mmap: fix vma_iterator in error path of vma_merge()
[platform/kernel/linux-rpi.git] / mm / mmap.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * mm/mmap.c
4  *
5  * Written by obz.
6  *
7  * Address space accounting code        <alan@lxorguk.ukuu.org.uk>
8  */
9
10 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
11
12 #include <linux/kernel.h>
13 #include <linux/slab.h>
14 #include <linux/backing-dev.h>
15 #include <linux/mm.h>
16 #include <linux/mm_inline.h>
17 #include <linux/shm.h>
18 #include <linux/mman.h>
19 #include <linux/pagemap.h>
20 #include <linux/swap.h>
21 #include <linux/syscalls.h>
22 #include <linux/capability.h>
23 #include <linux/init.h>
24 #include <linux/file.h>
25 #include <linux/fs.h>
26 #include <linux/personality.h>
27 #include <linux/security.h>
28 #include <linux/hugetlb.h>
29 #include <linux/shmem_fs.h>
30 #include <linux/profile.h>
31 #include <linux/export.h>
32 #include <linux/mount.h>
33 #include <linux/mempolicy.h>
34 #include <linux/rmap.h>
35 #include <linux/mmu_notifier.h>
36 #include <linux/mmdebug.h>
37 #include <linux/perf_event.h>
38 #include <linux/audit.h>
39 #include <linux/khugepaged.h>
40 #include <linux/uprobes.h>
41 #include <linux/notifier.h>
42 #include <linux/memory.h>
43 #include <linux/printk.h>
44 #include <linux/userfaultfd_k.h>
45 #include <linux/moduleparam.h>
46 #include <linux/pkeys.h>
47 #include <linux/oom.h>
48 #include <linux/sched/mm.h>
49 #include <linux/ksm.h>
50
51 #include <linux/uaccess.h>
52 #include <asm/cacheflush.h>
53 #include <asm/tlb.h>
54 #include <asm/mmu_context.h>
55
56 #define CREATE_TRACE_POINTS
57 #include <trace/events/mmap.h>
58
59 #include "internal.h"
60
61 #ifndef arch_mmap_check
62 #define arch_mmap_check(addr, len, flags)       (0)
63 #endif
64
65 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_BITS
66 const int mmap_rnd_bits_min = CONFIG_ARCH_MMAP_RND_BITS_MIN;
67 const int mmap_rnd_bits_max = CONFIG_ARCH_MMAP_RND_BITS_MAX;
68 int mmap_rnd_bits __read_mostly = CONFIG_ARCH_MMAP_RND_BITS;
69 #endif
70 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS
71 const int mmap_rnd_compat_bits_min = CONFIG_ARCH_MMAP_RND_COMPAT_BITS_MIN;
72 const int mmap_rnd_compat_bits_max = CONFIG_ARCH_MMAP_RND_COMPAT_BITS_MAX;
73 int mmap_rnd_compat_bits __read_mostly = CONFIG_ARCH_MMAP_RND_COMPAT_BITS;
74 #endif
75
76 static bool ignore_rlimit_data;
77 core_param(ignore_rlimit_data, ignore_rlimit_data, bool, 0644);
78
79 static void unmap_region(struct mm_struct *mm, struct ma_state *mas,
80                 struct vm_area_struct *vma, struct vm_area_struct *prev,
81                 struct vm_area_struct *next, unsigned long start,
82                 unsigned long end, unsigned long tree_end, bool mm_wr_locked);
83
84 static pgprot_t vm_pgprot_modify(pgprot_t oldprot, unsigned long vm_flags)
85 {
86         return pgprot_modify(oldprot, vm_get_page_prot(vm_flags));
87 }
88
89 /* Update vma->vm_page_prot to reflect vma->vm_flags. */
90 void vma_set_page_prot(struct vm_area_struct *vma)
91 {
92         unsigned long vm_flags = vma->vm_flags;
93         pgprot_t vm_page_prot;
94
95         vm_page_prot = vm_pgprot_modify(vma->vm_page_prot, vm_flags);
96         if (vma_wants_writenotify(vma, vm_page_prot)) {
97                 vm_flags &= ~VM_SHARED;
98                 vm_page_prot = vm_pgprot_modify(vm_page_prot, vm_flags);
99         }
100         /* remove_protection_ptes reads vma->vm_page_prot without mmap_lock */
101         WRITE_ONCE(vma->vm_page_prot, vm_page_prot);
102 }
103
104 /*
105  * Requires inode->i_mapping->i_mmap_rwsem
106  */
107 static void __remove_shared_vm_struct(struct vm_area_struct *vma,
108                 struct file *file, struct address_space *mapping)
109 {
110         if (vma->vm_flags & VM_SHARED)
111                 mapping_unmap_writable(mapping);
112
113         flush_dcache_mmap_lock(mapping);
114         vma_interval_tree_remove(vma, &mapping->i_mmap);
115         flush_dcache_mmap_unlock(mapping);
116 }
117
118 /*
119  * Unlink a file-based vm structure from its interval tree, to hide
120  * vma from rmap and vmtruncate before freeing its page tables.
121  */
122 void unlink_file_vma(struct vm_area_struct *vma)
123 {
124         struct file *file = vma->vm_file;
125
126         if (file) {
127                 struct address_space *mapping = file->f_mapping;
128                 i_mmap_lock_write(mapping);
129                 __remove_shared_vm_struct(vma, file, mapping);
130                 i_mmap_unlock_write(mapping);
131         }
132 }
133
134 /*
135  * Close a vm structure and free it.
136  */
137 static void remove_vma(struct vm_area_struct *vma, bool unreachable)
138 {
139         might_sleep();
140         if (vma->vm_ops && vma->vm_ops->close)
141                 vma->vm_ops->close(vma);
142         if (vma->vm_file)
143                 fput(vma->vm_file);
144         mpol_put(vma_policy(vma));
145         if (unreachable)
146                 __vm_area_free(vma);
147         else
148                 vm_area_free(vma);
149 }
150
151 static inline struct vm_area_struct *vma_prev_limit(struct vma_iterator *vmi,
152                                                     unsigned long min)
153 {
154         return mas_prev(&vmi->mas, min);
155 }
156
157 /*
158  * check_brk_limits() - Use platform specific check of range & verify mlock
159  * limits.
160  * @addr: The address to check
161  * @len: The size of increase.
162  *
163  * Return: 0 on success.
164  */
165 static int check_brk_limits(unsigned long addr, unsigned long len)
166 {
167         unsigned long mapped_addr;
168
169         mapped_addr = get_unmapped_area(NULL, addr, len, 0, MAP_FIXED);
170         if (IS_ERR_VALUE(mapped_addr))
171                 return mapped_addr;
172
173         return mlock_future_ok(current->mm, current->mm->def_flags, len)
174                 ? 0 : -EAGAIN;
175 }
176 static int do_brk_flags(struct vma_iterator *vmi, struct vm_area_struct *brkvma,
177                 unsigned long addr, unsigned long request, unsigned long flags);
178 SYSCALL_DEFINE1(brk, unsigned long, brk)
179 {
180         unsigned long newbrk, oldbrk, origbrk;
181         struct mm_struct *mm = current->mm;
182         struct vm_area_struct *brkvma, *next = NULL;
183         unsigned long min_brk;
184         bool populate = false;
185         LIST_HEAD(uf);
186         struct vma_iterator vmi;
187
188         if (mmap_write_lock_killable(mm))
189                 return -EINTR;
190
191         origbrk = mm->brk;
192
193 #ifdef CONFIG_COMPAT_BRK
194         /*
195          * CONFIG_COMPAT_BRK can still be overridden by setting
196          * randomize_va_space to 2, which will still cause mm->start_brk
197          * to be arbitrarily shifted
198          */
199         if (current->brk_randomized)
200                 min_brk = mm->start_brk;
201         else
202                 min_brk = mm->end_data;
203 #else
204         min_brk = mm->start_brk;
205 #endif
206         if (brk < min_brk)
207                 goto out;
208
209         /*
210          * Check against rlimit here. If this check is done later after the test
211          * of oldbrk with newbrk then it can escape the test and let the data
212          * segment grow beyond its set limit the in case where the limit is
213          * not page aligned -Ram Gupta
214          */
215         if (check_data_rlimit(rlimit(RLIMIT_DATA), brk, mm->start_brk,
216                               mm->end_data, mm->start_data))
217                 goto out;
218
219         newbrk = PAGE_ALIGN(brk);
220         oldbrk = PAGE_ALIGN(mm->brk);
221         if (oldbrk == newbrk) {
222                 mm->brk = brk;
223                 goto success;
224         }
225
226         /* Always allow shrinking brk. */
227         if (brk <= mm->brk) {
228                 /* Search one past newbrk */
229                 vma_iter_init(&vmi, mm, newbrk);
230                 brkvma = vma_find(&vmi, oldbrk);
231                 if (!brkvma || brkvma->vm_start >= oldbrk)
232                         goto out; /* mapping intersects with an existing non-brk vma. */
233                 /*
234                  * mm->brk must be protected by write mmap_lock.
235                  * do_vma_munmap() will drop the lock on success,  so update it
236                  * before calling do_vma_munmap().
237                  */
238                 mm->brk = brk;
239                 if (do_vma_munmap(&vmi, brkvma, newbrk, oldbrk, &uf, true))
240                         goto out;
241
242                 goto success_unlocked;
243         }
244
245         if (check_brk_limits(oldbrk, newbrk - oldbrk))
246                 goto out;
247
248         /*
249          * Only check if the next VMA is within the stack_guard_gap of the
250          * expansion area
251          */
252         vma_iter_init(&vmi, mm, oldbrk);
253         next = vma_find(&vmi, newbrk + PAGE_SIZE + stack_guard_gap);
254         if (next && newbrk + PAGE_SIZE > vm_start_gap(next))
255                 goto out;
256
257         brkvma = vma_prev_limit(&vmi, mm->start_brk);
258         /* Ok, looks good - let it rip. */
259         if (do_brk_flags(&vmi, brkvma, oldbrk, newbrk - oldbrk, 0) < 0)
260                 goto out;
261
262         mm->brk = brk;
263         if (mm->def_flags & VM_LOCKED)
264                 populate = true;
265
266 success:
267         mmap_write_unlock(mm);
268 success_unlocked:
269         userfaultfd_unmap_complete(mm, &uf);
270         if (populate)
271                 mm_populate(oldbrk, newbrk - oldbrk);
272         return brk;
273
274 out:
275         mm->brk = origbrk;
276         mmap_write_unlock(mm);
277         return origbrk;
278 }
279
280 #if defined(CONFIG_DEBUG_VM_MAPLE_TREE)
281 static void validate_mm(struct mm_struct *mm)
282 {
283         int bug = 0;
284         int i = 0;
285         struct vm_area_struct *vma;
286         VMA_ITERATOR(vmi, mm, 0);
287
288         mt_validate(&mm->mm_mt);
289         for_each_vma(vmi, vma) {
290 #ifdef CONFIG_DEBUG_VM_RB
291                 struct anon_vma *anon_vma = vma->anon_vma;
292                 struct anon_vma_chain *avc;
293 #endif
294                 unsigned long vmi_start, vmi_end;
295                 bool warn = 0;
296
297                 vmi_start = vma_iter_addr(&vmi);
298                 vmi_end = vma_iter_end(&vmi);
299                 if (VM_WARN_ON_ONCE_MM(vma->vm_end != vmi_end, mm))
300                         warn = 1;
301
302                 if (VM_WARN_ON_ONCE_MM(vma->vm_start != vmi_start, mm))
303                         warn = 1;
304
305                 if (warn) {
306                         pr_emerg("issue in %s\n", current->comm);
307                         dump_stack();
308                         dump_vma(vma);
309                         pr_emerg("tree range: %px start %lx end %lx\n", vma,
310                                  vmi_start, vmi_end - 1);
311                         vma_iter_dump_tree(&vmi);
312                 }
313
314 #ifdef CONFIG_DEBUG_VM_RB
315                 if (anon_vma) {
316                         anon_vma_lock_read(anon_vma);
317                         list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
318                                 anon_vma_interval_tree_verify(avc);
319                         anon_vma_unlock_read(anon_vma);
320                 }
321 #endif
322                 i++;
323         }
324         if (i != mm->map_count) {
325                 pr_emerg("map_count %d vma iterator %d\n", mm->map_count, i);
326                 bug = 1;
327         }
328         VM_BUG_ON_MM(bug, mm);
329 }
330
331 #else /* !CONFIG_DEBUG_VM_MAPLE_TREE */
332 #define validate_mm(mm) do { } while (0)
333 #endif /* CONFIG_DEBUG_VM_MAPLE_TREE */
334
335 /*
336  * vma has some anon_vma assigned, and is already inserted on that
337  * anon_vma's interval trees.
338  *
339  * Before updating the vma's vm_start / vm_end / vm_pgoff fields, the
340  * vma must be removed from the anon_vma's interval trees using
341  * anon_vma_interval_tree_pre_update_vma().
342  *
343  * After the update, the vma will be reinserted using
344  * anon_vma_interval_tree_post_update_vma().
345  *
346  * The entire update must be protected by exclusive mmap_lock and by
347  * the root anon_vma's mutex.
348  */
349 static inline void
350 anon_vma_interval_tree_pre_update_vma(struct vm_area_struct *vma)
351 {
352         struct anon_vma_chain *avc;
353
354         list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
355                 anon_vma_interval_tree_remove(avc, &avc->anon_vma->rb_root);
356 }
357
358 static inline void
359 anon_vma_interval_tree_post_update_vma(struct vm_area_struct *vma)
360 {
361         struct anon_vma_chain *avc;
362
363         list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
364                 anon_vma_interval_tree_insert(avc, &avc->anon_vma->rb_root);
365 }
366
367 static unsigned long count_vma_pages_range(struct mm_struct *mm,
368                 unsigned long addr, unsigned long end)
369 {
370         VMA_ITERATOR(vmi, mm, addr);
371         struct vm_area_struct *vma;
372         unsigned long nr_pages = 0;
373
374         for_each_vma_range(vmi, vma, end) {
375                 unsigned long vm_start = max(addr, vma->vm_start);
376                 unsigned long vm_end = min(end, vma->vm_end);
377
378                 nr_pages += PHYS_PFN(vm_end - vm_start);
379         }
380
381         return nr_pages;
382 }
383
384 static void __vma_link_file(struct vm_area_struct *vma,
385                             struct address_space *mapping)
386 {
387         if (vma->vm_flags & VM_SHARED)
388                 mapping_allow_writable(mapping);
389
390         flush_dcache_mmap_lock(mapping);
391         vma_interval_tree_insert(vma, &mapping->i_mmap);
392         flush_dcache_mmap_unlock(mapping);
393 }
394
395 static int vma_link(struct mm_struct *mm, struct vm_area_struct *vma)
396 {
397         VMA_ITERATOR(vmi, mm, 0);
398         struct address_space *mapping = NULL;
399
400         vma_iter_config(&vmi, vma->vm_start, vma->vm_end);
401         if (vma_iter_prealloc(&vmi, vma))
402                 return -ENOMEM;
403
404         vma_start_write(vma);
405
406         vma_iter_store(&vmi, vma);
407
408         if (vma->vm_file) {
409                 mapping = vma->vm_file->f_mapping;
410                 i_mmap_lock_write(mapping);
411                 __vma_link_file(vma, mapping);
412                 i_mmap_unlock_write(mapping);
413         }
414
415         mm->map_count++;
416         validate_mm(mm);
417         return 0;
418 }
419
420 /*
421  * init_multi_vma_prep() - Initializer for struct vma_prepare
422  * @vp: The vma_prepare struct
423  * @vma: The vma that will be altered once locked
424  * @next: The next vma if it is to be adjusted
425  * @remove: The first vma to be removed
426  * @remove2: The second vma to be removed
427  */
428 static inline void init_multi_vma_prep(struct vma_prepare *vp,
429                 struct vm_area_struct *vma, struct vm_area_struct *next,
430                 struct vm_area_struct *remove, struct vm_area_struct *remove2)
431 {
432         memset(vp, 0, sizeof(struct vma_prepare));
433         vp->vma = vma;
434         vp->anon_vma = vma->anon_vma;
435         vp->remove = remove;
436         vp->remove2 = remove2;
437         vp->adj_next = next;
438         if (!vp->anon_vma && next)
439                 vp->anon_vma = next->anon_vma;
440
441         vp->file = vma->vm_file;
442         if (vp->file)
443                 vp->mapping = vma->vm_file->f_mapping;
444
445 }
446
447 /*
448  * init_vma_prep() - Initializer wrapper for vma_prepare struct
449  * @vp: The vma_prepare struct
450  * @vma: The vma that will be altered once locked
451  */
452 static inline void init_vma_prep(struct vma_prepare *vp,
453                                  struct vm_area_struct *vma)
454 {
455         init_multi_vma_prep(vp, vma, NULL, NULL, NULL);
456 }
457
458
459 /*
460  * vma_prepare() - Helper function for handling locking VMAs prior to altering
461  * @vp: The initialized vma_prepare struct
462  */
463 static inline void vma_prepare(struct vma_prepare *vp)
464 {
465         if (vp->file) {
466                 uprobe_munmap(vp->vma, vp->vma->vm_start, vp->vma->vm_end);
467
468                 if (vp->adj_next)
469                         uprobe_munmap(vp->adj_next, vp->adj_next->vm_start,
470                                       vp->adj_next->vm_end);
471
472                 i_mmap_lock_write(vp->mapping);
473                 if (vp->insert && vp->insert->vm_file) {
474                         /*
475                          * Put into interval tree now, so instantiated pages
476                          * are visible to arm/parisc __flush_dcache_page
477                          * throughout; but we cannot insert into address
478                          * space until vma start or end is updated.
479                          */
480                         __vma_link_file(vp->insert,
481                                         vp->insert->vm_file->f_mapping);
482                 }
483         }
484
485         if (vp->anon_vma) {
486                 anon_vma_lock_write(vp->anon_vma);
487                 anon_vma_interval_tree_pre_update_vma(vp->vma);
488                 if (vp->adj_next)
489                         anon_vma_interval_tree_pre_update_vma(vp->adj_next);
490         }
491
492         if (vp->file) {
493                 flush_dcache_mmap_lock(vp->mapping);
494                 vma_interval_tree_remove(vp->vma, &vp->mapping->i_mmap);
495                 if (vp->adj_next)
496                         vma_interval_tree_remove(vp->adj_next,
497                                                  &vp->mapping->i_mmap);
498         }
499
500 }
501
502 /*
503  * vma_complete- Helper function for handling the unlocking after altering VMAs,
504  * or for inserting a VMA.
