Merge tag 'for-linus-2023042601' of git://git.kernel.org/pub/scm/linux/kernel/git...
[platform/kernel/linux-starfive.git] / mm / mmap.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * mm/mmap.c
4  *
5  * Written by obz.
6  *
7  * Address space accounting code        <alan@lxorguk.ukuu.org.uk>
8  */
9
10 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
11
12 #include <linux/kernel.h>
13 #include <linux/slab.h>
14 #include <linux/backing-dev.h>
15 #include <linux/mm.h>
16 #include <linux/mm_inline.h>
17 #include <linux/shm.h>
18 #include <linux/mman.h>
19 #include <linux/pagemap.h>
20 #include <linux/swap.h>
21 #include <linux/syscalls.h>
22 #include <linux/capability.h>
23 #include <linux/init.h>
24 #include <linux/file.h>
25 #include <linux/fs.h>
26 #include <linux/personality.h>
27 #include <linux/security.h>
28 #include <linux/hugetlb.h>
29 #include <linux/shmem_fs.h>
30 #include <linux/profile.h>
31 #include <linux/export.h>
32 #include <linux/mount.h>
33 #include <linux/mempolicy.h>
34 #include <linux/rmap.h>
35 #include <linux/mmu_notifier.h>
36 #include <linux/mmdebug.h>
37 #include <linux/perf_event.h>
38 #include <linux/audit.h>
39 #include <linux/khugepaged.h>
40 #include <linux/uprobes.h>
41 #include <linux/notifier.h>
42 #include <linux/memory.h>
43 #include <linux/printk.h>
44 #include <linux/userfaultfd_k.h>
45 #include <linux/moduleparam.h>
46 #include <linux/pkeys.h>
47 #include <linux/oom.h>
48 #include <linux/sched/mm.h>
49
50 #include <linux/uaccess.h>
51 #include <asm/cacheflush.h>
52 #include <asm/tlb.h>
53 #include <asm/mmu_context.h>
54
55 #define CREATE_TRACE_POINTS
56 #include <trace/events/mmap.h>
57
58 #include "internal.h"
59
60 #ifndef arch_mmap_check
61 #define arch_mmap_check(addr, len, flags)       (0)
62 #endif
63
64 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_BITS
65 const int mmap_rnd_bits_min = CONFIG_ARCH_MMAP_RND_BITS_MIN;
66 const int mmap_rnd_bits_max = CONFIG_ARCH_MMAP_RND_BITS_MAX;
67 int mmap_rnd_bits __read_mostly = CONFIG_ARCH_MMAP_RND_BITS;
68 #endif
69 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS
70 const int mmap_rnd_compat_bits_min = CONFIG_ARCH_MMAP_RND_COMPAT_BITS_MIN;
71 const int mmap_rnd_compat_bits_max = CONFIG_ARCH_MMAP_RND_COMPAT_BITS_MAX;
72 int mmap_rnd_compat_bits __read_mostly = CONFIG_ARCH_MMAP_RND_COMPAT_BITS;
73 #endif
74
75 static bool ignore_rlimit_data;
76 core_param(ignore_rlimit_data, ignore_rlimit_data, bool, 0644);
77
78 static void unmap_region(struct mm_struct *mm, struct maple_tree *mt,
79                 struct vm_area_struct *vma, struct vm_area_struct *prev,
80                 struct vm_area_struct *next, unsigned long start,
81                 unsigned long end, bool mm_wr_locked);
82
83 static pgprot_t vm_pgprot_modify(pgprot_t oldprot, unsigned long vm_flags)
84 {
85         return pgprot_modify(oldprot, vm_get_page_prot(vm_flags));
86 }
87
88 /* Update vma->vm_page_prot to reflect vma->vm_flags. */
89 void vma_set_page_prot(struct vm_area_struct *vma)
90 {
91         unsigned long vm_flags = vma->vm_flags;
92         pgprot_t vm_page_prot;
93
94         vm_page_prot = vm_pgprot_modify(vma->vm_page_prot, vm_flags);
95         if (vma_wants_writenotify(vma, vm_page_prot)) {
96                 vm_flags &= ~VM_SHARED;
97                 vm_page_prot = vm_pgprot_modify(vm_page_prot, vm_flags);
98         }
99         /* remove_protection_ptes reads vma->vm_page_prot without mmap_lock */
100         WRITE_ONCE(vma->vm_page_prot, vm_page_prot);
101 }
102
103 /*
104  * Requires inode->i_mapping->i_mmap_rwsem
105  */
106 static void __remove_shared_vm_struct(struct vm_area_struct *vma,
107                 struct file *file, struct address_space *mapping)
108 {
109         if (vma->vm_flags & VM_SHARED)
110                 mapping_unmap_writable(mapping);
111
112         flush_dcache_mmap_lock(mapping);
113         vma_interval_tree_remove(vma, &mapping->i_mmap);
114         flush_dcache_mmap_unlock(mapping);
115 }
116
117 /*
118  * Unlink a file-based vm structure from its interval tree, to hide
119  * vma from rmap and vmtruncate before freeing its page tables.
120  */
121 void unlink_file_vma(struct vm_area_struct *vma)
122 {
123         struct file *file = vma->vm_file;
124
125         if (file) {
126                 struct address_space *mapping = file->f_mapping;
127                 i_mmap_lock_write(mapping);
128                 __remove_shared_vm_struct(vma, file, mapping);
129                 i_mmap_unlock_write(mapping);
130         }
131 }
132
133 /*
134  * Close a vm structure and free it.
135  */
136 static void remove_vma(struct vm_area_struct *vma)
137 {
138         might_sleep();
139         if (vma->vm_ops && vma->vm_ops->close)
140                 vma->vm_ops->close(vma);
141         if (vma->vm_file)
142                 fput(vma->vm_file);
143         mpol_put(vma_policy(vma));
144         vm_area_free(vma);
145 }
146
147 static inline struct vm_area_struct *vma_prev_limit(struct vma_iterator *vmi,
148                                                     unsigned long min)
149 {
150         return mas_prev(&vmi->mas, min);
151 }
152
153 static inline int vma_iter_clear_gfp(struct vma_iterator *vmi,
154                         unsigned long start, unsigned long end, gfp_t gfp)
155 {
156         vmi->mas.index = start;
157         vmi->mas.last = end - 1;
158         mas_store_gfp(&vmi->mas, NULL, gfp);
159         if (unlikely(mas_is_err(&vmi->mas)))
160                 return -ENOMEM;
161
162         return 0;
163 }
164
165 /*
166  * check_brk_limits() - Use platform specific check of range & verify mlock
167  * limits.
168  * @addr: The address to check
169  * @len: The size of increase.
170  *
171  * Return: 0 on success.
172  */
173 static int check_brk_limits(unsigned long addr, unsigned long len)
174 {
175         unsigned long mapped_addr;
176
177         mapped_addr = get_unmapped_area(NULL, addr, len, 0, MAP_FIXED);
178         if (IS_ERR_VALUE(mapped_addr))
179                 return mapped_addr;
180
181         return mlock_future_check(current->mm, current->mm->def_flags, len);
182 }
183 static int do_brk_flags(struct vma_iterator *vmi, struct vm_area_struct *brkvma,
184                 unsigned long addr, unsigned long request, unsigned long flags);
185 SYSCALL_DEFINE1(brk, unsigned long, brk)
186 {
187         unsigned long newbrk, oldbrk, origbrk;
188         struct mm_struct *mm = current->mm;
189         struct vm_area_struct *brkvma, *next = NULL;
190         unsigned long min_brk;
191         bool populate;
192         bool downgraded = false;
193         LIST_HEAD(uf);
194         struct vma_iterator vmi;
195
196         if (mmap_write_lock_killable(mm))
197                 return -EINTR;
198
199         origbrk = mm->brk;
200
201 #ifdef CONFIG_COMPAT_BRK
202         /*
203          * CONFIG_COMPAT_BRK can still be overridden by setting
204          * randomize_va_space to 2, which will still cause mm->start_brk
205          * to be arbitrarily shifted
206          */
207         if (current->brk_randomized)
208                 min_brk = mm->start_brk;
209         else
210                 min_brk = mm->end_data;
211 #else
212         min_brk = mm->start_brk;
213 #endif
214         if (brk < min_brk)
215                 goto out;
216
217         /*
218          * Check against rlimit here. If this check is done later after the test
219          * of oldbrk with newbrk then it can escape the test and let the data
220          * segment grow beyond its set limit the in case where the limit is
221          * not page aligned -Ram Gupta
222          */
223         if (check_data_rlimit(rlimit(RLIMIT_DATA), brk, mm->start_brk,
224                               mm->end_data, mm->start_data))
225                 goto out;
226
227         newbrk = PAGE_ALIGN(brk);
228         oldbrk = PAGE_ALIGN(mm->brk);
229         if (oldbrk == newbrk) {
230                 mm->brk = brk;
231                 goto success;
232         }
233
234         /*
235          * Always allow shrinking brk.
236          * do_vma_munmap() may downgrade mmap_lock to read.
237          */
238         if (brk <= mm->brk) {
239                 int ret;
240
241                 /* Search one past newbrk */
242                 vma_iter_init(&vmi, mm, newbrk);
243                 brkvma = vma_find(&vmi, oldbrk);
244                 if (!brkvma || brkvma->vm_start >= oldbrk)
245                         goto out; /* mapping intersects with an existing non-brk vma. */
246                 /*
247                  * mm->brk must be protected by write mmap_lock.
248                  * do_vma_munmap() may downgrade the lock,  so update it
249                  * before calling do_vma_munmap().
250                  */
251                 mm->brk = brk;
252                 ret = do_vma_munmap(&vmi, brkvma, newbrk, oldbrk, &uf, true);
253                 if (ret == 1)  {
254                         downgraded = true;
255                         goto success;
256                 } else if (!ret)
257                         goto success;
258
259                 mm->brk = origbrk;
260                 goto out;
261         }
262
263         if (check_brk_limits(oldbrk, newbrk - oldbrk))
264                 goto out;
265
266         /*
267          * Only check if the next VMA is within the stack_guard_gap of the
268          * expansion area
269          */
270         vma_iter_init(&vmi, mm, oldbrk);
271         next = vma_find(&vmi, newbrk + PAGE_SIZE + stack_guard_gap);
272         if (next && newbrk + PAGE_SIZE > vm_start_gap(next))
273                 goto out;
274
275         brkvma = vma_prev_limit(&vmi, mm->start_brk);
276         /* Ok, looks good - let it rip. */
277         if (do_brk_flags(&vmi, brkvma, oldbrk, newbrk - oldbrk, 0) < 0)
278                 goto out;
279
280         mm->brk = brk;
281
282 success:
283         populate = newbrk > oldbrk && (mm->def_flags & VM_LOCKED) != 0;
284         if (downgraded)
285                 mmap_read_unlock(mm);
286         else
287                 mmap_write_unlock(mm);
288         userfaultfd_unmap_complete(mm, &uf);
289         if (populate)
290                 mm_populate(oldbrk, newbrk - oldbrk);
291         return brk;
292
293 out:
294         mmap_write_unlock(mm);
295         return origbrk;
296 }
297
298 #if defined(CONFIG_DEBUG_VM_MAPLE_TREE)
299 extern void mt_validate(struct maple_tree *mt);
300 extern void mt_dump(const struct maple_tree *mt);
301
302 /* Validate the maple tree */
303 static void validate_mm_mt(struct mm_struct *mm)
304 {
305         struct maple_tree *mt = &mm->mm_mt;
306         struct vm_area_struct *vma_mt;
307
308         MA_STATE(mas, mt, 0, 0);
309
310         mt_validate(&mm->mm_mt);
311         mas_for_each(&mas, vma_mt, ULONG_MAX) {
312                 if ((vma_mt->vm_start != mas.index) ||
313                     (vma_mt->vm_end - 1 != mas.last)) {
314                         pr_emerg("issue in %s\n", current->comm);
315                         dump_stack();
316                         dump_vma(vma_mt);
317                         pr_emerg("mt piv: %p %lu - %lu\n", vma_mt,
318                                  mas.index, mas.last);
319                         pr_emerg("mt vma: %p %lu - %lu\n", vma_mt,
320                                  vma_mt->vm_start, vma_mt->vm_end);
321
322                         mt_dump(mas.tree);
323                         if (vma_mt->vm_end != mas.last + 1) {
324                                 pr_err("vma: %p vma_mt %lu-%lu\tmt %lu-%lu\n",
325                                                 mm, vma_mt->vm_start, vma_mt->vm_end,
326                                                 mas.index, mas.last);
327                                 mt_dump(mas.tree);
328                         }
329                         VM_BUG_ON_MM(vma_mt->vm_end != mas.last + 1, mm);
330                         if (vma_mt->vm_start != mas.index) {
331                                 pr_err("vma: %p vma_mt %p %lu - %lu doesn't match\n",
332                                                 mm, vma_mt, vma_mt->vm_start, vma_mt->vm_end);
333                                 mt_dump(mas.tree);
334                         }
335                         VM_BUG_ON_MM(vma_mt->vm_start != mas.index, mm);
336                 }
337         }
338 }
339
340 static void validate_mm(struct mm_struct *mm)
341 {
342         int bug = 0;
343         int i = 0;
344         struct vm_area_struct *vma;
345         MA_STATE(mas, &mm->mm_mt, 0, 0);
346
347         validate_mm_mt(mm);
348
349         mas_for_each(&mas, vma, ULONG_MAX) {
350 #ifdef CONFIG_DEBUG_VM_RB
351                 struct anon_vma *anon_vma = vma->anon_vma;
352                 struct anon_vma_chain *avc;
353
354                 if (anon_vma) {
355                         anon_vma_lock_read(anon_vma);
356                         list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
357                                 anon_vma_interval_tree_verify(avc);
358                         anon_vma_unlock_read(anon_vma);
359                 }
360 #endif
361                 i++;
362         }
363         if (i != mm->map_count) {
364                 pr_emerg("map_count %d mas_for_each %d\n", mm->map_count, i);
365                 bug = 1;
366         }
367         VM_BUG_ON_MM(bug, mm);
368 }
369
370 #else /* !CONFIG_DEBUG_VM_MAPLE_TREE */
371 #define validate_mm_mt(root) do { } while (0)
372 #define validate_mm(mm) do { } while (0)
373 #endif /* CONFIG_DEBUG_VM_MAPLE_TREE */
374
375 /*
376  * vma has some anon_vma assigned, and is already inserted on that
377  * anon_vma's interval trees.
378  *
379  * Before updating the vma's vm_start / vm_end / vm_pgoff fields, the
380  * vma must be removed from the anon_vma's interval trees using
381  * anon_vma_interval_tree_pre_update_vma().
382  *
383  * After the update, the vma will be reinserted using
384  * anon_vma_interval_tree_post_update_vma().
385  *
386  * The entire update must be protected by exclusive mmap_lock and by
387  * the root anon_vma's mutex.
388  */
389 static inline void
390 anon_vma_interval_tree_pre_update_vma(struct vm_area_struct *vma)
391 {
392         struct anon_vma_chain *avc;
393
394         list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
395                 anon_vma_interval_tree_remove(avc, &avc->anon_vma->rb_root);
396 }
397
398 static inline void
399 anon_vma_interval_tree_post_update_vma(struct vm_area_struct *vma)
400 {
401         struct anon_vma_chain *avc;
402
403         list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
404                 anon_vma_interval_tree_insert(avc, &avc->anon_vma->rb_root);
405 }
406
407 static unsigned long count_vma_pages_range(struct mm_struct *mm,
408                 unsigned long addr, unsigned long end)
409 {
410         VMA_ITERATOR(vmi, mm, addr);
411         struct vm_area_struct *vma;
412         unsigned long nr_pages = 0;
413
414         for_each_vma_range(vmi, vma, end) {
415                 unsigned long vm_start = max(addr, vma->vm_start);
416                 unsigned long vm_end = min(end, vma->vm_end);
417
418                 nr_pages += PHYS_PFN(vm_end - vm_start);
419         }
420
421         return nr_pages;
422 }
423
424 static void __vma_link_file(struct vm_area_struct *vma,
425                             struct address_space *mapping)
426 {
427         if (vma->vm_flags & VM_SHARED)
428                 mapping_allow_writable(mapping);
429
430         flush_dcache_mmap_lock(mapping);
431         vma_interval_tree_insert(vma, &mapping->i_mmap);
432         flush_dcache_mmap_unlock(mapping);
433 }
434
435 static int vma_link(struct mm_struct *mm, struct vm_area_struct *vma)
436 {
437         VMA_ITERATOR(vmi, mm, 0);
438         struct address_space *mapping = NULL;
439
440         if (vma_iter_prealloc(&vmi))
441                 return -ENOMEM;
442
443         if (vma->vm_file) {
444                 mapping = vma->vm_file->f_mapping;
445                 i_mmap_lock_write(mapping);
446         }
447
448         vma_iter_store(&vmi, vma);
449
450         if (mapping) {
451                 __vma_link_file(vma, mapping);
452                 i_mmap_unlock_write(mapping);
453         }
454
455         mm->map_count++;
456         validate_mm(mm);
457         return 0;
458 }
459
460 /*
461  * init_multi_vma_prep() - Initializer for struct vma_prepare
462  * @vp: The vma_prepare struct
463  * @vma: The vma that will be altered once locked
464  * @next: The next vma if it is to be adjusted
465  * @remove: The first vma to be removed
466  * @remove2: The second vma to be removed
467  */
468 static inline void init_multi_vma_prep(struct vma_prepare *vp,
469                 struct vm_area_struct *vma, struct vm_area_struct *next,
470                 struct vm_area_struct *remove, struct vm_area_struct *remove2)
471 {
472         memset(vp, 0, sizeof(struct vma_prepare));
473         vp->vma = vma;
474         vp->anon_vma = vma->anon_vma;
475         vp->remove = remove;
476         vp->remove2 = remove2;
477         vp->adj_next = next;
478         if (!vp->anon_vma && next)
479                 vp->anon_vma = next->anon_vma;
480
481         vp->file = vma->vm_file;
482         if (vp->file)
483                 vp->mapping = vma->vm_file->f_mapping;
484
485 }
486
487 /*
488  * init_vma_prep() - Initializer wrapper for vma_prepare struct
489  * @vp: The vma_prepare struct
490  * @vma: The vma that will be altered once locked
491  */
492 static inline void init_vma_prep(struct vma_prepare *vp,
493                                  struct vm_area_struct *vma)
494 {
495         init_multi_vma_prep(vp, vma, NULL, NULL, NULL);
496 }
497
498
499 /*
500  * vma_prepare() - Helper function for handling locking VMAs prior to altering
501  * @vp: The initialized vma_prepare struct
502  */
503 static inline void vma_prepare(struct vma_prepare *vp)
504 {
505         if (vp->file) {
506                 uprobe_munmap(vp->vma, vp->vma->vm_start, vp->vma->vm_end);
507
508                 if (vp->adj_next)
509                         uprobe_munmap(vp->adj_next, vp->adj_next->vm_start,
510                                       vp->adj_next->vm_end);
511
512                 i_mmap_lock_write(vp->mapping);
513                 if (vp->insert && vp->insert->vm_file) {
514                         /*
515                          * Put into interval tree now, so instantiated pages
516                          * are visible to arm/parisc __flush_dcache_page
517                          * throughout; but we cannot insert into address
518                          * space until vma start or end is updated.
