mm: use mm_populate() when adjusting brk with MCL_FUTURE in effect
[platform/adaptation/renesas_rcar/renesas_kernel.git] / mm / mmap.c
1 /*
2  * mm/mmap.c
3  *
4  * Written by obz.
5  *
6  * Address space accounting code        <alan@lxorguk.ukuu.org.uk>
7  */
8
9 #include <linux/slab.h>
10 #include <linux/backing-dev.h>
11 #include <linux/mm.h>
12 #include <linux/shm.h>
13 #include <linux/mman.h>
14 #include <linux/pagemap.h>
15 #include <linux/swap.h>
16 #include <linux/syscalls.h>
17 #include <linux/capability.h>
18 #include <linux/init.h>
19 #include <linux/file.h>
20 #include <linux/fs.h>
21 #include <linux/personality.h>
22 #include <linux/security.h>
23 #include <linux/hugetlb.h>
24 #include <linux/profile.h>
25 #include <linux/export.h>
26 #include <linux/mount.h>
27 #include <linux/mempolicy.h>
28 #include <linux/rmap.h>
29 #include <linux/mmu_notifier.h>
30 #include <linux/perf_event.h>
31 #include <linux/audit.h>
32 #include <linux/khugepaged.h>
33 #include <linux/uprobes.h>
34 #include <linux/rbtree_augmented.h>
35 #include <linux/sched/sysctl.h>
36
37 #include <asm/uaccess.h>
38 #include <asm/cacheflush.h>
39 #include <asm/tlb.h>
40 #include <asm/mmu_context.h>
41
42 #include "internal.h"
43
44 #ifndef arch_mmap_check
45 #define arch_mmap_check(addr, len, flags)       (0)
46 #endif
47
48 #ifndef arch_rebalance_pgtables
49 #define arch_rebalance_pgtables(addr, len)              (addr)
50 #endif
51
52 static void unmap_region(struct mm_struct *mm,
53                 struct vm_area_struct *vma, struct vm_area_struct *prev,
54                 unsigned long start, unsigned long end);
55
56 /* description of effects of mapping type and prot in current implementation.
57  * this is due to the limited x86 page protection hardware.  The expected
58  * behavior is in parens:
59  *
60  * map_type     prot
61  *              PROT_NONE       PROT_READ       PROT_WRITE      PROT_EXEC
62  * MAP_SHARED   r: (no) no      r: (yes) yes    r: (no) yes     r: (no) yes
63  *              w: (no) no      w: (no) no      w: (yes) yes    w: (no) no
64  *              x: (no) no      x: (no) yes     x: (no) yes     x: (yes) yes
65  *              
66  * MAP_PRIVATE  r: (no) no      r: (yes) yes    r: (no) yes     r: (no) yes
67  *              w: (no) no      w: (no) no      w: (copy) copy  w: (no) no
68  *              x: (no) no      x: (no) yes     x: (no) yes     x: (yes) yes
69  *
70  */
71 pgprot_t protection_map[16] = {
72         __P000, __P001, __P010, __P011, __P100, __P101, __P110, __P111,
73         __S000, __S001, __S010, __S011, __S100, __S101, __S110, __S111
74 };
75
76 pgprot_t vm_get_page_prot(unsigned long vm_flags)
77 {
78         return __pgprot(pgprot_val(protection_map[vm_flags &
79                                 (VM_READ|VM_WRITE|VM_EXEC|VM_SHARED)]) |
80                         pgprot_val(arch_vm_get_page_prot(vm_flags)));
81 }
82 EXPORT_SYMBOL(vm_get_page_prot);
83
84 int sysctl_overcommit_memory __read_mostly = OVERCOMMIT_GUESS;  /* heuristic overcommit */
85 int sysctl_overcommit_ratio __read_mostly = 50; /* default is 50% */
86 int sysctl_max_map_count __read_mostly = DEFAULT_MAX_MAP_COUNT;
87 /*
88  * Make sure vm_committed_as in one cacheline and not cacheline shared with
89  * other variables. It can be updated by several CPUs frequently.
90  */
91 struct percpu_counter vm_committed_as ____cacheline_aligned_in_smp;
92
93 /*
94  * The global memory commitment made in the system can be a metric
95  * that can be used to drive ballooning decisions when Linux is hosted
96  * as a guest. On Hyper-V, the host implements a policy engine for dynamically
97  * balancing memory across competing virtual machines that are hosted.
98  * Several metrics drive this policy engine including the guest reported
99  * memory commitment.
100  */
101 unsigned long vm_memory_committed(void)
102 {
103         return percpu_counter_read_positive(&vm_committed_as);
104 }
105 EXPORT_SYMBOL_GPL(vm_memory_committed);
106
107 /*
108  * Check that a process has enough memory to allocate a new virtual
109  * mapping. 0 means there is enough memory for the allocation to
110  * succeed and -ENOMEM implies there is not.
111  *
112  * We currently support three overcommit policies, which are set via the
113  * vm.overcommit_memory sysctl.  See Documentation/vm/overcommit-accounting
114  *
115  * Strict overcommit modes added 2002 Feb 26 by Alan Cox.
116  * Additional code 2002 Jul 20 by Robert Love.
117  *
118  * cap_sys_admin is 1 if the process has admin privileges, 0 otherwise.
119  *
120  * Note this is a helper function intended to be used by LSMs which
121  * wish to use this logic.
122  */
123 int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin)
124 {
125         unsigned long free, allowed;
126
127         vm_acct_memory(pages);
128
129         /*
130          * Sometimes we want to use more memory than we have
131          */
132         if (sysctl_overcommit_memory == OVERCOMMIT_ALWAYS)
133                 return 0;
134
135         if (sysctl_overcommit_memory == OVERCOMMIT_GUESS) {
136                 free = global_page_state(NR_FREE_PAGES);
137                 free += global_page_state(NR_FILE_PAGES);
138
139                 /*
140                  * shmem pages shouldn't be counted as free in this
141                  * case, they can't be purged, only swapped out, and
142                  * that won't affect the overall amount of available
143                  * memory in the system.
144                  */
145                 free -= global_page_state(NR_SHMEM);
146
147                 free += nr_swap_pages;
148
149                 /*
150                  * Any slabs which are created with the
151                  * SLAB_RECLAIM_ACCOUNT flag claim to have contents
152                  * which are reclaimable, under pressure.  The dentry
153                  * cache and most inode caches should fall into this
154                  */
155                 free += global_page_state(NR_SLAB_RECLAIMABLE);
156
157                 /*
158                  * Leave reserved pages. The pages are not for anonymous pages.
159                  */
160                 if (free <= totalreserve_pages)
161                         goto error;
162                 else
163                         free -= totalreserve_pages;
164
165                 /*
166                  * Leave the last 3% for root
167                  */
168                 if (!cap_sys_admin)
169                         free -= free / 32;
170
171                 if (free > pages)
172                         return 0;
173
174                 goto error;
175         }
176
177         allowed = (totalram_pages - hugetlb_total_pages())
178                 * sysctl_overcommit_ratio / 100;
179         /*
180          * Leave the last 3% for root
181          */
182         if (!cap_sys_admin)
183                 allowed -= allowed / 32;
184         allowed += total_swap_pages;
185
186         /* Don't let a single process grow too big:
187            leave 3% of the size of this process for other processes */
188         if (mm)
189                 allowed -= mm->total_vm / 32;
190
191         if (percpu_counter_read_positive(&vm_committed_as) < allowed)
192                 return 0;
193 error:
194         vm_unacct_memory(pages);
195
196         return -ENOMEM;
197 }
198
199 /*
200  * Requires inode->i_mapping->i_mmap_mutex
201  */
202 static void __remove_shared_vm_struct(struct vm_area_struct *vma,
203                 struct file *file, struct address_space *mapping)
204 {
205         if (vma->vm_flags & VM_DENYWRITE)
206                 atomic_inc(&file->f_path.dentry->d_inode->i_writecount);
207         if (vma->vm_flags & VM_SHARED)
208                 mapping->i_mmap_writable--;
209
210         flush_dcache_mmap_lock(mapping);
211         if (unlikely(vma->vm_flags & VM_NONLINEAR))
212                 list_del_init(&vma->shared.nonlinear);
213         else
214                 vma_interval_tree_remove(vma, &mapping->i_mmap);
215         flush_dcache_mmap_unlock(mapping);
216 }
217
218 /*
219  * Unlink a file-based vm structure from its interval tree, to hide
220  * vma from rmap and vmtruncate before freeing its page tables.
221  */
222 void unlink_file_vma(struct vm_area_struct *vma)
223 {
224         struct file *file = vma->vm_file;
225
226         if (file) {
227                 struct address_space *mapping = file->f_mapping;
228                 mutex_lock(&mapping->i_mmap_mutex);
229                 __remove_shared_vm_struct(vma, file, mapping);
230                 mutex_unlock(&mapping->i_mmap_mutex);
231         }
232 }
233
234 /*
235  * Close a vm structure and free it, returning the next.
236  */
237 static struct vm_area_struct *remove_vma(struct vm_area_struct *vma)
238 {
239         struct vm_area_struct *next = vma->vm_next;
240
241         might_sleep();
242         if (vma->vm_ops && vma->vm_ops->close)
243                 vma->vm_ops->close(vma);
244         if (vma->vm_file)
245                 fput(vma->vm_file);
246         mpol_put(vma_policy(vma));
247         kmem_cache_free(vm_area_cachep, vma);
248         return next;
249 }
250
251 static unsigned long do_brk(unsigned long addr, unsigned long len);
252
253 SYSCALL_DEFINE1(brk, unsigned long, brk)
254 {
255         unsigned long rlim, retval;
256         unsigned long newbrk, oldbrk;
257         struct mm_struct *mm = current->mm;
258         unsigned long min_brk;
259         bool populate;
260
261         down_write(&mm->mmap_sem);
262
263 #ifdef CONFIG_COMPAT_BRK
264         /*
265          * CONFIG_COMPAT_BRK can still be overridden by setting
266          * randomize_va_space to 2, which will still cause mm->start_brk
267          * to be arbitrarily shifted
268          */
269         if (current->brk_randomized)
270                 min_brk = mm->start_brk;
271         else
272                 min_brk = mm->end_data;
273 #else
274         min_brk = mm->start_brk;
275 #endif
276         if (brk < min_brk)
277                 goto out;
278
279         /*
280          * Check against rlimit here. If this check is done later after the test
281          * of oldbrk with newbrk then it can escape the test and let the data
282          * segment grow beyond its set limit the in case where the limit is
283          * not page aligned -Ram Gupta
284          */
285         rlim = rlimit(RLIMIT_DATA);
286         if (rlim < RLIM_INFINITY && (brk - mm->start_brk) +
287                         (mm->end_data - mm->start_data) > rlim)
288                 goto out;
289
290         newbrk = PAGE_ALIGN(brk);
291         oldbrk = PAGE_ALIGN(mm->brk);
292         if (oldbrk == newbrk)
293                 goto set_brk;
294
295         /* Always allow shrinking brk. */
296         if (brk <= mm->brk) {
297                 if (!do_munmap(mm, newbrk, oldbrk-newbrk))
298                         goto set_brk;
299                 goto out;
300         }
301
302         /* Check against existing mmap mappings. */
303         if (find_vma_intersection(mm, oldbrk, newbrk+PAGE_SIZE))
304                 goto out;
305
306         /* Ok, looks good - let it rip. */
307         if (do_brk(oldbrk, newbrk-oldbrk) != oldbrk)
308                 goto out;
309
310 set_brk:
311         mm->brk = brk;
312         populate = newbrk > oldbrk && (mm->def_flags & VM_LOCKED) != 0;
313         up_write(&mm->mmap_sem);
314         if (populate)
315                 mm_populate(oldbrk, newbrk - oldbrk);
316         return brk;
317
318 out:
319         retval = mm->brk;
320         up_write(&mm->mmap_sem);
321         return retval;
322 }
323
324 static long vma_compute_subtree_gap(struct vm_area_struct *vma)
325 {
326         unsigned long max, subtree_gap;
327         max = vma->vm_start;
328         if (vma->vm_prev)
329                 max -= vma->vm_prev->vm_end;
330         if (vma->vm_rb.rb_left) {
331                 subtree_gap = rb_entry(vma->vm_rb.rb_left,
332                                 struct vm_area_struct, vm_rb)->rb_subtree_gap;
333                 if (subtree_gap > max)
334                         max = subtree_gap;
335         }
336         if (vma->vm_rb.rb_right) {
337                 subtree_gap = rb_entry(vma->vm_rb.rb_right,
338                                 struct vm_area_struct, vm_rb)->rb_subtree_gap;
339                 if (subtree_gap > max)
340                         max = subtree_gap;
341         }
342         return max;
343 }
344
345 #ifdef CONFIG_DEBUG_VM_RB
346 static int browse_rb(struct rb_root *root)
347 {
348         int i = 0, j, bug = 0;
349         struct rb_node *nd, *pn = NULL;
350         unsigned long prev = 0, pend = 0;
351
352         for (nd = rb_first(root); nd; nd = rb_next(nd)) {
353                 struct vm_area_struct *vma;
354                 vma = rb_entry(nd, struct vm_area_struct, vm_rb);
355                 if (vma->vm_start < prev) {
356                         printk("vm_start %lx prev %lx\n", vma->vm_start, prev);
357                         bug = 1;
358                 }
359                 if (vma->vm_start < pend) {
360                         printk("vm_start %lx pend %lx\n", vma->vm_start, pend);
361                         bug = 1;
362                 }
363                 if (vma->vm_start > vma->vm_end) {
364                         printk("vm_end %lx < vm_start %lx\n",
365                                 vma->vm_end, vma->vm_start);
366                         bug = 1;
367                 }
368                 if (vma->rb_subtree_gap != vma_compute_subtree_gap(vma)) {
369                         printk("free gap %lx, correct %lx\n",
370                                vma->rb_subtree_gap,
371                                vma_compute_subtree_gap(vma));
372                         bug = 1;
373                 }
374                 i++;
375                 pn = nd;
376                 prev = vma->vm_start;
377                 pend = vma->vm_end;
378         }
379         j = 0;
380         for (nd = pn; nd; nd = rb_prev(nd))
381                 j++;
382         if (i != j) {
383                 printk("backwards %d, forwards %d\n", j, i);
384                 bug = 1;
385         }
386         return bug ? -1 : i;
387 }
388
389 static void validate_mm_rb(struct rb_root *root, struct vm_area_struct *ignore)
390 {
391         struct rb_node *nd;
392
393         for (nd = rb_first(root); nd; nd = rb_next(nd)) {
394                 struct vm_area_struct *vma;
395                 vma = rb_entry(nd, struct vm_area_struct, vm_rb);
396                 BUG_ON(vma != ignore &&
397                        vma->rb_subtree_gap != vma_compute_subtree_gap(vma));
398         }
399 }
400
401 void validate_mm(struct mm_struct *mm)
402 {
403         int bug = 0;
404         int i = 0;
405         unsigned long highest_address = 0;
406         struct vm_area_struct *vma = mm->mmap;
407         while (vma) {
408                 struct anon_vma_chain *avc;
409                 vma_lock_anon_vma(vma);
410                 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
411                         anon_vma_interval_tree_verify(avc);
412                 vma_unlock_anon_vma(vma);
413                 highest_address = vma->vm_end;
414                 vma = vma->vm_next;
415                 i++;
416         }
417         if (i != mm->map_count) {
418                 printk("map_count %d vm_next %d\n", mm->map_count, i);
419                 bug = 1;
420         }
421         if (highest_address != mm->highest_vm_end) {
422                 printk("mm->highest_vm_end %lx, found %lx\n",
423                        mm->highest_vm_end, highest_address);
424                 bug = 1;
425         }
426         i = browse_rb(&mm->mm_rb);
427         if (i != mm->map_count) {
428                 printk("map_count %d rb %d\n", mm->map_count, i);
429                 bug = 1;
430         }
431         BUG_ON(bug);
432 }
433 #else
434 #define validate_mm_rb(root, ignore) do { } while (0)
435 #define validate_mm(mm) do { } while (0)
436 #endif
437
438 RB_DECLARE_CALLBACKS(static, vma_gap_callbacks, struct vm_area_struct, vm_rb,
439                      unsigned long, rb_subtree_gap, vma_compute_subtree_gap)
440
441 /*
442  * Update augmented rbtree rb_subtree_gap values after vma->vm_start or
443  * vma->vm_prev->vm_end values changed, without modifying the vma's position
444  * in the rbtree.