505  *
506  * @vp: The vma_prepare struct
507  * @vmi: The vma iterator
508  * @mm: The mm_struct
509  */
510 static inline void vma_complete(struct vma_prepare *vp,
511                                 struct vma_iterator *vmi, struct mm_struct *mm)
512 {
513         if (vp->file) {
514                 if (vp->adj_next)
515                         vma_interval_tree_insert(vp->adj_next,
516                                                  &vp->mapping->i_mmap);
517                 vma_interval_tree_insert(vp->vma, &vp->mapping->i_mmap);
518                 flush_dcache_mmap_unlock(vp->mapping);
519         }
520
521         if (vp->remove && vp->file) {
522                 __remove_shared_vm_struct(vp->remove, vp->file, vp->mapping);
523                 if (vp->remove2)
524                         __remove_shared_vm_struct(vp->remove2, vp->file,
525                                                   vp->mapping);
526         } else if (vp->insert) {
527                 /*
528                  * split_vma has split insert from vma, and needs
529                  * us to insert it before dropping the locks
530                  * (it may either follow vma or precede it).
531                  */
532                 vma_iter_store(vmi, vp->insert);
533                 mm->map_count++;
534         }
535
536         if (vp->anon_vma) {
537                 anon_vma_interval_tree_post_update_vma(vp->vma);
538                 if (vp->adj_next)
539                         anon_vma_interval_tree_post_update_vma(vp->adj_next);
540                 anon_vma_unlock_write(vp->anon_vma);
541         }
542
543         if (vp->file) {
544                 i_mmap_unlock_write(vp->mapping);
545                 uprobe_mmap(vp->vma);
546
547                 if (vp->adj_next)
548                         uprobe_mmap(vp->adj_next);
549         }
550
551         if (vp->remove) {
552 again:
553                 vma_mark_detached(vp->remove, true);
554                 if (vp->file) {
555                         uprobe_munmap(vp->remove, vp->remove->vm_start,
556                                       vp->remove->vm_end);
557                         fput(vp->file);
558                 }
559                 if (vp->remove->anon_vma)
560                         anon_vma_merge(vp->vma, vp->remove);
561                 mm->map_count--;
562                 mpol_put(vma_policy(vp->remove));
563                 if (!vp->remove2)
564                         WARN_ON_ONCE(vp->vma->vm_end < vp->remove->vm_end);
565                 vm_area_free(vp->remove);
566
567                 /*
568                  * In mprotect's case 6 (see comments on vma_merge),
569                  * we are removing both mid and next vmas
570                  */
571                 if (vp->remove2) {
572                         vp->remove = vp->remove2;
573                         vp->remove2 = NULL;
574                         goto again;
575                 }
576         }
577         if (vp->insert && vp->file)
578                 uprobe_mmap(vp->insert);
579         validate_mm(mm);
580 }
581
582 /*
583  * dup_anon_vma() - Helper function to duplicate anon_vma
584  * @dst: The destination VMA
585  * @src: The source VMA
586  *
587  * Returns: 0 on success.
588  */
589 static inline int dup_anon_vma(struct vm_area_struct *dst,
590                                struct vm_area_struct *src)
591 {
592         /*
593          * Easily overlooked: when mprotect shifts the boundary, make sure the
594          * expanding vma has anon_vma set if the shrinking vma had, to cover any
595          * anon pages imported.
596          */
597         if (src->anon_vma && !dst->anon_vma) {
598                 vma_assert_write_locked(dst);
599                 dst->anon_vma = src->anon_vma;
600                 return anon_vma_clone(dst, src);
601         }
602
603         return 0;
604 }
605
606 /*
607  * vma_expand - Expand an existing VMA
608  *
609  * @vmi: The vma iterator
610  * @vma: The vma to expand
611  * @start: The start of the vma
612  * @end: The exclusive end of the vma
613  * @pgoff: The page offset of vma
614  * @next: The current of next vma.
615  *
616  * Expand @vma to @start and @end.  Can expand off the start and end.  Will
617  * expand over @next if it's different from @vma and @end == @next->vm_end.
618  * Checking if the @vma can expand and merge with @next needs to be handled by
619  * the caller.
620  *
621  * Returns: 0 on success
622  */
623 int vma_expand(struct vma_iterator *vmi, struct vm_area_struct *vma,
624                unsigned long start, unsigned long end, pgoff_t pgoff,
625                struct vm_area_struct *next)
626 {
627         bool remove_next = false;
628         struct vma_prepare vp;
629
630         vma_start_write(vma);
631         if (next && (vma != next) && (end == next->vm_end)) {
632                 int ret;
633
634                 remove_next = true;
635                 vma_start_write(next);
636                 ret = dup_anon_vma(vma, next);
637                 if (ret)
638                         return ret;
639         }
640
641         init_multi_vma_prep(&vp, vma, NULL, remove_next ? next : NULL, NULL);
642         /* Not merging but overwriting any part of next is not handled. */
643         VM_WARN_ON(next && !vp.remove &&
644                   next != vma && end > next->vm_start);
645         /* Only handles expanding */
646         VM_WARN_ON(vma->vm_start < start || vma->vm_end > end);
647
648         /* Note: vma iterator must be pointing to 'start' */
649         vma_iter_config(vmi, start, end);
650         if (vma_iter_prealloc(vmi, vma))
651                 goto nomem;
652
653         vma_prepare(&vp);
654         vma_adjust_trans_huge(vma, start, end, 0);
655         vma->vm_start = start;
656         vma->vm_end = end;
657         vma->vm_pgoff = pgoff;
658         vma_iter_store(vmi, vma);
659
660         vma_complete(&vp, vmi, vma->vm_mm);
661         return 0;
662
663 nomem:
664         return -ENOMEM;
665 }
666
667 /*
668  * vma_shrink() - Reduce an existing VMAs memory area
669  * @vmi: The vma iterator
670  * @vma: The VMA to modify
671  * @start: The new start
672  * @end: The new end
673  *
674  * Returns: 0 on success, -ENOMEM otherwise
675  */
676 int vma_shrink(struct vma_iterator *vmi, struct vm_area_struct *vma,
677                unsigned long start, unsigned long end, pgoff_t pgoff)
678 {
679         struct vma_prepare vp;
680
681         WARN_ON((vma->vm_start != start) && (vma->vm_end != end));
682
683         if (vma->vm_start < start)
684                 vma_iter_config(vmi, vma->vm_start, start);
685         else
686                 vma_iter_config(vmi, end, vma->vm_end);
687
688         if (vma_iter_prealloc(vmi, NULL))
689                 return -ENOMEM;
690
691         vma_start_write(vma);
692
693         init_vma_prep(&vp, vma);
694         vma_prepare(&vp);
695         vma_adjust_trans_huge(vma, start, end, 0);
696
697         vma_iter_clear(vmi);
698         vma->vm_start = start;
699         vma->vm_end = end;
700         vma->vm_pgoff = pgoff;
701         vma_complete(&vp, vmi, vma->vm_mm);
702         return 0;
703 }
704
705 /*
706  * If the vma has a ->close operation then the driver probably needs to release
707  * per-vma resources, so we don't attempt to merge those if the caller indicates
708  * the current vma may be removed as part of the merge.
709  */
710 static inline bool is_mergeable_vma(struct vm_area_struct *vma,
711                 struct file *file, unsigned long vm_flags,
712                 struct vm_userfaultfd_ctx vm_userfaultfd_ctx,
713                 struct anon_vma_name *anon_name, bool may_remove_vma)
714 {
715         /*
716          * VM_SOFTDIRTY should not prevent from VMA merging, if we
717          * match the flags but dirty bit -- the caller should mark
718          * merged VMA as dirty. If dirty bit won't be excluded from
719          * comparison, we increase pressure on the memory system forcing
720          * the kernel to generate new VMAs when old one could be
721          * extended instead.
722          */
723         if ((vma->vm_flags ^ vm_flags) & ~VM_SOFTDIRTY)
724                 return false;
725         if (vma->vm_file != file)
726                 return false;
727         if (may_remove_vma && vma->vm_ops && vma->vm_ops->close)
728                 return false;
729         if (!is_mergeable_vm_userfaultfd_ctx(vma, vm_userfaultfd_ctx))
730                 return false;
731         if (!anon_vma_name_eq(anon_vma_name(vma), anon_name))
732                 return false;
733         return true;
734 }
735
736 static inline bool is_mergeable_anon_vma(struct anon_vma *anon_vma1,
737                  struct anon_vma *anon_vma2, struct vm_area_struct *vma)
738 {
739         /*
740          * The list_is_singular() test is to avoid merging VMA cloned from
741          * parents. This can improve scalability caused by anon_vma lock.
742          */
743         if ((!anon_vma1 || !anon_vma2) && (!vma ||
744                 list_is_singular(&vma->anon_vma_chain)))
745                 return true;
746         return anon_vma1 == anon_vma2;
747 }
748
749 /*
750  * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
751  * in front of (at a lower virtual address and file offset than) the vma.
752  *
753  * We cannot merge two vmas if they have differently assigned (non-NULL)
754  * anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
755  *
756  * We don't check here for the merged mmap wrapping around the end of pagecache
757  * indices (16TB on ia32) because do_mmap() does not permit mmap's which
758  * wrap, nor mmaps which cover the final page at index -1UL.
759  *
760  * We assume the vma may be removed as part of the merge.
761  */
762 static bool
763 can_vma_merge_before(struct vm_area_struct *vma, unsigned long vm_flags,
764                 struct anon_vma *anon_vma, struct file *file,
765                 pgoff_t vm_pgoff, struct vm_userfaultfd_ctx vm_userfaultfd_ctx,
766                 struct anon_vma_name *anon_name)
767 {
768         if (is_mergeable_vma(vma, file, vm_flags, vm_userfaultfd_ctx, anon_name, true) &&
769             is_mergeable_anon_vma(anon_vma, vma->anon_vma, vma)) {
770                 if (vma->vm_pgoff == vm_pgoff)
771                         return true;
772         }
773         return false;
774 }
775
776 /*
777  * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
778  * beyond (at a higher virtual address and file offset than) the vma.
779  *
780  * We cannot merge two vmas if they have differently assigned (non-NULL)
781  * anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
782  *
783  * We assume that vma is not removed as part of the merge.
784  */
785 static bool
786 can_vma_merge_after(struct vm_area_struct *vma, unsigned long vm_flags,
787                 struct anon_vma *anon_vma, struct file *file,
788                 pgoff_t vm_pgoff, struct vm_userfaultfd_ctx vm_userfaultfd_ctx,
789                 struct anon_vma_name *anon_name)
790 {
791         if (is_mergeable_vma(vma, file, vm_flags, vm_userfaultfd_ctx, anon_name, false) &&
792             is_mergeable_anon_vma(anon_vma, vma->anon_vma, vma)) {
793                 pgoff_t vm_pglen;
794                 vm_pglen = vma_pages(vma);
795                 if (vma->vm_pgoff + vm_pglen == vm_pgoff)
796                         return true;
797         }
798         return false;
799 }
800
801 /*
802  * Given a mapping request (addr,end,vm_flags,file,pgoff,anon_name),
803  * figure out whether that can be merged with its predecessor or its
804  * successor.  Or both (it neatly fills a hole).
805  *
806  * In most cases - when called for mmap, brk or mremap - [addr,end) is
807  * certain not to be mapped by the time vma_merge is called; but when
808  * called for mprotect, it is certain to be already mapped (either at
809  * an offset within prev, or at the start of next), and the flags of
810  * this area are about to be changed to vm_flags - and the no-change
811  * case has already been eliminated.
812  *
813  * The following mprotect cases have to be considered, where **** is
814  * the area passed down from mprotect_fixup, never extending beyond one
815  * vma, PPPP is the previous vma, CCCC is a concurrent vma that starts
816  * at the same address as **** and is of the same or larger span, and
817  * NNNN the next vma after ****:
818  *
819  *     ****             ****                   ****
820  *    PPPPPPNNNNNN    PPPPPPNNNNNN       PPPPPPCCCCCC
821  *    cannot merge    might become       might become
822  *                    PPNNNNNNNNNN       PPPPPPPPPPCC
823  *    mmap, brk or    case 4 below       case 5 below
824  *    mremap move:
825  *                        ****               ****
826  *                    PPPP    NNNN       PPPPCCCCNNNN
827  *                    might become       might become
828  *                    PPPPPPPPPPPP 1 or  PPPPPPPPPPPP 6 or
829  *                    PPPPPPPPNNNN 2 or  PPPPPPPPNNNN 7 or
830  *                    PPPPNNNNNNNN 3     PPPPNNNNNNNN 8
831  *
832  * It is important for case 8 that the vma CCCC overlapping the
833  * region **** is never going to extended over NNNN. Instead NNNN must
834  * be extended in region **** and CCCC must be removed. This way in
835  * all cases where vma_merge succeeds, the moment vma_merge drops the
836  * rmap_locks, the properties of the merged vma will be already
837  * correct for the whole merged range. Some of those properties like
838  * vm_page_prot/vm_flags may be accessed by rmap_walks and they must
839  * be correct for the whole merged range immediately after the
840  * rmap_locks are released. Otherwise if NNNN would be removed and
841  * CCCC would be extended over the NNNN range, remove_migration_ptes
842  * or other rmap walkers (if working on addresses beyond the "end"
843  * parameter) may establish ptes with the wrong permissions of CCCC
844  * instead of the right permissions of NNNN.
845  *
846  * In the code below:
847  * PPPP is represented by *prev
848  * CCCC is represented by *curr or not represented at all (NULL)
849  * NNNN is represented by *next or not represented at all (NULL)
850  * **** is not represented - it will be merged and the vma containing the
851  *      area is returned, or the function will return NULL
852  */
853 struct vm_area_struct *vma_merge(struct vma_iterator *vmi, struct mm_struct *mm,
854                         struct vm_area_struct *prev, unsigned long addr,
855                         unsigned long end, unsigned long vm_flags,
856                         struct anon_vma *anon_vma, struct file *file,
857                         pgoff_t pgoff, struct mempolicy *policy,
858                         struct vm_userfaultfd_ctx vm_userfaultfd_ctx,
859                         struct anon_vma_name *anon_name)
860 {
861         struct vm_area_struct *curr, *next, *res;
862         struct vm_area_struct *vma, *adjust, *remove, *remove2;
863         struct vma_prepare vp;
864         pgoff_t vma_pgoff;
865         int err = 0;
866         bool merge_prev = false;
867         bool merge_next = false;
868         bool vma_expanded = false;
869         unsigned long vma_start = addr;
870         unsigned long vma_end = end;
871         pgoff_t pglen = (end - addr) >> PAGE_SHIFT;
872         long adj_start = 0;
873
874         /*
875          * We later require that vma->vm_flags == vm_flags,
876          * so this tests vma->vm_flags & VM_SPECIAL, too.
877          */
878         if (vm_flags & VM_SPECIAL)
879                 return NULL;
880
881         /* Does the input range span an existing VMA? (cases 5 - 8) */
882         curr = find_vma_intersection(mm, prev ? prev->vm_end : 0, end);
883
884         if (!curr ||                    /* cases 1 - 4 */
885             end == curr->vm_end)        /* cases 6 - 8, adjacent VMA */
886                 next = vma_lookup(mm, end);
887         else
888                 next = NULL;            /* case 5 */
889
890         if (prev) {
891                 vma_start = prev->vm_start;
892                 vma_pgoff = prev->vm_pgoff;
893
894                 /* Can we merge the predecessor? */
895                 if (addr == prev->vm_end && mpol_equal(vma_policy(prev), policy)
896                     && can_vma_merge_after(prev, vm_flags, anon_vma, file,
897                                            pgoff, vm_userfaultfd_ctx, anon_name)) {
898                         merge_prev = true;
899                         vma_prev(vmi);
900                 }
901         }
902
903         /* Can we merge the successor? */
904         if (next && mpol_equal(policy, vma_policy(next)) &&
905             can_vma_merge_before(next, vm_flags, anon_vma, file, pgoff+pglen,
906                                  vm_userfaultfd_ctx, anon_name)) {
907                 merge_next = true;
908         }
909
910         /* Verify some invariant that must be enforced by the caller. */
911         VM_WARN_ON(prev && addr <= prev->vm_start);
912         VM_WARN_ON(curr && (addr != curr->vm_start || end > curr->vm_end));
913         VM_WARN_ON(addr >= end);
914
915         if (!merge_prev && !merge_next)
916                 return NULL; /* Not mergeable. */
917
918         if (merge_prev)
919                 vma_start_write(prev);
920
921         res = vma = prev;
922         remove = remove2 = adjust = NULL;
923
924         /* Can we merge both the predecessor and the successor? */
925         if (merge_prev && merge_next &&
926             is_mergeable_anon_vma(prev->anon_vma, next->anon_vma, NULL)) {
927                 vma_start_write(next);
928                 remove = next;                          /* case 1 */
929                 vma_end = next->vm_end;
930                 err = dup_anon_vma(prev, next);
931                 if (curr) {                             /* case 6 */
932                         vma_start_write(curr);
933                         remove = curr;
934                         remove2 = next;
935                         if (!next->anon_vma)
936                                 err = dup_anon_vma(prev, curr);
937                 }
938         } else if (merge_prev) {                        /* case 2 */
939                 if (curr) {
940                         vma_start_write(curr);
941                         err = dup_anon_vma(prev, curr);
942                         if (end == curr->vm_end) {      /* case 7 */
943                                 remove = curr;
944                         } else {                        /* case 5 */
945                                 adjust = curr;
946                                 adj_start = (end - curr->vm_start);
947                         }
948                 }
949         } else { /* merge_next */
950                 vma_start_write(next);
951                 res = next;
952                 if (prev && addr < prev->vm_end) {      /* case 4 */
953                         vma_start_write(prev);
954                         vma_end = addr;
955                         adjust = next;
956                         adj_start = -(prev->vm_end - addr);
957                         err = dup_anon_vma(next, prev);
958                 } else {
959                         /*
960                          * Note that cases 3 and 8 are the ONLY ones where prev
961                          * is permitted to be (but is not necessarily) NULL.
