829
1830         /* address space limit tests */
1831         if (!may_expand_vm(mm, vma->vm_flags, grow))
1832                 return -ENOMEM;
1833
1834         /* Stack limit test */
1835         if (size > rlimit(RLIMIT_STACK))
1836                 return -ENOMEM;
1837
1838         /* mlock limit tests */
1839         if (mlock_future_check(mm, vma->vm_flags, grow << PAGE_SHIFT))
1840                 return -ENOMEM;
1841
1842         /* Check to ensure the stack will not grow into a hugetlb-only region */
1843         new_start = (vma->vm_flags & VM_GROWSUP) ? vma->vm_start :
1844                         vma->vm_end - size;
1845         if (is_hugepage_only_range(vma->vm_mm, new_start, size))
1846                 return -EFAULT;
1847
1848         /*
1849          * Overcommit..  This must be the final test, as it will
1850          * update security statistics.
1851          */
1852         if (security_vm_enough_memory_mm(mm, grow))
1853                 return -ENOMEM;
1854
1855         return 0;
1856 }
1857
1858 #if defined(CONFIG_STACK_GROWSUP) || defined(CONFIG_IA64)
1859 /*
1860  * PA-RISC uses this for its stack; IA64 for its Register Backing Store.
1861  * vma is the last one with address > vma->vm_end.  Have to extend vma.
1862  */
1863 int expand_upwards(struct vm_area_struct *vma, unsigned long address)
1864 {
1865         struct mm_struct *mm = vma->vm_mm;
1866         struct vm_area_struct *next;
1867         unsigned long gap_addr;
1868         int error = 0;
1869         MA_STATE(mas, &mm->mm_mt, 0, 0);
1870
1871         if (!(vma->vm_flags & VM_GROWSUP))
1872                 return -EFAULT;
1873
1874         /* Guard against exceeding limits of the address space. */
1875         address &= PAGE_MASK;
1876         if (address >= (TASK_SIZE & PAGE_MASK))
1877                 return -ENOMEM;
1878         address += PAGE_SIZE;
1879
1880         /* Enforce stack_guard_gap */
1881         gap_addr = address + stack_guard_gap;
1882
1883         /* Guard against overflow */
1884         if (gap_addr < address || gap_addr > TASK_SIZE)
1885                 gap_addr = TASK_SIZE;
1886
1887         next = find_vma_intersection(mm, vma->vm_end, gap_addr);
1888         if (next && vma_is_accessible(next)) {
1889                 if (!(next->vm_flags & VM_GROWSUP))
1890                         return -ENOMEM;
1891                 /* Check that both stack segments have the same anon_vma? */
1892         }
1893
1894         if (mas_preallocate(&mas, GFP_KERNEL))
1895                 return -ENOMEM;
1896
1897         /* We must make sure the anon_vma is allocated. */
1898         if (unlikely(anon_vma_prepare(vma))) {
1899                 mas_destroy(&mas);
1900                 return -ENOMEM;
1901         }
1902
1903         /*
1904          * vma->vm_start/vm_end cannot change under us because the caller
1905          * is required to hold the mmap_lock in read mode.  We need the
1906          * anon_vma lock to serialize against concurrent expand_stacks.
1907          */
1908         anon_vma_lock_write(vma->anon_vma);
1909
1910         /* Somebody else might have raced and expanded it already */
1911         if (address > vma->vm_end) {
1912                 unsigned long size, grow;
1913
1914                 size = address - vma->vm_start;
1915                 grow = (address - vma->vm_end) >> PAGE_SHIFT;
1916
1917                 error = -ENOMEM;
1918                 if (vma->vm_pgoff + (size >> PAGE_SHIFT) >= vma->vm_pgoff) {
1919                         error = acct_stack_growth(vma, size, grow);
1920                         if (!error) {
1921                                 /*
1922                                  * We only hold a shared mmap_lock lock here, so
1923                                  * we need to protect against concurrent vma
1924                                  * expansions.  anon_vma_lock_write() doesn't
1925                                  * help here, as we don't guarantee that all
1926                                  * growable vmas in a mm share the same root
1927                                  * anon vma.  So, we reuse mm->page_table_lock
1928                                  * to guard against concurrent vma expansions.
1929                                  */
1930                                 spin_lock(&mm->page_table_lock);
1931                                 if (vma->vm_flags & VM_LOCKED)
1932                                         mm->locked_vm += grow;
1933                                 vm_stat_account(mm, vma->vm_flags, grow);
1934                                 anon_vma_interval_tree_pre_update_vma(vma);
1935                                 vma->vm_end = address;
1936                                 /* Overwrite old entry in mtree. */
1937                                 mas_set_range(&mas, vma->vm_start, address - 1);
1938                                 mas_store_prealloc(&mas, vma);
1939                                 anon_vma_interval_tree_post_update_vma(vma);
1940                                 spin_unlock(&mm->page_table_lock);
1941
1942                                 perf_event_mmap(vma);
1943                         }
1944                 }
1945         }
1946         anon_vma_unlock_write(vma->anon_vma);
1947         khugepaged_enter_vma(vma, vma->vm_flags);
1948         mas_destroy(&mas);
1949         return error;
1950 }
1951 #endif /* CONFIG_STACK_GROWSUP || CONFIG_IA64 */
1952
1953 /*
1954  * vma is the first one with address < vma->vm_start.  Have to extend vma.
1955  */
1956 int expand_downwards(struct vm_area_struct *vma, unsigned long address)
1957 {
1958         struct mm_struct *mm = vma->vm_mm;
1959         MA_STATE(mas, &mm->mm_mt, vma->vm_start, vma->vm_start);
1960         struct vm_area_struct *prev;
1961         int error = 0;
1962
1963         address &= PAGE_MASK;
1964         if (address < mmap_min_addr)
1965                 return -EPERM;
1966
1967         /* Enforce stack_guard_gap */
1968         prev = mas_prev(&mas, 0);
1969         /* Check that both stack segments have the same anon_vma? */
1970         if (prev && !(prev->vm_flags & VM_GROWSDOWN) &&
1971                         vma_is_accessible(prev)) {
1972                 if (address - prev->vm_end < stack_guard_gap)
1973                         return -ENOMEM;
1974         }
1975
1976         if (mas_preallocate(&mas, GFP_KERNEL))
1977                 return -ENOMEM;
1978
1979         /* We must make sure the anon_vma is allocated. */
1980         if (unlikely(anon_vma_prepare(vma))) {
1981                 mas_destroy(&mas);
1982                 return -ENOMEM;
1983         }
1984
1985         /*
1986          * vma->vm_start/vm_end cannot change under us because the caller
1987          * is required to hold the mmap_lock in read mode.  We need the
1988          * anon_vma lock to serialize against concurrent expand_stacks.
1989          */
1990         anon_vma_lock_write(vma->anon_vma);
1991
1992         /* Somebody else might have raced and expanded it already */
1993         if (address < vma->vm_start) {
1994                 unsigned long size, grow;
1995
1996                 size = vma->vm_end - address;
1997                 grow = (vma->vm_start - address) >> PAGE_SHIFT;
1998
1999                 error = -ENOMEM;
2000                 if (grow <= vma->vm_pgoff) {
2001                         error = acct_stack_growth(vma, size, grow);
2002                         if (!error) {
2003                                 /*
2004                                  * We only hold a shared mmap_lock lock here, so
2005                                  * we need to protect against concurrent vma
2006                                  * expansions.  anon_vma_lock_write() doesn't
2007                                  * help here, as we don't guarantee that all
2008                                  * growable vmas in a mm share the same root
2009                                  * anon vma.  So, we reuse mm->page_table_lock
2010                                  * to guard against concurrent vma expansions.