445  */
446 static void vma_gap_update(struct vm_area_struct *vma)
447 {
448         /*
449          * As it turns out, RB_DECLARE_CALLBACKS() already created a callback
450          * function that does exacltly what we want.
451          */
452         vma_gap_callbacks_propagate(&vma->vm_rb, NULL);
453 }
454
455 static inline void vma_rb_insert(struct vm_area_struct *vma,
456                                  struct rb_root *root)
457 {
458         /* All rb_subtree_gap values must be consistent prior to insertion */
459         validate_mm_rb(root, NULL);
460
461         rb_insert_augmented(&vma->vm_rb, root, &vma_gap_callbacks);
462 }
463
464 static void vma_rb_erase(struct vm_area_struct *vma, struct rb_root *root)
465 {
466         /*
467          * All rb_subtree_gap values must be consistent prior to erase,
468          * with the possible exception of the vma being erased.
469          */
470         validate_mm_rb(root, vma);
471
472         /*
473          * Note rb_erase_augmented is a fairly large inline function,
474          * so make sure we instantiate it only once with our desired
475          * augmented rbtree callbacks.
476          */
477         rb_erase_augmented(&vma->vm_rb, root, &vma_gap_callbacks);
478 }
479
480 /*
481  * vma has some anon_vma assigned, and is already inserted on that
482  * anon_vma's interval trees.
483  *
484  * Before updating the vma's vm_start / vm_end / vm_pgoff fields, the
485  * vma must be removed from the anon_vma's interval trees using
486  * anon_vma_interval_tree_pre_update_vma().
487  *
488  * After the update, the vma will be reinserted using
489  * anon_vma_interval_tree_post_update_vma().
490  *
491  * The entire update must be protected by exclusive mmap_sem and by
492  * the root anon_vma's mutex.
493  */
494 static inline void
495 anon_vma_interval_tree_pre_update_vma(struct vm_area_struct *vma)
496 {
497         struct anon_vma_chain *avc;
498
499         list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
500                 anon_vma_interval_tree_remove(avc, &avc->anon_vma->rb_root);
501 }
502
503 static inline void
504 anon_vma_interval_tree_post_update_vma(struct vm_area_struct *vma)
505 {
506         struct anon_vma_chain *avc;
507
508         list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
509                 anon_vma_interval_tree_insert(avc, &avc->anon_vma->rb_root);
510 }
511
512 static int find_vma_links(struct mm_struct *mm, unsigned long addr,
513                 unsigned long end, struct vm_area_struct **pprev,
514                 struct rb_node ***rb_link, struct rb_node **rb_parent)
515 {
516         struct rb_node **__rb_link, *__rb_parent, *rb_prev;
517
518         __rb_link = &mm->mm_rb.rb_node;
519         rb_prev = __rb_parent = NULL;
520
521         while (*__rb_link) {
522                 struct vm_area_struct *vma_tmp;
523
524                 __rb_parent = *__rb_link;
525                 vma_tmp = rb_entry(__rb_parent, struct vm_area_struct, vm_rb);
526
527                 if (vma_tmp->vm_end > addr) {
528                         /* Fail if an existing vma overlaps the area */
529                         if (vma_tmp->vm_start < end)
530                                 return -ENOMEM;
531                         __rb_link = &__rb_parent->rb_left;
532                 } else {
533                         rb_prev = __rb_parent;
534                         __rb_link = &__rb_parent->rb_right;
535                 }
536         }
537
538         *pprev = NULL;
539         if (rb_prev)
540                 *pprev = rb_entry(rb_prev, struct vm_area_struct, vm_rb);
541         *rb_link = __rb_link;
542         *rb_parent = __rb_parent;
543         return 0;
544 }
545
546 void __vma_link_rb(struct mm_struct *mm, struct vm_area_struct *vma,
547                 struct rb_node **rb_link, struct rb_node *rb_parent)
548 {
549         /* Update tracking information for the gap following the new vma. */
550         if (vma->vm_next)
551                 vma_gap_update(vma->vm_next);
552         else
553                 mm->highest_vm_end = vma->vm_end;
554
555         /*
556          * vma->vm_prev wasn't known when we followed the rbtree to find the
557          * correct insertion point for that vma. As a result, we could not
558          * update the vma vm_rb parents rb_subtree_gap values on the way down.
559          * So, we first insert the vma with a zero rb_subtree_gap value
560          * (to be consistent with what we did on the way down), and then
561          * immediately update the gap to the correct value. Finally we
562          * rebalance the rbtree after all augmented values have been set.
563          */
564         rb_link_node(&vma->vm_rb, rb_parent, rb_link);
565         vma->rb_subtree_gap = 0;
566         vma_gap_update(vma);
567         vma_rb_insert(vma, &mm->mm_rb);
568 }
569
570 static void __vma_link_file(struct vm_area_struct *vma)
571 {
572         struct file *file;
573
574         file = vma->vm_file;
575         if (file) {
576                 struct address_space *mapping = file->f_mapping;
577
578                 if (vma->vm_flags & VM_DENYWRITE)
579                         atomic_dec(&file->f_path.dentry->d_inode->i_writecount);
580                 if (vma->vm_flags & VM_SHARED)
581                         mapping->i_mmap_writable++;
582
583                 flush_dcache_mmap_lock(mapping);
584                 if (unlikely(vma->vm_flags & VM_NONLINEAR))
585                         vma_nonlinear_insert(vma, &mapping->i_mmap_nonlinear);
586                 else
587                         vma_interval_tree_insert(vma, &mapping->i_mmap);
588                 flush_dcache_mmap_unlock(mapping);
589         }
590 }
591
592 static void
593 __vma_link(struct mm_struct *mm, struct vm_area_struct *vma,
594         struct vm_area_struct *prev, struct rb_node **rb_link,
595         struct rb_node *rb_parent)
596 {
597         __vma_link_list(mm, vma, prev, rb_parent);
598         __vma_link_rb(mm, vma, rb_link, rb_parent);
599 }
600
601 static void vma_link(struct mm_struct *mm, struct vm_area_struct *vma,
602                         struct vm_area_struct *prev, struct rb_node **rb_link,
603                         struct rb_node *rb_parent)
604 {
605         struct address_space *mapping = NULL;
606
607         if (vma->vm_file)
608                 mapping = vma->vm_file->f_mapping;
609
610         if (mapping)
611                 mutex_lock(&mapping->i_mmap_mutex);
612
613         __vma_link(mm, vma, prev, rb_link, rb_parent);
614         __vma_link_file(vma);
615
616         if (mapping)
617                 mutex_unlock(&mapping->i_mmap_mutex);
618
619         mm->map_count++;
620         validate_mm(mm);
621 }
622
623 /*
624  * Helper for vma_adjust() in the split_vma insert case: insert a vma into the
625  * mm's list and rbtree.  It has already been inserted into the interval tree.
626  */
627 static void __insert_vm_struct(struct mm_struct *mm, struct vm_area_struct *vma)
628 {
629         struct vm_area_struct *prev;
630         struct rb_node **rb_link, *rb_parent;
631
632         if (find_vma_links(mm, vma->vm_start, vma->vm_end,
633                            &prev, &rb_link, &rb_parent))
634                 BUG();
635         __vma_link(mm, vma, prev, rb_link, rb_parent);
636         mm->map_count++;
637 }
638
639 static inline void
640 __vma_unlink(struct mm_struct *mm, struct vm_area_struct *vma,
641                 struct vm_area_struct *prev)
642 {
643         struct vm_area_struct *next;
644
645         vma_rb_erase(vma, &mm->mm_rb);
646         prev->vm_next = next = vma->vm_next;
647         if (next)
648                 next->vm_prev = prev;
649         if (mm->mmap_cache == vma)
650                 mm->mmap_cache = prev;
651 }
652
653 /*
654  * We cannot adjust vm_start, vm_end, vm_pgoff fields of a vma that
655  * is already present in an i_mmap tree without adjusting the tree.
656  * The following helper function should be used when such adjustments
657  * are necessary.  The "insert" vma (if any) is to be inserted
658  * before we drop the necessary locks.
659  */
660 int vma_adjust(struct vm_area_struct *vma, unsigned long start,
661         unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert)
662 {
663         struct mm_struct *mm = vma->vm_mm;
664         struct vm_area_struct *next = vma->vm_next;
665         struct vm_area_struct *importer = NULL;
666         struct address_space *mapping = NULL;
667         struct rb_root *root = NULL;
668         struct anon_vma *anon_vma = NULL;
669         struct file *file = vma->vm_file;
670         bool start_changed = false, end_changed = false;
671         long adjust_next = 0;
672         int remove_next = 0;
673
674         if (next && !insert) {
675                 struct vm_area_struct *exporter = NULL;
676
677                 if (end >= next->vm_end) {
678                         /*
679                          * vma expands, overlapping all the next, and
680                          * perhaps the one after too (mprotect case 6).
681                          */
682 again:                  remove_next = 1 + (end > next->vm_end);
683                         end = next->vm_end;
684                         exporter = next;
685                         importer = vma;
686                 } else if (end > next->vm_start) {
687                         /*
688                          * vma expands, overlapping part of the next:
689                          * mprotect case 5 shifting the boundary up.
690                          */
691                         adjust_next = (end - next->vm_start) >> PAGE_SHIFT;
692                         exporter = next;
693                         importer = vma;
694                 } else if (end < vma->vm_end) {
695                         /*
696                          * vma shrinks, and !insert tells it's not
697                          * split_vma inserting another: so it must be
698                          * mprotect case 4 shifting the boundary down.
699                          */
700                         adjust_next = - ((vma->vm_end - end) >> PAGE_SHIFT);
701                         exporter = vma;
702                         importer = next;
703                 }
704
705                 /*
706                  * Easily overlooked: when mprotect shifts the boundary,
707                  * make sure the expanding vma has anon_vma set if the
708                  * shrinking vma had, to cover any anon pages imported.
709                  */
710                 if (exporter && exporter->anon_vma && !importer->anon_vma) {
711                         if (anon_vma_clone(importer, exporter))
712                                 return -ENOMEM;
713                         importer->anon_vma = exporter->anon_vma;
714                 }
715         }
716
717         if (file) {
718                 mapping = file->f_mapping;
719                 if (!(vma->vm_flags & VM_NONLINEAR)) {
720                         root = &mapping->i_mmap;
721                         uprobe_munmap(vma, vma->vm_start, vma->vm_end);
722
723                         if (adjust_next)
724                                 uprobe_munmap(next, next->vm_start,
725                                                         next->vm_end);
726                 }
727
728                 mutex_lock(&mapping->i_mmap_mutex);
729                 if (insert) {
730                         /*
731                          * Put into interval tree now, so instantiated pages
732                          * are visible to arm/parisc __flush_dcache_page
733                          * throughout; but we cannot insert into address
734                          * space until vma start or end is updated.
735                          */
736                         __vma_link_file(insert);
737                 }
738         }
739
740         vma_adjust_trans_huge(vma, start, end, adjust_next);
741
742         anon_vma = vma->anon_vma;
743         if (!anon_vma && adjust_next)
744                 anon_vma = next->anon_vma;
745         if (anon_vma) {
746                 VM_BUG_ON(adjust_next && next->anon_vma &&
747                           anon_vma != next->anon_vma);
748                 anon_vma_lock_write(anon_vma);
749                 anon_vma_interval_tree_pre_update_vma(vma);
750                 if (adjust_next)
751                         anon_vma_interval_tree_pre_update_vma(next);
752         }
753
754         if (root) {
755                 flush_dcache_mmap_lock(mapping);
756                 vma_interval_tree_remove(vma, root);
757                 if (adjust_next)
758                         vma_interval_tree_remove(next, root);
759         }
760
761         if (start != vma->vm_start) {
762                 vma->vm_start = start;
763                 start_changed = true;
764         }
765         if (end != vma->vm_end) {
766                 vma->vm_end = end;
767                 end_changed = true;
768         }
769         vma->vm_pgoff = pgoff;
770         if (adjust_next) {
771                 next->vm_start += adjust_next << PAGE_SHIFT;
772                 next->vm_pgoff += adjust_next;
773         }
774
775         if (root) {
776                 if (adjust_next)
777                         vma_interval_tree_insert(next, root);
778                 vma_interval_tree_insert(vma, root);
779                 flush_dcache_mmap_unlock(mapping);
780         }
781
782         if (remove_next) {
783                 /*
784                  * vma_merge has merged next into vma, and needs
785                  * us to remove next before dropping the locks.
786                  */
787                 __vma_unlink(mm, next, vma);
788                 if (file)
789                         __remove_shared_vm_struct(next, file, mapping);
790         } else if (insert) {
791                 /*
792                  * split_vma has split insert from vma, and needs
793                  * us to insert it before dropping the locks
794                  * (it may either follow vma or precede it).
