6 * Address space accounting code <alan@lxorguk.ukuu.org.uk>
9 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
11 #include <linux/kernel.h>
12 #include <linux/slab.h>
13 #include <linux/backing-dev.h>
15 #include <linux/vmacache.h>
16 #include <linux/shm.h>
17 #include <linux/mman.h>
18 #include <linux/pagemap.h>
19 #include <linux/swap.h>
20 #include <linux/syscalls.h>
21 #include <linux/capability.h>
22 #include <linux/init.h>
23 #include <linux/file.h>
25 #include <linux/personality.h>
26 #include <linux/security.h>
27 #include <linux/hugetlb.h>
28 #include <linux/profile.h>
29 #include <linux/export.h>
30 #include <linux/mount.h>
31 #include <linux/mempolicy.h>
32 #include <linux/rmap.h>
33 #include <linux/mmu_notifier.h>
34 #include <linux/mmdebug.h>
35 #include <linux/perf_event.h>
36 #include <linux/audit.h>
37 #include <linux/khugepaged.h>
38 #include <linux/uprobes.h>
39 #include <linux/rbtree_augmented.h>
40 #include <linux/sched/sysctl.h>
41 #include <linux/notifier.h>
42 #include <linux/memory.h>
43 #include <linux/printk.h>
44 #include <linux/userfaultfd_k.h>
46 #include <asm/uaccess.h>
47 #include <asm/cacheflush.h>
49 #include <asm/mmu_context.h>
53 #ifndef arch_mmap_check
54 #define arch_mmap_check(addr, len, flags) (0)
57 #ifndef arch_rebalance_pgtables
58 #define arch_rebalance_pgtables(addr, len) (addr)
61 static void unmap_region(struct mm_struct *mm,
62 struct vm_area_struct *vma, struct vm_area_struct *prev,
63 unsigned long start, unsigned long end);
65 /* description of effects of mapping type and prot in current implementation.
66 * this is due to the limited x86 page protection hardware. The expected
67 * behavior is in parens:
70 * PROT_NONE PROT_READ PROT_WRITE PROT_EXEC
71 * MAP_SHARED r: (no) no r: (yes) yes r: (no) yes r: (no) yes
72 * w: (no) no w: (no) no w: (yes) yes w: (no) no
73 * x: (no) no x: (no) yes x: (no) yes x: (yes) yes
75 * MAP_PRIVATE r: (no) no r: (yes) yes r: (no) yes r: (no) yes
76 * w: (no) no w: (no) no w: (copy) copy w: (no) no
77 * x: (no) no x: (no) yes x: (no) yes x: (yes) yes
80 pgprot_t protection_map[16] = {
81 __P000, __P001, __P010, __P011, __P100, __P101, __P110, __P111,
82 __S000, __S001, __S010, __S011, __S100, __S101, __S110, __S111
85 pgprot_t vm_get_page_prot(unsigned long vm_flags)
87 return __pgprot(pgprot_val(protection_map[vm_flags &
88 (VM_READ|VM_WRITE|VM_EXEC|VM_SHARED)]) |
89 pgprot_val(arch_vm_get_page_prot(vm_flags)));
91 EXPORT_SYMBOL(vm_get_page_prot);
93 static pgprot_t vm_pgprot_modify(pgprot_t oldprot, unsigned long vm_flags)
95 return pgprot_modify(oldprot, vm_get_page_prot(vm_flags));
98 /* Update vma->vm_page_prot to reflect vma->vm_flags. */
99 void vma_set_page_prot(struct vm_area_struct *vma)
101 unsigned long vm_flags = vma->vm_flags;
103 vma->vm_page_prot = vm_pgprot_modify(vma->vm_page_prot, vm_flags);
104 if (vma_wants_writenotify(vma)) {
105 vm_flags &= ~VM_SHARED;
106 vma->vm_page_prot = vm_pgprot_modify(vma->vm_page_prot,
112 int sysctl_overcommit_memory __read_mostly = OVERCOMMIT_GUESS; /* heuristic overcommit */
113 int sysctl_overcommit_ratio __read_mostly = 50; /* default is 50% */
114 unsigned long sysctl_overcommit_kbytes __read_mostly;
115 int sysctl_max_map_count __read_mostly = DEFAULT_MAX_MAP_COUNT;
116 unsigned long sysctl_user_reserve_kbytes __read_mostly = 1UL << 17; /* 128MB */
117 unsigned long sysctl_admin_reserve_kbytes __read_mostly = 1UL << 13; /* 8MB */
119 * Make sure vm_committed_as in one cacheline and not cacheline shared with
120 * other variables. It can be updated by several CPUs frequently.
122 struct percpu_counter vm_committed_as ____cacheline_aligned_in_smp;
125 * The global memory commitment made in the system can be a metric
126 * that can be used to drive ballooning decisions when Linux is hosted
127 * as a guest. On Hyper-V, the host implements a policy engine for dynamically
128 * balancing memory across competing virtual machines that are hosted.
129 * Several metrics drive this policy engine including the guest reported
132 unsigned long vm_memory_committed(void)
134 return percpu_counter_read_positive(&vm_committed_as);
136 EXPORT_SYMBOL_GPL(vm_memory_committed);
139 * Check that a process has enough memory to allocate a new virtual
140 * mapping. 0 means there is enough memory for the allocation to
141 * succeed and -ENOMEM implies there is not.
143 * We currently support three overcommit policies, which are set via the
144 * vm.overcommit_memory sysctl. See Documentation/vm/overcommit-accounting
146 * Strict overcommit modes added 2002 Feb 26 by Alan Cox.
147 * Additional code 2002 Jul 20 by Robert Love.
149 * cap_sys_admin is 1 if the process has admin privileges, 0 otherwise.
151 * Note this is a helper function intended to be used by LSMs which
152 * wish to use this logic.
154 int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin)
156 long free, allowed, reserve;
158 VM_WARN_ONCE(percpu_counter_read(&vm_committed_as) <
159 -(s64)vm_committed_as_batch * num_online_cpus(),
160 "memory commitment underflow");
162 vm_acct_memory(pages);
165 * Sometimes we want to use more memory than we have
167 if (sysctl_overcommit_memory == OVERCOMMIT_ALWAYS)
170 if (sysctl_overcommit_memory == OVERCOMMIT_GUESS) {
171 free = global_page_state(NR_FREE_PAGES);
172 free += global_page_state(NR_FILE_PAGES);
175 * shmem pages shouldn't be counted as free in this
176 * case, they can't be purged, only swapped out, and
177 * that won't affect the overall amount of available
178 * memory in the system.
180 free -= global_page_state(NR_SHMEM);
182 free += get_nr_swap_pages();
185 * Any slabs which are created with the
186 * SLAB_RECLAIM_ACCOUNT flag claim to have contents
187 * which are reclaimable, under pressure. The dentry
188 * cache and most inode caches should fall into this
190 free += global_page_state(NR_SLAB_RECLAIMABLE);
193 * Leave reserved pages. The pages are not for anonymous pages.
195 if (free <= totalreserve_pages)
198 free -= totalreserve_pages;
201 * Reserve some for root
204 free -= sysctl_admin_reserve_kbytes >> (PAGE_SHIFT - 10);
212 allowed = vm_commit_limit();
214 * Reserve some for root
217 allowed -= sysctl_admin_reserve_kbytes >> (PAGE_SHIFT - 10);
220 * Don't let a single process grow so big a user can't recover
223 reserve = sysctl_user_reserve_kbytes >> (PAGE_SHIFT - 10);
224 allowed -= min_t(long, mm->total_vm / 32, reserve);
227 if (percpu_counter_read_positive(&vm_committed_as) < allowed)
230 vm_unacct_memory(pages);
236 * Requires inode->i_mapping->i_mmap_rwsem
238 static void __remove_shared_vm_struct(struct vm_area_struct *vma,
239 struct file *file, struct address_space *mapping)
241 if (vma->vm_flags & VM_DENYWRITE)
242 atomic_inc(&file_inode(file)->i_writecount);
243 if (vma->vm_flags & VM_SHARED)
244 mapping_unmap_writable(mapping);
246 flush_dcache_mmap_lock(mapping);
247 vma_interval_tree_remove(vma, &mapping->i_mmap);
248 flush_dcache_mmap_unlock(mapping);
252 * Unlink a file-based vm structure from its interval tree, to hide
253 * vma from rmap and vmtruncate before freeing its page tables.
255 void unlink_file_vma(struct vm_area_struct *vma)
257 struct file *file = vma->vm_file;
260 struct address_space *mapping = file->f_mapping;
261 i_mmap_lock_write(mapping);
262 __remove_shared_vm_struct(vma, file, mapping);
263 i_mmap_unlock_write(mapping);
268 * Close a vm structure and free it, returning the next.
270 static struct vm_area_struct *remove_vma(struct vm_area_struct *vma)
272 struct vm_area_struct *next = vma->vm_next;
275 if (vma->vm_ops && vma->vm_ops->close)
276 vma->vm_ops->close(vma);
279 mpol_put(vma_policy(vma));
280 kmem_cache_free(vm_area_cachep, vma);
284 static unsigned long do_brk(unsigned long addr, unsigned long len);
286 SYSCALL_DEFINE1(brk, unsigned long, brk)
288 unsigned long retval;
289 unsigned long newbrk, oldbrk;
290 struct mm_struct *mm = current->mm;
291 unsigned long min_brk;
294 down_write(&mm->mmap_sem);
296 #ifdef CONFIG_COMPAT_BRK
298 * CONFIG_COMPAT_BRK can still be overridden by setting
299 * randomize_va_space to 2, which will still cause mm->start_brk
300 * to be arbitrarily shifted
302 if (current->brk_randomized)
303 min_brk = mm->start_brk;
305 min_brk = mm->end_data;
307 min_brk = mm->start_brk;
313 * Check against rlimit here. If this check is done later after the test
314 * of oldbrk with newbrk then it can escape the test and let the data
315 * segment grow beyond its set limit the in case where the limit is
316 * not page aligned -Ram Gupta
318 if (check_data_rlimit(rlimit(RLIMIT_DATA), brk, mm->start_brk,
319 mm->end_data, mm->start_data))
322 newbrk = PAGE_ALIGN(brk);
323 oldbrk = PAGE_ALIGN(mm->brk);
324 if (oldbrk == newbrk)
327 /* Always allow shrinking brk. */
328 if (brk <= mm->brk) {
329 if (!do_munmap(mm, newbrk, oldbrk-newbrk))
334 /* Check against existing mmap mappings. */
335 if (find_vma_intersection(mm, oldbrk, newbrk+PAGE_SIZE))
338 /* Ok, looks good - let it rip. */
339 if (do_brk(oldbrk, newbrk-oldbrk) != oldbrk)
344 populate = newbrk > oldbrk && (mm->def_flags & VM_LOCKED) != 0;
345 up_write(&mm->mmap_sem);
347 mm_populate(oldbrk, newbrk - oldbrk);
352 up_write(&mm->mmap_sem);
356 static long vma_compute_subtree_gap(struct vm_area_struct *vma)
358 unsigned long max, subtree_gap;
361 max -= vma->vm_prev->vm_end;
362 if (vma->vm_rb.rb_left) {
363 subtree_gap = rb_entry(vma->vm_rb.rb_left,
364 struct vm_area_struct, vm_rb)->rb_subtree_gap;
365 if (subtree_gap > max)
368 if (vma->vm_rb.rb_right) {
369 subtree_gap = rb_entry(vma->vm_rb.rb_right,
370 struct vm_area_struct, vm_rb)->rb_subtree_gap;
371 if (subtree_gap > max)
377 #ifdef CONFIG_DEBUG_VM_RB
378 static int browse_rb(struct rb_root *root)
380 int i = 0, j, bug = 0;
381 struct rb_node *nd, *pn = NULL;
382 unsigned long prev = 0, pend = 0;
384 for (nd = rb_first(root); nd; nd = rb_next(nd)) {
385 struct vm_area_struct *vma;
386 vma = rb_entry(nd, struct vm_area_struct, vm_rb);
387 if (vma->vm_start < prev) {
388 pr_emerg("vm_start %lx < prev %lx\n",
389 vma->vm_start, prev);
392 if (vma->vm_start < pend) {
393 pr_emerg("vm_start %lx < pend %lx\n",
394 vma->vm_start, pend);
397 if (vma->vm_start > vma->vm_end) {
398 pr_emerg("vm_start %lx > vm_end %lx\n",
399 vma->vm_start, vma->vm_end);
402 if (vma->rb_subtree_gap != vma_compute_subtree_gap(vma)) {
403 pr_emerg("free gap %lx, correct %lx\n",
405 vma_compute_subtree_gap(vma));
410 prev = vma->vm_start;
414 for (nd = pn; nd; nd = rb_prev(nd))
417 pr_emerg("backwards %d, forwards %d\n", j, i);
423 static void validate_mm_rb(struct rb_root *root, struct vm_area_struct *ignore)
427 for (nd = rb_first(root); nd; nd = rb_next(nd)) {
428 struct vm_area_struct *vma;
429 vma = rb_entry(nd, struct vm_area_struct, vm_rb);
430 VM_BUG_ON_VMA(vma != ignore &&
431 vma->rb_subtree_gap != vma_compute_subtree_gap(vma),
436 static void validate_mm(struct mm_struct *mm)
440 unsigned long highest_address = 0;
441 struct vm_area_struct *vma = mm->mmap;
444 struct anon_vma_chain *avc;
446 vma_lock_anon_vma(vma);
447 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
448 anon_vma_interval_tree_verify(avc);
449 vma_unlock_anon_vma(vma);
450 highest_address = vma->vm_end;
454 if (i != mm->map_count) {
455 pr_emerg("map_count %d vm_next %d\n", mm->map_count, i);
458 if (highest_address != mm->highest_vm_end) {
459 pr_emerg("mm->highest_vm_end %lx, found %lx\n",
460 mm->highest_vm_end, highest_address);
463 i = browse_rb(&mm->mm_rb);
464 if (i != mm->map_count) {
466 pr_emerg("map_count %d rb %d\n", mm->map_count, i);
469 VM_BUG_ON_MM(bug, mm);
472 #define validate_mm_rb(root, ignore) do { } while (0)
473 #define validate_mm(mm) do { } while (0)
476 RB_DECLARE_CALLBACKS(static, vma_gap_callbacks, struct vm_area_struct, vm_rb,
477 unsigned long, rb_subtree_gap, vma_compute_subtree_gap)
480 * Update augmented rbtree rb_subtree_gap values after vma->vm_start or
481 * vma->vm_prev->vm_end values changed, without modifying the vma's position
484 static void vma_gap_update(struct vm_area_struct *vma)
487 * As it turns out, RB_DECLARE_CALLBACKS() already created a callback
488 * function that does exacltly what we want.