519                          */
520                         __vma_link_file(vp->insert,
521                                         vp->insert->vm_file->f_mapping);
522                 }
523         }
524
525         if (vp->anon_vma) {
526                 anon_vma_lock_write(vp->anon_vma);
527                 anon_vma_interval_tree_pre_update_vma(vp->vma);
528                 if (vp->adj_next)
529                         anon_vma_interval_tree_pre_update_vma(vp->adj_next);
530         }
531
532         if (vp->file) {
533                 flush_dcache_mmap_lock(vp->mapping);
534                 vma_interval_tree_remove(vp->vma, &vp->mapping->i_mmap);
535                 if (vp->adj_next)
536                         vma_interval_tree_remove(vp->adj_next,
537                                                  &vp->mapping->i_mmap);
538         }
539
540 }
541
542 /*
543  * vma_complete- Helper function for handling the unlocking after altering VMAs,
544  * or for inserting a VMA.
545  *
546  * @vp: The vma_prepare struct
547  * @vmi: The vma iterator
548  * @mm: The mm_struct
549  */
550 static inline void vma_complete(struct vma_prepare *vp,
551                                 struct vma_iterator *vmi, struct mm_struct *mm)
552 {
553         if (vp->file) {
554                 if (vp->adj_next)
555                         vma_interval_tree_insert(vp->adj_next,
556                                                  &vp->mapping->i_mmap);
557                 vma_interval_tree_insert(vp->vma, &vp->mapping->i_mmap);
558                 flush_dcache_mmap_unlock(vp->mapping);
559         }
560
561         if (vp->remove && vp->file) {
562                 __remove_shared_vm_struct(vp->remove, vp->file, vp->mapping);
563                 if (vp->remove2)
564                         __remove_shared_vm_struct(vp->remove2, vp->file,
565                                                   vp->mapping);
566         } else if (vp->insert) {
567                 /*
568                  * split_vma has split insert from vma, and needs
569                  * us to insert it before dropping the locks
570                  * (it may either follow vma or precede it).
571                  */
572                 vma_iter_store(vmi, vp->insert);
573                 mm->map_count++;
574         }
575
576         if (vp->anon_vma) {
577                 anon_vma_interval_tree_post_update_vma(vp->vma);
578                 if (vp->adj_next)
579                         anon_vma_interval_tree_post_update_vma(vp->adj_next);
580                 anon_vma_unlock_write(vp->anon_vma);
581         }
582
583         if (vp->file) {
584                 i_mmap_unlock_write(vp->mapping);
585                 uprobe_mmap(vp->vma);
586
587                 if (vp->adj_next)
588                         uprobe_mmap(vp->adj_next);
589         }
590
591         if (vp->remove) {
592 again:
593                 if (vp->file) {
594                         uprobe_munmap(vp->remove, vp->remove->vm_start,
595                                       vp->remove->vm_end);
596                         fput(vp->file);
597                 }
598                 if (vp->remove->anon_vma)
599                         anon_vma_merge(vp->vma, vp->remove);
600                 mm->map_count--;
601                 mpol_put(vma_policy(vp->remove));
602                 if (!vp->remove2)
603                         WARN_ON_ONCE(vp->vma->vm_end < vp->remove->vm_end);
604                 vm_area_free(vp->remove);
605
606                 /*
607                  * In mprotect's case 6 (see comments on vma_merge),
608                  * we must remove the one after next as well.
609                  */
610                 if (vp->remove2) {
611                         vp->remove = vp->remove2;
612                         vp->remove2 = NULL;
613                         goto again;
614                 }
615         }
616         if (vp->insert && vp->file)
617                 uprobe_mmap(vp->insert);
618 }
619
620 /*
621  * dup_anon_vma() - Helper function to duplicate anon_vma
622  * @dst: The destination VMA
623  * @src: The source VMA
624  *
625  * Returns: 0 on success.
626  */
627 static inline int dup_anon_vma(struct vm_area_struct *dst,
628                                struct vm_area_struct *src)
629 {
630         /*
631          * Easily overlooked: when mprotect shifts the boundary, make sure the
632          * expanding vma has anon_vma set if the shrinking vma had, to cover any
633          * anon pages imported.
634          */
635         if (src->anon_vma && !dst->anon_vma) {
636                 dst->anon_vma = src->anon_vma;
637                 return anon_vma_clone(dst, src);
638         }
639
640         return 0;
641 }
642
643 /*
644  * vma_expand - Expand an existing VMA
645  *
646  * @vmi: The vma iterator
647  * @vma: The vma to expand
648  * @start: The start of the vma
649  * @end: The exclusive end of the vma
650  * @pgoff: The page offset of vma
651  * @next: The current of next vma.
652  *
653  * Expand @vma to @start and @end.  Can expand off the start and end.  Will
654  * expand over @next if it's different from @vma and @end == @next->vm_end.
655  * Checking if the @vma can expand and merge with @next needs to be handled by
656  * the caller.
657  *
658  * Returns: 0 on success
659  */
660 int vma_expand(struct vma_iterator *vmi, struct vm_area_struct *vma,
661                unsigned long start, unsigned long end, pgoff_t pgoff,
662                struct vm_area_struct *next)
663 {
664         bool remove_next = false;
665         struct vma_prepare vp;
666
667         if (next && (vma != next) && (end == next->vm_end)) {
668                 int ret;
669
670                 remove_next = true;
671                 ret = dup_anon_vma(vma, next);
672                 if (ret)
673                         return ret;
674         }
675
676         init_multi_vma_prep(&vp, vma, NULL, remove_next ? next : NULL, NULL);
677         /* Not merging but overwriting any part of next is not handled. */
678         VM_WARN_ON(next && !vp.remove &&
679                   next != vma && end > next->vm_start);
680         /* Only handles expanding */
681         VM_WARN_ON(vma->vm_start < start || vma->vm_end > end);
682
683         if (vma_iter_prealloc(vmi))
684                 goto nomem;
685
686         vma_adjust_trans_huge(vma, start, end, 0);
687         /* VMA iterator points to previous, so set to start if necessary */
688         if (vma_iter_addr(vmi) != start)
689                 vma_iter_set(vmi, start);
690
691         vma_prepare(&vp);
692         vma->vm_start = start;
693         vma->vm_end = end;
694         vma->vm_pgoff = pgoff;
695         /* Note: mas must be pointing to the expanding VMA */
696         vma_iter_store(vmi, vma);
697
698         vma_complete(&vp, vmi, vma->vm_mm);
699         validate_mm(vma->vm_mm);
700         return 0;
701
702 nomem:
703         return -ENOMEM;
704 }
705
706 /*
707  * vma_shrink() - Reduce an existing VMAs memory area
708  * @vmi: The vma iterator
709  * @vma: The VMA to modify
710  * @start: The new start
711  * @end: The new end
712  *
713  * Returns: 0 on success, -ENOMEM otherwise
714  */
715 int vma_shrink(struct vma_iterator *vmi, struct vm_area_struct *vma,
716                unsigned long start, unsigned long end, pgoff_t pgoff)
717 {
718         struct vma_prepare vp;
719
720         WARN_ON((vma->vm_start != start) && (vma->vm_end != end));
721
722         if (vma_iter_prealloc(vmi))
723                 return -ENOMEM;
724
725         init_vma_prep(&vp, vma);
726         vma_adjust_trans_huge(vma, start, end, 0);
727         vma_prepare(&vp);
728
729         if (vma->vm_start < start)
730                 vma_iter_clear(vmi, vma->vm_start, start);
731
732         if (vma->vm_end > end)
733                 vma_iter_clear(vmi, end, vma->vm_end);
734
735         vma->vm_start = start;
736         vma->vm_end = end;
737         vma->vm_pgoff = pgoff;
738         vma_complete(&vp, vmi, vma->vm_mm);
739         validate_mm(vma->vm_mm);
740         return 0;
741 }
742
743 /*
744  * If the vma has a ->close operation then the driver probably needs to release
745  * per-vma resources, so we don't attempt to merge those.
746  */
747 static inline int is_mergeable_vma(struct vm_area_struct *vma,
748                                    struct file *file, unsigned long vm_flags,
749                                    struct vm_userfaultfd_ctx vm_userfaultfd_ctx,
750                                    struct anon_vma_name *anon_name)
751 {
752         /*
753          * VM_SOFTDIRTY should not prevent from VMA merging, if we
754          * match the flags but dirty bit -- the caller should mark
755          * merged VMA as dirty. If dirty bit won't be excluded from
756          * comparison, we increase pressure on the memory system forcing
757          * the kernel to generate new VMAs when old one could be
758          * extended instead.
759          */
760         if ((vma->vm_flags ^ vm_flags) & ~VM_SOFTDIRTY)
761                 return 0;
762         if (vma->vm_file != file)
763                 return 0;
764         if (vma->vm_ops && vma->vm_ops->close)
765                 return 0;
766         if (!is_mergeable_vm_userfaultfd_ctx(vma, vm_userfaultfd_ctx))
767                 return 0;
768         if (!anon_vma_name_eq(anon_vma_name(vma), anon_name))
769                 return 0;
770         return 1;
771 }
772
773 static inline int is_mergeable_anon_vma(struct anon_vma *anon_vma1,
774                                         struct anon_vma *anon_vma2,
775                                         struct vm_area_struct *vma)
776 {
777         /*
778          * The list_is_singular() test is to avoid merging VMA cloned from
779          * parents. This can improve scalability caused by anon_vma lock.
780          */
781         if ((!anon_vma1 || !anon_vma2) && (!vma ||
782                 list_is_singular(&vma->anon_vma_chain)))
783                 return 1;
784         return anon_vma1 == anon_vma2;
785 }
786
787 /*
788  * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
789  * in front of (at a lower virtual address and file offset than) the vma.
790  *
791  * We cannot merge two vmas if they have differently assigned (non-NULL)
792  * anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
793  *
794  * We don't check here for the merged mmap wrapping around the end of pagecache
795  * indices (16TB on ia32) because do_mmap() does not permit mmap's which
796  * wrap, nor mmaps which cover the final page at index -1UL.
797  */
798 static int
799 can_vma_merge_before(struct vm_area_struct *vma, unsigned long vm_flags,
800                      struct anon_vma *anon_vma, struct file *file,
801                      pgoff_t vm_pgoff,
802                      struct vm_userfaultfd_ctx vm_userfaultfd_ctx,
803                      struct anon_vma_name *anon_name)
804 {
805         if (is_mergeable_vma(vma, file, vm_flags, vm_userfaultfd_ctx, anon_name) &&
806             is_mergeable_anon_vma(anon_vma, vma->anon_vma, vma)) {
807                 if (vma->vm_pgoff == vm_pgoff)
808                         return 1;
809         }
810         return 0;
811 }
812
813 /*
814  * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
815  * beyond (at a higher virtual address and file offset than) the vma.
816  *
817  * We cannot merge two vmas if they have differently assigned (non-NULL)
818  * anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
819  */
820 static int
821 can_vma_merge_after(struct vm_area_struct *vma, unsigned long vm_flags,
822                     struct anon_vma *anon_vma, struct file *file,
823                     pgoff_t vm_pgoff,
824                     struct vm_userfaultfd_ctx vm_userfaultfd_ctx,
825                     struct anon_vma_name *anon_name)
826 {
827         if (is_mergeable_vma(vma, file, vm_flags, vm_userfaultfd_ctx, anon_name) &&
828             is_mergeable_anon_vma(anon_vma, vma->anon_vma, vma)) {
829                 pgoff_t vm_pglen;
830                 vm_pglen = vma_pages(vma);
831                 if (vma->vm_pgoff + vm_pglen == vm_pgoff)
832                         return 1;
833         }
834         return 0;
835 }
836
837 /*
838  * Given a mapping request (addr,end,vm_flags,file,pgoff,anon_name),
839  * figure out whether that can be merged with its predecessor or its
840  * successor.  Or both (it neatly fills a hole).
841  *
842  * In most cases - when called for mmap, brk or mremap - [addr,end) is
843  * certain not to be mapped by the time vma_merge is called; but when
844  * called for mprotect, it is certain to be already mapped (either at
845  * an offset within prev, or at the start of next), and the flags of
846  * this area are about to be changed to vm_flags - and the no-change
847  * case has already been eliminated.
848  *
849  * The following mprotect cases have to be considered, where AAAA is
850  * the area passed down from mprotect_fixup, never extending beyond one
851  * vma, PPPPPP is the prev vma specified, and NNNNNN the next vma after:
852  *
853  *     AAAA             AAAA                   AAAA
854  *    PPPPPPNNNNNN    PPPPPPNNNNNN       PPPPPPNNNNNN
855  *    cannot merge    might become       might become
856  *                    PPNNNNNNNNNN       PPPPPPPPPPNN
857  *    mmap, brk or    case 4 below       case 5 below
858  *    mremap move:
859  *                        AAAA               AAAA
860  *                    PPPP    NNNN       PPPPNNNNXXXX
861  *                    might become       might become
862  *                    PPPPPPPPPPPP 1 or  PPPPPPPPPPPP 6 or
863  *                    PPPPPPPPNNNN 2 or  PPPPPPPPXXXX 7 or
864  *                    PPPPNNNNNNNN 3     PPPPXXXXXXXX 8
865  *
866  * It is important for case 8 that the vma NNNN overlapping the
867  * region AAAA is never going to extended over XXXX. Instead XXXX must
868  * be extended in region AAAA and NNNN must be removed. This way in
869  * all cases where vma_merge succeeds, the moment vma_merge drops the
870  * rmap_locks, the properties of the merged vma will be already
871  * correct for the whole merged range. Some of those properties like
872  * vm_page_prot/vm_flags may be accessed by rmap_walks and they must
873  * be correct for the whole merged range immediately after the
874  * rmap_locks are released. Otherwise if XXXX would be removed and
875  * NNNN would be extended over the XXXX range, remove_migration_ptes
876  * or other rmap walkers (if working on addresses beyond the "end"
877  * parameter) may establish ptes with the wrong permissions of NNNN
878  * instead of the right permissions of XXXX.
879  *
880  * In the code below:
881  * PPPP is represented by *prev
882  * NNNN is represented by *mid (and possibly equal to *next)
883  * XXXX is represented by *next or not represented at all.
884  * AAAA is not represented - it will be merged or the function will return NULL
885  */
886 struct vm_area_struct *vma_merge(struct vma_iterator *vmi, struct mm_struct *mm,
887                         struct vm_area_struct *prev, unsigned long addr,
888                         unsigned long end, unsigned long vm_flags,
889                         struct anon_vma *anon_vma, struct file *file,
890                         pgoff_t pgoff, struct mempolicy *policy,
891                         struct vm_userfaultfd_ctx vm_userfaultfd_ctx,
892                         struct anon_vma_name *anon_name)
893 {
894         pgoff_t pglen = (end - addr) >> PAGE_SHIFT;
895         pgoff_t vma_pgoff;
896         struct vm_area_struct *mid, *next, *res = NULL;
897         struct vm_area_struct *vma, *adjust, *remove, *remove2;
898         int err = -1;
899         bool merge_prev = false;
900         bool merge_next = false;
901         bool vma_expanded = false;
902         struct vma_prepare vp;
903         unsigned long vma_end = end;
904         long adj_next = 0;
905         unsigned long vma_start = addr;
906
907         validate_mm(mm);
908         /*
909          * We later require that vma->vm_flags == vm_flags,
910          * so this tests vma->vm_flags & VM_SPECIAL, too.
