Merge tag 'for-linus' of git://git.armlinux.org.uk/~rmk/linux-arm
[platform/kernel/linux-rpi.git] / mm / mmap.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * mm/mmap.c
4  *
5  * Written by obz.
6  *
7  * Address space accounting code        <alan@lxorguk.ukuu.org.uk>
8  */
9
10 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
11
12 #include <linux/kernel.h>
13 #include <linux/slab.h>
14 #include <linux/backing-dev.h>
15 #include <linux/mm.h>
16 #include <linux/vmacache.h>
17 #include <linux/shm.h>
18 #include <linux/mman.h>
19 #include <linux/pagemap.h>
20 #include <linux/swap.h>
21 #include <linux/syscalls.h>
22 #include <linux/capability.h>
23 #include <linux/init.h>
24 #include <linux/file.h>
25 #include <linux/fs.h>
26 #include <linux/personality.h>
27 #include <linux/security.h>
28 #include <linux/hugetlb.h>
29 #include <linux/shmem_fs.h>
30 #include <linux/profile.h>
31 #include <linux/export.h>
32 #include <linux/mount.h>
33 #include <linux/mempolicy.h>
34 #include <linux/rmap.h>
35 #include <linux/mmu_notifier.h>
36 #include <linux/mmdebug.h>
37 #include <linux/perf_event.h>
38 #include <linux/audit.h>
39 #include <linux/khugepaged.h>
40 #include <linux/uprobes.h>
41 #include <linux/rbtree_augmented.h>
42 #include <linux/notifier.h>
43 #include <linux/memory.h>
44 #include <linux/printk.h>
45 #include <linux/userfaultfd_k.h>
46 #include <linux/moduleparam.h>
47 #include <linux/pkeys.h>
48 #include <linux/oom.h>
49 #include <linux/sched/mm.h>
50
51 #include <linux/uaccess.h>
52 #include <asm/cacheflush.h>
53 #include <asm/tlb.h>
54 #include <asm/mmu_context.h>
55
56 #define CREATE_TRACE_POINTS
57 #include <trace/events/mmap.h>
58
59 #include "internal.h"
60
61 #ifndef arch_mmap_check
62 #define arch_mmap_check(addr, len, flags)       (0)
63 #endif
64
65 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_BITS
66 const int mmap_rnd_bits_min = CONFIG_ARCH_MMAP_RND_BITS_MIN;
67 const int mmap_rnd_bits_max = CONFIG_ARCH_MMAP_RND_BITS_MAX;
68 int mmap_rnd_bits __read_mostly = CONFIG_ARCH_MMAP_RND_BITS;
69 #endif
70 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS
71 const int mmap_rnd_compat_bits_min = CONFIG_ARCH_MMAP_RND_COMPAT_BITS_MIN;
72 const int mmap_rnd_compat_bits_max = CONFIG_ARCH_MMAP_RND_COMPAT_BITS_MAX;
73 int mmap_rnd_compat_bits __read_mostly = CONFIG_ARCH_MMAP_RND_COMPAT_BITS;
74 #endif
75
76 static bool ignore_rlimit_data;
77 core_param(ignore_rlimit_data, ignore_rlimit_data, bool, 0644);
78
79 static void unmap_region(struct mm_struct *mm,
80                 struct vm_area_struct *vma, struct vm_area_struct *prev,
81                 unsigned long start, unsigned long end);
82
83 /* description of effects of mapping type and prot in current implementation.
84  * this is due to the limited x86 page protection hardware.  The expected
85  * behavior is in parens:
86  *
87  * map_type     prot
88  *              PROT_NONE       PROT_READ       PROT_WRITE      PROT_EXEC
89  * MAP_SHARED   r: (no) no      r: (yes) yes    r: (no) yes     r: (no) yes
90  *              w: (no) no      w: (no) no      w: (yes) yes    w: (no) no
91  *              x: (no) no      x: (no) yes     x: (no) yes     x: (yes) yes
92  *
93  * MAP_PRIVATE  r: (no) no      r: (yes) yes    r: (no) yes     r: (no) yes
94  *              w: (no) no      w: (no) no      w: (copy) copy  w: (no) no
95  *              x: (no) no      x: (no) yes     x: (no) yes     x: (yes) yes
96  *
97  * On arm64, PROT_EXEC has the following behaviour for both MAP_SHARED and
98  * MAP_PRIVATE (with Enhanced PAN supported):
99  *                                                              r: (no) no
100  *                                                              w: (no) no
101  *                                                              x: (yes) yes
102  */
103 pgprot_t protection_map[16] __ro_after_init = {
104         __P000, __P001, __P010, __P011, __P100, __P101, __P110, __P111,
105         __S000, __S001, __S010, __S011, __S100, __S101, __S110, __S111
106 };
107
108 #ifndef CONFIG_ARCH_HAS_FILTER_PGPROT
109 static inline pgprot_t arch_filter_pgprot(pgprot_t prot)
110 {
111         return prot;
112 }
113 #endif
114
115 pgprot_t vm_get_page_prot(unsigned long vm_flags)
116 {
117         pgprot_t ret = __pgprot(pgprot_val(protection_map[vm_flags &
118                                 (VM_READ|VM_WRITE|VM_EXEC|VM_SHARED)]) |
119                         pgprot_val(arch_vm_get_page_prot(vm_flags)));
120
121         return arch_filter_pgprot(ret);
122 }
123 EXPORT_SYMBOL(vm_get_page_prot);
124
125 static pgprot_t vm_pgprot_modify(pgprot_t oldprot, unsigned long vm_flags)
126 {
127         return pgprot_modify(oldprot, vm_get_page_prot(vm_flags));
128 }
129
130 /* Update vma->vm_page_prot to reflect vma->vm_flags. */
131 void vma_set_page_prot(struct vm_area_struct *vma)
132 {
133         unsigned long vm_flags = vma->vm_flags;
134         pgprot_t vm_page_prot;
135
136         vm_page_prot = vm_pgprot_modify(vma->vm_page_prot, vm_flags);
137         if (vma_wants_writenotify(vma, vm_page_prot)) {
138                 vm_flags &= ~VM_SHARED;
139                 vm_page_prot = vm_pgprot_modify(vm_page_prot, vm_flags);
140         }
141         /* remove_protection_ptes reads vma->vm_page_prot without mmap_lock */
142         WRITE_ONCE(vma->vm_page_prot, vm_page_prot);
143 }
144
145 /*
146  * Requires inode->i_mapping->i_mmap_rwsem
147  */
148 static void __remove_shared_vm_struct(struct vm_area_struct *vma,
149                 struct file *file, struct address_space *mapping)
150 {
151         if (vma->vm_flags & VM_DENYWRITE)
152                 allow_write_access(file);
153         if (vma->vm_flags & VM_SHARED)
154                 mapping_unmap_writable(mapping);
155
156         flush_dcache_mmap_lock(mapping);
157         vma_interval_tree_remove(vma, &mapping->i_mmap);
158         flush_dcache_mmap_unlock(mapping);
159 }
160
161 /*
162  * Unlink a file-based vm structure from its interval tree, to hide
163  * vma from rmap and vmtruncate before freeing its page tables.
164  */
165 void unlink_file_vma(struct vm_area_struct *vma)
166 {
167         struct file *file = vma->vm_file;
168
169         if (file) {
170                 struct address_space *mapping = file->f_mapping;
171                 i_mmap_lock_write(mapping);
172                 __remove_shared_vm_struct(vma, file, mapping);
173                 i_mmap_unlock_write(mapping);
174         }
175 }
176
177 /*
178  * Close a vm structure and free it, returning the next.
179  */
180 static struct vm_area_struct *remove_vma(struct vm_area_struct *vma)
181 {
182         struct vm_area_struct *next = vma->vm_next;
183
184         might_sleep();
185         if (vma->vm_ops && vma->vm_ops->close)
186                 vma->vm_ops->close(vma);
187         if (vma->vm_file)
188                 fput(vma->vm_file);
189         mpol_put(vma_policy(vma));
190         vm_area_free(vma);
191         return next;
192 }
193
194 static int do_brk_flags(unsigned long addr, unsigned long request, unsigned long flags,
195                 struct list_head *uf);
196 SYSCALL_DEFINE1(brk, unsigned long, brk)
197 {
198         unsigned long newbrk, oldbrk, origbrk;
199         struct mm_struct *mm = current->mm;
200         struct vm_area_struct *next;
201         unsigned long min_brk;
202         bool populate;
203         bool downgraded = false;
204         LIST_HEAD(uf);
205
206         if (mmap_write_lock_killable(mm))
207                 return -EINTR;
208
209         origbrk = mm->brk;
210
211 #ifdef CONFIG_COMPAT_BRK
212         /*
213          * CONFIG_COMPAT_BRK can still be overridden by setting
214          * randomize_va_space to 2, which will still cause mm->start_brk
215          * to be arbitrarily shifted
216          */
217         if (current->brk_randomized)
218                 min_brk = mm->start_brk;
219         else
220                 min_brk = mm->end_data;
221 #else
222         min_brk = mm->start_brk;
223 #endif
224         if (brk < min_brk)
225                 goto out;
226
227         /*
228          * Check against rlimit here. If this check is done later after the test
229          * of oldbrk with newbrk then it can escape the test and let the data
230          * segment grow beyond its set limit the in case where the limit is
231          * not page aligned -Ram Gupta
232          */
233         if (check_data_rlimit(rlimit(RLIMIT_DATA), brk, mm->start_brk,
234                               mm->end_data, mm->start_data))
235                 goto out;
236
237         newbrk = PAGE_ALIGN(brk);
238         oldbrk = PAGE_ALIGN(mm->brk);
239         if (oldbrk == newbrk) {
240                 mm->brk = brk;
241                 goto success;
242         }
243
244         /*
245          * Always allow shrinking brk.
246          * __do_munmap() may downgrade mmap_lock to read.
247          */
248         if (brk <= mm->brk) {
249                 int ret;
250
251                 /*
252                  * mm->brk must to be protected by write mmap_lock so update it
253                  * before downgrading mmap_lock. When __do_munmap() fails,
254                  * mm->brk will be restored from origbrk.
255                  */
256                 mm->brk = brk;
257                 ret = __do_munmap(mm, newbrk, oldbrk-newbrk, &uf, true);
258                 if (ret < 0) {
259                         mm->brk = origbrk;
260                         goto out;
261                 } else if (ret == 1) {
262                         downgraded = true;
263                 }
264                 goto success;
265         }
266
267         /* Check against existing mmap mappings. */
268         next = find_vma(mm, oldbrk);
269         if (next && newbrk + PAGE_SIZE > vm_start_gap(next))
270                 goto out;
271
272         /* Ok, looks good - let it rip. */
273         if (do_brk_flags(oldbrk, newbrk-oldbrk, 0, &uf) < 0)
274                 goto out;
275         mm->brk = brk;
276
277 success:
278         populate = newbrk > oldbrk && (mm->def_flags & VM_LOCKED) != 0;
279         if (downgraded)
280                 mmap_read_unlock(mm);
281         else
282                 mmap_write_unlock(mm);
283         userfaultfd_unmap_complete(mm, &uf);
284         if (populate)
285                 mm_populate(oldbrk, newbrk - oldbrk);
286         return brk;
287
288 out:
289         mmap_write_unlock(mm);
290         return origbrk;
291 }
292
293 static inline unsigned long vma_compute_gap(struct vm_area_struct *vma)
294 {
295         unsigned long gap, prev_end;
296
297         /*
298          * Note: in the rare case of a VM_GROWSDOWN above a VM_GROWSUP, we
299          * allow two stack_guard_gaps between them here, and when choosing
300          * an unmapped area; whereas when expanding we only require one.
301          * That's a little inconsistent, but keeps the code here simpler.
302          */
303         gap = vm_start_gap(vma);
304         if (vma->vm_prev) {
305                 prev_end = vm_end_gap(vma->vm_prev);
306                 if (gap > prev_end)
307                         gap -= prev_end;
308                 else
309                         gap = 0;
310         }
311         return gap;
312 }
313
314 #ifdef CONFIG_DEBUG_VM_RB
315 static unsigned long vma_compute_subtree_gap(struct vm_area_struct *vma)
316 {
317         unsigned long max = vma_compute_gap(vma), subtree_gap;
318         if (vma->vm_rb.rb_left) {
319                 subtree_gap = rb_entry(vma->vm_rb.rb_left,
320                                 struct vm_area_struct, vm_rb)->rb_subtree_gap;
321                 if (subtree_gap > max)
322                         max = subtree_gap;
323         }
324         if (vma->vm_rb.rb_right) {
325                 subtree_gap = rb_entry(vma->vm_rb.rb_right,
326                                 struct vm_area_struct, vm_rb)->rb_subtree_gap;
327                 if (subtree_gap > max)
328                         max = subtree_gap;
329         }
330         return max;
331 }
332
333 static int browse_rb(struct mm_struct *mm)
334 {
335         struct rb_root *root = &mm->mm_rb;
336         int i = 0, j, bug = 0;
337         struct rb_node *nd, *pn = NULL;
338         unsigned long prev = 0, pend = 0;
339
340         for (nd = rb_first(root); nd; nd = rb_next(nd)) {
341                 struct vm_area_struct *vma;
342                 vma = rb_entry(nd, struct vm_area_struct, vm_rb);
343                 if (vma->vm_start < prev) {
344                         pr_emerg("vm_start %lx < prev %lx\n",
345                                   vma->vm_start, prev);
346                         bug = 1;
347                 }
348                 if (vma->vm_start < pend) {
349                         pr_emerg("vm_start %lx < pend %lx\n",
350                                   vma->vm_start, pend);
351                         bug = 1;
352                 }
353                 if (vma->vm_start > vma->vm_end) {
354                         pr_emerg("vm_start %lx > vm_end %lx\n",
355                                   vma->vm_start, vma->vm_end);
356                         bug = 1;
357                 }
358                 spin_lock(&mm->page_table_lock);
359                 if (vma->rb_subtree_gap != vma_compute_subtree_gap(vma)) {
360                         pr_emerg("free gap %lx, correct %lx\n",
361                                vma->rb_subtree_gap,
362                                vma_compute_subtree_gap(vma));
363                         bug = 1;
364                 }
365                 spin_unlock(&mm->page_table_lock);
366                 i++;
367                 pn = nd;
368                 prev = vma->vm_start;
369                 pend = vma->vm_end;
370         }
371         j = 0;
372         for (nd = pn; nd; nd = rb_prev(nd))
373                 j++;
374         if (i != j) {
375                 pr_emerg("backwards %d, forwards %d\n", j, i);
376                 bug = 1;
377         }
378         return bug ? -1 : i;
379 }
380
381 static void validate_mm_rb(struct rb_root *root, struct vm_area_struct *ignore)
382 {
383         struct rb_node *nd;
384
385         for (nd = rb_first(root); nd; nd = rb_next(nd)) {
386                 struct vm_area_struct *vma;
387                 vma = rb_entry(nd, struct vm_area_struct, vm_rb);
388                 VM_BUG_ON_VMA(vma != ignore &&
389                         vma->rb_subtree_gap != vma_compute_subtree_gap(vma),
390                         vma);
391         }
392 }
393
394 static void validate_mm(struct mm_struct *mm)
395 {
396         int bug = 0;
397         int i = 0;
398         unsigned long highest_address = 0;
399         struct vm_area_struct *vma = mm->mmap;
400
401         while (vma) {
402                 struct anon_vma *anon_vma = vma->anon_vma;
403                 struct anon_vma_chain *avc;
404
405                 if (anon_vma) {
406                         anon_vma_lock_read(anon_vma);
407                         list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
408                                 anon_vma_interval_tree_verify(avc);
409                         anon_vma_unlock_read(anon_vma);
410                 }
411
412                 highest_address = vm_end_gap(vma);
413                 vma = vma->vm_next;
414                 i++;
415         }
416         if (i != mm->map_count) {
417                 pr_emerg("map_count %d vm_next %d\n", mm->map_count, i);
418                 bug = 1;
419         }
420         if (highest_address != mm->highest_vm_end) {
421                 pr_emerg("mm->highest_vm_end %lx, found %lx\n",
422                           mm->highest_vm_end, highest_address);
423                 bug = 1;
424         }
425         i = browse_rb(mm);
426         if (i != mm->map_count) {
427                 if (i != -1)
428                         pr_emerg("map_count %d rb %d\n", mm->map_count, i);
429                 bug = 1;
430         }
431         VM_BUG_ON_MM(bug, mm);
432 }
433 #else
434 #define validate_mm_rb(root, ignore) do { } while (0)
435 #define validate_mm(mm) do { } while (0)
436 #endif
437
438 RB_DECLARE_CALLBACKS_MAX(static, vma_gap_callbacks,
439                          struct vm_area_struct, vm_rb,
440                          unsigned long, rb_subtree_gap, vma_compute_gap)
441
442 /*
443  * Update augmented rbtree rb_subtree_gap values after vma->vm_start or
444  * vma->vm_prev->vm_end values changed, without modifying the vma's position
445  * in the rbtree.
446  */
447 static void vma_gap_update(struct vm_area_struct *vma)
448 {
449         /*
450          * As it turns out, RB_DECLARE_CALLBACKS_MAX() already created
451          * a callback function that does exactly what we want.
452          */
453         vma_gap_callbacks_propagate(&vma->vm_rb, NULL);
454 }
455
456 static inline void vma_rb_insert(struct vm_area_struct *vma,
457                                  struct rb_root *root)
458 {
459         /* All rb_subtree_gap values must be consistent prior to insertion */
460         validate_mm_rb(root, NULL);
461
462         rb_insert_augmented(&vma->vm_rb, root, &vma_gap_callbacks);
463 }
464
465 static void __vma_rb_erase(struct vm_area_struct *vma, struct rb_root *root)
466 {
467         /*
468          * Note rb_erase_augmented is a fairly large inline function,
469          * so make sure we instantiate it only once with our desired
470          * augmented rbtree callbacks.
471          */
472         rb_erase_augmented(&vma->vm_rb, root, &vma_gap_callbacks);
473 }
474
475 static __always_inline void vma_rb_erase_ignore(struct vm_area_struct *vma,
476                                                 struct rb_root *root,
477                                                 struct vm_area_struct *ignore)
478 {
479         /*
480          * All rb_subtree_gap values must be consistent prior to erase,
481          * with the possible exception of
482          *
483          * a. the "next" vma being erased if next->vm_start was reduced in
484          *    __vma_adjust() -> __vma_unlink()
485          * b. the vma being erased in detach_vmas_to_be_unmapped() ->
486          *    vma_rb_erase()
487          */
488         validate_mm_rb(root, ignore);
489
490         __vma_rb_erase(vma, root);
491 }
492
493 static __always_inline void vma_rb_erase(struct vm_area_struct *vma,
494                                          struct rb_root *root)
495 {
496         vma_rb_erase_ignore(vma, root, vma);
497 }
498
499 /*
500  * vma has some anon_vma assigned, and is already inserted on that
501  * anon_vma's interval trees.