795                  */
796                 __insert_vm_struct(mm, insert);
797         } else {
798                 if (start_changed)
799                         vma_gap_update(vma);
800                 if (end_changed) {
801                         if (!next)
802                                 mm->highest_vm_end = end;
803                         else if (!adjust_next)
804                                 vma_gap_update(next);
805                 }
806         }
807
808         if (anon_vma) {
809                 anon_vma_interval_tree_post_update_vma(vma);
810                 if (adjust_next)
811                         anon_vma_interval_tree_post_update_vma(next);
812                 anon_vma_unlock(anon_vma);
813         }
814         if (mapping)
815                 mutex_unlock(&mapping->i_mmap_mutex);
816
817         if (root) {
818                 uprobe_mmap(vma);
819
820                 if (adjust_next)
821                         uprobe_mmap(next);
822         }
823
824         if (remove_next) {
825                 if (file) {
826                         uprobe_munmap(next, next->vm_start, next->vm_end);
827                         fput(file);
828                 }
829                 if (next->anon_vma)
830                         anon_vma_merge(vma, next);
831                 mm->map_count--;
832                 mpol_put(vma_policy(next));
833                 kmem_cache_free(vm_area_cachep, next);
834                 /*
835                  * In mprotect's case 6 (see comments on vma_merge),
836                  * we must remove another next too. It would clutter
837                  * up the code too much to do both in one go.
838                  */
839                 next = vma->vm_next;
840                 if (remove_next == 2)
841                         goto again;
842                 else if (next)
843                         vma_gap_update(next);
844                 else
845                         mm->highest_vm_end = end;
846         }
847         if (insert && file)
848                 uprobe_mmap(insert);
849
850         validate_mm(mm);
851
852         return 0;
853 }
854
855 /*
856  * If the vma has a ->close operation then the driver probably needs to release
857  * per-vma resources, so we don't attempt to merge those.
858  */
859 static inline int is_mergeable_vma(struct vm_area_struct *vma,
860                         struct file *file, unsigned long vm_flags)
861 {
862         if (vma->vm_flags ^ vm_flags)
863                 return 0;
864         if (vma->vm_file != file)
865                 return 0;
866         if (vma->vm_ops && vma->vm_ops->close)
867                 return 0;
868         return 1;
869 }
870
871 static inline int is_mergeable_anon_vma(struct anon_vma *anon_vma1,
872                                         struct anon_vma *anon_vma2,
873                                         struct vm_area_struct *vma)
874 {
875         /*
876          * The list_is_singular() test is to avoid merging VMA cloned from
877          * parents. This can improve scalability caused by anon_vma lock.
878          */
879         if ((!anon_vma1 || !anon_vma2) && (!vma ||
880                 list_is_singular(&vma->anon_vma_chain)))
881                 return 1;
882         return anon_vma1 == anon_vma2;
883 }
884
885 /*
886  * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
887  * in front of (at a lower virtual address and file offset than) the vma.
888  *
889  * We cannot merge two vmas if they have differently assigned (non-NULL)
890  * anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
891  *
892  * We don't check here for the merged mmap wrapping around the end of pagecache
893  * indices (16TB on ia32) because do_mmap_pgoff() does not permit mmap's which
894  * wrap, nor mmaps which cover the final page at index -1UL.
895  */
896 static int
897 can_vma_merge_before(struct vm_area_struct *vma, unsigned long vm_flags,
898         struct anon_vma *anon_vma, struct file *file, pgoff_t vm_pgoff)
899 {
900         if (is_mergeable_vma(vma, file, vm_flags) &&
901             is_mergeable_anon_vma(anon_vma, vma->anon_vma, vma)) {
902                 if (vma->vm_pgoff == vm_pgoff)
903                         return 1;
904         }
905         return 0;
906 }
907
908 /*
909  * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
910  * beyond (at a higher virtual address and file offset than) the vma.
911  *
912  * We cannot merge two vmas if they have differently assigned (non-NULL)
913  * anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
914  */
915 static int
916 can_vma_merge_after(struct vm_area_struct *vma, unsigned long vm_flags,
917         struct anon_vma *anon_vma, struct file *file, pgoff_t vm_pgoff)
918 {
919         if (is_mergeable_vma(vma, file, vm_flags) &&
920             is_mergeable_anon_vma(anon_vma, vma->anon_vma, vma)) {
921                 pgoff_t vm_pglen;
922                 vm_pglen = (vma->vm_end - vma->vm_start) >> PAGE_SHIFT;
923                 if (vma->vm_pgoff + vm_pglen == vm_pgoff)
924                         return 1;
925         }
926         return 0;
927 }
928
929 /*
930  * Given a mapping request (addr,end,vm_flags,file,pgoff), figure out
931  * whether that can be merged with its predecessor or its successor.
932  * Or both (it neatly fills a hole).
933  *
934  * In most cases - when called for mmap, brk or mremap - [addr,end) is
935  * certain not to be mapped by the time vma_merge is called; but when
936  * called for mprotect, it is certain to be already mapped (either at
937  * an offset within prev, or at the start of next), and the flags of
938  * this area are about to be changed to vm_flags - and the no-change
939  * case has already been eliminated.
940  *
941  * The following mprotect cases have to be considered, where AAAA is
942  * the area passed down from mprotect_fixup, never extending beyond one
943  * vma, PPPPPP is the prev vma specified, and NNNNNN the next vma after:
944  *
945  *     AAAA             AAAA                AAAA          AAAA
946  *    PPPPPPNNNNNN    PPPPPPNNNNNN    PPPPPPNNNNNN    PPPPNNNNXXXX
947  *    cannot merge    might become    might become    might become
948  *                    PPNNNNNNNNNN    PPPPPPPPPPNN    PPPPPPPPPPPP 6 or
949  *    mmap, brk or    case 4 below    case 5 below    PPPPPPPPXXXX 7 or
950  *    mremap move:                                    PPPPNNNNNNNN 8
951  *        AAAA
952  *    PPPP    NNNN    PPPPPPPPPPPP    PPPPPPPPNNNN    PPPPNNNNNNNN
953  *    might become    case 1 below    case 2 below    case 3 below
954  *
955  * Odd one out? Case 8, because it extends NNNN but needs flags of XXXX:
956  * mprotect_fixup updates vm_flags & vm_page_prot on successful return.
957  */
958 struct vm_area_struct *vma_merge(struct mm_struct *mm,
959                         struct vm_area_struct *prev, unsigned long addr,
960                         unsigned long end, unsigned long vm_flags,
961                         struct anon_vma *anon_vma, struct file *file,
962                         pgoff_t pgoff, struct mempolicy *policy)
963 {
964         pgoff_t pglen = (end - addr) >> PAGE_SHIFT;
965         struct vm_area_struct *area, *next;
966         int err;
967
968         /*
969          * We later require that vma->vm_flags == vm_flags,
970          * so this tests vma->vm_flags & VM_SPECIAL, too.
971          */
972         if (vm_flags & VM_SPECIAL)
973                 return NULL;
974
975         if (prev)
976                 next = prev->vm_next;
977         else
978                 next = mm->mmap;
979         area = next;
980         if (next && next->vm_end == end)                /* cases 6, 7, 8 */
981                 next = next->vm_next;
982
983         /*
984          * Can it merge with the predecessor?
985          */
986         if (prev && prev->vm_end == addr &&
987                         mpol_equal(vma_policy(prev), policy) &&
988                         can_vma_merge_after(prev, vm_flags,
989                                                 anon_vma, file, pgoff)) {
990                 /*
991                  * OK, it can.  Can we now merge in the successor as well?
992                  */
993                 if (next && end == next->vm_start &&
994                                 mpol_equal(policy, vma_policy(next)) &&
995                                 can_vma_merge_before(next, vm_flags,
996                                         anon_vma, file, pgoff+pglen) &&
997                                 is_mergeable_anon_vma(prev->anon_vma,
998                                                       next->anon_vma, NULL)) {
999                                                         /* cases 1, 6 */
1000                         err = vma_adjust(prev, prev->vm_start,
1001                                 next->vm_end, prev->vm_pgoff, NULL);
1002                 } else                                  /* cases 2, 5, 7 */
1003                         err = vma_adjust(prev, prev->vm_start,
1004                                 end, prev->vm_pgoff, NULL);
1005                 if (err)
1006                         return NULL;
1007                 khugepaged_enter_vma_merge(prev);
1008                 return prev;
1009         }
1010
1011         /*
1012          * Can this new request be merged in front of next?
1013          */
1014         if (next && end == next->vm_start &&
1015                         mpol_equal(policy, vma_policy(next)) &&
1016                         can_vma_merge_before(next, vm_flags,
1017                                         anon_vma, file, pgoff+pglen)) {
1018                 if (prev && addr < prev->vm_end)        /* case 4 */
1019                         err = vma_adjust(prev, prev->vm_start,
1020                                 addr, prev->vm_pgoff, NULL);
1021                 else                                    /* cases 3, 8 */
1022                         err = vma_adjust(area, addr, next->vm_end,
1023                                 next->vm_pgoff - pglen, NULL);
1024                 if (err)
1025                         return NULL;
1026                 khugepaged_enter_vma_merge(area);
1027                 return area;
1028         }
1029
1030         return NULL;
1031 }
1032
1033 /*
1034  * Rough compatbility check to quickly see if it's even worth looking
1035  * at sharing an anon_vma.
1036  *
1037  * They need to have the same vm_file, and the flags can only differ
1038  * in things that mprotect may change.
1039  *
1040  * NOTE! The fact that we share an anon_vma doesn't _have_ to mean that
1041  * we can merge the two vma's. For example, we refuse to merge a vma if
1042  * there is a vm_ops->close() function, because that indicates that the
1043  * driver is doing some kind of reference counting. But that doesn't
1044  * really matter for the anon_vma sharing case.
1045  */
1046 static int anon_vma_compatible(struct vm_area_struct *a, struct vm_area_struct *b)
1047 {
1048         return a->vm_end == b->vm_start &&
1049                 mpol_equal(vma_policy(a), vma_policy(b)) &&
1050                 a->vm_file == b->vm_file &&
1051                 !((a->vm_flags ^ b->vm_flags) & ~(VM_READ|VM_WRITE|VM_EXEC)) &&
1052                 b->vm_pgoff == a->vm_pgoff + ((b->vm_start - a->vm_start) >> PAGE_SHIFT);
1053 }
1054
1055 /*
1056  * Do some basic sanity checking to see if we can re-use the anon_vma
1057  * from 'old'. The 'a'/'b' vma's are in VM order - one of them will be
1058  * the same as 'old', the other will be the new one that is trying
1059  * to share the anon_vma.
1060  *
1061  * NOTE! This runs with mm_sem held for reading, so it is possible that
1062  * the anon_vma of 'old' is concurrently in the process of being set up
1063  * by another page fault trying to merge _that_. But that's ok: if it
1064  * is being set up, that automatically means that it will be a singleton
1065  * acceptable for merging, so we can do all of this optimistically. But
1066  * we do that ACCESS_ONCE() to make sure that we never re-load the pointer.
1067  *
1068  * IOW: that the "list_is_singular()" test on the anon_vma_chain only
1069  * matters for the 'stable anon_vma' case (ie the thing we want to avoid
1070  * is to return an anon_vma that is "complex" due to having gone through
1071  * a fork).
1072  *
1073  * We also make sure that the two vma's are compatible (adjacent,
1074  * and with the same memory policies). That's all stable, even with just
1075  * a read lock on the mm_sem.
1076  */
1077 static struct anon_vma *reusable_anon_vma(struct vm_area_struct *old, struct vm_area_struct *a, struct vm_area_struct *b)
1078 {
1079         if (anon_vma_compatible(a, b)) {
1080                 struct anon_vma *anon_vma = ACCESS_ONCE(old->anon_vma);
1081
1082                 if (anon_vma && list_is_singular(&old->anon_vma_chain))
1083                         return anon_vma;
1084         }
1085         return NULL;
1086 }
1087
1088 /*
1089  * find_mergeable_anon_vma is used by anon_vma_prepare, to check
1090  * neighbouring vmas for a suitable anon_vma, before it goes off
1091  * to allocate a new anon_vma.  It checks because a repetitive
1092  * sequence of mprotects and faults may otherwise lead to distinct
1093  * anon_vmas being allocated, preventing vma merge in subsequent
1094  * mprotect.
1095  */
1096 struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *vma)
1097 {
1098         struct anon_vma *anon_vma;
1099         struct vm_area_struct *near;
1100
1101         near = vma->vm_next;
1102         if (!near)
1103                 goto try_prev;
1104
1105         anon_vma = reusable_anon_vma(near, vma, near);
1106         if (anon_vma)
1107                 return anon_vma;
1108 try_prev:
1109         near = vma->vm_prev;
1110         if (!near)
1111                 goto none;
1112
1113         anon_vma = reusable_anon_vma(near, near, vma);
1114         if (anon_vma)
1115                 return anon_vma;
1116 none:
1117         /*
1118          * There's no absolute need to look only at touching neighbours:
1119          * we could search further afield for "compatible" anon_vmas.
1120          * But it would probably just be a waste of time searching,
1121          * or lead to too many vmas hanging off the same anon_vma.
1122          * We're trying to allow mprotect remerging later on,
1123          * not trying to minimize memory used for anon_vmas.
1124          */
1125         return NULL;
1126 }
1127
1128 #ifdef CONFIG_PROC_FS
1129 void vm_stat_account(struct mm_struct *mm, unsigned long flags,
1130                                                 struct file *file, long pages)
1131 {
1132         const unsigned long stack_flags
1133                 = VM_STACK_FLAGS & (VM_GROWSUP|VM_GROWSDOWN);
1134
1135         mm->total_vm += pages;
1136
1137         if (file) {
1138                 mm->shared_vm += pages;
1139                 if ((flags & (VM_EXEC|VM_WRITE)) == VM_EXEC)
1140                         mm->exec_vm += pages;
1141         } else if (flags & stack_flags)
1142                 mm->stack_vm += pages;
1143 }
1144 #endif /* CONFIG_PROC_FS */
1145
1146 /*
1147  * If a hint addr is less than mmap_min_addr change hint to be as
1148  * low as possible but still greater than mmap_min_addr
1149  */
1150 static inline unsigned long round_hint_to_min(unsigned long hint)
1151 {
1152         hint &= PAGE_MASK;
1153         if (((void *)hint != NULL) &&
1154             (hint < mmap_min_addr))
1155                 return PAGE_ALIGN(mmap_min_addr);
1156         return hint;
1157 }
1158
1159 /*
1160  * The caller must hold down_write(&current->mm->mmap_sem).