911          */
912         if (vm_flags & VM_SPECIAL)
913                 return NULL;
914
915         next = find_vma(mm, prev ? prev->vm_end : 0);
916         mid = next;
917         if (next && next->vm_end == end)                /* cases 6, 7, 8 */
918                 next = find_vma(mm, next->vm_end);
919
920         /* verify some invariant that must be enforced by the caller */
921         VM_WARN_ON(prev && addr <= prev->vm_start);
922         VM_WARN_ON(mid && end > mid->vm_end);
923         VM_WARN_ON(addr >= end);
924
925         if (prev) {
926                 res = prev;
927                 vma = prev;
928                 vma_start = prev->vm_start;
929                 vma_pgoff = prev->vm_pgoff;
930                 /* Can we merge the predecessor? */
931                 if (prev->vm_end == addr && mpol_equal(vma_policy(prev), policy)
932                     && can_vma_merge_after(prev, vm_flags, anon_vma, file,
933                                    pgoff, vm_userfaultfd_ctx, anon_name)) {
934                         merge_prev = true;
935                         vma_prev(vmi);
936                 }
937         }
938         /* Can we merge the successor? */
939         if (next && end == next->vm_start &&
940                         mpol_equal(policy, vma_policy(next)) &&
941                         can_vma_merge_before(next, vm_flags,
942                                              anon_vma, file, pgoff+pglen,
943                                              vm_userfaultfd_ctx, anon_name)) {
944                 merge_next = true;
945         }
946
947         remove = remove2 = adjust = NULL;
948         /* Can we merge both the predecessor and the successor? */
949         if (merge_prev && merge_next &&
950             is_mergeable_anon_vma(prev->anon_vma, next->anon_vma, NULL)) {
951                 remove = mid;                           /* case 1 */
952                 vma_end = next->vm_end;
953                 err = dup_anon_vma(res, remove);
954                 if (mid != next) {                      /* case 6 */
955                         remove2 = next;
956                         if (!remove->anon_vma)
957                                 err = dup_anon_vma(res, remove2);
958                 }
959         } else if (merge_prev) {
960                 err = 0;                                /* case 2 */
961                 if (mid && end > mid->vm_start) {
962                         err = dup_anon_vma(res, mid);
963                         if (end == mid->vm_end) {       /* case 7 */
964                                 remove = mid;
965                         } else {                        /* case 5 */
966                                 adjust = mid;
967                                 adj_next = (end - mid->vm_start);
968                         }
969                 }
970         } else if (merge_next) {
971                 res = next;
972                 if (prev && addr < prev->vm_end) {      /* case 4 */
973                         vma_end = addr;
974                         adjust = mid;
975                         adj_next = -(vma->vm_end - addr);
976                         err = dup_anon_vma(adjust, prev);
977                 } else {
978                         vma = next;                     /* case 3 */
979                         vma_start = addr;
980                         vma_end = next->vm_end;
981                         vma_pgoff = next->vm_pgoff - pglen;
982                         err = 0;
983                         if (mid != next) {              /* case 8 */
984                                 remove = mid;
985                                 err = dup_anon_vma(res, remove);
986                         }
987                 }
988         }
989
990         /* Cannot merge or error in anon_vma clone */
991         if (err)
992                 return NULL;
993
994         if (vma_iter_prealloc(vmi))
995                 return NULL;
996
997         vma_adjust_trans_huge(vma, vma_start, vma_end, adj_next);
998         init_multi_vma_prep(&vp, vma, adjust, remove, remove2);
999         VM_WARN_ON(vp.anon_vma && adjust && adjust->anon_vma &&
1000                    vp.anon_vma != adjust->anon_vma);
1001
1002         vma_prepare(&vp);
1003         if (vma_start < vma->vm_start || vma_end > vma->vm_end)
1004                 vma_expanded = true;
1005
1006         vma->vm_start = vma_start;
1007         vma->vm_end = vma_end;
1008         vma->vm_pgoff = vma_pgoff;
1009
1010         if (vma_expanded)
1011                 vma_iter_store(vmi, vma);
1012
1013         if (adj_next) {
1014                 adjust->vm_start += adj_next;
1015                 adjust->vm_pgoff += adj_next >> PAGE_SHIFT;
1016                 if (adj_next < 0) {
1017                         WARN_ON(vma_expanded);
1018                         vma_iter_store(vmi, next);
1019                 }
1020         }
1021
1022         vma_complete(&vp, vmi, mm);
1023         vma_iter_free(vmi);
1024         validate_mm(mm);
1025         khugepaged_enter_vma(res, vm_flags);
1026
1027         return res;
1028 }
1029
1030 /*
1031  * Rough compatibility check to quickly see if it's even worth looking
1032  * at sharing an anon_vma.
1033  *
1034  * They need to have the same vm_file, and the flags can only differ
1035  * in things that mprotect may change.
1036  *
1037  * NOTE! The fact that we share an anon_vma doesn't _have_ to mean that
1038  * we can merge the two vma's. For example, we refuse to merge a vma if
1039  * there is a vm_ops->close() function, because that indicates that the
1040  * driver is doing some kind of reference counting. But that doesn't
1041  * really matter for the anon_vma sharing case.
1042  */
1043 static int anon_vma_compatible(struct vm_area_struct *a, struct vm_area_struct *b)
1044 {
1045         return a->vm_end == b->vm_start &&
1046                 mpol_equal(vma_policy(a), vma_policy(b)) &&
1047                 a->vm_file == b->vm_file &&
1048                 !((a->vm_flags ^ b->vm_flags) & ~(VM_ACCESS_FLAGS | VM_SOFTDIRTY)) &&
1049                 b->vm_pgoff == a->vm_pgoff + ((b->vm_start - a->vm_start) >> PAGE_SHIFT);
1050 }
1051
1052 /*
1053  * Do some basic sanity checking to see if we can re-use the anon_vma
1054  * from 'old'. The 'a'/'b' vma's are in VM order - one of them will be
1055  * the same as 'old', the other will be the new one that is trying
1056  * to share the anon_vma.
1057  *
1058  * NOTE! This runs with mmap_lock held for reading, so it is possible that
1059  * the anon_vma of 'old' is concurrently in the process of being set up
1060  * by another page fault trying to merge _that_. But that's ok: if it
1061  * is being set up, that automatically means that it will be a singleton
1062  * acceptable for merging, so we can do all of this optimistically. But
1063  * we do that READ_ONCE() to make sure that we never re-load the pointer.
1064  *
1065  * IOW: that the "list_is_singular()" test on the anon_vma_chain only
1066  * matters for the 'stable anon_vma' case (ie the thing we want to avoid
1067  * is to return an anon_vma that is "complex" due to having gone through
1068  * a fork).
1069  *
1070  * We also make sure that the two vma's are compatible (adjacent,
1071  * and with the same memory policies). That's all stable, even with just
1072  * a read lock on the mmap_lock.
1073  */
1074 static struct anon_vma *reusable_anon_vma(struct vm_area_struct *old, struct vm_area_struct *a, struct vm_area_struct *b)
1075 {
1076         if (anon_vma_compatible(a, b)) {
1077                 struct anon_vma *anon_vma = READ_ONCE(old->anon_vma);
1078
1079                 if (anon_vma && list_is_singular(&old->anon_vma_chain))
1080                         return anon_vma;
1081         }
1082         return NULL;
1083 }
1084
1085 /*
1086  * find_mergeable_anon_vma is used by anon_vma_prepare, to check
1087  * neighbouring vmas for a suitable anon_vma, before it goes off
1088  * to allocate a new anon_vma.  It checks because a repetitive
1089  * sequence of mprotects and faults may otherwise lead to distinct
1090  * anon_vmas being allocated, preventing vma merge in subsequent
1091  * mprotect.
1092  */
1093 struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *vma)
1094 {
1095         MA_STATE(mas, &vma->vm_mm->mm_mt, vma->vm_end, vma->vm_end);
1096         struct anon_vma *anon_vma = NULL;
1097         struct vm_area_struct *prev, *next;
1098
1099         /* Try next first. */
1100         next = mas_walk(&mas);
1101         if (next) {
1102                 anon_vma = reusable_anon_vma(next, vma, next);
1103                 if (anon_vma)
1104                         return anon_vma;
1105         }
1106
1107         prev = mas_prev(&mas, 0);
1108         VM_BUG_ON_VMA(prev != vma, vma);
1109         prev = mas_prev(&mas, 0);
1110         /* Try prev next. */
1111         if (prev)
1112                 anon_vma = reusable_anon_vma(prev, prev, vma);
1113
1114         /*
1115          * We might reach here with anon_vma == NULL if we can't find
1116          * any reusable anon_vma.
1117          * There's no absolute need to look only at touching neighbours:
1118          * we could search further afield for "compatible" anon_vmas.
1119          * But it would probably just be a waste of time searching,
1120          * or lead to too many vmas hanging off the same anon_vma.
1121          * We're trying to allow mprotect remerging later on,
1122          * not trying to minimize memory used for anon_vmas.
1123          */
1124         return anon_vma;
1125 }
1126
1127 /*
1128  * If a hint addr is less than mmap_min_addr change hint to be as
1129  * low as possible but still greater than mmap_min_addr
1130  */
1131 static inline unsigned long round_hint_to_min(unsigned long hint)
1132 {
1133         hint &= PAGE_MASK;
1134         if (((void *)hint != NULL) &&
1135             (hint < mmap_min_addr))
1136                 return PAGE_ALIGN(mmap_min_addr);
1137         return hint;
1138 }
1139
1140 int mlock_future_check(struct mm_struct *mm, unsigned long flags,
1141                        unsigned long len)
1142 {
1143         unsigned long locked, lock_limit;
1144
1145         /*  mlock MCL_FUTURE? */
1146         if (flags & VM_LOCKED) {
1147                 locked = len >> PAGE_SHIFT;
1148                 locked += mm->locked_vm;
1149                 lock_limit = rlimit(RLIMIT_MEMLOCK);
1150                 lock_limit >>= PAGE_SHIFT;
1151                 if (locked > lock_limit && !capable(CAP_IPC_LOCK))
1152                         return -EAGAIN;
1153         }
1154         return 0;
1155 }
1156
1157 static inline u64 file_mmap_size_max(struct file *file, struct inode *inode)
1158 {
1159         if (S_ISREG(inode->i_mode))
1160                 return MAX_LFS_FILESIZE;
1161
1162         if (S_ISBLK(inode->i_mode))
1163                 return MAX_LFS_FILESIZE;
1164
1165         if (S_ISSOCK(inode->i_mode))
1166                 return MAX_LFS_FILESIZE;
1167
1168         /* Special "we do even unsigned file positions" case */
1169         if (file->f_mode & FMODE_UNSIGNED_OFFSET)
1170                 return 0;
1171
1172         /* Yes, random drivers might want more. But I'm tired of buggy drivers */
1173         return ULONG_MAX;
1174 }
1175
1176 static inline bool file_mmap_ok(struct file *file, struct inode *inode,
1177                                 unsigned long pgoff, unsigned long len)
1178 {
1179         u64 maxsize = file_mmap_size_max(file, inode);
1180
1181         if (maxsize && len > maxsize)
1182                 return false;
1183         maxsize -= len;
1184         if (pgoff > maxsize >> PAGE_SHIFT)
1185                 return false;
1186         return true;
1187 }
1188
1189 /*
1190  * The caller must write-lock current->mm->mmap_lock.
1191  */
1192 unsigned long do_mmap(struct file *file, unsigned long addr,
1193                         unsigned long len, unsigned long prot,
1194                         unsigned long flags, unsigned long pgoff,
1195                         unsigned long *populate, struct list_head *uf)
1196 {
1197         struct mm_struct *mm = current->mm;
1198         vm_flags_t vm_flags;
1199         int pkey = 0;
1200
1201         validate_mm(mm);
1202         *populate = 0;
1203
1204         if (!len)
1205                 return -EINVAL;
1206
1207         /*
1208          * Does the application expect PROT_READ to imply PROT_EXEC?
1209          *
1210          * (the exception is when the underlying filesystem is noexec
1211          *  mounted, in which case we dont add PROT_EXEC.)
1212          */
1213         if ((prot & PROT_READ) && (current->personality & READ_IMPLIES_EXEC))
1214                 if (!(file && path_noexec(&file->f_path)))
1215                         prot |= PROT_EXEC;
1216
1217         /* force arch specific MAP_FIXED handling in get_unmapped_area */
1218         if (flags & MAP_FIXED_NOREPLACE)
1219                 flags |= MAP_FIXED;
1220
1221         if (!(flags & MAP_FIXED))
1222                 addr = round_hint_to_min(addr);
1223
1224         /* Careful about overflows.. */
1225         len = PAGE_ALIGN(len);
1226         if (!len)
1227                 return -ENOMEM;
1228
1229         /* offset overflow? */
1230         if ((pgoff + (len >> PAGE_SHIFT)) < pgoff)
1231                 return -EOVERFLOW;
1232
1233         /* Too many mappings? */
1234         if (mm->map_count > sysctl_max_map_count)
1235                 return -ENOMEM;
1236
1237         /* Obtain the address to map to. we verify (or select) it and ensure
1238          * that it represents a valid section of the address space.
1239          */
1240         addr = get_unmapped_area(file, addr, len, pgoff, flags);
1241         if (IS_ERR_VALUE(addr))
1242                 return addr;
1243
1244         if (flags & MAP_FIXED_NOREPLACE) {
1245                 if (find_vma_intersection(mm, addr, addr + len))
1246                         return -EEXIST;
1247         }
1248
1249         if (prot == PROT_EXEC) {
1250                 pkey = execute_only_pkey(mm);
1251                 if (pkey < 0)
1252                         pkey = 0;
1253         }
1254
1255         /* Do simple checking here so the lower-level routines won't have
1256          * to. we assume access permissions have been handled by the open
1257          * of the memory object, so we don't do any here.
1258          */
1259         vm_flags = calc_vm_prot_bits(prot, pkey) | calc_vm_flag_bits(flags) |
1260                         mm->def_flags | VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC;
1261
1262         if (flags & MAP_LOCKED)
1263                 if (!can_do_mlock())
1264                         return -EPERM;
1265
1266         if (mlock_future_check(mm, vm_flags, len))
1267                 return -EAGAIN;
1268
1269         if (file) {
1270                 struct inode *inode = file_inode(file);
1271                 unsigned long flags_mask;
1272
1273                 if (!file_mmap_ok(file, inode, pgoff, len))
1274                         return -EOVERFLOW;
1275
1276                 flags_mask = LEGACY_MAP_MASK | file->f_op->mmap_supported_flags;
1277
1278                 switch (flags & MAP_TYPE) {
1279                 case MAP_SHARED:
1280                         /*
1281                          * Force use of MAP_SHARED_VALIDATE with non-legacy
1282                          * flags. E.g. MAP_SYNC is dangerous to use with
1283                          * MAP_SHARED as you don't know which consistency model
1284                          * you will get. We silently ignore unsupported flags
1285                          * with MAP_SHARED to preserve backward compatibility.
1286                          */
1287                         flags &= LEGACY_MAP_MASK;
1288                         fallthrough;
1289                 case MAP_SHARED_VALIDATE:
1290                         if (flags & ~flags_mask)
1291                                 return -EOPNOTSUPP;
1292                         if (prot & PROT_WRITE) {
1293                                 if (!(file->f_mode & FMODE_WRITE))
1294                                         return -EACCES;
1295                                 if (IS_SWAPFILE(file->f_mapping->host))
1296                                         return -ETXTBSY;
1297                         }
1298
1299                         /*
1300                          * Make sure we don't allow writing to an append-only
1301                          * file..
1302                          */
1303                         if (IS_APPEND(inode) && (file->f_mode & FMODE_WRITE))
1304                                 return -EACCES;
1305
1306                         vm_flags |= VM_SHARED | VM_MAYSHARE;
1307                         if (!(file->f_mode & FMODE_WRITE))
1308                                 vm_flags &= ~(VM_MAYWRITE | VM_SHARED);
1309                         fallthrough;
1310                 case MAP_PRIVATE:
1311                         if (!(file->f_mode & FMODE_READ))
1312                                 return -EACCES;
1313                         if (path_noexec(&file->f_path)) {
1314                                 if (vm_flags & VM_EXEC)
1315                                         return -EPERM;
1316                                 vm_flags &= ~VM_MAYEXEC;
1317                         }
1318
1319                         if (!file->f_op->mmap)
1320                                 return -ENODEV;
1321                         if (vm_flags & (VM_GROWSDOWN|VM_GROWSUP))
1322                                 return -EINVAL;
1323                         break;
1324
1325                 default:
1326                         return -EINVAL;
1327                 }
1328         } else {
1329                 switch (flags & MAP_TYPE) {
1330                 case MAP_SHARED:
1331                         if (vm_flags & (VM_GROWSDOWN|VM_GROWSUP))
1332                                 return -EINVAL;
1333                         /*
1334                          * Ignore pgoff.
1335                          */
1336                         pgoff = 0;
1337                         vm_flags |= VM_SHARED | VM_MAYSHARE;
1338                         break;
1339                 case MAP_PRIVATE:
1340                         /*
1341                          * Set pgoff according to addr for anon_vma.
1342                          */
1343                         pgoff = addr >> PAGE_SHIFT;
1344                         break;
1345                 default:
1346                         return -EINVAL;
1347                 }
1348         }
1349
1350         /*
1351          * Set 'VM_NORESERVE' if we should not account for the
1352          * memory use of this mapping.
1353          */
1354         if (flags & MAP_NORESERVE) {
1355                 /* We honor MAP_NORESERVE if allowed to overcommit */
1356                 if (sysctl_overcommit_memory != OVERCOMMIT_NEVER)
1357                         vm_flags |= VM_NORESERVE;
1358
1359                 /* hugetlb applies strict overcommit unless MAP_NORESERVE */
1360                 if (file && is_file_hugepages(file))
1361                         vm_flags |= VM_NORESERVE;
1362         }
1363
1364         addr = mmap_region(file, addr, len, vm_flags, pgoff, uf);
1365         if (!IS_ERR_VALUE(addr) &&
1366             ((vm_flags & VM_LOCKED) ||
1367              (flags & (MAP_POPULATE | MAP_NONBLOCK)) == MAP_POPULATE))
1368                 *populate = len;
1369         return addr;
1370 }
1371
1372 unsigned long ksys_mmap_pgoff(unsigned long addr, unsigned long len,
1373                               unsigned long prot, unsigned long flags,
1374                               unsigned long fd, unsigned long pgoff)
1375 {
1376         struct file *file = NULL;
1377         unsigned long retval;
1378
1379         if (!(flags & MAP_ANONYMOUS)) {
1380                 audit_mmap_fd(fd, flags);
1381                 file = fget(fd);
1382                 if (!file)
1383                         return -EBADF;
1384                 if (is_file_hugepages(file)) {
1385                         len = ALIGN(len, huge_page_size(hstate_file(file)));
1386                 } else if (unlikely(flags & MAP_HUGETLB)) {
1387                         retval = -EINVAL;
1388                         goto out_fput;
1389                 }
1390         } else if (flags & MAP_HUGETLB) {
1391                 struct hstate *hs;
1392
1393                 hs = hstate_sizelog((flags >> MAP_HUGE_SHIFT) & MAP_HUGE_MASK);
1394                 if (!hs)
1395                         return -EINVAL;
1396
1397                 len = ALIGN(len, huge_page_size(hs));
1398                 /*
1399                  * VM_NORESERVE is used because the reservations will be
1400                  * taken when vm_ops->mmap() is called
1401                  */
1402                 file = hugetlb_file_setup(HUGETLB_ANON_FILE, len,
1403                                 VM_NORESERVE,
1404                                 HUGETLB_ANONHUGE_INODE,
1405                                 (flags >> MAP_HUGE_SHIFT) & MAP_HUGE_MASK);
1406                 if (IS_ERR(file))
1407                         return PTR_ERR(file);
1408         }
1409
1410         retval = vm_mmap_pgoff(file, addr, len, prot, flags, pgoff);
1411 out_fput:
1412         if (file)
1413                 fput(file);
1414         return retval;
1415 }
1416
1417 SYSCALL_DEFINE6(mmap_pgoff, unsigned long, addr, unsigned long, len,
1418                 unsigned long, prot, unsigned long, flags,
1419                 unsigned long, fd, unsigned long, pgoff)
1420 {
1421         return ksys_mmap_pgoff(addr, len, prot, flags, fd, pgoff);
1422 }
1423
1424 #ifdef __ARCH_WANT_SYS_OLD_MMAP
1425 struct mmap_arg_struct {
1426         unsigned long addr;
1427         unsigned long len;
1428         unsigned long prot;
1429         unsigned long flags;
1430         unsigned long fd;
1431         unsigned long offset;
1432 };
1433
1434 SYSCALL_DEFINE1(old_mmap, struct mmap_arg_struct __user *, arg)
1435 {
1436         struct mmap_arg_struct a;
1437
1438         if (copy_from_user(&a, arg, sizeof(a)))
1439                 return -EFAULT;
1440         if (offset_in_page(a.offset))
1441                 return -EINVAL;
1442
1443         return ksys_mmap_pgoff(a.addr, a.len, a.prot, a.flags, a.fd,
1444                                a.offset >> PAGE_SHIFT);
1445 }
1446 #endif /* __ARCH_WANT_SYS_OLD_MMAP */
1447
1448 /*
1449  * Some shared mappings will want the pages marked read-only
1450  * to track write events. If so, we'll downgrade vm_page_prot
1451  * to the private version (using protection_map[] without the
1452  * VM_SHARED bit).