502  *
503  * Before updating the vma's vm_start / vm_end / vm_pgoff fields, the
504  * vma must be removed from the anon_vma's interval trees using
505  * anon_vma_interval_tree_pre_update_vma().
506  *
507  * After the update, the vma will be reinserted using
508  * anon_vma_interval_tree_post_update_vma().
509  *
510  * The entire update must be protected by exclusive mmap_lock and by
511  * the root anon_vma's mutex.
512  */
513 static inline void
514 anon_vma_interval_tree_pre_update_vma(struct vm_area_struct *vma)
515 {
516         struct anon_vma_chain *avc;
517
518         list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
519                 anon_vma_interval_tree_remove(avc, &avc->anon_vma->rb_root);
520 }
521
522 static inline void
523 anon_vma_interval_tree_post_update_vma(struct vm_area_struct *vma)
524 {
525         struct anon_vma_chain *avc;
526
527         list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
528                 anon_vma_interval_tree_insert(avc, &avc->anon_vma->rb_root);
529 }
530
531 static int find_vma_links(struct mm_struct *mm, unsigned long addr,
532                 unsigned long end, struct vm_area_struct **pprev,
533                 struct rb_node ***rb_link, struct rb_node **rb_parent)
534 {
535         struct rb_node **__rb_link, *__rb_parent, *rb_prev;
536
537         __rb_link = &mm->mm_rb.rb_node;
538         rb_prev = __rb_parent = NULL;
539
540         while (*__rb_link) {
541                 struct vm_area_struct *vma_tmp;
542
543                 __rb_parent = *__rb_link;
544                 vma_tmp = rb_entry(__rb_parent, struct vm_area_struct, vm_rb);
545
546                 if (vma_tmp->vm_end > addr) {
547                         /* Fail if an existing vma overlaps the area */
548                         if (vma_tmp->vm_start < end)
549                                 return -ENOMEM;
550                         __rb_link = &__rb_parent->rb_left;
551                 } else {
552                         rb_prev = __rb_parent;
553                         __rb_link = &__rb_parent->rb_right;
554                 }
555         }
556
557         *pprev = NULL;
558         if (rb_prev)
559                 *pprev = rb_entry(rb_prev, struct vm_area_struct, vm_rb);
560         *rb_link = __rb_link;
561         *rb_parent = __rb_parent;
562         return 0;
563 }
564
565 /*
566  * vma_next() - Get the next VMA.
567  * @mm: The mm_struct.
568  * @vma: The current vma.
569  *
570  * If @vma is NULL, return the first vma in the mm.
571  *
572  * Returns: The next VMA after @vma.
573  */
574 static inline struct vm_area_struct *vma_next(struct mm_struct *mm,
575                                          struct vm_area_struct *vma)
576 {
577         if (!vma)
578                 return mm->mmap;
579
580         return vma->vm_next;
581 }
582
583 /*
584  * munmap_vma_range() - munmap VMAs that overlap a range.
585  * @mm: The mm struct
586  * @start: The start of the range.
587  * @len: The length of the range.
588  * @pprev: pointer to the pointer that will be set to previous vm_area_struct
589  * @rb_link: the rb_node
590  * @rb_parent: the parent rb_node
591  *
592  * Find all the vm_area_struct that overlap from @start to
593  * @end and munmap them.  Set @pprev to the previous vm_area_struct.
594  *
595  * Returns: -ENOMEM on munmap failure or 0 on success.
596  */
597 static inline int
598 munmap_vma_range(struct mm_struct *mm, unsigned long start, unsigned long len,
599                  struct vm_area_struct **pprev, struct rb_node ***link,
600                  struct rb_node **parent, struct list_head *uf)
601 {
602
603         while (find_vma_links(mm, start, start + len, pprev, link, parent))
604                 if (do_munmap(mm, start, len, uf))
605                         return -ENOMEM;
606
607         return 0;
608 }
609 static unsigned long count_vma_pages_range(struct mm_struct *mm,
610                 unsigned long addr, unsigned long end)
611 {
612         unsigned long nr_pages = 0;
613         struct vm_area_struct *vma;
614
615         /* Find first overlaping mapping */
616         vma = find_vma_intersection(mm, addr, end);
617         if (!vma)
618                 return 0;
619
620         nr_pages = (min(end, vma->vm_end) -
621                 max(addr, vma->vm_start)) >> PAGE_SHIFT;
622
623         /* Iterate over the rest of the overlaps */
624         for (vma = vma->vm_next; vma; vma = vma->vm_next) {
625                 unsigned long overlap_len;
626
627                 if (vma->vm_start > end)
628                         break;
629
630                 overlap_len = min(end, vma->vm_end) - vma->vm_start;
631                 nr_pages += overlap_len >> PAGE_SHIFT;
632         }
633
634         return nr_pages;
635 }
636
637 void __vma_link_rb(struct mm_struct *mm, struct vm_area_struct *vma,
638                 struct rb_node **rb_link, struct rb_node *rb_parent)
639 {
640         /* Update tracking information for the gap following the new vma. */
641         if (vma->vm_next)
642                 vma_gap_update(vma->vm_next);
643         else
644                 mm->highest_vm_end = vm_end_gap(vma);
645
646         /*
647          * vma->vm_prev wasn't known when we followed the rbtree to find the
648          * correct insertion point for that vma. As a result, we could not
649          * update the vma vm_rb parents rb_subtree_gap values on the way down.
650          * So, we first insert the vma with a zero rb_subtree_gap value
651          * (to be consistent with what we did on the way down), and then
652          * immediately update the gap to the correct value. Finally we
653          * rebalance the rbtree after all augmented values have been set.
654          */
655         rb_link_node(&vma->vm_rb, rb_parent, rb_link);
656         vma->rb_subtree_gap = 0;
657         vma_gap_update(vma);
658         vma_rb_insert(vma, &mm->mm_rb);
659 }
660
661 static void __vma_link_file(struct vm_area_struct *vma)
662 {
663         struct file *file;
664
665         file = vma->vm_file;
666         if (file) {
667                 struct address_space *mapping = file->f_mapping;
668
669                 if (vma->vm_flags & VM_DENYWRITE)
670                         put_write_access(file_inode(file));
671                 if (vma->vm_flags & VM_SHARED)
672                         mapping_allow_writable(mapping);
673
674                 flush_dcache_mmap_lock(mapping);
675                 vma_interval_tree_insert(vma, &mapping->i_mmap);
676                 flush_dcache_mmap_unlock(mapping);
677         }
678 }
679
680 static void
681 __vma_link(struct mm_struct *mm, struct vm_area_struct *vma,
682         struct vm_area_struct *prev, struct rb_node **rb_link,
683         struct rb_node *rb_parent)
684 {
685         __vma_link_list(mm, vma, prev);
686         __vma_link_rb(mm, vma, rb_link, rb_parent);
687 }
688
689 static void vma_link(struct mm_struct *mm, struct vm_area_struct *vma,
690                         struct vm_area_struct *prev, struct rb_node **rb_link,
691                         struct rb_node *rb_parent)
692 {
693         struct address_space *mapping = NULL;
694
695         if (vma->vm_file) {
696                 mapping = vma->vm_file->f_mapping;
697                 i_mmap_lock_write(mapping);
698         }
699
700         __vma_link(mm, vma, prev, rb_link, rb_parent);
701         __vma_link_file(vma);
702
703         if (mapping)
704                 i_mmap_unlock_write(mapping);
705
706         mm->map_count++;
707         validate_mm(mm);
708 }
709
710 /*
711  * Helper for vma_adjust() in the split_vma insert case: insert a vma into the
712  * mm's list and rbtree.  It has already been inserted into the interval tree.
713  */
714 static void __insert_vm_struct(struct mm_struct *mm, struct vm_area_struct *vma)
715 {
716         struct vm_area_struct *prev;
717         struct rb_node **rb_link, *rb_parent;
718
719         if (find_vma_links(mm, vma->vm_start, vma->vm_end,
720                            &prev, &rb_link, &rb_parent))
721                 BUG();
722         __vma_link(mm, vma, prev, rb_link, rb_parent);
723         mm->map_count++;
724 }
725
726 static __always_inline void __vma_unlink(struct mm_struct *mm,
727                                                 struct vm_area_struct *vma,
728                                                 struct vm_area_struct *ignore)
729 {
730         vma_rb_erase_ignore(vma, &mm->mm_rb, ignore);
731         __vma_unlink_list(mm, vma);
732         /* Kill the cache */
733         vmacache_invalidate(mm);
734 }
735
736 /*
737  * We cannot adjust vm_start, vm_end, vm_pgoff fields of a vma that
738  * is already present in an i_mmap tree without adjusting the tree.
739  * The following helper function should be used when such adjustments
740  * are necessary.  The "insert" vma (if any) is to be inserted
741  * before we drop the necessary locks.
742  */
743 int __vma_adjust(struct vm_area_struct *vma, unsigned long start,
744         unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert,
745         struct vm_area_struct *expand)
746 {
747         struct mm_struct *mm = vma->vm_mm;
748         struct vm_area_struct *next = vma->vm_next, *orig_vma = vma;
749         struct address_space *mapping = NULL;
750         struct rb_root_cached *root = NULL;
751         struct anon_vma *anon_vma = NULL;
752         struct file *file = vma->vm_file;
753         bool start_changed = false, end_changed = false;
754         long adjust_next = 0;
755         int remove_next = 0;
756
757         if (next && !insert) {
758                 struct vm_area_struct *exporter = NULL, *importer = NULL;
759
760                 if (end >= next->vm_end) {
761                         /*
762                          * vma expands, overlapping all the next, and
763                          * perhaps the one after too (mprotect case 6).
764                          * The only other cases that gets here are
765                          * case 1, case 7 and case 8.
766                          */
767                         if (next == expand) {
768                                 /*
769                                  * The only case where we don't expand "vma"
770                                  * and we expand "next" instead is case 8.
771                                  */
772                                 VM_WARN_ON(end != next->vm_end);
773                                 /*
774                                  * remove_next == 3 means we're
775                                  * removing "vma" and that to do so we
776                                  * swapped "vma" and "next".
777                                  */
778                                 remove_next = 3;
779                                 VM_WARN_ON(file != next->vm_file);
780                                 swap(vma, next);
781                         } else {
782                                 VM_WARN_ON(expand != vma);
783                                 /*
784                                  * case 1, 6, 7, remove_next == 2 is case 6,
785                                  * remove_next == 1 is case 1 or 7.
786                                  */
787                                 remove_next = 1 + (end > next->vm_end);
788                                 VM_WARN_ON(remove_next == 2 &&
789                                            end != next->vm_next->vm_end);
790                                 /* trim end to next, for case 6 first pass */
791                                 end = next->vm_end;
792                         }
793
794                         exporter = next;
795                         importer = vma;
796
797                         /*
798                          * If next doesn't have anon_vma, import from vma after
799                          * next, if the vma overlaps with it.
800                          */
801                         if (remove_next == 2 && !next->anon_vma)
802                                 exporter = next->vm_next;
803
804                 } else if (end > next->vm_start) {
805                         /*
806                          * vma expands, overlapping part of the next:
807                          * mprotect case 5 shifting the boundary up.
808                          */
809                         adjust_next = (end - next->vm_start);
810                         exporter = next;
811                         importer = vma;
812                         VM_WARN_ON(expand != importer);
813                 } else if (end < vma->vm_end) {
814                         /*
815                          * vma shrinks, and !insert tells it's not
816                          * split_vma inserting another: so it must be
817                          * mprotect case 4 shifting the boundary down.
818                          */
819                         adjust_next = -(vma->vm_end - end);
820                         exporter = vma;
821                         importer = next;
822                         VM_WARN_ON(expand != importer);
823                 }
824
825                 /*
826                  * Easily overlooked: when mprotect shifts the boundary,
827                  * make sure the expanding vma has anon_vma set if the
828                  * shrinking vma had, to cover any anon pages imported.
829                  */
830                 if (exporter && exporter->anon_vma && !importer->anon_vma) {
831                         int error;
832
833                         importer->anon_vma = exporter->anon_vma;
834                         error = anon_vma_clone(importer, exporter);
835                         if (error)
836                                 return error;
837                 }
838         }
839 again:
840         vma_adjust_trans_huge(orig_vma, start, end, adjust_next);
841
842         if (file) {
843                 mapping = file->f_mapping;
844                 root = &mapping->i_mmap;
845                 uprobe_munmap(vma, vma->vm_start, vma->vm_end);
846
847                 if (adjust_next)
848                         uprobe_munmap(next, next->vm_start, next->vm_end);
849
850                 i_mmap_lock_write(mapping);
851                 if (insert) {
852                         /*
853                          * Put into interval tree now, so instantiated pages
854                          * are visible to arm/parisc __flush_dcache_page
855                          * throughout; but we cannot insert into address
856                          * space until vma start or end is updated.
857                          */
858                         __vma_link_file(insert);
859                 }
860         }
861
862         anon_vma = vma->anon_vma;
863         if (!anon_vma && adjust_next)
864                 anon_vma = next->anon_vma;
865         if (anon_vma) {
866                 VM_WARN_ON(adjust_next && next->anon_vma &&
867                            anon_vma != next->anon_vma);
868                 anon_vma_lock_write(anon_vma);
869                 anon_vma_interval_tree_pre_update_vma(vma);
870                 if (adjust_next)
871                         anon_vma_interval_tree_pre_update_vma(next);
872         }
873
874         if (file) {
875                 flush_dcache_mmap_lock(mapping);
876                 vma_interval_tree_remove(vma, root);
877                 if (adjust_next)
878                         vma_interval_tree_remove(next, root);
879         }
880
881         if (start != vma->vm_start) {
882                 vma->vm_start = start;
883                 start_changed = true;
884         }
885         if (end != vma->vm_end) {
886                 vma->vm_end = end;
887                 end_changed = true;
888         }
889         vma->vm_pgoff = pgoff;
890         if (adjust_next) {
891                 next->vm_start += adjust_next;
892                 next->vm_pgoff += adjust_next >> PAGE_SHIFT;
893         }
894
895         if (file) {
896                 if (adjust_next)
897                         vma_interval_tree_insert(next, root);
898                 vma_interval_tree_insert(vma, root);
899                 flush_dcache_mmap_unlock(mapping);
900         }
901
902         if (remove_next) {
903                 /*
904                  * vma_merge has merged next into vma, and needs
905                  * us to remove next before dropping the locks.
906                  */
907                 if (remove_next != 3)
908                         __vma_unlink(mm, next, next);
909                 else
910                         /*
911                          * vma is not before next if they've been
912                          * swapped.
913                          *
914                          * pre-swap() next->vm_start was reduced so
915                          * tell validate_mm_rb to ignore pre-swap()
916                          * "next" (which is stored in post-swap()
917                          * "vma").
918                          */
919                         __vma_unlink(mm, next, vma);
920                 if (file)
921                         __remove_shared_vm_struct(next, file, mapping);
922         } else if (insert) {
923                 /*
924                  * split_vma has split insert from vma, and needs
925                  * us to insert it before dropping the locks
926                  * (it may either follow vma or precede it).
927                  */
928                 __insert_vm_struct(mm, insert);
929         } else {
930                 if (start_changed)
931                         vma_gap_update(vma);
932                 if (end_changed) {
933                         if (!next)
934                                 mm->highest_vm_end = vm_end_gap(vma);
935                         else if (!adjust_next)
936                                 vma_gap_update(next);
937                 }
938         }
939
940         if (anon_vma) {
941                 anon_vma_interval_tree_post_update_vma(vma);
942                 if (adjust_next)
943                         anon_vma_interval_tree_post_update_vma(next);
944                 anon_vma_unlock_write(anon_vma);
945         }
946
947         if (file) {
948                 i_mmap_unlock_write(mapping);
949                 uprobe_mmap(vma);
950
951                 if (adjust_next)
952                         uprobe_mmap(next);
953         }
954
955         if (remove_next) {
956                 if (file) {
957                         uprobe_munmap(next, next->vm_start, next->vm_end);
958                         fput(file);
959                 }
960                 if (next->anon_vma)
961                         anon_vma_merge(vma, next);
962                 mm->map_count--;
963                 mpol_put(vma_policy(next));
964                 vm_area_free(next);
965                 /*
966                  * In mprotect's case 6 (see comments on vma_merge),
967                  * we must remove another next too. It would clutter
968                  * up the code too much to do both in one go.
969                  */
970                 if (remove_next != 3) {
971                         /*
972                          * If "next" was removed and vma->vm_end was
973                          * expanded (up) over it, in turn
974                          * "next->vm_prev->vm_end" changed and the
975                          * "vma->vm_next" gap must be updated.
976                          */
977                         next = vma->vm_next;
978                 } else {
979                         /*
980                          * For the scope of the comment "next" and
981                          * "vma" considered pre-swap(): if "vma" was
982                          * removed, next->vm_start was expanded (down)
983                          * over it and the "next" gap must be updated.
984                          * Because of the swap() the post-swap() "vma"
985                          * actually points to pre-swap() "next"
986                          * (post-swap() "next" as opposed is now a
987                          * dangling pointer).
988                          */
989                         next = vma;
990                 }
991                 if (remove_next == 2) {
992                         remove_next = 1;
993                         end = next->vm_end;
994                         goto again;
995                 }
996                 else if (next)
997                         vma_gap_update(next);
998                 else {
999                         /*
1000                          * If remove_next == 2 we obviously can't
1001                          * reach this path.
1002                          *
1003                          * If remove_next == 3 we can't reach this
1004                          * path because pre-swap() next is always not
1005                          * NULL. pre-swap() "next" is not being
1006                          * removed and its next->vm_end is not altered
1007                          * (and furthermore "end" already matches
1008                          * next->vm_end in remove_next == 3).
1009                          *
1010                          * We reach this only in the remove_next == 1
1011                          * case if the "next" vma that was removed was
1012                          * the highest vma of the mm. However in such
1013                          * case next->vm_end == "end" and the extended
1014                          * "vma" has vma->vm_end == next->vm_end so
1015                          * mm->highest_vm_end doesn't need any update
1016                          * in remove_next == 1 case.