2011                                  */
2012                                 spin_lock(&mm->page_table_lock);
2013                                 if (vma->vm_flags & VM_LOCKED)
2014                                         mm->locked_vm += grow;
2015                                 vm_stat_account(mm, vma->vm_flags, grow);
2016                                 anon_vma_interval_tree_pre_update_vma(vma);
2017                                 vma->vm_start = address;
2018                                 vma->vm_pgoff -= grow;
2019                                 /* Overwrite old entry in mtree. */
2020                                 mas_set_range(&mas, address, vma->vm_end - 1);
2021                                 mas_store_prealloc(&mas, vma);
2022                                 anon_vma_interval_tree_post_update_vma(vma);
2023                                 spin_unlock(&mm->page_table_lock);
2024
2025                                 perf_event_mmap(vma);
2026                         }
2027                 }
2028         }
2029         anon_vma_unlock_write(vma->anon_vma);
2030         khugepaged_enter_vma(vma, vma->vm_flags);
2031         mas_destroy(&mas);
2032         return error;
2033 }
2034
2035 /* enforced gap between the expanding stack and other mappings. */
2036 unsigned long stack_guard_gap = 256UL<<PAGE_SHIFT;
2037
2038 static int __init cmdline_parse_stack_guard_gap(char *p)
2039 {
2040         unsigned long val;
2041         char *endptr;
2042
2043         val = simple_strtoul(p, &endptr, 10);
2044         if (!*endptr)
2045                 stack_guard_gap = val << PAGE_SHIFT;
2046
2047         return 1;
2048 }
2049 __setup("stack_guard_gap=", cmdline_parse_stack_guard_gap);
2050
2051 #ifdef CONFIG_STACK_GROWSUP
2052 int expand_stack(struct vm_area_struct *vma, unsigned long address)
2053 {
2054         return expand_upwards(vma, address);
2055 }
2056
2057 struct vm_area_struct *
2058 find_extend_vma(struct mm_struct *mm, unsigned long addr)
2059 {
2060         struct vm_area_struct *vma, *prev;
2061
2062         addr &= PAGE_MASK;
2063         vma = find_vma_prev(mm, addr, &prev);
2064         if (vma && (vma->vm_start <= addr))
2065                 return vma;
2066         if (!prev || expand_stack(prev, addr))
2067                 return NULL;
2068         if (prev->vm_flags & VM_LOCKED)
2069                 populate_vma_page_range(prev, addr, prev->vm_end, NULL);
2070         return prev;
2071 }
2072 #else
2073 int expand_stack(struct vm_area_struct *vma, unsigned long address)
2074 {
2075         return expand_downwards(vma, address);
2076 }
2077
2078 struct vm_area_struct *
2079 find_extend_vma(struct mm_struct *mm, unsigned long addr)
2080 {
2081         struct vm_area_struct *vma;
2082         unsigned long start;
2083
2084         addr &= PAGE_MASK;
2085         vma = find_vma(mm, addr);
2086         if (!vma)
2087                 return NULL;
2088         if (vma->vm_start <= addr)
2089                 return vma;
2090         if (!(vma->vm_flags & VM_GROWSDOWN))
2091                 return NULL;
2092         start = vma->vm_start;
2093         if (expand_stack(vma, addr))
2094                 return NULL;
2095         if (vma->vm_flags & VM_LOCKED)
2096                 populate_vma_page_range(vma, addr, start, NULL);
2097         return vma;
2098 }
2099 #endif
2100
2101 EXPORT_SYMBOL_GPL(find_extend_vma);
2102
2103 /*
2104  * Ok - we have the memory areas we should free on a maple tree so release them,
2105  * and do the vma updates.
2106  *
2107  * Called with the mm semaphore held.
2108  */
2109 static inline void remove_mt(struct mm_struct *mm, struct ma_state *mas)
2110 {
2111         unsigned long nr_accounted = 0;
2112         struct vm_area_struct *vma;
2113
2114         /* Update high watermark before we lower total_vm */
2115         update_hiwater_vm(mm);
2116         mas_for_each(mas, vma, ULONG_MAX) {
2117                 long nrpages = vma_pages(vma);
2118
2119                 if (vma->vm_flags & VM_ACCOUNT)
2120                         nr_accounted += nrpages;
2121                 vm_stat_account(mm, vma->vm_flags, -nrpages);
2122                 remove_vma(vma);
2123         }
2124         vm_unacct_memory(nr_accounted);
2125         validate_mm(mm);
2126 }
2127
2128 /*
2129  * Get rid of page table information in the indicated region.
2130  *
2131  * Called with the mm semaphore held.
2132  */
2133 static void unmap_region(struct mm_struct *mm, struct maple_tree *mt,
2134                 struct vm_area_struct *vma, struct vm_area_struct *prev,
2135                 struct vm_area_struct *next,
2136                 unsigned long start, unsigned long end, bool mm_wr_locked)
2137 {
2138         struct mmu_gather tlb;
2139
2140         lru_add_drain();
2141         tlb_gather_mmu(&tlb, mm);
2142         update_hiwater_rss(mm);
2143         unmap_vmas(&tlb, mt, vma, start, end, mm_wr_locked);
2144         free_pgtables(&tlb, mt, vma, prev ? prev->vm_end : FIRST_USER_ADDRESS,
2145                                  next ? next->vm_start : USER_PGTABLES_CEILING);
2146         tlb_finish_mmu(&tlb);
2147 }
2148
2149 /*
2150  * __split_vma() bypasses sysctl_max_map_count checking.  We use this where it
2151  * has already been checked or doesn't make sense to fail.
2152  * VMA Iterator will point to the end VMA.
2153  */
2154 int __split_vma(struct vma_iterator *vmi, struct vm_area_struct *vma,
2155                 unsigned long addr, int new_below)
2156 {
2157         struct vma_prepare vp;
2158         struct vm_area_struct *new;
2159         int err;
2160
2161         validate_mm_mt(vma->vm_mm);
2162
2163         WARN_ON(vma->vm_start >= addr);
2164         WARN_ON(vma->vm_end <= addr);
2165
2166         if (vma->vm_ops && vma->vm_ops->may_split) {
2167                 err = vma->vm_ops->may_split(vma, addr);
2168                 if (err)
2169                         return err;
2170         }
2171
2172         new = vm_area_dup(vma);
2173         if (!new)
2174                 return -ENOMEM;
2175
2176         err = -ENOMEM;
2177         if (vma_iter_prealloc(vmi))
2178                 goto out_free_vma;
2179
2180         if (new_below) {
2181                 new->vm_end = addr;
2182         } else {
2183                 new->vm_start = addr;
2184                 new->vm_pgoff += ((addr - vma->vm_start) >> PAGE_SHIFT);
2185         }
2186
2187         err = vma_dup_policy(vma, new);
2188         if (err)
2189                 goto out_free_vmi;
2190
2191         err = anon_vma_clone(new, vma);
2192         if (err)
2193                 goto out_free_mpol;
2194
2195         if (new->vm_file)
2196                 get_file(new->vm_file);
2197
2198         if (new->vm_ops && new->vm_ops->open)
2199                 new->vm_ops->open(new);
2200
2201         vma_adjust_trans_huge(vma, vma->vm_start, addr, 0);
2202         init_vma_prep(&vp, vma);
2203         vp.insert = new;
2204         vma_prepare(&vp);
2205
2206         if (new_below) {
2207                 vma->vm_start = addr;
2208                 vma->vm_pgoff += (addr - new->vm_start) >> PAGE_SHIFT;
2209         } else {
2210                 vma->vm_end = addr;
2211         }
2212
2213         /* vma_complete stores the new vma */
2214         vma_complete(&vp, vmi, vma->vm_mm);
2215
2216         /* Success. */
2217         if (new_below)
2218                 vma_next(vmi);
2219         validate_mm_mt(vma->vm_mm);
2220         return 0;
2221
2222 out_free_mpol:
2223         mpol_put(vma_policy(new));
2224 out_free_vmi:
2225         vma_iter_free(vmi);
2226 out_free_vma:
2227         vm_area_free(new);
2228         validate_mm_mt(vma->vm_mm);
2229         return err;
2230 }
2231
2232 /*
2233  * Split a vma into two pieces at address 'addr', a new vma is allocated
2234  * either for the first part or the tail.
2235  */
2236 int split_vma(struct vma_iterator *vmi, struct vm_area_struct *vma,
2237               unsigned long addr, int new_below)
2238 {
2239         if (vma->vm_mm->map_count >= sysctl_max_map_count)
2240                 return -ENOMEM;
2241
2242         return __split_vma(vmi, vma, addr, new_below);
2243 }
2244
2245 static inline int munmap_sidetree(struct vm_area_struct *vma,
2246                                    struct ma_state *mas_detach)
2247 {
2248         mas_set_range(mas_detach, vma->vm_start, vma->vm_end - 1);
2249         if (mas_store_gfp(mas_detach, vma, GFP_KERNEL))
2250                 return -ENOMEM;
2251
2252         if (vma->vm_flags & VM_LOCKED)
2253                 vma->vm_mm->locked_vm -= vma_pages(vma);
2254
2255         return 0;
2256 }
2257
2258 /*
2259  * do_vmi_align_munmap() - munmap the aligned region from @start to @end.
2260  * @vmi: The vma iterator
2261  * @vma: The starting vm_area_struct
2262  * @mm: The mm_struct
2263  * @start: The aligned start address to munmap.
2264  * @end: The aligned end address to munmap.
2265  * @uf: The userfaultfd list_head
2266  * @downgrade: Set to true to attempt a write downgrade of the mmap_lock
2267  *
2268  * If @downgrade is true, check return code for potential release of the lock.
2269  */
2270 static int
2271 do_vmi_align_munmap(struct vma_iterator *vmi, struct vm_area_struct *vma,
2272                     struct mm_struct *mm, unsigned long start,
2273                     unsigned long end, struct list_head *uf, bool downgrade)
2274 {
2275         struct vm_area_struct *prev, *next = NULL;
2276         struct maple_tree mt_detach;
2277         int count = 0;
2278         int error = -ENOMEM;
2279         MA_STATE(mas_detach, &mt_detach, 0, 0);
2280         mt_init_flags(&mt_detach, MT_FLAGS_LOCK_EXTERN);
2281         mt_set_external_lock(&mt_detach, &mm->mmap_lock);
2282
2283         /*
2284          * If we need to split any vma, do it now to save pain later.
2285          *
2286          * Note: mremap's move_vma VM_ACCOUNT handling assumes a partially
2287          * unmapped vm_area_struct will remain in use: so lower split_vma
2288          * places tmp vma above, and higher split_vma places tmp vma below.
2289          */
2290
2291         /* Does it split the first one? */
2292         if (start > vma->vm_start) {
2293
2294                 /*
2295                  * Make sure that map_count on return from munmap() will
2296                  * not exceed its limit; but let map_count go just above
2297                  * its limit temporarily, to help free resources as expected.