1453  */
1454 int vma_wants_writenotify(struct vm_area_struct *vma, pgprot_t vm_page_prot)
1455 {
1456         vm_flags_t vm_flags = vma->vm_flags;
1457         const struct vm_operations_struct *vm_ops = vma->vm_ops;
1458
1459         /* If it was private or non-writable, the write bit is already clear */
1460         if ((vm_flags & (VM_WRITE|VM_SHARED)) != ((VM_WRITE|VM_SHARED)))
1461                 return 0;
1462
1463         /* The backer wishes to know when pages are first written to? */
1464         if (vm_ops && (vm_ops->page_mkwrite || vm_ops->pfn_mkwrite))
1465                 return 1;
1466
1467         /* The open routine did something to the protections that pgprot_modify
1468          * won't preserve? */
1469         if (pgprot_val(vm_page_prot) !=
1470             pgprot_val(vm_pgprot_modify(vm_page_prot, vm_flags)))
1471                 return 0;
1472
1473         /*
1474          * Do we need to track softdirty? hugetlb does not support softdirty
1475          * tracking yet.
1476          */
1477         if (vma_soft_dirty_enabled(vma) && !is_vm_hugetlb_page(vma))
1478                 return 1;
1479
1480         /* Do we need write faults for uffd-wp tracking? */
1481         if (userfaultfd_wp(vma))
1482                 return 1;
1483
1484         /* Specialty mapping? */
1485         if (vm_flags & VM_PFNMAP)
1486                 return 0;
1487
1488         /* Can the mapping track the dirty pages? */
1489         return vma->vm_file && vma->vm_file->f_mapping &&
1490                 mapping_can_writeback(vma->vm_file->f_mapping);
1491 }
1492
1493 /*
1494  * We account for memory if it's a private writeable mapping,
1495  * not hugepages and VM_NORESERVE wasn't set.
1496  */
1497 static inline int accountable_mapping(struct file *file, vm_flags_t vm_flags)
1498 {
1499         /*
1500          * hugetlb has its own accounting separate from the core VM
1501          * VM_HUGETLB may not be set yet so we cannot check for that flag.
1502          */
1503         if (file && is_file_hugepages(file))
1504                 return 0;
1505
1506         return (vm_flags & (VM_NORESERVE | VM_SHARED | VM_WRITE)) == VM_WRITE;
1507 }
1508
1509 /**
1510  * unmapped_area() - Find an area between the low_limit and the high_limit with
1511  * the correct alignment and offset, all from @info. Note: current->mm is used
1512  * for the search.
1513  *
1514  * @info: The unmapped area information including the range [low_limit -
1515  * high_limit), the alignment offset and mask.
1516  *
1517  * Return: A memory address or -ENOMEM.
1518  */
1519 static unsigned long unmapped_area(struct vm_unmapped_area_info *info)
1520 {
1521         unsigned long length, gap, low_limit;
1522         struct vm_area_struct *tmp;
1523
1524         MA_STATE(mas, &current->mm->mm_mt, 0, 0);
1525
1526         /* Adjust search length to account for worst case alignment overhead */
1527         length = info->length + info->align_mask;
1528         if (length < info->length)
1529                 return -ENOMEM;
1530
1531         low_limit = info->low_limit;
1532 retry:
1533         if (mas_empty_area(&mas, low_limit, info->high_limit - 1, length))
1534                 return -ENOMEM;
1535
1536         gap = mas.index;
1537         gap += (info->align_offset - gap) & info->align_mask;
1538         tmp = mas_next(&mas, ULONG_MAX);
1539         if (tmp && (tmp->vm_flags & VM_GROWSDOWN)) { /* Avoid prev check if possible */
1540                 if (vm_start_gap(tmp) < gap + length - 1) {
1541                         low_limit = tmp->vm_end;
1542                         mas_reset(&mas);
1543                         goto retry;
1544                 }
1545         } else {
1546                 tmp = mas_prev(&mas, 0);
1547                 if (tmp && vm_end_gap(tmp) > gap) {
1548                         low_limit = vm_end_gap(tmp);
1549                         mas_reset(&mas);
1550                         goto retry;
1551                 }
1552         }
1553
1554         return gap;
1555 }
1556
1557 /**
1558  * unmapped_area_topdown() - Find an area between the low_limit and the
1559  * high_limit with the correct alignment and offset at the highest available
1560  * address, all from @info. Note: current->mm is used for the search.
1561  *
1562  * @info: The unmapped area information including the range [low_limit -
1563  * high_limit), the alignment offset and mask.
1564  *
1565  * Return: A memory address or -ENOMEM.
1566  */
1567 static unsigned long unmapped_area_topdown(struct vm_unmapped_area_info *info)
1568 {
1569         unsigned long length, gap, high_limit, gap_end;
1570         struct vm_area_struct *tmp;
1571
1572         MA_STATE(mas, &current->mm->mm_mt, 0, 0);
1573         /* Adjust search length to account for worst case alignment overhead */
1574         length = info->length + info->align_mask;
1575         if (length < info->length)
1576                 return -ENOMEM;
1577
1578         high_limit = info->high_limit;
1579 retry:
1580         if (mas_empty_area_rev(&mas, info->low_limit, high_limit - 1,
1581                                 length))
1582                 return -ENOMEM;
1583
1584         gap = mas.last + 1 - info->length;
1585         gap -= (gap - info->align_offset) & info->align_mask;
1586         gap_end = mas.last;
1587         tmp = mas_next(&mas, ULONG_MAX);
1588         if (tmp && (tmp->vm_flags & VM_GROWSDOWN)) { /* Avoid prev check if possible */
1589                 if (vm_start_gap(tmp) <= gap_end) {
1590                         high_limit = vm_start_gap(tmp);
1591                         mas_reset(&mas);
1592                         goto retry;
1593                 }
1594         } else {
1595                 tmp = mas_prev(&mas, 0);
1596                 if (tmp && vm_end_gap(tmp) > gap) {
1597                         high_limit = tmp->vm_start;
1598                         mas_reset(&mas);
1599                         goto retry;
1600                 }
1601         }
1602
1603         return gap;
1604 }
1605
1606 /*
1607  * Search for an unmapped address range.
1608  *
1609  * We are looking for a range that:
1610  * - does not intersect with any VMA;
1611  * - is contained within the [low_limit, high_limit) interval;
1612  * - is at least the desired size.
1613  * - satisfies (begin_addr & align_mask) == (align_offset & align_mask)
1614  */
1615 unsigned long vm_unmapped_area(struct vm_unmapped_area_info *info)
1616 {
1617         unsigned long addr;
1618
1619         if (info->flags & VM_UNMAPPED_AREA_TOPDOWN)
1620                 addr = unmapped_area_topdown(info);
1621         else
1622                 addr = unmapped_area(info);
1623
1624         trace_vm_unmapped_area(addr, info);
1625         return addr;
1626 }
1627
1628 /* Get an address range which is currently unmapped.
1629  * For shmat() with addr=0.
1630  *
1631  * Ugly calling convention alert:
1632  * Return value with the low bits set means error value,
1633  * ie
1634  *      if (ret & ~PAGE_MASK)
1635  *              error = ret;
1636  *
1637  * This function "knows" that -ENOMEM has the bits set.
1638  */
1639 unsigned long
1640 generic_get_unmapped_area(struct file *filp, unsigned long addr,
1641                           unsigned long len, unsigned long pgoff,
1642                           unsigned long flags)
1643 {
1644         struct mm_struct *mm = current->mm;
1645         struct vm_area_struct *vma, *prev;
1646         struct vm_unmapped_area_info info;
1647         const unsigned long mmap_end = arch_get_mmap_end(addr, len, flags);
1648
1649         if (len > mmap_end - mmap_min_addr)
1650                 return -ENOMEM;
1651
1652         if (flags & MAP_FIXED)
1653                 return addr;
1654
1655         if (addr) {
1656                 addr = PAGE_ALIGN(addr);
1657                 vma = find_vma_prev(mm, addr, &prev);
1658                 if (mmap_end - len >= addr && addr >= mmap_min_addr &&
1659                     (!vma || addr + len <= vm_start_gap(vma)) &&
1660                     (!prev || addr >= vm_end_gap(prev)))
1661                         return addr;
1662         }
1663
1664         info.flags = 0;
1665         info.length = len;
1666         info.low_limit = mm->mmap_base;
1667         info.high_limit = mmap_end;
1668         info.align_mask = 0;
1669         info.align_offset = 0;
1670         return vm_unmapped_area(&info);
1671 }
1672
1673 #ifndef HAVE_ARCH_UNMAPPED_AREA
1674 unsigned long
1675 arch_get_unmapped_area(struct file *filp, unsigned long addr,
1676                        unsigned long len, unsigned long pgoff,
1677                        unsigned long flags)
1678 {
1679         return generic_get_unmapped_area(filp, addr, len, pgoff, flags);
1680 }
1681 #endif
1682
1683 /*
1684  * This mmap-allocator allocates new areas top-down from below the
1685  * stack's low limit (the base):
1686  */
1687 unsigned long
1688 generic_get_unmapped_area_topdown(struct file *filp, unsigned long addr,
1689                                   unsigned long len, unsigned long pgoff,
1690                                   unsigned long flags)
1691 {
1692         struct vm_area_struct *vma, *prev;
1693         struct mm_struct *mm = current->mm;
1694         struct vm_unmapped_area_info info;
1695         const unsigned long mmap_end = arch_get_mmap_end(addr, len, flags);
1696
1697         /* requested length too big for entire address space */
1698         if (len > mmap_end - mmap_min_addr)
1699                 return -ENOMEM;
1700
1701         if (flags & MAP_FIXED)
1702                 return addr;
1703
1704         /* requesting a specific address */
1705         if (addr) {
1706                 addr = PAGE_ALIGN(addr);
1707                 vma = find_vma_prev(mm, addr, &prev);
1708                 if (mmap_end - len >= addr && addr >= mmap_min_addr &&
1709                                 (!vma || addr + len <= vm_start_gap(vma)) &&
1710                                 (!prev || addr >= vm_end_gap(prev)))
1711                         return addr;
1712         }
1713
1714         info.flags = VM_UNMAPPED_AREA_TOPDOWN;
1715         info.length = len;
1716         info.low_limit = max(PAGE_SIZE, mmap_min_addr);
1717         info.high_limit = arch_get_mmap_base(addr, mm->mmap_base);
1718         info.align_mask = 0;
1719         info.align_offset = 0;
1720         addr = vm_unmapped_area(&info);
1721
1722         /*
1723          * A failed mmap() very likely causes application failure,
1724          * so fall back to the bottom-up function here. This scenario
1725          * can happen with large stack limits and large mmap()
1726          * allocations.
1727          */
1728         if (offset_in_page(addr)) {
1729                 VM_BUG_ON(addr != -ENOMEM);
1730                 info.flags = 0;
1731                 info.low_limit = TASK_UNMAPPED_BASE;
1732                 info.high_limit = mmap_end;
1733                 addr = vm_unmapped_area(&info);
1734         }
1735
1736         return addr;
1737 }
1738
1739 #ifndef HAVE_ARCH_UNMAPPED_AREA_TOPDOWN
1740 unsigned long
1741 arch_get_unmapped_area_topdown(struct file *filp, unsigned long addr,
1742                                unsigned long len, unsigned long pgoff,
1743                                unsigned long flags)
1744 {
1745         return generic_get_unmapped_area_topdown(filp, addr, len, pgoff, flags);
1746 }
1747 #endif
1748
1749 unsigned long
1750 get_unmapped_area(struct file *file, unsigned long addr, unsigned long len,
1751                 unsigned long pgoff, unsigned long flags)
1752 {
1753         unsigned long (*get_area)(struct file *, unsigned long,
1754                                   unsigned long, unsigned long, unsigned long);
1755
1756         unsigned long error = arch_mmap_check(addr, len, flags);
1757         if (error)
1758                 return error;
1759
1760         /* Careful about overflows.. */
1761         if (len > TASK_SIZE)
1762                 return -ENOMEM;
1763
1764         get_area = current->mm->get_unmapped_area;
1765         if (file) {
1766                 if (file->f_op->get_unmapped_area)
1767                         get_area = file->f_op->get_unmapped_area;
1768         } else if (flags & MAP_SHARED) {
1769                 /*
1770                  * mmap_region() will call shmem_zero_setup() to create a file,
1771                  * so use shmem's get_unmapped_area in case it can be huge.
1772                  * do_mmap() will clear pgoff, so match alignment.
1773                  */
1774                 pgoff = 0;
1775                 get_area = shmem_get_unmapped_area;
1776         }
1777
1778         addr = get_area(file, addr, len, pgoff, flags);
1779         if (IS_ERR_VALUE(addr))
1780                 return addr;
1781
1782         if (addr > TASK_SIZE - len)
1783                 return -ENOMEM;
1784         if (offset_in_page(addr))
1785                 return -EINVAL;
1786
1787         error = security_mmap_addr(addr);
1788         return error ? error : addr;
1789 }
1790
1791 EXPORT_SYMBOL(get_unmapped_area);
1792
1793 /**
1794  * find_vma_intersection() - Look up the first VMA which intersects the interval
1795  * @mm: The process address space.
1796  * @start_addr: The inclusive start user address.
1797  * @end_addr: The exclusive end user address.
1798  *
1799  * Returns: The first VMA within the provided range, %NULL otherwise.  Assumes
1800  * start_addr < end_addr.
1801  */
1802 struct vm_area_struct *find_vma_intersection(struct mm_struct *mm,
1803                                              unsigned long start_addr,
1804                                              unsigned long end_addr)
1805 {
1806         unsigned long index = start_addr;
1807
1808         mmap_assert_locked(mm);
1809         return mt_find(&mm->mm_mt, &index, end_addr - 1);
1810 }
1811 EXPORT_SYMBOL(find_vma_intersection);
1812
1813 /**
1814  * find_vma() - Find the VMA for a given address, or the next VMA.
1815  * @mm: The mm_struct to check
1816  * @addr: The address
1817  *
1818  * Returns: The VMA associated with addr, or the next VMA.
1819  * May return %NULL in the case of no VMA at addr or above.
1820  */
1821 struct vm_area_struct *find_vma(struct mm_struct *mm, unsigned long addr)
1822 {
1823         unsigned long index = addr;
1824
1825         mmap_assert_locked(mm);
1826         return mt_find(&mm->mm_mt, &index, ULONG_MAX);
1827 }
1828 EXPORT_SYMBOL(find_vma);
1829
1830 /**
1831  * find_vma_prev() - Find the VMA for a given address, or the next vma and
1832  * set %pprev to the previous VMA, if any.
1833  * @mm: The mm_struct to check
1834  * @addr: The address
1835  * @pprev: The pointer to set to the previous VMA
1836  *
1837  * Note that RCU lock is missing here since the external mmap_lock() is used
1838  * instead.
1839  *
1840  * Returns: The VMA associated with @addr, or the next vma.
1841  * May return %NULL in the case of no vma at addr or above.
1842  */
1843 struct vm_area_struct *
1844 find_vma_prev(struct mm_struct *mm, unsigned long addr,
1845                         struct vm_area_struct **pprev)
1846 {
1847         struct vm_area_struct *vma;
1848         MA_STATE(mas, &mm->mm_mt, addr, addr);
1849
1850         vma = mas_walk(&mas);
1851         *pprev = mas_prev(&mas, 0);
1852         if (!vma)
1853                 vma = mas_next(&mas, ULONG_MAX);
1854         return vma;
1855 }
1856
1857 /*
1858  * Verify that the stack growth is acceptable and
1859  * update accounting. This is shared with both the
1860  * grow-up and grow-down cases.
1861  */
1862 static int acct_stack_growth(struct vm_area_struct *vma,
1863                              unsigned long size, unsigned long grow)
1864 {
1865         struct mm_struct *mm = vma->vm_mm;
1866         unsigned long new_start;
1867
1868         /* address space limit tests */
1869         if (!may_expand_vm(mm, vma->vm_flags, grow))
1870                 return -ENOMEM;
1871
1872         /* Stack limit test */
1873         if (size > rlimit(RLIMIT_STACK))
1874                 return -ENOMEM;
1875
1876         /* mlock limit tests */
1877         if (mlock_future_check(mm, vma->vm_flags, grow << PAGE_SHIFT))
1878                 return -ENOMEM;
1879
1880         /* Check to ensure the stack will not grow into a hugetlb-only region */
1881         new_start = (vma->vm_flags & VM_GROWSUP) ? vma->vm_start :
1882                         vma->vm_end - size;
1883         if (is_hugepage_only_range(vma->vm_mm, new_start, size))
1884                 return -EFAULT;
1885
1886         /*
1887          * Overcommit..  This must be the final test, as it will
1888          * update security statistics.