1017                          */
1018                         VM_WARN_ON(mm->highest_vm_end != vm_end_gap(vma));
1019                 }
1020         }
1021         if (insert && file)
1022                 uprobe_mmap(insert);
1023
1024         validate_mm(mm);
1025
1026         return 0;
1027 }
1028
1029 /*
1030  * If the vma has a ->close operation then the driver probably needs to release
1031  * per-vma resources, so we don't attempt to merge those.
1032  */
1033 static inline int is_mergeable_vma(struct vm_area_struct *vma,
1034                                 struct file *file, unsigned long vm_flags,
1035                                 struct vm_userfaultfd_ctx vm_userfaultfd_ctx)
1036 {
1037         /*
1038          * VM_SOFTDIRTY should not prevent from VMA merging, if we
1039          * match the flags but dirty bit -- the caller should mark
1040          * merged VMA as dirty. If dirty bit won't be excluded from
1041          * comparison, we increase pressure on the memory system forcing
1042          * the kernel to generate new VMAs when old one could be
1043          * extended instead.
1044          */
1045         if ((vma->vm_flags ^ vm_flags) & ~VM_SOFTDIRTY)
1046                 return 0;
1047         if (vma->vm_file != file)
1048                 return 0;
1049         if (vma->vm_ops && vma->vm_ops->close)
1050                 return 0;
1051         if (!is_mergeable_vm_userfaultfd_ctx(vma, vm_userfaultfd_ctx))
1052                 return 0;
1053         return 1;
1054 }
1055
1056 static inline int is_mergeable_anon_vma(struct anon_vma *anon_vma1,
1057                                         struct anon_vma *anon_vma2,
1058                                         struct vm_area_struct *vma)
1059 {
1060         /*
1061          * The list_is_singular() test is to avoid merging VMA cloned from
1062          * parents. This can improve scalability caused by anon_vma lock.
1063          */
1064         if ((!anon_vma1 || !anon_vma2) && (!vma ||
1065                 list_is_singular(&vma->anon_vma_chain)))
1066                 return 1;
1067         return anon_vma1 == anon_vma2;
1068 }
1069
1070 /*
1071  * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
1072  * in front of (at a lower virtual address and file offset than) the vma.
1073  *
1074  * We cannot merge two vmas if they have differently assigned (non-NULL)
1075  * anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
1076  *
1077  * We don't check here for the merged mmap wrapping around the end of pagecache
1078  * indices (16TB on ia32) because do_mmap() does not permit mmap's which
1079  * wrap, nor mmaps which cover the final page at index -1UL.
1080  */
1081 static int
1082 can_vma_merge_before(struct vm_area_struct *vma, unsigned long vm_flags,
1083                      struct anon_vma *anon_vma, struct file *file,
1084                      pgoff_t vm_pgoff,
1085                      struct vm_userfaultfd_ctx vm_userfaultfd_ctx)
1086 {
1087         if (is_mergeable_vma(vma, file, vm_flags, vm_userfaultfd_ctx) &&
1088             is_mergeable_anon_vma(anon_vma, vma->anon_vma, vma)) {
1089                 if (vma->vm_pgoff == vm_pgoff)
1090                         return 1;
1091         }
1092         return 0;
1093 }
1094
1095 /*
1096  * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
1097  * beyond (at a higher virtual address and file offset than) the vma.
1098  *
1099  * We cannot merge two vmas if they have differently assigned (non-NULL)
1100  * anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
1101  */
1102 static int
1103 can_vma_merge_after(struct vm_area_struct *vma, unsigned long vm_flags,
1104                     struct anon_vma *anon_vma, struct file *file,
1105                     pgoff_t vm_pgoff,
1106                     struct vm_userfaultfd_ctx vm_userfaultfd_ctx)
1107 {
1108         if (is_mergeable_vma(vma, file, vm_flags, vm_userfaultfd_ctx) &&
1109             is_mergeable_anon_vma(anon_vma, vma->anon_vma, vma)) {
1110                 pgoff_t vm_pglen;
1111                 vm_pglen = vma_pages(vma);
1112                 if (vma->vm_pgoff + vm_pglen == vm_pgoff)
1113                         return 1;
1114         }
1115         return 0;
1116 }
1117
1118 /*
1119  * Given a mapping request (addr,end,vm_flags,file,pgoff), figure out
1120  * whether that can be merged with its predecessor or its successor.
1121  * Or both (it neatly fills a hole).
1122  *
1123  * In most cases - when called for mmap, brk or mremap - [addr,end) is
1124  * certain not to be mapped by the time vma_merge is called; but when
1125  * called for mprotect, it is certain to be already mapped (either at
1126  * an offset within prev, or at the start of next), and the flags of
1127  * this area are about to be changed to vm_flags - and the no-change
1128  * case has already been eliminated.
1129  *
1130  * The following mprotect cases have to be considered, where AAAA is
1131  * the area passed down from mprotect_fixup, never extending beyond one
1132  * vma, PPPPPP is the prev vma specified, and NNNNNN the next vma after:
1133  *
1134  *     AAAA             AAAA                   AAAA
1135  *    PPPPPPNNNNNN    PPPPPPNNNNNN       PPPPPPNNNNNN
1136  *    cannot merge    might become       might become
1137  *                    PPNNNNNNNNNN       PPPPPPPPPPNN
1138  *    mmap, brk or    case 4 below       case 5 below
1139  *    mremap move:
1140  *                        AAAA               AAAA
1141  *                    PPPP    NNNN       PPPPNNNNXXXX
1142  *                    might become       might become
1143  *                    PPPPPPPPPPPP 1 or  PPPPPPPPPPPP 6 or
1144  *                    PPPPPPPPNNNN 2 or  PPPPPPPPXXXX 7 or
1145  *                    PPPPNNNNNNNN 3     PPPPXXXXXXXX 8
1146  *
1147  * It is important for case 8 that the vma NNNN overlapping the
1148  * region AAAA is never going to extended over XXXX. Instead XXXX must
1149  * be extended in region AAAA and NNNN must be removed. This way in
1150  * all cases where vma_merge succeeds, the moment vma_adjust drops the
1151  * rmap_locks, the properties of the merged vma will be already
1152  * correct for the whole merged range. Some of those properties like
1153  * vm_page_prot/vm_flags may be accessed by rmap_walks and they must
1154  * be correct for the whole merged range immediately after the
1155  * rmap_locks are released. Otherwise if XXXX would be removed and
1156  * NNNN would be extended over the XXXX range, remove_migration_ptes
1157  * or other rmap walkers (if working on addresses beyond the "end"
1158  * parameter) may establish ptes with the wrong permissions of NNNN
1159  * instead of the right permissions of XXXX.
1160  */
1161 struct vm_area_struct *vma_merge(struct mm_struct *mm,
1162                         struct vm_area_struct *prev, unsigned long addr,
1163                         unsigned long end, unsigned long vm_flags,
1164                         struct anon_vma *anon_vma, struct file *file,
1165                         pgoff_t pgoff, struct mempolicy *policy,
1166                         struct vm_userfaultfd_ctx vm_userfaultfd_ctx)
1167 {
1168         pgoff_t pglen = (end - addr) >> PAGE_SHIFT;
1169         struct vm_area_struct *area, *next;
1170         int err;
1171
1172         /*
1173          * We later require that vma->vm_flags == vm_flags,
1174          * so this tests vma->vm_flags & VM_SPECIAL, too.
1175          */
1176         if (vm_flags & VM_SPECIAL)
1177                 return NULL;
1178
1179         next = vma_next(mm, prev);
1180         area = next;
1181         if (area && area->vm_end == end)                /* cases 6, 7, 8 */
1182                 next = next->vm_next;
1183
1184         /* verify some invariant that must be enforced by the caller */
1185         VM_WARN_ON(prev && addr <= prev->vm_start);
1186         VM_WARN_ON(area && end > area->vm_end);
1187         VM_WARN_ON(addr >= end);
1188
1189         /*
1190          * Can it merge with the predecessor?
1191          */
1192         if (prev && prev->vm_end == addr &&
1193                         mpol_equal(vma_policy(prev), policy) &&
1194                         can_vma_merge_after(prev, vm_flags,
1195                                             anon_vma, file, pgoff,
1196                                             vm_userfaultfd_ctx)) {
1197                 /*
1198                  * OK, it can.  Can we now merge in the successor as well?
1199                  */
1200                 if (next && end == next->vm_start &&
1201                                 mpol_equal(policy, vma_policy(next)) &&
1202                                 can_vma_merge_before(next, vm_flags,
1203                                                      anon_vma, file,
1204                                                      pgoff+pglen,
1205                                                      vm_userfaultfd_ctx) &&
1206                                 is_mergeable_anon_vma(prev->anon_vma,
1207                                                       next->anon_vma, NULL)) {
1208                                                         /* cases 1, 6 */
1209                         err = __vma_adjust(prev, prev->vm_start,
1210                                          next->vm_end, prev->vm_pgoff, NULL,
1211                                          prev);
1212                 } else                                  /* cases 2, 5, 7 */
1213                         err = __vma_adjust(prev, prev->vm_start,
1214                                          end, prev->vm_pgoff, NULL, prev);
1215                 if (err)
1216                         return NULL;
1217                 khugepaged_enter_vma_merge(prev, vm_flags);
1218                 return prev;
1219         }
1220
1221         /*
1222          * Can this new request be merged in front of next?
1223          */
1224         if (next && end == next->vm_start &&
1225                         mpol_equal(policy, vma_policy(next)) &&
1226                         can_vma_merge_before(next, vm_flags,
1227                                              anon_vma, file, pgoff+pglen,
1228                                              vm_userfaultfd_ctx)) {
1229                 if (prev && addr < prev->vm_end)        /* case 4 */
1230                         err = __vma_adjust(prev, prev->vm_start,
1231                                          addr, prev->vm_pgoff, NULL, next);
1232                 else {                                  /* cases 3, 8 */
1233                         err = __vma_adjust(area, addr, next->vm_end,
1234                                          next->vm_pgoff - pglen, NULL, next);
1235                         /*
1236                          * In case 3 area is already equal to next and
1237                          * this is a noop, but in case 8 "area" has
1238                          * been removed and next was expanded over it.
1239                          */
1240                         area = next;
1241                 }
1242                 if (err)
1243                         return NULL;
1244                 khugepaged_enter_vma_merge(area, vm_flags);
1245                 return area;
1246         }
1247
1248         return NULL;
1249 }
1250
1251 /*
1252  * Rough compatibility check to quickly see if it's even worth looking
1253  * at sharing an anon_vma.
1254  *
1255  * They need to have the same vm_file, and the flags can only differ
1256  * in things that mprotect may change.
1257  *
1258  * NOTE! The fact that we share an anon_vma doesn't _have_ to mean that
1259  * we can merge the two vma's. For example, we refuse to merge a vma if
1260  * there is a vm_ops->close() function, because that indicates that the
1261  * driver is doing some kind of reference counting. But that doesn't
1262  * really matter for the anon_vma sharing case.
1263  */
1264 static int anon_vma_compatible(struct vm_area_struct *a, struct vm_area_struct *b)
1265 {
1266         return a->vm_end == b->vm_start &&
1267                 mpol_equal(vma_policy(a), vma_policy(b)) &&
1268                 a->vm_file == b->vm_file &&
1269                 !((a->vm_flags ^ b->vm_flags) & ~(VM_ACCESS_FLAGS | VM_SOFTDIRTY)) &&
1270                 b->vm_pgoff == a->vm_pgoff + ((b->vm_start - a->vm_start) >> PAGE_SHIFT);
1271 }
1272
1273 /*
1274  * Do some basic sanity checking to see if we can re-use the anon_vma
1275  * from 'old'. The 'a'/'b' vma's are in VM order - one of them will be
1276  * the same as 'old', the other will be the new one that is trying
1277  * to share the anon_vma.
1278  *
1279  * NOTE! This runs with mm_sem held for reading, so it is possible that
1280  * the anon_vma of 'old' is concurrently in the process of being set up
1281  * by another page fault trying to merge _that_. But that's ok: if it
1282  * is being set up, that automatically means that it will be a singleton
1283  * acceptable for merging, so we can do all of this optimistically. But
1284  * we do that READ_ONCE() to make sure that we never re-load the pointer.
1285  *
1286  * IOW: that the "list_is_singular()" test on the anon_vma_chain only
1287  * matters for the 'stable anon_vma' case (ie the thing we want to avoid
1288  * is to return an anon_vma that is "complex" due to having gone through
1289  * a fork).
1290  *
1291  * We also make sure that the two vma's are compatible (adjacent,
1292  * and with the same memory policies). That's all stable, even with just
1293  * a read lock on the mm_sem.
1294  */
1295 static struct anon_vma *reusable_anon_vma(struct vm_area_struct *old, struct vm_area_struct *a, struct vm_area_struct *b)
1296 {
1297         if (anon_vma_compatible(a, b)) {
1298                 struct anon_vma *anon_vma = READ_ONCE(old->anon_vma);
1299
1300                 if (anon_vma && list_is_singular(&old->anon_vma_chain))
1301                         return anon_vma;
1302         }
1303         return NULL;
1304 }
1305
1306 /*
1307  * find_mergeable_anon_vma is used by anon_vma_prepare, to check
1308  * neighbouring vmas for a suitable anon_vma, before it goes off
1309  * to allocate a new anon_vma.  It checks because a repetitive
1310  * sequence of mprotects and faults may otherwise lead to distinct
1311  * anon_vmas being allocated, preventing vma merge in subsequent
1312  * mprotect.
1313  */
1314 struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *vma)
1315 {
1316         struct anon_vma *anon_vma = NULL;
1317
1318         /* Try next first. */
1319         if (vma->vm_next) {
1320                 anon_vma = reusable_anon_vma(vma->vm_next, vma, vma->vm_next);
1321                 if (anon_vma)
1322                         return anon_vma;
1323         }
1324
1325         /* Try prev next. */
1326         if (vma->vm_prev)
1327                 anon_vma = reusable_anon_vma(vma->vm_prev, vma->vm_prev, vma);
1328
1329         /*
1330          * We might reach here with anon_vma == NULL if we can't find
1331          * any reusable anon_vma.
1332          * There's no absolute need to look only at touching neighbours:
1333          * we could search further afield for "compatible" anon_vmas.
1334          * But it would probably just be a waste of time searching,
1335          * or lead to too many vmas hanging off the same anon_vma.
1336          * We're trying to allow mprotect remerging later on,
1337          * not trying to minimize memory used for anon_vmas.
1338          */
1339         return anon_vma;
1340 }
1341
1342 /*
1343  * If a hint addr is less than mmap_min_addr change hint to be as
1344  * low as possible but still greater than mmap_min_addr
1345  */
1346 static inline unsigned long round_hint_to_min(unsigned long hint)
1347 {
1348         hint &= PAGE_MASK;
1349         if (((void *)hint != NULL) &&
1350             (hint < mmap_min_addr))
1351                 return PAGE_ALIGN(mmap_min_addr);
1352         return hint;
1353 }
1354
1355 static inline int mlock_future_check(struct mm_struct *mm,
1356                                      unsigned long flags,
1357                                      unsigned long len)
1358 {
1359         unsigned long locked, lock_limit;
1360
1361         /*  mlock MCL_FUTURE? */
1362         if (flags & VM_LOCKED) {
1363                 locked = len >> PAGE_SHIFT;
1364                 locked += mm->locked_vm;
1365                 lock_limit = rlimit(RLIMIT_MEMLOCK);
1366                 lock_limit >>= PAGE_SHIFT;
1367                 if (locked > lock_limit && !capable(CAP_IPC_LOCK))
1368                         return -EAGAIN;
1369         }
1370         return 0;
1371 }
1372
1373 static inline u64 file_mmap_size_max(struct file *file, struct inode *inode)
1374 {
1375         if (S_ISREG(inode->i_mode))
1376                 return MAX_LFS_FILESIZE;
1377
1378         if (S_ISBLK(inode->i_mode))
1379                 return MAX_LFS_FILESIZE;
1380
1381         if (S_ISSOCK(inode->i_mode))
1382                 return MAX_LFS_FILESIZE;
1383
1384         /* Special "we do even unsigned file positions" case */
1385         if (file->f_mode & FMODE_UNSIGNED_OFFSET)
1386                 return 0;
1387
1388         /* Yes, random drivers might want more. But I'm tired of buggy drivers */
1389         return ULONG_MAX;
1390 }
1391
1392 static inline bool file_mmap_ok(struct file *file, struct inode *inode,
1393                                 unsigned long pgoff, unsigned long len)
1394 {
1395         u64 maxsize = file_mmap_size_max(file, inode);
1396
1397         if (maxsize && len > maxsize)
1398                 return false;
1399         maxsize -= len;
1400         if (pgoff > maxsize >> PAGE_SHIFT)
1401                 return false;
1402         return true;
1403 }
1404
1405 /*
1406  * The caller must write-lock current->mm->mmap_lock.
1407  */
1408 unsigned long do_mmap(struct file *file, unsigned long addr,
1409                         unsigned long len, unsigned long prot,
1410                         unsigned long flags, unsigned long pgoff,
1411                         unsigned long *populate, struct list_head *uf)
1412 {
1413         struct mm_struct *mm = current->mm;
1414         vm_flags_t vm_flags;
1415         int pkey = 0;
1416
1417         *populate = 0;
1418
1419         if (!len)
1420                 return -EINVAL;
1421
1422         /*
1423          * Does the application expect PROT_READ to imply PROT_EXEC?
1424          *
1425          * (the exception is when the underlying filesystem is noexec
1426          *  mounted, in which case we dont add PROT_EXEC.)
1427          */
1428         if ((prot & PROT_READ) && (current->personality & READ_IMPLIES_EXEC))
1429                 if (!(file && path_noexec(&file->f_path)))
1430                         prot |= PROT_EXEC;
1431
1432         /* force arch specific MAP_FIXED handling in get_unmapped_area */
1433         if (flags & MAP_FIXED_NOREPLACE)
1434                 flags |= MAP_FIXED;
1435
1436         if (!(flags & MAP_FIXED))
1437                 addr = round_hint_to_min(addr);
1438
1439         /* Careful about overflows.. */
1440         len = PAGE_ALIGN(len);
1441         if (!len)
1442                 return -ENOMEM;
1443
1444         /* offset overflow? */
1445         if ((pgoff + (len >> PAGE_SHIFT)) < pgoff)
1446                 return -EOVERFLOW;
1447
1448         /* Too many mappings? */
1449         if (mm->map_count > sysctl_max_map_count)
1450                 return -ENOMEM;
1451
1452         /* Obtain the address to map to. we verify (or select) it and ensure
1453          * that it represents a valid section of the address space.