2298                  */
2299                 if (end < vma->vm_end && mm->map_count >= sysctl_max_map_count)
2300                         goto map_count_exceeded;
2301
2302                 error = __split_vma(vmi, vma, start, 0);
2303                 if (error)
2304                         goto start_split_failed;
2305
2306                 vma = vma_iter_load(vmi);
2307         }
2308
2309         prev = vma_prev(vmi);
2310         if (unlikely((!prev)))
2311                 vma_iter_set(vmi, start);
2312
2313         /*
2314          * Detach a range of VMAs from the mm. Using next as a temp variable as
2315          * it is always overwritten.
2316          */
2317         for_each_vma_range(*vmi, next, end) {
2318                 /* Does it split the end? */
2319                 if (next->vm_end > end) {
2320                         error = __split_vma(vmi, next, end, 0);
2321                         if (error)
2322                                 goto end_split_failed;
2323                 }
2324                 error = munmap_sidetree(next, &mas_detach);
2325                 if (error)
2326                         goto munmap_sidetree_failed;
2327
2328                 count++;
2329 #ifdef CONFIG_DEBUG_VM_MAPLE_TREE
2330                 BUG_ON(next->vm_start < start);
2331                 BUG_ON(next->vm_start > end);
2332 #endif
2333         }
2334
2335         next = vma_next(vmi);
2336         if (unlikely(uf)) {
2337                 /*
2338                  * If userfaultfd_unmap_prep returns an error the vmas
2339                  * will remain split, but userland will get a
2340                  * highly unexpected error anyway. This is no
2341                  * different than the case where the first of the two
2342                  * __split_vma fails, but we don't undo the first
2343                  * split, despite we could. This is unlikely enough
2344                  * failure that it's not worth optimizing it for.
2345                  */
2346                 error = userfaultfd_unmap_prep(mm, start, end, uf);
2347
2348                 if (error)
2349                         goto userfaultfd_error;
2350         }
2351
2352 #if defined(CONFIG_DEBUG_VM_MAPLE_TREE)
2353         /* Make sure no VMAs are about to be lost. */
2354         {
2355                 MA_STATE(test, &mt_detach, start, end - 1);
2356                 struct vm_area_struct *vma_mas, *vma_test;
2357                 int test_count = 0;
2358
2359                 vma_iter_set(vmi, start);
2360                 rcu_read_lock();
2361                 vma_test = mas_find(&test, end - 1);
2362                 for_each_vma_range(*vmi, vma_mas, end) {
2363                         BUG_ON(vma_mas != vma_test);
2364                         test_count++;
2365                         vma_test = mas_next(&test, end - 1);
2366                 }
2367                 rcu_read_unlock();
2368                 BUG_ON(count != test_count);
2369         }
2370 #endif
2371         /* Point of no return */
2372         vma_iter_set(vmi, start);
2373         if (vma_iter_clear_gfp(vmi, start, end, GFP_KERNEL))
2374                 return -ENOMEM;
2375
2376         mm->map_count -= count;
2377         /*
2378          * Do not downgrade mmap_lock if we are next to VM_GROWSDOWN or
2379          * VM_GROWSUP VMA. Such VMAs can change their size under
2380          * down_read(mmap_lock) and collide with the VMA we are about to unmap.
2381          */
2382         if (downgrade) {
2383                 if (next && (next->vm_flags & VM_GROWSDOWN))
2384                         downgrade = false;
2385                 else if (prev && (prev->vm_flags & VM_GROWSUP))
2386                         downgrade = false;
2387                 else
2388                         mmap_write_downgrade(mm);
2389         }
2390
2391         /*
2392          * We can free page tables without write-locking mmap_lock because VMAs
2393          * were isolated before we downgraded mmap_lock.
2394          */
2395         unmap_region(mm, &mt_detach, vma, prev, next, start, end, !downgrade);
2396         /* Statistics and freeing VMAs */
2397         mas_set(&mas_detach, start);
2398         remove_mt(mm, &mas_detach);
2399         __mt_destroy(&mt_detach);
2400
2401
2402         validate_mm(mm);
2403         return downgrade ? 1 : 0;
2404
2405 userfaultfd_error:
2406 munmap_sidetree_failed:
2407 end_split_failed:
2408         __mt_destroy(&mt_detach);
2409 start_split_failed:
2410 map_count_exceeded:
2411         return error;
2412 }
2413
2414 /*
2415  * do_vmi_munmap() - munmap a given range.
2416  * @vmi: The vma iterator
2417  * @mm: The mm_struct
2418  * @start: The start address to munmap
2419  * @len: The length of the range to munmap
2420  * @uf: The userfaultfd list_head
2421  * @downgrade: set to true if the user wants to attempt to write_downgrade the
2422  * mmap_lock
2423  *
2424  * This function takes a @mas that is either pointing to the previous VMA or set
2425  * to MA_START and sets it up to remove the mapping(s).  The @len will be
2426  * aligned and any arch_unmap work will be preformed.
2427  *
2428  * Returns: -EINVAL on failure, 1 on success and unlock, 0 otherwise.
2429  */
2430 int do_vmi_munmap(struct vma_iterator *vmi, struct mm_struct *mm,
2431                   unsigned long start, size_t len, struct list_head *uf,
2432                   bool downgrade)
2433 {
2434         unsigned long end;
2435         struct vm_area_struct *vma;
2436
2437         if ((offset_in_page(start)) || start > TASK_SIZE || len > TASK_SIZE-start)
2438                 return -EINVAL;
2439
2440         end = start + PAGE_ALIGN(len);
2441         if (end == start)
2442                 return -EINVAL;
2443
2444          /* arch_unmap() might do unmaps itself.  */
2445         arch_unmap(mm, start, end);
2446
2447         /* Find the first overlapping VMA */
2448         vma = vma_find(vmi, end);
2449         if (!vma)
2450                 return 0;
2451
2452         return do_vmi_align_munmap(vmi, vma, mm, start, end, uf, downgrade);
2453 }
2454
2455 /* do_munmap() - Wrapper function for non-maple tree aware do_munmap() calls.
2456  * @mm: The mm_struct
2457  * @start: The start address to munmap
2458  * @len: The length to be munmapped.
2459  * @uf: The userfaultfd list_head
2460  */
2461 int do_munmap(struct mm_struct *mm, unsigned long start, size_t len,
2462               struct list_head *uf)
2463 {
2464         VMA_ITERATOR(vmi, mm, start);
2465
2466         return do_vmi_munmap(&vmi, mm, start, len, uf, false);
2467 }
2468
2469 unsigned long mmap_region(struct file *file, unsigned long addr,
2470                 unsigned long len, vm_flags_t vm_flags, unsigned long pgoff,
2471                 struct list_head *uf)
2472 {
2473         struct mm_struct *mm = current->mm;
2474         struct vm_area_struct *vma = NULL;
2475         struct vm_area_struct *next, *prev, *merge;
2476         pgoff_t pglen = len >> PAGE_SHIFT;
2477         unsigned long charged = 0;
2478         unsigned long end = addr + len;
2479         unsigned long merge_start = addr, merge_end = end;
2480         pgoff_t vm_pgoff;
2481         int error;
2482         VMA_ITERATOR(vmi, mm, addr);
2483
2484         /* Check against address space limit. */
2485         if (!may_expand_vm(mm, vm_flags, len >> PAGE_SHIFT)) {
2486                 unsigned long nr_pages;
2487
2488                 /*
2489                  * MAP_FIXED may remove pages of mappings that intersects with
2490                  * requested mapping. Account for the pages it would unmap.
2491                  */
2492                 nr_pages = count_vma_pages_range(mm, addr, end);
2493
2494                 if (!may_expand_vm(mm, vm_flags,
2495                                         (len >> PAGE_SHIFT) - nr_pages))
2496                         return -ENOMEM;
2497         }
2498
2499         /* Unmap any existing mapping in the area */
2500         if (do_vmi_munmap(&vmi, mm, addr, len, uf, false))
2501                 return -ENOMEM;
2502
2503         /*
2504          * Private writable mapping: check memory availability
2505          */
2506         if (accountable_mapping(file, vm_flags)) {
2507                 charged = len >> PAGE_SHIFT;
2508                 if (security_vm_enough_memory_mm(mm, charged))
2509                         return -ENOMEM;
2510                 vm_flags |= VM_ACCOUNT;
2511         }
2512
2513         next = vma_next(&vmi);
2514         prev = vma_prev(&vmi);
2515         if (vm_flags & VM_SPECIAL)
2516                 goto cannot_expand;
2517
2518         /* Attempt to expand an old mapping */
2519         /* Check next */
2520         if (next && next->vm_start == end && !vma_policy(next) &&
2521             can_vma_merge_before(next, vm_flags, NULL, file, pgoff+pglen,
2522                                  NULL_VM_UFFD_CTX, NULL)) {
2523                 merge_end = next->vm_end;
2524                 vma = next;
2525                 vm_pgoff = next->vm_pgoff - pglen;
2526         }
2527
2528         /* Check prev */
2529         if (prev && prev->vm_end == addr && !vma_policy(prev) &&
2530             (vma ? can_vma_merge_after(prev, vm_flags, vma->anon_vma, file,
2531                                        pgoff, vma->vm_userfaultfd_ctx, NULL) :
2532                    can_vma_merge_after(prev, vm_flags, NULL, file, pgoff,
2533                                        NULL_VM_UFFD_CTX, NULL))) {
2534                 merge_start = prev->vm_start;
2535                 vma = prev;
2536                 vm_pgoff = prev->vm_pgoff;
2537         }
2538
2539
2540         /* Actually expand, if possible */
2541         if (vma &&
2542             !vma_expand(&vmi, vma, merge_start, merge_end, vm_pgoff, next)) {
2543                 khugepaged_enter_vma(vma, vm_flags);
2544                 goto expanded;
2545         }
2546
2547 cannot_expand:
2548         /*
2549          * Determine the object being mapped and call the appropriate
2550          * specific mapper. the address has already been validated, but
2551          * not unmapped, but the maps are removed from the list.