490 vma_gap_callbacks_propagate(&vma->vm_rb, NULL);
493 static inline void vma_rb_insert(struct vm_area_struct *vma,
494 struct rb_root *root)
496 /* All rb_subtree_gap values must be consistent prior to insertion */
497 validate_mm_rb(root, NULL);
499 rb_insert_augmented(&vma->vm_rb, root, &vma_gap_callbacks);
502 static void vma_rb_erase(struct vm_area_struct *vma, struct rb_root *root)
505 * All rb_subtree_gap values must be consistent prior to erase,
506 * with the possible exception of the vma being erased.
508 validate_mm_rb(root, vma);
511 * Note rb_erase_augmented is a fairly large inline function,
512 * so make sure we instantiate it only once with our desired
513 * augmented rbtree callbacks.
515 rb_erase_augmented(&vma->vm_rb, root, &vma_gap_callbacks);
519 * vma has some anon_vma assigned, and is already inserted on that
520 * anon_vma's interval trees.
522 * Before updating the vma's vm_start / vm_end / vm_pgoff fields, the
523 * vma must be removed from the anon_vma's interval trees using
524 * anon_vma_interval_tree_pre_update_vma().
526 * After the update, the vma will be reinserted using
527 * anon_vma_interval_tree_post_update_vma().
529 * The entire update must be protected by exclusive mmap_sem and by
530 * the root anon_vma's mutex.
533 anon_vma_interval_tree_pre_update_vma(struct vm_area_struct *vma)
535 struct anon_vma_chain *avc;
537 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
538 anon_vma_interval_tree_remove(avc, &avc->anon_vma->rb_root);
542 anon_vma_interval_tree_post_update_vma(struct vm_area_struct *vma)
544 struct anon_vma_chain *avc;
546 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
547 anon_vma_interval_tree_insert(avc, &avc->anon_vma->rb_root);
550 static int find_vma_links(struct mm_struct *mm, unsigned long addr,
551 unsigned long end, struct vm_area_struct **pprev,
552 struct rb_node ***rb_link, struct rb_node **rb_parent)
554 struct rb_node **__rb_link, *__rb_parent, *rb_prev;
556 __rb_link = &mm->mm_rb.rb_node;
557 rb_prev = __rb_parent = NULL;
560 struct vm_area_struct *vma_tmp;
562 __rb_parent = *__rb_link;
563 vma_tmp = rb_entry(__rb_parent, struct vm_area_struct, vm_rb);
565 if (vma_tmp->vm_end > addr) {
566 /* Fail if an existing vma overlaps the area */
567 if (vma_tmp->vm_start < end)
569 __rb_link = &__rb_parent->rb_left;
571 rb_prev = __rb_parent;
572 __rb_link = &__rb_parent->rb_right;
578 *pprev = rb_entry(rb_prev, struct vm_area_struct, vm_rb);
579 *rb_link = __rb_link;
580 *rb_parent = __rb_parent;
584 static unsigned long count_vma_pages_range(struct mm_struct *mm,
585 unsigned long addr, unsigned long end)
587 unsigned long nr_pages = 0;
588 struct vm_area_struct *vma;
590 /* Find first overlaping mapping */
591 vma = find_vma_intersection(mm, addr, end);
595 nr_pages = (min(end, vma->vm_end) -
596 max(addr, vma->vm_start)) >> PAGE_SHIFT;
598 /* Iterate over the rest of the overlaps */
599 for (vma = vma->vm_next; vma; vma = vma->vm_next) {
600 unsigned long overlap_len;
602 if (vma->vm_start > end)
605 overlap_len = min(end, vma->vm_end) - vma->vm_start;
606 nr_pages += overlap_len >> PAGE_SHIFT;
612 void __vma_link_rb(struct mm_struct *mm, struct vm_area_struct *vma,
613 struct rb_node **rb_link, struct rb_node *rb_parent)
615 /* Update tracking information for the gap following the new vma. */
617 vma_gap_update(vma->vm_next);
619 mm->highest_vm_end = vma->vm_end;
622 * vma->vm_prev wasn't known when we followed the rbtree to find the
623 * correct insertion point for that vma. As a result, we could not
624 * update the vma vm_rb parents rb_subtree_gap values on the way down.
625 * So, we first insert the vma with a zero rb_subtree_gap value
626 * (to be consistent with what we did on the way down), and then
627 * immediately update the gap to the correct value. Finally we
628 * rebalance the rbtree after all augmented values have been set.
630 rb_link_node(&vma->vm_rb, rb_parent, rb_link);
631 vma->rb_subtree_gap = 0;
633 vma_rb_insert(vma, &mm->mm_rb);
636 static void __vma_link_file(struct vm_area_struct *vma)
642 struct address_space *mapping = file->f_mapping;
644 if (vma->vm_flags & VM_DENYWRITE)
645 atomic_dec(&file_inode(file)->i_writecount);
646 if (vma->vm_flags & VM_SHARED)
647 atomic_inc(&mapping->i_mmap_writable);
649 flush_dcache_mmap_lock(mapping);
650 vma_interval_tree_insert(vma, &mapping->i_mmap);
651 flush_dcache_mmap_unlock(mapping);
656 __vma_link(struct mm_struct *mm, struct vm_area_struct *vma,
657 struct vm_area_struct *prev, struct rb_node **rb_link,
658 struct rb_node *rb_parent)
660 __vma_link_list(mm, vma, prev, rb_parent);
661 __vma_link_rb(mm, vma, rb_link, rb_parent);
664 static void vma_link(struct mm_struct *mm, struct vm_area_struct *vma,
665 struct vm_area_struct *prev, struct rb_node **rb_link,
666 struct rb_node *rb_parent)
668 struct address_space *mapping = NULL;
671 mapping = vma->vm_file->f_mapping;
672 i_mmap_lock_write(mapping);
675 __vma_link(mm, vma, prev, rb_link, rb_parent);
676 __vma_link_file(vma);
679 i_mmap_unlock_write(mapping);
686 * Helper for vma_adjust() in the split_vma insert case: insert a vma into the
687 * mm's list and rbtree. It has already been inserted into the interval tree.
689 static void __insert_vm_struct(struct mm_struct *mm, struct vm_area_struct *vma)
691 struct vm_area_struct *prev;
692 struct rb_node **rb_link, *rb_parent;
694 if (find_vma_links(mm, vma->vm_start, vma->vm_end,
695 &prev, &rb_link, &rb_parent))
697 __vma_link(mm, vma, prev, rb_link, rb_parent);
702 __vma_unlink(struct mm_struct *mm, struct vm_area_struct *vma,
703 struct vm_area_struct *prev)
705 struct vm_area_struct *next;
707 vma_rb_erase(vma, &mm->mm_rb);
708 prev->vm_next = next = vma->vm_next;
710 next->vm_prev = prev;
713 vmacache_invalidate(mm);
717 * We cannot adjust vm_start, vm_end, vm_pgoff fields of a vma that
718 * is already present in an i_mmap tree without adjusting the tree.
719 * The following helper function should be used when such adjustments
720 * are necessary. The "insert" vma (if any) is to be inserted
721 * before we drop the necessary locks.
723 int vma_adjust(struct vm_area_struct *vma, unsigned long start,
724 unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert)
726 struct mm_struct *mm = vma->vm_mm;
727 struct vm_area_struct *next = vma->vm_next;
728 struct vm_area_struct *importer = NULL;
729 struct address_space *mapping = NULL;
730 struct rb_root *root = NULL;
731 struct anon_vma *anon_vma = NULL;
732 struct file *file = vma->vm_file;
733 bool start_changed = false, end_changed = false;
734 long adjust_next = 0;
737 if (next && !insert) {
738 struct vm_area_struct *exporter = NULL;
740 if (end >= next->vm_end) {
742 * vma expands, overlapping all the next, and
743 * perhaps the one after too (mprotect case 6).
745 again: remove_next = 1 + (end > next->vm_end);
749 } else if (end > next->vm_start) {
751 * vma expands, overlapping part of the next:
752 * mprotect case 5 shifting the boundary up.
754 adjust_next = (end - next->vm_start) >> PAGE_SHIFT;
757 } else if (end < vma->vm_end) {
759 * vma shrinks, and !insert tells it's not
760 * split_vma inserting another: so it must be
761 * mprotect case 4 shifting the boundary down.
763 adjust_next = -((vma->vm_end - end) >> PAGE_SHIFT);
769 * Easily overlooked: when mprotect shifts the boundary,
770 * make sure the expanding vma has anon_vma set if the
771 * shrinking vma had, to cover any anon pages imported.
773 if (exporter && exporter->anon_vma && !importer->anon_vma) {
776 importer->anon_vma = exporter->anon_vma;
777 error = anon_vma_clone(importer, exporter);
784 mapping = file->f_mapping;
785 root = &mapping->i_mmap;
786 uprobe_munmap(vma, vma->vm_start, vma->vm_end);
789 uprobe_munmap(next, next->vm_start, next->vm_end);
791 i_mmap_lock_write(mapping);
794 * Put into interval tree now, so instantiated pages
795 * are visible to arm/parisc __flush_dcache_page
796 * throughout; but we cannot insert into address
797 * space until vma start or end is updated.
799 __vma_link_file(insert);
803 vma_adjust_trans_huge(vma, start, end, adjust_next);
805 anon_vma = vma->anon_vma;
806 if (!anon_vma && adjust_next)
807 anon_vma = next->anon_vma;
809 VM_BUG_ON_VMA(adjust_next && next->anon_vma &&
810 anon_vma != next->anon_vma, next);
811 anon_vma_lock_write(anon_vma);
812 anon_vma_interval_tree_pre_update_vma(vma);
814 anon_vma_interval_tree_pre_update_vma(next);
818 flush_dcache_mmap_lock(mapping);
819 vma_interval_tree_remove(vma, root);
821 vma_interval_tree_remove(next, root);
824 if (start != vma->vm_start) {
825 vma->vm_start = start;
826 start_changed = true;
828 if (end != vma->vm_end) {
832 vma->vm_pgoff = pgoff;
834 next->vm_start += adjust_next << PAGE_SHIFT;
835 next->vm_pgoff += adjust_next;
840 vma_interval_tree_insert(next, root);
841 vma_interval_tree_insert(vma, root);
842 flush_dcache_mmap_unlock(mapping);
847 * vma_merge has merged next into vma, and needs
848 * us to remove next before dropping the locks.
850 __vma_unlink(mm, next, vma);
852 __remove_shared_vm_struct(next, file, mapping);
855 * split_vma has split insert from vma, and needs
856 * us to insert it before dropping the locks
857 * (it may either follow vma or precede it).