962                          */
963                         vma = next;                     /* case 3 */
964                         vma_start = addr;
965                         vma_end = next->vm_end;
966                         vma_pgoff = next->vm_pgoff - pglen;
967                         if (curr) {                     /* case 8 */
968                                 vma_pgoff = curr->vm_pgoff;
969                                 vma_start_write(curr);
970                                 remove = curr;
971                                 err = dup_anon_vma(next, curr);
972                         }
973                 }
974         }
975
976         /* Error in anon_vma clone. */
977         if (err)
978                 goto anon_vma_fail;
979
980         if (vma_start < vma->vm_start || vma_end > vma->vm_end)
981                 vma_expanded = true;
982
983         if (vma_expanded) {
984                 vma_iter_config(vmi, vma_start, vma_end);
985         } else {
986                 vma_iter_config(vmi, adjust->vm_start + adj_start,
987                                 adjust->vm_end);
988         }
989
990         if (vma_iter_prealloc(vmi, vma))
991                 goto prealloc_fail;
992
993         init_multi_vma_prep(&vp, vma, adjust, remove, remove2);
994         VM_WARN_ON(vp.anon_vma && adjust && adjust->anon_vma &&
995                    vp.anon_vma != adjust->anon_vma);
996
997         vma_prepare(&vp);
998         vma_adjust_trans_huge(vma, vma_start, vma_end, adj_start);
999
1000         vma->vm_start = vma_start;
1001         vma->vm_end = vma_end;
1002         vma->vm_pgoff = vma_pgoff;
1003
1004         if (vma_expanded)
1005                 vma_iter_store(vmi, vma);
1006
1007         if (adj_start) {
1008                 adjust->vm_start += adj_start;
1009                 adjust->vm_pgoff += adj_start >> PAGE_SHIFT;
1010                 if (adj_start < 0) {
1011                         WARN_ON(vma_expanded);
1012                         vma_iter_store(vmi, next);
1013                 }
1014         }
1015
1016         vma_complete(&vp, vmi, mm);
1017         khugepaged_enter_vma(res, vm_flags);
1018         return res;
1019
1020 prealloc_fail:
1021 anon_vma_fail:
1022         vma_iter_set(vmi, addr);
1023         vma_iter_load(vmi);
1024         return NULL;
1025 }
1026
1027 /*
1028  * Rough compatibility check to quickly see if it's even worth looking
1029  * at sharing an anon_vma.
1030  *
1031  * They need to have the same vm_file, and the flags can only differ
1032  * in things that mprotect may change.
1033  *
1034  * NOTE! The fact that we share an anon_vma doesn't _have_ to mean that
1035  * we can merge the two vma's. For example, we refuse to merge a vma if
1036  * there is a vm_ops->close() function, because that indicates that the
1037  * driver is doing some kind of reference counting. But that doesn't
1038  * really matter for the anon_vma sharing case.
1039  */
1040 static int anon_vma_compatible(struct vm_area_struct *a, struct vm_area_struct *b)
1041 {
1042         return a->vm_end == b->vm_start &&
1043                 mpol_equal(vma_policy(a), vma_policy(b)) &&
1044                 a->vm_file == b->vm_file &&
1045                 !((a->vm_flags ^ b->vm_flags) & ~(VM_ACCESS_FLAGS | VM_SOFTDIRTY)) &&
1046                 b->vm_pgoff == a->vm_pgoff + ((b->vm_start - a->vm_start) >> PAGE_SHIFT);
1047 }
1048
1049 /*
1050  * Do some basic sanity checking to see if we can re-use the anon_vma
1051  * from 'old'. The 'a'/'b' vma's are in VM order - one of them will be
1052  * the same as 'old', the other will be the new one that is trying
1053  * to share the anon_vma.
1054  *
1055  * NOTE! This runs with mmap_lock held for reading, so it is possible that
1056  * the anon_vma of 'old' is concurrently in the process of being set up
1057  * by another page fault trying to merge _that_. But that's ok: if it
1058  * is being set up, that automatically means that it will be a singleton
1059  * acceptable for merging, so we can do all of this optimistically. But
1060  * we do that READ_ONCE() to make sure that we never re-load the pointer.
1061  *
1062  * IOW: that the "list_is_singular()" test on the anon_vma_chain only
1063  * matters for the 'stable anon_vma' case (ie the thing we want to avoid
1064  * is to return an anon_vma that is "complex" due to having gone through
1065  * a fork).
1066  *
1067  * We also make sure that the two vma's are compatible (adjacent,
1068  * and with the same memory policies). That's all stable, even with just
1069  * a read lock on the mmap_lock.
1070  */
1071 static struct anon_vma *reusable_anon_vma(struct vm_area_struct *old, struct vm_area_struct *a, struct vm_area_struct *b)
1072 {
1073         if (anon_vma_compatible(a, b)) {
1074                 struct anon_vma *anon_vma = READ_ONCE(old->anon_vma);
1075
1076                 if (anon_vma && list_is_singular(&old->anon_vma_chain))
1077                         return anon_vma;
1078         }
1079         return NULL;
1080 }
1081
1082 /*
1083  * find_mergeable_anon_vma is used by anon_vma_prepare, to check
1084  * neighbouring vmas for a suitable anon_vma, before it goes off
1085  * to allocate a new anon_vma.  It checks because a repetitive
1086  * sequence of mprotects and faults may otherwise lead to distinct
1087  * anon_vmas being allocated, preventing vma merge in subsequent
1088  * mprotect.
1089  */
1090 struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *vma)
1091 {
1092         MA_STATE(mas, &vma->vm_mm->mm_mt, vma->vm_end, vma->vm_end);
1093         struct anon_vma *anon_vma = NULL;
1094         struct vm_area_struct *prev, *next;
1095
1096         /* Try next first. */
1097         next = mas_walk(&mas);
1098         if (next) {
1099                 anon_vma = reusable_anon_vma(next, vma, next);
1100                 if (anon_vma)
1101                         return anon_vma;
1102         }
1103
1104         prev = mas_prev(&mas, 0);
1105         VM_BUG_ON_VMA(prev != vma, vma);
1106         prev = mas_prev(&mas, 0);
1107         /* Try prev next. */
1108         if (prev)
1109                 anon_vma = reusable_anon_vma(prev, prev, vma);
1110
1111         /*
1112          * We might reach here with anon_vma == NULL if we can't find
1113          * any reusable anon_vma.
1114          * There's no absolute need to look only at touching neighbours:
1115          * we could search further afield for "compatible" anon_vmas.
1116          * But it would probably just be a waste of time searching,
1117          * or lead to too many vmas hanging off the same anon_vma.
1118          * We're trying to allow mprotect remerging later on,
1119          * not trying to minimize memory used for anon_vmas.
1120          */
1121         return anon_vma;
1122 }
1123
1124 /*
1125  * If a hint addr is less than mmap_min_addr change hint to be as
1126  * low as possible but still greater than mmap_min_addr
1127  */
1128 static inline unsigned long round_hint_to_min(unsigned long hint)
1129 {
1130         hint &= PAGE_MASK;
1131         if (((void *)hint != NULL) &&
1132             (hint < mmap_min_addr))
1133                 return PAGE_ALIGN(mmap_min_addr);
1134         return hint;
1135 }
1136
1137 bool mlock_future_ok(struct mm_struct *mm, unsigned long flags,
1138                         unsigned long bytes)
1139 {
1140         unsigned long locked_pages, limit_pages;
1141
1142         if (!(flags & VM_LOCKED) || capable(CAP_IPC_LOCK))
1143                 return true;
1144
1145         locked_pages = bytes >> PAGE_SHIFT;
1146         locked_pages += mm->locked_vm;
1147
1148         limit_pages = rlimit(RLIMIT_MEMLOCK);
1149         limit_pages >>= PAGE_SHIFT;
1150
1151         return locked_pages <= limit_pages;
1152 }
1153
1154 static inline u64 file_mmap_size_max(struct file *file, struct inode *inode)
1155 {
1156         if (S_ISREG(inode->i_mode))
1157                 return MAX_LFS_FILESIZE;
1158
1159         if (S_ISBLK(inode->i_mode))
1160                 return MAX_LFS_FILESIZE;
1161
1162         if (S_ISSOCK(inode->i_mode))
1163                 return MAX_LFS_FILESIZE;
1164
1165         /* Special "we do even unsigned file positions" case */
1166         if (file->f_mode & FMODE_UNSIGNED_OFFSET)
1167                 return 0;
1168
1169         /* Yes, random drivers might want more. But I'm tired of buggy drivers */
1170         return ULONG_MAX;
1171 }
1172
1173 static inline bool file_mmap_ok(struct file *file, struct inode *inode,
1174                                 unsigned long pgoff, unsigned long len)
1175 {
1176         u64 maxsize = file_mmap_size_max(file, inode);
1177
1178         if (maxsize && len > maxsize)
1179                 return false;
1180         maxsize -= len;
1181         if (pgoff > maxsize >> PAGE_SHIFT)
1182                 return false;
1183         return true;
1184 }
1185
1186 /*
1187  * The caller must write-lock current->mm->mmap_lock.
1188  */
1189 unsigned long do_mmap(struct file *file, unsigned long addr,
1190                         unsigned long len, unsigned long prot,
1191                         unsigned long flags, vm_flags_t vm_flags,
1192                         unsigned long pgoff, unsigned long *populate,
1193                         struct list_head *uf)
1194 {
1195         struct mm_struct *mm = current->mm;
1196         int pkey = 0;
1197
1198         *populate = 0;
1199
1200         if (!len)
1201                 return -EINVAL;
1202
1203         /*
1204          * Does the application expect PROT_READ to imply PROT_EXEC?
1205          *
1206          * (the exception is when the underlying filesystem is noexec
1207          *  mounted, in which case we dont add PROT_EXEC.)
1208          */
1209         if ((prot & PROT_READ) && (current->personality & READ_IMPLIES_EXEC))
1210                 if (!(file && path_noexec(&file->f_path)))
1211                         prot |= PROT_EXEC;
1212
1213         /* force arch specific MAP_FIXED handling in get_unmapped_area */
1214         if (flags & MAP_FIXED_NOREPLACE)
1215                 flags |= MAP_FIXED;
1216
1217         if (!(flags & MAP_FIXED))
1218                 addr = round_hint_to_min(addr);
1219
1220         /* Careful about overflows.. */
1221         len = PAGE_ALIGN(len);
1222         if (!len)
1223                 return -ENOMEM;
1224
1225         /* offset overflow? */
1226         if ((pgoff + (len >> PAGE_SHIFT)) < pgoff)
1227                 return -EOVERFLOW;
1228
1229         /* Too many mappings? */
1230         if (mm->map_count > sysctl_max_map_count)
1231                 return -ENOMEM;
1232
1233         /* Obtain the address to map to. we verify (or select) it and ensure
1234          * that it represents a valid section of the address space.
1235          */
1236         addr = get_unmapped_area(file, addr, len, pgoff, flags);
1237         if (IS_ERR_VALUE(addr))
1238                 return addr;
1239
1240         if (flags & MAP_FIXED_NOREPLACE) {
1241                 if (find_vma_intersection(mm, addr, addr + len))
1242                         return -EEXIST;
1243         }
1244
1245         if (prot == PROT_EXEC) {
1246                 pkey = execute_only_pkey(mm);
1247                 if (pkey < 0)
1248                         pkey = 0;
1249         }
1250
1251         /* Do simple checking here so the lower-level routines won't have
1252          * to. we assume access permissions have been handled by the open
1253          * of the memory object, so we don't do any here.
1254          */
1255         vm_flags |= calc_vm_prot_bits(prot, pkey) | calc_vm_flag_bits(flags) |
1256                         mm->def_flags | VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC;
1257
1258         if (flags & MAP_LOCKED)
1259                 if (!can_do_mlock())
1260                         return -EPERM;
1261
1262         if (!mlock_future_ok(mm, vm_flags, len))
1263                 return -EAGAIN;
1264
1265         if (file) {
1266                 struct inode *inode = file_inode(file);
1267                 unsigned long flags_mask;
1268
1269                 if (!file_mmap_ok(file, inode, pgoff, len))
1270                         return -EOVERFLOW;
1271
1272                 flags_mask = LEGACY_MAP_MASK | file->f_op->mmap_supported_flags;
1273
1274                 switch (flags & MAP_TYPE) {
1275                 case MAP_SHARED:
1276                         /*
1277                          * Force use of MAP_SHARED_VALIDATE with non-legacy
1278                          * flags. E.g. MAP_SYNC is dangerous to use with
1279                          * MAP_SHARED as you don't know which consistency model
1280                          * you will get. We silently ignore unsupported flags
1281                          * with MAP_SHARED to preserve backward compatibility.
1282                          */
1283                         flags &= LEGACY_MAP_MASK;
1284                         fallthrough;
1285                 case MAP_SHARED_VALIDATE:
1286                         if (flags & ~flags_mask)
1287                                 return -EOPNOTSUPP;
1288                         if (prot & PROT_WRITE) {
1289                                 if (!(file->f_mode & FMODE_WRITE))
1290                                         return -EACCES;
1291                                 if (IS_SWAPFILE(file->f_mapping->host))
1292                                         return -ETXTBSY;
1293                         }
1294
1295                         /*
1296                          * Make sure we don't allow writing to an append-only
1297                          * file..
1298                          */
1299                         if (IS_APPEND(inode) && (file->f_mode & FMODE_WRITE))
1300                                 return -EACCES;
1301
1302                         vm_flags |= VM_SHARED | VM_MAYSHARE;
1303                         if (!(file->f_mode & FMODE_WRITE))
1304                                 vm_flags &= ~(VM_MAYWRITE | VM_SHARED);
1305                         fallthrough;
1306                 case MAP_PRIVATE:
1307                         if (!(file->f_mode & FMODE_READ))
1308                                 return -EACCES;
1309                         if (path_noexec(&file->f_path)) {
1310                                 if (vm_flags & VM_EXEC)
1311                                         return -EPERM;
1312                                 vm_flags &= ~VM_MAYEXEC;
1313                         }
1314
1315                         if (!file->f_op->mmap)
1316                                 return -ENODEV;
1317                         if (vm_flags & (VM_GROWSDOWN|VM_GROWSUP))
1318                                 return -EINVAL;
1319                         break;
1320
1321                 default:
1322                         return -EINVAL;
1323                 }
1324         } else {
1325                 switch (flags & MAP_TYPE) {
1326                 case MAP_SHARED:
1327                         if (vm_flags & (VM_GROWSDOWN|VM_GROWSUP))
1328                                 return -EINVAL;
1329                         /*
1330                          * Ignore pgoff.
1331                          */
1332                         pgoff = 0;
1333                         vm_flags |= VM_SHARED | VM_MAYSHARE;
1334                         break;
1335                 case MAP_PRIVATE:
1336                         /*
1337                          * Set pgoff according to addr for anon_vma.
1338                          */
1339                         pgoff = addr >> PAGE_SHIFT;
1340                         break;
1341                 default:
1342                         return -EINVAL;
1343                 }
1344         }
1345
1346         /*
1347          * Set 'VM_NORESERVE' if we should not account for the
1348          * memory use of this mapping.
1349          */
1350         if (flags & MAP_NORESERVE) {
1351                 /* We honor MAP_NORESERVE if allowed to overcommit */
1352                 if (sysctl_overcommit_memory != OVERCOMMIT_NEVER)
1353                         vm_flags |= VM_NORESERVE;
1354
1355                 /* hugetlb applies strict overcommit unless MAP_NORESERVE */
1356                 if (file && is_file_hugepages(file))
1357                         vm_flags |= VM_NORESERVE;
1358         }
1359
1360         addr = mmap_region(file, addr, len, vm_flags, pgoff, uf);
1361         if (!IS_ERR_VALUE(addr) &&
1362             ((vm_flags & VM_LOCKED) ||
1363              (flags & (MAP_POPULATE | MAP_NONBLOCK)) == MAP_POPULATE))
1364                 *populate = len;
1365         return addr;
1366 }
1367
1368 unsigned long ksys_mmap_pgoff(unsigned long addr, unsigned long len,
1369                               unsigned long prot, unsigned long flags,
1370                               unsigned long fd, unsigned long pgoff)
1371 {
1372         struct file *file = NULL;
1373         unsigned long retval;
1374
1375         if (!(flags & MAP_ANONYMOUS)) {
1376                 audit_mmap_fd(fd, flags);
1377                 file = fget(fd);
1378                 if (!file)
1379                         return -EBADF;
1380                 if (is_file_hugepages(file)) {
1381                         len = ALIGN(len, huge_page_size(hstate_file(file)));
1382                 } else if (unlikely(flags & MAP_HUGETLB)) {
1383                         retval = -EINVAL;
1384                         goto out_fput;
1385                 }
1386         } else if (flags & MAP_HUGETLB) {
1387                 struct hstate *hs;
1388
1389                 hs = hstate_sizelog((flags >> MAP_HUGE_SHIFT) & MAP_HUGE_MASK);
1390                 if (!hs)
1391                         return -EINVAL;
1392
1393                 len = ALIGN(len, huge_page_size(hs));
1394                 /*
1395                  * VM_NORESERVE is used because the reservations will be
1396                  * taken when vm_ops->mmap() is called
1397                  */
1398                 file = hugetlb_file_setup(HUGETLB_ANON_FILE, len,
1399                                 VM_NORESERVE,
1400                                 HUGETLB_ANONHUGE_INODE,
1401                                 (flags >> MAP_HUGE_SHIFT) & MAP_HUGE_MASK);
1402                 if (IS_ERR(file))
1403                         return PTR_ERR(file);
1404         }
1405
1406         retval = vm_mmap_pgoff(file, addr, len, prot, flags, pgoff);
1407 out_fput:
1408         if (file)
1409                 fput(file);
1410         return retval;
1411 }
1412
1413 SYSCALL_DEFINE6(mmap_pgoff, unsigned long, addr, unsigned long, len,
1414                 unsigned long, prot, unsigned long, flags,
1415                 unsigned long, fd, unsigned long, pgoff)
1416 {
1417         return ksys_mmap_pgoff(addr, len, prot, flags, fd, pgoff);
1418 }
1419
1420 #ifdef __ARCH_WANT_SYS_OLD_MMAP
1421 struct mmap_arg_struct {
1422         unsigned long addr;
1423         unsigned long len;
1424         unsigned long prot;
1425         unsigned long flags;
1426         unsigned long fd;
1427         unsigned long offset;
1428 };
1429
1430 SYSCALL_DEFINE1(old_mmap, struct mmap_arg_struct __user *, arg)
1431 {
1432         struct mmap_arg_struct a;
1433
1434         if (copy_from_user(&a, arg, sizeof(a)))
1435                 return -EFAULT;
1436         if (offset_in_page(a.offset))
1437                 return -EINVAL;
1438
1439         return ksys_mmap_pgoff(a.addr, a.len, a.prot, a.flags, a.fd,
1440                                a.offset >> PAGE_SHIFT);
1441 }
1442 #endif /* __ARCH_WANT_SYS_OLD_MMAP */
1443
1444 static bool vm_ops_needs_writenotify(const struct vm_operations_struct *vm_ops)
1445 {
1446         return vm_ops && (vm_ops->page_mkwrite || vm_ops->pfn_mkwrite);
1447 }
1448
1449 static bool vma_is_shared_writable(struct vm_area_struct *vma)
1450 {
1451         return (vma->vm_flags & (VM_WRITE | VM_SHARED)) ==
1452                 (VM_WRITE | VM_SHARED);
1453 }
1454
1455 static bool vma_fs_can_writeback(struct vm_area_struct *vma)
1456 {
1457         /* No managed pages to writeback. */
1458         if (vma->vm_flags & VM_PFNMAP)
1459                 return false;
1460
1461         return vma->vm_file && vma->vm_file->f_mapping &&
1462                 mapping_can_writeback(vma->vm_file->f_mapping);
1463 }
1464
1465 /*
1466  * Does this VMA require the underlying folios to have their dirty state
1467  * tracked?