2552          */
2553         vma = vm_area_alloc(mm);
2554         if (!vma) {
2555                 error = -ENOMEM;
2556                 goto unacct_error;
2557         }
2558
2559         vma_iter_set(&vmi, addr);
2560         vma->vm_start = addr;
2561         vma->vm_end = end;
2562         vm_flags_init(vma, vm_flags);
2563         vma->vm_page_prot = vm_get_page_prot(vm_flags);
2564         vma->vm_pgoff = pgoff;
2565
2566         if (file) {
2567                 if (vm_flags & VM_SHARED) {
2568                         error = mapping_map_writable(file->f_mapping);
2569                         if (error)
2570                                 goto free_vma;
2571                 }
2572
2573                 vma->vm_file = get_file(file);
2574                 error = call_mmap(file, vma);
2575                 if (error)
2576                         goto unmap_and_free_vma;
2577
2578                 /*
2579                  * Expansion is handled above, merging is handled below.
2580                  * Drivers should not alter the address of the VMA.
2581                  */
2582                 error = -EINVAL;
2583                 if (WARN_ON((addr != vma->vm_start)))
2584                         goto close_and_free_vma;
2585
2586                 vma_iter_set(&vmi, addr);
2587                 /*
2588                  * If vm_flags changed after call_mmap(), we should try merge
2589                  * vma again as we may succeed this time.
2590                  */
2591                 if (unlikely(vm_flags != vma->vm_flags && prev)) {
2592                         merge = vma_merge(&vmi, mm, prev, vma->vm_start,
2593                                     vma->vm_end, vma->vm_flags, NULL,
2594                                     vma->vm_file, vma->vm_pgoff, NULL,
2595                                     NULL_VM_UFFD_CTX, NULL);
2596                         if (merge) {
2597                                 /*
2598                                  * ->mmap() can change vma->vm_file and fput
2599                                  * the original file. So fput the vma->vm_file
2600                                  * here or we would add an extra fput for file
2601                                  * and cause general protection fault
2602                                  * ultimately.
2603                                  */
2604                                 fput(vma->vm_file);
2605                                 vm_area_free(vma);
2606                                 vma = merge;
2607                                 /* Update vm_flags to pick up the change. */
2608                                 vm_flags = vma->vm_flags;
2609                                 goto unmap_writable;
2610                         }
2611                 }
2612
2613                 vm_flags = vma->vm_flags;
2614         } else if (vm_flags & VM_SHARED) {
2615                 error = shmem_zero_setup(vma);
2616                 if (error)
2617                         goto free_vma;
2618         } else {
2619                 vma_set_anonymous(vma);
2620         }
2621
2622         if (map_deny_write_exec(vma, vma->vm_flags)) {
2623                 error = -EACCES;
2624                 if (file)
2625                         goto close_and_free_vma;
2626                 else if (vma->vm_file)
2627                         goto unmap_and_free_vma;
2628                 else
2629                         goto free_vma;
2630         }
2631
2632         /* Allow architectures to sanity-check the vm_flags */
2633         error = -EINVAL;
2634         if (!arch_validate_flags(vma->vm_flags))
2635                 goto close_and_free_vma;
2636
2637         error = -ENOMEM;
2638         if (vma_iter_prealloc(&vmi))
2639                 goto close_and_free_vma;
2640
2641         if (vma->vm_file)
2642                 i_mmap_lock_write(vma->vm_file->f_mapping);
2643
2644         vma_iter_store(&vmi, vma);
2645         mm->map_count++;
2646         if (vma->vm_file) {
2647                 if (vma->vm_flags & VM_SHARED)
2648                         mapping_allow_writable(vma->vm_file->f_mapping);
2649
2650                 flush_dcache_mmap_lock(vma->vm_file->f_mapping);
2651                 vma_interval_tree_insert(vma, &vma->vm_file->f_mapping->i_mmap);
2652                 flush_dcache_mmap_unlock(vma->vm_file->f_mapping);
2653                 i_mmap_unlock_write(vma->vm_file->f_mapping);
2654         }
2655
2656         /*
2657          * vma_merge() calls khugepaged_enter_vma() either, the below
2658          * call covers the non-merge case.
2659          */
2660         khugepaged_enter_vma(vma, vma->vm_flags);
2661
2662         /* Once vma denies write, undo our temporary denial count */
2663 unmap_writable:
2664         if (file && vm_flags & VM_SHARED)
2665                 mapping_unmap_writable(file->f_mapping);
2666         file = vma->vm_file;
2667 expanded:
2668         perf_event_mmap(vma);
2669
2670         vm_stat_account(mm, vm_flags, len >> PAGE_SHIFT);
2671         if (vm_flags & VM_LOCKED) {
2672                 if ((vm_flags & VM_SPECIAL) || vma_is_dax(vma) ||
2673                                         is_vm_hugetlb_page(vma) ||
2674                                         vma == get_gate_vma(current->mm))
2675                         vm_flags_clear(vma, VM_LOCKED_MASK);
2676                 else
2677                         mm->locked_vm += (len >> PAGE_SHIFT);
2678         }
2679
2680         if (file)
2681                 uprobe_mmap(vma);
2682
2683         /*
2684          * New (or expanded) vma always get soft dirty status.
2685          * Otherwise user-space soft-dirty page tracker won't
2686          * be able to distinguish situation when vma area unmapped,
2687          * then new mapped in-place (which must be aimed as
2688          * a completely new data area).
2689          */
2690         vm_flags_set(vma, VM_SOFTDIRTY);
2691
2692         vma_set_page_prot(vma);
2693
2694         validate_mm(mm);
2695         return addr;
2696
2697 close_and_free_vma:
2698         if (file && vma->vm_ops && vma->vm_ops->close)
2699                 vma->vm_ops->close(vma);
2700
2701         if (file || vma->vm_file) {
2702 unmap_and_free_vma:
2703                 fput(vma->vm_file);
2704                 vma->vm_file = NULL;
2705
2706                 /* Undo any partial mapping done by a device driver. */
2707                 unmap_region(mm, &mm->mm_mt, vma, prev, next, vma->vm_start,
2708                              vma->vm_end, true);
2709         }
2710         if (file && (vm_flags & VM_SHARED))
2711                 mapping_unmap_writable(file->f_mapping);
2712 free_vma:
2713         vm_area_free(vma);
2714 unacct_error:
2715         if (charged)
2716                 vm_unacct_memory(charged);
2717         validate_mm(mm);
2718         return error;
2719 }
2720
2721 static int __vm_munmap(unsigned long start, size_t len, bool downgrade)
2722 {
2723         int ret;
2724         struct mm_struct *mm = current->mm;
2725         LIST_HEAD(uf);
2726         VMA_ITERATOR(vmi, mm, start);
2727
2728         if (mmap_write_lock_killable(mm))
2729                 return -EINTR;
2730
2731         ret = do_vmi_munmap(&vmi, mm, start, len, &uf, downgrade);
2732         /*
2733          * Returning 1 indicates mmap_lock is downgraded.
2734          * But 1 is not legal return value of vm_munmap() and munmap(), reset
2735          * it to 0 before return.
2736          */
2737         if (ret == 1) {
2738                 mmap_read_unlock(mm);
2739                 ret = 0;
2740         } else
2741                 mmap_write_unlock(mm);
2742
2743         userfaultfd_unmap_complete(mm, &uf);
2744         return ret;
2745 }
2746
2747 int vm_munmap(unsigned long start, size_t len)
2748 {
2749         return __vm_munmap(start, len, false);
2750 }
2751 EXPORT_SYMBOL(vm_munmap);
2752
2753 SYSCALL_DEFINE2(munmap, unsigned long, addr, size_t, len)
2754 {
2755         addr = untagged_addr(addr);
2756         return __vm_munmap(addr, len, true);
2757 }
2758
2759
2760 /*
2761  * Emulation of deprecated remap_file_pages() syscall.