859 __insert_vm_struct(mm, insert);
865 mm->highest_vm_end = end;
866 else if (!adjust_next)
867 vma_gap_update(next);
872 anon_vma_interval_tree_post_update_vma(vma);
874 anon_vma_interval_tree_post_update_vma(next);
875 anon_vma_unlock_write(anon_vma);
878 i_mmap_unlock_write(mapping);
889 uprobe_munmap(next, next->vm_start, next->vm_end);
893 anon_vma_merge(vma, next);
895 mpol_put(vma_policy(next));
896 kmem_cache_free(vm_area_cachep, next);
898 * In mprotect's case 6 (see comments on vma_merge),
899 * we must remove another next too. It would clutter
900 * up the code too much to do both in one go.
903 if (remove_next == 2)
906 vma_gap_update(next);
908 mm->highest_vm_end = end;
919 * If the vma has a ->close operation then the driver probably needs to release
920 * per-vma resources, so we don't attempt to merge those.
922 static inline int is_mergeable_vma(struct vm_area_struct *vma,
923 struct file *file, unsigned long vm_flags,
924 struct vm_userfaultfd_ctx vm_userfaultfd_ctx)
927 * VM_SOFTDIRTY should not prevent from VMA merging, if we
928 * match the flags but dirty bit -- the caller should mark
929 * merged VMA as dirty. If dirty bit won't be excluded from
930 * comparison, we increase pressue on the memory system forcing
931 * the kernel to generate new VMAs when old one could be
934 if ((vma->vm_flags ^ vm_flags) & ~VM_SOFTDIRTY)
936 if (vma->vm_file != file)
938 if (vma->vm_ops && vma->vm_ops->close)
940 if (!is_mergeable_vm_userfaultfd_ctx(vma, vm_userfaultfd_ctx))
945 static inline int is_mergeable_anon_vma(struct anon_vma *anon_vma1,
946 struct anon_vma *anon_vma2,
947 struct vm_area_struct *vma)
950 * The list_is_singular() test is to avoid merging VMA cloned from
951 * parents. This can improve scalability caused by anon_vma lock.
953 if ((!anon_vma1 || !anon_vma2) && (!vma ||
954 list_is_singular(&vma->anon_vma_chain)))
956 return anon_vma1 == anon_vma2;
960 * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
961 * in front of (at a lower virtual address and file offset than) the vma.
963 * We cannot merge two vmas if they have differently assigned (non-NULL)
964 * anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
966 * We don't check here for the merged mmap wrapping around the end of pagecache
967 * indices (16TB on ia32) because do_mmap_pgoff() does not permit mmap's which
968 * wrap, nor mmaps which cover the final page at index -1UL.
971 can_vma_merge_before(struct vm_area_struct *vma, unsigned long vm_flags,
972 struct anon_vma *anon_vma, struct file *file,
974 struct vm_userfaultfd_ctx vm_userfaultfd_ctx)
976 if (is_mergeable_vma(vma, file, vm_flags, vm_userfaultfd_ctx) &&
977 is_mergeable_anon_vma(anon_vma, vma->anon_vma, vma)) {
978 if (vma->vm_pgoff == vm_pgoff)
985 * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
986 * beyond (at a higher virtual address and file offset than) the vma.
988 * We cannot merge two vmas if they have differently assigned (non-NULL)
989 * anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
992 can_vma_merge_after(struct vm_area_struct *vma, unsigned long vm_flags,
993 struct anon_vma *anon_vma, struct file *file,
995 struct vm_userfaultfd_ctx vm_userfaultfd_ctx)
997 if (is_mergeable_vma(vma, file, vm_flags, vm_userfaultfd_ctx) &&
998 is_mergeable_anon_vma(anon_vma, vma->anon_vma, vma)) {
1000 vm_pglen = vma_pages(vma);
1001 if (vma->vm_pgoff + vm_pglen == vm_pgoff)
1008 * Given a mapping request (addr,end,vm_flags,file,pgoff), figure out
1009 * whether that can be merged with its predecessor or its successor.
1010 * Or both (it neatly fills a hole).
1012 * In most cases - when called for mmap, brk or mremap - [addr,end) is
1013 * certain not to be mapped by the time vma_merge is called; but when
1014 * called for mprotect, it is certain to be already mapped (either at
1015 * an offset within prev, or at the start of next), and the flags of
1016 * this area are about to be changed to vm_flags - and the no-change
1017 * case has already been eliminated.
1019 * The following mprotect cases have to be considered, where AAAA is
1020 * the area passed down from mprotect_fixup, never extending beyond one
1021 * vma, PPPPPP is the prev vma specified, and NNNNNN the next vma after:
1023 * AAAA AAAA AAAA AAAA
1024 * PPPPPPNNNNNN PPPPPPNNNNNN PPPPPPNNNNNN PPPPNNNNXXXX
1025 * cannot merge might become might become might become
1026 * PPNNNNNNNNNN PPPPPPPPPPNN PPPPPPPPPPPP 6 or
1027 * mmap, brk or case 4 below case 5 below PPPPPPPPXXXX 7 or
1028 * mremap move: PPPPNNNNNNNN 8
1030 * PPPP NNNN PPPPPPPPPPPP PPPPPPPPNNNN PPPPNNNNNNNN
1031 * might become case 1 below case 2 below case 3 below
1033 * Odd one out? Case 8, because it extends NNNN but needs flags of XXXX:
1034 * mprotect_fixup updates vm_flags & vm_page_prot on successful return.
1036 struct vm_area_struct *vma_merge(struct mm_struct *mm,
1037 struct vm_area_struct *prev, unsigned long addr,
1038 unsigned long end, unsigned long vm_flags,
1039 struct anon_vma *anon_vma, struct file *file,
1040 pgoff_t pgoff, struct mempolicy *policy,
1041 struct vm_userfaultfd_ctx vm_userfaultfd_ctx)
1043 pgoff_t pglen = (end - addr) >> PAGE_SHIFT;
1044 struct vm_area_struct *area, *next;
1048 * We later require that vma->vm_flags == vm_flags,
1049 * so this tests vma->vm_flags & VM_SPECIAL, too.
1051 if (vm_flags & VM_SPECIAL)
1055 next = prev->vm_next;
1059 if (next && next->vm_end == end) /* cases 6, 7, 8 */
1060 next = next->vm_next;
1063 * Can it merge with the predecessor?
1065 if (prev && prev->vm_end == addr &&
1066 mpol_equal(vma_policy(prev), policy) &&
1067 can_vma_merge_after(prev, vm_flags,
1068 anon_vma, file, pgoff,
1069 vm_userfaultfd_ctx)) {
1071 * OK, it can. Can we now merge in the successor as well?
1073 if (next && end == next->vm_start &&
1074 mpol_equal(policy, vma_policy(next)) &&
1075 can_vma_merge_before(next, vm_flags,
1078 vm_userfaultfd_ctx) &&
1079 is_mergeable_anon_vma(prev->anon_vma,
1080 next->anon_vma, NULL)) {
1082 err = vma_adjust(prev, prev->vm_start,
1083 next->vm_end, prev->vm_pgoff, NULL);
1084 } else /* cases 2, 5, 7 */
1085 err = vma_adjust(prev, prev->vm_start,
1086 end, prev->vm_pgoff, NULL);
1089 khugepaged_enter_vma_merge(prev, vm_flags);
1094 * Can this new request be merged in front of next?
1096 if (next && end == next->vm_start &&
1097 mpol_equal(policy, vma_policy(next)) &&
1098 can_vma_merge_before(next, vm_flags,
1099 anon_vma, file, pgoff+pglen,
1100 vm_userfaultfd_ctx)) {
1101 if (prev && addr < prev->vm_end) /* case 4 */
1102 err = vma_adjust(prev, prev->vm_start,
1103 addr, prev->vm_pgoff, NULL);
1104 else /* cases 3, 8 */
1105 err = vma_adjust(area, addr, next->vm_end,
1106 next->vm_pgoff - pglen, NULL);
1109 khugepaged_enter_vma_merge(area, vm_flags);
1117 * Rough compatbility check to quickly see if it's even worth looking
1118 * at sharing an anon_vma.
1120 * They need to have the same vm_file, and the flags can only differ
1121 * in things that mprotect may change.
1123 * NOTE! The fact that we share an anon_vma doesn't _have_ to mean that
1124 * we can merge the two vma's. For example, we refuse to merge a vma if
1125 * there is a vm_ops->close() function, because that indicates that the
1126 * driver is doing some kind of reference counting. But that doesn't
1127 * really matter for the anon_vma sharing case.
1129 static int anon_vma_compatible(struct vm_area_struct *a, struct vm_area_struct *b)
1131 return a->vm_end == b->vm_start &&
1132 mpol_equal(vma_policy(a), vma_policy(b)) &&
1133 a->vm_file == b->vm_file &&
1134 !((a->vm_flags ^ b->vm_flags) & ~(VM_READ|VM_WRITE|VM_EXEC|VM_SOFTDIRTY)) &&
1135 b->vm_pgoff == a->vm_pgoff + ((b->vm_start - a->vm_start) >> PAGE_SHIFT);
1139 * Do some basic sanity checking to see if we can re-use the anon_vma
1140 * from 'old'. The 'a'/'b' vma's are in VM order - one of them will be
1141 * the same as 'old', the other will be the new one that is trying
1142 * to share the anon_vma.
1144 * NOTE! This runs with mm_sem held for reading, so it is possible that
1145 * the anon_vma of 'old' is concurrently in the process of being set up
1146 * by another page fault trying to merge _that_. But that's ok: if it
1147 * is being set up, that automatically means that it will be a singleton
1148 * acceptable for merging, so we can do all of this optimistically. But
1149 * we do that READ_ONCE() to make sure that we never re-load the pointer.
1151 * IOW: that the "list_is_singular()" test on the anon_vma_chain only
1152 * matters for the 'stable anon_vma' case (ie the thing we want to avoid
1153 * is to return an anon_vma that is "complex" due to having gone through
1156 * We also make sure that the two vma's are compatible (adjacent,
1157 * and with the same memory policies). That's all stable, even with just
1158 * a read lock on the mm_sem.
1160 static struct anon_vma *reusable_anon_vma(struct vm_area_struct *old, struct vm_area_struct *a, struct vm_area_struct *b)
1162 if (anon_vma_compatible(a, b)) {
1163 struct anon_vma *anon_vma = READ_ONCE(old->anon_vma);
1165 if (anon_vma && list_is_singular(&old->anon_vma_chain))
1172 * find_mergeable_anon_vma is used by anon_vma_prepare, to check
1173 * neighbouring vmas for a suitable anon_vma, before it goes off
1174 * to allocate a new anon_vma. It checks because a repetitive
1175 * sequence of mprotects and faults may otherwise lead to distinct
1176 * anon_vmas being allocated, preventing vma merge in subsequent
1179 struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *vma)
1181 struct anon_vma *anon_vma;
1182 struct vm_area_struct *near;
1184 near = vma->vm_next;
1188 anon_vma = reusable_anon_vma(near, vma, near);
1192 near = vma->vm_prev;
1196 anon_vma = reusable_anon_vma(near, near, vma);
1201 * There's no absolute need to look only at touching neighbours:
1202 * we could search further afield for "compatible" anon_vmas.
1203 * But it would probably just be a waste of time searching,
1204 * or lead to too many vmas hanging off the same anon_vma.
1205 * We're trying to allow mprotect remerging later on,
1206 * not trying to minimize memory used for anon_vmas.
1211 #ifdef CONFIG_PROC_FS
1212 void vm_stat_account(struct mm_struct *mm, unsigned long flags,
1213 struct file *file, long pages)
1215 const unsigned long stack_flags
1216 = VM_STACK_FLAGS & (VM_GROWSUP|VM_GROWSDOWN);
1218 mm->total_vm += pages;
1221 mm->shared_vm += pages;
1222 if ((flags & (VM_EXEC|VM_WRITE)) == VM_EXEC)
1223 mm->exec_vm += pages;
1224 } else if (flags & stack_flags)
1225 mm->stack_vm += pages;
1227 #endif /* CONFIG_PROC_FS */
1230 * If a hint addr is less than mmap_min_addr change hint to be as
1231 * low as possible but still greater than mmap_min_addr
1233 static inline unsigned long round_hint_to_min(unsigned long hint)
1236 if (((void *)hint != NULL) &&
1237 (hint < mmap_min_addr))
1238 return PAGE_ALIGN(mmap_min_addr);
1242 static inline int mlock_future_check(struct mm_struct *mm,
1243 unsigned long flags,
1246 unsigned long locked, lock_limit;
1248 /* mlock MCL_FUTURE? */
1249 if (flags & VM_LOCKED) {
1250 locked = len >> PAGE_SHIFT;
1251 locked += mm->locked_vm;
1252 lock_limit = rlimit(RLIMIT_MEMLOCK);
1253 lock_limit >>= PAGE_SHIFT;
1254 if (locked > lock_limit && !capable(CAP_IPC_LOCK))
1261 * The caller must hold down_write(¤t->mm->mmap_sem).