1454          */
1455         addr = get_unmapped_area(file, addr, len, pgoff, flags);
1456         if (IS_ERR_VALUE(addr))
1457                 return addr;
1458
1459         if (flags & MAP_FIXED_NOREPLACE) {
1460                 struct vm_area_struct *vma = find_vma(mm, addr);
1461
1462                 if (vma && vma->vm_start < addr + len)
1463                         return -EEXIST;
1464         }
1465
1466         if (prot == PROT_EXEC) {
1467                 pkey = execute_only_pkey(mm);
1468                 if (pkey < 0)
1469                         pkey = 0;
1470         }
1471
1472         /* Do simple checking here so the lower-level routines won't have
1473          * to. we assume access permissions have been handled by the open
1474          * of the memory object, so we don't do any here.
1475          */
1476         vm_flags = calc_vm_prot_bits(prot, pkey) | calc_vm_flag_bits(flags) |
1477                         mm->def_flags | VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC;
1478
1479         if (flags & MAP_LOCKED)
1480                 if (!can_do_mlock())
1481                         return -EPERM;
1482
1483         if (mlock_future_check(mm, vm_flags, len))
1484                 return -EAGAIN;
1485
1486         if (file) {
1487                 struct inode *inode = file_inode(file);
1488                 unsigned long flags_mask;
1489
1490                 if (!file_mmap_ok(file, inode, pgoff, len))
1491                         return -EOVERFLOW;
1492
1493                 flags_mask = LEGACY_MAP_MASK | file->f_op->mmap_supported_flags;
1494
1495                 switch (flags & MAP_TYPE) {
1496                 case MAP_SHARED:
1497                         /*
1498                          * Force use of MAP_SHARED_VALIDATE with non-legacy
1499                          * flags. E.g. MAP_SYNC is dangerous to use with
1500                          * MAP_SHARED as you don't know which consistency model
1501                          * you will get. We silently ignore unsupported flags
1502                          * with MAP_SHARED to preserve backward compatibility.
1503                          */
1504                         flags &= LEGACY_MAP_MASK;
1505                         fallthrough;
1506                 case MAP_SHARED_VALIDATE:
1507                         if (flags & ~flags_mask)
1508                                 return -EOPNOTSUPP;
1509                         if (prot & PROT_WRITE) {
1510                                 if (!(file->f_mode & FMODE_WRITE))
1511                                         return -EACCES;
1512                                 if (IS_SWAPFILE(file->f_mapping->host))
1513                                         return -ETXTBSY;
1514                         }
1515
1516                         /*
1517                          * Make sure we don't allow writing to an append-only
1518                          * file..
1519                          */
1520                         if (IS_APPEND(inode) && (file->f_mode & FMODE_WRITE))
1521                                 return -EACCES;
1522
1523                         /*
1524                          * Make sure there are no mandatory locks on the file.
1525                          */
1526                         if (locks_verify_locked(file))
1527                                 return -EAGAIN;
1528
1529                         vm_flags |= VM_SHARED | VM_MAYSHARE;
1530                         if (!(file->f_mode & FMODE_WRITE))
1531                                 vm_flags &= ~(VM_MAYWRITE | VM_SHARED);
1532                         fallthrough;
1533                 case MAP_PRIVATE:
1534                         if (!(file->f_mode & FMODE_READ))
1535                                 return -EACCES;
1536                         if (path_noexec(&file->f_path)) {
1537                                 if (vm_flags & VM_EXEC)
1538                                         return -EPERM;
1539                                 vm_flags &= ~VM_MAYEXEC;
1540                         }
1541
1542                         if (!file->f_op->mmap)
1543                                 return -ENODEV;
1544                         if (vm_flags & (VM_GROWSDOWN|VM_GROWSUP))
1545                                 return -EINVAL;
1546                         break;
1547
1548                 default:
1549                         return -EINVAL;
1550                 }
1551         } else {
1552                 switch (flags & MAP_TYPE) {
1553                 case MAP_SHARED:
1554                         if (vm_flags & (VM_GROWSDOWN|VM_GROWSUP))
1555                                 return -EINVAL;
1556                         /*
1557                          * Ignore pgoff.
1558                          */
1559                         pgoff = 0;
1560                         vm_flags |= VM_SHARED | VM_MAYSHARE;
1561                         break;
1562                 case MAP_PRIVATE:
1563                         /*
1564                          * Set pgoff according to addr for anon_vma.
1565                          */
1566                         pgoff = addr >> PAGE_SHIFT;
1567                         break;
1568                 default:
1569                         return -EINVAL;
1570                 }
1571         }
1572
1573         /*
1574          * Set 'VM_NORESERVE' if we should not account for the
1575          * memory use of this mapping.
1576          */
1577         if (flags & MAP_NORESERVE) {
1578                 /* We honor MAP_NORESERVE if allowed to overcommit */
1579                 if (sysctl_overcommit_memory != OVERCOMMIT_NEVER)
1580                         vm_flags |= VM_NORESERVE;
1581
1582                 /* hugetlb applies strict overcommit unless MAP_NORESERVE */
1583                 if (file && is_file_hugepages(file))
1584                         vm_flags |= VM_NORESERVE;
1585         }
1586
1587         addr = mmap_region(file, addr, len, vm_flags, pgoff, uf);
1588         if (!IS_ERR_VALUE(addr) &&
1589             ((vm_flags & VM_LOCKED) ||
1590              (flags & (MAP_POPULATE | MAP_NONBLOCK)) == MAP_POPULATE))
1591                 *populate = len;
1592         return addr;
1593 }
1594
1595 unsigned long ksys_mmap_pgoff(unsigned long addr, unsigned long len,
1596                               unsigned long prot, unsigned long flags,
1597                               unsigned long fd, unsigned long pgoff)
1598 {
1599         struct file *file = NULL;
1600         unsigned long retval;
1601
1602         if (!(flags & MAP_ANONYMOUS)) {
1603                 audit_mmap_fd(fd, flags);
1604                 file = fget(fd);
1605                 if (!file)
1606                         return -EBADF;
1607                 if (is_file_hugepages(file)) {
1608                         len = ALIGN(len, huge_page_size(hstate_file(file)));
1609                 } else if (unlikely(flags & MAP_HUGETLB)) {
1610                         retval = -EINVAL;
1611                         goto out_fput;
1612                 }
1613         } else if (flags & MAP_HUGETLB) {
1614                 struct user_struct *user = NULL;
1615                 struct hstate *hs;
1616
1617                 hs = hstate_sizelog((flags >> MAP_HUGE_SHIFT) & MAP_HUGE_MASK);
1618                 if (!hs)
1619                         return -EINVAL;
1620
1621                 len = ALIGN(len, huge_page_size(hs));
1622                 /*
1623                  * VM_NORESERVE is used because the reservations will be
1624                  * taken when vm_ops->mmap() is called
1625                  * A dummy user value is used because we are not locking
1626                  * memory so no accounting is necessary
1627                  */
1628                 file = hugetlb_file_setup(HUGETLB_ANON_FILE, len,
1629                                 VM_NORESERVE,
1630                                 &user, HUGETLB_ANONHUGE_INODE,
1631                                 (flags >> MAP_HUGE_SHIFT) & MAP_HUGE_MASK);
1632                 if (IS_ERR(file))
1633                         return PTR_ERR(file);
1634         }
1635
1636         flags &= ~(MAP_EXECUTABLE | MAP_DENYWRITE);
1637
1638         retval = vm_mmap_pgoff(file, addr, len, prot, flags, pgoff);
1639 out_fput:
1640         if (file)
1641                 fput(file);
1642         return retval;
1643 }
1644
1645 SYSCALL_DEFINE6(mmap_pgoff, unsigned long, addr, unsigned long, len,
1646                 unsigned long, prot, unsigned long, flags,
1647                 unsigned long, fd, unsigned long, pgoff)
1648 {
1649         return ksys_mmap_pgoff(addr, len, prot, flags, fd, pgoff);
1650 }
1651
1652 #ifdef __ARCH_WANT_SYS_OLD_MMAP
1653 struct mmap_arg_struct {
1654         unsigned long addr;
1655         unsigned long len;
1656         unsigned long prot;
1657         unsigned long flags;
1658         unsigned long fd;
1659         unsigned long offset;
1660 };
1661
1662 SYSCALL_DEFINE1(old_mmap, struct mmap_arg_struct __user *, arg)
1663 {
1664         struct mmap_arg_struct a;
1665
1666         if (copy_from_user(&a, arg, sizeof(a)))
1667                 return -EFAULT;
1668         if (offset_in_page(a.offset))
1669                 return -EINVAL;
1670
1671         return ksys_mmap_pgoff(a.addr, a.len, a.prot, a.flags, a.fd,
1672                                a.offset >> PAGE_SHIFT);
1673 }
1674 #endif /* __ARCH_WANT_SYS_OLD_MMAP */
1675
1676 /*
1677  * Some shared mappings will want the pages marked read-only
1678  * to track write events. If so, we'll downgrade vm_page_prot
1679  * to the private version (using protection_map[] without the
1680  * VM_SHARED bit).
1681  */
1682 int vma_wants_writenotify(struct vm_area_struct *vma, pgprot_t vm_page_prot)
1683 {
1684         vm_flags_t vm_flags = vma->vm_flags;
1685         const struct vm_operations_struct *vm_ops = vma->vm_ops;
1686
1687         /* If it was private or non-writable, the write bit is already clear */
1688         if ((vm_flags & (VM_WRITE|VM_SHARED)) != ((VM_WRITE|VM_SHARED)))
1689                 return 0;
1690
1691         /* The backer wishes to know when pages are first written to? */
1692         if (vm_ops && (vm_ops->page_mkwrite || vm_ops->pfn_mkwrite))
1693                 return 1;
1694
1695         /* The open routine did something to the protections that pgprot_modify
1696          * won't preserve? */
1697         if (pgprot_val(vm_page_prot) !=
1698             pgprot_val(vm_pgprot_modify(vm_page_prot, vm_flags)))
1699                 return 0;
1700
1701         /* Do we need to track softdirty? */
1702         if (IS_ENABLED(CONFIG_MEM_SOFT_DIRTY) && !(vm_flags & VM_SOFTDIRTY))
1703                 return 1;
1704
1705         /* Specialty mapping? */
1706         if (vm_flags & VM_PFNMAP)
1707                 return 0;
1708
1709         /* Can the mapping track the dirty pages? */
1710         return vma->vm_file && vma->vm_file->f_mapping &&
1711                 mapping_can_writeback(vma->vm_file->f_mapping);
1712 }
1713
1714 /*
1715  * We account for memory if it's a private writeable mapping,
1716  * not hugepages and VM_NORESERVE wasn't set.
1717  */
1718 static inline int accountable_mapping(struct file *file, vm_flags_t vm_flags)
1719 {
1720         /*
1721          * hugetlb has its own accounting separate from the core VM
1722          * VM_HUGETLB may not be set yet so we cannot check for that flag.
1723          */
1724         if (file && is_file_hugepages(file))
1725                 return 0;
1726
1727         return (vm_flags & (VM_NORESERVE | VM_SHARED | VM_WRITE)) == VM_WRITE;
1728 }
1729
1730 unsigned long mmap_region(struct file *file, unsigned long addr,
1731                 unsigned long len, vm_flags_t vm_flags, unsigned long pgoff,
1732                 struct list_head *uf)
1733 {
1734         struct mm_struct *mm = current->mm;
1735         struct vm_area_struct *vma, *prev, *merge;
1736         int error;
1737         struct rb_node **rb_link, *rb_parent;
1738         unsigned long charged = 0;
1739
1740         /* Check against address space limit. */
1741         if (!may_expand_vm(mm, vm_flags, len >> PAGE_SHIFT)) {
1742                 unsigned long nr_pages;
1743
1744                 /*
1745                  * MAP_FIXED may remove pages of mappings that intersects with
1746                  * requested mapping. Account for the pages it would unmap.
1747                  */
1748                 nr_pages = count_vma_pages_range(mm, addr, addr + len);
1749
1750                 if (!may_expand_vm(mm, vm_flags,
1751                                         (len >> PAGE_SHIFT) - nr_pages))
1752                         return -ENOMEM;
1753         }
1754
1755         /* Clear old maps, set up prev, rb_link, rb_parent, and uf */
1756         if (munmap_vma_range(mm, addr, len, &prev, &rb_link, &rb_parent, uf))
1757                 return -ENOMEM;
1758         /*
1759          * Private writable mapping: check memory availability
1760          */
1761         if (accountable_mapping(file, vm_flags)) {
1762                 charged = len >> PAGE_SHIFT;
1763                 if (security_vm_enough_memory_mm(mm, charged))
1764                         return -ENOMEM;
1765                 vm_flags |= VM_ACCOUNT;
1766         }
1767
1768         /*
1769          * Can we just expand an old mapping?
1770          */
1771         vma = vma_merge(mm, prev, addr, addr + len, vm_flags,
1772                         NULL, file, pgoff, NULL, NULL_VM_UFFD_CTX);
1773         if (vma)
1774                 goto out;
1775
1776         /*
1777          * Determine the object being mapped and call the appropriate
1778          * specific mapper. the address has already been validated, but
1779          * not unmapped, but the maps are removed from the list.
1780          */
1781         vma = vm_area_alloc(mm);
1782         if (!vma) {
1783                 error = -ENOMEM;
1784                 goto unacct_error;
1785         }
1786
1787         vma->vm_start = addr;
1788         vma->vm_end = addr + len;
1789         vma->vm_flags = vm_flags;
1790         vma->vm_page_prot = vm_get_page_prot(vm_flags);
1791         vma->vm_pgoff = pgoff;
1792
1793         if (file) {
1794                 if (vm_flags & VM_DENYWRITE) {
1795                         error = deny_write_access(file);
1796                         if (error)
1797                                 goto free_vma;
1798                 }
1799                 if (vm_flags & VM_SHARED) {
1800                         error = mapping_map_writable(file->f_mapping);
1801                         if (error)
1802                                 goto allow_write_and_free_vma;
1803                 }
1804
1805                 /* ->mmap() can change vma->vm_file, but must guarantee that
1806                  * vma_link() below can deny write-access if VM_DENYWRITE is set
1807                  * and map writably if VM_SHARED is set. This usually means the
1808                  * new file must not have been exposed to user-space, yet.
1809                  */
1810                 vma->vm_file = get_file(file);
1811                 error = call_mmap(file, vma);
1812                 if (error)
1813                         goto unmap_and_free_vma;
1814
1815                 /* Can addr have changed??
1816                  *
1817                  * Answer: Yes, several device drivers can do it in their
1818                  *         f_op->mmap method. -DaveM
1819                  * Bug: If addr is changed, prev, rb_link, rb_parent should
1820                  *      be updated for vma_link()
1821                  */
1822                 WARN_ON_ONCE(addr != vma->vm_start);
1823
1824                 addr = vma->vm_start;
1825
1826                 /* If vm_flags changed after call_mmap(), we should try merge vma again
1827                  * as we may succeed this time.
1828                  */
1829                 if (unlikely(vm_flags != vma->vm_flags && prev)) {
1830                         merge = vma_merge(mm, prev, vma->vm_start, vma->vm_end, vma->vm_flags,
1831                                 NULL, vma->vm_file, vma->vm_pgoff, NULL, NULL_VM_UFFD_CTX);
1832                         if (merge) {
1833                                 /* ->mmap() can change vma->vm_file and fput the original file. So
1834                                  * fput the vma->vm_file here or we would add an extra fput for file
1835                                  * and cause general protection fault ultimately.
1836                                  */
1837                                 fput(vma->vm_file);
1838                                 vm_area_free(vma);
1839                                 vma = merge;
1840                                 /* Update vm_flags to pick up the change. */
1841                                 vm_flags = vma->vm_flags;
1842                                 goto unmap_writable;
1843                         }
1844                 }
1845
1846                 vm_flags = vma->vm_flags;
1847         } else if (vm_flags & VM_SHARED) {
1848                 error = shmem_zero_setup(vma);
1849                 if (error)
1850                         goto free_vma;
1851         } else {
1852                 vma_set_anonymous(vma);
1853         }
1854
1855         /* Allow architectures to sanity-check the vm_flags */
1856         if (!arch_validate_flags(vma->vm_flags)) {
1857                 error = -EINVAL;
1858                 if (file)
1859                         goto unmap_and_free_vma;
1860                 else
1861                         goto free_vma;
1862         }
1863
1864         vma_link(mm, vma, prev, rb_link, rb_parent);
1865         /* Once vma denies write, undo our temporary denial count */
1866         if (file) {
1867 unmap_writable:
1868                 if (vm_flags & VM_SHARED)
1869                         mapping_unmap_writable(file->f_mapping);
1870                 if (vm_flags & VM_DENYWRITE)
1871                         allow_write_access(file);
1872         }
1873         file = vma->vm_file;
1874 out:
1875         perf_event_mmap(vma);
1876
1877         vm_stat_account(mm, vm_flags, len >> PAGE_SHIFT);
1878         if (vm_flags & VM_LOCKED) {
1879                 if ((vm_flags & VM_SPECIAL) || vma_is_dax(vma) ||
1880                                         is_vm_hugetlb_page(vma) ||
1881                                         vma == get_gate_vma(current->mm))
1882                         vma->vm_flags &= VM_LOCKED_CLEAR_MASK;
1883                 else
1884                         mm->locked_vm += (len >> PAGE_SHIFT);
1885         }
1886
1887         if (file)
1888                 uprobe_mmap(vma);
1889
1890         /*
1891          * New (or expanded) vma always get soft dirty status.
1892          * Otherwise user-space soft-dirty page tracker won't
1893          * be able to distinguish situation when vma area unmapped,
1894          * then new mapped in-place (which must be aimed as
1895          * a completely new data area).