1468  */
1469 bool vma_needs_dirty_tracking(struct vm_area_struct *vma)
1470 {
1471         /* Only shared, writable VMAs require dirty tracking. */
1472         if (!vma_is_shared_writable(vma))
1473                 return false;
1474
1475         /* Does the filesystem need to be notified? */
1476         if (vm_ops_needs_writenotify(vma->vm_ops))
1477                 return true;
1478
1479         /*
1480          * Even if the filesystem doesn't indicate a need for writenotify, if it
1481          * can writeback, dirty tracking is still required.
1482          */
1483         return vma_fs_can_writeback(vma);
1484 }
1485
1486 /*
1487  * Some shared mappings will want the pages marked read-only
1488  * to track write events. If so, we'll downgrade vm_page_prot
1489  * to the private version (using protection_map[] without the
1490  * VM_SHARED bit).
1491  */
1492 int vma_wants_writenotify(struct vm_area_struct *vma, pgprot_t vm_page_prot)
1493 {
1494         /* If it was private or non-writable, the write bit is already clear */
1495         if (!vma_is_shared_writable(vma))
1496                 return 0;
1497
1498         /* The backer wishes to know when pages are first written to? */
1499         if (vm_ops_needs_writenotify(vma->vm_ops))
1500                 return 1;
1501
1502         /* The open routine did something to the protections that pgprot_modify
1503          * won't preserve? */
1504         if (pgprot_val(vm_page_prot) !=
1505             pgprot_val(vm_pgprot_modify(vm_page_prot, vma->vm_flags)))
1506                 return 0;
1507
1508         /*
1509          * Do we need to track softdirty? hugetlb does not support softdirty
1510          * tracking yet.
1511          */
1512         if (vma_soft_dirty_enabled(vma) && !is_vm_hugetlb_page(vma))
1513                 return 1;
1514
1515         /* Do we need write faults for uffd-wp tracking? */
1516         if (userfaultfd_wp(vma))
1517                 return 1;
1518
1519         /* Can the mapping track the dirty pages? */
1520         return vma_fs_can_writeback(vma);
1521 }
1522
1523 /*
1524  * We account for memory if it's a private writeable mapping,
1525  * not hugepages and VM_NORESERVE wasn't set.
1526  */
1527 static inline int accountable_mapping(struct file *file, vm_flags_t vm_flags)
1528 {
1529         /*
1530          * hugetlb has its own accounting separate from the core VM
1531          * VM_HUGETLB may not be set yet so we cannot check for that flag.
1532          */
1533         if (file && is_file_hugepages(file))
1534                 return 0;
1535
1536         return (vm_flags & (VM_NORESERVE | VM_SHARED | VM_WRITE)) == VM_WRITE;
1537 }
1538
1539 /**
1540  * unmapped_area() - Find an area between the low_limit and the high_limit with
1541  * the correct alignment and offset, all from @info. Note: current->mm is used
1542  * for the search.
1543  *
1544  * @info: The unmapped area information including the range [low_limit -
1545  * high_limit), the alignment offset and mask.
1546  *
1547  * Return: A memory address or -ENOMEM.
1548  */
1549 static unsigned long unmapped_area(struct vm_unmapped_area_info *info)
1550 {
1551         unsigned long length, gap;
1552         unsigned long low_limit, high_limit;
1553         struct vm_area_struct *tmp;
1554
1555         MA_STATE(mas, &current->mm->mm_mt, 0, 0);
1556
1557         /* Adjust search length to account for worst case alignment overhead */
1558         length = info->length + info->align_mask;
1559         if (length < info->length)
1560                 return -ENOMEM;
1561
1562         low_limit = info->low_limit;
1563         if (low_limit < mmap_min_addr)
1564                 low_limit = mmap_min_addr;
1565         high_limit = info->high_limit;
1566 retry:
1567         if (mas_empty_area(&mas, low_limit, high_limit - 1, length))
1568                 return -ENOMEM;
1569
1570         gap = mas.index;
1571         gap += (info->align_offset - gap) & info->align_mask;
1572         tmp = mas_next(&mas, ULONG_MAX);
1573         if (tmp && (tmp->vm_flags & VM_STARTGAP_FLAGS)) { /* Avoid prev check if possible */
1574                 if (vm_start_gap(tmp) < gap + length - 1) {
1575                         low_limit = tmp->vm_end;
1576                         mas_reset(&mas);
1577                         goto retry;
1578                 }
1579         } else {
1580                 tmp = mas_prev(&mas, 0);
1581                 if (tmp && vm_end_gap(tmp) > gap) {
1582                         low_limit = vm_end_gap(tmp);
1583                         mas_reset(&mas);
1584                         goto retry;
1585                 }
1586         }
1587
1588         return gap;
1589 }
1590
1591 /**
1592  * unmapped_area_topdown() - Find an area between the low_limit and the
1593  * high_limit with the correct alignment and offset at the highest available
1594  * address, all from @info. Note: current->mm is used for the search.
1595  *
1596  * @info: The unmapped area information including the range [low_limit -
1597  * high_limit), the alignment offset and mask.
1598  *
1599  * Return: A memory address or -ENOMEM.
1600  */
1601 static unsigned long unmapped_area_topdown(struct vm_unmapped_area_info *info)
1602 {
1603         unsigned long length, gap, gap_end;
1604         unsigned long low_limit, high_limit;
1605         struct vm_area_struct *tmp;
1606
1607         MA_STATE(mas, &current->mm->mm_mt, 0, 0);
1608         /* Adjust search length to account for worst case alignment overhead */
1609         length = info->length + info->align_mask;
1610         if (length < info->length)
1611                 return -ENOMEM;
1612
1613         low_limit = info->low_limit;
1614         if (low_limit < mmap_min_addr)
1615                 low_limit = mmap_min_addr;
1616         high_limit = info->high_limit;
1617 retry:
1618         if (mas_empty_area_rev(&mas, low_limit, high_limit - 1, length))
1619                 return -ENOMEM;
1620
1621         gap = mas.last + 1 - info->length;
1622         gap -= (gap - info->align_offset) & info->align_mask;
1623         gap_end = mas.last;
1624         tmp = mas_next(&mas, ULONG_MAX);
1625         if (tmp && (tmp->vm_flags & VM_STARTGAP_FLAGS)) { /* Avoid prev check if possible */
1626                 if (vm_start_gap(tmp) <= gap_end) {
1627                         high_limit = vm_start_gap(tmp);
1628                         mas_reset(&mas);
1629                         goto retry;
1630                 }
1631         } else {
1632                 tmp = mas_prev(&mas, 0);
1633                 if (tmp && vm_end_gap(tmp) > gap) {
1634                         high_limit = tmp->vm_start;
1635                         mas_reset(&mas);
1636                         goto retry;
1637                 }
1638         }
1639
1640         return gap;
1641 }
1642
1643 /*
1644  * Search for an unmapped address range.
1645  *
1646  * We are looking for a range that:
1647  * - does not intersect with any VMA;
1648  * - is contained within the [low_limit, high_limit) interval;
1649  * - is at least the desired size.
1650  * - satisfies (begin_addr & align_mask) == (align_offset & align_mask)
1651  */
1652 unsigned long vm_unmapped_area(struct vm_unmapped_area_info *info)
1653 {
1654         unsigned long addr;
1655
1656         if (info->flags & VM_UNMAPPED_AREA_TOPDOWN)
1657                 addr = unmapped_area_topdown(info);
1658         else
1659                 addr = unmapped_area(info);
1660
1661         trace_vm_unmapped_area(addr, info);
1662         return addr;
1663 }
1664
1665 /* Get an address range which is currently unmapped.
1666  * For shmat() with addr=0.
1667  *
1668  * Ugly calling convention alert:
1669  * Return value with the low bits set means error value,
1670  * ie
1671  *      if (ret & ~PAGE_MASK)
1672  *              error = ret;
1673  *
1674  * This function "knows" that -ENOMEM has the bits set.
1675  */
1676 unsigned long
1677 generic_get_unmapped_area(struct file *filp, unsigned long addr,
1678                           unsigned long len, unsigned long pgoff,
1679                           unsigned long flags)
1680 {
1681         struct mm_struct *mm = current->mm;
1682         struct vm_area_struct *vma, *prev;
1683         struct vm_unmapped_area_info info;
1684         const unsigned long mmap_end = arch_get_mmap_end(addr, len, flags);
1685
1686         if (len > mmap_end - mmap_min_addr)
1687                 return -ENOMEM;
1688
1689         if (flags & MAP_FIXED)
1690                 return addr;
1691
1692         if (addr) {
1693                 addr = PAGE_ALIGN(addr);
1694                 vma = find_vma_prev(mm, addr, &prev);
1695                 if (mmap_end - len >= addr && addr >= mmap_min_addr &&
1696                     (!vma || addr + len <= vm_start_gap(vma)) &&
1697                     (!prev || addr >= vm_end_gap(prev)))
1698                         return addr;
1699         }
1700
1701         info.flags = 0;
1702         info.length = len;
1703         info.low_limit = mm->mmap_base;
1704         info.high_limit = mmap_end;
1705         info.align_mask = 0;
1706         info.align_offset = 0;
1707         return vm_unmapped_area(&info);
1708 }
1709
1710 #ifndef HAVE_ARCH_UNMAPPED_AREA
1711 unsigned long
1712 arch_get_unmapped_area(struct file *filp, unsigned long addr,
1713                        unsigned long len, unsigned long pgoff,
1714                        unsigned long flags)
1715 {
1716         return generic_get_unmapped_area(filp, addr, len, pgoff, flags);
1717 }
1718 #endif
1719
1720 /*
1721  * This mmap-allocator allocates new areas top-down from below the
1722  * stack's low limit (the base):
1723  */
1724 unsigned long
1725 generic_get_unmapped_area_topdown(struct file *filp, unsigned long addr,
1726                                   unsigned long len, unsigned long pgoff,
1727                                   unsigned long flags)
1728 {
1729         struct vm_area_struct *vma, *prev;
1730         struct mm_struct *mm = current->mm;
1731         struct vm_unmapped_area_info info;
1732         const unsigned long mmap_end = arch_get_mmap_end(addr, len, flags);
1733
1734         /* requested length too big for entire address space */
1735         if (len > mmap_end - mmap_min_addr)
1736                 return -ENOMEM;
1737
1738         if (flags & MAP_FIXED)
1739                 return addr;
1740
1741         /* requesting a specific address */
1742         if (addr) {
1743                 addr = PAGE_ALIGN(addr);
1744                 vma = find_vma_prev(mm, addr, &prev);
1745                 if (mmap_end - len >= addr && addr >= mmap_min_addr &&
1746                                 (!vma || addr + len <= vm_start_gap(vma)) &&
1747                                 (!prev || addr >= vm_end_gap(prev)))
1748                         return addr;
1749         }
1750
1751         info.flags = VM_UNMAPPED_AREA_TOPDOWN;
1752         info.length = len;
1753         info.low_limit = PAGE_SIZE;
1754         info.high_limit = arch_get_mmap_base(addr, mm->mmap_base);
1755         info.align_mask = 0;
1756         info.align_offset = 0;
1757         addr = vm_unmapped_area(&info);
1758
1759         /*
1760          * A failed mmap() very likely causes application failure,
1761          * so fall back to the bottom-up function here. This scenario
1762          * can happen with large stack limits and large mmap()
1763          * allocations.
1764          */
1765         if (offset_in_page(addr)) {
1766                 VM_BUG_ON(addr != -ENOMEM);
1767                 info.flags = 0;
1768                 info.low_limit = TASK_UNMAPPED_BASE;
1769                 info.high_limit = mmap_end;
1770                 addr = vm_unmapped_area(&info);
1771         }
1772
1773         return addr;
1774 }
1775
1776 #ifndef HAVE_ARCH_UNMAPPED_AREA_TOPDOWN
1777 unsigned long
1778 arch_get_unmapped_area_topdown(struct file *filp, unsigned long addr,
1779                                unsigned long len, unsigned long pgoff,
1780                                unsigned long flags)
1781 {
1782         return generic_get_unmapped_area_topdown(filp, addr, len, pgoff, flags);
1783 }
1784 #endif
1785
1786 unsigned long
1787 get_unmapped_area(struct file *file, unsigned long addr, unsigned long len,
1788                 unsigned long pgoff, unsigned long flags)
1789 {
1790         unsigned long (*get_area)(struct file *, unsigned long,
1791                                   unsigned long, unsigned long, unsigned long);
1792
1793         unsigned long error = arch_mmap_check(addr, len, flags);
1794         if (error)
1795                 return error;
1796
1797         /* Careful about overflows.. */
1798         if (len > TASK_SIZE)
1799                 return -ENOMEM;
1800
1801         get_area = current->mm->get_unmapped_area;
1802         if (file) {
1803                 if (file->f_op->get_unmapped_area)
1804                         get_area = file->f_op->get_unmapped_area;
1805         } else if (flags & MAP_SHARED) {
1806                 /*
1807                  * mmap_region() will call shmem_zero_setup() to create a file,
1808                  * so use shmem's get_unmapped_area in case it can be huge.
1809                  * do_mmap() will clear pgoff, so match alignment.
1810                  */
1811                 pgoff = 0;
1812                 get_area = shmem_get_unmapped_area;
1813         }
1814
1815         addr = get_area(file, addr, len, pgoff, flags);
1816         if (IS_ERR_VALUE(addr))
1817                 return addr;
1818
1819         if (addr > TASK_SIZE - len)
1820                 return -ENOMEM;
1821         if (offset_in_page(addr))
1822                 return -EINVAL;
1823
1824         error = security_mmap_addr(addr);
1825         return error ? error : addr;
1826 }
1827
1828 EXPORT_SYMBOL(get_unmapped_area);
1829
1830 /**
1831  * find_vma_intersection() - Look up the first VMA which intersects the interval
1832  * @mm: The process address space.
1833  * @start_addr: The inclusive start user address.
1834  * @end_addr: The exclusive end user address.
1835  *
1836  * Returns: The first VMA within the provided range, %NULL otherwise.  Assumes
1837  * start_addr < end_addr.
1838  */
1839 struct vm_area_struct *find_vma_intersection(struct mm_struct *mm,
1840                                              unsigned long start_addr,
1841                                              unsigned long end_addr)
1842 {
1843         unsigned long index = start_addr;
1844
1845         mmap_assert_locked(mm);
1846         return mt_find(&mm->mm_mt, &index, end_addr - 1);
1847 }
1848 EXPORT_SYMBOL(find_vma_intersection);
1849
1850 /**
1851  * find_vma() - Find the VMA for a given address, or the next VMA.
1852  * @mm: The mm_struct to check
1853  * @addr: The address
1854  *
1855  * Returns: The VMA associated with addr, or the next VMA.
1856  * May return %NULL in the case of no VMA at addr or above.
1857  */
1858 struct vm_area_struct *find_vma(struct mm_struct *mm, unsigned long addr)
1859 {
1860         unsigned long index = addr;
1861
1862         mmap_assert_locked(mm);
1863         return mt_find(&mm->mm_mt, &index, ULONG_MAX);
1864 }
1865 EXPORT_SYMBOL(find_vma);
1866
1867 /**
1868  * find_vma_prev() - Find the VMA for a given address, or the next vma and
1869  * set %pprev to the previous VMA, if any.
1870  * @mm: The mm_struct to check
1871  * @addr: The address
1872  * @pprev: The pointer to set to the previous VMA
1873  *
1874  * Note that RCU lock is missing here since the external mmap_lock() is used
1875  * instead.
1876  *
1877  * Returns: The VMA associated with @addr, or the next vma.
1878  * May return %NULL in the case of no vma at addr or above.
1879  */
1880 struct vm_area_struct *
1881 find_vma_prev(struct mm_struct *mm, unsigned long addr,
1882                         struct vm_area_struct **pprev)
1883 {
1884         struct vm_area_struct *vma;
1885         MA_STATE(mas, &mm->mm_mt, addr, addr);
1886
1887         vma = mas_walk(&mas);
1888         *pprev = mas_prev(&mas, 0);
1889         if (!vma)
1890                 vma = mas_next(&mas, ULONG_MAX);
1891         return vma;
1892 }
1893
1894 /*
1895  * Verify that the stack growth is acceptable and
1896  * update accounting. This is shared with both the
1897  * grow-up and grow-down cases.
1898  */
1899 static int acct_stack_growth(struct vm_area_struct *vma,
1900                              unsigned long size, unsigned long grow)
1901 {
1902         struct mm_struct *mm = vma->vm_mm;
1903         unsigned long new_start;
1904
1905         /* address space limit tests */
1906         if (!may_expand_vm(mm, vma->vm_flags, grow))
1907                 return -ENOMEM;
1908
1909         /* Stack limit test */
1910         if (size > rlimit(RLIMIT_STACK))
1911                 return -ENOMEM;
1912
1913         /* mlock limit tests */
1914         if (!mlock_future_ok(mm, vma->vm_flags, grow << PAGE_SHIFT))
1915                 return -ENOMEM;
1916
1917         /* Check to ensure the stack will not grow into a hugetlb-only region */
1918         new_start = (vma->vm_flags & VM_GROWSUP) ? vma->vm_start :
1919                         vma->vm_end - size;
1920         if (is_hugepage_only_range(vma->vm_mm, new_start, size))
1921                 return -EFAULT;
1922
1923         /*
1924          * Overcommit..  This must be the final test, as it will
1925          * update security statistics.
1926          */
1927         if (security_vm_enough_memory_mm(mm, grow))
1928                 return -ENOMEM;
1929
1930         return 0;
1931 }
1932
1933 #if defined(CONFIG_STACK_GROWSUP) || defined(CONFIG_IA64)
1934 /*
1935  * PA-RISC uses this for its stack; IA64 for its Register Backing Store.
1936  * vma is the last one with address > vma->vm_end.  Have to extend vma.