1263 unsigned long do_mmap(struct file *file, unsigned long addr,
1264 unsigned long len, unsigned long prot,
1265 unsigned long flags, vm_flags_t vm_flags,
1266 unsigned long pgoff, unsigned long *populate)
1268 struct mm_struct *mm = current->mm;
1276 * Does the application expect PROT_READ to imply PROT_EXEC?
1278 * (the exception is when the underlying filesystem is noexec
1279 * mounted, in which case we dont add PROT_EXEC.)
1281 if ((prot & PROT_READ) && (current->personality & READ_IMPLIES_EXEC))
1282 if (!(file && path_noexec(&file->f_path)))
1285 if (!(flags & MAP_FIXED))
1286 addr = round_hint_to_min(addr);
1288 /* Careful about overflows.. */
1289 len = PAGE_ALIGN(len);
1293 /* offset overflow? */
1294 if ((pgoff + (len >> PAGE_SHIFT)) < pgoff)
1297 /* Too many mappings? */
1298 if (mm->map_count > sysctl_max_map_count)
1301 /* Obtain the address to map to. we verify (or select) it and ensure
1302 * that it represents a valid section of the address space.
1304 addr = get_unmapped_area(file, addr, len, pgoff, flags);
1305 if (addr & ~PAGE_MASK)
1308 /* Do simple checking here so the lower-level routines won't have
1309 * to. we assume access permissions have been handled by the open
1310 * of the memory object, so we don't do any here.
1312 vm_flags |= calc_vm_prot_bits(prot) | calc_vm_flag_bits(flags) |
1313 mm->def_flags | VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC;
1315 if (flags & MAP_LOCKED)
1316 if (!can_do_mlock())
1319 if (mlock_future_check(mm, vm_flags, len))
1323 struct inode *inode = file_inode(file);
1325 switch (flags & MAP_TYPE) {
1327 if ((prot&PROT_WRITE) && !(file->f_mode&FMODE_WRITE))
1331 * Make sure we don't allow writing to an append-only
1334 if (IS_APPEND(inode) && (file->f_mode & FMODE_WRITE))
1338 * Make sure there are no mandatory locks on the file.
1340 if (locks_verify_locked(file))
1343 vm_flags |= VM_SHARED | VM_MAYSHARE;
1344 if (!(file->f_mode & FMODE_WRITE))
1345 vm_flags &= ~(VM_MAYWRITE | VM_SHARED);
1349 if (!(file->f_mode & FMODE_READ))
1351 if (path_noexec(&file->f_path)) {
1352 if (vm_flags & VM_EXEC)
1354 vm_flags &= ~VM_MAYEXEC;
1357 if (!file->f_op->mmap)
1359 if (vm_flags & (VM_GROWSDOWN|VM_GROWSUP))
1367 switch (flags & MAP_TYPE) {
1369 if (vm_flags & (VM_GROWSDOWN|VM_GROWSUP))
1375 vm_flags |= VM_SHARED | VM_MAYSHARE;
1379 * Set pgoff according to addr for anon_vma.
1381 pgoff = addr >> PAGE_SHIFT;
1389 * Set 'VM_NORESERVE' if we should not account for the
1390 * memory use of this mapping.
1392 if (flags & MAP_NORESERVE) {
1393 /* We honor MAP_NORESERVE if allowed to overcommit */
1394 if (sysctl_overcommit_memory != OVERCOMMIT_NEVER)
1395 vm_flags |= VM_NORESERVE;
1397 /* hugetlb applies strict overcommit unless MAP_NORESERVE */
1398 if (file && is_file_hugepages(file))
1399 vm_flags |= VM_NORESERVE;
1402 addr = mmap_region(file, addr, len, vm_flags, pgoff);
1403 if (!IS_ERR_VALUE(addr) &&
1404 ((vm_flags & VM_LOCKED) ||
1405 (flags & (MAP_POPULATE | MAP_NONBLOCK)) == MAP_POPULATE))
1410 SYSCALL_DEFINE6(mmap_pgoff, unsigned long, addr, unsigned long, len,
1411 unsigned long, prot, unsigned long, flags,
1412 unsigned long, fd, unsigned long, pgoff)
1414 struct file *file = NULL;
1415 unsigned long retval = -EBADF;
1417 if (!(flags & MAP_ANONYMOUS)) {
1418 audit_mmap_fd(fd, flags);
1422 if (is_file_hugepages(file))
1423 len = ALIGN(len, huge_page_size(hstate_file(file)));
1425 if (unlikely(flags & MAP_HUGETLB && !is_file_hugepages(file)))
1427 } else if (flags & MAP_HUGETLB) {
1428 struct user_struct *user = NULL;
1431 hs = hstate_sizelog((flags >> MAP_HUGE_SHIFT) & SHM_HUGE_MASK);
1435 len = ALIGN(len, huge_page_size(hs));
1437 * VM_NORESERVE is used because the reservations will be
1438 * taken when vm_ops->mmap() is called
1439 * A dummy user value is used because we are not locking
1440 * memory so no accounting is necessary
1442 file = hugetlb_file_setup(HUGETLB_ANON_FILE, len,
1444 &user, HUGETLB_ANONHUGE_INODE,
1445 (flags >> MAP_HUGE_SHIFT) & MAP_HUGE_MASK);
1447 return PTR_ERR(file);
1450 flags &= ~(MAP_EXECUTABLE | MAP_DENYWRITE);
1452 retval = vm_mmap_pgoff(file, addr, len, prot, flags, pgoff);
1460 #ifdef __ARCH_WANT_SYS_OLD_MMAP
1461 struct mmap_arg_struct {
1465 unsigned long flags;
1467 unsigned long offset;
1470 SYSCALL_DEFINE1(old_mmap, struct mmap_arg_struct __user *, arg)
1472 struct mmap_arg_struct a;
1474 if (copy_from_user(&a, arg, sizeof(a)))
1476 if (a.offset & ~PAGE_MASK)
1479 return sys_mmap_pgoff(a.addr, a.len, a.prot, a.flags, a.fd,
1480 a.offset >> PAGE_SHIFT);
1482 #endif /* __ARCH_WANT_SYS_OLD_MMAP */
1485 * Some shared mappigns will want the pages marked read-only
1486 * to track write events. If so, we'll downgrade vm_page_prot
1487 * to the private version (using protection_map[] without the
1490 int vma_wants_writenotify(struct vm_area_struct *vma)
1492 vm_flags_t vm_flags = vma->vm_flags;
1494 /* If it was private or non-writable, the write bit is already clear */
1495 if ((vm_flags & (VM_WRITE|VM_SHARED)) != ((VM_WRITE|VM_SHARED)))
1498 /* The backer wishes to know when pages are first written to? */
1499 if (vma->vm_ops && vma->vm_ops->page_mkwrite)
1502 /* The open routine did something to the protections that pgprot_modify
1503 * won't preserve? */
1504 if (pgprot_val(vma->vm_page_prot) !=
1505 pgprot_val(vm_pgprot_modify(vma->vm_page_prot, vm_flags)))
1508 /* Do we need to track softdirty? */
1509 if (IS_ENABLED(CONFIG_MEM_SOFT_DIRTY) && !(vm_flags & VM_SOFTDIRTY))
1512 /* Specialty mapping? */
1513 if (vm_flags & VM_PFNMAP)
1516 /* Can the mapping track the dirty pages? */
1517 return vma->vm_file && vma->vm_file->f_mapping &&
1518 mapping_cap_account_dirty(vma->vm_file->f_mapping);
1522 * We account for memory if it's a private writeable mapping,
1523 * not hugepages and VM_NORESERVE wasn't set.
1525 static inline int accountable_mapping(struct file *file, vm_flags_t vm_flags)
1528 * hugetlb has its own accounting separate from the core VM
1529 * VM_HUGETLB may not be set yet so we cannot check for that flag.
1531 if (file && is_file_hugepages(file))
1534 return (vm_flags & (VM_NORESERVE | VM_SHARED | VM_WRITE)) == VM_WRITE;
1537 unsigned long mmap_region(struct file *file, unsigned long addr,
1538 unsigned long len, vm_flags_t vm_flags, unsigned long pgoff)
1540 struct mm_struct *mm = current->mm;
1541 struct vm_area_struct *vma, *prev;
1543 struct rb_node **rb_link, *rb_parent;
1544 unsigned long charged = 0;
1546 /* Check against address space limit. */
1547 if (!may_expand_vm(mm, len >> PAGE_SHIFT)) {
1548 unsigned long nr_pages;
1551 * MAP_FIXED may remove pages of mappings that intersects with
1552 * requested mapping. Account for the pages it would unmap.
1554 if (!(vm_flags & MAP_FIXED))
1557 nr_pages = count_vma_pages_range(mm, addr, addr + len);
1559 if (!may_expand_vm(mm, (len >> PAGE_SHIFT) - nr_pages))
1563 /* Clear old maps */
1565 while (find_vma_links(mm, addr, addr + len, &prev, &rb_link,
1567 if (do_munmap(mm, addr, len))
1572 * Private writable mapping: check memory availability
1574 if (accountable_mapping(file, vm_flags)) {
1575 charged = len >> PAGE_SHIFT;
1576 if (security_vm_enough_memory_mm(mm, charged))
1578 vm_flags |= VM_ACCOUNT;
1582 * Can we just expand an old mapping?
1584 vma = vma_merge(mm, prev, addr, addr + len, vm_flags,
1585 NULL, file, pgoff, NULL, NULL_VM_UFFD_CTX);
1590 * Determine the object being mapped and call the appropriate
1591 * specific mapper. the address has already been validated, but
1592 * not unmapped, but the maps are removed from the list.
1594 vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
1601 vma->vm_start = addr;
1602 vma->vm_end = addr + len;
1603 vma->vm_flags = vm_flags;
1604 vma->vm_page_prot = vm_get_page_prot(vm_flags);
1605 vma->vm_pgoff = pgoff;
1606 INIT_LIST_HEAD(&vma->anon_vma_chain);
1609 if (vm_flags & VM_DENYWRITE) {
1610 error = deny_write_access(file);
1614 if (vm_flags & VM_SHARED) {
1615 error = mapping_map_writable(file->f_mapping);
1617 goto allow_write_and_free_vma;
1620 /* ->mmap() can change vma->vm_file, but must guarantee that
1621 * vma_link() below can deny write-access if VM_DENYWRITE is set
1622 * and map writably if VM_SHARED is set. This usually means the
1623 * new file must not have been exposed to user-space, yet.
1625 vma->vm_file = get_file(file);
1626 error = file->f_op->mmap(file, vma);
1628 goto unmap_and_free_vma;
1630 /* Can addr have changed??
1632 * Answer: Yes, several device drivers can do it in their
1633 * f_op->mmap method. -DaveM
1634 * Bug: If addr is changed, prev, rb_link, rb_parent should
1635 * be updated for vma_link()
1637 WARN_ON_ONCE(addr != vma->vm_start);
1639 addr = vma->vm_start;
1640 vm_flags = vma->vm_flags;
1641 } else if (vm_flags & VM_SHARED) {
1642 error = shmem_zero_setup(vma);
1647 vma_link(mm, vma, prev, rb_link, rb_parent);
1648 /* Once vma denies write, undo our temporary denial count */
1650 if (vm_flags & VM_SHARED)
1651 mapping_unmap_writable(file->f_mapping);
1652 if (vm_flags & VM_DENYWRITE)
1653 allow_write_access(file);
1655 file = vma->vm_file;
1657 perf_event_mmap(vma);
1659 vm_stat_account(mm, vm_flags, file, len >> PAGE_SHIFT);
1660 if (vm_flags & VM_LOCKED) {
1661 if (!((vm_flags & VM_SPECIAL) || is_vm_hugetlb_page(vma) ||
1662 vma == get_gate_vma(current->mm)))
1663 mm->locked_vm += (len >> PAGE_SHIFT);
1665 vma->vm_flags &= ~VM_LOCKED;
1672 * New (or expanded) vma always get soft dirty status.
1673 * Otherwise user-space soft-dirty page tracker won't
1674 * be able to distinguish situation when vma area unmapped,
1675 * then new mapped in-place (which must be aimed as
1676 * a completely new data area).