1161  */
1162
1163 unsigned long do_mmap_pgoff(struct file *file, unsigned long addr,
1164                         unsigned long len, unsigned long prot,
1165                         unsigned long flags, unsigned long pgoff,
1166                         bool *populate)
1167 {
1168         struct mm_struct * mm = current->mm;
1169         struct inode *inode;
1170         vm_flags_t vm_flags;
1171
1172         *populate = false;
1173
1174         /*
1175          * Does the application expect PROT_READ to imply PROT_EXEC?
1176          *
1177          * (the exception is when the underlying filesystem is noexec
1178          *  mounted, in which case we dont add PROT_EXEC.)
1179          */
1180         if ((prot & PROT_READ) && (current->personality & READ_IMPLIES_EXEC))
1181                 if (!(file && (file->f_path.mnt->mnt_flags & MNT_NOEXEC)))
1182                         prot |= PROT_EXEC;
1183
1184         if (!len)
1185                 return -EINVAL;
1186
1187         if (!(flags & MAP_FIXED))
1188                 addr = round_hint_to_min(addr);
1189
1190         /* Careful about overflows.. */
1191         len = PAGE_ALIGN(len);
1192         if (!len)
1193                 return -ENOMEM;
1194
1195         /* offset overflow? */
1196         if ((pgoff + (len >> PAGE_SHIFT)) < pgoff)
1197                return -EOVERFLOW;
1198
1199         /* Too many mappings? */
1200         if (mm->map_count > sysctl_max_map_count)
1201                 return -ENOMEM;
1202
1203         /* Obtain the address to map to. we verify (or select) it and ensure
1204          * that it represents a valid section of the address space.
1205          */
1206         addr = get_unmapped_area(file, addr, len, pgoff, flags);
1207         if (addr & ~PAGE_MASK)
1208                 return addr;
1209
1210         /* Do simple checking here so the lower-level routines won't have
1211          * to. we assume access permissions have been handled by the open
1212          * of the memory object, so we don't do any here.
1213          */
1214         vm_flags = calc_vm_prot_bits(prot) | calc_vm_flag_bits(flags) |
1215                         mm->def_flags | VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC;
1216
1217         if (flags & MAP_LOCKED)
1218                 if (!can_do_mlock())
1219                         return -EPERM;
1220
1221         /* mlock MCL_FUTURE? */
1222         if (vm_flags & VM_LOCKED) {
1223                 unsigned long locked, lock_limit;
1224                 locked = len >> PAGE_SHIFT;
1225                 locked += mm->locked_vm;
1226                 lock_limit = rlimit(RLIMIT_MEMLOCK);
1227                 lock_limit >>= PAGE_SHIFT;
1228                 if (locked > lock_limit && !capable(CAP_IPC_LOCK))
1229                         return -EAGAIN;
1230         }
1231
1232         inode = file ? file->f_path.dentry->d_inode : NULL;
1233
1234         if (file) {
1235                 switch (flags & MAP_TYPE) {
1236                 case MAP_SHARED:
1237                         if ((prot&PROT_WRITE) && !(file->f_mode&FMODE_WRITE))
1238                                 return -EACCES;
1239
1240                         /*
1241                          * Make sure we don't allow writing to an append-only
1242                          * file..
1243                          */
1244                         if (IS_APPEND(inode) && (file->f_mode & FMODE_WRITE))
1245                                 return -EACCES;
1246
1247                         /*
1248                          * Make sure there are no mandatory locks on the file.
1249                          */
1250                         if (locks_verify_locked(inode))
1251                                 return -EAGAIN;
1252
1253                         vm_flags |= VM_SHARED | VM_MAYSHARE;
1254                         if (!(file->f_mode & FMODE_WRITE))
1255                                 vm_flags &= ~(VM_MAYWRITE | VM_SHARED);
1256
1257                         /* fall through */
1258                 case MAP_PRIVATE:
1259                         if (!(file->f_mode & FMODE_READ))
1260                                 return -EACCES;
1261                         if (file->f_path.mnt->mnt_flags & MNT_NOEXEC) {
1262                                 if (vm_flags & VM_EXEC)
1263                                         return -EPERM;
1264                                 vm_flags &= ~VM_MAYEXEC;
1265                         }
1266
1267                         if (!file->f_op || !file->f_op->mmap)
1268                                 return -ENODEV;
1269                         break;
1270
1271                 default:
1272                         return -EINVAL;
1273                 }
1274         } else {
1275                 switch (flags & MAP_TYPE) {
1276                 case MAP_SHARED:
1277                         /*
1278                          * Ignore pgoff.
1279                          */
1280                         pgoff = 0;
1281                         vm_flags |= VM_SHARED | VM_MAYSHARE;
1282                         break;
1283                 case MAP_PRIVATE:
1284                         /*
1285                          * Set pgoff according to addr for anon_vma.
1286                          */
1287                         pgoff = addr >> PAGE_SHIFT;
1288                         break;
1289                 default:
1290                         return -EINVAL;
1291                 }
1292         }
1293
1294         addr = mmap_region(file, addr, len, flags, vm_flags, pgoff);
1295         if (!IS_ERR_VALUE(addr) &&
1296             ((vm_flags & VM_LOCKED) ||
1297              (flags & (MAP_POPULATE | MAP_NONBLOCK)) == MAP_POPULATE))
1298                 *populate = true;
1299         return addr;
1300 }
1301
1302 SYSCALL_DEFINE6(mmap_pgoff, unsigned long, addr, unsigned long, len,
1303                 unsigned long, prot, unsigned long, flags,
1304                 unsigned long, fd, unsigned long, pgoff)
1305 {
1306         struct file *file = NULL;
1307         unsigned long retval = -EBADF;
1308
1309         if (!(flags & MAP_ANONYMOUS)) {
1310                 audit_mmap_fd(fd, flags);
1311                 if (unlikely(flags & MAP_HUGETLB))
1312                         return -EINVAL;
1313                 file = fget(fd);
1314                 if (!file)
1315                         goto out;
1316         } else if (flags & MAP_HUGETLB) {
1317                 struct user_struct *user = NULL;
1318                 /*
1319                  * VM_NORESERVE is used because the reservations will be
1320                  * taken when vm_ops->mmap() is called
1321                  * A dummy user value is used because we are not locking
1322                  * memory so no accounting is necessary
1323                  */
1324                 file = hugetlb_file_setup(HUGETLB_ANON_FILE, addr, len,
1325                                 VM_NORESERVE,
1326                                 &user, HUGETLB_ANONHUGE_INODE,
1327                                 (flags >> MAP_HUGE_SHIFT) & MAP_HUGE_MASK);
1328                 if (IS_ERR(file))
1329                         return PTR_ERR(file);
1330         }
1331
1332         flags &= ~(MAP_EXECUTABLE | MAP_DENYWRITE);
1333
1334         retval = vm_mmap_pgoff(file, addr, len, prot, flags, pgoff);
1335         if (file)
1336                 fput(file);
1337 out:
1338         return retval;
1339 }
1340
1341 #ifdef __ARCH_WANT_SYS_OLD_MMAP
1342 struct mmap_arg_struct {
1343         unsigned long addr;
1344         unsigned long len;
1345         unsigned long prot;
1346         unsigned long flags;
1347         unsigned long fd;
1348         unsigned long offset;
1349 };
1350
1351 SYSCALL_DEFINE1(old_mmap, struct mmap_arg_struct __user *, arg)
1352 {
1353         struct mmap_arg_struct a;
1354
1355         if (copy_from_user(&a, arg, sizeof(a)))
1356                 return -EFAULT;
1357         if (a.offset & ~PAGE_MASK)
1358                 return -EINVAL;
1359
1360         return sys_mmap_pgoff(a.addr, a.len, a.prot, a.flags, a.fd,
1361                               a.offset >> PAGE_SHIFT);
1362 }
1363 #endif /* __ARCH_WANT_SYS_OLD_MMAP */
1364
1365 /*
1366  * Some shared mappigns will want the pages marked read-only
1367  * to track write events. If so, we'll downgrade vm_page_prot
1368  * to the private version (using protection_map[] without the
1369  * VM_SHARED bit).
1370  */
1371 int vma_wants_writenotify(struct vm_area_struct *vma)
1372 {
1373         vm_flags_t vm_flags = vma->vm_flags;
1374
1375         /* If it was private or non-writable, the write bit is already clear */
1376         if ((vm_flags & (VM_WRITE|VM_SHARED)) != ((VM_WRITE|VM_SHARED)))
1377                 return 0;
1378
1379         /* The backer wishes to know when pages are first written to? */
1380         if (vma->vm_ops && vma->vm_ops->page_mkwrite)
1381                 return 1;
1382
1383         /* The open routine did something to the protections already? */
1384         if (pgprot_val(vma->vm_page_prot) !=
1385             pgprot_val(vm_get_page_prot(vm_flags)))
1386                 return 0;
1387
1388         /* Specialty mapping? */
1389         if (vm_flags & VM_PFNMAP)
1390                 return 0;
1391
1392         /* Can the mapping track the dirty pages? */
1393         return vma->vm_file && vma->vm_file->f_mapping &&
1394                 mapping_cap_account_dirty(vma->vm_file->f_mapping);
1395 }
1396
1397 /*
1398  * We account for memory if it's a private writeable mapping,
1399  * not hugepages and VM_NORESERVE wasn't set.
1400  */
1401 static inline int accountable_mapping(struct file *file, vm_flags_t vm_flags)
1402 {
1403         /*
1404          * hugetlb has its own accounting separate from the core VM
1405          * VM_HUGETLB may not be set yet so we cannot check for that flag.
1406          */
1407         if (file && is_file_hugepages(file))
1408                 return 0;
1409
1410         return (vm_flags & (VM_NORESERVE | VM_SHARED | VM_WRITE)) == VM_WRITE;
1411 }
1412
1413 unsigned long mmap_region(struct file *file, unsigned long addr,
1414                           unsigned long len, unsigned long flags,
1415                           vm_flags_t vm_flags, unsigned long pgoff)
1416 {
1417         struct mm_struct *mm = current->mm;
1418         struct vm_area_struct *vma, *prev;
1419         int correct_wcount = 0;
1420         int error;
1421         struct rb_node **rb_link, *rb_parent;
1422         unsigned long charged = 0;
1423         struct inode *inode =  file ? file->f_path.dentry->d_inode : NULL;
1424
1425         /* Clear old maps */
1426         error = -ENOMEM;
1427 munmap_back:
1428         if (find_vma_links(mm, addr, addr + len, &prev, &rb_link, &rb_parent)) {
1429                 if (do_munmap(mm, addr, len))
1430                         return -ENOMEM;
1431                 goto munmap_back;
1432         }
1433
1434         /* Check against address space limit. */
1435         if (!may_expand_vm(mm, len >> PAGE_SHIFT))
1436                 return -ENOMEM;
1437
1438         /*
1439          * Set 'VM_NORESERVE' if we should not account for the
1440          * memory use of this mapping.
1441          */
1442         if ((flags & MAP_NORESERVE)) {
1443                 /* We honor MAP_NORESERVE if allowed to overcommit */
1444                 if (sysctl_overcommit_memory != OVERCOMMIT_NEVER)
1445                         vm_flags |= VM_NORESERVE;
1446
1447                 /* hugetlb applies strict overcommit unless MAP_NORESERVE */
1448                 if (file && is_file_hugepages(file))
1449                         vm_flags |= VM_NORESERVE;
1450         }
1451
1452         /*
1453          * Private writable mapping: check memory availability
1454          */
1455         if (accountable_mapping(file, vm_flags)) {
1456                 charged = len >> PAGE_SHIFT;
1457                 if (security_vm_enough_memory_mm(mm, charged))
1458                         return -ENOMEM;
1459                 vm_flags |= VM_ACCOUNT;
1460         }
1461
1462         /*
1463          * Can we just expand an old mapping?
1464          */
1465         vma = vma_merge(mm, prev, addr, addr + len, vm_flags, NULL, file, pgoff, NULL);
1466         if (vma)
1467                 goto out;
1468
1469         /*
1470          * Determine the object being mapped and call the appropriate
1471          * specific mapper. the address has already been validated, but
1472          * not unmapped, but the maps are removed from the list.
1473          */
1474         vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
1475         if (!vma) {
1476                 error = -ENOMEM;
1477                 goto unacct_error;
1478         }
1479
1480         vma->vm_mm = mm;
1481         vma->vm_start = addr;
1482         vma->vm_end = addr + len;
1483         vma->vm_flags = vm_flags;
1484         vma->vm_page_prot = vm_get_page_prot(vm_flags);
1485         vma->vm_pgoff = pgoff;
1486         INIT_LIST_HEAD(&vma->anon_vma_chain);
1487
1488         error = -EINVAL;        /* when rejecting VM_GROWSDOWN|VM_GROWSUP */
1489
1490         if (file) {
1491                 if (vm_flags & (VM_GROWSDOWN|VM_GROWSUP))
1492                         goto free_vma;
1493                 if (vm_flags & VM_DENYWRITE) {
1494                         error = deny_write_access(file);
1495                         if (error)
1496                                 goto free_vma;
1497                         correct_wcount = 1;
1498                 }
1499                 vma->vm_file = get_file(file);
1500                 error = file->f_op->mmap(file, vma);
1501                 if (error)
1502                         goto unmap_and_free_vma;
1503
1504                 /* Can addr have changed??
1505                  *
1506                  * Answer: Yes, several device drivers can do it in their
1507                  *         f_op->mmap method. -DaveM
1508                  * Bug: If addr is changed, prev, rb_link, rb_parent should
1509                  *      be updated for vma_link()
1510                  */
1511                 WARN_ON_ONCE(addr != vma->vm_start);
1512
1513                 addr = vma->vm_start;
1514                 pgoff = vma->vm_pgoff;
1515                 vm_flags = vma->vm_flags;
1516         } else if (vm_flags & VM_SHARED) {
1517                 if (unlikely(vm_flags & (VM_GROWSDOWN|VM_GROWSUP)))
1518                         goto free_vma;
1519                 error = shmem_zero_setup(vma);
1520                 if (error)
1521                         goto free_vma;
1522         }
1523
1524         if (vma_wants_writenotify(vma)) {
1525                 pgprot_t pprot = vma->vm_page_prot;
1526
1527                 /* Can vma->vm_page_prot have changed??
1528                  *
1529                  * Answer: Yes, drivers may have changed it in their
1530                  *         f_op->mmap method.
1531                  *
1532                  * Ensures that vmas marked as uncached stay that way.