2762  */
2763 SYSCALL_DEFINE5(remap_file_pages, unsigned long, start, unsigned long, size,
2764                 unsigned long, prot, unsigned long, pgoff, unsigned long, flags)
2765 {
2766
2767         struct mm_struct *mm = current->mm;
2768         struct vm_area_struct *vma;
2769         unsigned long populate = 0;
2770         unsigned long ret = -EINVAL;
2771         struct file *file;
2772
2773         pr_warn_once("%s (%d) uses deprecated remap_file_pages() syscall. See Documentation/mm/remap_file_pages.rst.\n",
2774                      current->comm, current->pid);
2775
2776         if (prot)
2777                 return ret;
2778         start = start & PAGE_MASK;
2779         size = size & PAGE_MASK;
2780
2781         if (start + size <= start)
2782                 return ret;
2783
2784         /* Does pgoff wrap? */
2785         if (pgoff + (size >> PAGE_SHIFT) < pgoff)
2786                 return ret;
2787
2788         if (mmap_write_lock_killable(mm))
2789                 return -EINTR;
2790
2791         vma = vma_lookup(mm, start);
2792
2793         if (!vma || !(vma->vm_flags & VM_SHARED))
2794                 goto out;
2795
2796         if (start + size > vma->vm_end) {
2797                 VMA_ITERATOR(vmi, mm, vma->vm_end);
2798                 struct vm_area_struct *next, *prev = vma;
2799
2800                 for_each_vma_range(vmi, next, start + size) {
2801                         /* hole between vmas ? */
2802                         if (next->vm_start != prev->vm_end)
2803                                 goto out;
2804
2805                         if (next->vm_file != vma->vm_file)
2806                                 goto out;
2807
2808                         if (next->vm_flags != vma->vm_flags)
2809                                 goto out;
2810
2811                         if (start + size <= next->vm_end)
2812                                 break;
2813
2814                         prev = next;
2815                 }
2816
2817                 if (!next)
2818                         goto out;
2819         }
2820
2821         prot |= vma->vm_flags & VM_READ ? PROT_READ : 0;
2822         prot |= vma->vm_flags & VM_WRITE ? PROT_WRITE : 0;
2823         prot |= vma->vm_flags & VM_EXEC ? PROT_EXEC : 0;
2824
2825         flags &= MAP_NONBLOCK;
2826         flags |= MAP_SHARED | MAP_FIXED | MAP_POPULATE;
2827         if (vma->vm_flags & VM_LOCKED)
2828                 flags |= MAP_LOCKED;
2829
2830         file = get_file(vma->vm_file);
2831         ret = do_mmap(vma->vm_file, start, size,
2832                         prot, flags, pgoff, &populate, NULL);
2833         fput(file);
2834 out:
2835         mmap_write_unlock(mm);
2836         if (populate)
2837                 mm_populate(ret, populate);
2838         if (!IS_ERR_VALUE(ret))
2839                 ret = 0;
2840         return ret;
2841 }
2842
2843 /*
2844  * do_vma_munmap() - Unmap a full or partial vma.
2845  * @vmi: The vma iterator pointing at the vma
2846  * @vma: The first vma to be munmapped
2847  * @start: the start of the address to unmap
2848  * @end: The end of the address to unmap
2849  * @uf: The userfaultfd list_head
2850  * @downgrade: Attempt to downgrade or not
2851  *
2852  * Returns: 0 on success and not downgraded, 1 on success and downgraded.
2853  * unmaps a VMA mapping when the vma iterator is already in position.
2854  * Does not handle alignment.
2855  */
2856 int do_vma_munmap(struct vma_iterator *vmi, struct vm_area_struct *vma,
2857                   unsigned long start, unsigned long end,
2858                   struct list_head *uf, bool downgrade)
2859 {
2860         struct mm_struct *mm = vma->vm_mm;
2861         int ret;
2862
2863         arch_unmap(mm, start, end);
2864         ret = do_vmi_align_munmap(vmi, vma, mm, start, end, uf, downgrade);
2865         validate_mm_mt(mm);
2866         return ret;
2867 }
2868
2869 /*
2870  * do_brk_flags() - Increase the brk vma if the flags match.
2871  * @vmi: The vma iterator
2872  * @addr: The start address
2873  * @len: The length of the increase
2874  * @vma: The vma,
2875  * @flags: The VMA Flags
2876  *
2877  * Extend the brk VMA from addr to addr + len.  If the VMA is NULL or the flags
2878  * do not match then create a new anonymous VMA.  Eventually we may be able to
2879  * do some brk-specific accounting here.
2880  */
2881 static int do_brk_flags(struct vma_iterator *vmi, struct vm_area_struct *vma,
2882                 unsigned long addr, unsigned long len, unsigned long flags)
2883 {
2884         struct mm_struct *mm = current->mm;
2885         struct vma_prepare vp;
2886
2887         validate_mm_mt(mm);
2888         /*
2889          * Check against address space limits by the changed size
2890          * Note: This happens *after* clearing old mappings in some code paths.
2891          */
2892         flags |= VM_DATA_DEFAULT_FLAGS | VM_ACCOUNT | mm->def_flags;
2893         if (!may_expand_vm(mm, flags, len >> PAGE_SHIFT))
2894                 return -ENOMEM;
2895
2896         if (mm->map_count > sysctl_max_map_count)
2897                 return -ENOMEM;
2898
2899         if (security_vm_enough_memory_mm(mm, len >> PAGE_SHIFT))
2900                 return -ENOMEM;
2901
2902         /*
2903          * Expand the existing vma if possible; Note that singular lists do not
2904          * occur after forking, so the expand will only happen on new VMAs.
2905          */
2906         if (vma && vma->vm_end == addr && !vma_policy(vma) &&
2907             can_vma_merge_after(vma, flags, NULL, NULL,
2908                                 addr >> PAGE_SHIFT, NULL_VM_UFFD_CTX, NULL)) {
2909                 if (vma_iter_prealloc(vmi))
2910                         goto unacct_fail;
2911
2912                 vma_adjust_trans_huge(vma, vma->vm_start, addr + len, 0);
2913                 init_vma_prep(&vp, vma);
2914                 vma_prepare(&vp);
2915                 vma->vm_end = addr + len;
2916                 vm_flags_set(vma, VM_SOFTDIRTY);
2917                 vma_iter_store(vmi, vma);
2918
2919                 vma_complete(&vp, vmi, mm);
2920                 khugepaged_enter_vma(vma, flags);
2921                 goto out;
2922         }
2923
2924         /* create a vma struct for an anonymous mapping */
2925         vma = vm_area_alloc(mm);
2926         if (!vma)
2927                 goto unacct_fail;
2928
2929         vma_set_anonymous(vma);
2930         vma->vm_start = addr;
2931         vma->vm_end = addr + len;
2932         vma->vm_pgoff = addr >> PAGE_SHIFT;
2933         vm_flags_init(vma, flags);
2934         vma->vm_page_prot = vm_get_page_prot(flags);
2935         if (vma_iter_store_gfp(vmi, vma, GFP_KERNEL))
2936                 goto mas_store_fail;
2937
2938         mm->map_count++;
2939 out:
2940         perf_event_mmap(vma);
2941         mm->total_vm += len >> PAGE_SHIFT;
2942         mm->data_vm += len >> PAGE_SHIFT;
2943         if (flags & VM_LOCKED)
2944                 mm->locked_vm += (len >> PAGE_SHIFT);
2945         vm_flags_set(vma, VM_SOFTDIRTY);
2946         validate_mm(mm);
2947         return 0;
2948
2949 mas_store_fail:
2950         vm_area_free(vma);
2951 unacct_fail:
2952         vm_unacct_memory(len >> PAGE_SHIFT);
2953         return -ENOMEM;
2954 }
2955
2956 int vm_brk_flags(unsigned long addr, unsigned long request, unsigned long flags)
2957 {
2958         struct mm_struct *mm = current->mm;
2959         struct vm_area_struct *vma = NULL;
2960         unsigned long len;
2961         int ret;
2962         bool populate;
2963         LIST_HEAD(uf);
2964         VMA_ITERATOR(vmi, mm, addr);
2965
2966         len = PAGE_ALIGN(request);
2967         if (len < request)
2968                 return -ENOMEM;
2969         if (!len)
2970                 return 0;
2971
2972         if (mmap_write_lock_killable(mm))
2973                 return -EINTR;
2974
2975         /* Until we need other flags, refuse anything except VM_EXEC. */
2976         if ((flags & (~VM_EXEC)) != 0)
2977                 return -EINVAL;
2978
2979         ret = check_brk_limits(addr, len);
2980         if (ret)
2981                 goto limits_failed;
2982
2983         ret = do_vmi_munmap(&vmi, mm, addr, len, &uf, 0);
2984         if (ret)
2985                 goto munmap_failed;
2986
2987         vma = vma_prev(&vmi);
2988         ret = do_brk_flags(&vmi, vma, addr, len, flags);
2989         populate = ((mm->def_flags & VM_LOCKED) != 0);
2990         mmap_write_unlock(mm);
2991         userfaultfd_unmap_complete(mm, &uf);
2992         if (populate && !ret)
2993                 mm_populate(addr, len);
2994         return ret;
2995
2996 munmap_failed:
2997 limits_failed:
2998         mmap_write_unlock(mm);
2999         return ret;
3000 }
3001 EXPORT_SYMBOL(vm_brk_flags);
3002
3003 int vm_brk(unsigned long addr, unsigned long len)
3004 {
3005         return vm_brk_flags(addr, len, 0);
3006 }
3007 EXPORT_SYMBOL(vm_brk);
3008
3009 /* Release all mmaps. */
3010 void exit_mmap(struct mm_struct *mm)
3011 {
3012         struct mmu_gather tlb;
3013         struct vm_area_struct *vma;
3014         unsigned long nr_accounted = 0;
3015         MA_STATE(mas, &mm->mm_mt, 0, 0);
3016         int count = 0;
3017
3018         /* mm's last user has gone, and its about to be pulled down */
3019         mmu_notifier_release(mm);
3020
3021         mmap_read_lock(mm);
3022         arch_exit_mmap(mm);
3023
3024         vma = mas_find(&mas, ULONG_MAX);
3025         if (!vma) {
3026                 /* Can happen if dup_mmap() received an OOM */
3027                 mmap_read_unlock(mm);
3028                 return;
3029         }
3030
3031         lru_add_drain();
3032         flush_cache_mm(mm);
3033         tlb_gather_mmu_fullmm(&tlb, mm);
3034         /* update_hiwater_rss(mm) here? but nobody should be looking */
3035         /* Use ULONG_MAX here to ensure all VMAs in the mm are unmapped */
3036         unmap_vmas(&tlb, &mm->mm_mt, vma, 0, ULONG_MAX, false);
3037         mmap_read_unlock(mm);
3038
3039         /*
3040          * Set MMF_OOM_SKIP to hide this task from the oom killer/reaper
3041          * because the memory has been already freed.