1678 vma->vm_flags |= VM_SOFTDIRTY;
1680 vma_set_page_prot(vma);
1685 vma->vm_file = NULL;
1688 /* Undo any partial mapping done by a device driver. */
1689 unmap_region(mm, vma, prev, vma->vm_start, vma->vm_end);
1691 if (vm_flags & VM_SHARED)
1692 mapping_unmap_writable(file->f_mapping);
1693 allow_write_and_free_vma:
1694 if (vm_flags & VM_DENYWRITE)
1695 allow_write_access(file);
1697 kmem_cache_free(vm_area_cachep, vma);
1700 vm_unacct_memory(charged);
1704 unsigned long unmapped_area(struct vm_unmapped_area_info *info)
1707 * We implement the search by looking for an rbtree node that
1708 * immediately follows a suitable gap. That is,
1709 * - gap_start = vma->vm_prev->vm_end <= info->high_limit - length;
1710 * - gap_end = vma->vm_start >= info->low_limit + length;
1711 * - gap_end - gap_start >= length
1714 struct mm_struct *mm = current->mm;
1715 struct vm_area_struct *vma;
1716 unsigned long length, low_limit, high_limit, gap_start, gap_end;
1718 /* Adjust search length to account for worst case alignment overhead */
1719 length = info->length + info->align_mask;
1720 if (length < info->length)
1723 /* Adjust search limits by the desired length */
1724 if (info->high_limit < length)
1726 high_limit = info->high_limit - length;
1728 if (info->low_limit > high_limit)
1730 low_limit = info->low_limit + length;
1732 /* Check if rbtree root looks promising */
1733 if (RB_EMPTY_ROOT(&mm->mm_rb))
1735 vma = rb_entry(mm->mm_rb.rb_node, struct vm_area_struct, vm_rb);
1736 if (vma->rb_subtree_gap < length)
1740 /* Visit left subtree if it looks promising */
1741 gap_end = vma->vm_start;
1742 if (gap_end >= low_limit && vma->vm_rb.rb_left) {
1743 struct vm_area_struct *left =
1744 rb_entry(vma->vm_rb.rb_left,
1745 struct vm_area_struct, vm_rb);
1746 if (left->rb_subtree_gap >= length) {
1752 gap_start = vma->vm_prev ? vma->vm_prev->vm_end : 0;
1754 /* Check if current node has a suitable gap */
1755 if (gap_start > high_limit)
1757 if (gap_end >= low_limit && gap_end - gap_start >= length)
1760 /* Visit right subtree if it looks promising */
1761 if (vma->vm_rb.rb_right) {
1762 struct vm_area_struct *right =
1763 rb_entry(vma->vm_rb.rb_right,
1764 struct vm_area_struct, vm_rb);
1765 if (right->rb_subtree_gap >= length) {
1771 /* Go back up the rbtree to find next candidate node */
1773 struct rb_node *prev = &vma->vm_rb;
1774 if (!rb_parent(prev))
1776 vma = rb_entry(rb_parent(prev),
1777 struct vm_area_struct, vm_rb);
1778 if (prev == vma->vm_rb.rb_left) {
1779 gap_start = vma->vm_prev->vm_end;
1780 gap_end = vma->vm_start;
1787 /* Check highest gap, which does not precede any rbtree node */
1788 gap_start = mm->highest_vm_end;
1789 gap_end = ULONG_MAX; /* Only for VM_BUG_ON below */
1790 if (gap_start > high_limit)
1794 /* We found a suitable gap. Clip it with the original low_limit. */
1795 if (gap_start < info->low_limit)
1796 gap_start = info->low_limit;
1798 /* Adjust gap address to the desired alignment */
1799 gap_start += (info->align_offset - gap_start) & info->align_mask;
1801 VM_BUG_ON(gap_start + info->length > info->high_limit);
1802 VM_BUG_ON(gap_start + info->length > gap_end);
1806 unsigned long unmapped_area_topdown(struct vm_unmapped_area_info *info)
1808 struct mm_struct *mm = current->mm;
1809 struct vm_area_struct *vma;
1810 unsigned long length, low_limit, high_limit, gap_start, gap_end;
1812 /* Adjust search length to account for worst case alignment overhead */
1813 length = info->length + info->align_mask;
1814 if (length < info->length)
1818 * Adjust search limits by the desired length.
1819 * See implementation comment at top of unmapped_area().
1821 gap_end = info->high_limit;
1822 if (gap_end < length)
1824 high_limit = gap_end - length;
1826 if (info->low_limit > high_limit)
1828 low_limit = info->low_limit + length;
1830 /* Check highest gap, which does not precede any rbtree node */
1831 gap_start = mm->highest_vm_end;
1832 if (gap_start <= high_limit)
1835 /* Check if rbtree root looks promising */
1836 if (RB_EMPTY_ROOT(&mm->mm_rb))
1838 vma = rb_entry(mm->mm_rb.rb_node, struct vm_area_struct, vm_rb);
1839 if (vma->rb_subtree_gap < length)
1843 /* Visit right subtree if it looks promising */
1844 gap_start = vma->vm_prev ? vma->vm_prev->vm_end : 0;
1845 if (gap_start <= high_limit && vma->vm_rb.rb_right) {
1846 struct vm_area_struct *right =
1847 rb_entry(vma->vm_rb.rb_right,
1848 struct vm_area_struct, vm_rb);
1849 if (right->rb_subtree_gap >= length) {
1856 /* Check if current node has a suitable gap */
1857 gap_end = vma->vm_start;
1858 if (gap_end < low_limit)
1860 if (gap_start <= high_limit && gap_end - gap_start >= length)
1863 /* Visit left subtree if it looks promising */
1864 if (vma->vm_rb.rb_left) {
1865 struct vm_area_struct *left =
1866 rb_entry(vma->vm_rb.rb_left,
1867 struct vm_area_struct, vm_rb);
1868 if (left->rb_subtree_gap >= length) {
1874 /* Go back up the rbtree to find next candidate node */
1876 struct rb_node *prev = &vma->vm_rb;
1877 if (!rb_parent(prev))
1879 vma = rb_entry(rb_parent(prev),
1880 struct vm_area_struct, vm_rb);
1881 if (prev == vma->vm_rb.rb_right) {
1882 gap_start = vma->vm_prev ?
1883 vma->vm_prev->vm_end : 0;
1890 /* We found a suitable gap. Clip it with the original high_limit. */
1891 if (gap_end > info->high_limit)
1892 gap_end = info->high_limit;
1895 /* Compute highest gap address at the desired alignment */
1896 gap_end -= info->length;
1897 gap_end -= (gap_end - info->align_offset) & info->align_mask;
1899 VM_BUG_ON(gap_end < info->low_limit);
1900 VM_BUG_ON(gap_end < gap_start);
1904 /* Get an address range which is currently unmapped.
1905 * For shmat() with addr=0.
1907 * Ugly calling convention alert:
1908 * Return value with the low bits set means error value,
1910 * if (ret & ~PAGE_MASK)
1913 * This function "knows" that -ENOMEM has the bits set.
1915 #ifndef HAVE_ARCH_UNMAPPED_AREA
1917 arch_get_unmapped_area(struct file *filp, unsigned long addr,
1918 unsigned long len, unsigned long pgoff, unsigned long flags)
1920 struct mm_struct *mm = current->mm;
1921 struct vm_area_struct *vma;
1922 struct vm_unmapped_area_info info;
1924 if (len > TASK_SIZE - mmap_min_addr)
1927 if (flags & MAP_FIXED)
1931 addr = PAGE_ALIGN(addr);
1932 vma = find_vma(mm, addr);
1933 if (TASK_SIZE - len >= addr && addr >= mmap_min_addr &&
1934 (!vma || addr + len <= vma->vm_start))
1940 info.low_limit = mm->mmap_base;
1941 info.high_limit = TASK_SIZE;
1942 info.align_mask = 0;
1943 return vm_unmapped_area(&info);
1948 * This mmap-allocator allocates new areas top-down from below the
1949 * stack's low limit (the base):
1951 #ifndef HAVE_ARCH_UNMAPPED_AREA_TOPDOWN
1953 arch_get_unmapped_area_topdown(struct file *filp, const unsigned long addr0,
1954 const unsigned long len, const unsigned long pgoff,
1955 const unsigned long flags)
1957 struct vm_area_struct *vma;
1958 struct mm_struct *mm = current->mm;
1959 unsigned long addr = addr0;
1960 struct vm_unmapped_area_info info;
1962 /* requested length too big for entire address space */
1963 if (len > TASK_SIZE - mmap_min_addr)
1966 if (flags & MAP_FIXED)
1969 /* requesting a specific address */
1971 addr = PAGE_ALIGN(addr);
1972 vma = find_vma(mm, addr);
1973 if (TASK_SIZE - len >= addr && addr >= mmap_min_addr &&
1974 (!vma || addr + len <= vma->vm_start))
1978 info.flags = VM_UNMAPPED_AREA_TOPDOWN;
1980 info.low_limit = max(PAGE_SIZE, mmap_min_addr);
1981 info.high_limit = mm->mmap_base;
1982 info.align_mask = 0;
1983 addr = vm_unmapped_area(&info);
1986 * A failed mmap() very likely causes application failure,
1987 * so fall back to the bottom-up function here. This scenario
1988 * can happen with large stack limits and large mmap()
1991 if (addr & ~PAGE_MASK) {
1992 VM_BUG_ON(addr != -ENOMEM);
1994 info.low_limit = TASK_UNMAPPED_BASE;
1995 info.high_limit = TASK_SIZE;
1996 addr = vm_unmapped_area(&info);
2004 get_unmapped_area(struct file *file, unsigned long addr, unsigned long len,
2005 unsigned long pgoff, unsigned long flags)
2007 unsigned long (*get_area)(struct file *, unsigned long,
2008 unsigned long, unsigned long, unsigned long);
2010 unsigned long error = arch_mmap_check(addr, len, flags);
2014 /* Careful about overflows.. */
2015 if (len > TASK_SIZE)
2018 get_area = current->mm->get_unmapped_area;
2019 if (file && file->f_op->get_unmapped_area)
2020 get_area = file->f_op->get_unmapped_area;
2021 addr = get_area(file, addr, len, pgoff, flags);
2022 if (IS_ERR_VALUE(addr))
2025 if (addr > TASK_SIZE - len)
2027 if (addr & ~PAGE_MASK)
2030 addr = arch_rebalance_pgtables(addr, len);
2031 error = security_mmap_addr(addr);
2032 return error ? error : addr;
2035 EXPORT_SYMBOL(get_unmapped_area);
2037 /* Look up the first VMA which satisfies addr < vm_end, NULL if none. */
2038 struct vm_area_struct *find_vma(struct mm_struct *mm, unsigned long addr)
2040 struct rb_node *rb_node;
2041 struct vm_area_struct *vma;
2043 /* Check the cache first. */
2044 vma = vmacache_find(mm, addr);
2048 rb_node = mm->mm_rb.rb_node;
2052 struct vm_area_struct *tmp;
2054 tmp = rb_entry(rb_node, struct vm_area_struct, vm_rb);
2056 if (tmp->vm_end > addr) {
2058 if (tmp->vm_start <= addr)
2060 rb_node = rb_node->rb_left;
2062 rb_node = rb_node->rb_right;
2066 vmacache_update(addr, vma);
2070 EXPORT_SYMBOL(find_vma);
2073 * Same as find_vma, but also return a pointer to the previous VMA in *pprev.
2075 struct vm_area_struct *
2076 find_vma_prev(struct mm_struct *mm, unsigned long addr,
2077 struct vm_area_struct **pprev)
2079 struct vm_area_struct *vma;
2081 vma = find_vma(mm, addr);
2083 *pprev = vma->vm_prev;
2085 struct rb_node *rb_node = mm->mm_rb.rb_node;
2088 *pprev = rb_entry(rb_node, struct vm_area_struct, vm_rb);
2089 rb_node = rb_node->rb_right;
2096 * Verify that the stack growth is acceptable and
2097 * update accounting. This is shared with both the
2098 * grow-up and grow-down cases.
2100 static int acct_stack_growth(struct vm_area_struct *vma, unsigned long size, unsigned long grow)
2102 struct mm_struct *mm = vma->vm_mm;
2103 struct rlimit *rlim = current->signal->rlim;
2104 unsigned long new_start, actual_size;
2106 /* address space limit tests */
2107 if (!may_expand_vm(mm, grow))
2110 /* Stack limit test */
2112 if (size && (vma->vm_flags & (VM_GROWSUP | VM_GROWSDOWN)))
2113 actual_size -= PAGE_SIZE;
2114 if (actual_size > READ_ONCE(rlim[RLIMIT_STACK].rlim_cur))
2117 /* mlock limit tests */
2118 if (vma->vm_flags & VM_LOCKED) {
2119 unsigned long locked;
2120 unsigned long limit;
2121 locked = mm->locked_vm + grow;
2122 limit = READ_ONCE(rlim[RLIMIT_MEMLOCK].rlim_cur);
2123 limit >>= PAGE_SHIFT;
2124 if (locked > limit && !capable(CAP_IPC_LOCK))
2128 /* Check to ensure the stack will not grow into a hugetlb-only region */
2129 new_start = (vma->vm_flags & VM_GROWSUP) ? vma->vm_start :
2131 if (is_hugepage_only_range(vma->vm_mm, new_start, size))
2135 * Overcommit.. This must be the final test, as it will
2136 * update security statistics.