1889          */
1890         if (security_vm_enough_memory_mm(mm, grow))
1891                 return -ENOMEM;
1892
1893         return 0;
1894 }
1895
1896 #if defined(CONFIG_STACK_GROWSUP) || defined(CONFIG_IA64)
1897 /*
1898  * PA-RISC uses this for its stack; IA64 for its Register Backing Store.
1899  * vma is the last one with address > vma->vm_end.  Have to extend vma.
1900  */
1901 int expand_upwards(struct vm_area_struct *vma, unsigned long address)
1902 {
1903         struct mm_struct *mm = vma->vm_mm;
1904         struct vm_area_struct *next;
1905         unsigned long gap_addr;
1906         int error = 0;
1907         MA_STATE(mas, &mm->mm_mt, 0, 0);
1908
1909         if (!(vma->vm_flags & VM_GROWSUP))
1910                 return -EFAULT;
1911
1912         /* Guard against exceeding limits of the address space. */
1913         address &= PAGE_MASK;
1914         if (address >= (TASK_SIZE & PAGE_MASK))
1915                 return -ENOMEM;
1916         address += PAGE_SIZE;
1917
1918         /* Enforce stack_guard_gap */
1919         gap_addr = address + stack_guard_gap;
1920
1921         /* Guard against overflow */
1922         if (gap_addr < address || gap_addr > TASK_SIZE)
1923                 gap_addr = TASK_SIZE;
1924
1925         next = find_vma_intersection(mm, vma->vm_end, gap_addr);
1926         if (next && vma_is_accessible(next)) {
1927                 if (!(next->vm_flags & VM_GROWSUP))
1928                         return -ENOMEM;
1929                 /* Check that both stack segments have the same anon_vma? */
1930         }
1931
1932         if (mas_preallocate(&mas, GFP_KERNEL))
1933                 return -ENOMEM;
1934
1935         /* We must make sure the anon_vma is allocated. */
1936         if (unlikely(anon_vma_prepare(vma))) {
1937                 mas_destroy(&mas);
1938                 return -ENOMEM;
1939         }
1940
1941         /*
1942          * vma->vm_start/vm_end cannot change under us because the caller
1943          * is required to hold the mmap_lock in read mode.  We need the
1944          * anon_vma lock to serialize against concurrent expand_stacks.
1945          */
1946         anon_vma_lock_write(vma->anon_vma);
1947
1948         /* Somebody else might have raced and expanded it already */
1949         if (address > vma->vm_end) {
1950                 unsigned long size, grow;
1951
1952                 size = address - vma->vm_start;
1953                 grow = (address - vma->vm_end) >> PAGE_SHIFT;
1954
1955                 error = -ENOMEM;
1956                 if (vma->vm_pgoff + (size >> PAGE_SHIFT) >= vma->vm_pgoff) {
1957                         error = acct_stack_growth(vma, size, grow);
1958                         if (!error) {
1959                                 /*
1960                                  * We only hold a shared mmap_lock lock here, so
1961                                  * we need to protect against concurrent vma
1962                                  * expansions.  anon_vma_lock_write() doesn't
1963                                  * help here, as we don't guarantee that all
1964                                  * growable vmas in a mm share the same root
1965                                  * anon vma.  So, we reuse mm->page_table_lock
1966                                  * to guard against concurrent vma expansions.
1967                                  */
1968                                 spin_lock(&mm->page_table_lock);
1969                                 if (vma->vm_flags & VM_LOCKED)
1970                                         mm->locked_vm += grow;
1971                                 vm_stat_account(mm, vma->vm_flags, grow);
1972                                 anon_vma_interval_tree_pre_update_vma(vma);
1973                                 vma->vm_end = address;
1974                                 /* Overwrite old entry in mtree. */
1975                                 mas_set_range(&mas, vma->vm_start, address - 1);
1976                                 mas_store_prealloc(&mas, vma);
1977                                 anon_vma_interval_tree_post_update_vma(vma);
1978                                 spin_unlock(&mm->page_table_lock);
1979
1980                                 perf_event_mmap(vma);
1981                         }
1982                 }
1983         }
1984         anon_vma_unlock_write(vma->anon_vma);
1985         khugepaged_enter_vma(vma, vma->vm_flags);
1986         mas_destroy(&mas);
1987         return error;
1988 }
1989 #endif /* CONFIG_STACK_GROWSUP || CONFIG_IA64 */
1990
1991 /*
1992  * vma is the first one with address < vma->vm_start.  Have to extend vma.
1993  */
1994 int expand_downwards(struct vm_area_struct *vma, unsigned long address)
1995 {
1996         struct mm_struct *mm = vma->vm_mm;
1997         MA_STATE(mas, &mm->mm_mt, vma->vm_start, vma->vm_start);
1998         struct vm_area_struct *prev;
1999         int error = 0;
2000
2001         address &= PAGE_MASK;
2002         if (address < mmap_min_addr)
2003                 return -EPERM;
2004
2005         /* Enforce stack_guard_gap */
2006         prev = mas_prev(&mas, 0);
2007         /* Check that both stack segments have the same anon_vma? */
2008         if (prev && !(prev->vm_flags & VM_GROWSDOWN) &&
2009                         vma_is_accessible(prev)) {
2010                 if (address - prev->vm_end < stack_guard_gap)
2011                         return -ENOMEM;
2012         }
2013
2014         if (mas_preallocate(&mas, GFP_KERNEL))
2015                 return -ENOMEM;
2016
2017         /* We must make sure the anon_vma is allocated. */
2018         if (unlikely(anon_vma_prepare(vma))) {
2019                 mas_destroy(&mas);
2020                 return -ENOMEM;
2021         }
2022
2023         /*
2024          * vma->vm_start/vm_end cannot change under us because the caller
2025          * is required to hold the mmap_lock in read mode.  We need the
2026          * anon_vma lock to serialize against concurrent expand_stacks.
2027          */
2028         anon_vma_lock_write(vma->anon_vma);
2029
2030         /* Somebody else might have raced and expanded it already */
2031         if (address < vma->vm_start) {
2032                 unsigned long size, grow;
2033
2034                 size = vma->vm_end - address;
2035                 grow = (vma->vm_start - address) >> PAGE_SHIFT;
2036
2037                 error = -ENOMEM;
2038                 if (grow <= vma->vm_pgoff) {
2039                         error = acct_stack_growth(vma, size, grow);
2040                         if (!error) {
2041                                 /*
2042                                  * We only hold a shared mmap_lock lock here, so
2043                                  * we need to protect against concurrent vma
2044                                  * expansions.  anon_vma_lock_write() doesn't
2045                                  * help here, as we don't guarantee that all
2046                                  * growable vmas in a mm share the same root
2047                                  * anon vma.  So, we reuse mm->page_table_lock
2048                                  * to guard against concurrent vma expansions.
2049                                  */
2050                                 spin_lock(&mm->page_table_lock);
2051                                 if (vma->vm_flags & VM_LOCKED)
2052                                         mm->locked_vm += grow;
2053                                 vm_stat_account(mm, vma->vm_flags, grow);
2054                                 anon_vma_interval_tree_pre_update_vma(vma);
2055                                 vma->vm_start = address;
2056                                 vma->vm_pgoff -= grow;
2057                                 /* Overwrite old entry in mtree. */
2058                                 mas_set_range(&mas, address, vma->vm_end - 1);
2059                                 mas_store_prealloc(&mas, vma);
2060                                 anon_vma_interval_tree_post_update_vma(vma);
2061                                 spin_unlock(&mm->page_table_lock);
2062
2063                                 perf_event_mmap(vma);
2064                         }
2065                 }
2066         }
2067         anon_vma_unlock_write(vma->anon_vma);
2068         khugepaged_enter_vma(vma, vma->vm_flags);
2069         mas_destroy(&mas);
2070         return error;
2071 }
2072
2073 /* enforced gap between the expanding stack and other mappings. */
2074 unsigned long stack_guard_gap = 256UL<<PAGE_SHIFT;
2075
2076 static int __init cmdline_parse_stack_guard_gap(char *p)
2077 {
2078         unsigned long val;
2079         char *endptr;
2080
2081         val = simple_strtoul(p, &endptr, 10);
2082         if (!*endptr)
2083                 stack_guard_gap = val << PAGE_SHIFT;
2084
2085         return 1;
2086 }
2087 __setup("stack_guard_gap=", cmdline_parse_stack_guard_gap);
2088
2089 #ifdef CONFIG_STACK_GROWSUP
2090 int expand_stack(struct vm_area_struct *vma, unsigned long address)
2091 {
2092         return expand_upwards(vma, address);
2093 }
2094
2095 struct vm_area_struct *
2096 find_extend_vma(struct mm_struct *mm, unsigned long addr)
2097 {
2098         struct vm_area_struct *vma, *prev;
2099
2100         addr &= PAGE_MASK;
2101         vma = find_vma_prev(mm, addr, &prev);
2102         if (vma && (vma->vm_start <= addr))
2103                 return vma;
2104         if (!prev || expand_stack(prev, addr))
2105                 return NULL;
2106         if (prev->vm_flags & VM_LOCKED)
2107                 populate_vma_page_range(prev, addr, prev->vm_end, NULL);
2108         return prev;
2109 }
2110 #else
2111 int expand_stack(struct vm_area_struct *vma, unsigned long address)
2112 {
2113         return expand_downwards(vma, address);
2114 }
2115
2116 struct vm_area_struct *
2117 find_extend_vma(struct mm_struct *mm, unsigned long addr)
2118 {
2119         struct vm_area_struct *vma;
2120         unsigned long start;
2121
2122         addr &= PAGE_MASK;
2123         vma = find_vma(mm, addr);
2124         if (!vma)
2125                 return NULL;
2126         if (vma->vm_start <= addr)
2127                 return vma;
2128         if (!(vma->vm_flags & VM_GROWSDOWN))
2129                 return NULL;
2130         start = vma->vm_start;
2131         if (expand_stack(vma, addr))
2132                 return NULL;
2133         if (vma->vm_flags & VM_LOCKED)
2134                 populate_vma_page_range(vma, addr, start, NULL);
2135         return vma;
2136 }
2137 #endif
2138
2139 EXPORT_SYMBOL_GPL(find_extend_vma);
2140
2141 /*
2142  * Ok - we have the memory areas we should free on a maple tree so release them,
2143  * and do the vma updates.
2144  *
2145  * Called with the mm semaphore held.
2146  */
2147 static inline void remove_mt(struct mm_struct *mm, struct ma_state *mas)
2148 {
2149         unsigned long nr_accounted = 0;
2150         struct vm_area_struct *vma;
2151
2152         /* Update high watermark before we lower total_vm */
2153         update_hiwater_vm(mm);
2154         mas_for_each(mas, vma, ULONG_MAX) {
2155                 long nrpages = vma_pages(vma);
2156
2157                 if (vma->vm_flags & VM_ACCOUNT)
2158                         nr_accounted += nrpages;
2159                 vm_stat_account(mm, vma->vm_flags, -nrpages);
2160                 remove_vma(vma);
2161         }
2162         vm_unacct_memory(nr_accounted);
2163         validate_mm(mm);
2164 }
2165
2166 /*
2167  * Get rid of page table information in the indicated region.
2168  *
2169  * Called with the mm semaphore held.
2170  */
2171 static void unmap_region(struct mm_struct *mm, struct maple_tree *mt,
2172                 struct vm_area_struct *vma, struct vm_area_struct *prev,
2173                 struct vm_area_struct *next,
2174                 unsigned long start, unsigned long end, bool mm_wr_locked)
2175 {
2176         struct mmu_gather tlb;
2177
2178         lru_add_drain();
2179         tlb_gather_mmu(&tlb, mm);
2180         update_hiwater_rss(mm);
2181         unmap_vmas(&tlb, mt, vma, start, end, mm_wr_locked);
2182         free_pgtables(&tlb, mt, vma, prev ? prev->vm_end : FIRST_USER_ADDRESS,
2183                                  next ? next->vm_start : USER_PGTABLES_CEILING);
2184         tlb_finish_mmu(&tlb);
2185 }
2186
2187 /*
2188  * __split_vma() bypasses sysctl_max_map_count checking.  We use this where it
2189  * has already been checked or doesn't make sense to fail.
2190  * VMA Iterator will point to the end VMA.
2191  */
2192 int __split_vma(struct vma_iterator *vmi, struct vm_area_struct *vma,
2193                 unsigned long addr, int new_below)
2194 {
2195         struct vma_prepare vp;
2196         struct vm_area_struct *new;
2197         int err;
2198
2199         validate_mm_mt(vma->vm_mm);
2200
2201         WARN_ON(vma->vm_start >= addr);
2202         WARN_ON(vma->vm_end <= addr);
2203
2204         if (vma->vm_ops && vma->vm_ops->may_split) {
2205                 err = vma->vm_ops->may_split(vma, addr);
2206                 if (err)
2207                         return err;
2208         }
2209
2210         new = vm_area_dup(vma);
2211         if (!new)
2212                 return -ENOMEM;
2213
2214         err = -ENOMEM;
2215         if (vma_iter_prealloc(vmi))
2216                 goto out_free_vma;
2217
2218         if (new_below) {
2219                 new->vm_end = addr;
2220         } else {
2221                 new->vm_start = addr;
2222                 new->vm_pgoff += ((addr - vma->vm_start) >> PAGE_SHIFT);
2223         }
2224
2225         err = vma_dup_policy(vma, new);
2226         if (err)
2227                 goto out_free_vmi;
2228
2229         err = anon_vma_clone(new, vma);
2230         if (err)
2231                 goto out_free_mpol;
2232
2233         if (new->vm_file)
2234                 get_file(new->vm_file);
2235
2236         if (new->vm_ops && new->vm_ops->open)
2237                 new->vm_ops->open(new);
2238
2239         vma_adjust_trans_huge(vma, vma->vm_start, addr, 0);
2240         init_vma_prep(&vp, vma);
2241         vp.insert = new;
2242         vma_prepare(&vp);
2243
2244         if (new_below) {
2245                 vma->vm_start = addr;
2246                 vma->vm_pgoff += (addr - new->vm_start) >> PAGE_SHIFT;
2247         } else {
2248                 vma->vm_end = addr;
2249         }
2250
2251         /* vma_complete stores the new vma */
2252         vma_complete(&vp, vmi, vma->vm_mm);
2253
2254         /* Success. */
2255         if (new_below)
2256                 vma_next(vmi);
2257         validate_mm_mt(vma->vm_mm);
2258         return 0;
2259
2260 out_free_mpol:
2261         mpol_put(vma_policy(new));
2262 out_free_vmi:
2263         vma_iter_free(vmi);
2264 out_free_vma:
2265         vm_area_free(new);
2266         validate_mm_mt(vma->vm_mm);
2267         return err;
2268 }
2269
2270 /*
2271  * Split a vma into two pieces at address 'addr', a new vma is allocated
2272  * either for the first part or the tail.
2273  */
2274 int split_vma(struct vma_iterator *vmi, struct vm_area_struct *vma,
2275               unsigned long addr, int new_below)
2276 {
2277         if (vma->vm_mm->map_count >= sysctl_max_map_count)
2278                 return -ENOMEM;
2279
2280         return __split_vma(vmi, vma, addr, new_below);
2281 }
2282
2283 static inline int munmap_sidetree(struct vm_area_struct *vma,
2284                                    struct ma_state *mas_detach)
2285 {
2286         mas_set_range(mas_detach, vma->vm_start, vma->vm_end - 1);
2287         if (mas_store_gfp(mas_detach, vma, GFP_KERNEL))
2288                 return -ENOMEM;
2289
2290         if (vma->vm_flags & VM_LOCKED)
2291                 vma->vm_mm->locked_vm -= vma_pages(vma);
2292
2293         return 0;
2294 }
2295
2296 /*
2297  * do_vmi_align_munmap() - munmap the aligned region from @start to @end.
2298  * @vmi: The vma iterator
2299  * @vma: The starting vm_area_struct
2300  * @mm: The mm_struct
2301  * @start: The aligned start address to munmap.
2302  * @end: The aligned end address to munmap.
2303  * @uf: The userfaultfd list_head
2304  * @downgrade: Set to true to attempt a write downgrade of the mmap_lock
2305  *
2306  * If @downgrade is true, check return code for potential release of the lock.
2307  */
2308 static int
2309 do_vmi_align_munmap(struct vma_iterator *vmi, struct vm_area_struct *vma,
2310                     struct mm_struct *mm, unsigned long start,
2311                     unsigned long end, struct list_head *uf, bool downgrade)
2312 {
2313         struct vm_area_struct *prev, *next = NULL;
2314         struct maple_tree mt_detach;
2315         int count = 0;
2316         int error = -ENOMEM;
2317         MA_STATE(mas_detach, &mt_detach, 0, 0);
2318         mt_init_flags(&mt_detach, vmi->mas.tree->ma_flags & MT_FLAGS_LOCK_MASK);
2319         mt_set_external_lock(&mt_detach, &mm->mmap_lock);
2320
2321         /*
2322          * If we need to split any vma, do it now to save pain later.
2323          *
2324          * Note: mremap's move_vma VM_ACCOUNT handling assumes a partially
2325          * unmapped vm_area_struct will remain in use: so lower split_vma
2326          * places tmp vma above, and higher split_vma places tmp vma below.
2327          */
2328
2329         /* Does it split the first one? */
2330         if (start > vma->vm_start) {
2331
2332                 /*
2333                  * Make sure that map_count on return from munmap() will
2334                  * not exceed its limit; but let map_count go just above
2335                  * its limit temporarily, to help free resources as expected.