1533                  */
1534                 vma->vm_page_prot = vm_get_page_prot(vm_flags & ~VM_SHARED);
1535                 if (pgprot_val(pprot) == pgprot_val(pgprot_noncached(pprot)))
1536                         vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot);
1537         }
1538
1539         vma_link(mm, vma, prev, rb_link, rb_parent);
1540         file = vma->vm_file;
1541
1542         /* Once vma denies write, undo our temporary denial count */
1543         if (correct_wcount)
1544                 atomic_inc(&inode->i_writecount);
1545 out:
1546         perf_event_mmap(vma);
1547
1548         vm_stat_account(mm, vm_flags, file, len >> PAGE_SHIFT);
1549         if (vm_flags & VM_LOCKED) {
1550                 if (!((vm_flags & VM_SPECIAL) || is_vm_hugetlb_page(vma) ||
1551                                         vma == get_gate_vma(current->mm)))
1552                         mm->locked_vm += (len >> PAGE_SHIFT);
1553                 else
1554                         vma->vm_flags &= ~VM_LOCKED;
1555         }
1556
1557         if (file)
1558                 uprobe_mmap(vma);
1559
1560         return addr;
1561
1562 unmap_and_free_vma:
1563         if (correct_wcount)
1564                 atomic_inc(&inode->i_writecount);
1565         vma->vm_file = NULL;
1566         fput(file);
1567
1568         /* Undo any partial mapping done by a device driver. */
1569         unmap_region(mm, vma, prev, vma->vm_start, vma->vm_end);
1570         charged = 0;
1571 free_vma:
1572         kmem_cache_free(vm_area_cachep, vma);
1573 unacct_error:
1574         if (charged)
1575                 vm_unacct_memory(charged);
1576         return error;
1577 }
1578
1579 unsigned long unmapped_area(struct vm_unmapped_area_info *info)
1580 {
1581         /*
1582          * We implement the search by looking for an rbtree node that
1583          * immediately follows a suitable gap. That is,
1584          * - gap_start = vma->vm_prev->vm_end <= info->high_limit - length;
1585          * - gap_end   = vma->vm_start        >= info->low_limit  + length;
1586          * - gap_end - gap_start >= length
1587          */
1588
1589         struct mm_struct *mm = current->mm;
1590         struct vm_area_struct *vma;
1591         unsigned long length, low_limit, high_limit, gap_start, gap_end;
1592
1593         /* Adjust search length to account for worst case alignment overhead */
1594         length = info->length + info->align_mask;
1595         if (length < info->length)
1596                 return -ENOMEM;
1597
1598         /* Adjust search limits by the desired length */
1599         if (info->high_limit < length)
1600                 return -ENOMEM;
1601         high_limit = info->high_limit - length;
1602
1603         if (info->low_limit > high_limit)
1604                 return -ENOMEM;
1605         low_limit = info->low_limit + length;
1606
1607         /* Check if rbtree root looks promising */
1608         if (RB_EMPTY_ROOT(&mm->mm_rb))
1609                 goto check_highest;
1610         vma = rb_entry(mm->mm_rb.rb_node, struct vm_area_struct, vm_rb);
1611         if (vma->rb_subtree_gap < length)
1612                 goto check_highest;
1613
1614         while (true) {
1615                 /* Visit left subtree if it looks promising */
1616                 gap_end = vma->vm_start;
1617                 if (gap_end >= low_limit && vma->vm_rb.rb_left) {
1618                         struct vm_area_struct *left =
1619                                 rb_entry(vma->vm_rb.rb_left,
1620                                          struct vm_area_struct, vm_rb);
1621                         if (left->rb_subtree_gap >= length) {
1622                                 vma = left;
1623                                 continue;
1624                         }
1625                 }
1626
1627                 gap_start = vma->vm_prev ? vma->vm_prev->vm_end : 0;
1628 check_current:
1629                 /* Check if current node has a suitable gap */
1630                 if (gap_start > high_limit)
1631                         return -ENOMEM;
1632                 if (gap_end >= low_limit && gap_end - gap_start >= length)
1633                         goto found;
1634
1635                 /* Visit right subtree if it looks promising */
1636                 if (vma->vm_rb.rb_right) {
1637                         struct vm_area_struct *right =
1638                                 rb_entry(vma->vm_rb.rb_right,
1639                                          struct vm_area_struct, vm_rb);
1640                         if (right->rb_subtree_gap >= length) {
1641                                 vma = right;
1642                                 continue;
1643                         }
1644                 }
1645
1646                 /* Go back up the rbtree to find next candidate node */
1647                 while (true) {
1648                         struct rb_node *prev = &vma->vm_rb;
1649                         if (!rb_parent(prev))
1650                                 goto check_highest;
1651                         vma = rb_entry(rb_parent(prev),
1652                                        struct vm_area_struct, vm_rb);
1653                         if (prev == vma->vm_rb.rb_left) {
1654                                 gap_start = vma->vm_prev->vm_end;
1655                                 gap_end = vma->vm_start;
1656                                 goto check_current;
1657                         }
1658                 }
1659         }
1660
1661 check_highest:
1662         /* Check highest gap, which does not precede any rbtree node */
1663         gap_start = mm->highest_vm_end;
1664         gap_end = ULONG_MAX;  /* Only for VM_BUG_ON below */
1665         if (gap_start > high_limit)
1666                 return -ENOMEM;
1667
1668 found:
1669         /* We found a suitable gap. Clip it with the original low_limit. */
1670         if (gap_start < info->low_limit)
1671                 gap_start = info->low_limit;
1672
1673         /* Adjust gap address to the desired alignment */
1674         gap_start += (info->align_offset - gap_start) & info->align_mask;
1675
1676         VM_BUG_ON(gap_start + info->length > info->high_limit);
1677         VM_BUG_ON(gap_start + info->length > gap_end);
1678         return gap_start;
1679 }
1680
1681 unsigned long unmapped_area_topdown(struct vm_unmapped_area_info *info)
1682 {
1683         struct mm_struct *mm = current->mm;
1684         struct vm_area_struct *vma;
1685         unsigned long length, low_limit, high_limit, gap_start, gap_end;
1686
1687         /* Adjust search length to account for worst case alignment overhead */
1688         length = info->length + info->align_mask;
1689         if (length < info->length)
1690                 return -ENOMEM;
1691
1692         /*
1693          * Adjust search limits by the desired length.
1694          * See implementation comment at top of unmapped_area().
1695          */
1696         gap_end = info->high_limit;
1697         if (gap_end < length)
1698                 return -ENOMEM;
1699         high_limit = gap_end - length;
1700
1701         if (info->low_limit > high_limit)
1702                 return -ENOMEM;
1703         low_limit = info->low_limit + length;
1704
1705         /* Check highest gap, which does not precede any rbtree node */
1706         gap_start = mm->highest_vm_end;
1707         if (gap_start <= high_limit)
1708                 goto found_highest;
1709
1710         /* Check if rbtree root looks promising */
1711         if (RB_EMPTY_ROOT(&mm->mm_rb))
1712                 return -ENOMEM;
1713         vma = rb_entry(mm->mm_rb.rb_node, struct vm_area_struct, vm_rb);
1714         if (vma->rb_subtree_gap < length)
1715                 return -ENOMEM;
1716
1717         while (true) {
1718                 /* Visit right subtree if it looks promising */
1719                 gap_start = vma->vm_prev ? vma->vm_prev->vm_end : 0;
1720                 if (gap_start <= high_limit && vma->vm_rb.rb_right) {
1721                         struct vm_area_struct *right =
1722                                 rb_entry(vma->vm_rb.rb_right,
1723                                          struct vm_area_struct, vm_rb);
1724                         if (right->rb_subtree_gap >= length) {
1725                                 vma = right;
1726                                 continue;
1727                         }
1728                 }
1729
1730 check_current:
1731                 /* Check if current node has a suitable gap */
1732                 gap_end = vma->vm_start;
1733                 if (gap_end < low_limit)
1734                         return -ENOMEM;
1735                 if (gap_start <= high_limit && gap_end - gap_start >= length)
1736                         goto found;
1737
1738                 /* Visit left subtree if it looks promising */
1739                 if (vma->vm_rb.rb_left) {
1740                         struct vm_area_struct *left =
1741                                 rb_entry(vma->vm_rb.rb_left,
1742                                          struct vm_area_struct, vm_rb);
1743                         if (left->rb_subtree_gap >= length) {
1744                                 vma = left;
1745                                 continue;
1746                         }
1747                 }
1748
1749                 /* Go back up the rbtree to find next candidate node */
1750                 while (true) {
1751                         struct rb_node *prev = &vma->vm_rb;
1752                         if (!rb_parent(prev))
1753                                 return -ENOMEM;
1754                         vma = rb_entry(rb_parent(prev),
1755                                        struct vm_area_struct, vm_rb);
1756                         if (prev == vma->vm_rb.rb_right) {
1757                                 gap_start = vma->vm_prev ?
1758                                         vma->vm_prev->vm_end : 0;
1759                                 goto check_current;
1760                         }
1761                 }
1762         }
1763
1764 found:
1765         /* We found a suitable gap. Clip it with the original high_limit. */
1766         if (gap_end > info->high_limit)
1767                 gap_end = info->high_limit;
1768
1769 found_highest:
1770         /* Compute highest gap address at the desired alignment */
1771         gap_end -= info->length;
1772         gap_end -= (gap_end - info->align_offset) & info->align_mask;
1773
1774         VM_BUG_ON(gap_end < info->low_limit);
1775         VM_BUG_ON(gap_end < gap_start);
1776         return gap_end;
1777 }
1778
1779 /* Get an address range which is currently unmapped.
1780  * For shmat() with addr=0.
1781  *
1782  * Ugly calling convention alert:
1783  * Return value with the low bits set means error value,
1784  * ie
1785  *      if (ret & ~PAGE_MASK)
1786  *              error = ret;
1787  *
1788  * This function "knows" that -ENOMEM has the bits set.
1789  */
1790 #ifndef HAVE_ARCH_UNMAPPED_AREA
1791 unsigned long
1792 arch_get_unmapped_area(struct file *filp, unsigned long addr,
1793                 unsigned long len, unsigned long pgoff, unsigned long flags)
1794 {
1795         struct mm_struct *mm = current->mm;
1796         struct vm_area_struct *vma;
1797         struct vm_unmapped_area_info info;
1798
1799         if (len > TASK_SIZE)
1800                 return -ENOMEM;
1801
1802         if (flags & MAP_FIXED)
1803                 return addr;
1804
1805         if (addr) {
1806                 addr = PAGE_ALIGN(addr);
1807                 vma = find_vma(mm, addr);
1808                 if (TASK_SIZE - len >= addr &&
1809                     (!vma || addr + len <= vma->vm_start))
1810                         return addr;
1811         }
1812
1813         info.flags = 0;
1814         info.length = len;
1815         info.low_limit = TASK_UNMAPPED_BASE;
1816         info.high_limit = TASK_SIZE;
1817         info.align_mask = 0;
1818         return vm_unmapped_area(&info);
1819 }
1820 #endif  
1821
1822 void arch_unmap_area(struct mm_struct *mm, unsigned long addr)
1823 {
1824         /*
1825          * Is this a new hole at the lowest possible address?
1826          */
1827         if (addr >= TASK_UNMAPPED_BASE && addr < mm->free_area_cache)
1828                 mm->free_area_cache = addr;
1829 }
1830
1831 /*
1832  * This mmap-allocator allocates new areas top-down from below the
1833  * stack's low limit (the base):
1834  */
1835 #ifndef HAVE_ARCH_UNMAPPED_AREA_TOPDOWN
1836 unsigned long
1837 arch_get_unmapped_area_topdown(struct file *filp, const unsigned long addr0,
1838                           const unsigned long len, const unsigned long pgoff,
1839                           const unsigned long flags)
1840 {
1841         struct vm_area_struct *vma;
1842         struct mm_struct *mm = current->mm;
1843         unsigned long addr = addr0;
1844         struct vm_unmapped_area_info info;
1845
1846         /* requested length too big for entire address space */
1847         if (len > TASK_SIZE)
1848                 return -ENOMEM;
1849
1850         if (flags & MAP_FIXED)
1851                 return addr;
1852
1853         /* requesting a specific address */
1854         if (addr) {
1855                 addr = PAGE_ALIGN(addr);
1856                 vma = find_vma(mm, addr);
1857                 if (TASK_SIZE - len >= addr &&
1858                                 (!vma || addr + len <= vma->vm_start))
1859                         return addr;
1860         }
1861
1862         info.flags = VM_UNMAPPED_AREA_TOPDOWN;
1863         info.length = len;
1864         info.low_limit = PAGE_SIZE;
1865         info.high_limit = mm->mmap_base;
1866         info.align_mask = 0;
1867         addr = vm_unmapped_area(&info);
1868
1869         /*
1870          * A failed mmap() very likely causes application failure,
1871          * so fall back to the bottom-up function here. This scenario
1872          * can happen with large stack limits and large mmap()
1873          * allocations.
1874          */
1875         if (addr & ~PAGE_MASK) {
1876                 VM_BUG_ON(addr != -ENOMEM);
1877                 info.flags = 0;
1878                 info.low_limit = TASK_UNMAPPED_BASE;
1879                 info.high_limit = TASK_SIZE;
1880                 addr = vm_unmapped_area(&info);
1881         }
1882
1883         return addr;
1884 }
1885 #endif
1886
1887 void arch_unmap_area_topdown(struct mm_struct *mm, unsigned long addr)
1888 {
1889         /*
1890          * Is this a new hole at the highest possible address?