1896          */
1897         vma->vm_flags |= VM_SOFTDIRTY;
1898
1899         vma_set_page_prot(vma);
1900
1901         return addr;
1902
1903 unmap_and_free_vma:
1904         fput(vma->vm_file);
1905         vma->vm_file = NULL;
1906
1907         /* Undo any partial mapping done by a device driver. */
1908         unmap_region(mm, vma, prev, vma->vm_start, vma->vm_end);
1909         charged = 0;
1910         if (vm_flags & VM_SHARED)
1911                 mapping_unmap_writable(file->f_mapping);
1912 allow_write_and_free_vma:
1913         if (vm_flags & VM_DENYWRITE)
1914                 allow_write_access(file);
1915 free_vma:
1916         vm_area_free(vma);
1917 unacct_error:
1918         if (charged)
1919                 vm_unacct_memory(charged);
1920         return error;
1921 }
1922
1923 static unsigned long unmapped_area(struct vm_unmapped_area_info *info)
1924 {
1925         /*
1926          * We implement the search by looking for an rbtree node that
1927          * immediately follows a suitable gap. That is,
1928          * - gap_start = vma->vm_prev->vm_end <= info->high_limit - length;
1929          * - gap_end   = vma->vm_start        >= info->low_limit  + length;
1930          * - gap_end - gap_start >= length
1931          */
1932
1933         struct mm_struct *mm = current->mm;
1934         struct vm_area_struct *vma;
1935         unsigned long length, low_limit, high_limit, gap_start, gap_end;
1936
1937         /* Adjust search length to account for worst case alignment overhead */
1938         length = info->length + info->align_mask;
1939         if (length < info->length)
1940                 return -ENOMEM;
1941
1942         /* Adjust search limits by the desired length */
1943         if (info->high_limit < length)
1944                 return -ENOMEM;
1945         high_limit = info->high_limit - length;
1946
1947         if (info->low_limit > high_limit)
1948                 return -ENOMEM;
1949         low_limit = info->low_limit + length;
1950
1951         /* Check if rbtree root looks promising */
1952         if (RB_EMPTY_ROOT(&mm->mm_rb))
1953                 goto check_highest;
1954         vma = rb_entry(mm->mm_rb.rb_node, struct vm_area_struct, vm_rb);
1955         if (vma->rb_subtree_gap < length)
1956                 goto check_highest;
1957
1958         while (true) {
1959                 /* Visit left subtree if it looks promising */
1960                 gap_end = vm_start_gap(vma);
1961                 if (gap_end >= low_limit && vma->vm_rb.rb_left) {
1962                         struct vm_area_struct *left =
1963                                 rb_entry(vma->vm_rb.rb_left,
1964                                          struct vm_area_struct, vm_rb);
1965                         if (left->rb_subtree_gap >= length) {
1966                                 vma = left;
1967                                 continue;
1968                         }
1969                 }
1970
1971                 gap_start = vma->vm_prev ? vm_end_gap(vma->vm_prev) : 0;
1972 check_current:
1973                 /* Check if current node has a suitable gap */
1974                 if (gap_start > high_limit)
1975                         return -ENOMEM;
1976                 if (gap_end >= low_limit &&
1977                     gap_end > gap_start && gap_end - gap_start >= length)
1978                         goto found;
1979
1980                 /* Visit right subtree if it looks promising */
1981                 if (vma->vm_rb.rb_right) {
1982                         struct vm_area_struct *right =
1983                                 rb_entry(vma->vm_rb.rb_right,
1984                                          struct vm_area_struct, vm_rb);
1985                         if (right->rb_subtree_gap >= length) {
1986                                 vma = right;
1987                                 continue;
1988                         }
1989                 }
1990
1991                 /* Go back up the rbtree to find next candidate node */
1992                 while (true) {
1993                         struct rb_node *prev = &vma->vm_rb;
1994                         if (!rb_parent(prev))
1995                                 goto check_highest;
1996                         vma = rb_entry(rb_parent(prev),
1997                                        struct vm_area_struct, vm_rb);
1998                         if (prev == vma->vm_rb.rb_left) {
1999                                 gap_start = vm_end_gap(vma->vm_prev);
2000                                 gap_end = vm_start_gap(vma);
2001                                 goto check_current;
2002                         }
2003                 }
2004         }
2005
2006 check_highest:
2007         /* Check highest gap, which does not precede any rbtree node */
2008         gap_start = mm->highest_vm_end;
2009         gap_end = ULONG_MAX;  /* Only for VM_BUG_ON below */
2010         if (gap_start > high_limit)
2011                 return -ENOMEM;
2012
2013 found:
2014         /* We found a suitable gap. Clip it with the original low_limit. */
2015         if (gap_start < info->low_limit)
2016                 gap_start = info->low_limit;
2017
2018         /* Adjust gap address to the desired alignment */
2019         gap_start += (info->align_offset - gap_start) & info->align_mask;
2020
2021         VM_BUG_ON(gap_start + info->length > info->high_limit);
2022         VM_BUG_ON(gap_start + info->length > gap_end);
2023         return gap_start;
2024 }
2025
2026 static unsigned long unmapped_area_topdown(struct vm_unmapped_area_info *info)
2027 {
2028         struct mm_struct *mm = current->mm;
2029         struct vm_area_struct *vma;
2030         unsigned long length, low_limit, high_limit, gap_start, gap_end;
2031
2032         /* Adjust search length to account for worst case alignment overhead */
2033         length = info->length + info->align_mask;
2034         if (length < info->length)
2035                 return -ENOMEM;
2036
2037         /*
2038          * Adjust search limits by the desired length.
2039          * See implementation comment at top of unmapped_area().
2040          */
2041         gap_end = info->high_limit;
2042         if (gap_end < length)
2043                 return -ENOMEM;
2044         high_limit = gap_end - length;
2045
2046         if (info->low_limit > high_limit)
2047                 return -ENOMEM;
2048         low_limit = info->low_limit + length;
2049
2050         /* Check highest gap, which does not precede any rbtree node */
2051         gap_start = mm->highest_vm_end;
2052         if (gap_start <= high_limit)
2053                 goto found_highest;
2054
2055         /* Check if rbtree root looks promising */
2056         if (RB_EMPTY_ROOT(&mm->mm_rb))
2057                 return -ENOMEM;
2058         vma = rb_entry(mm->mm_rb.rb_node, struct vm_area_struct, vm_rb);
2059         if (vma->rb_subtree_gap < length)
2060                 return -ENOMEM;
2061
2062         while (true) {
2063                 /* Visit right subtree if it looks promising */
2064                 gap_start = vma->vm_prev ? vm_end_gap(vma->vm_prev) : 0;
2065                 if (gap_start <= high_limit && vma->vm_rb.rb_right) {
2066                         struct vm_area_struct *right =
2067                                 rb_entry(vma->vm_rb.rb_right,
2068                                          struct vm_area_struct, vm_rb);
2069                         if (right->rb_subtree_gap >= length) {
2070                                 vma = right;
2071                                 continue;
2072                         }
2073                 }
2074
2075 check_current:
2076                 /* Check if current node has a suitable gap */
2077                 gap_end = vm_start_gap(vma);
2078                 if (gap_end < low_limit)
2079                         return -ENOMEM;
2080                 if (gap_start <= high_limit &&
2081                     gap_end > gap_start && gap_end - gap_start >= length)
2082                         goto found;
2083
2084                 /* Visit left subtree if it looks promising */
2085                 if (vma->vm_rb.rb_left) {
2086                         struct vm_area_struct *left =
2087                                 rb_entry(vma->vm_rb.rb_left,
2088                                          struct vm_area_struct, vm_rb);
2089                         if (left->rb_subtree_gap >= length) {
2090                                 vma = left;
2091                                 continue;
2092                         }
2093                 }
2094
2095                 /* Go back up the rbtree to find next candidate node */
2096                 while (true) {
2097                         struct rb_node *prev = &vma->vm_rb;
2098                         if (!rb_parent(prev))
2099                                 return -ENOMEM;
2100                         vma = rb_entry(rb_parent(prev),
2101                                        struct vm_area_struct, vm_rb);
2102                         if (prev == vma->vm_rb.rb_right) {
2103                                 gap_start = vma->vm_prev ?
2104                                         vm_end_gap(vma->vm_prev) : 0;
2105                                 goto check_current;
2106                         }
2107                 }
2108         }
2109
2110 found:
2111         /* We found a suitable gap. Clip it with the original high_limit. */
2112         if (gap_end > info->high_limit)
2113                 gap_end = info->high_limit;
2114
2115 found_highest:
2116         /* Compute highest gap address at the desired alignment */
2117         gap_end -= info->length;
2118         gap_end -= (gap_end - info->align_offset) & info->align_mask;
2119
2120         VM_BUG_ON(gap_end < info->low_limit);
2121         VM_BUG_ON(gap_end < gap_start);
2122         return gap_end;
2123 }
2124
2125 /*
2126  * Search for an unmapped address range.
2127  *
2128  * We are looking for a range that:
2129  * - does not intersect with any VMA;
2130  * - is contained within the [low_limit, high_limit) interval;
2131  * - is at least the desired size.
2132  * - satisfies (begin_addr & align_mask) == (align_offset & align_mask)
2133  */
2134 unsigned long vm_unmapped_area(struct vm_unmapped_area_info *info)
2135 {
2136         unsigned long addr;
2137
2138         if (info->flags & VM_UNMAPPED_AREA_TOPDOWN)
2139                 addr = unmapped_area_topdown(info);
2140         else
2141                 addr = unmapped_area(info);
2142
2143         trace_vm_unmapped_area(addr, info);
2144         return addr;
2145 }
2146
2147 #ifndef arch_get_mmap_end
2148 #define arch_get_mmap_end(addr) (TASK_SIZE)
2149 #endif
2150
2151 #ifndef arch_get_mmap_base
2152 #define arch_get_mmap_base(addr, base) (base)
2153 #endif
2154
2155 /* Get an address range which is currently unmapped.
2156  * For shmat() with addr=0.
2157  *
2158  * Ugly calling convention alert:
2159  * Return value with the low bits set means error value,
2160  * ie
2161  *      if (ret & ~PAGE_MASK)
2162  *              error = ret;
2163  *
2164  * This function "knows" that -ENOMEM has the bits set.
2165  */
2166 #ifndef HAVE_ARCH_UNMAPPED_AREA
2167 unsigned long
2168 arch_get_unmapped_area(struct file *filp, unsigned long addr,
2169                 unsigned long len, unsigned long pgoff, unsigned long flags)
2170 {
2171         struct mm_struct *mm = current->mm;
2172         struct vm_area_struct *vma, *prev;
2173         struct vm_unmapped_area_info info;
2174         const unsigned long mmap_end = arch_get_mmap_end(addr);
2175
2176         if (len > mmap_end - mmap_min_addr)
2177                 return -ENOMEM;
2178
2179         if (flags & MAP_FIXED)
2180                 return addr;
2181
2182         if (addr) {
2183                 addr = PAGE_ALIGN(addr);
2184                 vma = find_vma_prev(mm, addr, &prev);
2185                 if (mmap_end - len >= addr && addr >= mmap_min_addr &&
2186                     (!vma || addr + len <= vm_start_gap(vma)) &&
2187                     (!prev || addr >= vm_end_gap(prev)))
2188                         return addr;
2189         }
2190
2191         info.flags = 0;
2192         info.length = len;
2193         info.low_limit = mm->mmap_base;
2194         info.high_limit = mmap_end;
2195         info.align_mask = 0;
2196         info.align_offset = 0;
2197         return vm_unmapped_area(&info);
2198 }
2199 #endif
2200
2201 /*
2202  * This mmap-allocator allocates new areas top-down from below the
2203  * stack's low limit (the base):
2204  */
2205 #ifndef HAVE_ARCH_UNMAPPED_AREA_TOPDOWN
2206 unsigned long
2207 arch_get_unmapped_area_topdown(struct file *filp, unsigned long addr,
2208                           unsigned long len, unsigned long pgoff,
2209                           unsigned long flags)
2210 {
2211         struct vm_area_struct *vma, *prev;
2212         struct mm_struct *mm = current->mm;
2213         struct vm_unmapped_area_info info;
2214         const unsigned long mmap_end = arch_get_mmap_end(addr);
2215
2216         /* requested length too big for entire address space */
2217         if (len > mmap_end - mmap_min_addr)
2218                 return -ENOMEM;
2219
2220         if (flags & MAP_FIXED)
2221                 return addr;
2222
2223         /* requesting a specific address */
2224         if (addr) {
2225                 addr = PAGE_ALIGN(addr);
2226                 vma = find_vma_prev(mm, addr, &prev);
2227                 if (mmap_end - len >= addr && addr >= mmap_min_addr &&
2228                                 (!vma || addr + len <= vm_start_gap(vma)) &&
2229                                 (!prev || addr >= vm_end_gap(prev)))
2230                         return addr;
2231         }
2232
2233         info.flags = VM_UNMAPPED_AREA_TOPDOWN;
2234         info.length = len;
2235         info.low_limit = max(PAGE_SIZE, mmap_min_addr);
2236         info.high_limit = arch_get_mmap_base(addr, mm->mmap_base);
2237         info.align_mask = 0;
2238         info.align_offset = 0;
2239         addr = vm_unmapped_area(&info);
2240
2241         /*
2242          * A failed mmap() very likely causes application failure,
2243          * so fall back to the bottom-up function here. This scenario
2244          * can happen with large stack limits and large mmap()
2245          * allocations.
2246          */
2247         if (offset_in_page(addr)) {
2248                 VM_BUG_ON(addr != -ENOMEM);
2249                 info.flags = 0;
2250                 info.low_limit = TASK_UNMAPPED_BASE;
2251                 info.high_limit = mmap_end;
2252                 addr = vm_unmapped_area(&info);
2253         }
2254
2255         return addr;
2256 }
2257 #endif
2258
2259 unsigned long
2260 get_unmapped_area(struct file *file, unsigned long addr, unsigned long len,
2261                 unsigned long pgoff, unsigned long flags)
2262 {
2263         unsigned long (*get_area)(struct file *, unsigned long,
2264                                   unsigned long, unsigned long, unsigned long);
2265
2266         unsigned long error = arch_mmap_check(addr, len, flags);
2267         if (error)
2268                 return error;
2269
2270         /* Careful about overflows.. */
2271         if (len > TASK_SIZE)
2272                 return -ENOMEM;
2273
2274         get_area = current->mm->get_unmapped_area;
2275         if (file) {
2276                 if (file->f_op->get_unmapped_area)
2277                         get_area = file->f_op->get_unmapped_area;
2278         } else if (flags & MAP_SHARED) {
2279                 /*
2280                  * mmap_region() will call shmem_zero_setup() to create a file,
2281                  * so use shmem's get_unmapped_area in case it can be huge.
2282                  * do_mmap() will clear pgoff, so match alignment.
2283                  */
2284                 pgoff = 0;
2285                 get_area = shmem_get_unmapped_area;
2286         }
2287
2288         addr = get_area(file, addr, len, pgoff, flags);
2289         if (IS_ERR_VALUE(addr))
2290                 return addr;
2291
2292         if (addr > TASK_SIZE - len)
2293                 return -ENOMEM;
2294         if (offset_in_page(addr))
2295                 return -EINVAL;
2296
2297         error = security_mmap_addr(addr);
2298         return error ? error : addr;
2299 }
2300
2301 EXPORT_SYMBOL(get_unmapped_area);
2302
2303 /* Look up the first VMA which satisfies  addr < vm_end,  NULL if none. */
2304 struct vm_area_struct *find_vma(struct mm_struct *mm, unsigned long addr)
2305 {
2306         struct rb_node *rb_node;
2307         struct vm_area_struct *vma;
2308
2309         /* Check the cache first. */
2310         vma = vmacache_find(mm, addr);
2311         if (likely(vma))
2312                 return vma;
2313
2314         rb_node = mm->mm_rb.rb_node;
2315
2316         while (rb_node) {
2317                 struct vm_area_struct *tmp;
2318
2319                 tmp = rb_entry(rb_node, struct vm_area_struct, vm_rb);
2320
2321                 if (tmp->vm_end > addr) {
2322                         vma = tmp;
2323                         if (tmp->vm_start <= addr)
2324                                 break;
2325                         rb_node = rb_node->rb_left;
2326                 } else
2327                         rb_node = rb_node->rb_right;
2328         }
2329
2330         if (vma)
2331                 vmacache_update(addr, vma);
2332         return vma;
2333 }
2334
2335 EXPORT_SYMBOL(find_vma);
2336
2337 /*
2338  * Same as find_vma, but also return a pointer to the previous VMA in *pprev.
2339  */
2340 struct vm_area_struct *
2341 find_vma_prev(struct mm_struct *mm, unsigned long addr,
2342                         struct vm_area_struct **pprev)
2343 {
2344         struct vm_area_struct *vma;
2345
2346         vma = find_vma(mm, addr);
2347         if (vma) {
2348                 *pprev = vma->vm_prev;
2349         } else {
2350                 struct rb_node *rb_node = rb_last(&mm->mm_rb);
2351
2352                 *pprev = rb_node ? rb_entry(rb_node, struct vm_area_struct, vm_rb) : NULL;
2353         }
2354         return vma;
2355 }
2356
2357 /*
2358  * Verify that the stack growth is acceptable and
2359  * update accounting. This is shared with both the
2360  * grow-up and grow-down cases.
2361  */
2362 static int acct_stack_growth(struct vm_area_struct *vma,
2363                              unsigned long size, unsigned long grow)
2364 {
2365         struct mm_struct *mm = vma->vm_mm;
2366         unsigned long new_start;
2367
2368         /* address space limit tests */
2369         if (!may_expand_vm(mm, vma->vm_flags, grow))
2370                 return -ENOMEM;
2371
2372         /* Stack limit test */
2373         if (size > rlimit(RLIMIT_STACK))
2374                 return -ENOMEM;
2375
2376         /* mlock limit tests */
2377         if (vma->vm_flags & VM_LOCKED) {
2378                 unsigned long locked;
2379                 unsigned long limit;
2380                 locked = mm->locked_vm + grow;
2381                 limit = rlimit(RLIMIT_MEMLOCK);
2382                 limit >>= PAGE_SHIFT;
2383                 if (locked > limit && !capable(CAP_IPC_LOCK))
2384                         return -ENOMEM;
2385         }
2386
2387         /* Check to ensure the stack will not grow into a hugetlb-only region */
2388         new_start = (vma->vm_flags & VM_GROWSUP) ? vma->vm_start :
2389                         vma->vm_end - size;
2390         if (is_hugepage_only_range(vma->vm_mm, new_start, size))
2391                 return -EFAULT;
2392
2393         /*
2394          * Overcommit..  This must be the final test, as it will
2395          * update security statistics.
2396          */
2397         if (security_vm_enough_memory_mm(mm, grow))
2398                 return -ENOMEM;
2399
2400         return 0;
2401 }
2402
2403 #if defined(CONFIG_STACK_GROWSUP) || defined(CONFIG_IA64)
2404 /*
2405  * PA-RISC uses this for its stack; IA64 for its Register Backing Store.