2336                  */
2337                 if (end < vma->vm_end && mm->map_count >= sysctl_max_map_count)
2338                         goto map_count_exceeded;
2339
2340                 error = __split_vma(vmi, vma, start, 0);
2341                 if (error)
2342                         goto start_split_failed;
2343
2344                 vma = vma_iter_load(vmi);
2345         }
2346
2347         prev = vma_prev(vmi);
2348         if (unlikely((!prev)))
2349                 vma_iter_set(vmi, start);
2350
2351         /*
2352          * Detach a range of VMAs from the mm. Using next as a temp variable as
2353          * it is always overwritten.
2354          */
2355         for_each_vma_range(*vmi, next, end) {
2356                 /* Does it split the end? */
2357                 if (next->vm_end > end) {
2358                         error = __split_vma(vmi, next, end, 0);
2359                         if (error)
2360                                 goto end_split_failed;
2361                 }
2362                 error = munmap_sidetree(next, &mas_detach);
2363                 if (error)
2364                         goto munmap_sidetree_failed;
2365
2366                 count++;
2367 #ifdef CONFIG_DEBUG_VM_MAPLE_TREE
2368                 BUG_ON(next->vm_start < start);
2369                 BUG_ON(next->vm_start > end);
2370 #endif
2371         }
2372
2373         next = vma_next(vmi);
2374         if (unlikely(uf)) {
2375                 /*
2376                  * If userfaultfd_unmap_prep returns an error the vmas
2377                  * will remain split, but userland will get a
2378                  * highly unexpected error anyway. This is no
2379                  * different than the case where the first of the two
2380                  * __split_vma fails, but we don't undo the first
2381                  * split, despite we could. This is unlikely enough
2382                  * failure that it's not worth optimizing it for.
2383                  */
2384                 error = userfaultfd_unmap_prep(mm, start, end, uf);
2385
2386                 if (error)
2387                         goto userfaultfd_error;
2388         }
2389
2390 #if defined(CONFIG_DEBUG_VM_MAPLE_TREE)
2391         /* Make sure no VMAs are about to be lost. */
2392         {
2393                 MA_STATE(test, &mt_detach, start, end - 1);
2394                 struct vm_area_struct *vma_mas, *vma_test;
2395                 int test_count = 0;
2396
2397                 vma_iter_set(vmi, start);
2398                 rcu_read_lock();
2399                 vma_test = mas_find(&test, end - 1);
2400                 for_each_vma_range(*vmi, vma_mas, end) {
2401                         BUG_ON(vma_mas != vma_test);
2402                         test_count++;
2403                         vma_test = mas_next(&test, end - 1);
2404                 }
2405                 rcu_read_unlock();
2406                 BUG_ON(count != test_count);
2407         }
2408 #endif
2409         /* Point of no return */
2410         vma_iter_set(vmi, start);
2411         if (vma_iter_clear_gfp(vmi, start, end, GFP_KERNEL))
2412                 return -ENOMEM;
2413
2414         mm->map_count -= count;
2415         /*
2416          * Do not downgrade mmap_lock if we are next to VM_GROWSDOWN or
2417          * VM_GROWSUP VMA. Such VMAs can change their size under
2418          * down_read(mmap_lock) and collide with the VMA we are about to unmap.
2419          */
2420         if (downgrade) {
2421                 if (next && (next->vm_flags & VM_GROWSDOWN))
2422                         downgrade = false;
2423                 else if (prev && (prev->vm_flags & VM_GROWSUP))
2424                         downgrade = false;
2425                 else
2426                         mmap_write_downgrade(mm);
2427         }
2428
2429         /*
2430          * We can free page tables without write-locking mmap_lock because VMAs
2431          * were isolated before we downgraded mmap_lock.
2432          */
2433         unmap_region(mm, &mt_detach, vma, prev, next, start, end, !downgrade);
2434         /* Statistics and freeing VMAs */
2435         mas_set(&mas_detach, start);
2436         remove_mt(mm, &mas_detach);
2437         __mt_destroy(&mt_detach);
2438
2439
2440         validate_mm(mm);
2441         return downgrade ? 1 : 0;
2442
2443 userfaultfd_error:
2444 munmap_sidetree_failed:
2445 end_split_failed:
2446         __mt_destroy(&mt_detach);
2447 start_split_failed:
2448 map_count_exceeded:
2449         return error;
2450 }
2451
2452 /*
2453  * do_vmi_munmap() - munmap a given range.
2454  * @vmi: The vma iterator
2455  * @mm: The mm_struct
2456  * @start: The start address to munmap
2457  * @len: The length of the range to munmap
2458  * @uf: The userfaultfd list_head
2459  * @downgrade: set to true if the user wants to attempt to write_downgrade the
2460  * mmap_lock
2461  *
2462  * This function takes a @mas that is either pointing to the previous VMA or set
2463  * to MA_START and sets it up to remove the mapping(s).  The @len will be
2464  * aligned and any arch_unmap work will be preformed.
2465  *
2466  * Returns: -EINVAL on failure, 1 on success and unlock, 0 otherwise.
2467  */
2468 int do_vmi_munmap(struct vma_iterator *vmi, struct mm_struct *mm,
2469                   unsigned long start, size_t len, struct list_head *uf,
2470                   bool downgrade)
2471 {
2472         unsigned long end;
2473         struct vm_area_struct *vma;
2474
2475         if ((offset_in_page(start)) || start > TASK_SIZE || len > TASK_SIZE-start)
2476                 return -EINVAL;
2477
2478         end = start + PAGE_ALIGN(len);
2479         if (end == start)
2480                 return -EINVAL;
2481
2482          /* arch_unmap() might do unmaps itself.  */
2483         arch_unmap(mm, start, end);
2484
2485         /* Find the first overlapping VMA */
2486         vma = vma_find(vmi, end);
2487         if (!vma)
2488                 return 0;
2489
2490         return do_vmi_align_munmap(vmi, vma, mm, start, end, uf, downgrade);
2491 }
2492
2493 /* do_munmap() - Wrapper function for non-maple tree aware do_munmap() calls.
2494  * @mm: The mm_struct
2495  * @start: The start address to munmap
2496  * @len: The length to be munmapped.
2497  * @uf: The userfaultfd list_head
2498  */
2499 int do_munmap(struct mm_struct *mm, unsigned long start, size_t len,
2500               struct list_head *uf)
2501 {
2502         VMA_ITERATOR(vmi, mm, start);
2503
2504         return do_vmi_munmap(&vmi, mm, start, len, uf, false);
2505 }
2506
2507 unsigned long mmap_region(struct file *file, unsigned long addr,
2508                 unsigned long len, vm_flags_t vm_flags, unsigned long pgoff,
2509                 struct list_head *uf)
2510 {
2511         struct mm_struct *mm = current->mm;
2512         struct vm_area_struct *vma = NULL;
2513         struct vm_area_struct *next, *prev, *merge;
2514         pgoff_t pglen = len >> PAGE_SHIFT;
2515         unsigned long charged = 0;
2516         unsigned long end = addr + len;
2517         unsigned long merge_start = addr, merge_end = end;
2518         pgoff_t vm_pgoff;
2519         int error;
2520         VMA_ITERATOR(vmi, mm, addr);
2521
2522         /* Check against address space limit. */
2523         if (!may_expand_vm(mm, vm_flags, len >> PAGE_SHIFT)) {
2524                 unsigned long nr_pages;
2525
2526                 /*
2527                  * MAP_FIXED may remove pages of mappings that intersects with
2528                  * requested mapping. Account for the pages it would unmap.
2529                  */
2530                 nr_pages = count_vma_pages_range(mm, addr, end);
2531
2532                 if (!may_expand_vm(mm, vm_flags,
2533                                         (len >> PAGE_SHIFT) - nr_pages))
2534                         return -ENOMEM;
2535         }
2536
2537         /* Unmap any existing mapping in the area */
2538         if (do_vmi_munmap(&vmi, mm, addr, len, uf, false))
2539                 return -ENOMEM;
2540
2541         /*
2542          * Private writable mapping: check memory availability
2543          */
2544         if (accountable_mapping(file, vm_flags)) {
2545                 charged = len >> PAGE_SHIFT;
2546                 if (security_vm_enough_memory_mm(mm, charged))
2547                         return -ENOMEM;
2548                 vm_flags |= VM_ACCOUNT;
2549         }
2550
2551         next = vma_next(&vmi);
2552         prev = vma_prev(&vmi);
2553         if (vm_flags & VM_SPECIAL)
2554                 goto cannot_expand;
2555
2556         /* Attempt to expand an old mapping */
2557         /* Check next */
2558         if (next && next->vm_start == end && !vma_policy(next) &&
2559             can_vma_merge_before(next, vm_flags, NULL, file, pgoff+pglen,
2560                                  NULL_VM_UFFD_CTX, NULL)) {
2561                 merge_end = next->vm_end;
2562                 vma = next;
2563                 vm_pgoff = next->vm_pgoff - pglen;
2564         }
2565
2566         /* Check prev */
2567         if (prev && prev->vm_end == addr && !vma_policy(prev) &&
2568             (vma ? can_vma_merge_after(prev, vm_flags, vma->anon_vma, file,
2569                                        pgoff, vma->vm_userfaultfd_ctx, NULL) :
2570                    can_vma_merge_after(prev, vm_flags, NULL, file, pgoff,
2571                                        NULL_VM_UFFD_CTX, NULL))) {
2572                 merge_start = prev->vm_start;
2573                 vma = prev;
2574                 vm_pgoff = prev->vm_pgoff;
2575         }
2576
2577
2578         /* Actually expand, if possible */
2579         if (vma &&
2580             !vma_expand(&vmi, vma, merge_start, merge_end, vm_pgoff, next)) {
2581                 khugepaged_enter_vma(vma, vm_flags);
2582                 goto expanded;
2583         }
2584
2585 cannot_expand:
2586         /*
2587          * Determine the object being mapped and call the appropriate
2588          * specific mapper. the address has already been validated, but
2589          * not unmapped, but the maps are removed from the list.
2590          */
2591         vma = vm_area_alloc(mm);
2592         if (!vma) {
2593                 error = -ENOMEM;
2594                 goto unacct_error;
2595         }
2596
2597         vma_iter_set(&vmi, addr);
2598         vma->vm_start = addr;
2599         vma->vm_end = end;
2600         vm_flags_init(vma, vm_flags);
2601         vma->vm_page_prot = vm_get_page_prot(vm_flags);
2602         vma->vm_pgoff = pgoff;
2603
2604         if (file) {
2605                 if (vm_flags & VM_SHARED) {
2606                         error = mapping_map_writable(file->f_mapping);
2607                         if (error)
2608                                 goto free_vma;
2609                 }
2610
2611                 vma->vm_file = get_file(file);
2612                 error = call_mmap(file, vma);
2613                 if (error)
2614                         goto unmap_and_free_vma;
2615
2616                 /*
2617                  * Expansion is handled above, merging is handled below.
2618                  * Drivers should not alter the address of the VMA.
2619                  */
2620                 error = -EINVAL;
2621                 if (WARN_ON((addr != vma->vm_start)))
2622                         goto close_and_free_vma;
2623
2624                 vma_iter_set(&vmi, addr);
2625                 /*
2626                  * If vm_flags changed after call_mmap(), we should try merge
2627                  * vma again as we may succeed this time.
2628                  */
2629                 if (unlikely(vm_flags != vma->vm_flags && prev)) {
2630                         merge = vma_merge(&vmi, mm, prev, vma->vm_start,
2631                                     vma->vm_end, vma->vm_flags, NULL,
2632                                     vma->vm_file, vma->vm_pgoff, NULL,
2633                                     NULL_VM_UFFD_CTX, NULL);
2634                         if (merge) {
2635                                 /*
2636                                  * ->mmap() can change vma->vm_file and fput
2637                                  * the original file. So fput the vma->vm_file
2638                                  * here or we would add an extra fput for file
2639                                  * and cause general protection fault
2640                                  * ultimately.
2641                                  */
2642                                 fput(vma->vm_file);
2643                                 vm_area_free(vma);
2644                                 vma = merge;
2645                                 /* Update vm_flags to pick up the change. */
2646                                 vm_flags = vma->vm_flags;
2647                                 goto unmap_writable;
2648                         }
2649                 }
2650
2651                 vm_flags = vma->vm_flags;
2652         } else if (vm_flags & VM_SHARED) {
2653                 error = shmem_zero_setup(vma);
2654                 if (error)
2655                         goto free_vma;
2656         } else {
2657                 vma_set_anonymous(vma);
2658         }
2659
2660         if (map_deny_write_exec(vma, vma->vm_flags)) {
2661                 error = -EACCES;
2662                 goto close_and_free_vma;
2663         }
2664
2665         /* Allow architectures to sanity-check the vm_flags */
2666         error = -EINVAL;
2667         if (!arch_validate_flags(vma->vm_flags))
2668                 goto close_and_free_vma;
2669
2670         error = -ENOMEM;
2671         if (vma_iter_prealloc(&vmi))
2672                 goto close_and_free_vma;
2673
2674         if (vma->vm_file)
2675                 i_mmap_lock_write(vma->vm_file->f_mapping);
2676
2677         vma_iter_store(&vmi, vma);
2678         mm->map_count++;
2679         if (vma->vm_file) {
2680                 if (vma->vm_flags & VM_SHARED)
2681                         mapping_allow_writable(vma->vm_file->f_mapping);
2682
2683                 flush_dcache_mmap_lock(vma->vm_file->f_mapping);
2684                 vma_interval_tree_insert(vma, &vma->vm_file->f_mapping->i_mmap);
2685                 flush_dcache_mmap_unlock(vma->vm_file->f_mapping);
2686                 i_mmap_unlock_write(vma->vm_file->f_mapping);
2687         }
2688
2689         /*
2690          * vma_merge() calls khugepaged_enter_vma() either, the below
2691          * call covers the non-merge case.
2692          */
2693         khugepaged_enter_vma(vma, vma->vm_flags);
2694
2695         /* Once vma denies write, undo our temporary denial count */
2696 unmap_writable:
2697         if (file && vm_flags & VM_SHARED)
2698                 mapping_unmap_writable(file->f_mapping);
2699         file = vma->vm_file;
2700 expanded:
2701         perf_event_mmap(vma);
2702
2703         vm_stat_account(mm, vm_flags, len >> PAGE_SHIFT);
2704         if (vm_flags & VM_LOCKED) {
2705                 if ((vm_flags & VM_SPECIAL) || vma_is_dax(vma) ||
2706                                         is_vm_hugetlb_page(vma) ||
2707                                         vma == get_gate_vma(current->mm))
2708                         vm_flags_clear(vma, VM_LOCKED_MASK);
2709                 else
2710                         mm->locked_vm += (len >> PAGE_SHIFT);
2711         }
2712
2713         if (file)
2714                 uprobe_mmap(vma);
2715
2716         /*
2717          * New (or expanded) vma always get soft dirty status.
2718          * Otherwise user-space soft-dirty page tracker won't
2719          * be able to distinguish situation when vma area unmapped,
2720          * then new mapped in-place (which must be aimed as
2721          * a completely new data area).
2722          */
2723         vm_flags_set(vma, VM_SOFTDIRTY);
2724
2725         vma_set_page_prot(vma);
2726
2727         validate_mm(mm);
2728         return addr;
2729
2730 close_and_free_vma:
2731         if (file && vma->vm_ops && vma->vm_ops->close)
2732                 vma->vm_ops->close(vma);
2733
2734         if (file || vma->vm_file) {
2735 unmap_and_free_vma:
2736                 fput(vma->vm_file);
2737                 vma->vm_file = NULL;
2738
2739                 /* Undo any partial mapping done by a device driver. */
2740                 unmap_region(mm, &mm->mm_mt, vma, prev, next, vma->vm_start,
2741                              vma->vm_end, true);
2742         }
2743         if (file && (vm_flags & VM_SHARED))
2744                 mapping_unmap_writable(file->f_mapping);
2745 free_vma:
2746         vm_area_free(vma);
2747 unacct_error:
2748         if (charged)
2749                 vm_unacct_memory(charged);
2750         validate_mm(mm);
2751         return error;
2752 }
2753
2754 static int __vm_munmap(unsigned long start, size_t len, bool downgrade)
2755 {
2756         int ret;
2757         struct mm_struct *mm = current->mm;
2758         LIST_HEAD(uf);
2759         VMA_ITERATOR(vmi, mm, start);
2760
2761         if (mmap_write_lock_killable(mm))
2762                 return -EINTR;
2763
2764         ret = do_vmi_munmap(&vmi, mm, start, len, &uf, downgrade);
2765         /*
2766          * Returning 1 indicates mmap_lock is downgraded.
2767          * But 1 is not legal return value of vm_munmap() and munmap(), reset
2768          * it to 0 before return.
2769          */
2770         if (ret == 1) {
2771                 mmap_read_unlock(mm);
2772                 ret = 0;
2773         } else
2774                 mmap_write_unlock(mm);
2775
2776         userfaultfd_unmap_complete(mm, &uf);
2777         return ret;
2778 }
2779
2780 int vm_munmap(unsigned long start, size_t len)
2781 {
2782         return __vm_munmap(start, len, false);
2783 }
2784 EXPORT_SYMBOL(vm_munmap);
2785
2786 SYSCALL_DEFINE2(munmap, unsigned long, addr, size_t, len)
2787 {
2788         addr = untagged_addr(addr);
2789         return __vm_munmap(addr, len, true);
2790 }
2791
2792
2793 /*
2794  * Emulation of deprecated remap_file_pages() syscall.