1937  */
1938 static int expand_upwards(struct vm_area_struct *vma, unsigned long address)
1939 {
1940         struct mm_struct *mm = vma->vm_mm;
1941         struct vm_area_struct *next;
1942         unsigned long gap_addr;
1943         int error = 0;
1944         MA_STATE(mas, &mm->mm_mt, vma->vm_start, address);
1945
1946         if (!(vma->vm_flags & VM_GROWSUP))
1947                 return -EFAULT;
1948
1949         /* Guard against exceeding limits of the address space. */
1950         address &= PAGE_MASK;
1951         if (address >= (TASK_SIZE & PAGE_MASK))
1952                 return -ENOMEM;
1953         address += PAGE_SIZE;
1954
1955         /* Enforce stack_guard_gap */
1956         gap_addr = address + stack_guard_gap;
1957
1958         /* Guard against overflow */
1959         if (gap_addr < address || gap_addr > TASK_SIZE)
1960                 gap_addr = TASK_SIZE;
1961
1962         next = find_vma_intersection(mm, vma->vm_end, gap_addr);
1963         if (next && vma_is_accessible(next)) {
1964                 if (!(next->vm_flags & VM_GROWSUP))
1965                         return -ENOMEM;
1966                 /* Check that both stack segments have the same anon_vma? */
1967         }
1968
1969         if (next)
1970                 mas_prev_range(&mas, address);
1971
1972         __mas_set_range(&mas, vma->vm_start, address - 1);
1973         if (mas_preallocate(&mas, vma, GFP_KERNEL))
1974                 return -ENOMEM;
1975
1976         /* We must make sure the anon_vma is allocated. */
1977         if (unlikely(anon_vma_prepare(vma))) {
1978                 mas_destroy(&mas);
1979                 return -ENOMEM;
1980         }
1981
1982         /* Lock the VMA before expanding to prevent concurrent page faults */
1983         vma_start_write(vma);
1984         /*
1985          * vma->vm_start/vm_end cannot change under us because the caller
1986          * is required to hold the mmap_lock in read mode.  We need the
1987          * anon_vma lock to serialize against concurrent expand_stacks.
1988          */
1989         anon_vma_lock_write(vma->anon_vma);
1990
1991         /* Somebody else might have raced and expanded it already */
1992         if (address > vma->vm_end) {
1993                 unsigned long size, grow;
1994
1995                 size = address - vma->vm_start;
1996                 grow = (address - vma->vm_end) >> PAGE_SHIFT;
1997
1998                 error = -ENOMEM;
1999                 if (vma->vm_pgoff + (size >> PAGE_SHIFT) >= vma->vm_pgoff) {
2000                         error = acct_stack_growth(vma, size, grow);
2001                         if (!error) {
2002                                 /*
2003                                  * We only hold a shared mmap_lock lock here, so
2004                                  * we need to protect against concurrent vma
2005                                  * expansions.  anon_vma_lock_write() doesn't
2006                                  * help here, as we don't guarantee that all
2007                                  * growable vmas in a mm share the same root
2008                                  * anon vma.  So, we reuse mm->page_table_lock
2009                                  * to guard against concurrent vma expansions.
2010                                  */
2011                                 spin_lock(&mm->page_table_lock);
2012                                 if (vma->vm_flags & VM_LOCKED)
2013                                         mm->locked_vm += grow;
2014                                 vm_stat_account(mm, vma->vm_flags, grow);
2015                                 anon_vma_interval_tree_pre_update_vma(vma);
2016                                 vma->vm_end = address;
2017                                 /* Overwrite old entry in mtree. */
2018                                 mas_store_prealloc(&mas, vma);
2019                                 anon_vma_interval_tree_post_update_vma(vma);
2020                                 spin_unlock(&mm->page_table_lock);
2021
2022                                 perf_event_mmap(vma);
2023                         }
2024                 }
2025         }
2026         anon_vma_unlock_write(vma->anon_vma);
2027         khugepaged_enter_vma(vma, vma->vm_flags);
2028         mas_destroy(&mas);
2029         validate_mm(mm);
2030         return error;
2031 }
2032 #endif /* CONFIG_STACK_GROWSUP || CONFIG_IA64 */
2033
2034 /*
2035  * vma is the first one with address < vma->vm_start.  Have to extend vma.
2036  * mmap_lock held for writing.
2037  */
2038 int expand_downwards(struct vm_area_struct *vma, unsigned long address)
2039 {
2040         struct mm_struct *mm = vma->vm_mm;
2041         MA_STATE(mas, &mm->mm_mt, vma->vm_start, vma->vm_start);
2042         struct vm_area_struct *prev;
2043         int error = 0;
2044
2045         if (!(vma->vm_flags & VM_GROWSDOWN))
2046                 return -EFAULT;
2047
2048         address &= PAGE_MASK;
2049         if (address < mmap_min_addr || address < FIRST_USER_ADDRESS)
2050                 return -EPERM;
2051
2052         /* Enforce stack_guard_gap */
2053         prev = mas_prev(&mas, 0);
2054         /* Check that both stack segments have the same anon_vma? */
2055         if (prev) {
2056                 if (!(prev->vm_flags & VM_GROWSDOWN) &&
2057                     vma_is_accessible(prev) &&
2058                     (address - prev->vm_end < stack_guard_gap))
2059                         return -ENOMEM;
2060         }
2061
2062         if (prev)
2063                 mas_next_range(&mas, vma->vm_start);
2064
2065         __mas_set_range(&mas, address, vma->vm_end - 1);
2066         if (mas_preallocate(&mas, vma, GFP_KERNEL))
2067                 return -ENOMEM;
2068
2069         /* We must make sure the anon_vma is allocated. */
2070         if (unlikely(anon_vma_prepare(vma))) {
2071                 mas_destroy(&mas);
2072                 return -ENOMEM;
2073         }
2074
2075         /* Lock the VMA before expanding to prevent concurrent page faults */
2076         vma_start_write(vma);
2077         /*
2078          * vma->vm_start/vm_end cannot change under us because the caller
2079          * is required to hold the mmap_lock in read mode.  We need the
2080          * anon_vma lock to serialize against concurrent expand_stacks.
2081          */
2082         anon_vma_lock_write(vma->anon_vma);
2083
2084         /* Somebody else might have raced and expanded it already */
2085         if (address < vma->vm_start) {
2086                 unsigned long size, grow;
2087
2088                 size = vma->vm_end - address;
2089                 grow = (vma->vm_start - address) >> PAGE_SHIFT;
2090
2091                 error = -ENOMEM;
2092                 if (grow <= vma->vm_pgoff) {
2093                         error = acct_stack_growth(vma, size, grow);
2094                         if (!error) {
2095                                 /*
2096                                  * We only hold a shared mmap_lock lock here, so
2097                                  * we need to protect against concurrent vma
2098                                  * expansions.  anon_vma_lock_write() doesn't
2099                                  * help here, as we don't guarantee that all
2100                                  * growable vmas in a mm share the same root
2101                                  * anon vma.  So, we reuse mm->page_table_lock
2102                                  * to guard against concurrent vma expansions.
2103                                  */
2104                                 spin_lock(&mm->page_table_lock);
2105                                 if (vma->vm_flags & VM_LOCKED)
2106                                         mm->locked_vm += grow;
2107                                 vm_stat_account(mm, vma->vm_flags, grow);
2108                                 anon_vma_interval_tree_pre_update_vma(vma);
2109                                 vma->vm_start = address;
2110                                 vma->vm_pgoff -= grow;
2111                                 /* Overwrite old entry in mtree. */
2112                                 mas_store_prealloc(&mas, vma);
2113                                 anon_vma_interval_tree_post_update_vma(vma);
2114                                 spin_unlock(&mm->page_table_lock);
2115
2116                                 perf_event_mmap(vma);
2117                         }
2118                 }
2119         }
2120         anon_vma_unlock_write(vma->anon_vma);
2121         khugepaged_enter_vma(vma, vma->vm_flags);
2122         mas_destroy(&mas);
2123         validate_mm(mm);
2124         return error;
2125 }
2126
2127 /* enforced gap between the expanding stack and other mappings. */
2128 unsigned long stack_guard_gap = 256UL<<PAGE_SHIFT;
2129
2130 static int __init cmdline_parse_stack_guard_gap(char *p)
2131 {
2132         unsigned long val;
2133         char *endptr;
2134
2135         val = simple_strtoul(p, &endptr, 10);
2136         if (!*endptr)
2137                 stack_guard_gap = val << PAGE_SHIFT;
2138
2139         return 1;
2140 }
2141 __setup("stack_guard_gap=", cmdline_parse_stack_guard_gap);
2142
2143 #ifdef CONFIG_STACK_GROWSUP
2144 int expand_stack_locked(struct vm_area_struct *vma, unsigned long address)
2145 {
2146         return expand_upwards(vma, address);
2147 }
2148
2149 struct vm_area_struct *find_extend_vma_locked(struct mm_struct *mm, unsigned long addr)
2150 {
2151         struct vm_area_struct *vma, *prev;
2152
2153         addr &= PAGE_MASK;
2154         vma = find_vma_prev(mm, addr, &prev);
2155         if (vma && (vma->vm_start <= addr))
2156                 return vma;
2157         if (!prev)
2158                 return NULL;
2159         if (expand_stack_locked(prev, addr))
2160                 return NULL;
2161         if (prev->vm_flags & VM_LOCKED)
2162                 populate_vma_page_range(prev, addr, prev->vm_end, NULL);
2163         return prev;
2164 }
2165 #else
2166 int expand_stack_locked(struct vm_area_struct *vma, unsigned long address)
2167 {
2168         if (unlikely(!(vma->vm_flags & VM_GROWSDOWN)))
2169                 return -EINVAL;
2170         return expand_downwards(vma, address);
2171 }
2172
2173 struct vm_area_struct *find_extend_vma_locked(struct mm_struct *mm, unsigned long addr)
2174 {
2175         struct vm_area_struct *vma;
2176         unsigned long start;
2177
2178         addr &= PAGE_MASK;
2179         vma = find_vma(mm, addr);
2180         if (!vma)
2181                 return NULL;
2182         if (vma->vm_start <= addr)
2183                 return vma;
2184         start = vma->vm_start;
2185         if (expand_stack_locked(vma, addr))
2186                 return NULL;
2187         if (vma->vm_flags & VM_LOCKED)
2188                 populate_vma_page_range(vma, addr, start, NULL);
2189         return vma;
2190 }
2191 #endif
2192
2193 /*
2194  * IA64 has some horrid mapping rules: it can expand both up and down,
2195  * but with various special rules.
2196  *
2197  * We'll get rid of this architecture eventually, so the ugliness is
2198  * temporary.
2199  */
2200 #ifdef CONFIG_IA64
2201 static inline bool vma_expand_ok(struct vm_area_struct *vma, unsigned long addr)
2202 {
2203         return REGION_NUMBER(addr) == REGION_NUMBER(vma->vm_start) &&
2204                 REGION_OFFSET(addr) < RGN_MAP_LIMIT;
2205 }
2206
2207 /*
2208  * IA64 stacks grow down, but there's a special register backing store
2209  * that can grow up. Only sequentially, though, so the new address must
2210  * match vm_end.
2211  */
2212 static inline int vma_expand_up(struct vm_area_struct *vma, unsigned long addr)
2213 {
2214         if (!vma_expand_ok(vma, addr))
2215                 return -EFAULT;
2216         if (vma->vm_end != (addr & PAGE_MASK))
2217                 return -EFAULT;
2218         return expand_upwards(vma, addr);
2219 }
2220
2221 static inline bool vma_expand_down(struct vm_area_struct *vma, unsigned long addr)
2222 {
2223         if (!vma_expand_ok(vma, addr))
2224                 return -EFAULT;
2225         return expand_downwards(vma, addr);
2226 }
2227
2228 #elif defined(CONFIG_STACK_GROWSUP)
2229
2230 #define vma_expand_up(vma,addr) expand_upwards(vma, addr)
2231 #define vma_expand_down(vma, addr) (-EFAULT)
2232
2233 #else
2234
2235 #define vma_expand_up(vma,addr) (-EFAULT)
2236 #define vma_expand_down(vma, addr) expand_downwards(vma, addr)
2237
2238 #endif
2239
2240 /*
2241  * expand_stack(): legacy interface for page faulting. Don't use unless
2242  * you have to.
2243  *
2244  * This is called with the mm locked for reading, drops the lock, takes
2245  * the lock for writing, tries to look up a vma again, expands it if
2246  * necessary, and downgrades the lock to reading again.
2247  *
2248  * If no vma is found or it can't be expanded, it returns NULL and has
2249  * dropped the lock.
2250  */
2251 struct vm_area_struct *expand_stack(struct mm_struct *mm, unsigned long addr)
2252 {
2253         struct vm_area_struct *vma, *prev;
2254
2255         mmap_read_unlock(mm);
2256         if (mmap_write_lock_killable(mm))
2257                 return NULL;
2258
2259         vma = find_vma_prev(mm, addr, &prev);
2260         if (vma && vma->vm_start <= addr)
2261                 goto success;
2262
2263         if (prev && !vma_expand_up(prev, addr)) {
2264                 vma = prev;
2265                 goto success;
2266         }
2267
2268         if (vma && !vma_expand_down(vma, addr))
2269                 goto success;
2270
2271         mmap_write_unlock(mm);
2272         return NULL;
2273
2274 success:
2275         mmap_write_downgrade(mm);
2276         return vma;
2277 }
2278
2279 /*
2280  * Ok - we have the memory areas we should free on a maple tree so release them,
2281  * and do the vma updates.
2282  *
2283  * Called with the mm semaphore held.
2284  */
2285 static inline void remove_mt(struct mm_struct *mm, struct ma_state *mas)
2286 {
2287         unsigned long nr_accounted = 0;
2288         struct vm_area_struct *vma;
2289
2290         /* Update high watermark before we lower total_vm */
2291         update_hiwater_vm(mm);
2292         mas_for_each(mas, vma, ULONG_MAX) {
2293                 long nrpages = vma_pages(vma);
2294
2295                 if (vma->vm_flags & VM_ACCOUNT)
2296                         nr_accounted += nrpages;
2297                 vm_stat_account(mm, vma->vm_flags, -nrpages);
2298                 remove_vma(vma, false);
2299         }
2300         vm_unacct_memory(nr_accounted);
2301 }
2302
2303 /*
2304  * Get rid of page table information in the indicated region.
2305  *
2306  * Called with the mm semaphore held.
2307  */
2308 static void unmap_region(struct mm_struct *mm, struct ma_state *mas,
2309                 struct vm_area_struct *vma, struct vm_area_struct *prev,
2310                 struct vm_area_struct *next, unsigned long start,
2311                 unsigned long end, unsigned long tree_end, bool mm_wr_locked)
2312 {
2313         struct mmu_gather tlb;
2314         unsigned long mt_start = mas->index;
2315
2316         lru_add_drain();
2317         tlb_gather_mmu(&tlb, mm);
2318         update_hiwater_rss(mm);
2319         unmap_vmas(&tlb, mas, vma, start, end, tree_end, mm_wr_locked);
2320         mas_set(mas, mt_start);
2321         free_pgtables(&tlb, mas, vma, prev ? prev->vm_end : FIRST_USER_ADDRESS,
2322                                  next ? next->vm_start : USER_PGTABLES_CEILING,
2323                                  mm_wr_locked);
2324         tlb_finish_mmu(&tlb);
2325 }
2326
2327 /*
2328  * __split_vma() bypasses sysctl_max_map_count checking.  We use this where it
2329  * has already been checked or doesn't make sense to fail.
2330  * VMA Iterator will point to the end VMA.
2331  */
2332 int __split_vma(struct vma_iterator *vmi, struct vm_area_struct *vma,
2333                 unsigned long addr, int new_below)
2334 {
2335         struct vma_prepare vp;
2336         struct vm_area_struct *new;
2337         int err;
2338
2339         WARN_ON(vma->vm_start >= addr);
2340         WARN_ON(vma->vm_end <= addr);
2341
2342         if (vma->vm_ops && vma->vm_ops->may_split) {
2343                 err = vma->vm_ops->may_split(vma, addr);
2344                 if (err)
2345                         return err;
2346         }
2347
2348         new = vm_area_dup(vma);
2349         if (!new)
2350                 return -ENOMEM;
2351
2352         if (new_below) {
2353                 new->vm_end = addr;
2354         } else {
2355                 new->vm_start = addr;
2356                 new->vm_pgoff += ((addr - vma->vm_start) >> PAGE_SHIFT);
2357         }
2358
2359         err = -ENOMEM;
2360         vma_iter_config(vmi, new->vm_start, new->vm_end);
2361         if (vma_iter_prealloc(vmi, new))
2362                 goto out_free_vma;
2363
2364         err = vma_dup_policy(vma, new);
2365         if (err)
2366                 goto out_free_vmi;
2367
2368         err = anon_vma_clone(new, vma);
2369         if (err)
2370                 goto out_free_mpol;
2371
2372         if (new->vm_file)
2373                 get_file(new->vm_file);
2374
2375         if (new->vm_ops && new->vm_ops->open)
2376                 new->vm_ops->open(new);
2377
2378         vma_start_write(vma);
2379         vma_start_write(new);
2380
2381         init_vma_prep(&vp, vma);
2382         vp.insert = new;
2383         vma_prepare(&vp);
2384         vma_adjust_trans_huge(vma, vma->vm_start, addr, 0);
2385
2386         if (new_below) {
2387                 vma->vm_start = addr;
2388                 vma->vm_pgoff += (addr - new->vm_start) >> PAGE_SHIFT;
2389         } else {
2390                 vma->vm_end = addr;
2391         }
2392
2393         /* vma_complete stores the new vma */
2394         vma_complete(&vp, vmi, vma->vm_mm);
2395
2396         /* Success. */
2397         if (new_below)
2398                 vma_next(vmi);
2399         return 0;
2400
2401 out_free_mpol:
2402         mpol_put(vma_policy(new));
2403 out_free_vmi:
2404         vma_iter_free(vmi);
2405 out_free_vma:
2406         vm_area_free(new);
2407         return err;
2408 }
2409
2410 /*
2411  * Split a vma into two pieces at address 'addr', a new vma is allocated
2412  * either for the first part or the tail.
2413  */
2414 int split_vma(struct vma_iterator *vmi, struct vm_area_struct *vma,
2415               unsigned long addr, int new_below)
2416 {
2417         if (vma->vm_mm->map_count >= sysctl_max_map_count)
2418                 return -ENOMEM;
2419
2420         return __split_vma(vmi, vma, addr, new_below);
2421 }
2422
2423 /*
2424  * do_vmi_align_munmap() - munmap the aligned region from @start to @end.
2425  * @vmi: The vma iterator
2426  * @vma: The starting vm_area_struct
2427  * @mm: The mm_struct
2428  * @start: The aligned start address to munmap.
2429  * @end: The aligned end address to munmap.
2430  * @uf: The userfaultfd list_head
2431  * @unlock: Set to true to drop the mmap_lock.  unlocking only happens on
2432  * success.
2433  *
2434  * Return: 0 on success and drops the lock if so directed, error and leaves the
2435  * lock held otherwise.
2436  */
2437 static int
2438 do_vmi_align_munmap(struct vma_iterator *vmi, struct vm_area_struct *vma,
2439                     struct mm_struct *mm, unsigned long start,
2440                     unsigned long end, struct list_head *uf, bool unlock)
2441 {
2442         struct vm_area_struct *prev, *next = NULL;
2443         struct maple_tree mt_detach;
2444         int count = 0;
2445         int error = -ENOMEM;
2446         unsigned long locked_vm = 0;
2447         MA_STATE(mas_detach, &mt_detach, 0, 0);
2448         mt_init_flags(&mt_detach, vmi->mas.tree->ma_flags & MT_FLAGS_LOCK_MASK);
2449         mt_on_stack(mt_detach);
2450
2451         /*
2452          * If we need to split any vma, do it now to save pain later.