2138 if (security_vm_enough_memory_mm(mm, grow))
2141 /* Ok, everything looks good - let it rip */
2142 if (vma->vm_flags & VM_LOCKED)
2143 mm->locked_vm += grow;
2144 vm_stat_account(mm, vma->vm_flags, vma->vm_file, grow);
2148 #if defined(CONFIG_STACK_GROWSUP) || defined(CONFIG_IA64)
2150 * PA-RISC uses this for its stack; IA64 for its Register Backing Store.
2151 * vma is the last one with address > vma->vm_end. Have to extend vma.
2153 int expand_upwards(struct vm_area_struct *vma, unsigned long address)
2157 if (!(vma->vm_flags & VM_GROWSUP))
2161 * We must make sure the anon_vma is allocated
2162 * so that the anon_vma locking is not a noop.
2164 if (unlikely(anon_vma_prepare(vma)))
2166 vma_lock_anon_vma(vma);
2169 * vma->vm_start/vm_end cannot change under us because the caller
2170 * is required to hold the mmap_sem in read mode. We need the
2171 * anon_vma lock to serialize against concurrent expand_stacks.
2172 * Also guard against wrapping around to address 0.
2174 if (address < PAGE_ALIGN(address+4))
2175 address = PAGE_ALIGN(address+4);
2177 vma_unlock_anon_vma(vma);
2182 /* Somebody else might have raced and expanded it already */
2183 if (address > vma->vm_end) {
2184 unsigned long size, grow;
2186 size = address - vma->vm_start;
2187 grow = (address - vma->vm_end) >> PAGE_SHIFT;
2190 if (vma->vm_pgoff + (size >> PAGE_SHIFT) >= vma->vm_pgoff) {
2191 error = acct_stack_growth(vma, size, grow);
2194 * vma_gap_update() doesn't support concurrent
2195 * updates, but we only hold a shared mmap_sem
2196 * lock here, so we need to protect against
2197 * concurrent vma expansions.
2198 * vma_lock_anon_vma() doesn't help here, as
2199 * we don't guarantee that all growable vmas
2200 * in a mm share the same root anon vma.
2201 * So, we reuse mm->page_table_lock to guard
2202 * against concurrent vma expansions.
2204 spin_lock(&vma->vm_mm->page_table_lock);
2205 anon_vma_interval_tree_pre_update_vma(vma);
2206 vma->vm_end = address;
2207 anon_vma_interval_tree_post_update_vma(vma);
2209 vma_gap_update(vma->vm_next);
2211 vma->vm_mm->highest_vm_end = address;
2212 spin_unlock(&vma->vm_mm->page_table_lock);
2214 perf_event_mmap(vma);
2218 vma_unlock_anon_vma(vma);
2219 khugepaged_enter_vma_merge(vma, vma->vm_flags);
2220 validate_mm(vma->vm_mm);
2223 #endif /* CONFIG_STACK_GROWSUP || CONFIG_IA64 */
2226 * vma is the first one with address < vma->vm_start. Have to extend vma.
2228 int expand_downwards(struct vm_area_struct *vma,
2229 unsigned long address)
2234 * We must make sure the anon_vma is allocated
2235 * so that the anon_vma locking is not a noop.
2237 if (unlikely(anon_vma_prepare(vma)))
2240 address &= PAGE_MASK;
2241 error = security_mmap_addr(address);
2245 vma_lock_anon_vma(vma);
2248 * vma->vm_start/vm_end cannot change under us because the caller
2249 * is required to hold the mmap_sem in read mode. We need the
2250 * anon_vma lock to serialize against concurrent expand_stacks.
2253 /* Somebody else might have raced and expanded it already */
2254 if (address < vma->vm_start) {
2255 unsigned long size, grow;
2257 size = vma->vm_end - address;
2258 grow = (vma->vm_start - address) >> PAGE_SHIFT;
2261 if (grow <= vma->vm_pgoff) {
2262 error = acct_stack_growth(vma, size, grow);
2265 * vma_gap_update() doesn't support concurrent
2266 * updates, but we only hold a shared mmap_sem
2267 * lock here, so we need to protect against
2268 * concurrent vma expansions.
2269 * vma_lock_anon_vma() doesn't help here, as
2270 * we don't guarantee that all growable vmas
2271 * in a mm share the same root anon vma.
2272 * So, we reuse mm->page_table_lock to guard
2273 * against concurrent vma expansions.
2275 spin_lock(&vma->vm_mm->page_table_lock);
2276 anon_vma_interval_tree_pre_update_vma(vma);
2277 vma->vm_start = address;
2278 vma->vm_pgoff -= grow;
2279 anon_vma_interval_tree_post_update_vma(vma);
2280 vma_gap_update(vma);
2281 spin_unlock(&vma->vm_mm->page_table_lock);
2283 perf_event_mmap(vma);
2287 vma_unlock_anon_vma(vma);
2288 khugepaged_enter_vma_merge(vma, vma->vm_flags);
2289 validate_mm(vma->vm_mm);
2294 * Note how expand_stack() refuses to expand the stack all the way to
2295 * abut the next virtual mapping, *unless* that mapping itself is also
2296 * a stack mapping. We want to leave room for a guard page, after all
2297 * (the guard page itself is not added here, that is done by the
2298 * actual page faulting logic)
2300 * This matches the behavior of the guard page logic (see mm/memory.c:
2301 * check_stack_guard_page()), which only allows the guard page to be
2302 * removed under these circumstances.
2304 #ifdef CONFIG_STACK_GROWSUP
2305 int expand_stack(struct vm_area_struct *vma, unsigned long address)
2307 struct vm_area_struct *next;
2309 address &= PAGE_MASK;
2310 next = vma->vm_next;
2311 if (next && next->vm_start == address + PAGE_SIZE) {
2312 if (!(next->vm_flags & VM_GROWSUP))
2315 return expand_upwards(vma, address);
2318 struct vm_area_struct *
2319 find_extend_vma(struct mm_struct *mm, unsigned long addr)
2321 struct vm_area_struct *vma, *prev;
2324 vma = find_vma_prev(mm, addr, &prev);
2325 if (vma && (vma->vm_start <= addr))
2327 if (!prev || expand_stack(prev, addr))
2329 if (prev->vm_flags & VM_LOCKED)
2330 populate_vma_page_range(prev, addr, prev->vm_end, NULL);
2334 int expand_stack(struct vm_area_struct *vma, unsigned long address)
2336 struct vm_area_struct *prev;
2338 address &= PAGE_MASK;
2339 prev = vma->vm_prev;
2340 if (prev && prev->vm_end == address) {
2341 if (!(prev->vm_flags & VM_GROWSDOWN))
2344 return expand_downwards(vma, address);
2347 struct vm_area_struct *
2348 find_extend_vma(struct mm_struct *mm, unsigned long addr)
2350 struct vm_area_struct *vma;
2351 unsigned long start;
2354 vma = find_vma(mm, addr);
2357 if (vma->vm_start <= addr)
2359 if (!(vma->vm_flags & VM_GROWSDOWN))
2361 start = vma->vm_start;
2362 if (expand_stack(vma, addr))
2364 if (vma->vm_flags & VM_LOCKED)
2365 populate_vma_page_range(vma, addr, start, NULL);
2370 EXPORT_SYMBOL_GPL(find_extend_vma);
2373 * Ok - we have the memory areas we should free on the vma list,
2374 * so release them, and do the vma updates.
2376 * Called with the mm semaphore held.
2378 static void remove_vma_list(struct mm_struct *mm, struct vm_area_struct *vma)
2380 unsigned long nr_accounted = 0;
2382 /* Update high watermark before we lower total_vm */
2383 update_hiwater_vm(mm);
2385 long nrpages = vma_pages(vma);
2387 if (vma->vm_flags & VM_ACCOUNT)
2388 nr_accounted += nrpages;
2389 vm_stat_account(mm, vma->vm_flags, vma->vm_file, -nrpages);
2390 vma = remove_vma(vma);
2392 vm_unacct_memory(nr_accounted);
2397 * Get rid of page table information in the indicated region.
2399 * Called with the mm semaphore held.
2401 static void unmap_region(struct mm_struct *mm,
2402 struct vm_area_struct *vma, struct vm_area_struct *prev,
2403 unsigned long start, unsigned long end)
2405 struct vm_area_struct *next = prev ? prev->vm_next : mm->mmap;
2406 struct mmu_gather tlb;
2409 tlb_gather_mmu(&tlb, mm, start, end);
2410 update_hiwater_rss(mm);
2411 unmap_vmas(&tlb, vma, start, end);
2412 free_pgtables(&tlb, vma, prev ? prev->vm_end : FIRST_USER_ADDRESS,
2413 next ? next->vm_start : USER_PGTABLES_CEILING);
2414 tlb_finish_mmu(&tlb, start, end);
2418 * Create a list of vma's touched by the unmap, removing them from the mm's
2419 * vma list as we go..
2422 detach_vmas_to_be_unmapped(struct mm_struct *mm, struct vm_area_struct *vma,
2423 struct vm_area_struct *prev, unsigned long end)
2425 struct vm_area_struct **insertion_point;
2426 struct vm_area_struct *tail_vma = NULL;
2428 insertion_point = (prev ? &prev->vm_next : &mm->mmap);
2429 vma->vm_prev = NULL;
2431 vma_rb_erase(vma, &mm->mm_rb);
2435 } while (vma && vma->vm_start < end);
2436 *insertion_point = vma;
2438 vma->vm_prev = prev;
2439 vma_gap_update(vma);
2441 mm->highest_vm_end = prev ? prev->vm_end : 0;
2442 tail_vma->vm_next = NULL;
2444 /* Kill the cache */
2445 vmacache_invalidate(mm);
2449 * __split_vma() bypasses sysctl_max_map_count checking. We use this on the
2450 * munmap path where it doesn't make sense to fail.
2452 static int __split_vma(struct mm_struct *mm, struct vm_area_struct *vma,
2453 unsigned long addr, int new_below)
2455 struct vm_area_struct *new;
2458 if (is_vm_hugetlb_page(vma) && (addr &
2459 ~(huge_page_mask(hstate_vma(vma)))))
2462 new = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
2466 /* most fields are the same, copy all, and then fixup */
2469 INIT_LIST_HEAD(&new->anon_vma_chain);
2474 new->vm_start = addr;
2475 new->vm_pgoff += ((addr - vma->vm_start) >> PAGE_SHIFT);
2478 err = vma_dup_policy(vma, new);
2482 err = anon_vma_clone(new, vma);
2487 get_file(new->vm_file);
2489 if (new->vm_ops && new->vm_ops->open)
2490 new->vm_ops->open(new);
2493 err = vma_adjust(vma, addr, vma->vm_end, vma->vm_pgoff +
2494 ((addr - new->vm_start) >> PAGE_SHIFT), new);
2496 err = vma_adjust(vma, vma->vm_start, addr, vma->vm_pgoff, new);
2502 /* Clean everything up if vma_adjust failed. */
2503 if (new->vm_ops && new->vm_ops->close)
2504 new->vm_ops->close(new);
2507 unlink_anon_vmas(new);
2509 mpol_put(vma_policy(new));
2511 kmem_cache_free(vm_area_cachep, new);
2516 * Split a vma into two pieces at address 'addr', a new vma is allocated
2517 * either for the first part or the tail.
2519 int split_vma(struct mm_struct *mm, struct vm_area_struct *vma,
2520 unsigned long addr, int new_below)
2522 if (mm->map_count >= sysctl_max_map_count)
2525 return __split_vma(mm, vma, addr, new_below);
2528 /* Munmap is split into 2 main parts -- this part which finds
2529 * what needs doing, and the areas themselves, which do the
2530 * work. This now handles partial unmappings.
2531 * Jeremy Fitzhardinge <jeremy@goop.org>
2533 int do_munmap(struct mm_struct *mm, unsigned long start, size_t len)
2536 struct vm_area_struct *vma, *prev, *last;
2538 if ((start & ~PAGE_MASK) || start > TASK_SIZE || len > TASK_SIZE-start)
2541 len = PAGE_ALIGN(len);
2545 /* Find the first overlapping VMA */
2546 vma = find_vma(mm, start);
2549 prev = vma->vm_prev;
2550 /* we have start < vma->vm_end */
2552 /* if it doesn't overlap, we have nothing.. */
2554 if (vma->vm_start >= end)
2558 * If we need to split any vma, do it now to save pain later.
2560 * Note: mremap's move_vma VM_ACCOUNT handling assumes a partially
2561 * unmapped vm_area_struct will remain in use: so lower split_vma
2562 * places tmp vma above, and higher split_vma places tmp vma below.