2406  * vma is the last one with address > vma->vm_end.  Have to extend vma.
2407  */
2408 int expand_upwards(struct vm_area_struct *vma, unsigned long address)
2409 {
2410         struct mm_struct *mm = vma->vm_mm;
2411         struct vm_area_struct *next;
2412         unsigned long gap_addr;
2413         int error = 0;
2414
2415         if (!(vma->vm_flags & VM_GROWSUP))
2416                 return -EFAULT;
2417
2418         /* Guard against exceeding limits of the address space. */
2419         address &= PAGE_MASK;
2420         if (address >= (TASK_SIZE & PAGE_MASK))
2421                 return -ENOMEM;
2422         address += PAGE_SIZE;
2423
2424         /* Enforce stack_guard_gap */
2425         gap_addr = address + stack_guard_gap;
2426
2427         /* Guard against overflow */
2428         if (gap_addr < address || gap_addr > TASK_SIZE)
2429                 gap_addr = TASK_SIZE;
2430
2431         next = vma->vm_next;
2432         if (next && next->vm_start < gap_addr && vma_is_accessible(next)) {
2433                 if (!(next->vm_flags & VM_GROWSUP))
2434                         return -ENOMEM;
2435                 /* Check that both stack segments have the same anon_vma? */
2436         }
2437
2438         /* We must make sure the anon_vma is allocated. */
2439         if (unlikely(anon_vma_prepare(vma)))
2440                 return -ENOMEM;
2441
2442         /*
2443          * vma->vm_start/vm_end cannot change under us because the caller
2444          * is required to hold the mmap_lock in read mode.  We need the
2445          * anon_vma lock to serialize against concurrent expand_stacks.
2446          */
2447         anon_vma_lock_write(vma->anon_vma);
2448
2449         /* Somebody else might have raced and expanded it already */
2450         if (address > vma->vm_end) {
2451                 unsigned long size, grow;
2452
2453                 size = address - vma->vm_start;
2454                 grow = (address - vma->vm_end) >> PAGE_SHIFT;
2455
2456                 error = -ENOMEM;
2457                 if (vma->vm_pgoff + (size >> PAGE_SHIFT) >= vma->vm_pgoff) {
2458                         error = acct_stack_growth(vma, size, grow);
2459                         if (!error) {
2460                                 /*
2461                                  * vma_gap_update() doesn't support concurrent
2462                                  * updates, but we only hold a shared mmap_lock
2463                                  * lock here, so we need to protect against
2464                                  * concurrent vma expansions.
2465                                  * anon_vma_lock_write() doesn't help here, as
2466                                  * we don't guarantee that all growable vmas
2467                                  * in a mm share the same root anon vma.
2468                                  * So, we reuse mm->page_table_lock to guard
2469                                  * against concurrent vma expansions.
2470                                  */
2471                                 spin_lock(&mm->page_table_lock);
2472                                 if (vma->vm_flags & VM_LOCKED)
2473                                         mm->locked_vm += grow;
2474                                 vm_stat_account(mm, vma->vm_flags, grow);
2475                                 anon_vma_interval_tree_pre_update_vma(vma);
2476                                 vma->vm_end = address;
2477                                 anon_vma_interval_tree_post_update_vma(vma);
2478                                 if (vma->vm_next)
2479                                         vma_gap_update(vma->vm_next);
2480                                 else
2481                                         mm->highest_vm_end = vm_end_gap(vma);
2482                                 spin_unlock(&mm->page_table_lock);
2483
2484                                 perf_event_mmap(vma);
2485                         }
2486                 }
2487         }
2488         anon_vma_unlock_write(vma->anon_vma);
2489         khugepaged_enter_vma_merge(vma, vma->vm_flags);
2490         validate_mm(mm);
2491         return error;
2492 }
2493 #endif /* CONFIG_STACK_GROWSUP || CONFIG_IA64 */
2494
2495 /*
2496  * vma is the first one with address < vma->vm_start.  Have to extend vma.
2497  */
2498 int expand_downwards(struct vm_area_struct *vma,
2499                                    unsigned long address)
2500 {
2501         struct mm_struct *mm = vma->vm_mm;
2502         struct vm_area_struct *prev;
2503         int error = 0;
2504
2505         address &= PAGE_MASK;
2506         if (address < mmap_min_addr)
2507                 return -EPERM;
2508
2509         /* Enforce stack_guard_gap */
2510         prev = vma->vm_prev;
2511         /* Check that both stack segments have the same anon_vma? */
2512         if (prev && !(prev->vm_flags & VM_GROWSDOWN) &&
2513                         vma_is_accessible(prev)) {
2514                 if (address - prev->vm_end < stack_guard_gap)
2515                         return -ENOMEM;
2516         }
2517
2518         /* We must make sure the anon_vma is allocated. */
2519         if (unlikely(anon_vma_prepare(vma)))
2520                 return -ENOMEM;
2521
2522         /*
2523          * vma->vm_start/vm_end cannot change under us because the caller
2524          * is required to hold the mmap_lock in read mode.  We need the
2525          * anon_vma lock to serialize against concurrent expand_stacks.
2526          */
2527         anon_vma_lock_write(vma->anon_vma);
2528
2529         /* Somebody else might have raced and expanded it already */
2530         if (address < vma->vm_start) {
2531                 unsigned long size, grow;
2532
2533                 size = vma->vm_end - address;
2534                 grow = (vma->vm_start - address) >> PAGE_SHIFT;
2535
2536                 error = -ENOMEM;
2537                 if (grow <= vma->vm_pgoff) {
2538                         error = acct_stack_growth(vma, size, grow);
2539                         if (!error) {
2540                                 /*
2541                                  * vma_gap_update() doesn't support concurrent
2542                                  * updates, but we only hold a shared mmap_lock
2543                                  * lock here, so we need to protect against
2544                                  * concurrent vma expansions.
2545                                  * anon_vma_lock_write() doesn't help here, as
2546                                  * we don't guarantee that all growable vmas
2547                                  * in a mm share the same root anon vma.
2548                                  * So, we reuse mm->page_table_lock to guard
2549                                  * against concurrent vma expansions.
2550                                  */
2551                                 spin_lock(&mm->page_table_lock);
2552                                 if (vma->vm_flags & VM_LOCKED)
2553                                         mm->locked_vm += grow;
2554                                 vm_stat_account(mm, vma->vm_flags, grow);
2555                                 anon_vma_interval_tree_pre_update_vma(vma);
2556                                 vma->vm_start = address;
2557                                 vma->vm_pgoff -= grow;
2558                                 anon_vma_interval_tree_post_update_vma(vma);
2559                                 vma_gap_update(vma);
2560                                 spin_unlock(&mm->page_table_lock);
2561
2562                                 perf_event_mmap(vma);
2563                         }
2564                 }
2565         }
2566         anon_vma_unlock_write(vma->anon_vma);
2567         khugepaged_enter_vma_merge(vma, vma->vm_flags);
2568         validate_mm(mm);
2569         return error;
2570 }
2571
2572 /* enforced gap between the expanding stack and other mappings. */
2573 unsigned long stack_guard_gap = 256UL<<PAGE_SHIFT;
2574
2575 static int __init cmdline_parse_stack_guard_gap(char *p)
2576 {
2577         unsigned long val;
2578         char *endptr;
2579
2580         val = simple_strtoul(p, &endptr, 10);
2581         if (!*endptr)
2582                 stack_guard_gap = val << PAGE_SHIFT;
2583
2584         return 0;
2585 }
2586 __setup("stack_guard_gap=", cmdline_parse_stack_guard_gap);
2587
2588 #ifdef CONFIG_STACK_GROWSUP
2589 int expand_stack(struct vm_area_struct *vma, unsigned long address)
2590 {
2591         return expand_upwards(vma, address);
2592 }
2593
2594 struct vm_area_struct *
2595 find_extend_vma(struct mm_struct *mm, unsigned long addr)
2596 {
2597         struct vm_area_struct *vma, *prev;
2598
2599         addr &= PAGE_MASK;
2600         vma = find_vma_prev(mm, addr, &prev);
2601         if (vma && (vma->vm_start <= addr))
2602                 return vma;
2603         /* don't alter vm_end if the coredump is running */
2604         if (!prev || expand_stack(prev, addr))
2605                 return NULL;
2606         if (prev->vm_flags & VM_LOCKED)
2607                 populate_vma_page_range(prev, addr, prev->vm_end, NULL);
2608         return prev;
2609 }
2610 #else
2611 int expand_stack(struct vm_area_struct *vma, unsigned long address)
2612 {
2613         return expand_downwards(vma, address);
2614 }
2615
2616 struct vm_area_struct *
2617 find_extend_vma(struct mm_struct *mm, unsigned long addr)
2618 {
2619         struct vm_area_struct *vma;
2620         unsigned long start;
2621
2622         addr &= PAGE_MASK;
2623         vma = find_vma(mm, addr);
2624         if (!vma)
2625                 return NULL;
2626         if (vma->vm_start <= addr)
2627                 return vma;
2628         if (!(vma->vm_flags & VM_GROWSDOWN))
2629                 return NULL;
2630         start = vma->vm_start;
2631         if (expand_stack(vma, addr))
2632                 return NULL;
2633         if (vma->vm_flags & VM_LOCKED)
2634                 populate_vma_page_range(vma, addr, start, NULL);
2635         return vma;
2636 }
2637 #endif
2638
2639 EXPORT_SYMBOL_GPL(find_extend_vma);
2640
2641 /*
2642  * Ok - we have the memory areas we should free on the vma list,
2643  * so release them, and do the vma updates.
2644  *
2645  * Called with the mm semaphore held.
2646  */
2647 static void remove_vma_list(struct mm_struct *mm, struct vm_area_struct *vma)
2648 {
2649         unsigned long nr_accounted = 0;
2650
2651         /* Update high watermark before we lower total_vm */
2652         update_hiwater_vm(mm);
2653         do {
2654                 long nrpages = vma_pages(vma);
2655
2656                 if (vma->vm_flags & VM_ACCOUNT)
2657                         nr_accounted += nrpages;
2658                 vm_stat_account(mm, vma->vm_flags, -nrpages);
2659                 vma = remove_vma(vma);
2660         } while (vma);
2661         vm_unacct_memory(nr_accounted);
2662         validate_mm(mm);
2663 }
2664
2665 /*
2666  * Get rid of page table information in the indicated region.
2667  *
2668  * Called with the mm semaphore held.
2669  */
2670 static void unmap_region(struct mm_struct *mm,
2671                 struct vm_area_struct *vma, struct vm_area_struct *prev,
2672                 unsigned long start, unsigned long end)
2673 {
2674         struct vm_area_struct *next = vma_next(mm, prev);
2675         struct mmu_gather tlb;
2676
2677         lru_add_drain();
2678         tlb_gather_mmu(&tlb, mm);
2679         update_hiwater_rss(mm);
2680         unmap_vmas(&tlb, vma, start, end);
2681         free_pgtables(&tlb, vma, prev ? prev->vm_end : FIRST_USER_ADDRESS,
2682                                  next ? next->vm_start : USER_PGTABLES_CEILING);
2683         tlb_finish_mmu(&tlb);
2684 }
2685
2686 /*
2687  * Create a list of vma's touched by the unmap, removing them from the mm's
2688  * vma list as we go..
2689  */
2690 static bool
2691 detach_vmas_to_be_unmapped(struct mm_struct *mm, struct vm_area_struct *vma,
2692         struct vm_area_struct *prev, unsigned long end)
2693 {
2694         struct vm_area_struct **insertion_point;
2695         struct vm_area_struct *tail_vma = NULL;
2696
2697         insertion_point = (prev ? &prev->vm_next : &mm->mmap);
2698         vma->vm_prev = NULL;
2699         do {
2700                 vma_rb_erase(vma, &mm->mm_rb);
2701                 mm->map_count--;
2702                 tail_vma = vma;
2703                 vma = vma->vm_next;
2704         } while (vma && vma->vm_start < end);
2705         *insertion_point = vma;
2706         if (vma) {
2707                 vma->vm_prev = prev;
2708                 vma_gap_update(vma);
2709         } else
2710                 mm->highest_vm_end = prev ? vm_end_gap(prev) : 0;
2711         tail_vma->vm_next = NULL;
2712
2713         /* Kill the cache */
2714         vmacache_invalidate(mm);
2715
2716         /*
2717          * Do not downgrade mmap_lock if we are next to VM_GROWSDOWN or
2718          * VM_GROWSUP VMA. Such VMAs can change their size under
2719          * down_read(mmap_lock) and collide with the VMA we are about to unmap.
2720          */
2721         if (vma && (vma->vm_flags & VM_GROWSDOWN))
2722                 return false;
2723         if (prev && (prev->vm_flags & VM_GROWSUP))
2724                 return false;
2725         return true;
2726 }
2727
2728 /*
2729  * __split_vma() bypasses sysctl_max_map_count checking.  We use this where it
2730  * has already been checked or doesn't make sense to fail.
2731  */
2732 int __split_vma(struct mm_struct *mm, struct vm_area_struct *vma,
2733                 unsigned long addr, int new_below)
2734 {
2735         struct vm_area_struct *new;
2736         int err;
2737
2738         if (vma->vm_ops && vma->vm_ops->may_split) {
2739                 err = vma->vm_ops->may_split(vma, addr);
2740                 if (err)
2741                         return err;
2742         }
2743
2744         new = vm_area_dup(vma);
2745         if (!new)
2746                 return -ENOMEM;
2747
2748         if (new_below)
2749                 new->vm_end = addr;
2750         else {
2751                 new->vm_start = addr;
2752                 new->vm_pgoff += ((addr - vma->vm_start) >> PAGE_SHIFT);
2753         }
2754
2755         err = vma_dup_policy(vma, new);
2756         if (err)
2757                 goto out_free_vma;
2758
2759         err = anon_vma_clone(new, vma);
2760         if (err)
2761                 goto out_free_mpol;
2762
2763         if (new->vm_file)
2764                 get_file(new->vm_file);
2765
2766         if (new->vm_ops && new->vm_ops->open)
2767                 new->vm_ops->open(new);
2768
2769         if (new_below)
2770                 err = vma_adjust(vma, addr, vma->vm_end, vma->vm_pgoff +
2771                         ((addr - new->vm_start) >> PAGE_SHIFT), new);
2772         else
2773                 err = vma_adjust(vma, vma->vm_start, addr, vma->vm_pgoff, new);
2774
2775         /* Success. */
2776         if (!err)
2777                 return 0;
2778
2779         /* Clean everything up if vma_adjust failed. */
2780         if (new->vm_ops && new->vm_ops->close)
2781                 new->vm_ops->close(new);
2782         if (new->vm_file)
2783                 fput(new->vm_file);
2784         unlink_anon_vmas(new);
2785  out_free_mpol:
2786         mpol_put(vma_policy(new));
2787  out_free_vma:
2788         vm_area_free(new);
2789         return err;
2790 }
2791
2792 /*
2793  * Split a vma into two pieces at address 'addr', a new vma is allocated
2794  * either for the first part or the tail.
2795  */
2796 int split_vma(struct mm_struct *mm, struct vm_area_struct *vma,
2797               unsigned long addr, int new_below)
2798 {
2799         if (mm->map_count >= sysctl_max_map_count)
2800                 return -ENOMEM;
2801
2802         return __split_vma(mm, vma, addr, new_below);
2803 }
2804
2805 /* Munmap is split into 2 main parts -- this part which finds
2806  * what needs doing, and the areas themselves, which do the
2807  * work.  This now handles partial unmappings.
2808  * Jeremy Fitzhardinge <jeremy@goop.org>
2809  */
2810 int __do_munmap(struct mm_struct *mm, unsigned long start, size_t len,
2811                 struct list_head *uf, bool downgrade)
2812 {
2813         unsigned long end;
2814         struct vm_area_struct *vma, *prev, *last;
2815
2816         if ((offset_in_page(start)) || start > TASK_SIZE || len > TASK_SIZE-start)
2817                 return -EINVAL;
2818
2819         len = PAGE_ALIGN(len);
2820         end = start + len;
2821         if (len == 0)
2822                 return -EINVAL;
2823
2824         /*
2825          * arch_unmap() might do unmaps itself.  It must be called
2826          * and finish any rbtree manipulation before this code
2827          * runs and also starts to manipulate the rbtree.
2828          */
2829         arch_unmap(mm, start, end);
2830
2831         /* Find the first overlapping VMA */
2832         vma = find_vma(mm, start);
2833         if (!vma)
2834                 return 0;
2835         prev = vma->vm_prev;
2836         /* we have  start < vma->vm_end  */
2837
2838         /* if it doesn't overlap, we have nothing.. */
2839         if (vma->vm_start >= end)
2840                 return 0;
2841
2842         /*
2843          * If we need to split any vma, do it now to save pain later.
2844          *
2845          * Note: mremap's move_vma VM_ACCOUNT handling assumes a partially
2846          * unmapped vm_area_struct will remain in use: so lower split_vma
2847          * places tmp vma above, and higher split_vma places tmp vma below.
2848          */
2849         if (start > vma->vm_start) {
2850                 int error;
2851
2852                 /*
2853                  * Make sure that map_count on return from munmap() will
2854                  * not exceed its limit; but let map_count go just above
2855                  * its limit temporarily, to help free resources as expected.
2856                  */
2857                 if (end < vma->vm_end && mm->map_count >= sysctl_max_map_count)
2858                         return -ENOMEM;
2859
2860                 error = __split_vma(mm, vma, start, 0);
2861                 if (error)
2862                         return error;
2863                 prev = vma;
2864         }
2865
2866         /* Does it split the last one? */
2867         last = find_vma(mm, end);
2868         if (last && end > last->vm_start) {
2869                 int error = __split_vma(mm, last, end, 1);
2870                 if (error)
2871                         return error;
2872         }
2873         vma = vma_next(mm, prev);
2874
2875         if (unlikely(uf)) {
2876                 /*
2877                  * If userfaultfd_unmap_prep returns an error the vmas
2878                  * will remain splitted, but userland will get a
2879                  * highly unexpected error anyway. This is no
2880                  * different than the case where the first of the two
2881                  * __split_vma fails, but we don't undo the first
2882                  * split, despite we could. This is unlikely enough
2883                  * failure that it's not worth optimizing it for.