2453          *
2454          * Note: mremap's move_vma VM_ACCOUNT handling assumes a partially
2455          * unmapped vm_area_struct will remain in use: so lower split_vma
2456          * places tmp vma above, and higher split_vma places tmp vma below.
2457          */
2458
2459         /* Does it split the first one? */
2460         if (start > vma->vm_start) {
2461
2462                 /*
2463                  * Make sure that map_count on return from munmap() will
2464                  * not exceed its limit; but let map_count go just above
2465                  * its limit temporarily, to help free resources as expected.
2466                  */
2467                 if (end < vma->vm_end && mm->map_count >= sysctl_max_map_count)
2468                         goto map_count_exceeded;
2469
2470                 error = __split_vma(vmi, vma, start, 1);
2471                 if (error)
2472                         goto start_split_failed;
2473         }
2474
2475         /*
2476          * Detach a range of VMAs from the mm. Using next as a temp variable as
2477          * it is always overwritten.
2478          */
2479         next = vma;
2480         do {
2481                 /* Does it split the end? */
2482                 if (next->vm_end > end) {
2483                         error = __split_vma(vmi, next, end, 0);
2484                         if (error)
2485                                 goto end_split_failed;
2486                 }
2487                 vma_start_write(next);
2488                 mas_set(&mas_detach, count);
2489                 error = mas_store_gfp(&mas_detach, next, GFP_KERNEL);
2490                 if (error)
2491                         goto munmap_gather_failed;
2492                 vma_mark_detached(next, true);
2493                 if (next->vm_flags & VM_LOCKED)
2494                         locked_vm += vma_pages(next);
2495
2496                 count++;
2497                 if (unlikely(uf)) {
2498                         /*
2499                          * If userfaultfd_unmap_prep returns an error the vmas
2500                          * will remain split, but userland will get a
2501                          * highly unexpected error anyway. This is no
2502                          * different than the case where the first of the two
2503                          * __split_vma fails, but we don't undo the first
2504                          * split, despite we could. This is unlikely enough
2505                          * failure that it's not worth optimizing it for.
2506                          */
2507                         error = userfaultfd_unmap_prep(next, start, end, uf);
2508
2509                         if (error)
2510                                 goto userfaultfd_error;
2511                 }
2512 #ifdef CONFIG_DEBUG_VM_MAPLE_TREE
2513                 BUG_ON(next->vm_start < start);
2514                 BUG_ON(next->vm_start > end);
2515 #endif
2516         } for_each_vma_range(*vmi, next, end);
2517
2518 #if defined(CONFIG_DEBUG_VM_MAPLE_TREE)
2519         /* Make sure no VMAs are about to be lost. */
2520         {
2521                 MA_STATE(test, &mt_detach, 0, 0);
2522                 struct vm_area_struct *vma_mas, *vma_test;
2523                 int test_count = 0;
2524
2525                 vma_iter_set(vmi, start);
2526                 rcu_read_lock();
2527                 vma_test = mas_find(&test, count - 1);
2528                 for_each_vma_range(*vmi, vma_mas, end) {
2529                         BUG_ON(vma_mas != vma_test);
2530                         test_count++;
2531                         vma_test = mas_next(&test, count - 1);
2532                 }
2533                 rcu_read_unlock();
2534                 BUG_ON(count != test_count);
2535         }
2536 #endif
2537
2538         while (vma_iter_addr(vmi) > start)
2539                 vma_iter_prev_range(vmi);
2540
2541         error = vma_iter_clear_gfp(vmi, start, end, GFP_KERNEL);
2542         if (error)
2543                 goto clear_tree_failed;
2544
2545         /* Point of no return */
2546         mm->locked_vm -= locked_vm;
2547         mm->map_count -= count;
2548         if (unlock)
2549                 mmap_write_downgrade(mm);
2550
2551         prev = vma_iter_prev_range(vmi);
2552         next = vma_next(vmi);
2553         if (next)
2554                 vma_iter_prev_range(vmi);
2555
2556         /*
2557          * We can free page tables without write-locking mmap_lock because VMAs
2558          * were isolated before we downgraded mmap_lock.
2559          */
2560         mas_set(&mas_detach, 1);
2561         unmap_region(mm, &mas_detach, vma, prev, next, start, end, count,
2562                      !unlock);
2563         /* Statistics and freeing VMAs */
2564         mas_set(&mas_detach, 0);
2565         remove_mt(mm, &mas_detach);
2566         validate_mm(mm);
2567         if (unlock)
2568                 mmap_read_unlock(mm);
2569
2570         __mt_destroy(&mt_detach);
2571         return 0;
2572
2573 clear_tree_failed:
2574 userfaultfd_error:
2575 munmap_gather_failed:
2576 end_split_failed:
2577         mas_set(&mas_detach, 0);
2578         mas_for_each(&mas_detach, next, end)
2579                 vma_mark_detached(next, false);
2580
2581         __mt_destroy(&mt_detach);
2582 start_split_failed:
2583 map_count_exceeded:
2584         validate_mm(mm);
2585         return error;
2586 }
2587
2588 /*
2589  * do_vmi_munmap() - munmap a given range.
2590  * @vmi: The vma iterator
2591  * @mm: The mm_struct
2592  * @start: The start address to munmap
2593  * @len: The length of the range to munmap
2594  * @uf: The userfaultfd list_head
2595  * @unlock: set to true if the user wants to drop the mmap_lock on success
2596  *
2597  * This function takes a @mas that is either pointing to the previous VMA or set
2598  * to MA_START and sets it up to remove the mapping(s).  The @len will be
2599  * aligned and any arch_unmap work will be preformed.
2600  *
2601  * Return: 0 on success and drops the lock if so directed, error and leaves the
2602  * lock held otherwise.
2603  */
2604 int do_vmi_munmap(struct vma_iterator *vmi, struct mm_struct *mm,
2605                   unsigned long start, size_t len, struct list_head *uf,
2606                   bool unlock)
2607 {
2608         unsigned long end;
2609         struct vm_area_struct *vma;
2610
2611         if ((offset_in_page(start)) || start > TASK_SIZE || len > TASK_SIZE-start)
2612                 return -EINVAL;
2613
2614         end = start + PAGE_ALIGN(len);
2615         if (end == start)
2616                 return -EINVAL;
2617
2618          /* arch_unmap() might do unmaps itself.  */
2619         arch_unmap(mm, start, end);
2620
2621         /* Find the first overlapping VMA */
2622         vma = vma_find(vmi, end);
2623         if (!vma) {
2624                 if (unlock)
2625                         mmap_write_unlock(mm);
2626                 return 0;
2627         }
2628
2629         return do_vmi_align_munmap(vmi, vma, mm, start, end, uf, unlock);
2630 }
2631
2632 /* do_munmap() - Wrapper function for non-maple tree aware do_munmap() calls.
2633  * @mm: The mm_struct
2634  * @start: The start address to munmap
2635  * @len: The length to be munmapped.
2636  * @uf: The userfaultfd list_head
2637  *
2638  * Return: 0 on success, error otherwise.
2639  */
2640 int do_munmap(struct mm_struct *mm, unsigned long start, size_t len,
2641               struct list_head *uf)
2642 {
2643         VMA_ITERATOR(vmi, mm, start);
2644
2645         return do_vmi_munmap(&vmi, mm, start, len, uf, false);
2646 }
2647
2648 unsigned long mmap_region(struct file *file, unsigned long addr,
2649                 unsigned long len, vm_flags_t vm_flags, unsigned long pgoff,
2650                 struct list_head *uf)
2651 {
2652         struct mm_struct *mm = current->mm;
2653         struct vm_area_struct *vma = NULL;
2654         struct vm_area_struct *next, *prev, *merge;
2655         pgoff_t pglen = len >> PAGE_SHIFT;
2656         unsigned long charged = 0;
2657         unsigned long end = addr + len;
2658         unsigned long merge_start = addr, merge_end = end;
2659         pgoff_t vm_pgoff;
2660         int error;
2661         VMA_ITERATOR(vmi, mm, addr);
2662
2663         /* Check against address space limit. */
2664         if (!may_expand_vm(mm, vm_flags, len >> PAGE_SHIFT)) {
2665                 unsigned long nr_pages;
2666
2667                 /*
2668                  * MAP_FIXED may remove pages of mappings that intersects with
2669                  * requested mapping. Account for the pages it would unmap.
2670                  */
2671                 nr_pages = count_vma_pages_range(mm, addr, end);
2672
2673                 if (!may_expand_vm(mm, vm_flags,
2674                                         (len >> PAGE_SHIFT) - nr_pages))
2675                         return -ENOMEM;
2676         }
2677
2678         /* Unmap any existing mapping in the area */
2679         if (do_vmi_munmap(&vmi, mm, addr, len, uf, false))
2680                 return -ENOMEM;
2681
2682         /*
2683          * Private writable mapping: check memory availability
2684          */
2685         if (accountable_mapping(file, vm_flags)) {
2686                 charged = len >> PAGE_SHIFT;
2687                 if (security_vm_enough_memory_mm(mm, charged))
2688                         return -ENOMEM;
2689                 vm_flags |= VM_ACCOUNT;
2690         }
2691
2692         next = vma_next(&vmi);
2693         prev = vma_prev(&vmi);
2694         if (vm_flags & VM_SPECIAL) {
2695                 if (prev)
2696                         vma_iter_next_range(&vmi);
2697                 goto cannot_expand;
2698         }
2699
2700         /* Attempt to expand an old mapping */
2701         /* Check next */
2702         if (next && next->vm_start == end && !vma_policy(next) &&
2703             can_vma_merge_before(next, vm_flags, NULL, file, pgoff+pglen,
2704                                  NULL_VM_UFFD_CTX, NULL)) {
2705                 merge_end = next->vm_end;
2706                 vma = next;
2707                 vm_pgoff = next->vm_pgoff - pglen;
2708         }
2709
2710         /* Check prev */
2711         if (prev && prev->vm_end == addr && !vma_policy(prev) &&
2712             (vma ? can_vma_merge_after(prev, vm_flags, vma->anon_vma, file,
2713                                        pgoff, vma->vm_userfaultfd_ctx, NULL) :
2714                    can_vma_merge_after(prev, vm_flags, NULL, file, pgoff,
2715                                        NULL_VM_UFFD_CTX, NULL))) {
2716                 merge_start = prev->vm_start;
2717                 vma = prev;
2718                 vm_pgoff = prev->vm_pgoff;
2719         } else if (prev) {
2720                 vma_iter_next_range(&vmi);
2721         }
2722
2723         /* Actually expand, if possible */
2724         if (vma &&
2725             !vma_expand(&vmi, vma, merge_start, merge_end, vm_pgoff, next)) {
2726                 khugepaged_enter_vma(vma, vm_flags);
2727                 goto expanded;
2728         }
2729
2730         if (vma == prev)
2731                 vma_iter_set(&vmi, addr);
2732 cannot_expand:
2733
2734         /*
2735          * Determine the object being mapped and call the appropriate
2736          * specific mapper. the address has already been validated, but
2737          * not unmapped, but the maps are removed from the list.
2738          */
2739         vma = vm_area_alloc(mm);
2740         if (!vma) {
2741                 error = -ENOMEM;
2742                 goto unacct_error;
2743         }
2744
2745         vma_iter_config(&vmi, addr, end);
2746         vma->vm_start = addr;
2747         vma->vm_end = end;
2748         vm_flags_init(vma, vm_flags);
2749         vma->vm_page_prot = vm_get_page_prot(vm_flags);
2750         vma->vm_pgoff = pgoff;
2751
2752         if (file) {
2753                 if (vm_flags & VM_SHARED) {
2754                         error = mapping_map_writable(file->f_mapping);
2755                         if (error)
2756                                 goto free_vma;
2757                 }
2758
2759                 vma->vm_file = get_file(file);
2760                 error = call_mmap(file, vma);
2761                 if (error)
2762                         goto unmap_and_free_vma;
2763
2764                 /*
2765                  * Expansion is handled above, merging is handled below.
2766                  * Drivers should not alter the address of the VMA.
2767                  */
2768                 error = -EINVAL;
2769                 if (WARN_ON((addr != vma->vm_start)))
2770                         goto close_and_free_vma;
2771
2772                 vma_iter_config(&vmi, addr, end);
2773                 /*
2774                  * If vm_flags changed after call_mmap(), we should try merge
2775                  * vma again as we may succeed this time.
2776                  */
2777                 if (unlikely(vm_flags != vma->vm_flags && prev)) {
2778                         merge = vma_merge(&vmi, mm, prev, vma->vm_start,
2779                                     vma->vm_end, vma->vm_flags, NULL,
2780                                     vma->vm_file, vma->vm_pgoff, NULL,
2781                                     NULL_VM_UFFD_CTX, NULL);
2782                         if (merge) {
2783                                 /*
2784                                  * ->mmap() can change vma->vm_file and fput
2785                                  * the original file. So fput the vma->vm_file
2786                                  * here or we would add an extra fput for file
2787                                  * and cause general protection fault
2788                                  * ultimately.
2789                                  */
2790                                 fput(vma->vm_file);
2791                                 vm_area_free(vma);
2792                                 vma = merge;
2793                                 /* Update vm_flags to pick up the change. */
2794                                 vm_flags = vma->vm_flags;
2795                                 goto unmap_writable;
2796                         }
2797                 }
2798
2799                 vm_flags = vma->vm_flags;
2800         } else if (vm_flags & VM_SHARED) {
2801                 error = shmem_zero_setup(vma);
2802                 if (error)
2803                         goto free_vma;
2804         } else {
2805                 vma_set_anonymous(vma);
2806         }
2807
2808         if (map_deny_write_exec(vma, vma->vm_flags)) {
2809                 error = -EACCES;
2810                 goto close_and_free_vma;
2811         }
2812
2813         /* Allow architectures to sanity-check the vm_flags */
2814         error = -EINVAL;
2815         if (!arch_validate_flags(vma->vm_flags))
2816                 goto close_and_free_vma;
2817
2818         error = -ENOMEM;
2819         if (vma_iter_prealloc(&vmi, vma))
2820                 goto close_and_free_vma;
2821
2822         /* Lock the VMA since it is modified after insertion into VMA tree */
2823         vma_start_write(vma);
2824         vma_iter_store(&vmi, vma);
2825         mm->map_count++;
2826         if (vma->vm_file) {
2827                 i_mmap_lock_write(vma->vm_file->f_mapping);
2828                 if (vma->vm_flags & VM_SHARED)
2829                         mapping_allow_writable(vma->vm_file->f_mapping);
2830
2831                 flush_dcache_mmap_lock(vma->vm_file->f_mapping);
2832                 vma_interval_tree_insert(vma, &vma->vm_file->f_mapping->i_mmap);
2833                 flush_dcache_mmap_unlock(vma->vm_file->f_mapping);
2834                 i_mmap_unlock_write(vma->vm_file->f_mapping);
2835         }
2836
2837         /*
2838          * vma_merge() calls khugepaged_enter_vma() either, the below
2839          * call covers the non-merge case.
2840          */
2841         khugepaged_enter_vma(vma, vma->vm_flags);
2842
2843         /* Once vma denies write, undo our temporary denial count */
2844 unmap_writable:
2845         if (file && vm_flags & VM_SHARED)
2846                 mapping_unmap_writable(file->f_mapping);
2847         file = vma->vm_file;
2848         ksm_add_vma(vma);
2849 expanded:
2850         perf_event_mmap(vma);
2851
2852         vm_stat_account(mm, vm_flags, len >> PAGE_SHIFT);
2853         if (vm_flags & VM_LOCKED) {
2854                 if ((vm_flags & VM_SPECIAL) || vma_is_dax(vma) ||
2855                                         is_vm_hugetlb_page(vma) ||
2856                                         vma == get_gate_vma(current->mm))
2857                         vm_flags_clear(vma, VM_LOCKED_MASK);
2858                 else
2859                         mm->locked_vm += (len >> PAGE_SHIFT);
2860         }
2861
2862         if (file)
2863                 uprobe_mmap(vma);
2864
2865         /*
2866          * New (or expanded) vma always get soft dirty status.
2867          * Otherwise user-space soft-dirty page tracker won't
2868          * be able to distinguish situation when vma area unmapped,
2869          * then new mapped in-place (which must be aimed as
2870          * a completely new data area).
2871          */
2872         vm_flags_set(vma, VM_SOFTDIRTY);
2873
2874         vma_set_page_prot(vma);
2875
2876         validate_mm(mm);
2877         return addr;
2878
2879 close_and_free_vma:
2880         if (file && vma->vm_ops && vma->vm_ops->close)
2881                 vma->vm_ops->close(vma);
2882
2883         if (file || vma->vm_file) {
2884 unmap_and_free_vma:
2885                 fput(vma->vm_file);
2886                 vma->vm_file = NULL;
2887
2888                 vma_iter_set(&vmi, vma->vm_end);
2889                 /* Undo any partial mapping done by a device driver. */
2890                 unmap_region(mm, &vmi.mas, vma, prev, next, vma->vm_start,
2891                              vma->vm_end, vma->vm_end, true);
2892         }
2893         if (file && (vm_flags & VM_SHARED))
2894                 mapping_unmap_writable(file->f_mapping);
2895 free_vma:
2896         vm_area_free(vma);
2897 unacct_error:
2898         if (charged)
2899                 vm_unacct_memory(charged);
2900         validate_mm(mm);
2901         return error;
2902 }
2903
2904 static int __vm_munmap(unsigned long start, size_t len, bool unlock)
2905 {
2906         int ret;
2907         struct mm_struct *mm = current->mm;
2908         LIST_HEAD(uf);
2909         VMA_ITERATOR(vmi, mm, start);
2910
2911         if (mmap_write_lock_killable(mm))
2912                 return -EINTR;
2913
2914         ret = do_vmi_munmap(&vmi, mm, start, len, &uf, unlock);
2915         if (ret || !unlock)
2916                 mmap_write_unlock(mm);
2917
2918         userfaultfd_unmap_complete(mm, &uf);
2919         return ret;
2920 }
2921
2922 int vm_munmap(unsigned long start, size_t len)
2923 {
2924         return __vm_munmap(start, len, false);
2925 }
2926 EXPORT_SYMBOL(vm_munmap);
2927
2928 SYSCALL_DEFINE2(munmap, unsigned long, addr, size_t, len)
2929 {
2930         addr = untagged_addr(addr);
2931         return __vm_munmap(addr, len, true);
2932 }
2933
2934
2935 /*
2936  * Emulation of deprecated remap_file_pages() syscall.