2564 if (start > vma->vm_start) {
2568 * Make sure that map_count on return from munmap() will
2569 * not exceed its limit; but let map_count go just above
2570 * its limit temporarily, to help free resources as expected.
2572 if (end < vma->vm_end && mm->map_count >= sysctl_max_map_count)
2575 error = __split_vma(mm, vma, start, 0);
2581 /* Does it split the last one? */
2582 last = find_vma(mm, end);
2583 if (last && end > last->vm_start) {
2584 int error = __split_vma(mm, last, end, 1);
2588 vma = prev ? prev->vm_next : mm->mmap;
2591 * unlock any mlock()ed ranges before detaching vmas
2593 if (mm->locked_vm) {
2594 struct vm_area_struct *tmp = vma;
2595 while (tmp && tmp->vm_start < end) {
2596 if (tmp->vm_flags & VM_LOCKED) {
2597 mm->locked_vm -= vma_pages(tmp);
2598 munlock_vma_pages_all(tmp);
2605 * Remove the vma's, and unmap the actual pages
2607 detach_vmas_to_be_unmapped(mm, vma, prev, end);
2608 unmap_region(mm, vma, prev, start, end);
2610 arch_unmap(mm, vma, start, end);
2612 /* Fix up all other VM information */
2613 remove_vma_list(mm, vma);
2618 int vm_munmap(unsigned long start, size_t len)
2621 struct mm_struct *mm = current->mm;
2623 down_write(&mm->mmap_sem);
2624 ret = do_munmap(mm, start, len);
2625 up_write(&mm->mmap_sem);
2628 EXPORT_SYMBOL(vm_munmap);
2630 SYSCALL_DEFINE2(munmap, unsigned long, addr, size_t, len)
2632 profile_munmap(addr);
2633 return vm_munmap(addr, len);
2638 * Emulation of deprecated remap_file_pages() syscall.
2640 SYSCALL_DEFINE5(remap_file_pages, unsigned long, start, unsigned long, size,
2641 unsigned long, prot, unsigned long, pgoff, unsigned long, flags)
2644 struct mm_struct *mm = current->mm;
2645 struct vm_area_struct *vma;
2646 unsigned long populate = 0;
2647 unsigned long ret = -EINVAL;
2650 pr_warn_once("%s (%d) uses deprecated remap_file_pages() syscall. "
2651 "See Documentation/vm/remap_file_pages.txt.\n",
2652 current->comm, current->pid);
2656 start = start & PAGE_MASK;
2657 size = size & PAGE_MASK;
2659 if (start + size <= start)
2662 /* Does pgoff wrap? */
2663 if (pgoff + (size >> PAGE_SHIFT) < pgoff)
2666 down_write(&mm->mmap_sem);
2667 vma = find_vma(mm, start);
2669 if (!vma || !(vma->vm_flags & VM_SHARED))
2672 if (start < vma->vm_start || start + size > vma->vm_end)
2675 if (pgoff == linear_page_index(vma, start)) {
2680 prot |= vma->vm_flags & VM_READ ? PROT_READ : 0;
2681 prot |= vma->vm_flags & VM_WRITE ? PROT_WRITE : 0;
2682 prot |= vma->vm_flags & VM_EXEC ? PROT_EXEC : 0;
2684 flags &= MAP_NONBLOCK;
2685 flags |= MAP_SHARED | MAP_FIXED | MAP_POPULATE;
2686 if (vma->vm_flags & VM_LOCKED) {
2687 flags |= MAP_LOCKED;
2688 /* drop PG_Mlocked flag for over-mapped range */
2689 munlock_vma_pages_range(vma, start, start + size);
2692 file = get_file(vma->vm_file);
2693 ret = do_mmap_pgoff(vma->vm_file, start, size,
2694 prot, flags, pgoff, &populate);
2697 up_write(&mm->mmap_sem);
2699 mm_populate(ret, populate);
2700 if (!IS_ERR_VALUE(ret))
2705 static inline void verify_mm_writelocked(struct mm_struct *mm)
2707 #ifdef CONFIG_DEBUG_VM
2708 if (unlikely(down_read_trylock(&mm->mmap_sem))) {
2710 up_read(&mm->mmap_sem);
2716 * this is really a simplified "do_mmap". it only handles
2717 * anonymous maps. eventually we may be able to do some
2718 * brk-specific accounting here.
2720 static unsigned long do_brk(unsigned long addr, unsigned long len)
2722 struct mm_struct *mm = current->mm;
2723 struct vm_area_struct *vma, *prev;
2724 unsigned long flags;
2725 struct rb_node **rb_link, *rb_parent;
2726 pgoff_t pgoff = addr >> PAGE_SHIFT;
2729 len = PAGE_ALIGN(len);
2733 flags = VM_DATA_DEFAULT_FLAGS | VM_ACCOUNT | mm->def_flags;
2735 error = get_unmapped_area(NULL, addr, len, 0, MAP_FIXED);
2736 if (error & ~PAGE_MASK)
2739 error = mlock_future_check(mm, mm->def_flags, len);
2744 * mm->mmap_sem is required to protect against another thread
2745 * changing the mappings in case we sleep.
2747 verify_mm_writelocked(mm);
2750 * Clear old maps. this also does some error checking for us
2752 while (find_vma_links(mm, addr, addr + len, &prev, &rb_link,
2754 if (do_munmap(mm, addr, len))
2758 /* Check against address space limits *after* clearing old maps... */
2759 if (!may_expand_vm(mm, len >> PAGE_SHIFT))
2762 if (mm->map_count > sysctl_max_map_count)
2765 if (security_vm_enough_memory_mm(mm, len >> PAGE_SHIFT))
2768 /* Can we just expand an old private anonymous mapping? */
2769 vma = vma_merge(mm, prev, addr, addr + len, flags,
2770 NULL, NULL, pgoff, NULL, NULL_VM_UFFD_CTX);
2775 * create a vma struct for an anonymous mapping
2777 vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
2779 vm_unacct_memory(len >> PAGE_SHIFT);
2783 INIT_LIST_HEAD(&vma->anon_vma_chain);
2785 vma->vm_start = addr;
2786 vma->vm_end = addr + len;
2787 vma->vm_pgoff = pgoff;
2788 vma->vm_flags = flags;
2789 vma->vm_page_prot = vm_get_page_prot(flags);
2790 vma_link(mm, vma, prev, rb_link, rb_parent);
2792 perf_event_mmap(vma);
2793 mm->total_vm += len >> PAGE_SHIFT;
2794 if (flags & VM_LOCKED)
2795 mm->locked_vm += (len >> PAGE_SHIFT);
2796 vma->vm_flags |= VM_SOFTDIRTY;
2800 unsigned long vm_brk(unsigned long addr, unsigned long len)
2802 struct mm_struct *mm = current->mm;
2806 down_write(&mm->mmap_sem);
2807 ret = do_brk(addr, len);
2808 populate = ((mm->def_flags & VM_LOCKED) != 0);
2809 up_write(&mm->mmap_sem);
2811 mm_populate(addr, len);
2814 EXPORT_SYMBOL(vm_brk);
2816 /* Release all mmaps. */
2817 void exit_mmap(struct mm_struct *mm)
2819 struct mmu_gather tlb;
2820 struct vm_area_struct *vma;
2821 unsigned long nr_accounted = 0;
2823 /* mm's last user has gone, and its about to be pulled down */
2824 mmu_notifier_release(mm);
2826 if (mm->locked_vm) {
2829 if (vma->vm_flags & VM_LOCKED)
2830 munlock_vma_pages_all(vma);
2838 if (!vma) /* Can happen if dup_mmap() received an OOM */
2843 tlb_gather_mmu(&tlb, mm, 0, -1);
2844 /* update_hiwater_rss(mm) here? but nobody should be looking */
2845 /* Use -1 here to ensure all VMAs in the mm are unmapped */
2846 unmap_vmas(&tlb, vma, 0, -1);
2848 free_pgtables(&tlb, vma, FIRST_USER_ADDRESS, USER_PGTABLES_CEILING);
2849 tlb_finish_mmu(&tlb, 0, -1);
2852 * Walk the list again, actually closing and freeing it,
2853 * with preemption enabled, without holding any MM locks.
2856 if (vma->vm_flags & VM_ACCOUNT)
2857 nr_accounted += vma_pages(vma);
2858 vma = remove_vma(vma);
2860 vm_unacct_memory(nr_accounted);
2863 /* Insert vm structure into process list sorted by address
2864 * and into the inode's i_mmap tree. If vm_file is non-NULL
2865 * then i_mmap_rwsem is taken here.
2867 int insert_vm_struct(struct mm_struct *mm, struct vm_area_struct *vma)
2869 struct vm_area_struct *prev;
2870 struct rb_node **rb_link, *rb_parent;
2872 if (find_vma_links(mm, vma->vm_start, vma->vm_end,
2873 &prev, &rb_link, &rb_parent))
2875 if ((vma->vm_flags & VM_ACCOUNT) &&
2876 security_vm_enough_memory_mm(mm, vma_pages(vma)))
2880 * The vm_pgoff of a purely anonymous vma should be irrelevant
2881 * until its first write fault, when page's anon_vma and index
2882 * are set. But now set the vm_pgoff it will almost certainly
2883 * end up with (unless mremap moves it elsewhere before that
2884 * first wfault), so /proc/pid/maps tells a consistent story.
2886 * By setting it to reflect the virtual start address of the
2887 * vma, merges and splits can happen in a seamless way, just
2888 * using the existing file pgoff checks and manipulations.
2889 * Similarly in do_mmap_pgoff and in do_brk.
2891 if (vma_is_anonymous(vma)) {
2892 BUG_ON(vma->anon_vma);
2893 vma->vm_pgoff = vma->vm_start >> PAGE_SHIFT;
2896 vma_link(mm, vma, prev, rb_link, rb_parent);
2901 * Copy the vma structure to a new location in the same mm,
2902 * prior to moving page table entries, to effect an mremap move.
2904 struct vm_area_struct *copy_vma(struct vm_area_struct **vmap,
2905 unsigned long addr, unsigned long len, pgoff_t pgoff,
2906 bool *need_rmap_locks)
2908 struct vm_area_struct *vma = *vmap;
2909 unsigned long vma_start = vma->vm_start;
2910 struct mm_struct *mm = vma->vm_mm;
2911 struct vm_area_struct *new_vma, *prev;
2912 struct rb_node **rb_link, *rb_parent;
2913 bool faulted_in_anon_vma = true;
2916 * If anonymous vma has not yet been faulted, update new pgoff
2917 * to match new location, to increase its chance of merging.
2919 if (unlikely(vma_is_anonymous(vma) && !vma->anon_vma)) {
2920 pgoff = addr >> PAGE_SHIFT;
2921 faulted_in_anon_vma = false;
2924 if (find_vma_links(mm, addr, addr + len, &prev, &rb_link, &rb_parent))
2925 return NULL; /* should never get here */
2926 new_vma = vma_merge(mm, prev, addr, addr + len, vma->vm_flags,
2927 vma->anon_vma, vma->vm_file, pgoff, vma_policy(vma),
2928 vma->vm_userfaultfd_ctx);
2931 * Source vma may have been merged into new_vma
2933 if (unlikely(vma_start >= new_vma->vm_start &&
2934 vma_start < new_vma->vm_end)) {
2936 * The only way we can get a vma_merge with
2937 * self during an mremap is if the vma hasn't
2938 * been faulted in yet and we were allowed to
2939 * reset the dst vma->vm_pgoff to the
2940 * destination address of the mremap to allow
2941 * the merge to happen. mremap must change the
2942 * vm_pgoff linearity between src and dst vmas
2943 * (in turn preventing a vma_merge) to be
2944 * safe. It is only safe to keep the vm_pgoff
2945 * linear if there are no pages mapped yet.
2947 VM_BUG_ON_VMA(faulted_in_anon_vma, new_vma);
2948 *vmap = vma = new_vma;
2950 *need_rmap_locks = (new_vma->vm_pgoff <= vma->vm_pgoff);
2952 new_vma = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
2956 new_vma->vm_start = addr;
2957 new_vma->vm_end = addr + len;
2958 new_vma->vm_pgoff = pgoff;
2959 if (vma_dup_policy(vma, new_vma))
2961 INIT_LIST_HEAD(&new_vma->anon_vma_chain);
2962 if (anon_vma_clone(new_vma, vma))
2963 goto out_free_mempol;
2964 if (new_vma->vm_file)
2965 get_file(new_vma->vm_file);
2966 if (new_vma->vm_ops && new_vma->vm_ops->open)
2967 new_vma->vm_ops->open(new_vma);
2968 vma_link(mm, new_vma, prev, rb_link, rb_parent);
2969 *need_rmap_locks = false;
2974 mpol_put(vma_policy(new_vma));
2976 kmem_cache_free(vm_area_cachep, new_vma);
2982 * Return true if the calling process may expand its vm space by the passed
2985 int may_expand_vm(struct mm_struct *mm, unsigned long npages)
2987 unsigned long cur = mm->total_vm; /* pages */
2990 lim = rlimit(RLIMIT_AS) >> PAGE_SHIFT;
2992 if (cur + npages > lim)
2997 static int special_mapping_fault(struct vm_area_struct *vma,
2998 struct vm_fault *vmf);
3001 * Having a close hook prevents vma merging regardless of flags.