2795  */
2796 SYSCALL_DEFINE5(remap_file_pages, unsigned long, start, unsigned long, size,
2797                 unsigned long, prot, unsigned long, pgoff, unsigned long, flags)
2798 {
2799
2800         struct mm_struct *mm = current->mm;
2801         struct vm_area_struct *vma;
2802         unsigned long populate = 0;
2803         unsigned long ret = -EINVAL;
2804         struct file *file;
2805
2806         pr_warn_once("%s (%d) uses deprecated remap_file_pages() syscall. See Documentation/mm/remap_file_pages.rst.\n",
2807                      current->comm, current->pid);
2808
2809         if (prot)
2810                 return ret;
2811         start = start & PAGE_MASK;
2812         size = size & PAGE_MASK;
2813
2814         if (start + size <= start)
2815                 return ret;
2816
2817         /* Does pgoff wrap? */
2818         if (pgoff + (size >> PAGE_SHIFT) < pgoff)
2819                 return ret;
2820
2821         if (mmap_write_lock_killable(mm))
2822                 return -EINTR;
2823
2824         vma = vma_lookup(mm, start);
2825
2826         if (!vma || !(vma->vm_flags & VM_SHARED))
2827                 goto out;
2828
2829         if (start + size > vma->vm_end) {
2830                 VMA_ITERATOR(vmi, mm, vma->vm_end);
2831                 struct vm_area_struct *next, *prev = vma;
2832
2833                 for_each_vma_range(vmi, next, start + size) {
2834                         /* hole between vmas ? */
2835                         if (next->vm_start != prev->vm_end)
2836                                 goto out;
2837
2838                         if (next->vm_file != vma->vm_file)
2839                                 goto out;
2840
2841                         if (next->vm_flags != vma->vm_flags)
2842                                 goto out;
2843
2844                         if (start + size <= next->vm_end)
2845                                 break;
2846
2847                         prev = next;
2848                 }
2849
2850                 if (!next)
2851                         goto out;
2852         }
2853
2854         prot |= vma->vm_flags & VM_READ ? PROT_READ : 0;
2855         prot |= vma->vm_flags & VM_WRITE ? PROT_WRITE : 0;
2856         prot |= vma->vm_flags & VM_EXEC ? PROT_EXEC : 0;
2857
2858         flags &= MAP_NONBLOCK;
2859         flags |= MAP_SHARED | MAP_FIXED | MAP_POPULATE;
2860         if (vma->vm_flags & VM_LOCKED)
2861                 flags |= MAP_LOCKED;
2862
2863         file = get_file(vma->vm_file);
2864         ret = do_mmap(vma->vm_file, start, size,
2865                         prot, flags, pgoff, &populate, NULL);
2866         fput(file);
2867 out:
2868         mmap_write_unlock(mm);
2869         if (populate)
2870                 mm_populate(ret, populate);
2871         if (!IS_ERR_VALUE(ret))
2872                 ret = 0;
2873         return ret;
2874 }
2875
2876 /*
2877  * do_vma_munmap() - Unmap a full or partial vma.
2878  * @vmi: The vma iterator pointing at the vma
2879  * @vma: The first vma to be munmapped
2880  * @start: the start of the address to unmap
2881  * @end: The end of the address to unmap
2882  * @uf: The userfaultfd list_head
2883  * @downgrade: Attempt to downgrade or not
2884  *
2885  * Returns: 0 on success and not downgraded, 1 on success and downgraded.
2886  * unmaps a VMA mapping when the vma iterator is already in position.
2887  * Does not handle alignment.
2888  */
2889 int do_vma_munmap(struct vma_iterator *vmi, struct vm_area_struct *vma,
2890                   unsigned long start, unsigned long end,
2891                   struct list_head *uf, bool downgrade)
2892 {
2893         struct mm_struct *mm = vma->vm_mm;
2894         int ret;
2895
2896         arch_unmap(mm, start, end);
2897         ret = do_vmi_align_munmap(vmi, vma, mm, start, end, uf, downgrade);
2898         validate_mm_mt(mm);
2899         return ret;
2900 }
2901
2902 /*
2903  * do_brk_flags() - Increase the brk vma if the flags match.
2904  * @vmi: The vma iterator
2905  * @addr: The start address
2906  * @len: The length of the increase
2907  * @vma: The vma,
2908  * @flags: The VMA Flags
2909  *
2910  * Extend the brk VMA from addr to addr + len.  If the VMA is NULL or the flags
2911  * do not match then create a new anonymous VMA.  Eventually we may be able to
2912  * do some brk-specific accounting here.
2913  */
2914 static int do_brk_flags(struct vma_iterator *vmi, struct vm_area_struct *vma,
2915                 unsigned long addr, unsigned long len, unsigned long flags)
2916 {
2917         struct mm_struct *mm = current->mm;
2918         struct vma_prepare vp;
2919
2920         validate_mm_mt(mm);
2921         /*
2922          * Check against address space limits by the changed size
2923          * Note: This happens *after* clearing old mappings in some code paths.
2924          */
2925         flags |= VM_DATA_DEFAULT_FLAGS | VM_ACCOUNT | mm->def_flags;
2926         if (!may_expand_vm(mm, flags, len >> PAGE_SHIFT))
2927                 return -ENOMEM;
2928
2929         if (mm->map_count > sysctl_max_map_count)
2930                 return -ENOMEM;
2931
2932         if (security_vm_enough_memory_mm(mm, len >> PAGE_SHIFT))
2933                 return -ENOMEM;
2934
2935         /*
2936          * Expand the existing vma if possible; Note that singular lists do not
2937          * occur after forking, so the expand will only happen on new VMAs.
2938          */
2939         if (vma && vma->vm_end == addr && !vma_policy(vma) &&
2940             can_vma_merge_after(vma, flags, NULL, NULL,
2941                                 addr >> PAGE_SHIFT, NULL_VM_UFFD_CTX, NULL)) {
2942                 if (vma_iter_prealloc(vmi))
2943                         goto unacct_fail;
2944
2945                 vma_adjust_trans_huge(vma, vma->vm_start, addr + len, 0);
2946                 init_vma_prep(&vp, vma);
2947                 vma_prepare(&vp);
2948                 vma->vm_end = addr + len;
2949                 vm_flags_set(vma, VM_SOFTDIRTY);
2950                 vma_iter_store(vmi, vma);
2951
2952                 vma_complete(&vp, vmi, mm);
2953                 khugepaged_enter_vma(vma, flags);
2954                 goto out;
2955         }
2956
2957         /* create a vma struct for an anonymous mapping */
2958         vma = vm_area_alloc(mm);
2959         if (!vma)
2960                 goto unacct_fail;
2961
2962         vma_set_anonymous(vma);
2963         vma->vm_start = addr;
2964         vma->vm_end = addr + len;
2965         vma->vm_pgoff = addr >> PAGE_SHIFT;
2966         vm_flags_init(vma, flags);
2967         vma->vm_page_prot = vm_get_page_prot(flags);
2968         if (vma_iter_store_gfp(vmi, vma, GFP_KERNEL))
2969                 goto mas_store_fail;
2970
2971         mm->map_count++;
2972 out:
2973         perf_event_mmap(vma);
2974         mm->total_vm += len >> PAGE_SHIFT;
2975         mm->data_vm += len >> PAGE_SHIFT;
2976         if (flags & VM_LOCKED)
2977                 mm->locked_vm += (len >> PAGE_SHIFT);
2978         vm_flags_set(vma, VM_SOFTDIRTY);
2979         validate_mm(mm);
2980         return 0;
2981
2982 mas_store_fail:
2983         vm_area_free(vma);
2984 unacct_fail:
2985         vm_unacct_memory(len >> PAGE_SHIFT);
2986         return -ENOMEM;
2987 }
2988
2989 int vm_brk_flags(unsigned long addr, unsigned long request, unsigned long flags)
2990 {
2991         struct mm_struct *mm = current->mm;
2992         struct vm_area_struct *vma = NULL;
2993         unsigned long len;
2994         int ret;
2995         bool populate;
2996         LIST_HEAD(uf);
2997         VMA_ITERATOR(vmi, mm, addr);
2998
2999         len = PAGE_ALIGN(request);
3000         if (len < request)
3001                 return -ENOMEM;
3002         if (!len)
3003                 return 0;
3004
3005         if (mmap_write_lock_killable(mm))
3006                 return -EINTR;
3007
3008         /* Until we need other flags, refuse anything except VM_EXEC. */
3009         if ((flags & (~VM_EXEC)) != 0)
3010                 return -EINVAL;
3011
3012         ret = check_brk_limits(addr, len);
3013         if (ret)
3014                 goto limits_failed;
3015
3016         ret = do_vmi_munmap(&vmi, mm, addr, len, &uf, 0);
3017         if (ret)
3018                 goto munmap_failed;
3019
3020         vma = vma_prev(&vmi);
3021         ret = do_brk_flags(&vmi, vma, addr, len, flags);
3022         populate = ((mm->def_flags & VM_LOCKED) != 0);
3023         mmap_write_unlock(mm);
3024         userfaultfd_unmap_complete(mm, &uf);
3025         if (populate && !ret)
3026                 mm_populate(addr, len);
3027         return ret;
3028
3029 munmap_failed:
3030 limits_failed:
3031         mmap_write_unlock(mm);
3032         return ret;
3033 }
3034 EXPORT_SYMBOL(vm_brk_flags);
3035
3036 int vm_brk(unsigned long addr, unsigned long len)
3037 {
3038         return vm_brk_flags(addr, len, 0);
3039 }
3040 EXPORT_SYMBOL(vm_brk);
3041
3042 /* Release all mmaps. */
3043 void exit_mmap(struct mm_struct *mm)
3044 {
3045         struct mmu_gather tlb;
3046         struct vm_area_struct *vma;
3047         unsigned long nr_accounted = 0;
3048         MA_STATE(mas, &mm->mm_mt, 0, 0);
3049         int count = 0;
3050
3051         /* mm's last user has gone, and its about to be pulled down */
3052         mmu_notifier_release(mm);
3053
3054         mmap_read_lock(mm);
3055         arch_exit_mmap(mm);
3056
3057         vma = mas_find(&mas, ULONG_MAX);
3058         if (!vma) {
3059                 /* Can happen if dup_mmap() received an OOM */
3060                 mmap_read_unlock(mm);
3061                 return;
3062         }
3063
3064         lru_add_drain();
3065         flush_cache_mm(mm);
3066         tlb_gather_mmu_fullmm(&tlb, mm);
3067         /* update_hiwater_rss(mm) here? but nobody should be looking */
3068         /* Use ULONG_MAX here to ensure all VMAs in the mm are unmapped */
3069         unmap_vmas(&tlb, &mm->mm_mt, vma, 0, ULONG_MAX, false);
3070         mmap_read_unlock(mm);
3071
3072         /*
3073          * Set MMF_OOM_SKIP to hide this task from the oom killer/reaper
3074          * because the memory has been already freed.
3075          */
3076         set_bit(MMF_OOM_SKIP, &mm->flags);
3077         mmap_write_lock(mm);
3078         mt_clear_in_rcu(&mm->mm_mt);
3079         free_pgtables(&tlb, &mm->mm_mt, vma, FIRST_USER_ADDRESS,
3080                       USER_PGTABLES_CEILING);
3081         tlb_finish_mmu(&tlb);
3082
3083         /*
3084          * Walk the list again, actually closing and freeing it, with preemption
3085          * enabled, without holding any MM locks besides the unreachable
3086          * mmap_write_lock.
3087          */
3088         do {
3089                 if (vma->vm_flags & VM_ACCOUNT)
3090                         nr_accounted += vma_pages(vma);
3091                 remove_vma(vma);
3092                 count++;
3093                 cond_resched();
3094         } while ((vma = mas_find(&mas, ULONG_MAX)) != NULL);
3095
3096         BUG_ON(count != mm->map_count);
3097
3098         trace_exit_mmap(mm);
3099         __mt_destroy(&mm->mm_mt);
3100         mmap_write_unlock(mm);
3101         vm_unacct_memory(nr_accounted);
3102 }
3103
3104 /* Insert vm structure into process list sorted by address
3105  * and into the inode's i_mmap tree.  If vm_file is non-NULL
3106  * then i_mmap_rwsem is taken here.
3107  */
3108 int insert_vm_struct(struct mm_struct *mm, struct vm_area_struct *vma)
3109 {
3110         unsigned long charged = vma_pages(vma);
3111
3112
3113         if (find_vma_intersection(mm, vma->vm_start, vma->vm_end))
3114                 return -ENOMEM;
3115
3116         if ((vma->vm_flags & VM_ACCOUNT) &&
3117              security_vm_enough_memory_mm(mm, charged))
3118                 return -ENOMEM;
3119
3120         /*
3121          * The vm_pgoff of a purely anonymous vma should be irrelevant
3122          * until its first write fault, when page's anon_vma and index
3123          * are set.  But now set the vm_pgoff it will almost certainly
3124          * end up with (unless mremap moves it elsewhere before that
3125          * first wfault), so /proc/pid/maps tells a consistent story.
3126          *
3127          * By setting it to reflect the virtual start address of the
3128          * vma, merges and splits can happen in a seamless way, just
3129          * using the existing file pgoff checks and manipulations.
3130          * Similarly in do_mmap and in do_brk_flags.
3131          */
3132         if (vma_is_anonymous(vma)) {
3133                 BUG_ON(vma->anon_vma);
3134                 vma->vm_pgoff = vma->vm_start >> PAGE_SHIFT;
3135         }
3136
3137         if (vma_link(mm, vma)) {
3138                 vm_unacct_memory(charged);
3139                 return -ENOMEM;
3140         }
3141
3142         return 0;
3143 }
3144
3145 /*
3146  * Copy the vma structure to a new location in the same mm,
3147  * prior to moving page table entries, to effect an mremap move.
3148  */
3149 struct vm_area_struct *copy_vma(struct vm_area_struct **vmap,
3150         unsigned long addr, unsigned long len, pgoff_t pgoff,
3151         bool *need_rmap_locks)
3152 {
3153         struct vm_area_struct *vma = *vmap;
3154         unsigned long vma_start = vma->vm_start;
3155         struct mm_struct *mm = vma->vm_mm;
3156         struct vm_area_struct *new_vma, *prev;
3157         bool faulted_in_anon_vma = true;
3158         VMA_ITERATOR(vmi, mm, addr);
3159
3160         validate_mm_mt(mm);
3161         /*
3162          * If anonymous vma has not yet been faulted, update new pgoff
3163          * to match new location, to increase its chance of merging.
3164          */
3165         if (unlikely(vma_is_anonymous(vma) && !vma->anon_vma)) {
3166                 pgoff = addr >> PAGE_SHIFT;
3167                 faulted_in_anon_vma = false;
3168         }
3169
3170         new_vma = find_vma_prev(mm, addr, &prev);
3171         if (new_vma && new_vma->vm_start < addr + len)
3172                 return NULL;    /* should never get here */
3173
3174         new_vma = vma_merge(&vmi, mm, prev, addr, addr + len, vma->vm_flags,
3175                             vma->anon_vma, vma->vm_file, pgoff, vma_policy(vma),
3176                             vma->vm_userfaultfd_ctx, anon_vma_name(vma));
3177         if (new_vma) {
3178                 /*
3179                  * Source vma may have been merged into new_vma
3180                  */
3181                 if (unlikely(vma_start >= new_vma->vm_start &&
3182                              vma_start < new_vma->vm_end)) {
3183                         /*
3184                          * The only way we can get a vma_merge with
3185                          * self during an mremap is if the vma hasn't
3186                          * been faulted in yet and we were allowed to
3187                          * reset the dst vma->vm_pgoff to the
3188                          * destination address of the mremap to allow
3189                          * the merge to happen. mremap must change the
3190                          * vm_pgoff linearity between src and dst vmas
3191                          * (in turn preventing a vma_merge) to be
3192                          * safe. It is only safe to keep the vm_pgoff
3193                          * linear if there are no pages mapped yet.
3194                          */
3195                         VM_BUG_ON_VMA(faulted_in_anon_vma, new_vma);
3196                         *vmap = vma = new_vma;
3197                 }
3198                 *need_rmap_locks = (new_vma->vm_pgoff <= vma->vm_pgoff);
3199         } else {
3200                 new_vma = vm_area_dup(vma);
3201                 if (!new_vma)
3202                         goto out;
3203                 new_vma->vm_start = addr;
3204                 new_vma->vm_end = addr + len;
3205                 new_vma->vm_pgoff = pgoff;
3206                 if (vma_dup_policy(vma, new_vma))
3207                         goto out_free_vma;
3208                 if (anon_vma_clone(new_vma, vma))
3209                         goto out_free_mempol;
3210                 if (new_vma->vm_file)
3211                         get_file(new_vma->vm_file);
3212                 if (new_vma->vm_ops && new_vma->vm_ops->open)
3213                         new_vma->vm_ops->open(new_vma);
3214                 if (vma_link(mm, new_vma))
3215                         goto out_vma_link;
3216                 *need_rmap_locks = false;
3217         }
3218         validate_mm_mt(mm);
3219         return new_vma;
3220
3221 out_vma_link:
3222         if (new_vma->vm_ops && new_vma->vm_ops->close)
3223                 new_vma->vm_ops->close(new_vma);
3224
3225         if (new_vma->vm_file)
3226                 fput(new_vma->vm_file);
3227
3228         unlink_anon_vmas(new_vma);
3229 out_free_mempol:
3230         mpol_put(vma_policy(new_vma));
3231 out_free_vma:
3232         vm_area_free(new_vma);
3233 out:
3234         validate_mm_mt(mm);
3235         return NULL;
3236 }
3237
3238 /*
3239  * Return true if the calling process may expand its vm space by the passed
3240  * number of pages
3241  */
3242 bool may_expand_vm(struct mm_struct *mm, vm_flags_t flags, unsigned long npages)
3243 {
3244         if (mm->total_vm + npages > rlimit(RLIMIT_AS) >> PAGE_SHIFT)
3245                 return false;
3246
3247         if (is_data_mapping(flags) &&
3248             mm->data_vm + npages > rlimit(RLIMIT_DATA) >> PAGE_SHIFT) {
3249                 /* Workaround for Valgrind */
3250                 if (rlimit(RLIMIT_DATA) == 0 &&
3251                     mm->data_vm + npages <= rlimit_max(RLIMIT_DATA) >> PAGE_SHIFT)
3252                         return true;
3253
3254                 pr_warn_once("%s (%d): VmData %lu exceed data ulimit %lu. Update limits%s.\n",
3255                              current->comm, current->pid,
3256                              (mm->data_vm + npages) << PAGE_SHIFT,
3257                              rlimit(RLIMIT_DATA),
3258                              ignore_rlimit_data ? "" : " or use boot option ignore_rlimit_data");
3259
3260                 if (!ignore_rlimit_data)
3261                         return false;
3262         }
3263
3264         return true;
3265 }
3266
3267 void vm_stat_account(struct mm_struct *mm, vm_flags_t flags, long npages)
3268 {
3269         WRITE_ONCE(mm->total_vm, READ_ONCE(mm->total_vm)+npages);
3270
3271         if (is_exec_mapping(flags))
3272                 mm->exec_vm += npages;
3273         else if (is_stack_mapping(flags))
3274                 mm->stack_vm += npages;
3275         else if (is_data_mapping(flags))
3276                 mm->data_vm += npages;
3277 }
3278
3279 static vm_fault_t special_mapping_fault(struct vm_fault *vmf);
3280
3281 /*
3282  * Having a close hook prevents vma merging regardless of flags.