3042          */
3043         set_bit(MMF_OOM_SKIP, &mm->flags);
3044         mmap_write_lock(mm);
3045         free_pgtables(&tlb, &mm->mm_mt, vma, FIRST_USER_ADDRESS,
3046                       USER_PGTABLES_CEILING);
3047         tlb_finish_mmu(&tlb);
3048
3049         /*
3050          * Walk the list again, actually closing and freeing it, with preemption
3051          * enabled, without holding any MM locks besides the unreachable
3052          * mmap_write_lock.
3053          */
3054         do {
3055                 if (vma->vm_flags & VM_ACCOUNT)
3056                         nr_accounted += vma_pages(vma);
3057                 remove_vma(vma);
3058                 count++;
3059                 cond_resched();
3060         } while ((vma = mas_find(&mas, ULONG_MAX)) != NULL);
3061
3062         BUG_ON(count != mm->map_count);
3063
3064         trace_exit_mmap(mm);
3065         __mt_destroy(&mm->mm_mt);
3066         mmap_write_unlock(mm);
3067         vm_unacct_memory(nr_accounted);
3068 }
3069
3070 /* Insert vm structure into process list sorted by address
3071  * and into the inode's i_mmap tree.  If vm_file is non-NULL
3072  * then i_mmap_rwsem is taken here.
3073  */
3074 int insert_vm_struct(struct mm_struct *mm, struct vm_area_struct *vma)
3075 {
3076         unsigned long charged = vma_pages(vma);
3077
3078
3079         if (find_vma_intersection(mm, vma->vm_start, vma->vm_end))
3080                 return -ENOMEM;
3081
3082         if ((vma->vm_flags & VM_ACCOUNT) &&
3083              security_vm_enough_memory_mm(mm, charged))
3084                 return -ENOMEM;
3085
3086         /*
3087          * The vm_pgoff of a purely anonymous vma should be irrelevant
3088          * until its first write fault, when page's anon_vma and index
3089          * are set.  But now set the vm_pgoff it will almost certainly
3090          * end up with (unless mremap moves it elsewhere before that
3091          * first wfault), so /proc/pid/maps tells a consistent story.
3092          *
3093          * By setting it to reflect the virtual start address of the
3094          * vma, merges and splits can happen in a seamless way, just
3095          * using the existing file pgoff checks and manipulations.
3096          * Similarly in do_mmap and in do_brk_flags.
3097          */
3098         if (vma_is_anonymous(vma)) {
3099                 BUG_ON(vma->anon_vma);
3100                 vma->vm_pgoff = vma->vm_start >> PAGE_SHIFT;
3101         }
3102
3103         if (vma_link(mm, vma)) {
3104                 vm_unacct_memory(charged);
3105                 return -ENOMEM;
3106         }
3107
3108         return 0;
3109 }
3110
3111 /*
3112  * Copy the vma structure to a new location in the same mm,
3113  * prior to moving page table entries, to effect an mremap move.
3114  */
3115 struct vm_area_struct *copy_vma(struct vm_area_struct **vmap,
3116         unsigned long addr, unsigned long len, pgoff_t pgoff,
3117         bool *need_rmap_locks)
3118 {
3119         struct vm_area_struct *vma = *vmap;
3120         unsigned long vma_start = vma->vm_start;
3121         struct mm_struct *mm = vma->vm_mm;
3122         struct vm_area_struct *new_vma, *prev;
3123         bool faulted_in_anon_vma = true;
3124         VMA_ITERATOR(vmi, mm, addr);
3125
3126         validate_mm_mt(mm);
3127         /*
3128          * If anonymous vma has not yet been faulted, update new pgoff
3129          * to match new location, to increase its chance of merging.
3130          */
3131         if (unlikely(vma_is_anonymous(vma) && !vma->anon_vma)) {
3132                 pgoff = addr >> PAGE_SHIFT;
3133                 faulted_in_anon_vma = false;
3134         }
3135
3136         new_vma = find_vma_prev(mm, addr, &prev);
3137         if (new_vma && new_vma->vm_start < addr + len)
3138                 return NULL;    /* should never get here */
3139
3140         new_vma = vma_merge(&vmi, mm, prev, addr, addr + len, vma->vm_flags,
3141                             vma->anon_vma, vma->vm_file, pgoff, vma_policy(vma),
3142                             vma->vm_userfaultfd_ctx, anon_vma_name(vma));
3143         if (new_vma) {
3144                 /*
3145                  * Source vma may have been merged into new_vma
3146                  */
3147                 if (unlikely(vma_start >= new_vma->vm_start &&
3148                              vma_start < new_vma->vm_end)) {
3149                         /*
3150                          * The only way we can get a vma_merge with
3151                          * self during an mremap is if the vma hasn't
3152                          * been faulted in yet and we were allowed to
3153                          * reset the dst vma->vm_pgoff to the
3154                          * destination address of the mremap to allow
3155                          * the merge to happen. mremap must change the
3156                          * vm_pgoff linearity between src and dst vmas
3157                          * (in turn preventing a vma_merge) to be
3158                          * safe. It is only safe to keep the vm_pgoff
3159                          * linear if there are no pages mapped yet.
3160                          */
3161                         VM_BUG_ON_VMA(faulted_in_anon_vma, new_vma);
3162                         *vmap = vma = new_vma;
3163                 }
3164                 *need_rmap_locks = (new_vma->vm_pgoff <= vma->vm_pgoff);
3165         } else {
3166                 new_vma = vm_area_dup(vma);
3167                 if (!new_vma)
3168                         goto out;
3169                 new_vma->vm_start = addr;
3170                 new_vma->vm_end = addr + len;
3171                 new_vma->vm_pgoff = pgoff;
3172                 if (vma_dup_policy(vma, new_vma))
3173                         goto out_free_vma;
3174                 if (anon_vma_clone(new_vma, vma))
3175                         goto out_free_mempol;
3176                 if (new_vma->vm_file)
3177                         get_file(new_vma->vm_file);
3178                 if (new_vma->vm_ops && new_vma->vm_ops->open)
3179                         new_vma->vm_ops->open(new_vma);
3180                 if (vma_link(mm, new_vma))
3181                         goto out_vma_link;
3182                 *need_rmap_locks = false;
3183         }
3184         validate_mm_mt(mm);
3185         return new_vma;
3186
3187 out_vma_link:
3188         if (new_vma->vm_ops && new_vma->vm_ops->close)
3189                 new_vma->vm_ops->close(new_vma);
3190
3191         if (new_vma->vm_file)
3192                 fput(new_vma->vm_file);
3193
3194         unlink_anon_vmas(new_vma);
3195 out_free_mempol:
3196         mpol_put(vma_policy(new_vma));
3197 out_free_vma:
3198         vm_area_free(new_vma);
3199 out:
3200         validate_mm_mt(mm);
3201         return NULL;
3202 }
3203
3204 /*
3205  * Return true if the calling process may expand its vm space by the passed
3206  * number of pages
3207  */
3208 bool may_expand_vm(struct mm_struct *mm, vm_flags_t flags, unsigned long npages)
3209 {
3210         if (mm->total_vm + npages > rlimit(RLIMIT_AS) >> PAGE_SHIFT)
3211                 return false;
3212
3213         if (is_data_mapping(flags) &&
3214             mm->data_vm + npages > rlimit(RLIMIT_DATA) >> PAGE_SHIFT) {
3215                 /* Workaround for Valgrind */
3216                 if (rlimit(RLIMIT_DATA) == 0 &&
3217                     mm->data_vm + npages <= rlimit_max(RLIMIT_DATA) >> PAGE_SHIFT)
3218                         return true;
3219
3220                 pr_warn_once("%s (%d): VmData %lu exceed data ulimit %lu. Update limits%s.\n",
3221                              current->comm, current->pid,
3222                              (mm->data_vm + npages) << PAGE_SHIFT,
3223                              rlimit(RLIMIT_DATA),
3224                              ignore_rlimit_data ? "" : " or use boot option ignore_rlimit_data");
3225
3226                 if (!ignore_rlimit_data)
3227                         return false;
3228         }
3229
3230         return true;
3231 }
3232
3233 void vm_stat_account(struct mm_struct *mm, vm_flags_t flags, long npages)
3234 {
3235         WRITE_ONCE(mm->total_vm, READ_ONCE(mm->total_vm)+npages);
3236
3237         if (is_exec_mapping(flags))
3238                 mm->exec_vm += npages;
3239         else if (is_stack_mapping(flags))
3240                 mm->stack_vm += npages;
3241         else if (is_data_mapping(flags))
3242                 mm->data_vm += npages;
3243 }
3244
3245 static vm_fault_t special_mapping_fault(struct vm_fault *vmf);
3246
3247 /*
3248  * Having a close hook prevents vma merging regardless of flags.