2884                  */
2885                 int error = userfaultfd_unmap_prep(vma, start, end, uf);
2886                 if (error)
2887                         return error;
2888         }
2889
2890         /*
2891          * unlock any mlock()ed ranges before detaching vmas
2892          */
2893         if (mm->locked_vm) {
2894                 struct vm_area_struct *tmp = vma;
2895                 while (tmp && tmp->vm_start < end) {
2896                         if (tmp->vm_flags & VM_LOCKED) {
2897                                 mm->locked_vm -= vma_pages(tmp);
2898                                 munlock_vma_pages_all(tmp);
2899                         }
2900
2901                         tmp = tmp->vm_next;
2902                 }
2903         }
2904
2905         /* Detach vmas from rbtree */
2906         if (!detach_vmas_to_be_unmapped(mm, vma, prev, end))
2907                 downgrade = false;
2908
2909         if (downgrade)
2910                 mmap_write_downgrade(mm);
2911
2912         unmap_region(mm, vma, prev, start, end);
2913
2914         /* Fix up all other VM information */
2915         remove_vma_list(mm, vma);
2916
2917         return downgrade ? 1 : 0;
2918 }
2919
2920 int do_munmap(struct mm_struct *mm, unsigned long start, size_t len,
2921               struct list_head *uf)
2922 {
2923         return __do_munmap(mm, start, len, uf, false);
2924 }
2925
2926 static int __vm_munmap(unsigned long start, size_t len, bool downgrade)
2927 {
2928         int ret;
2929         struct mm_struct *mm = current->mm;
2930         LIST_HEAD(uf);
2931
2932         if (mmap_write_lock_killable(mm))
2933                 return -EINTR;
2934
2935         ret = __do_munmap(mm, start, len, &uf, downgrade);
2936         /*
2937          * Returning 1 indicates mmap_lock is downgraded.
2938          * But 1 is not legal return value of vm_munmap() and munmap(), reset
2939          * it to 0 before return.
2940          */
2941         if (ret == 1) {
2942                 mmap_read_unlock(mm);
2943                 ret = 0;
2944         } else
2945                 mmap_write_unlock(mm);
2946
2947         userfaultfd_unmap_complete(mm, &uf);
2948         return ret;
2949 }
2950
2951 int vm_munmap(unsigned long start, size_t len)
2952 {
2953         return __vm_munmap(start, len, false);
2954 }
2955 EXPORT_SYMBOL(vm_munmap);
2956
2957 SYSCALL_DEFINE2(munmap, unsigned long, addr, size_t, len)
2958 {
2959         addr = untagged_addr(addr);
2960         profile_munmap(addr);
2961         return __vm_munmap(addr, len, true);
2962 }
2963
2964
2965 /*
2966  * Emulation of deprecated remap_file_pages() syscall.
2967  */
2968 SYSCALL_DEFINE5(remap_file_pages, unsigned long, start, unsigned long, size,
2969                 unsigned long, prot, unsigned long, pgoff, unsigned long, flags)
2970 {
2971
2972         struct mm_struct *mm = current->mm;
2973         struct vm_area_struct *vma;
2974         unsigned long populate = 0;
2975         unsigned long ret = -EINVAL;
2976         struct file *file;
2977
2978         pr_warn_once("%s (%d) uses deprecated remap_file_pages() syscall. See Documentation/vm/remap_file_pages.rst.\n",
2979                      current->comm, current->pid);
2980
2981         if (prot)
2982                 return ret;
2983         start = start & PAGE_MASK;
2984         size = size & PAGE_MASK;
2985
2986         if (start + size <= start)
2987                 return ret;
2988
2989         /* Does pgoff wrap? */
2990         if (pgoff + (size >> PAGE_SHIFT) < pgoff)
2991                 return ret;
2992
2993         if (mmap_write_lock_killable(mm))
2994                 return -EINTR;
2995
2996         vma = find_vma(mm, start);
2997
2998         if (!vma || !(vma->vm_flags & VM_SHARED))
2999                 goto out;
3000
3001         if (start < vma->vm_start)
3002                 goto out;
3003
3004         if (start + size > vma->vm_end) {
3005                 struct vm_area_struct *next;
3006
3007                 for (next = vma->vm_next; next; next = next->vm_next) {
3008                         /* hole between vmas ? */
3009                         if (next->vm_start != next->vm_prev->vm_end)
3010                                 goto out;
3011
3012                         if (next->vm_file != vma->vm_file)
3013                                 goto out;
3014
3015                         if (next->vm_flags != vma->vm_flags)
3016                                 goto out;
3017
3018                         if (start + size <= next->vm_end)
3019                                 break;
3020                 }
3021
3022                 if (!next)
3023                         goto out;
3024         }
3025
3026         prot |= vma->vm_flags & VM_READ ? PROT_READ : 0;
3027         prot |= vma->vm_flags & VM_WRITE ? PROT_WRITE : 0;
3028         prot |= vma->vm_flags & VM_EXEC ? PROT_EXEC : 0;
3029
3030         flags &= MAP_NONBLOCK;
3031         flags |= MAP_SHARED | MAP_FIXED | MAP_POPULATE;
3032         if (vma->vm_flags & VM_LOCKED)
3033                 flags |= MAP_LOCKED;
3034
3035         file = get_file(vma->vm_file);
3036         ret = do_mmap(vma->vm_file, start, size,
3037                         prot, flags, pgoff, &populate, NULL);
3038         fput(file);
3039 out:
3040         mmap_write_unlock(mm);
3041         if (populate)
3042                 mm_populate(ret, populate);
3043         if (!IS_ERR_VALUE(ret))
3044                 ret = 0;
3045         return ret;
3046 }
3047
3048 /*
3049  *  this is really a simplified "do_mmap".  it only handles
3050  *  anonymous maps.  eventually we may be able to do some
3051  *  brk-specific accounting here.
3052  */
3053 static int do_brk_flags(unsigned long addr, unsigned long len, unsigned long flags, struct list_head *uf)
3054 {
3055         struct mm_struct *mm = current->mm;
3056         struct vm_area_struct *vma, *prev;
3057         struct rb_node **rb_link, *rb_parent;
3058         pgoff_t pgoff = addr >> PAGE_SHIFT;
3059         int error;
3060         unsigned long mapped_addr;
3061
3062         /* Until we need other flags, refuse anything except VM_EXEC. */
3063         if ((flags & (~VM_EXEC)) != 0)
3064                 return -EINVAL;
3065         flags |= VM_DATA_DEFAULT_FLAGS | VM_ACCOUNT | mm->def_flags;
3066
3067         mapped_addr = get_unmapped_area(NULL, addr, len, 0, MAP_FIXED);
3068         if (IS_ERR_VALUE(mapped_addr))
3069                 return mapped_addr;
3070
3071         error = mlock_future_check(mm, mm->def_flags, len);
3072         if (error)
3073                 return error;
3074
3075         /* Clear old maps, set up prev, rb_link, rb_parent, and uf */
3076         if (munmap_vma_range(mm, addr, len, &prev, &rb_link, &rb_parent, uf))
3077                 return -ENOMEM;
3078
3079         /* Check against address space limits *after* clearing old maps... */
3080         if (!may_expand_vm(mm, flags, len >> PAGE_SHIFT))
3081                 return -ENOMEM;
3082
3083         if (mm->map_count > sysctl_max_map_count)
3084                 return -ENOMEM;
3085
3086         if (security_vm_enough_memory_mm(mm, len >> PAGE_SHIFT))
3087                 return -ENOMEM;
3088
3089         /* Can we just expand an old private anonymous mapping? */
3090         vma = vma_merge(mm, prev, addr, addr + len, flags,
3091                         NULL, NULL, pgoff, NULL, NULL_VM_UFFD_CTX);
3092         if (vma)
3093                 goto out;
3094
3095         /*
3096          * create a vma struct for an anonymous mapping
3097          */
3098         vma = vm_area_alloc(mm);
3099         if (!vma) {
3100                 vm_unacct_memory(len >> PAGE_SHIFT);
3101                 return -ENOMEM;
3102         }
3103
3104         vma_set_anonymous(vma);
3105         vma->vm_start = addr;
3106         vma->vm_end = addr + len;
3107         vma->vm_pgoff = pgoff;
3108         vma->vm_flags = flags;
3109         vma->vm_page_prot = vm_get_page_prot(flags);
3110         vma_link(mm, vma, prev, rb_link, rb_parent);
3111 out:
3112         perf_event_mmap(vma);
3113         mm->total_vm += len >> PAGE_SHIFT;
3114         mm->data_vm += len >> PAGE_SHIFT;
3115         if (flags & VM_LOCKED)
3116                 mm->locked_vm += (len >> PAGE_SHIFT);
3117         vma->vm_flags |= VM_SOFTDIRTY;
3118         return 0;
3119 }
3120
3121 int vm_brk_flags(unsigned long addr, unsigned long request, unsigned long flags)
3122 {
3123         struct mm_struct *mm = current->mm;
3124         unsigned long len;
3125         int ret;
3126         bool populate;
3127         LIST_HEAD(uf);
3128
3129         len = PAGE_ALIGN(request);
3130         if (len < request)
3131                 return -ENOMEM;
3132         if (!len)
3133                 return 0;
3134
3135         if (mmap_write_lock_killable(mm))
3136                 return -EINTR;
3137
3138         ret = do_brk_flags(addr, len, flags, &uf);
3139         populate = ((mm->def_flags & VM_LOCKED) != 0);
3140         mmap_write_unlock(mm);
3141         userfaultfd_unmap_complete(mm, &uf);
3142         if (populate && !ret)
3143                 mm_populate(addr, len);
3144         return ret;
3145 }
3146 EXPORT_SYMBOL(vm_brk_flags);
3147
3148 int vm_brk(unsigned long addr, unsigned long len)
3149 {
3150         return vm_brk_flags(addr, len, 0);
3151 }
3152 EXPORT_SYMBOL(vm_brk);
3153
3154 /* Release all mmaps. */
3155 void exit_mmap(struct mm_struct *mm)
3156 {
3157         struct mmu_gather tlb;
3158         struct vm_area_struct *vma;
3159         unsigned long nr_accounted = 0;
3160
3161         /* mm's last user has gone, and its about to be pulled down */
3162         mmu_notifier_release(mm);
3163
3164         if (unlikely(mm_is_oom_victim(mm))) {
3165                 /*
3166                  * Manually reap the mm to free as much memory as possible.
3167                  * Then, as the oom reaper does, set MMF_OOM_SKIP to disregard
3168                  * this mm from further consideration.  Taking mm->mmap_lock for
3169                  * write after setting MMF_OOM_SKIP will guarantee that the oom
3170                  * reaper will not run on this mm again after mmap_lock is
3171                  * dropped.
3172                  *
3173                  * Nothing can be holding mm->mmap_lock here and the above call
3174                  * to mmu_notifier_release(mm) ensures mmu notifier callbacks in
3175                  * __oom_reap_task_mm() will not block.
3176                  *
3177                  * This needs to be done before calling munlock_vma_pages_all(),
3178                  * which clears VM_LOCKED, otherwise the oom reaper cannot
3179                  * reliably test it.
3180                  */
3181                 (void)__oom_reap_task_mm(mm);
3182
3183                 set_bit(MMF_OOM_SKIP, &mm->flags);
3184                 mmap_write_lock(mm);
3185                 mmap_write_unlock(mm);
3186         }
3187
3188         if (mm->locked_vm) {
3189                 vma = mm->mmap;
3190                 while (vma) {
3191                         if (vma->vm_flags & VM_LOCKED)
3192                                 munlock_vma_pages_all(vma);
3193                         vma = vma->vm_next;
3194                 }
3195         }
3196
3197         arch_exit_mmap(mm);
3198
3199         vma = mm->mmap;
3200         if (!vma)       /* Can happen if dup_mmap() received an OOM */
3201                 return;
3202
3203         lru_add_drain();
3204         flush_cache_mm(mm);
3205         tlb_gather_mmu_fullmm(&tlb, mm);
3206         /* update_hiwater_rss(mm) here? but nobody should be looking */
3207         /* Use -1 here to ensure all VMAs in the mm are unmapped */
3208         unmap_vmas(&tlb, vma, 0, -1);
3209         free_pgtables(&tlb, vma, FIRST_USER_ADDRESS, USER_PGTABLES_CEILING);
3210         tlb_finish_mmu(&tlb);
3211
3212         /*
3213          * Walk the list again, actually closing and freeing it,
3214          * with preemption enabled, without holding any MM locks.
3215          */
3216         while (vma) {
3217                 if (vma->vm_flags & VM_ACCOUNT)
3218                         nr_accounted += vma_pages(vma);
3219                 vma = remove_vma(vma);
3220                 cond_resched();
3221         }
3222         vm_unacct_memory(nr_accounted);
3223 }
3224
3225 /* Insert vm structure into process list sorted by address
3226  * and into the inode's i_mmap tree.  If vm_file is non-NULL
3227  * then i_mmap_rwsem is taken here.
3228  */
3229 int insert_vm_struct(struct mm_struct *mm, struct vm_area_struct *vma)
3230 {
3231         struct vm_area_struct *prev;
3232         struct rb_node **rb_link, *rb_parent;
3233
3234         if (find_vma_links(mm, vma->vm_start, vma->vm_end,
3235                            &prev, &rb_link, &rb_parent))
3236                 return -ENOMEM;
3237         if ((vma->vm_flags & VM_ACCOUNT) &&
3238              security_vm_enough_memory_mm(mm, vma_pages(vma)))
3239                 return -ENOMEM;
3240
3241         /*
3242          * The vm_pgoff of a purely anonymous vma should be irrelevant
3243          * until its first write fault, when page's anon_vma and index
3244          * are set.  But now set the vm_pgoff it will almost certainly
3245          * end up with (unless mremap moves it elsewhere before that
3246          * first wfault), so /proc/pid/maps tells a consistent story.
3247          *
3248          * By setting it to reflect the virtual start address of the
3249          * vma, merges and splits can happen in a seamless way, just
3250          * using the existing file pgoff checks and manipulations.
3251          * Similarly in do_mmap and in do_brk_flags.
3252          */
3253         if (vma_is_anonymous(vma)) {
3254                 BUG_ON(vma->anon_vma);
3255                 vma->vm_pgoff = vma->vm_start >> PAGE_SHIFT;
3256         }
3257
3258         vma_link(mm, vma, prev, rb_link, rb_parent);
3259         return 0;
3260 }
3261
3262 /*
3263  * Copy the vma structure to a new location in the same mm,
3264  * prior to moving page table entries, to effect an mremap move.
3265  */
3266 struct vm_area_struct *copy_vma(struct vm_area_struct **vmap,
3267         unsigned long addr, unsigned long len, pgoff_t pgoff,
3268         bool *need_rmap_locks)
3269 {
3270         struct vm_area_struct *vma = *vmap;
3271         unsigned long vma_start = vma->vm_start;
3272         struct mm_struct *mm = vma->vm_mm;
3273         struct vm_area_struct *new_vma, *prev;
3274         struct rb_node **rb_link, *rb_parent;
3275         bool faulted_in_anon_vma = true;
3276
3277         /*
3278          * If anonymous vma has not yet been faulted, update new pgoff
3279          * to match new location, to increase its chance of merging.
3280          */
3281         if (unlikely(vma_is_anonymous(vma) && !vma->anon_vma)) {
3282                 pgoff = addr >> PAGE_SHIFT;
3283                 faulted_in_anon_vma = false;
3284         }
3285
3286         if (find_vma_links(mm, addr, addr + len, &prev, &rb_link, &rb_parent))
3287                 return NULL;    /* should never get here */
3288         new_vma = vma_merge(mm, prev, addr, addr + len, vma->vm_flags,
3289                             vma->anon_vma, vma->vm_file, pgoff, vma_policy(vma),
3290                             vma->vm_userfaultfd_ctx);
3291         if (new_vma) {
3292                 /*
3293                  * Source vma may have been merged into new_vma
3294                  */
3295                 if (unlikely(vma_start >= new_vma->vm_start &&
3296                              vma_start < new_vma->vm_end)) {
3297                         /*
3298                          * The only way we can get a vma_merge with
3299                          * self during an mremap is if the vma hasn't
3300                          * been faulted in yet and we were allowed to
3301                          * reset the dst vma->vm_pgoff to the
3302                          * destination address of the mremap to allow
3303                          * the merge to happen. mremap must change the
3304                          * vm_pgoff linearity between src and dst vmas
3305                          * (in turn preventing a vma_merge) to be
3306                          * safe. It is only safe to keep the vm_pgoff
3307                          * linear if there are no pages mapped yet.
3308                          */
3309                         VM_BUG_ON_VMA(faulted_in_anon_vma, new_vma);
3310                         *vmap = vma = new_vma;
3311                 }
3312                 *need_rmap_locks = (new_vma->vm_pgoff <= vma->vm_pgoff);
3313         } else {
3314                 new_vma = vm_area_dup(vma);
3315                 if (!new_vma)
3316                         goto out;
3317                 new_vma->vm_start = addr;
3318                 new_vma->vm_end = addr + len;
3319                 new_vma->vm_pgoff = pgoff;
3320                 if (vma_dup_policy(vma, new_vma))
3321                         goto out_free_vma;
3322                 if (anon_vma_clone(new_vma, vma))
3323                         goto out_free_mempol;
3324                 if (new_vma->vm_file)
3325                         get_file(new_vma->vm_file);
3326                 if (new_vma->vm_ops && new_vma->vm_ops->open)
3327                         new_vma->vm_ops->open(new_vma);
3328                 vma_link(mm, new_vma, prev, rb_link, rb_parent);
3329                 *need_rmap_locks = false;
3330         }
3331         return new_vma;
3332
3333 out_free_mempol:
3334         mpol_put(vma_policy(new_vma));
3335 out_free_vma:
3336         vm_area_free(new_vma);
3337 out:
3338         return NULL;
3339 }
3340
3341 /*
3342  * Return true if the calling process may expand its vm space by the passed
3343  * number of pages
3344  */
3345 bool may_expand_vm(struct mm_struct *mm, vm_flags_t flags, unsigned long npages)
3346 {
3347         if (mm->total_vm + npages > rlimit(RLIMIT_AS) >> PAGE_SHIFT)
3348                 return false;
3349
3350         if (is_data_mapping(flags) &&
3351             mm->data_vm + npages > rlimit(RLIMIT_DATA) >> PAGE_SHIFT) {
3352                 /* Workaround for Valgrind */
3353                 if (rlimit(RLIMIT_DATA) == 0 &&
3354                     mm->data_vm + npages <= rlimit_max(RLIMIT_DATA) >> PAGE_SHIFT)
3355                         return true;
3356
3357                 pr_warn_once("%s (%d): VmData %lu exceed data ulimit %lu. Update limits%s.\n",
3358                              current->comm, current->pid,
3359                              (mm->data_vm + npages) << PAGE_SHIFT,
3360                              rlimit(RLIMIT_DATA),
3361                              ignore_rlimit_data ? "" : " or use boot option ignore_rlimit_data");
3362
3363                 if (!ignore_rlimit_data)
3364                         return false;
3365         }
3366
3367         return true;
3368 }
3369
3370 void vm_stat_account(struct mm_struct *mm, vm_flags_t flags, long npages)
3371 {
3372         mm->total_vm += npages;
3373
3374         if (is_exec_mapping(flags))
3375                 mm->exec_vm += npages;
3376         else if (is_stack_mapping(flags))
3377                 mm->stack_vm += npages;
3378         else if (is_data_mapping(flags))
3379                 mm->data_vm += npages;
3380 }
3381
3382 static vm_fault_t special_mapping_fault(struct vm_fault *vmf);
3383
3384 /*
3385  * Having a close hook prevents vma merging regardless of flags.