1891          */
1892         if (addr > mm->free_area_cache)
1893                 mm->free_area_cache = addr;
1894
1895         /* dont allow allocations above current base */
1896         if (mm->free_area_cache > mm->mmap_base)
1897                 mm->free_area_cache = mm->mmap_base;
1898 }
1899
1900 unsigned long
1901 get_unmapped_area(struct file *file, unsigned long addr, unsigned long len,
1902                 unsigned long pgoff, unsigned long flags)
1903 {
1904         unsigned long (*get_area)(struct file *, unsigned long,
1905                                   unsigned long, unsigned long, unsigned long);
1906
1907         unsigned long error = arch_mmap_check(addr, len, flags);
1908         if (error)
1909                 return error;
1910
1911         /* Careful about overflows.. */
1912         if (len > TASK_SIZE)
1913                 return -ENOMEM;
1914
1915         get_area = current->mm->get_unmapped_area;
1916         if (file && file->f_op && file->f_op->get_unmapped_area)
1917                 get_area = file->f_op->get_unmapped_area;
1918         addr = get_area(file, addr, len, pgoff, flags);
1919         if (IS_ERR_VALUE(addr))
1920                 return addr;
1921
1922         if (addr > TASK_SIZE - len)
1923                 return -ENOMEM;
1924         if (addr & ~PAGE_MASK)
1925                 return -EINVAL;
1926
1927         addr = arch_rebalance_pgtables(addr, len);
1928         error = security_mmap_addr(addr);
1929         return error ? error : addr;
1930 }
1931
1932 EXPORT_SYMBOL(get_unmapped_area);
1933
1934 /* Look up the first VMA which satisfies  addr < vm_end,  NULL if none. */
1935 struct vm_area_struct *find_vma(struct mm_struct *mm, unsigned long addr)
1936 {
1937         struct vm_area_struct *vma = NULL;
1938
1939         if (WARN_ON_ONCE(!mm))          /* Remove this in linux-3.6 */
1940                 return NULL;
1941
1942         /* Check the cache first. */
1943         /* (Cache hit rate is typically around 35%.) */
1944         vma = mm->mmap_cache;
1945         if (!(vma && vma->vm_end > addr && vma->vm_start <= addr)) {
1946                 struct rb_node *rb_node;
1947
1948                 rb_node = mm->mm_rb.rb_node;
1949                 vma = NULL;
1950
1951                 while (rb_node) {
1952                         struct vm_area_struct *vma_tmp;
1953
1954                         vma_tmp = rb_entry(rb_node,
1955                                            struct vm_area_struct, vm_rb);
1956
1957                         if (vma_tmp->vm_end > addr) {
1958                                 vma = vma_tmp;
1959                                 if (vma_tmp->vm_start <= addr)
1960                                         break;
1961                                 rb_node = rb_node->rb_left;
1962                         } else
1963                                 rb_node = rb_node->rb_right;
1964                 }
1965                 if (vma)
1966                         mm->mmap_cache = vma;
1967         }
1968         return vma;
1969 }
1970
1971 EXPORT_SYMBOL(find_vma);
1972
1973 /*
1974  * Same as find_vma, but also return a pointer to the previous VMA in *pprev.
1975  */
1976 struct vm_area_struct *
1977 find_vma_prev(struct mm_struct *mm, unsigned long addr,
1978                         struct vm_area_struct **pprev)
1979 {
1980         struct vm_area_struct *vma;
1981
1982         vma = find_vma(mm, addr);
1983         if (vma) {
1984                 *pprev = vma->vm_prev;
1985         } else {
1986                 struct rb_node *rb_node = mm->mm_rb.rb_node;
1987                 *pprev = NULL;
1988                 while (rb_node) {
1989                         *pprev = rb_entry(rb_node, struct vm_area_struct, vm_rb);
1990                         rb_node = rb_node->rb_right;
1991                 }
1992         }
1993         return vma;
1994 }
1995
1996 /*
1997  * Verify that the stack growth is acceptable and
1998  * update accounting. This is shared with both the
1999  * grow-up and grow-down cases.
2000  */
2001 static int acct_stack_growth(struct vm_area_struct *vma, unsigned long size, unsigned long grow)
2002 {
2003         struct mm_struct *mm = vma->vm_mm;
2004         struct rlimit *rlim = current->signal->rlim;
2005         unsigned long new_start;
2006
2007         /* address space limit tests */
2008         if (!may_expand_vm(mm, grow))
2009                 return -ENOMEM;
2010
2011         /* Stack limit test */
2012         if (size > ACCESS_ONCE(rlim[RLIMIT_STACK].rlim_cur))
2013                 return -ENOMEM;
2014
2015         /* mlock limit tests */
2016         if (vma->vm_flags & VM_LOCKED) {
2017                 unsigned long locked;
2018                 unsigned long limit;
2019                 locked = mm->locked_vm + grow;
2020                 limit = ACCESS_ONCE(rlim[RLIMIT_MEMLOCK].rlim_cur);
2021                 limit >>= PAGE_SHIFT;
2022                 if (locked > limit && !capable(CAP_IPC_LOCK))
2023                         return -ENOMEM;
2024         }
2025
2026         /* Check to ensure the stack will not grow into a hugetlb-only region */
2027         new_start = (vma->vm_flags & VM_GROWSUP) ? vma->vm_start :
2028                         vma->vm_end - size;
2029         if (is_hugepage_only_range(vma->vm_mm, new_start, size))
2030                 return -EFAULT;
2031
2032         /*
2033          * Overcommit..  This must be the final test, as it will
2034          * update security statistics.
2035          */
2036         if (security_vm_enough_memory_mm(mm, grow))
2037                 return -ENOMEM;
2038
2039         /* Ok, everything looks good - let it rip */
2040         if (vma->vm_flags & VM_LOCKED)
2041                 mm->locked_vm += grow;
2042         vm_stat_account(mm, vma->vm_flags, vma->vm_file, grow);
2043         return 0;
2044 }
2045
2046 #if defined(CONFIG_STACK_GROWSUP) || defined(CONFIG_IA64)
2047 /*
2048  * PA-RISC uses this for its stack; IA64 for its Register Backing Store.
2049  * vma is the last one with address > vma->vm_end.  Have to extend vma.
2050  */
2051 int expand_upwards(struct vm_area_struct *vma, unsigned long address)
2052 {
2053         int error;
2054
2055         if (!(vma->vm_flags & VM_GROWSUP))
2056                 return -EFAULT;
2057
2058         /*
2059          * We must make sure the anon_vma is allocated
2060          * so that the anon_vma locking is not a noop.
2061          */
2062         if (unlikely(anon_vma_prepare(vma)))
2063                 return -ENOMEM;
2064         vma_lock_anon_vma(vma);
2065
2066         /*
2067          * vma->vm_start/vm_end cannot change under us because the caller
2068          * is required to hold the mmap_sem in read mode.  We need the
2069          * anon_vma lock to serialize against concurrent expand_stacks.
2070          * Also guard against wrapping around to address 0.
2071          */
2072         if (address < PAGE_ALIGN(address+4))
2073                 address = PAGE_ALIGN(address+4);
2074         else {
2075                 vma_unlock_anon_vma(vma);
2076                 return -ENOMEM;
2077         }
2078         error = 0;
2079
2080         /* Somebody else might have raced and expanded it already */
2081         if (address > vma->vm_end) {
2082                 unsigned long size, grow;
2083
2084                 size = address - vma->vm_start;
2085                 grow = (address - vma->vm_end) >> PAGE_SHIFT;
2086
2087                 error = -ENOMEM;
2088                 if (vma->vm_pgoff + (size >> PAGE_SHIFT) >= vma->vm_pgoff) {
2089                         error = acct_stack_growth(vma, size, grow);
2090                         if (!error) {
2091                                 /*
2092                                  * vma_gap_update() doesn't support concurrent
2093                                  * updates, but we only hold a shared mmap_sem
2094                                  * lock here, so we need to protect against
2095                                  * concurrent vma expansions.
2096                                  * vma_lock_anon_vma() doesn't help here, as
2097                                  * we don't guarantee that all growable vmas
2098                                  * in a mm share the same root anon vma.
2099                                  * So, we reuse mm->page_table_lock to guard
2100                                  * against concurrent vma expansions.
2101                                  */
2102                                 spin_lock(&vma->vm_mm->page_table_lock);
2103                                 anon_vma_interval_tree_pre_update_vma(vma);
2104                                 vma->vm_end = address;
2105                                 anon_vma_interval_tree_post_update_vma(vma);
2106                                 if (vma->vm_next)
2107                                         vma_gap_update(vma->vm_next);
2108                                 else
2109                                         vma->vm_mm->highest_vm_end = address;
2110                                 spin_unlock(&vma->vm_mm->page_table_lock);
2111
2112                                 perf_event_mmap(vma);
2113                         }
2114                 }
2115         }
2116         vma_unlock_anon_vma(vma);
2117         khugepaged_enter_vma_merge(vma);
2118         validate_mm(vma->vm_mm);
2119         return error;
2120 }
2121 #endif /* CONFIG_STACK_GROWSUP || CONFIG_IA64 */
2122
2123 /*
2124  * vma is the first one with address < vma->vm_start.  Have to extend vma.
2125  */
2126 int expand_downwards(struct vm_area_struct *vma,
2127                                    unsigned long address)
2128 {
2129         int error;
2130
2131         /*
2132          * We must make sure the anon_vma is allocated
2133          * so that the anon_vma locking is not a noop.
2134          */
2135         if (unlikely(anon_vma_prepare(vma)))
2136                 return -ENOMEM;
2137
2138         address &= PAGE_MASK;
2139         error = security_mmap_addr(address);
2140         if (error)
2141                 return error;
2142
2143         vma_lock_anon_vma(vma);
2144
2145         /*
2146          * vma->vm_start/vm_end cannot change under us because the caller
2147          * is required to hold the mmap_sem in read mode.  We need the
2148          * anon_vma lock to serialize against concurrent expand_stacks.
2149          */
2150
2151         /* Somebody else might have raced and expanded it already */
2152         if (address < vma->vm_start) {
2153                 unsigned long size, grow;
2154
2155                 size = vma->vm_end - address;
2156                 grow = (vma->vm_start - address) >> PAGE_SHIFT;
2157
2158                 error = -ENOMEM;
2159                 if (grow <= vma->vm_pgoff) {
2160                         error = acct_stack_growth(vma, size, grow);
2161                         if (!error) {
2162                                 /*
2163                                  * vma_gap_update() doesn't support concurrent
2164                                  * updates, but we only hold a shared mmap_sem
2165                                  * lock here, so we need to protect against
2166                                  * concurrent vma expansions.
2167                                  * vma_lock_anon_vma() doesn't help here, as
2168                                  * we don't guarantee that all growable vmas
2169                                  * in a mm share the same root anon vma.
2170                                  * So, we reuse mm->page_table_lock to guard
2171                                  * against concurrent vma expansions.
2172                                  */
2173                                 spin_lock(&vma->vm_mm->page_table_lock);
2174                                 anon_vma_interval_tree_pre_update_vma(vma);
2175                                 vma->vm_start = address;
2176                                 vma->vm_pgoff -= grow;
2177                                 anon_vma_interval_tree_post_update_vma(vma);
2178                                 vma_gap_update(vma);
2179                                 spin_unlock(&vma->vm_mm->page_table_lock);
2180
2181                                 perf_event_mmap(vma);
2182                         }
2183                 }
2184         }
2185         vma_unlock_anon_vma(vma);
2186         khugepaged_enter_vma_merge(vma);
2187         validate_mm(vma->vm_mm);
2188         return error;
2189 }
2190
2191 #ifdef CONFIG_STACK_GROWSUP
2192 int expand_stack(struct vm_area_struct *vma, unsigned long address)
2193 {
2194         return expand_upwards(vma, address);
2195 }
2196
2197 struct vm_area_struct *
2198 find_extend_vma(struct mm_struct *mm, unsigned long addr)
2199 {
2200         struct vm_area_struct *vma, *prev;
2201
2202         addr &= PAGE_MASK;
2203         vma = find_vma_prev(mm, addr, &prev);
2204         if (vma && (vma->vm_start <= addr))
2205                 return vma;
2206         if (!prev || expand_stack(prev, addr))
2207                 return NULL;
2208         if (prev->vm_flags & VM_LOCKED) {
2209                 mlock_vma_pages_range(prev, addr, prev->vm_end);
2210         }
2211         return prev;
2212 }
2213 #else
2214 int expand_stack(struct vm_area_struct *vma, unsigned long address)
2215 {
2216         return expand_downwards(vma, address);
2217 }
2218
2219 struct vm_area_struct *
2220 find_extend_vma(struct mm_struct * mm, unsigned long addr)
2221 {
2222         struct vm_area_struct * vma;
2223         unsigned long start;
2224
2225         addr &= PAGE_MASK;
2226         vma = find_vma(mm,addr);
2227         if (!vma)
2228                 return NULL;
2229         if (vma->vm_start <= addr)
2230                 return vma;
2231         if (!(vma->vm_flags & VM_GROWSDOWN))
2232                 return NULL;
2233         start = vma->vm_start;
2234         if (expand_stack(vma, addr))
2235                 return NULL;
2236         if (vma->vm_flags & VM_LOCKED) {
2237                 mlock_vma_pages_range(vma, addr, start);
2238         }
2239         return vma;
2240 }
2241 #endif
2242
2243 /*
2244  * Ok - we have the memory areas we should free on the vma list,
2245  * so release them, and do the vma updates.
2246  *
2247  * Called with the mm semaphore held.
2248  */
2249 static void remove_vma_list(struct mm_struct *mm, struct vm_area_struct *vma)
2250 {
2251         unsigned long nr_accounted = 0;
2252
2253         /* Update high watermark before we lower total_vm */
2254         update_hiwater_vm(mm);
2255         do {
2256                 long nrpages = vma_pages(vma);
2257
2258                 if (vma->vm_flags & VM_ACCOUNT)
2259                         nr_accounted += nrpages;
2260                 vm_stat_account(mm, vma->vm_flags, vma->vm_file, -nrpages);
2261                 vma = remove_vma(vma);
2262         } while (vma);
2263         vm_unacct_memory(nr_accounted);
2264         validate_mm(mm);
2265 }
2266
2267 /*
2268  * Get rid of page table information in the indicated region.
2269  *
2270  * Called with the mm semaphore held.
2271  */
2272 static void unmap_region(struct mm_struct *mm,
2273                 struct vm_area_struct *vma, struct vm_area_struct *prev,
2274                 unsigned long start, unsigned long end)
2275 {
2276         struct vm_area_struct *next = prev? prev->vm_next: mm->mmap;
2277         struct mmu_gather tlb;
2278
2279         lru_add_drain();
2280         tlb_gather_mmu(&tlb, mm, 0);
2281         update_hiwater_rss(mm);
2282         unmap_vmas(&tlb, vma, start, end);
2283         free_pgtables(&tlb, vma, prev ? prev->vm_end : FIRST_USER_ADDRESS,
2284                                  next ? next->vm_start : 0);
2285         tlb_finish_mmu(&tlb, start, end);
2286 }
2287
2288 /*
2289  * Create a list of vma's touched by the unmap, removing them from the mm's
2290  * vma list as we go..