3249  */
3250 static void special_mapping_close(struct vm_area_struct *vma)
3251 {
3252 }
3253
3254 static const char *special_mapping_name(struct vm_area_struct *vma)
3255 {
3256         return ((struct vm_special_mapping *)vma->vm_private_data)->name;
3257 }
3258
3259 static int special_mapping_mremap(struct vm_area_struct *new_vma)
3260 {
3261         struct vm_special_mapping *sm = new_vma->vm_private_data;
3262
3263         if (WARN_ON_ONCE(current->mm != new_vma->vm_mm))
3264                 return -EFAULT;
3265
3266         if (sm->mremap)
3267                 return sm->mremap(sm, new_vma);
3268
3269         return 0;
3270 }
3271
3272 static int special_mapping_split(struct vm_area_struct *vma, unsigned long addr)
3273 {
3274         /*
3275          * Forbid splitting special mappings - kernel has expectations over
3276          * the number of pages in mapping. Together with VM_DONTEXPAND
3277          * the size of vma should stay the same over the special mapping's
3278          * lifetime.
3279          */
3280         return -EINVAL;
3281 }
3282
3283 static const struct vm_operations_struct special_mapping_vmops = {
3284         .close = special_mapping_close,
3285         .fault = special_mapping_fault,
3286         .mremap = special_mapping_mremap,
3287         .name = special_mapping_name,
3288         /* vDSO code relies that VVAR can't be accessed remotely */
3289         .access = NULL,
3290         .may_split = special_mapping_split,
3291 };
3292
3293 static const struct vm_operations_struct legacy_special_mapping_vmops = {
3294         .close = special_mapping_close,
3295         .fault = special_mapping_fault,
3296 };
3297
3298 static vm_fault_t special_mapping_fault(struct vm_fault *vmf)
3299 {
3300         struct vm_area_struct *vma = vmf->vma;
3301         pgoff_t pgoff;
3302         struct page **pages;
3303
3304         if (vma->vm_ops == &legacy_special_mapping_vmops) {
3305                 pages = vma->vm_private_data;
3306         } else {
3307                 struct vm_special_mapping *sm = vma->vm_private_data;
3308
3309                 if (sm->fault)
3310                         return sm->fault(sm, vmf->vma, vmf);
3311
3312                 pages = sm->pages;
3313         }
3314
3315         for (pgoff = vmf->pgoff; pgoff && *pages; ++pages)
3316                 pgoff--;
3317
3318         if (*pages) {
3319                 struct page *page = *pages;
3320                 get_page(page);
3321                 vmf->page = page;
3322                 return 0;
3323         }
3324
3325         return VM_FAULT_SIGBUS;
3326 }
3327
3328 static struct vm_area_struct *__install_special_mapping(
3329         struct mm_struct *mm,
3330         unsigned long addr, unsigned long len,
3331         unsigned long vm_flags, void *priv,
3332         const struct vm_operations_struct *ops)
3333 {
3334         int ret;
3335         struct vm_area_struct *vma;
3336
3337         validate_mm_mt(mm);
3338         vma = vm_area_alloc(mm);
3339         if (unlikely(vma == NULL))
3340                 return ERR_PTR(-ENOMEM);
3341
3342         vma->vm_start = addr;
3343         vma->vm_end = addr + len;
3344
3345         vm_flags_init(vma, (vm_flags | mm->def_flags |
3346                       VM_DONTEXPAND | VM_SOFTDIRTY) & ~VM_LOCKED_MASK);
3347         vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
3348
3349         vma->vm_ops = ops;
3350         vma->vm_private_data = priv;
3351
3352         ret = insert_vm_struct(mm, vma);
3353         if (ret)
3354                 goto out;
3355
3356         vm_stat_account(mm, vma->vm_flags, len >> PAGE_SHIFT);
3357
3358         perf_event_mmap(vma);
3359
3360         validate_mm_mt(mm);
3361         return vma;
3362
3363 out:
3364         vm_area_free(vma);
3365         validate_mm_mt(mm);
3366         return ERR_PTR(ret);
3367 }
3368
3369 bool vma_is_special_mapping(const struct vm_area_struct *vma,
3370         const struct vm_special_mapping *sm)
3371 {
3372         return vma->vm_private_data == sm &&
3373                 (vma->vm_ops == &special_mapping_vmops ||
3374                  vma->vm_ops == &legacy_special_mapping_vmops);
3375 }
3376
3377 /*
3378  * Called with mm->mmap_lock held for writing.
3379  * Insert a new vma covering the given region, with the given flags.
3380  * Its pages are supplied by the given array of struct page *.
3381  * The array can be shorter than len >> PAGE_SHIFT if it's null-terminated.
3382  * The region past the last page supplied will always produce SIGBUS.
3383  * The array pointer and the pages it points to are assumed to stay alive
3384  * for as long as this mapping might exist.
3385  */
3386 struct vm_area_struct *_install_special_mapping(
3387         struct mm_struct *mm,
3388         unsigned long addr, unsigned long len,
3389         unsigned long vm_flags, const struct vm_special_mapping *spec)
3390 {
3391         return __install_special_mapping(mm, addr, len, vm_flags, (void *)spec,
3392                                         &special_mapping_vmops);
3393 }
3394
3395 int install_special_mapping(struct mm_struct *mm,
3396                             unsigned long addr, unsigned long len,
3397                             unsigned long vm_flags, struct page **pages)
3398 {
3399         struct vm_area_struct *vma = __install_special_mapping(
3400                 mm, addr, len, vm_flags, (void *)pages,
3401                 &legacy_special_mapping_vmops);
3402
3403         return PTR_ERR_OR_ZERO(vma);
3404 }
3405
3406 static DEFINE_MUTEX(mm_all_locks_mutex);
3407
3408 static void vm_lock_anon_vma(struct mm_struct *mm, struct anon_vma *anon_vma)
3409 {
3410         if (!test_bit(0, (unsigned long *) &anon_vma->root->rb_root.rb_root.rb_node)) {
3411                 /*
3412                  * The LSB of head.next can't change from under us
3413                  * because we hold the mm_all_locks_mutex.
3414                  */
3415                 down_write_nest_lock(&anon_vma->root->rwsem, &mm->mmap_lock);
3416                 /*
3417                  * We can safely modify head.next after taking the
3418                  * anon_vma->root->rwsem. If some other vma in this mm shares
3419                  * the same anon_vma we won't take it again.
3420                  *
3421                  * No need of atomic instructions here, head.next
3422                  * can't change from under us thanks to the
3423                  * anon_vma->root->rwsem.
3424                  */
3425                 if (__test_and_set_bit(0, (unsigned long *)
3426                                        &anon_vma->root->rb_root.rb_root.rb_node))
3427                         BUG();
3428         }
3429 }
3430
3431 static void vm_lock_mapping(struct mm_struct *mm, struct address_space *mapping)
3432 {
3433         if (!test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) {
3434                 /*
3435                  * AS_MM_ALL_LOCKS can't change from under us because
3436                  * we hold the mm_all_locks_mutex.
3437                  *
3438                  * Operations on ->flags have to be atomic because
3439                  * even if AS_MM_ALL_LOCKS is stable thanks to the
3440                  * mm_all_locks_mutex, there may be other cpus
3441                  * changing other bitflags in parallel to us.
3442                  */
3443                 if (test_and_set_bit(AS_MM_ALL_LOCKS, &mapping->flags))
3444                         BUG();
3445                 down_write_nest_lock(&mapping->i_mmap_rwsem, &mm->mmap_lock);
3446         }
3447 }
3448
3449 /*
3450  * This operation locks against the VM for all pte/vma/mm related
3451  * operations that could ever happen on a certain mm. This includes
3452  * vmtruncate, try_to_unmap, and all page faults.
3453  *
3454  * The caller must take the mmap_lock in write mode before calling
3455  * mm_take_all_locks(). The caller isn't allowed to release the
3456  * mmap_lock until mm_drop_all_locks() returns.
3457  *
3458  * mmap_lock in write mode is required in order to block all operations
3459  * that could modify pagetables and free pages without need of
3460  * altering the vma layout. It's also needed in write mode to avoid new
3461  * anon_vmas to be associated with existing vmas.
3462  *
3463  * A single task can't take more than one mm_take_all_locks() in a row
3464  * or it would deadlock.
3465  *
3466  * The LSB in anon_vma->rb_root.rb_node and the AS_MM_ALL_LOCKS bitflag in
3467  * mapping->flags avoid to take the same lock twice, if more than one
3468  * vma in this mm is backed by the same anon_vma or address_space.