3283  */
3284 static void special_mapping_close(struct vm_area_struct *vma)
3285 {
3286 }
3287
3288 static const char *special_mapping_name(struct vm_area_struct *vma)
3289 {
3290         return ((struct vm_special_mapping *)vma->vm_private_data)->name;
3291 }
3292
3293 static int special_mapping_mremap(struct vm_area_struct *new_vma)
3294 {
3295         struct vm_special_mapping *sm = new_vma->vm_private_data;
3296
3297         if (WARN_ON_ONCE(current->mm != new_vma->vm_mm))
3298                 return -EFAULT;
3299
3300         if (sm->mremap)
3301                 return sm->mremap(sm, new_vma);
3302
3303         return 0;
3304 }
3305
3306 static int special_mapping_split(struct vm_area_struct *vma, unsigned long addr)
3307 {
3308         /*
3309          * Forbid splitting special mappings - kernel has expectations over
3310          * the number of pages in mapping. Together with VM_DONTEXPAND
3311          * the size of vma should stay the same over the special mapping's
3312          * lifetime.
3313          */
3314         return -EINVAL;
3315 }
3316
3317 static const struct vm_operations_struct special_mapping_vmops = {
3318         .close = special_mapping_close,
3319         .fault = special_mapping_fault,
3320         .mremap = special_mapping_mremap,
3321         .name = special_mapping_name,
3322         /* vDSO code relies that VVAR can't be accessed remotely */
3323         .access = NULL,
3324         .may_split = special_mapping_split,
3325 };
3326
3327 static const struct vm_operations_struct legacy_special_mapping_vmops = {
3328         .close = special_mapping_close,
3329         .fault = special_mapping_fault,
3330 };
3331
3332 static vm_fault_t special_mapping_fault(struct vm_fault *vmf)
3333 {
3334         struct vm_area_struct *vma = vmf->vma;
3335         pgoff_t pgoff;
3336         struct page **pages;
3337
3338         if (vma->vm_ops == &legacy_special_mapping_vmops) {
3339                 pages = vma->vm_private_data;
3340         } else {
3341                 struct vm_special_mapping *sm = vma->vm_private_data;
3342
3343                 if (sm->fault)
3344                         return sm->fault(sm, vmf->vma, vmf);
3345
3346                 pages = sm->pages;
3347         }
3348
3349         for (pgoff = vmf->pgoff; pgoff && *pages; ++pages)
3350                 pgoff--;
3351
3352         if (*pages) {
3353                 struct page *page = *pages;
3354                 get_page(page);
3355                 vmf->page = page;
3356                 return 0;
3357         }
3358
3359         return VM_FAULT_SIGBUS;
3360 }
3361
3362 static struct vm_area_struct *__install_special_mapping(
3363         struct mm_struct *mm,
3364         unsigned long addr, unsigned long len,
3365         unsigned long vm_flags, void *priv,
3366         const struct vm_operations_struct *ops)
3367 {
3368         int ret;
3369         struct vm_area_struct *vma;
3370
3371         validate_mm_mt(mm);
3372         vma = vm_area_alloc(mm);
3373         if (unlikely(vma == NULL))
3374                 return ERR_PTR(-ENOMEM);
3375
3376         vma->vm_start = addr;
3377         vma->vm_end = addr + len;
3378
3379         vm_flags_init(vma, (vm_flags | mm->def_flags |
3380                       VM_DONTEXPAND | VM_SOFTDIRTY) & ~VM_LOCKED_MASK);
3381         vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
3382
3383         vma->vm_ops = ops;
3384         vma->vm_private_data = priv;
3385
3386         ret = insert_vm_struct(mm, vma);
3387         if (ret)
3388                 goto out;
3389
3390         vm_stat_account(mm, vma->vm_flags, len >> PAGE_SHIFT);
3391
3392         perf_event_mmap(vma);
3393
3394         validate_mm_mt(mm);
3395         return vma;
3396
3397 out:
3398         vm_area_free(vma);
3399         validate_mm_mt(mm);
3400         return ERR_PTR(ret);
3401 }
3402
3403 bool vma_is_special_mapping(const struct vm_area_struct *vma,
3404         const struct vm_special_mapping *sm)
3405 {
3406         return vma->vm_private_data == sm &&
3407                 (vma->vm_ops == &special_mapping_vmops ||
3408                  vma->vm_ops == &legacy_special_mapping_vmops);
3409 }
3410
3411 /*
3412  * Called with mm->mmap_lock held for writing.
3413  * Insert a new vma covering the given region, with the given flags.
3414  * Its pages are supplied by the given array of struct page *.
3415  * The array can be shorter than len >> PAGE_SHIFT if it's null-terminated.
3416  * The region past the last page supplied will always produce SIGBUS.
3417  * The array pointer and the pages it points to are assumed to stay alive
3418  * for as long as this mapping might exist.
3419  */
3420 struct vm_area_struct *_install_special_mapping(
3421         struct mm_struct *mm,
3422         unsigned long addr, unsigned long len,
3423         unsigned long vm_flags, const struct vm_special_mapping *spec)
3424 {
3425         return __install_special_mapping(mm, addr, len, vm_flags, (void *)spec,
3426                                         &special_mapping_vmops);
3427 }
3428
3429 int install_special_mapping(struct mm_struct *mm,
3430                             unsigned long addr, unsigned long len,
3431                             unsigned long vm_flags, struct page **pages)
3432 {
3433         struct vm_area_struct *vma = __install_special_mapping(
3434                 mm, addr, len, vm_flags, (void *)pages,
3435                 &legacy_special_mapping_vmops);
3436
3437         return PTR_ERR_OR_ZERO(vma);
3438 }
3439
3440 static DEFINE_MUTEX(mm_all_locks_mutex);
3441
3442 static void vm_lock_anon_vma(struct mm_struct *mm, struct anon_vma *anon_vma)
3443 {
3444         if (!test_bit(0, (unsigned long *) &anon_vma->root->rb_root.rb_root.rb_node)) {
3445                 /*
3446                  * The LSB of head.next can't change from under us
3447                  * because we hold the mm_all_locks_mutex.
3448                  */
3449                 down_write_nest_lock(&anon_vma->root->rwsem, &mm->mmap_lock);
3450                 /*
3451                  * We can safely modify head.next after taking the
3452                  * anon_vma->root->rwsem. If some other vma in this mm shares
3453                  * the same anon_vma we won't take it again.
3454                  *
3455                  * No need of atomic instructions here, head.next
3456                  * can't change from under us thanks to the
3457                  * anon_vma->root->rwsem.
3458                  */
3459                 if (__test_and_set_bit(0, (unsigned long *)
3460                                        &anon_vma->root->rb_root.rb_root.rb_node))
3461                         BUG();
3462         }
3463 }
3464
3465 static void vm_lock_mapping(struct mm_struct *mm, struct address_space *mapping)
3466 {
3467         if (!test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) {
3468                 /*
3469                  * AS_MM_ALL_LOCKS can't change from under us because
3470                  * we hold the mm_all_locks_mutex.
3471                  *
3472                  * Operations on ->flags have to be atomic because
3473                  * even if AS_MM_ALL_LOCKS is stable thanks to the
3474                  * mm_all_locks_mutex, there may be other cpus
3475                  * changing other bitflags in parallel to us.
3476                  */
3477                 if (test_and_set_bit(AS_MM_ALL_LOCKS, &mapping->flags))
3478                         BUG();
3479                 down_write_nest_lock(&mapping->i_mmap_rwsem, &mm->mmap_lock);
3480         }
3481 }
3482
3483 /*
3484  * This operation locks against the VM for all pte/vma/mm related
3485  * operations that could ever happen on a certain mm. This includes
3486  * vmtruncate, try_to_unmap, and all page faults.
3487  *
3488  * The caller must take the mmap_lock in write mode before calling
3489  * mm_take_all_locks(). The caller isn't allowed to release the
3490  * mmap_lock until mm_drop_all_locks() returns.
3491  *
3492  * mmap_lock in write mode is required in order to block all operations
3493  * that could modify pagetables and free pages without need of
3494  * altering the vma layout. It's also needed in write mode to avoid new
3495  * anon_vmas to be associated with existing vmas.
3496  *
3497  * A single task can't take more than one mm_take_all_locks() in a row
3498  * or it would deadlock.
3499  *
3500  * The LSB in anon_vma->rb_root.rb_node and the AS_MM_ALL_LOCKS bitflag in
3501  * mapping->flags avoid to take the same lock twice, if more than one
3502  * vma in this mm is backed by the same anon_vma or address_space.
3503  *
3504  * We take locks in following order, accordingly to comment at beginning
3505  * of mm/rmap.c:
3506  *   - all hugetlbfs_i_mmap_rwsem_key locks (aka mapping->i_mmap_rwsem for
3507  *     hugetlb mapping);
3508  *   - all i_mmap_rwsem locks;
3509  *   - all anon_vma->rwseml
3510  *
3511  * We can take all locks within these types randomly because the VM code
3512  * doesn't nest them and we protected from parallel mm_take_all_locks() by
3513  * mm_all_locks_mutex.
3514  *
3515  * mm_take_all_locks() and mm_drop_all_locks are expensive operations
3516  * that may have to take thousand of locks.
3517  *
3518  * mm_take_all_locks() can fail if it's interrupted by signals.
3519  */
3520 int mm_take_all_locks(struct mm_struct *mm)
3521 {
3522         struct vm_area_struct *vma;
3523         struct anon_vma_chain *avc;
3524         MA_STATE(mas, &mm->mm_mt, 0, 0);
3525
3526         mmap_assert_write_locked(mm);
3527
3528         mutex_lock(&mm_all_locks_mutex);
3529
3530         mas_for_each(&mas, vma, ULONG_MAX) {
3531                 if (signal_pending(current))
3532                         goto out_unlock;
3533                 if (vma->vm_file && vma->vm_file->f_mapping &&
3534                                 is_vm_hugetlb_page(vma))
3535                         vm_lock_mapping(mm, vma->vm_file->f_mapping);
3536         }
3537
3538         mas_set(&mas, 0);
3539         mas_for_each(&mas, vma, ULONG_MAX) {
3540                 if (signal_pending(current))
3541                         goto out_unlock;
3542                 if (vma->vm_file && vma->vm_file->f_mapping &&
3543                                 !is_vm_hugetlb_page(vma))
3544                         vm_lock_mapping(mm, vma->vm_file->f_mapping);
3545         }
3546
3547         mas_set(&mas, 0);
3548         mas_for_each(&mas, vma, ULONG_MAX) {
3549                 if (signal_pending(current))
3550                         goto out_unlock;
3551                 if (vma->anon_vma)
3552                         list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
3553                                 vm_lock_anon_vma(mm, avc->anon_vma);
3554         }
3555
3556         return 0;
3557
3558 out_unlock:
3559         mm_drop_all_locks(mm);
3560         return -EINTR;
3561 }
3562
3563 static void vm_unlock_anon_vma(struct anon_vma *anon_vma)
3564 {
3565         if (test_bit(0, (unsigned long *) &anon_vma->root->rb_root.rb_root.rb_node)) {
3566                 /*
3567                  * The LSB of head.next can't change to 0 from under
3568                  * us because we hold the mm_all_locks_mutex.
3569                  *
3570                  * We must however clear the bitflag before unlocking
3571                  * the vma so the users using the anon_vma->rb_root will
3572                  * never see our bitflag.
3573                  *
3574                  * No need of atomic instructions here, head.next
3575                  * can't change from under us until we release the
3576                  * anon_vma->root->rwsem.
3577                  */
3578                 if (!__test_and_clear_bit(0, (unsigned long *)
3579                                           &anon_vma->root->rb_root.rb_root.rb_node))
3580                         BUG();
3581                 anon_vma_unlock_write(anon_vma);
3582         }
3583 }
3584
3585 static void vm_unlock_mapping(struct address_space *mapping)
3586 {
3587         if (test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) {
3588                 /*
3589                  * AS_MM_ALL_LOCKS can't change to 0 from under us
3590                  * because we hold the mm_all_locks_mutex.
3591                  */
3592                 i_mmap_unlock_write(mapping);
3593                 if (!test_and_clear_bit(AS_MM_ALL_LOCKS,
3594                                         &mapping->flags))
3595                         BUG();
3596         }
3597 }
3598
3599 /*
3600  * The mmap_lock cannot be released by the caller until
3601  * mm_drop_all_locks() returns.
3602  */
3603 void mm_drop_all_locks(struct mm_struct *mm)
3604 {
3605         struct vm_area_struct *vma;
3606         struct anon_vma_chain *avc;
3607         MA_STATE(mas, &mm->mm_mt, 0, 0);
3608
3609         mmap_assert_write_locked(mm);
3610         BUG_ON(!mutex_is_locked(&mm_all_locks_mutex));
3611
3612         mas_for_each(&mas, vma, ULONG_MAX) {
3613                 if (vma->anon_vma)
3614                         list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
3615                                 vm_unlock_anon_vma(avc->anon_vma);
3616                 if (vma->vm_file && vma->vm_file->f_mapping)
3617                         vm_unlock_mapping(vma->vm_file->f_mapping);
3618         }
3619
3620         mutex_unlock(&mm_all_locks_mutex);
3621 }
3622
3623 /*
3624  * initialise the percpu counter for VM
3625  */
3626 void __init mmap_init(void)
3627 {
3628         int ret;
3629
3630         ret = percpu_counter_init(&vm_committed_as, 0, GFP_KERNEL);
3631         VM_BUG_ON(ret);
3632 }
3633
3634 /*
3635  * Initialise sysctl_user_reserve_kbytes.
3636  *
3637  * This is intended to prevent a user from starting a single memory hogging
3638  * process, such that they cannot recover (kill the hog) in OVERCOMMIT_NEVER
3639  * mode.
3640  *
3641  * The default value is min(3% of free memory, 128MB)
3642  * 128MB is enough to recover with sshd/login, bash, and top/kill.
3643  */
3644 static int init_user_reserve(void)
3645 {
3646         unsigned long free_kbytes;
3647
3648         free_kbytes = global_zone_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
3649
3650         sysctl_user_reserve_kbytes = min(free_kbytes / 32, 1UL << 17);
3651         return 0;
3652 }
3653 subsys_initcall(init_user_reserve);
3654
3655 /*
3656  * Initialise sysctl_admin_reserve_kbytes.
3657  *
3658  * The purpose of sysctl_admin_reserve_kbytes is to allow the sys admin
3659  * to log in and kill a memory hogging process.
3660  *
3661  * Systems with more than 256MB will reserve 8MB, enough to recover
3662  * with sshd, bash, and top in OVERCOMMIT_GUESS. Smaller systems will
3663  * only reserve 3% of free pages by default.
3664  */
3665 static int init_admin_reserve(void)
3666 {
3667         unsigned long free_kbytes;
3668
3669         free_kbytes = global_zone_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
3670
3671         sysctl_admin_reserve_kbytes = min(free_kbytes / 32, 1UL << 13);
3672         return 0;
3673 }
3674 subsys_initcall(init_admin_reserve);
3675
3676 /*
3677  * Reinititalise user and admin reserves if memory is added or removed.
3678  *
3679  * The default user reserve max is 128MB, and the default max for the
3680  * admin reserve is 8MB. These are usually, but not always, enough to
3681  * enable recovery from a memory hogging process using login/sshd, a shell,
3682  * and tools like top. It may make sense to increase or even disable the
3683  * reserve depending on the existence of swap or variations in the recovery
3684  * tools. So, the admin may have changed them.
3685  *
3686  * If memory is added and the reserves have been eliminated or increased above
3687  * the default max, then we'll trust the admin.
3688  *
3689  * If memory is removed and there isn't enough free memory, then we
3690  * need to reset the reserves.
3691  *
3692  * Otherwise keep the reserve set by the admin.
3693  */
3694 static int reserve_mem_notifier(struct notifier_block *nb,
3695                              unsigned long action, void *data)
3696 {
3697         unsigned long tmp, free_kbytes;
3698
3699         switch (action) {
3700         case MEM_ONLINE:
3701                 /* Default max is 128MB. Leave alone if modified by operator. */
3702                 tmp = sysctl_user_reserve_kbytes;
3703                 if (0 < tmp && tmp < (1UL << 17))
3704                         init_user_reserve();
3705
3706                 /* Default max is 8MB.  Leave alone if modified by operator. */
3707                 tmp = sysctl_admin_reserve_kbytes;
3708                 if (0 < tmp && tmp < (1UL << 13))
3709                         init_admin_reserve();
3710
3711                 break;
3712         case MEM_OFFLINE:
3713                 free_kbytes = global_zone_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
3714
3715                 if (sysctl_user_reserve_kbytes > free_kbytes) {
3716                         init_user_reserve();
3717                         pr_info("vm.user_reserve_kbytes reset to %lu\n",
3718                                 sysctl_user_reserve_kbytes);
3719                 }
3720
3721                 if (sysctl_admin_reserve_kbytes > free_kbytes) {
3722                         init_admin_reserve();
3723                         pr_info("vm.admin_reserve_kbytes reset to %lu\n",
3724                                 sysctl_admin_reserve_kbytes);
3725                 }
3726                 break;
3727         default:
3728                 break;
3729         }
3730         return NOTIFY_OK;
3731 }
3732
3733 static int __meminit init_reserve_notifier(void)
3734 {
3735         if (hotplug_memory_notifier(reserve_mem_notifier, DEFAULT_CALLBACK_PRI))
3736                 pr_err("Failed registering memory add/remove notifier for admin reserve\n");
3737
3738         return 0;
3739 }
3740 subsys_initcall(init_reserve_notifier);