2291  */
2292 static void
2293 detach_vmas_to_be_unmapped(struct mm_struct *mm, struct vm_area_struct *vma,
2294         struct vm_area_struct *prev, unsigned long end)
2295 {
2296         struct vm_area_struct **insertion_point;
2297         struct vm_area_struct *tail_vma = NULL;
2298         unsigned long addr;
2299
2300         insertion_point = (prev ? &prev->vm_next : &mm->mmap);
2301         vma->vm_prev = NULL;
2302         do {
2303                 vma_rb_erase(vma, &mm->mm_rb);
2304                 mm->map_count--;
2305                 tail_vma = vma;
2306                 vma = vma->vm_next;
2307         } while (vma && vma->vm_start < end);
2308         *insertion_point = vma;
2309         if (vma) {
2310                 vma->vm_prev = prev;
2311                 vma_gap_update(vma);
2312         } else
2313                 mm->highest_vm_end = prev ? prev->vm_end : 0;
2314         tail_vma->vm_next = NULL;
2315         if (mm->unmap_area == arch_unmap_area)
2316                 addr = prev ? prev->vm_end : mm->mmap_base;
2317         else
2318                 addr = vma ?  vma->vm_start : mm->mmap_base;
2319         mm->unmap_area(mm, addr);
2320         mm->mmap_cache = NULL;          /* Kill the cache. */
2321 }
2322
2323 /*
2324  * __split_vma() bypasses sysctl_max_map_count checking.  We use this on the
2325  * munmap path where it doesn't make sense to fail.
2326  */
2327 static int __split_vma(struct mm_struct * mm, struct vm_area_struct * vma,
2328               unsigned long addr, int new_below)
2329 {
2330         struct mempolicy *pol;
2331         struct vm_area_struct *new;
2332         int err = -ENOMEM;
2333
2334         if (is_vm_hugetlb_page(vma) && (addr &
2335                                         ~(huge_page_mask(hstate_vma(vma)))))
2336                 return -EINVAL;
2337
2338         new = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
2339         if (!new)
2340                 goto out_err;
2341
2342         /* most fields are the same, copy all, and then fixup */
2343         *new = *vma;
2344
2345         INIT_LIST_HEAD(&new->anon_vma_chain);
2346
2347         if (new_below)
2348                 new->vm_end = addr;
2349         else {
2350                 new->vm_start = addr;
2351                 new->vm_pgoff += ((addr - vma->vm_start) >> PAGE_SHIFT);
2352         }
2353
2354         pol = mpol_dup(vma_policy(vma));
2355         if (IS_ERR(pol)) {
2356                 err = PTR_ERR(pol);
2357                 goto out_free_vma;
2358         }
2359         vma_set_policy(new, pol);
2360
2361         if (anon_vma_clone(new, vma))
2362                 goto out_free_mpol;
2363
2364         if (new->vm_file)
2365                 get_file(new->vm_file);
2366
2367         if (new->vm_ops && new->vm_ops->open)
2368                 new->vm_ops->open(new);
2369
2370         if (new_below)
2371                 err = vma_adjust(vma, addr, vma->vm_end, vma->vm_pgoff +
2372                         ((addr - new->vm_start) >> PAGE_SHIFT), new);
2373         else
2374                 err = vma_adjust(vma, vma->vm_start, addr, vma->vm_pgoff, new);
2375
2376         /* Success. */
2377         if (!err)
2378                 return 0;
2379
2380         /* Clean everything up if vma_adjust failed. */
2381         if (new->vm_ops && new->vm_ops->close)
2382                 new->vm_ops->close(new);
2383         if (new->vm_file)
2384                 fput(new->vm_file);
2385         unlink_anon_vmas(new);
2386  out_free_mpol:
2387         mpol_put(pol);
2388  out_free_vma:
2389         kmem_cache_free(vm_area_cachep, new);
2390  out_err:
2391         return err;
2392 }
2393
2394 /*
2395  * Split a vma into two pieces at address 'addr', a new vma is allocated
2396  * either for the first part or the tail.
2397  */
2398 int split_vma(struct mm_struct *mm, struct vm_area_struct *vma,
2399               unsigned long addr, int new_below)
2400 {
2401         if (mm->map_count >= sysctl_max_map_count)
2402                 return -ENOMEM;
2403
2404         return __split_vma(mm, vma, addr, new_below);
2405 }
2406
2407 /* Munmap is split into 2 main parts -- this part which finds
2408  * what needs doing, and the areas themselves, which do the
2409  * work.  This now handles partial unmappings.
2410  * Jeremy Fitzhardinge <jeremy@goop.org>
2411  */
2412 int do_munmap(struct mm_struct *mm, unsigned long start, size_t len)
2413 {
2414         unsigned long end;
2415         struct vm_area_struct *vma, *prev, *last;
2416
2417         if ((start & ~PAGE_MASK) || start > TASK_SIZE || len > TASK_SIZE-start)
2418                 return -EINVAL;
2419
2420         if ((len = PAGE_ALIGN(len)) == 0)
2421                 return -EINVAL;
2422
2423         /* Find the first overlapping VMA */
2424         vma = find_vma(mm, start);
2425         if (!vma)
2426                 return 0;
2427         prev = vma->vm_prev;
2428         /* we have  start < vma->vm_end  */
2429
2430         /* if it doesn't overlap, we have nothing.. */
2431         end = start + len;
2432         if (vma->vm_start >= end)
2433                 return 0;
2434
2435         /*
2436          * If we need to split any vma, do it now to save pain later.
2437          *
2438          * Note: mremap's move_vma VM_ACCOUNT handling assumes a partially
2439          * unmapped vm_area_struct will remain in use: so lower split_vma
2440          * places tmp vma above, and higher split_vma places tmp vma below.
2441          */
2442         if (start > vma->vm_start) {
2443                 int error;
2444
2445                 /*
2446                  * Make sure that map_count on return from munmap() will
2447                  * not exceed its limit; but let map_count go just above
2448                  * its limit temporarily, to help free resources as expected.
2449                  */
2450                 if (end < vma->vm_end && mm->map_count >= sysctl_max_map_count)
2451                         return -ENOMEM;
2452
2453                 error = __split_vma(mm, vma, start, 0);
2454                 if (error)
2455                         return error;
2456                 prev = vma;
2457         }
2458
2459         /* Does it split the last one? */
2460         last = find_vma(mm, end);
2461         if (last && end > last->vm_start) {
2462                 int error = __split_vma(mm, last, end, 1);
2463                 if (error)
2464                         return error;
2465         }
2466         vma = prev? prev->vm_next: mm->mmap;
2467
2468         /*
2469          * unlock any mlock()ed ranges before detaching vmas
2470          */
2471         if (mm->locked_vm) {
2472                 struct vm_area_struct *tmp = vma;
2473                 while (tmp && tmp->vm_start < end) {
2474                         if (tmp->vm_flags & VM_LOCKED) {
2475                                 mm->locked_vm -= vma_pages(tmp);
2476                                 munlock_vma_pages_all(tmp);
2477                         }
2478                         tmp = tmp->vm_next;
2479                 }
2480         }
2481
2482         /*
2483          * Remove the vma's, and unmap the actual pages
2484          */
2485         detach_vmas_to_be_unmapped(mm, vma, prev, end);
2486         unmap_region(mm, vma, prev, start, end);
2487
2488         /* Fix up all other VM information */
2489         remove_vma_list(mm, vma);
2490
2491         return 0;
2492 }
2493
2494 int vm_munmap(unsigned long start, size_t len)
2495 {
2496         int ret;
2497         struct mm_struct *mm = current->mm;
2498
2499         down_write(&mm->mmap_sem);
2500         ret = do_munmap(mm, start, len);
2501         up_write(&mm->mmap_sem);
2502         return ret;
2503 }
2504 EXPORT_SYMBOL(vm_munmap);
2505
2506 SYSCALL_DEFINE2(munmap, unsigned long, addr, size_t, len)
2507 {
2508         profile_munmap(addr);
2509         return vm_munmap(addr, len);
2510 }
2511
2512 static inline void verify_mm_writelocked(struct mm_struct *mm)
2513 {
2514 #ifdef CONFIG_DEBUG_VM
2515         if (unlikely(down_read_trylock(&mm->mmap_sem))) {
2516                 WARN_ON(1);
2517                 up_read(&mm->mmap_sem);
2518         }
2519 #endif
2520 }
2521
2522 /*
2523  *  this is really a simplified "do_mmap".  it only handles
2524  *  anonymous maps.  eventually we may be able to do some
2525  *  brk-specific accounting here.
2526  */
2527 static unsigned long do_brk(unsigned long addr, unsigned long len)
2528 {
2529         struct mm_struct * mm = current->mm;
2530         struct vm_area_struct * vma, * prev;
2531         unsigned long flags;
2532         struct rb_node ** rb_link, * rb_parent;
2533         pgoff_t pgoff = addr >> PAGE_SHIFT;
2534         int error;
2535
2536         len = PAGE_ALIGN(len);
2537         if (!len)
2538                 return addr;
2539
2540         flags = VM_DATA_DEFAULT_FLAGS | VM_ACCOUNT | mm->def_flags;
2541
2542         error = get_unmapped_area(NULL, addr, len, 0, MAP_FIXED);
2543         if (error & ~PAGE_MASK)
2544                 return error;
2545
2546         /*
2547          * mlock MCL_FUTURE?
2548          */
2549         if (mm->def_flags & VM_LOCKED) {
2550                 unsigned long locked, lock_limit;
2551                 locked = len >> PAGE_SHIFT;
2552                 locked += mm->locked_vm;
2553                 lock_limit = rlimit(RLIMIT_MEMLOCK);
2554                 lock_limit >>= PAGE_SHIFT;
2555                 if (locked > lock_limit && !capable(CAP_IPC_LOCK))
2556                         return -EAGAIN;
2557         }
2558
2559         /*
2560          * mm->mmap_sem is required to protect against another thread
2561          * changing the mappings in case we sleep.
2562          */
2563         verify_mm_writelocked(mm);
2564
2565         /*
2566          * Clear old maps.  this also does some error checking for us
2567          */
2568  munmap_back:
2569         if (find_vma_links(mm, addr, addr + len, &prev, &rb_link, &rb_parent)) {
2570                 if (do_munmap(mm, addr, len))
2571                         return -ENOMEM;
2572                 goto munmap_back;
2573         }
2574
2575         /* Check against address space limits *after* clearing old maps... */
2576         if (!may_expand_vm(mm, len >> PAGE_SHIFT))
2577                 return -ENOMEM;
2578
2579         if (mm->map_count > sysctl_max_map_count)
2580                 return -ENOMEM;
2581
2582         if (security_vm_enough_memory_mm(mm, len >> PAGE_SHIFT))
2583                 return -ENOMEM;
2584
2585         /* Can we just expand an old private anonymous mapping? */
2586         vma = vma_merge(mm, prev, addr, addr + len, flags,
2587                                         NULL, NULL, pgoff, NULL);
2588         if (vma)
2589                 goto out;
2590
2591         /*
2592          * create a vma struct for an anonymous mapping
2593          */
2594         vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
2595         if (!vma) {
2596                 vm_unacct_memory(len >> PAGE_SHIFT);
2597                 return -ENOMEM;
2598         }
2599
2600         INIT_LIST_HEAD(&vma->anon_vma_chain);
2601         vma->vm_mm = mm;
2602         vma->vm_start = addr;
2603         vma->vm_end = addr + len;
2604         vma->vm_pgoff = pgoff;
2605         vma->vm_flags = flags;
2606         vma->vm_page_prot = vm_get_page_prot(flags);
2607         vma_link(mm, vma, prev, rb_link, rb_parent);
2608 out:
2609         perf_event_mmap(vma);
2610         mm->total_vm += len >> PAGE_SHIFT;
2611         if (flags & VM_LOCKED)
2612                 mm->locked_vm += (len >> PAGE_SHIFT);
2613         return addr;
2614 }
2615
2616 unsigned long vm_brk(unsigned long addr, unsigned long len)
2617 {
2618         struct mm_struct *mm = current->mm;
2619         unsigned long ret;
2620         bool populate;
2621
2622         down_write(&mm->mmap_sem);
2623         ret = do_brk(addr, len);
2624         populate = ((mm->def_flags & VM_LOCKED) != 0);
2625         up_write(&mm->mmap_sem);
2626         if (populate)
2627                 mm_populate(addr, len);
2628         return ret;
2629 }
2630 EXPORT_SYMBOL(vm_brk);
2631
2632 /* Release all mmaps. */
2633 void exit_mmap(struct mm_struct *mm)
2634 {
2635         struct mmu_gather tlb;
2636         struct vm_area_struct *vma;
2637         unsigned long nr_accounted = 0;
2638
2639         /* mm's last user has gone, and its about to be pulled down */
2640         mmu_notifier_release(mm);
2641
2642         if (mm->locked_vm) {
2643                 vma = mm->mmap;
2644                 while (vma) {
2645                         if (vma->vm_flags & VM_LOCKED)
2646                                 munlock_vma_pages_all(vma);
2647                         vma = vma->vm_next;
2648                 }
2649         }
2650
2651         arch_exit_mmap(mm);
2652
2653         vma = mm->mmap;
2654         if (!vma)       /* Can happen if dup_mmap() received an OOM */
2655                 return;
2656
2657         lru_add_drain();
2658         flush_cache_mm(mm);
2659         tlb_gather_mmu(&tlb, mm, 1);
2660         /* update_hiwater_rss(mm) here? but nobody should be looking */
2661         /* Use -1 here to ensure all VMAs in the mm are unmapped */
2662         unmap_vmas(&tlb, vma, 0, -1);
2663
2664         free_pgtables(&tlb, vma, FIRST_USER_ADDRESS, 0);
2665         tlb_finish_mmu(&tlb, 0, -1);
2666
2667         /*
2668          * Walk the list again, actually closing and freeing it,
2669          * with preemption enabled, without holding any MM locks.
2670          */
2671         while (vma) {
2672                 if (vma->vm_flags & VM_ACCOUNT)
2673                         nr_accounted += vma_pages(vma);
2674                 vma = remove_vma(vma);
2675         }
2676         vm_unacct_memory(nr_accounted);
2677
2678         WARN_ON(mm->nr_ptes > (FIRST_USER_ADDRESS+PMD_SIZE-1)>>PMD_SHIFT);
2679 }
2680
2681 /* Insert vm structure into process list sorted by address
2682  * and into the inode's i_mmap tree.  If vm_file is non-NULL
2683  * then i_mmap_mutex is taken here.
2684  */
2685 int insert_vm_struct(struct mm_struct *mm, struct vm_area_struct *vma)
2686 {
2687         struct vm_area_struct *prev;
2688         struct rb_node **rb_link, *rb_parent;
2689
2690         /*
2691          * The vm_pgoff of a purely anonymous vma should be irrelevant
2692          * until its first write fault, when page's anon_vma and index
2693          * are set.  But now set the vm_pgoff it will almost certainly
2694          * end up with (unless mremap moves it elsewhere before that
2695          * first wfault), so /proc/pid/maps tells a consistent story.
2696          *
2697          * By setting it to reflect the virtual start address of the
2698          * vma, merges and splits can happen in a seamless way, just
2699          * using the existing file pgoff checks and manipulations.
2700          * Similarly in do_mmap_pgoff and in do_brk.