2937  */
2938 SYSCALL_DEFINE5(remap_file_pages, unsigned long, start, unsigned long, size,
2939                 unsigned long, prot, unsigned long, pgoff, unsigned long, flags)
2940 {
2941
2942         struct mm_struct *mm = current->mm;
2943         struct vm_area_struct *vma;
2944         unsigned long populate = 0;
2945         unsigned long ret = -EINVAL;
2946         struct file *file;
2947
2948         pr_warn_once("%s (%d) uses deprecated remap_file_pages() syscall. See Documentation/mm/remap_file_pages.rst.\n",
2949                      current->comm, current->pid);
2950
2951         if (prot)
2952                 return ret;
2953         start = start & PAGE_MASK;
2954         size = size & PAGE_MASK;
2955
2956         if (start + size <= start)
2957                 return ret;
2958
2959         /* Does pgoff wrap? */
2960         if (pgoff + (size >> PAGE_SHIFT) < pgoff)
2961                 return ret;
2962
2963         if (mmap_write_lock_killable(mm))
2964                 return -EINTR;
2965
2966         vma = vma_lookup(mm, start);
2967
2968         if (!vma || !(vma->vm_flags & VM_SHARED))
2969                 goto out;
2970
2971         if (start + size > vma->vm_end) {
2972                 VMA_ITERATOR(vmi, mm, vma->vm_end);
2973                 struct vm_area_struct *next, *prev = vma;
2974
2975                 for_each_vma_range(vmi, next, start + size) {
2976                         /* hole between vmas ? */
2977                         if (next->vm_start != prev->vm_end)
2978                                 goto out;
2979
2980                         if (next->vm_file != vma->vm_file)
2981                                 goto out;
2982
2983                         if (next->vm_flags != vma->vm_flags)
2984                                 goto out;
2985
2986                         if (start + size <= next->vm_end)
2987                                 break;
2988
2989                         prev = next;
2990                 }
2991
2992                 if (!next)
2993                         goto out;
2994         }
2995
2996         prot |= vma->vm_flags & VM_READ ? PROT_READ : 0;
2997         prot |= vma->vm_flags & VM_WRITE ? PROT_WRITE : 0;
2998         prot |= vma->vm_flags & VM_EXEC ? PROT_EXEC : 0;
2999
3000         flags &= MAP_NONBLOCK;
3001         flags |= MAP_SHARED | MAP_FIXED | MAP_POPULATE;
3002         if (vma->vm_flags & VM_LOCKED)
3003                 flags |= MAP_LOCKED;
3004
3005         file = get_file(vma->vm_file);
3006         ret = do_mmap(vma->vm_file, start, size,
3007                         prot, flags, 0, pgoff, &populate, NULL);
3008         fput(file);
3009 out:
3010         mmap_write_unlock(mm);
3011         if (populate)
3012                 mm_populate(ret, populate);
3013         if (!IS_ERR_VALUE(ret))
3014                 ret = 0;
3015         return ret;
3016 }
3017
3018 /*
3019  * do_vma_munmap() - Unmap a full or partial vma.
3020  * @vmi: The vma iterator pointing at the vma
3021  * @vma: The first vma to be munmapped
3022  * @start: the start of the address to unmap
3023  * @end: The end of the address to unmap
3024  * @uf: The userfaultfd list_head
3025  * @unlock: Drop the lock on success
3026  *
3027  * unmaps a VMA mapping when the vma iterator is already in position.
3028  * Does not handle alignment.
3029  *
3030  * Return: 0 on success drops the lock of so directed, error on failure and will
3031  * still hold the lock.
3032  */
3033 int do_vma_munmap(struct vma_iterator *vmi, struct vm_area_struct *vma,
3034                 unsigned long start, unsigned long end, struct list_head *uf,
3035                 bool unlock)
3036 {
3037         struct mm_struct *mm = vma->vm_mm;
3038
3039         arch_unmap(mm, start, end);
3040         return do_vmi_align_munmap(vmi, vma, mm, start, end, uf, unlock);
3041 }
3042
3043 /*
3044  * do_brk_flags() - Increase the brk vma if the flags match.
3045  * @vmi: The vma iterator
3046  * @addr: The start address
3047  * @len: The length of the increase
3048  * @vma: The vma,
3049  * @flags: The VMA Flags
3050  *
3051  * Extend the brk VMA from addr to addr + len.  If the VMA is NULL or the flags
3052  * do not match then create a new anonymous VMA.  Eventually we may be able to
3053  * do some brk-specific accounting here.
3054  */
3055 static int do_brk_flags(struct vma_iterator *vmi, struct vm_area_struct *vma,
3056                 unsigned long addr, unsigned long len, unsigned long flags)
3057 {
3058         struct mm_struct *mm = current->mm;
3059         struct vma_prepare vp;
3060
3061         /*
3062          * Check against address space limits by the changed size
3063          * Note: This happens *after* clearing old mappings in some code paths.
3064          */
3065         flags |= VM_DATA_DEFAULT_FLAGS | VM_ACCOUNT | mm->def_flags;
3066         if (!may_expand_vm(mm, flags, len >> PAGE_SHIFT))
3067                 return -ENOMEM;
3068
3069         if (mm->map_count > sysctl_max_map_count)
3070                 return -ENOMEM;
3071
3072         if (security_vm_enough_memory_mm(mm, len >> PAGE_SHIFT))
3073                 return -ENOMEM;
3074
3075         /*
3076          * Expand the existing vma if possible; Note that singular lists do not
3077          * occur after forking, so the expand will only happen on new VMAs.
3078          */
3079         if (vma && vma->vm_end == addr && !vma_policy(vma) &&
3080             can_vma_merge_after(vma, flags, NULL, NULL,
3081                                 addr >> PAGE_SHIFT, NULL_VM_UFFD_CTX, NULL)) {
3082                 vma_iter_config(vmi, vma->vm_start, addr + len);
3083                 if (vma_iter_prealloc(vmi, vma))
3084                         goto unacct_fail;
3085
3086                 vma_start_write(vma);
3087
3088                 init_vma_prep(&vp, vma);
3089                 vma_prepare(&vp);
3090                 vma_adjust_trans_huge(vma, vma->vm_start, addr + len, 0);
3091                 vma->vm_end = addr + len;
3092                 vm_flags_set(vma, VM_SOFTDIRTY);
3093                 vma_iter_store(vmi, vma);
3094
3095                 vma_complete(&vp, vmi, mm);
3096                 khugepaged_enter_vma(vma, flags);
3097                 goto out;
3098         }
3099
3100         if (vma)
3101                 vma_iter_next_range(vmi);
3102         /* create a vma struct for an anonymous mapping */
3103         vma = vm_area_alloc(mm);
3104         if (!vma)
3105                 goto unacct_fail;
3106
3107         vma_set_anonymous(vma);
3108         vma->vm_start = addr;
3109         vma->vm_end = addr + len;
3110         vma->vm_pgoff = addr >> PAGE_SHIFT;
3111         vm_flags_init(vma, flags);
3112         vma->vm_page_prot = vm_get_page_prot(flags);
3113         vma_start_write(vma);
3114         if (vma_iter_store_gfp(vmi, vma, GFP_KERNEL))
3115                 goto mas_store_fail;
3116
3117         mm->map_count++;
3118         validate_mm(mm);
3119         ksm_add_vma(vma);
3120 out:
3121         perf_event_mmap(vma);
3122         mm->total_vm += len >> PAGE_SHIFT;
3123         mm->data_vm += len >> PAGE_SHIFT;
3124         if (flags & VM_LOCKED)
3125                 mm->locked_vm += (len >> PAGE_SHIFT);
3126         vm_flags_set(vma, VM_SOFTDIRTY);
3127         return 0;
3128
3129 mas_store_fail:
3130         vm_area_free(vma);
3131 unacct_fail:
3132         vm_unacct_memory(len >> PAGE_SHIFT);
3133         return -ENOMEM;
3134 }
3135
3136 int vm_brk_flags(unsigned long addr, unsigned long request, unsigned long flags)
3137 {
3138         struct mm_struct *mm = current->mm;
3139         struct vm_area_struct *vma = NULL;
3140         unsigned long len;
3141         int ret;
3142         bool populate;
3143         LIST_HEAD(uf);
3144         VMA_ITERATOR(vmi, mm, addr);
3145
3146         len = PAGE_ALIGN(request);
3147         if (len < request)
3148                 return -ENOMEM;
3149         if (!len)
3150                 return 0;
3151
3152         /* Until we need other flags, refuse anything except VM_EXEC. */
3153         if ((flags & (~VM_EXEC)) != 0)
3154                 return -EINVAL;
3155
3156         if (mmap_write_lock_killable(mm))
3157                 return -EINTR;
3158
3159         ret = check_brk_limits(addr, len);
3160         if (ret)
3161                 goto limits_failed;
3162
3163         ret = do_vmi_munmap(&vmi, mm, addr, len, &uf, 0);
3164         if (ret)
3165                 goto munmap_failed;
3166
3167         vma = vma_prev(&vmi);
3168         ret = do_brk_flags(&vmi, vma, addr, len, flags);
3169         populate = ((mm->def_flags & VM_LOCKED) != 0);
3170         mmap_write_unlock(mm);
3171         userfaultfd_unmap_complete(mm, &uf);
3172         if (populate && !ret)
3173                 mm_populate(addr, len);
3174         return ret;
3175
3176 munmap_failed:
3177 limits_failed:
3178         mmap_write_unlock(mm);
3179         return ret;
3180 }
3181 EXPORT_SYMBOL(vm_brk_flags);
3182
3183 int vm_brk(unsigned long addr, unsigned long len)
3184 {
3185         return vm_brk_flags(addr, len, 0);
3186 }
3187 EXPORT_SYMBOL(vm_brk);
3188
3189 /* Release all mmaps. */
3190 void exit_mmap(struct mm_struct *mm)
3191 {
3192         struct mmu_gather tlb;
3193         struct vm_area_struct *vma;
3194         unsigned long nr_accounted = 0;
3195         MA_STATE(mas, &mm->mm_mt, 0, 0);
3196         int count = 0;
3197
3198         /* mm's last user has gone, and its about to be pulled down */
3199         mmu_notifier_release(mm);
3200
3201         mmap_read_lock(mm);
3202         arch_exit_mmap(mm);
3203
3204         vma = mas_find(&mas, ULONG_MAX);
3205         if (!vma) {
3206                 /* Can happen if dup_mmap() received an OOM */
3207                 mmap_read_unlock(mm);
3208                 return;
3209         }
3210
3211         lru_add_drain();
3212         flush_cache_mm(mm);
3213         tlb_gather_mmu_fullmm(&tlb, mm);
3214         /* update_hiwater_rss(mm) here? but nobody should be looking */
3215         /* Use ULONG_MAX here to ensure all VMAs in the mm are unmapped */
3216         unmap_vmas(&tlb, &mas, vma, 0, ULONG_MAX, ULONG_MAX, false);
3217         mmap_read_unlock(mm);
3218
3219         /*
3220          * Set MMF_OOM_SKIP to hide this task from the oom killer/reaper
3221          * because the memory has been already freed.
3222          */
3223         set_bit(MMF_OOM_SKIP, &mm->flags);
3224         mmap_write_lock(mm);
3225         mt_clear_in_rcu(&mm->mm_mt);
3226         mas_set(&mas, vma->vm_end);
3227         free_pgtables(&tlb, &mas, vma, FIRST_USER_ADDRESS,
3228                       USER_PGTABLES_CEILING, true);
3229         tlb_finish_mmu(&tlb);
3230
3231         /*
3232          * Walk the list again, actually closing and freeing it, with preemption
3233          * enabled, without holding any MM locks besides the unreachable
3234          * mmap_write_lock.
3235          */
3236         mas_set(&mas, vma->vm_end);
3237         do {
3238                 if (vma->vm_flags & VM_ACCOUNT)
3239                         nr_accounted += vma_pages(vma);
3240                 remove_vma(vma, true);
3241                 count++;
3242                 cond_resched();
3243         } while ((vma = mas_find(&mas, ULONG_MAX)) != NULL);
3244
3245         BUG_ON(count != mm->map_count);
3246
3247         trace_exit_mmap(mm);
3248         __mt_destroy(&mm->mm_mt);
3249         mmap_write_unlock(mm);
3250         vm_unacct_memory(nr_accounted);
3251 }
3252
3253 /* Insert vm structure into process list sorted by address
3254  * and into the inode's i_mmap tree.  If vm_file is non-NULL
3255  * then i_mmap_rwsem is taken here.
3256  */
3257 int insert_vm_struct(struct mm_struct *mm, struct vm_area_struct *vma)
3258 {
3259         unsigned long charged = vma_pages(vma);
3260
3261
3262         if (find_vma_intersection(mm, vma->vm_start, vma->vm_end))
3263                 return -ENOMEM;
3264
3265         if ((vma->vm_flags & VM_ACCOUNT) &&
3266              security_vm_enough_memory_mm(mm, charged))
3267                 return -ENOMEM;
3268
3269         /*
3270          * The vm_pgoff of a purely anonymous vma should be irrelevant
3271          * until its first write fault, when page's anon_vma and index
3272          * are set.  But now set the vm_pgoff it will almost certainly
3273          * end up with (unless mremap moves it elsewhere before that
3274          * first wfault), so /proc/pid/maps tells a consistent story.
3275          *
3276          * By setting it to reflect the virtual start address of the
3277          * vma, merges and splits can happen in a seamless way, just
3278          * using the existing file pgoff checks and manipulations.
3279          * Similarly in do_mmap and in do_brk_flags.
3280          */
3281         if (vma_is_anonymous(vma)) {
3282                 BUG_ON(vma->anon_vma);
3283                 vma->vm_pgoff = vma->vm_start >> PAGE_SHIFT;
3284         }
3285
3286         if (vma_link(mm, vma)) {
3287                 vm_unacct_memory(charged);
3288                 return -ENOMEM;
3289         }
3290
3291         return 0;
3292 }
3293
3294 /*
3295  * Copy the vma structure to a new location in the same mm,
3296  * prior to moving page table entries, to effect an mremap move.
3297  */
3298 struct vm_area_struct *copy_vma(struct vm_area_struct **vmap,
3299         unsigned long addr, unsigned long len, pgoff_t pgoff,
3300         bool *need_rmap_locks)
3301 {
3302         struct vm_area_struct *vma = *vmap;
3303         unsigned long vma_start = vma->vm_start;
3304         struct mm_struct *mm = vma->vm_mm;
3305         struct vm_area_struct *new_vma, *prev;
3306         bool faulted_in_anon_vma = true;
3307         VMA_ITERATOR(vmi, mm, addr);
3308
3309         /*
3310          * If anonymous vma has not yet been faulted, update new pgoff
3311          * to match new location, to increase its chance of merging.
3312          */
3313         if (unlikely(vma_is_anonymous(vma) && !vma->anon_vma)) {
3314                 pgoff = addr >> PAGE_SHIFT;
3315                 faulted_in_anon_vma = false;
3316         }
3317
3318         new_vma = find_vma_prev(mm, addr, &prev);
3319         if (new_vma && new_vma->vm_start < addr + len)
3320                 return NULL;    /* should never get here */
3321
3322         new_vma = vma_merge(&vmi, mm, prev, addr, addr + len, vma->vm_flags,
3323                             vma->anon_vma, vma->vm_file, pgoff, vma_policy(vma),
3324                             vma->vm_userfaultfd_ctx, anon_vma_name(vma));
3325         if (new_vma) {
3326                 /*
3327                  * Source vma may have been merged into new_vma
3328                  */
3329                 if (unlikely(vma_start >= new_vma->vm_start &&
3330                              vma_start < new_vma->vm_end)) {
3331                         /*
3332                          * The only way we can get a vma_merge with
3333                          * self during an mremap is if the vma hasn't
3334                          * been faulted in yet and we were allowed to
3335                          * reset the dst vma->vm_pgoff to the
3336                          * destination address of the mremap to allow
3337                          * the merge to happen. mremap must change the
3338                          * vm_pgoff linearity between src and dst vmas
3339                          * (in turn preventing a vma_merge) to be
3340                          * safe. It is only safe to keep the vm_pgoff
3341                          * linear if there are no pages mapped yet.
3342                          */
3343                         VM_BUG_ON_VMA(faulted_in_anon_vma, new_vma);
3344                         *vmap = vma = new_vma;
3345                 }
3346                 *need_rmap_locks = (new_vma->vm_pgoff <= vma->vm_pgoff);
3347         } else {
3348                 new_vma = vm_area_dup(vma);
3349                 if (!new_vma)
3350                         goto out;
3351                 new_vma->vm_start = addr;
3352                 new_vma->vm_end = addr + len;
3353                 new_vma->vm_pgoff = pgoff;
3354                 if (vma_dup_policy(vma, new_vma))
3355                         goto out_free_vma;
3356                 if (anon_vma_clone(new_vma, vma))
3357                         goto out_free_mempol;
3358                 if (new_vma->vm_file)
3359                         get_file(new_vma->vm_file);
3360                 if (new_vma->vm_ops && new_vma->vm_ops->open)
3361                         new_vma->vm_ops->open(new_vma);
3362                 if (vma_link(mm, new_vma))
3363                         goto out_vma_link;
3364                 *need_rmap_locks = false;
3365         }
3366         return new_vma;
3367
3368 out_vma_link:
3369         if (new_vma->vm_ops && new_vma->vm_ops->close)
3370                 new_vma->vm_ops->close(new_vma);
3371
3372         if (new_vma->vm_file)
3373                 fput(new_vma->vm_file);
3374
3375         unlink_anon_vmas(new_vma);
3376 out_free_mempol:
3377         mpol_put(vma_policy(new_vma));
3378 out_free_vma:
3379         vm_area_free(new_vma);
3380 out:
3381         return NULL;
3382 }
3383
3384 /*
3385  * Return true if the calling process may expand its vm space by the passed
3386  * number of pages
3387  */
3388 bool may_expand_vm(struct mm_struct *mm, vm_flags_t flags, unsigned long npages)
3389 {
3390         if (mm->total_vm + npages > rlimit(RLIMIT_AS) >> PAGE_SHIFT)
3391                 return false;
3392
3393         if (is_data_mapping(flags) &&
3394             mm->data_vm + npages > rlimit(RLIMIT_DATA) >> PAGE_SHIFT) {
3395                 /* Workaround for Valgrind */
3396                 if (rlimit(RLIMIT_DATA) == 0 &&
3397                     mm->data_vm + npages <= rlimit_max(RLIMIT_DATA) >> PAGE_SHIFT)
3398                         return true;
3399
3400                 pr_warn_once("%s (%d): VmData %lu exceed data ulimit %lu. Update limits%s.\n",
3401                              current->comm, current->pid,
3402                              (mm->data_vm + npages) << PAGE_SHIFT,
3403                              rlimit(RLIMIT_DATA),
3404                              ignore_rlimit_data ? "" : " or use boot option ignore_rlimit_data");
3405
3406                 if (!ignore_rlimit_data)
3407                         return false;
3408         }
3409
3410         return true;
3411 }
3412
3413 void vm_stat_account(struct mm_struct *mm, vm_flags_t flags, long npages)
3414 {
3415         WRITE_ONCE(mm->total_vm, READ_ONCE(mm->total_vm)+npages);
3416
3417         if (is_exec_mapping(flags))
3418                 mm->exec_vm += npages;
3419         else if (is_stack_mapping(flags))
3420                 mm->stack_vm += npages;
3421         else if (is_data_mapping(flags))
3422                 mm->data_vm += npages;
3423 }
3424
3425 static vm_fault_t special_mapping_fault(struct vm_fault *vmf);
3426
3427 /*
3428  * Having a close hook prevents vma merging regardless of flags.