3386  */
3387 static void special_mapping_close(struct vm_area_struct *vma)
3388 {
3389 }
3390
3391 static const char *special_mapping_name(struct vm_area_struct *vma)
3392 {
3393         return ((struct vm_special_mapping *)vma->vm_private_data)->name;
3394 }
3395
3396 static int special_mapping_mremap(struct vm_area_struct *new_vma)
3397 {
3398         struct vm_special_mapping *sm = new_vma->vm_private_data;
3399
3400         if (WARN_ON_ONCE(current->mm != new_vma->vm_mm))
3401                 return -EFAULT;
3402
3403         if (sm->mremap)
3404                 return sm->mremap(sm, new_vma);
3405
3406         return 0;
3407 }
3408
3409 static int special_mapping_split(struct vm_area_struct *vma, unsigned long addr)
3410 {
3411         /*
3412          * Forbid splitting special mappings - kernel has expectations over
3413          * the number of pages in mapping. Together with VM_DONTEXPAND
3414          * the size of vma should stay the same over the special mapping's
3415          * lifetime.
3416          */
3417         return -EINVAL;
3418 }
3419
3420 static const struct vm_operations_struct special_mapping_vmops = {
3421         .close = special_mapping_close,
3422         .fault = special_mapping_fault,
3423         .mremap = special_mapping_mremap,
3424         .name = special_mapping_name,
3425         /* vDSO code relies that VVAR can't be accessed remotely */
3426         .access = NULL,
3427         .may_split = special_mapping_split,
3428 };
3429
3430 static const struct vm_operations_struct legacy_special_mapping_vmops = {
3431         .close = special_mapping_close,
3432         .fault = special_mapping_fault,
3433 };
3434
3435 static vm_fault_t special_mapping_fault(struct vm_fault *vmf)
3436 {
3437         struct vm_area_struct *vma = vmf->vma;
3438         pgoff_t pgoff;
3439         struct page **pages;
3440
3441         if (vma->vm_ops == &legacy_special_mapping_vmops) {
3442                 pages = vma->vm_private_data;
3443         } else {
3444                 struct vm_special_mapping *sm = vma->vm_private_data;
3445
3446                 if (sm->fault)
3447                         return sm->fault(sm, vmf->vma, vmf);
3448
3449                 pages = sm->pages;
3450         }
3451
3452         for (pgoff = vmf->pgoff; pgoff && *pages; ++pages)
3453                 pgoff--;
3454
3455         if (*pages) {
3456                 struct page *page = *pages;
3457                 get_page(page);
3458                 vmf->page = page;
3459                 return 0;
3460         }
3461
3462         return VM_FAULT_SIGBUS;
3463 }
3464
3465 static struct vm_area_struct *__install_special_mapping(
3466         struct mm_struct *mm,
3467         unsigned long addr, unsigned long len,
3468         unsigned long vm_flags, void *priv,
3469         const struct vm_operations_struct *ops)
3470 {
3471         int ret;
3472         struct vm_area_struct *vma;
3473
3474         vma = vm_area_alloc(mm);
3475         if (unlikely(vma == NULL))
3476                 return ERR_PTR(-ENOMEM);
3477
3478         vma->vm_start = addr;
3479         vma->vm_end = addr + len;
3480
3481         vma->vm_flags = vm_flags | mm->def_flags | VM_DONTEXPAND | VM_SOFTDIRTY;
3482         vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
3483
3484         vma->vm_ops = ops;
3485         vma->vm_private_data = priv;
3486
3487         ret = insert_vm_struct(mm, vma);
3488         if (ret)
3489                 goto out;
3490
3491         vm_stat_account(mm, vma->vm_flags, len >> PAGE_SHIFT);
3492
3493         perf_event_mmap(vma);
3494
3495         return vma;
3496
3497 out:
3498         vm_area_free(vma);
3499         return ERR_PTR(ret);
3500 }
3501
3502 bool vma_is_special_mapping(const struct vm_area_struct *vma,
3503         const struct vm_special_mapping *sm)
3504 {
3505         return vma->vm_private_data == sm &&
3506                 (vma->vm_ops == &special_mapping_vmops ||
3507                  vma->vm_ops == &legacy_special_mapping_vmops);
3508 }
3509
3510 /*
3511  * Called with mm->mmap_lock held for writing.
3512  * Insert a new vma covering the given region, with the given flags.
3513  * Its pages are supplied by the given array of struct page *.
3514  * The array can be shorter than len >> PAGE_SHIFT if it's null-terminated.
3515  * The region past the last page supplied will always produce SIGBUS.
3516  * The array pointer and the pages it points to are assumed to stay alive
3517  * for as long as this mapping might exist.
3518  */
3519 struct vm_area_struct *_install_special_mapping(
3520         struct mm_struct *mm,
3521         unsigned long addr, unsigned long len,
3522         unsigned long vm_flags, const struct vm_special_mapping *spec)
3523 {
3524         return __install_special_mapping(mm, addr, len, vm_flags, (void *)spec,
3525                                         &special_mapping_vmops);
3526 }
3527
3528 int install_special_mapping(struct mm_struct *mm,
3529                             unsigned long addr, unsigned long len,
3530                             unsigned long vm_flags, struct page **pages)
3531 {
3532         struct vm_area_struct *vma = __install_special_mapping(
3533                 mm, addr, len, vm_flags, (void *)pages,
3534                 &legacy_special_mapping_vmops);
3535
3536         return PTR_ERR_OR_ZERO(vma);
3537 }
3538
3539 static DEFINE_MUTEX(mm_all_locks_mutex);
3540
3541 static void vm_lock_anon_vma(struct mm_struct *mm, struct anon_vma *anon_vma)
3542 {
3543         if (!test_bit(0, (unsigned long *) &anon_vma->root->rb_root.rb_root.rb_node)) {
3544                 /*
3545                  * The LSB of head.next can't change from under us
3546                  * because we hold the mm_all_locks_mutex.
3547                  */
3548                 down_write_nest_lock(&anon_vma->root->rwsem, &mm->mmap_lock);
3549                 /*
3550                  * We can safely modify head.next after taking the
3551                  * anon_vma->root->rwsem. If some other vma in this mm shares
3552                  * the same anon_vma we won't take it again.
3553                  *
3554                  * No need of atomic instructions here, head.next
3555                  * can't change from under us thanks to the
3556                  * anon_vma->root->rwsem.
3557                  */
3558                 if (__test_and_set_bit(0, (unsigned long *)
3559                                        &anon_vma->root->rb_root.rb_root.rb_node))
3560                         BUG();
3561         }
3562 }
3563
3564 static void vm_lock_mapping(struct mm_struct *mm, struct address_space *mapping)
3565 {
3566         if (!test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) {
3567                 /*
3568                  * AS_MM_ALL_LOCKS can't change from under us because
3569                  * we hold the mm_all_locks_mutex.
3570                  *
3571                  * Operations on ->flags have to be atomic because
3572                  * even if AS_MM_ALL_LOCKS is stable thanks to the
3573                  * mm_all_locks_mutex, there may be other cpus
3574                  * changing other bitflags in parallel to us.
3575                  */
3576                 if (test_and_set_bit(AS_MM_ALL_LOCKS, &mapping->flags))
3577                         BUG();
3578                 down_write_nest_lock(&mapping->i_mmap_rwsem, &mm->mmap_lock);
3579         }
3580 }
3581
3582 /*
3583  * This operation locks against the VM for all pte/vma/mm related
3584  * operations that could ever happen on a certain mm. This includes
3585  * vmtruncate, try_to_unmap, and all page faults.
3586  *
3587  * The caller must take the mmap_lock in write mode before calling
3588  * mm_take_all_locks(). The caller isn't allowed to release the
3589  * mmap_lock until mm_drop_all_locks() returns.
3590  *
3591  * mmap_lock in write mode is required in order to block all operations
3592  * that could modify pagetables and free pages without need of
3593  * altering the vma layout. It's also needed in write mode to avoid new
3594  * anon_vmas to be associated with existing vmas.
3595  *
3596  * A single task can't take more than one mm_take_all_locks() in a row
3597  * or it would deadlock.
3598  *
3599  * The LSB in anon_vma->rb_root.rb_node and the AS_MM_ALL_LOCKS bitflag in
3600  * mapping->flags avoid to take the same lock twice, if more than one
3601  * vma in this mm is backed by the same anon_vma or address_space.
3602  *
3603  * We take locks in following order, accordingly to comment at beginning
3604  * of mm/rmap.c:
3605  *   - all hugetlbfs_i_mmap_rwsem_key locks (aka mapping->i_mmap_rwsem for
3606  *     hugetlb mapping);
3607  *   - all i_mmap_rwsem locks;
3608  *   - all anon_vma->rwseml
3609  *
3610  * We can take all locks within these types randomly because the VM code
3611  * doesn't nest them and we protected from parallel mm_take_all_locks() by
3612  * mm_all_locks_mutex.
3613  *
3614  * mm_take_all_locks() and mm_drop_all_locks are expensive operations
3615  * that may have to take thousand of locks.
3616  *
3617  * mm_take_all_locks() can fail if it's interrupted by signals.
3618  */
3619 int mm_take_all_locks(struct mm_struct *mm)
3620 {
3621         struct vm_area_struct *vma;
3622         struct anon_vma_chain *avc;
3623
3624         BUG_ON(mmap_read_trylock(mm));
3625
3626         mutex_lock(&mm_all_locks_mutex);
3627
3628         for (vma = mm->mmap; vma; vma = vma->vm_next) {
3629                 if (signal_pending(current))
3630                         goto out_unlock;
3631                 if (vma->vm_file && vma->vm_file->f_mapping &&
3632                                 is_vm_hugetlb_page(vma))
3633                         vm_lock_mapping(mm, vma->vm_file->f_mapping);
3634         }
3635
3636         for (vma = mm->mmap; vma; vma = vma->vm_next) {
3637                 if (signal_pending(current))
3638                         goto out_unlock;
3639                 if (vma->vm_file && vma->vm_file->f_mapping &&
3640                                 !is_vm_hugetlb_page(vma))
3641                         vm_lock_mapping(mm, vma->vm_file->f_mapping);
3642         }
3643
3644         for (vma = mm->mmap; vma; vma = vma->vm_next) {
3645                 if (signal_pending(current))
3646                         goto out_unlock;
3647                 if (vma->anon_vma)
3648                         list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
3649                                 vm_lock_anon_vma(mm, avc->anon_vma);
3650         }
3651
3652         return 0;
3653
3654 out_unlock:
3655         mm_drop_all_locks(mm);
3656         return -EINTR;
3657 }
3658
3659 static void vm_unlock_anon_vma(struct anon_vma *anon_vma)
3660 {
3661         if (test_bit(0, (unsigned long *) &anon_vma->root->rb_root.rb_root.rb_node)) {
3662                 /*
3663                  * The LSB of head.next can't change to 0 from under
3664                  * us because we hold the mm_all_locks_mutex.
3665                  *
3666                  * We must however clear the bitflag before unlocking
3667                  * the vma so the users using the anon_vma->rb_root will
3668                  * never see our bitflag.
3669                  *
3670                  * No need of atomic instructions here, head.next
3671                  * can't change from under us until we release the
3672                  * anon_vma->root->rwsem.
3673                  */
3674                 if (!__test_and_clear_bit(0, (unsigned long *)
3675                                           &anon_vma->root->rb_root.rb_root.rb_node))
3676                         BUG();
3677                 anon_vma_unlock_write(anon_vma);
3678         }
3679 }
3680
3681 static void vm_unlock_mapping(struct address_space *mapping)
3682 {
3683         if (test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) {
3684                 /*
3685                  * AS_MM_ALL_LOCKS can't change to 0 from under us
3686                  * because we hold the mm_all_locks_mutex.
3687                  */
3688                 i_mmap_unlock_write(mapping);
3689                 if (!test_and_clear_bit(AS_MM_ALL_LOCKS,
3690                                         &mapping->flags))
3691                         BUG();
3692         }
3693 }
3694
3695 /*
3696  * The mmap_lock cannot be released by the caller until
3697  * mm_drop_all_locks() returns.
3698  */
3699 void mm_drop_all_locks(struct mm_struct *mm)
3700 {
3701         struct vm_area_struct *vma;
3702         struct anon_vma_chain *avc;
3703
3704         BUG_ON(mmap_read_trylock(mm));
3705         BUG_ON(!mutex_is_locked(&mm_all_locks_mutex));
3706
3707         for (vma = mm->mmap; vma; vma = vma->vm_next) {
3708                 if (vma->anon_vma)
3709                         list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
3710                                 vm_unlock_anon_vma(avc->anon_vma);
3711                 if (vma->vm_file && vma->vm_file->f_mapping)
3712                         vm_unlock_mapping(vma->vm_file->f_mapping);
3713         }
3714
3715         mutex_unlock(&mm_all_locks_mutex);
3716 }
3717
3718 /*
3719  * initialise the percpu counter for VM
3720  */
3721 void __init mmap_init(void)
3722 {
3723         int ret;
3724
3725         ret = percpu_counter_init(&vm_committed_as, 0, GFP_KERNEL);
3726         VM_BUG_ON(ret);
3727 }
3728
3729 /*
3730  * Initialise sysctl_user_reserve_kbytes.
3731  *
3732  * This is intended to prevent a user from starting a single memory hogging
3733  * process, such that they cannot recover (kill the hog) in OVERCOMMIT_NEVER
3734  * mode.
3735  *
3736  * The default value is min(3% of free memory, 128MB)
3737  * 128MB is enough to recover with sshd/login, bash, and top/kill.
3738  */
3739 static int init_user_reserve(void)
3740 {
3741         unsigned long free_kbytes;
3742
3743         free_kbytes = global_zone_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
3744
3745         sysctl_user_reserve_kbytes = min(free_kbytes / 32, 1UL << 17);
3746         return 0;
3747 }
3748 subsys_initcall(init_user_reserve);
3749
3750 /*
3751  * Initialise sysctl_admin_reserve_kbytes.
3752  *
3753  * The purpose of sysctl_admin_reserve_kbytes is to allow the sys admin
3754  * to log in and kill a memory hogging process.
3755  *
3756  * Systems with more than 256MB will reserve 8MB, enough to recover
3757  * with sshd, bash, and top in OVERCOMMIT_GUESS. Smaller systems will
3758  * only reserve 3% of free pages by default.
3759  */
3760 static int init_admin_reserve(void)
3761 {
3762         unsigned long free_kbytes;
3763
3764         free_kbytes = global_zone_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
3765
3766         sysctl_admin_reserve_kbytes = min(free_kbytes / 32, 1UL << 13);
3767         return 0;
3768 }
3769 subsys_initcall(init_admin_reserve);
3770
3771 /*
3772  * Reinititalise user and admin reserves if memory is added or removed.
3773  *
3774  * The default user reserve max is 128MB, and the default max for the
3775  * admin reserve is 8MB. These are usually, but not always, enough to
3776  * enable recovery from a memory hogging process using login/sshd, a shell,
3777  * and tools like top. It may make sense to increase or even disable the
3778  * reserve depending on the existence of swap or variations in the recovery
3779  * tools. So, the admin may have changed them.
3780  *
3781  * If memory is added and the reserves have been eliminated or increased above
3782  * the default max, then we'll trust the admin.
3783  *
3784  * If memory is removed and there isn't enough free memory, then we
3785  * need to reset the reserves.
3786  *
3787  * Otherwise keep the reserve set by the admin.
3788  */
3789 static int reserve_mem_notifier(struct notifier_block *nb,
3790                              unsigned long action, void *data)
3791 {
3792         unsigned long tmp, free_kbytes;
3793
3794         switch (action) {
3795         case MEM_ONLINE:
3796                 /* Default max is 128MB. Leave alone if modified by operator. */
3797                 tmp = sysctl_user_reserve_kbytes;
3798                 if (0 < tmp && tmp < (1UL << 17))
3799                         init_user_reserve();
3800
3801                 /* Default max is 8MB.  Leave alone if modified by operator. */
3802                 tmp = sysctl_admin_reserve_kbytes;
3803                 if (0 < tmp && tmp < (1UL << 13))
3804                         init_admin_reserve();
3805
3806                 break;
3807         case MEM_OFFLINE:
3808                 free_kbytes = global_zone_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
3809
3810                 if (sysctl_user_reserve_kbytes > free_kbytes) {
3811                         init_user_reserve();
3812                         pr_info("vm.user_reserve_kbytes reset to %lu\n",
3813                                 sysctl_user_reserve_kbytes);
3814                 }
3815
3816                 if (sysctl_admin_reserve_kbytes > free_kbytes) {
3817                         init_admin_reserve();
3818                         pr_info("vm.admin_reserve_kbytes reset to %lu\n",
3819                                 sysctl_admin_reserve_kbytes);
3820                 }
3821                 break;
3822         default:
3823                 break;
3824         }
3825         return NOTIFY_OK;
3826 }
3827
3828 static struct notifier_block reserve_mem_nb = {
3829         .notifier_call = reserve_mem_notifier,
3830 };
3831
3832 static int __meminit init_reserve_notifier(void)
3833 {
3834         if (register_hotmemory_notifier(&reserve_mem_nb))
3835                 pr_err("Failed registering memory add/remove notifier for admin reserve\n");
3836
3837         return 0;
3838 }
3839 subsys_initcall(init_reserve_notifier);