2701          */
2702         if (!vma->vm_file) {
2703                 BUG_ON(vma->anon_vma);
2704                 vma->vm_pgoff = vma->vm_start >> PAGE_SHIFT;
2705         }
2706         if (find_vma_links(mm, vma->vm_start, vma->vm_end,
2707                            &prev, &rb_link, &rb_parent))
2708                 return -ENOMEM;
2709         if ((vma->vm_flags & VM_ACCOUNT) &&
2710              security_vm_enough_memory_mm(mm, vma_pages(vma)))
2711                 return -ENOMEM;
2712
2713         vma_link(mm, vma, prev, rb_link, rb_parent);
2714         return 0;
2715 }
2716
2717 /*
2718  * Copy the vma structure to a new location in the same mm,
2719  * prior to moving page table entries, to effect an mremap move.
2720  */
2721 struct vm_area_struct *copy_vma(struct vm_area_struct **vmap,
2722         unsigned long addr, unsigned long len, pgoff_t pgoff,
2723         bool *need_rmap_locks)
2724 {
2725         struct vm_area_struct *vma = *vmap;
2726         unsigned long vma_start = vma->vm_start;
2727         struct mm_struct *mm = vma->vm_mm;
2728         struct vm_area_struct *new_vma, *prev;
2729         struct rb_node **rb_link, *rb_parent;
2730         struct mempolicy *pol;
2731         bool faulted_in_anon_vma = true;
2732
2733         /*
2734          * If anonymous vma has not yet been faulted, update new pgoff
2735          * to match new location, to increase its chance of merging.
2736          */
2737         if (unlikely(!vma->vm_file && !vma->anon_vma)) {
2738                 pgoff = addr >> PAGE_SHIFT;
2739                 faulted_in_anon_vma = false;
2740         }
2741
2742         if (find_vma_links(mm, addr, addr + len, &prev, &rb_link, &rb_parent))
2743                 return NULL;    /* should never get here */
2744         new_vma = vma_merge(mm, prev, addr, addr + len, vma->vm_flags,
2745                         vma->anon_vma, vma->vm_file, pgoff, vma_policy(vma));
2746         if (new_vma) {
2747                 /*
2748                  * Source vma may have been merged into new_vma
2749                  */
2750                 if (unlikely(vma_start >= new_vma->vm_start &&
2751                              vma_start < new_vma->vm_end)) {
2752                         /*
2753                          * The only way we can get a vma_merge with
2754                          * self during an mremap is if the vma hasn't
2755                          * been faulted in yet and we were allowed to
2756                          * reset the dst vma->vm_pgoff to the
2757                          * destination address of the mremap to allow
2758                          * the merge to happen. mremap must change the
2759                          * vm_pgoff linearity between src and dst vmas
2760                          * (in turn preventing a vma_merge) to be
2761                          * safe. It is only safe to keep the vm_pgoff
2762                          * linear if there are no pages mapped yet.
2763                          */
2764                         VM_BUG_ON(faulted_in_anon_vma);
2765                         *vmap = vma = new_vma;
2766                 }
2767                 *need_rmap_locks = (new_vma->vm_pgoff <= vma->vm_pgoff);
2768         } else {
2769                 new_vma = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
2770                 if (new_vma) {
2771                         *new_vma = *vma;
2772                         new_vma->vm_start = addr;
2773                         new_vma->vm_end = addr + len;
2774                         new_vma->vm_pgoff = pgoff;
2775                         pol = mpol_dup(vma_policy(vma));
2776                         if (IS_ERR(pol))
2777                                 goto out_free_vma;
2778                         vma_set_policy(new_vma, pol);
2779                         INIT_LIST_HEAD(&new_vma->anon_vma_chain);
2780                         if (anon_vma_clone(new_vma, vma))
2781                                 goto out_free_mempol;
2782                         if (new_vma->vm_file)
2783                                 get_file(new_vma->vm_file);
2784                         if (new_vma->vm_ops && new_vma->vm_ops->open)
2785                                 new_vma->vm_ops->open(new_vma);
2786                         vma_link(mm, new_vma, prev, rb_link, rb_parent);
2787                         *need_rmap_locks = false;
2788                 }
2789         }
2790         return new_vma;
2791
2792  out_free_mempol:
2793         mpol_put(pol);
2794  out_free_vma:
2795         kmem_cache_free(vm_area_cachep, new_vma);
2796         return NULL;
2797 }
2798
2799 /*
2800  * Return true if the calling process may expand its vm space by the passed
2801  * number of pages
2802  */
2803 int may_expand_vm(struct mm_struct *mm, unsigned long npages)
2804 {
2805         unsigned long cur = mm->total_vm;       /* pages */
2806         unsigned long lim;
2807
2808         lim = rlimit(RLIMIT_AS) >> PAGE_SHIFT;
2809
2810         if (cur + npages > lim)
2811                 return 0;
2812         return 1;
2813 }
2814
2815
2816 static int special_mapping_fault(struct vm_area_struct *vma,
2817                                 struct vm_fault *vmf)
2818 {
2819         pgoff_t pgoff;
2820         struct page **pages;
2821
2822         /*
2823          * special mappings have no vm_file, and in that case, the mm
2824          * uses vm_pgoff internally. So we have to subtract it from here.
2825          * We are allowed to do this because we are the mm; do not copy
2826          * this code into drivers!
2827          */
2828         pgoff = vmf->pgoff - vma->vm_pgoff;
2829
2830         for (pages = vma->vm_private_data; pgoff && *pages; ++pages)
2831                 pgoff--;
2832
2833         if (*pages) {
2834                 struct page *page = *pages;
2835                 get_page(page);
2836                 vmf->page = page;
2837                 return 0;
2838         }
2839
2840         return VM_FAULT_SIGBUS;
2841 }
2842
2843 /*
2844  * Having a close hook prevents vma merging regardless of flags.
2845  */
2846 static void special_mapping_close(struct vm_area_struct *vma)
2847 {
2848 }
2849
2850 static const struct vm_operations_struct special_mapping_vmops = {
2851         .close = special_mapping_close,
2852         .fault = special_mapping_fault,
2853 };
2854
2855 /*
2856  * Called with mm->mmap_sem held for writing.
2857  * Insert a new vma covering the given region, with the given flags.
2858  * Its pages are supplied by the given array of struct page *.
2859  * The array can be shorter than len >> PAGE_SHIFT if it's null-terminated.
2860  * The region past the last page supplied will always produce SIGBUS.
2861  * The array pointer and the pages it points to are assumed to stay alive
2862  * for as long as this mapping might exist.
2863  */
2864 int install_special_mapping(struct mm_struct *mm,
2865                             unsigned long addr, unsigned long len,
2866                             unsigned long vm_flags, struct page **pages)
2867 {
2868         int ret;
2869         struct vm_area_struct *vma;
2870
2871         vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
2872         if (unlikely(vma == NULL))
2873                 return -ENOMEM;
2874
2875         INIT_LIST_HEAD(&vma->anon_vma_chain);
2876         vma->vm_mm = mm;
2877         vma->vm_start = addr;
2878         vma->vm_end = addr + len;
2879
2880         vma->vm_flags = vm_flags | mm->def_flags | VM_DONTEXPAND;
2881         vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
2882
2883         vma->vm_ops = &special_mapping_vmops;
2884         vma->vm_private_data = pages;
2885
2886         ret = insert_vm_struct(mm, vma);
2887         if (ret)
2888                 goto out;
2889
2890         mm->total_vm += len >> PAGE_SHIFT;
2891
2892         perf_event_mmap(vma);
2893
2894         return 0;
2895
2896 out:
2897         kmem_cache_free(vm_area_cachep, vma);
2898         return ret;
2899 }
2900
2901 static DEFINE_MUTEX(mm_all_locks_mutex);
2902
2903 static void vm_lock_anon_vma(struct mm_struct *mm, struct anon_vma *anon_vma)
2904 {
2905         if (!test_bit(0, (unsigned long *) &anon_vma->root->rb_root.rb_node)) {
2906                 /*
2907                  * The LSB of head.next can't change from under us
2908                  * because we hold the mm_all_locks_mutex.
2909                  */
2910                 down_write_nest_lock(&anon_vma->root->rwsem, &mm->mmap_sem);
2911                 /*
2912                  * We can safely modify head.next after taking the
2913                  * anon_vma->root->rwsem. If some other vma in this mm shares
2914                  * the same anon_vma we won't take it again.
2915                  *
2916                  * No need of atomic instructions here, head.next
2917                  * can't change from under us thanks to the
2918                  * anon_vma->root->rwsem.
2919                  */
2920                 if (__test_and_set_bit(0, (unsigned long *)
2921                                        &anon_vma->root->rb_root.rb_node))
2922                         BUG();
2923         }
2924 }
2925
2926 static void vm_lock_mapping(struct mm_struct *mm, struct address_space *mapping)
2927 {
2928         if (!test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) {
2929                 /*
2930                  * AS_MM_ALL_LOCKS can't change from under us because
2931                  * we hold the mm_all_locks_mutex.
2932                  *
2933                  * Operations on ->flags have to be atomic because
2934                  * even if AS_MM_ALL_LOCKS is stable thanks to the
2935                  * mm_all_locks_mutex, there may be other cpus
2936                  * changing other bitflags in parallel to us.
2937                  */
2938                 if (test_and_set_bit(AS_MM_ALL_LOCKS, &mapping->flags))
2939                         BUG();
2940                 mutex_lock_nest_lock(&mapping->i_mmap_mutex, &mm->mmap_sem);
2941         }
2942 }
2943
2944 /*
2945  * This operation locks against the VM for all pte/vma/mm related
2946  * operations that could ever happen on a certain mm. This includes
2947  * vmtruncate, try_to_unmap, and all page faults.
2948  *
2949  * The caller must take the mmap_sem in write mode before calling
2950  * mm_take_all_locks(). The caller isn't allowed to release the
2951  * mmap_sem until mm_drop_all_locks() returns.
2952  *
2953  * mmap_sem in write mode is required in order to block all operations
2954  * that could modify pagetables and free pages without need of
2955  * altering the vma layout (for example populate_range() with
2956  * nonlinear vmas). It's also needed in write mode to avoid new
2957  * anon_vmas to be associated with existing vmas.
2958  *
2959  * A single task can't take more than one mm_take_all_locks() in a row
2960  * or it would deadlock.
2961  *
2962  * The LSB in anon_vma->rb_root.rb_node and the AS_MM_ALL_LOCKS bitflag in
2963  * mapping->flags avoid to take the same lock twice, if more than one
2964  * vma in this mm is backed by the same anon_vma or address_space.
2965  *
2966  * We can take all the locks in random order because the VM code
2967  * taking i_mmap_mutex or anon_vma->rwsem outside the mmap_sem never
2968  * takes more than one of them in a row. Secondly we're protected
2969  * against a concurrent mm_take_all_locks() by the mm_all_locks_mutex.
2970  *
2971  * mm_take_all_locks() and mm_drop_all_locks are expensive operations
2972  * that may have to take thousand of locks.
2973  *
2974  * mm_take_all_locks() can fail if it's interrupted by signals.
2975  */
2976 int mm_take_all_locks(struct mm_struct *mm)
2977 {
2978         struct vm_area_struct *vma;
2979         struct anon_vma_chain *avc;
2980
2981         BUG_ON(down_read_trylock(&mm->mmap_sem));
2982
2983         mutex_lock(&mm_all_locks_mutex);
2984
2985         for (vma = mm->mmap; vma; vma = vma->vm_next) {
2986                 if (signal_pending(current))
2987                         goto out_unlock;
2988                 if (vma->vm_file && vma->vm_file->f_mapping)
2989                         vm_lock_mapping(mm, vma->vm_file->f_mapping);
2990         }
2991
2992         for (vma = mm->mmap; vma; vma = vma->vm_next) {
2993                 if (signal_pending(current))
2994                         goto out_unlock;
2995                 if (vma->anon_vma)
2996                         list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
2997                                 vm_lock_anon_vma(mm, avc->anon_vma);
2998         }
2999
3000         return 0;
3001
3002 out_unlock:
3003         mm_drop_all_locks(mm);
3004         return -EINTR;
3005 }
3006
3007 static void vm_unlock_anon_vma(struct anon_vma *anon_vma)
3008 {
3009         if (test_bit(0, (unsigned long *) &anon_vma->root->rb_root.rb_node)) {
3010                 /*
3011                  * The LSB of head.next can't change to 0 from under
3012                  * us because we hold the mm_all_locks_mutex.
3013                  *
3014                  * We must however clear the bitflag before unlocking
3015                  * the vma so the users using the anon_vma->rb_root will
3016                  * never see our bitflag.
3017                  *
3018                  * No need of atomic instructions here, head.next
3019                  * can't change from under us until we release the
3020                  * anon_vma->root->rwsem.
3021                  */
3022                 if (!__test_and_clear_bit(0, (unsigned long *)
3023                                           &anon_vma->root->rb_root.rb_node))
3024                         BUG();
3025                 anon_vma_unlock(anon_vma);
3026         }
3027 }
3028
3029 static void vm_unlock_mapping(struct address_space *mapping)
3030 {
3031         if (test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) {
3032                 /*
3033                  * AS_MM_ALL_LOCKS can't change to 0 from under us
3034                  * because we hold the mm_all_locks_mutex.
3035                  */
3036                 mutex_unlock(&mapping->i_mmap_mutex);
3037                 if (!test_and_clear_bit(AS_MM_ALL_LOCKS,
3038                                         &mapping->flags))
3039                         BUG();
3040         }
3041 }
3042
3043 /*
3044  * The mmap_sem cannot be released by the caller until
3045  * mm_drop_all_locks() returns.
3046  */
3047 void mm_drop_all_locks(struct mm_struct *mm)
3048 {
3049         struct vm_area_struct *vma;
3050         struct anon_vma_chain *avc;
3051
3052         BUG_ON(down_read_trylock(&mm->mmap_sem));
3053         BUG_ON(!mutex_is_locked(&mm_all_locks_mutex));
3054
3055         for (vma = mm->mmap; vma; vma = vma->vm_next) {
3056                 if (vma->anon_vma)
3057                         list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
3058                                 vm_unlock_anon_vma(avc->anon_vma);
3059                 if (vma->vm_file && vma->vm_file->f_mapping)
3060                         vm_unlock_mapping(vma->vm_file->f_mapping);
3061         }
3062
3063         mutex_unlock(&mm_all_locks_mutex);
3064 }
3065
3066 /*
3067  * initialise the VMA slab
3068  */
3069 void __init mmap_init(void)
3070 {
3071         int ret;
3072
3073         ret = percpu_counter_init(&vm_committed_as, 0);
3074         VM_BUG_ON(ret);
3075 }