3003 static void special_mapping_close(struct vm_area_struct *vma)
3007 static const char *special_mapping_name(struct vm_area_struct *vma)
3009 return ((struct vm_special_mapping *)vma->vm_private_data)->name;
3012 static const struct vm_operations_struct special_mapping_vmops = {
3013 .close = special_mapping_close,
3014 .fault = special_mapping_fault,
3015 .name = special_mapping_name,
3018 static const struct vm_operations_struct legacy_special_mapping_vmops = {
3019 .close = special_mapping_close,
3020 .fault = special_mapping_fault,
3023 static int special_mapping_fault(struct vm_area_struct *vma,
3024 struct vm_fault *vmf)
3027 struct page **pages;
3029 if (vma->vm_ops == &legacy_special_mapping_vmops)
3030 pages = vma->vm_private_data;
3032 pages = ((struct vm_special_mapping *)vma->vm_private_data)->
3035 for (pgoff = vmf->pgoff; pgoff && *pages; ++pages)
3039 struct page *page = *pages;
3045 return VM_FAULT_SIGBUS;
3048 static struct vm_area_struct *__install_special_mapping(
3049 struct mm_struct *mm,
3050 unsigned long addr, unsigned long len,
3051 unsigned long vm_flags, const struct vm_operations_struct *ops,
3055 struct vm_area_struct *vma;
3057 vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
3058 if (unlikely(vma == NULL))
3059 return ERR_PTR(-ENOMEM);
3061 INIT_LIST_HEAD(&vma->anon_vma_chain);
3063 vma->vm_start = addr;
3064 vma->vm_end = addr + len;
3066 vma->vm_flags = vm_flags | mm->def_flags | VM_DONTEXPAND | VM_SOFTDIRTY;
3067 vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
3070 vma->vm_private_data = priv;
3072 ret = insert_vm_struct(mm, vma);
3076 mm->total_vm += len >> PAGE_SHIFT;
3078 perf_event_mmap(vma);
3083 kmem_cache_free(vm_area_cachep, vma);
3084 return ERR_PTR(ret);
3088 * Called with mm->mmap_sem held for writing.
3089 * Insert a new vma covering the given region, with the given flags.
3090 * Its pages are supplied by the given array of struct page *.
3091 * The array can be shorter than len >> PAGE_SHIFT if it's null-terminated.
3092 * The region past the last page supplied will always produce SIGBUS.
3093 * The array pointer and the pages it points to are assumed to stay alive
3094 * for as long as this mapping might exist.
3096 struct vm_area_struct *_install_special_mapping(
3097 struct mm_struct *mm,
3098 unsigned long addr, unsigned long len,
3099 unsigned long vm_flags, const struct vm_special_mapping *spec)
3101 return __install_special_mapping(mm, addr, len, vm_flags,
3102 &special_mapping_vmops, (void *)spec);
3105 int install_special_mapping(struct mm_struct *mm,
3106 unsigned long addr, unsigned long len,
3107 unsigned long vm_flags, struct page **pages)
3109 struct vm_area_struct *vma = __install_special_mapping(
3110 mm, addr, len, vm_flags, &legacy_special_mapping_vmops,
3113 return PTR_ERR_OR_ZERO(vma);
3116 static DEFINE_MUTEX(mm_all_locks_mutex);
3118 static void vm_lock_anon_vma(struct mm_struct *mm, struct anon_vma *anon_vma)
3120 if (!test_bit(0, (unsigned long *) &anon_vma->root->rb_root.rb_node)) {
3122 * The LSB of head.next can't change from under us
3123 * because we hold the mm_all_locks_mutex.
3125 down_write_nest_lock(&anon_vma->root->rwsem, &mm->mmap_sem);
3127 * We can safely modify head.next after taking the
3128 * anon_vma->root->rwsem. If some other vma in this mm shares
3129 * the same anon_vma we won't take it again.
3131 * No need of atomic instructions here, head.next
3132 * can't change from under us thanks to the
3133 * anon_vma->root->rwsem.
3135 if (__test_and_set_bit(0, (unsigned long *)
3136 &anon_vma->root->rb_root.rb_node))
3141 static void vm_lock_mapping(struct mm_struct *mm, struct address_space *mapping)
3143 if (!test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) {
3145 * AS_MM_ALL_LOCKS can't change from under us because
3146 * we hold the mm_all_locks_mutex.
3148 * Operations on ->flags have to be atomic because
3149 * even if AS_MM_ALL_LOCKS is stable thanks to the
3150 * mm_all_locks_mutex, there may be other cpus
3151 * changing other bitflags in parallel to us.
3153 if (test_and_set_bit(AS_MM_ALL_LOCKS, &mapping->flags))
3155 down_write_nest_lock(&mapping->i_mmap_rwsem, &mm->mmap_sem);
3160 * This operation locks against the VM for all pte/vma/mm related
3161 * operations that could ever happen on a certain mm. This includes
3162 * vmtruncate, try_to_unmap, and all page faults.
3164 * The caller must take the mmap_sem in write mode before calling
3165 * mm_take_all_locks(). The caller isn't allowed to release the
3166 * mmap_sem until mm_drop_all_locks() returns.
3168 * mmap_sem in write mode is required in order to block all operations
3169 * that could modify pagetables and free pages without need of
3170 * altering the vma layout. It's also needed in write mode to avoid new
3171 * anon_vmas to be associated with existing vmas.
3173 * A single task can't take more than one mm_take_all_locks() in a row
3174 * or it would deadlock.
3176 * The LSB in anon_vma->rb_root.rb_node and the AS_MM_ALL_LOCKS bitflag in
3177 * mapping->flags avoid to take the same lock twice, if more than one
3178 * vma in this mm is backed by the same anon_vma or address_space.
3180 * We can take all the locks in random order because the VM code
3181 * taking i_mmap_rwsem or anon_vma->rwsem outside the mmap_sem never
3182 * takes more than one of them in a row. Secondly we're protected
3183 * against a concurrent mm_take_all_locks() by the mm_all_locks_mutex.
3185 * mm_take_all_locks() and mm_drop_all_locks are expensive operations
3186 * that may have to take thousand of locks.
3188 * mm_take_all_locks() can fail if it's interrupted by signals.
3190 int mm_take_all_locks(struct mm_struct *mm)
3192 struct vm_area_struct *vma;
3193 struct anon_vma_chain *avc;
3195 BUG_ON(down_read_trylock(&mm->mmap_sem));
3197 mutex_lock(&mm_all_locks_mutex);
3199 for (vma = mm->mmap; vma; vma = vma->vm_next) {
3200 if (signal_pending(current))
3202 if (vma->vm_file && vma->vm_file->f_mapping)
3203 vm_lock_mapping(mm, vma->vm_file->f_mapping);
3206 for (vma = mm->mmap; vma; vma = vma->vm_next) {
3207 if (signal_pending(current))
3210 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
3211 vm_lock_anon_vma(mm, avc->anon_vma);
3217 mm_drop_all_locks(mm);
3221 static void vm_unlock_anon_vma(struct anon_vma *anon_vma)
3223 if (test_bit(0, (unsigned long *) &anon_vma->root->rb_root.rb_node)) {
3225 * The LSB of head.next can't change to 0 from under
3226 * us because we hold the mm_all_locks_mutex.
3228 * We must however clear the bitflag before unlocking
3229 * the vma so the users using the anon_vma->rb_root will
3230 * never see our bitflag.
3232 * No need of atomic instructions here, head.next
3233 * can't change from under us until we release the
3234 * anon_vma->root->rwsem.
3236 if (!__test_and_clear_bit(0, (unsigned long *)
3237 &anon_vma->root->rb_root.rb_node))
3239 anon_vma_unlock_write(anon_vma);
3243 static void vm_unlock_mapping(struct address_space *mapping)
3245 if (test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) {
3247 * AS_MM_ALL_LOCKS can't change to 0 from under us
3248 * because we hold the mm_all_locks_mutex.
3250 i_mmap_unlock_write(mapping);
3251 if (!test_and_clear_bit(AS_MM_ALL_LOCKS,
3258 * The mmap_sem cannot be released by the caller until
3259 * mm_drop_all_locks() returns.
3261 void mm_drop_all_locks(struct mm_struct *mm)
3263 struct vm_area_struct *vma;
3264 struct anon_vma_chain *avc;
3266 BUG_ON(down_read_trylock(&mm->mmap_sem));
3267 BUG_ON(!mutex_is_locked(&mm_all_locks_mutex));
3269 for (vma = mm->mmap; vma; vma = vma->vm_next) {
3271 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
3272 vm_unlock_anon_vma(avc->anon_vma);
3273 if (vma->vm_file && vma->vm_file->f_mapping)
3274 vm_unlock_mapping(vma->vm_file->f_mapping);
3277 mutex_unlock(&mm_all_locks_mutex);
3281 * initialise the VMA slab
3283 void __init mmap_init(void)
3287 ret = percpu_counter_init(&vm_committed_as, 0, GFP_KERNEL);
3292 * Initialise sysctl_user_reserve_kbytes.
3294 * This is intended to prevent a user from starting a single memory hogging
3295 * process, such that they cannot recover (kill the hog) in OVERCOMMIT_NEVER
3298 * The default value is min(3% of free memory, 128MB)
3299 * 128MB is enough to recover with sshd/login, bash, and top/kill.
3301 static int init_user_reserve(void)
3303 unsigned long free_kbytes;
3305 free_kbytes = global_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
3307 sysctl_user_reserve_kbytes = min(free_kbytes / 32, 1UL << 17);
3310 subsys_initcall(init_user_reserve);
3313 * Initialise sysctl_admin_reserve_kbytes.
3315 * The purpose of sysctl_admin_reserve_kbytes is to allow the sys admin
3316 * to log in and kill a memory hogging process.
3318 * Systems with more than 256MB will reserve 8MB, enough to recover
3319 * with sshd, bash, and top in OVERCOMMIT_GUESS. Smaller systems will
3320 * only reserve 3% of free pages by default.
3322 static int init_admin_reserve(void)
3324 unsigned long free_kbytes;
3326 free_kbytes = global_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
3328 sysctl_admin_reserve_kbytes = min(free_kbytes / 32, 1UL << 13);
3331 subsys_initcall(init_admin_reserve);
3334 * Reinititalise user and admin reserves if memory is added or removed.
3336 * The default user reserve max is 128MB, and the default max for the
3337 * admin reserve is 8MB. These are usually, but not always, enough to
3338 * enable recovery from a memory hogging process using login/sshd, a shell,
3339 * and tools like top. It may make sense to increase or even disable the
3340 * reserve depending on the existence of swap or variations in the recovery
3341 * tools. So, the admin may have changed them.
3343 * If memory is added and the reserves have been eliminated or increased above
3344 * the default max, then we'll trust the admin.
3346 * If memory is removed and there isn't enough free memory, then we
3347 * need to reset the reserves.
3349 * Otherwise keep the reserve set by the admin.
3351 static int reserve_mem_notifier(struct notifier_block *nb,
3352 unsigned long action, void *data)
3354 unsigned long tmp, free_kbytes;
3358 /* Default max is 128MB. Leave alone if modified by operator. */
3359 tmp = sysctl_user_reserve_kbytes;
3360 if (0 < tmp && tmp < (1UL << 17))
3361 init_user_reserve();
3363 /* Default max is 8MB. Leave alone if modified by operator. */
3364 tmp = sysctl_admin_reserve_kbytes;
3365 if (0 < tmp && tmp < (1UL << 13))
3366 init_admin_reserve();
3370 free_kbytes = global_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
3372 if (sysctl_user_reserve_kbytes > free_kbytes) {
3373 init_user_reserve();
3374 pr_info("vm.user_reserve_kbytes reset to %lu\n",
3375 sysctl_user_reserve_kbytes);
3378 if (sysctl_admin_reserve_kbytes > free_kbytes) {
3379 init_admin_reserve();
3380 pr_info("vm.admin_reserve_kbytes reset to %lu\n",
3381 sysctl_admin_reserve_kbytes);
3390 static struct notifier_block reserve_mem_nb = {
3391 .notifier_call = reserve_mem_notifier,
3394 static int __meminit init_reserve_notifier(void)
3396 if (register_hotmemory_notifier(&reserve_mem_nb))
3397 pr_err("Failed registering memory add/remove notifier for admin reserve\n");
3401 subsys_initcall(init_reserve_notifier);