3469  *
3470  * We take locks in following order, accordingly to comment at beginning
3471  * of mm/rmap.c:
3472  *   - all hugetlbfs_i_mmap_rwsem_key locks (aka mapping->i_mmap_rwsem for
3473  *     hugetlb mapping);
3474  *   - all i_mmap_rwsem locks;
3475  *   - all anon_vma->rwseml
3476  *
3477  * We can take all locks within these types randomly because the VM code
3478  * doesn't nest them and we protected from parallel mm_take_all_locks() by
3479  * mm_all_locks_mutex.
3480  *
3481  * mm_take_all_locks() and mm_drop_all_locks are expensive operations
3482  * that may have to take thousand of locks.
3483  *
3484  * mm_take_all_locks() can fail if it's interrupted by signals.
3485  */
3486 int mm_take_all_locks(struct mm_struct *mm)
3487 {
3488         struct vm_area_struct *vma;
3489         struct anon_vma_chain *avc;
3490         MA_STATE(mas, &mm->mm_mt, 0, 0);
3491
3492         mmap_assert_write_locked(mm);
3493
3494         mutex_lock(&mm_all_locks_mutex);
3495
3496         mas_for_each(&mas, vma, ULONG_MAX) {
3497                 if (signal_pending(current))
3498                         goto out_unlock;
3499                 if (vma->vm_file && vma->vm_file->f_mapping &&
3500                                 is_vm_hugetlb_page(vma))
3501                         vm_lock_mapping(mm, vma->vm_file->f_mapping);
3502         }
3503
3504         mas_set(&mas, 0);
3505         mas_for_each(&mas, vma, ULONG_MAX) {
3506                 if (signal_pending(current))
3507                         goto out_unlock;
3508                 if (vma->vm_file && vma->vm_file->f_mapping &&
3509                                 !is_vm_hugetlb_page(vma))
3510                         vm_lock_mapping(mm, vma->vm_file->f_mapping);
3511         }
3512
3513         mas_set(&mas, 0);
3514         mas_for_each(&mas, vma, ULONG_MAX) {
3515                 if (signal_pending(current))
3516                         goto out_unlock;
3517                 if (vma->anon_vma)
3518                         list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
3519                                 vm_lock_anon_vma(mm, avc->anon_vma);
3520         }
3521
3522         return 0;
3523
3524 out_unlock:
3525         mm_drop_all_locks(mm);
3526         return -EINTR;
3527 }
3528
3529 static void vm_unlock_anon_vma(struct anon_vma *anon_vma)
3530 {
3531         if (test_bit(0, (unsigned long *) &anon_vma->root->rb_root.rb_root.rb_node)) {
3532                 /*
3533                  * The LSB of head.next can't change to 0 from under
3534                  * us because we hold the mm_all_locks_mutex.
3535                  *
3536                  * We must however clear the bitflag before unlocking
3537                  * the vma so the users using the anon_vma->rb_root will
3538                  * never see our bitflag.
3539                  *
3540                  * No need of atomic instructions here, head.next
3541                  * can't change from under us until we release the
3542                  * anon_vma->root->rwsem.
3543                  */
3544                 if (!__test_and_clear_bit(0, (unsigned long *)
3545                                           &anon_vma->root->rb_root.rb_root.rb_node))
3546                         BUG();
3547                 anon_vma_unlock_write(anon_vma);
3548         }
3549 }
3550
3551 static void vm_unlock_mapping(struct address_space *mapping)
3552 {
3553         if (test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) {
3554                 /*
3555                  * AS_MM_ALL_LOCKS can't change to 0 from under us
3556                  * because we hold the mm_all_locks_mutex.
3557                  */
3558                 i_mmap_unlock_write(mapping);
3559                 if (!test_and_clear_bit(AS_MM_ALL_LOCKS,
3560                                         &mapping->flags))
3561                         BUG();
3562         }
3563 }
3564
3565 /*
3566  * The mmap_lock cannot be released by the caller until
3567  * mm_drop_all_locks() returns.
3568  */
3569 void mm_drop_all_locks(struct mm_struct *mm)
3570 {
3571         struct vm_area_struct *vma;
3572         struct anon_vma_chain *avc;
3573         MA_STATE(mas, &mm->mm_mt, 0, 0);
3574
3575         mmap_assert_write_locked(mm);
3576         BUG_ON(!mutex_is_locked(&mm_all_locks_mutex));
3577
3578         mas_for_each(&mas, vma, ULONG_MAX) {
3579                 if (vma->anon_vma)
3580                         list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
3581                                 vm_unlock_anon_vma(avc->anon_vma);
3582                 if (vma->vm_file && vma->vm_file->f_mapping)
3583                         vm_unlock_mapping(vma->vm_file->f_mapping);
3584         }
3585
3586         mutex_unlock(&mm_all_locks_mutex);
3587 }
3588
3589 /*
3590  * initialise the percpu counter for VM
3591  */
3592 void __init mmap_init(void)
3593 {
3594         int ret;
3595
3596         ret = percpu_counter_init(&vm_committed_as, 0, GFP_KERNEL);
3597         VM_BUG_ON(ret);
3598 }
3599
3600 /*
3601  * Initialise sysctl_user_reserve_kbytes.
3602  *
3603  * This is intended to prevent a user from starting a single memory hogging
3604  * process, such that they cannot recover (kill the hog) in OVERCOMMIT_NEVER
3605  * mode.
3606  *
3607  * The default value is min(3% of free memory, 128MB)
3608  * 128MB is enough to recover with sshd/login, bash, and top/kill.
3609  */
3610 static int init_user_reserve(void)
3611 {
3612         unsigned long free_kbytes;
3613
3614         free_kbytes = global_zone_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
3615
3616         sysctl_user_reserve_kbytes = min(free_kbytes / 32, 1UL << 17);
3617         return 0;
3618 }
3619 subsys_initcall(init_user_reserve);
3620
3621 /*
3622  * Initialise sysctl_admin_reserve_kbytes.
3623  *
3624  * The purpose of sysctl_admin_reserve_kbytes is to allow the sys admin
3625  * to log in and kill a memory hogging process.
3626  *
3627  * Systems with more than 256MB will reserve 8MB, enough to recover
3628  * with sshd, bash, and top in OVERCOMMIT_GUESS. Smaller systems will
3629  * only reserve 3% of free pages by default.
3630  */
3631 static int init_admin_reserve(void)
3632 {
3633         unsigned long free_kbytes;
3634
3635         free_kbytes = global_zone_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
3636
3637         sysctl_admin_reserve_kbytes = min(free_kbytes / 32, 1UL << 13);
3638         return 0;
3639 }
3640 subsys_initcall(init_admin_reserve);
3641
3642 /*
3643  * Reinititalise user and admin reserves if memory is added or removed.
3644  *
3645  * The default user reserve max is 128MB, and the default max for the
3646  * admin reserve is 8MB. These are usually, but not always, enough to
3647  * enable recovery from a memory hogging process using login/sshd, a shell,
3648  * and tools like top. It may make sense to increase or even disable the
3649  * reserve depending on the existence of swap or variations in the recovery
3650  * tools. So, the admin may have changed them.
3651  *
3652  * If memory is added and the reserves have been eliminated or increased above
3653  * the default max, then we'll trust the admin.
3654  *
3655  * If memory is removed and there isn't enough free memory, then we
3656  * need to reset the reserves.
3657  *
3658  * Otherwise keep the reserve set by the admin.
3659  */
3660 static int reserve_mem_notifier(struct notifier_block *nb,
3661                              unsigned long action, void *data)
3662 {
3663         unsigned long tmp, free_kbytes;
3664
3665         switch (action) {
3666         case MEM_ONLINE:
3667                 /* Default max is 128MB. Leave alone if modified by operator. */
3668                 tmp = sysctl_user_reserve_kbytes;
3669                 if (0 < tmp && tmp < (1UL << 17))
3670                         init_user_reserve();
3671
3672                 /* Default max is 8MB.  Leave alone if modified by operator. */
3673                 tmp = sysctl_admin_reserve_kbytes;
3674                 if (0 < tmp && tmp < (1UL << 13))
3675                         init_admin_reserve();
3676
3677                 break;
3678         case MEM_OFFLINE:
3679                 free_kbytes = global_zone_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
3680
3681                 if (sysctl_user_reserve_kbytes > free_kbytes) {
3682                         init_user_reserve();
3683                         pr_info("vm.user_reserve_kbytes reset to %lu\n",
3684                                 sysctl_user_reserve_kbytes);
3685                 }
3686
3687                 if (sysctl_admin_reserve_kbytes > free_kbytes) {
3688                         init_admin_reserve();
3689                         pr_info("vm.admin_reserve_kbytes reset to %lu\n",
3690                                 sysctl_admin_reserve_kbytes);
3691                 }
3692                 break;
3693         default:
3694                 break;
3695         }
3696         return NOTIFY_OK;
3697 }
3698
3699 static int __meminit init_reserve_notifier(void)
3700 {
3701         if (hotplug_memory_notifier(reserve_mem_notifier, DEFAULT_CALLBACK_PRI))
3702                 pr_err("Failed registering memory add/remove notifier for admin reserve\n");
3703
3704         return 0;
3705 }
3706 subsys_initcall(init_reserve_notifier);