3429  */
3430 static void special_mapping_close(struct vm_area_struct *vma)
3431 {
3432 }
3433
3434 static const char *special_mapping_name(struct vm_area_struct *vma)
3435 {
3436         return ((struct vm_special_mapping *)vma->vm_private_data)->name;
3437 }
3438
3439 static int special_mapping_mremap(struct vm_area_struct *new_vma)
3440 {
3441         struct vm_special_mapping *sm = new_vma->vm_private_data;
3442
3443         if (WARN_ON_ONCE(current->mm != new_vma->vm_mm))
3444                 return -EFAULT;
3445
3446         if (sm->mremap)
3447                 return sm->mremap(sm, new_vma);
3448
3449         return 0;
3450 }
3451
3452 static int special_mapping_split(struct vm_area_struct *vma, unsigned long addr)
3453 {
3454         /*
3455          * Forbid splitting special mappings - kernel has expectations over
3456          * the number of pages in mapping. Together with VM_DONTEXPAND
3457          * the size of vma should stay the same over the special mapping's
3458          * lifetime.
3459          */
3460         return -EINVAL;
3461 }
3462
3463 static const struct vm_operations_struct special_mapping_vmops = {
3464         .close = special_mapping_close,
3465         .fault = special_mapping_fault,
3466         .mremap = special_mapping_mremap,
3467         .name = special_mapping_name,
3468         /* vDSO code relies that VVAR can't be accessed remotely */
3469         .access = NULL,
3470         .may_split = special_mapping_split,
3471 };
3472
3473 static const struct vm_operations_struct legacy_special_mapping_vmops = {
3474         .close = special_mapping_close,
3475         .fault = special_mapping_fault,
3476 };
3477
3478 static vm_fault_t special_mapping_fault(struct vm_fault *vmf)
3479 {
3480         struct vm_area_struct *vma = vmf->vma;
3481         pgoff_t pgoff;
3482         struct page **pages;
3483
3484         if (vma->vm_ops == &legacy_special_mapping_vmops) {
3485                 pages = vma->vm_private_data;
3486         } else {
3487                 struct vm_special_mapping *sm = vma->vm_private_data;
3488
3489                 if (sm->fault)
3490                         return sm->fault(sm, vmf->vma, vmf);
3491
3492                 pages = sm->pages;
3493         }
3494
3495         for (pgoff = vmf->pgoff; pgoff && *pages; ++pages)
3496                 pgoff--;
3497
3498         if (*pages) {
3499                 struct page *page = *pages;
3500                 get_page(page);
3501                 vmf->page = page;
3502                 return 0;
3503         }
3504
3505         return VM_FAULT_SIGBUS;
3506 }
3507
3508 static struct vm_area_struct *__install_special_mapping(
3509         struct mm_struct *mm,
3510         unsigned long addr, unsigned long len,
3511         unsigned long vm_flags, void *priv,
3512         const struct vm_operations_struct *ops)
3513 {
3514         int ret;
3515         struct vm_area_struct *vma;
3516
3517         vma = vm_area_alloc(mm);
3518         if (unlikely(vma == NULL))
3519                 return ERR_PTR(-ENOMEM);
3520
3521         vma->vm_start = addr;
3522         vma->vm_end = addr + len;
3523
3524         vm_flags_init(vma, (vm_flags | mm->def_flags |
3525                       VM_DONTEXPAND | VM_SOFTDIRTY) & ~VM_LOCKED_MASK);
3526         vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
3527
3528         vma->vm_ops = ops;
3529         vma->vm_private_data = priv;
3530
3531         ret = insert_vm_struct(mm, vma);
3532         if (ret)
3533                 goto out;
3534
3535         vm_stat_account(mm, vma->vm_flags, len >> PAGE_SHIFT);
3536
3537         perf_event_mmap(vma);
3538
3539         return vma;
3540
3541 out:
3542         vm_area_free(vma);
3543         return ERR_PTR(ret);
3544 }
3545
3546 bool vma_is_special_mapping(const struct vm_area_struct *vma,
3547         const struct vm_special_mapping *sm)
3548 {
3549         return vma->vm_private_data == sm &&
3550                 (vma->vm_ops == &special_mapping_vmops ||
3551                  vma->vm_ops == &legacy_special_mapping_vmops);
3552 }
3553
3554 /*
3555  * Called with mm->mmap_lock held for writing.
3556  * Insert a new vma covering the given region, with the given flags.
3557  * Its pages are supplied by the given array of struct page *.
3558  * The array can be shorter than len >> PAGE_SHIFT if it's null-terminated.
3559  * The region past the last page supplied will always produce SIGBUS.
3560  * The array pointer and the pages it points to are assumed to stay alive
3561  * for as long as this mapping might exist.
3562  */
3563 struct vm_area_struct *_install_special_mapping(
3564         struct mm_struct *mm,
3565         unsigned long addr, unsigned long len,
3566         unsigned long vm_flags, const struct vm_special_mapping *spec)
3567 {
3568         return __install_special_mapping(mm, addr, len, vm_flags, (void *)spec,
3569                                         &special_mapping_vmops);
3570 }
3571
3572 int install_special_mapping(struct mm_struct *mm,
3573                             unsigned long addr, unsigned long len,
3574                             unsigned long vm_flags, struct page **pages)
3575 {
3576         struct vm_area_struct *vma = __install_special_mapping(
3577                 mm, addr, len, vm_flags, (void *)pages,
3578                 &legacy_special_mapping_vmops);
3579
3580         return PTR_ERR_OR_ZERO(vma);
3581 }
3582
3583 static DEFINE_MUTEX(mm_all_locks_mutex);
3584
3585 static void vm_lock_anon_vma(struct mm_struct *mm, struct anon_vma *anon_vma)
3586 {
3587         if (!test_bit(0, (unsigned long *) &anon_vma->root->rb_root.rb_root.rb_node)) {
3588                 /*
3589                  * The LSB of head.next can't change from under us
3590                  * because we hold the mm_all_locks_mutex.
3591                  */
3592                 down_write_nest_lock(&anon_vma->root->rwsem, &mm->mmap_lock);
3593                 /*
3594                  * We can safely modify head.next after taking the
3595                  * anon_vma->root->rwsem. If some other vma in this mm shares
3596                  * the same anon_vma we won't take it again.
3597                  *
3598                  * No need of atomic instructions here, head.next
3599                  * can't change from under us thanks to the
3600                  * anon_vma->root->rwsem.
3601                  */
3602                 if (__test_and_set_bit(0, (unsigned long *)
3603                                        &anon_vma->root->rb_root.rb_root.rb_node))
3604                         BUG();
3605         }
3606 }
3607
3608 static void vm_lock_mapping(struct mm_struct *mm, struct address_space *mapping)
3609 {
3610         if (!test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) {
3611                 /*
3612                  * AS_MM_ALL_LOCKS can't change from under us because
3613                  * we hold the mm_all_locks_mutex.
3614                  *
3615                  * Operations on ->flags have to be atomic because
3616                  * even if AS_MM_ALL_LOCKS is stable thanks to the
3617                  * mm_all_locks_mutex, there may be other cpus
3618                  * changing other bitflags in parallel to us.
3619                  */
3620                 if (test_and_set_bit(AS_MM_ALL_LOCKS, &mapping->flags))
3621                         BUG();
3622                 down_write_nest_lock(&mapping->i_mmap_rwsem, &mm->mmap_lock);
3623         }
3624 }
3625
3626 /*
3627  * This operation locks against the VM for all pte/vma/mm related
3628  * operations that could ever happen on a certain mm. This includes
3629  * vmtruncate, try_to_unmap, and all page faults.
3630  *
3631  * The caller must take the mmap_lock in write mode before calling
3632  * mm_take_all_locks(). The caller isn't allowed to release the
3633  * mmap_lock until mm_drop_all_locks() returns.
3634  *
3635  * mmap_lock in write mode is required in order to block all operations
3636  * that could modify pagetables and free pages without need of
3637  * altering the vma layout. It's also needed in write mode to avoid new
3638  * anon_vmas to be associated with existing vmas.
3639  *
3640  * A single task can't take more than one mm_take_all_locks() in a row
3641  * or it would deadlock.
3642  *
3643  * The LSB in anon_vma->rb_root.rb_node and the AS_MM_ALL_LOCKS bitflag in
3644  * mapping->flags avoid to take the same lock twice, if more than one
3645  * vma in this mm is backed by the same anon_vma or address_space.
3646  *
3647  * We take locks in following order, accordingly to comment at beginning
3648  * of mm/rmap.c:
3649  *   - all hugetlbfs_i_mmap_rwsem_key locks (aka mapping->i_mmap_rwsem for
3650  *     hugetlb mapping);
3651  *   - all vmas marked locked
3652  *   - all i_mmap_rwsem locks;
3653  *   - all anon_vma->rwseml
3654  *
3655  * We can take all locks within these types randomly because the VM code
3656  * doesn't nest them and we protected from parallel mm_take_all_locks() by
3657  * mm_all_locks_mutex.
3658  *
3659  * mm_take_all_locks() and mm_drop_all_locks are expensive operations
3660  * that may have to take thousand of locks.
3661  *
3662  * mm_take_all_locks() can fail if it's interrupted by signals.
3663  */
3664 int mm_take_all_locks(struct mm_struct *mm)
3665 {
3666         struct vm_area_struct *vma;
3667         struct anon_vma_chain *avc;
3668         MA_STATE(mas, &mm->mm_mt, 0, 0);
3669
3670         mmap_assert_write_locked(mm);
3671
3672         mutex_lock(&mm_all_locks_mutex);
3673
3674         /*
3675          * vma_start_write() does not have a complement in mm_drop_all_locks()
3676          * because vma_start_write() is always asymmetrical; it marks a VMA as
3677          * being written to until mmap_write_unlock() or mmap_write_downgrade()
3678          * is reached.
3679          */
3680         mas_for_each(&mas, vma, ULONG_MAX) {
3681                 if (signal_pending(current))
3682                         goto out_unlock;
3683                 vma_start_write(vma);
3684         }
3685
3686         mas_set(&mas, 0);
3687         mas_for_each(&mas, vma, ULONG_MAX) {
3688                 if (signal_pending(current))
3689                         goto out_unlock;
3690                 if (vma->vm_file && vma->vm_file->f_mapping &&
3691                                 is_vm_hugetlb_page(vma))
3692                         vm_lock_mapping(mm, vma->vm_file->f_mapping);
3693         }
3694
3695         mas_set(&mas, 0);
3696         mas_for_each(&mas, vma, ULONG_MAX) {
3697                 if (signal_pending(current))
3698                         goto out_unlock;
3699                 if (vma->vm_file && vma->vm_file->f_mapping &&
3700                                 !is_vm_hugetlb_page(vma))
3701                         vm_lock_mapping(mm, vma->vm_file->f_mapping);
3702         }
3703
3704         mas_set(&mas, 0);
3705         mas_for_each(&mas, vma, ULONG_MAX) {
3706                 if (signal_pending(current))
3707                         goto out_unlock;
3708                 if (vma->anon_vma)
3709                         list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
3710                                 vm_lock_anon_vma(mm, avc->anon_vma);
3711         }
3712
3713         return 0;
3714
3715 out_unlock:
3716         mm_drop_all_locks(mm);
3717         return -EINTR;
3718 }
3719
3720 static void vm_unlock_anon_vma(struct anon_vma *anon_vma)
3721 {
3722         if (test_bit(0, (unsigned long *) &anon_vma->root->rb_root.rb_root.rb_node)) {
3723                 /*
3724                  * The LSB of head.next can't change to 0 from under
3725                  * us because we hold the mm_all_locks_mutex.
3726                  *
3727                  * We must however clear the bitflag before unlocking
3728                  * the vma so the users using the anon_vma->rb_root will
3729                  * never see our bitflag.
3730                  *
3731                  * No need of atomic instructions here, head.next
3732                  * can't change from under us until we release the
3733                  * anon_vma->root->rwsem.
3734                  */
3735                 if (!__test_and_clear_bit(0, (unsigned long *)
3736                                           &anon_vma->root->rb_root.rb_root.rb_node))
3737                         BUG();
3738                 anon_vma_unlock_write(anon_vma);
3739         }
3740 }
3741
3742 static void vm_unlock_mapping(struct address_space *mapping)
3743 {
3744         if (test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) {
3745                 /*
3746                  * AS_MM_ALL_LOCKS can't change to 0 from under us
3747                  * because we hold the mm_all_locks_mutex.
3748                  */
3749                 i_mmap_unlock_write(mapping);
3750                 if (!test_and_clear_bit(AS_MM_ALL_LOCKS,
3751                                         &mapping->flags))
3752                         BUG();
3753         }
3754 }
3755
3756 /*
3757  * The mmap_lock cannot be released by the caller until
3758  * mm_drop_all_locks() returns.
3759  */
3760 void mm_drop_all_locks(struct mm_struct *mm)
3761 {
3762         struct vm_area_struct *vma;
3763         struct anon_vma_chain *avc;
3764         MA_STATE(mas, &mm->mm_mt, 0, 0);
3765
3766         mmap_assert_write_locked(mm);
3767         BUG_ON(!mutex_is_locked(&mm_all_locks_mutex));
3768
3769         mas_for_each(&mas, vma, ULONG_MAX) {
3770                 if (vma->anon_vma)
3771                         list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
3772                                 vm_unlock_anon_vma(avc->anon_vma);
3773                 if (vma->vm_file && vma->vm_file->f_mapping)
3774                         vm_unlock_mapping(vma->vm_file->f_mapping);
3775         }
3776
3777         mutex_unlock(&mm_all_locks_mutex);
3778 }
3779
3780 /*
3781  * initialise the percpu counter for VM
3782  */
3783 void __init mmap_init(void)
3784 {
3785         int ret;
3786
3787         ret = percpu_counter_init(&vm_committed_as, 0, GFP_KERNEL);
3788         VM_BUG_ON(ret);
3789 }
3790
3791 /*
3792  * Initialise sysctl_user_reserve_kbytes.
3793  *
3794  * This is intended to prevent a user from starting a single memory hogging
3795  * process, such that they cannot recover (kill the hog) in OVERCOMMIT_NEVER
3796  * mode.
3797  *
3798  * The default value is min(3% of free memory, 128MB)
3799  * 128MB is enough to recover with sshd/login, bash, and top/kill.
3800  */
3801 static int init_user_reserve(void)
3802 {
3803         unsigned long free_kbytes;
3804
3805         free_kbytes = K(global_zone_page_state(NR_FREE_PAGES));
3806
3807         sysctl_user_reserve_kbytes = min(free_kbytes / 32, 1UL << 17);
3808         return 0;
3809 }
3810 subsys_initcall(init_user_reserve);
3811
3812 /*
3813  * Initialise sysctl_admin_reserve_kbytes.
3814  *
3815  * The purpose of sysctl_admin_reserve_kbytes is to allow the sys admin
3816  * to log in and kill a memory hogging process.
3817  *
3818  * Systems with more than 256MB will reserve 8MB, enough to recover
3819  * with sshd, bash, and top in OVERCOMMIT_GUESS. Smaller systems will
3820  * only reserve 3% of free pages by default.
3821  */
3822 static int init_admin_reserve(void)
3823 {
3824         unsigned long free_kbytes;
3825
3826         free_kbytes = K(global_zone_page_state(NR_FREE_PAGES));
3827
3828         sysctl_admin_reserve_kbytes = min(free_kbytes / 32, 1UL << 13);
3829         return 0;
3830 }
3831 subsys_initcall(init_admin_reserve);
3832
3833 /*
3834  * Reinititalise user and admin reserves if memory is added or removed.
3835  *
3836  * The default user reserve max is 128MB, and the default max for the
3837  * admin reserve is 8MB. These are usually, but not always, enough to
3838  * enable recovery from a memory hogging process using login/sshd, a shell,
3839  * and tools like top. It may make sense to increase or even disable the
3840  * reserve depending on the existence of swap or variations in the recovery
3841  * tools. So, the admin may have changed them.
3842  *
3843  * If memory is added and the reserves have been eliminated or increased above
3844  * the default max, then we'll trust the admin.
3845  *
3846  * If memory is removed and there isn't enough free memory, then we
3847  * need to reset the reserves.
3848  *
3849  * Otherwise keep the reserve set by the admin.
3850  */
3851 static int reserve_mem_notifier(struct notifier_block *nb,
3852                              unsigned long action, void *data)
3853 {
3854         unsigned long tmp, free_kbytes;
3855
3856         switch (action) {
3857         case MEM_ONLINE:
3858                 /* Default max is 128MB. Leave alone if modified by operator. */
3859                 tmp = sysctl_user_reserve_kbytes;
3860                 if (0 < tmp && tmp < (1UL << 17))
3861                         init_user_reserve();
3862
3863                 /* Default max is 8MB.  Leave alone if modified by operator. */
3864                 tmp = sysctl_admin_reserve_kbytes;
3865                 if (0 < tmp && tmp < (1UL << 13))
3866                         init_admin_reserve();
3867
3868                 break;
3869         case MEM_OFFLINE:
3870                 free_kbytes = K(global_zone_page_state(NR_FREE_PAGES));
3871
3872                 if (sysctl_user_reserve_kbytes > free_kbytes) {
3873                         init_user_reserve();
3874                         pr_info("vm.user_reserve_kbytes reset to %lu\n",
3875                                 sysctl_user_reserve_kbytes);
3876                 }
3877
3878                 if (sysctl_admin_reserve_kbytes > free_kbytes) {
3879                         init_admin_reserve();
3880                         pr_info("vm.admin_reserve_kbytes reset to %lu\n",
3881                                 sysctl_admin_reserve_kbytes);
3882                 }
3883                 break;
3884         default:
3885                 break;
3886         }
3887         return NOTIFY_OK;
3888 }
3889
3890 static int __meminit init_reserve_notifier(void)
3891 {
3892         if (hotplug_memory_notifier(reserve_mem_notifier, DEFAULT_CALLBACK_PRI))
3893                 pr_err("Failed registering memory add/remove notifier for admin reserve\n");
3894
3895         return 0;
3896 }
3897 subsys_initcall(init_reserve_notifier);