mm: kill vma flag VM_CAN_NONLINEAR
[platform/adaptation/renesas_rcar/renesas_kernel.git] / mm / mmap.c
1 /*
2  * mm/mmap.c
3  *
4  * Written by obz.
5  *
6  * Address space accounting code        <alan@lxorguk.ukuu.org.uk>
7  */
8
9 #include <linux/slab.h>
10 #include <linux/backing-dev.h>
11 #include <linux/mm.h>
12 #include <linux/shm.h>
13 #include <linux/mman.h>
14 #include <linux/pagemap.h>
15 #include <linux/swap.h>
16 #include <linux/syscalls.h>
17 #include <linux/capability.h>
18 #include <linux/init.h>
19 #include <linux/file.h>
20 #include <linux/fs.h>
21 #include <linux/personality.h>
22 #include <linux/security.h>
23 #include <linux/hugetlb.h>
24 #include <linux/profile.h>
25 #include <linux/export.h>
26 #include <linux/mount.h>
27 #include <linux/mempolicy.h>
28 #include <linux/rmap.h>
29 #include <linux/mmu_notifier.h>
30 #include <linux/perf_event.h>
31 #include <linux/audit.h>
32 #include <linux/khugepaged.h>
33 #include <linux/uprobes.h>
34
35 #include <asm/uaccess.h>
36 #include <asm/cacheflush.h>
37 #include <asm/tlb.h>
38 #include <asm/mmu_context.h>
39
40 #include "internal.h"
41
42 #ifndef arch_mmap_check
43 #define arch_mmap_check(addr, len, flags)       (0)
44 #endif
45
46 #ifndef arch_rebalance_pgtables
47 #define arch_rebalance_pgtables(addr, len)              (addr)
48 #endif
49
50 static void unmap_region(struct mm_struct *mm,
51                 struct vm_area_struct *vma, struct vm_area_struct *prev,
52                 unsigned long start, unsigned long end);
53
54 /*
55  * WARNING: the debugging will use recursive algorithms so never enable this
56  * unless you know what you are doing.
57  */
58 #undef DEBUG_MM_RB
59
60 /* description of effects of mapping type and prot in current implementation.
61  * this is due to the limited x86 page protection hardware.  The expected
62  * behavior is in parens:
63  *
64  * map_type     prot
65  *              PROT_NONE       PROT_READ       PROT_WRITE      PROT_EXEC
66  * MAP_SHARED   r: (no) no      r: (yes) yes    r: (no) yes     r: (no) yes
67  *              w: (no) no      w: (no) no      w: (yes) yes    w: (no) no
68  *              x: (no) no      x: (no) yes     x: (no) yes     x: (yes) yes
69  *              
70  * MAP_PRIVATE  r: (no) no      r: (yes) yes    r: (no) yes     r: (no) yes
71  *              w: (no) no      w: (no) no      w: (copy) copy  w: (no) no
72  *              x: (no) no      x: (no) yes     x: (no) yes     x: (yes) yes
73  *
74  */
75 pgprot_t protection_map[16] = {
76         __P000, __P001, __P010, __P011, __P100, __P101, __P110, __P111,
77         __S000, __S001, __S010, __S011, __S100, __S101, __S110, __S111
78 };
79
80 pgprot_t vm_get_page_prot(unsigned long vm_flags)
81 {
82         return __pgprot(pgprot_val(protection_map[vm_flags &
83                                 (VM_READ|VM_WRITE|VM_EXEC|VM_SHARED)]) |
84                         pgprot_val(arch_vm_get_page_prot(vm_flags)));
85 }
86 EXPORT_SYMBOL(vm_get_page_prot);
87
88 int sysctl_overcommit_memory __read_mostly = OVERCOMMIT_GUESS;  /* heuristic overcommit */
89 int sysctl_overcommit_ratio __read_mostly = 50; /* default is 50% */
90 int sysctl_max_map_count __read_mostly = DEFAULT_MAX_MAP_COUNT;
91 /*
92  * Make sure vm_committed_as in one cacheline and not cacheline shared with
93  * other variables. It can be updated by several CPUs frequently.
94  */
95 struct percpu_counter vm_committed_as ____cacheline_aligned_in_smp;
96
97 /*
98  * Check that a process has enough memory to allocate a new virtual
99  * mapping. 0 means there is enough memory for the allocation to
100  * succeed and -ENOMEM implies there is not.
101  *
102  * We currently support three overcommit policies, which are set via the
103  * vm.overcommit_memory sysctl.  See Documentation/vm/overcommit-accounting
104  *
105  * Strict overcommit modes added 2002 Feb 26 by Alan Cox.
106  * Additional code 2002 Jul 20 by Robert Love.
107  *
108  * cap_sys_admin is 1 if the process has admin privileges, 0 otherwise.
109  *
110  * Note this is a helper function intended to be used by LSMs which
111  * wish to use this logic.
112  */
113 int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin)
114 {
115         unsigned long free, allowed;
116
117         vm_acct_memory(pages);
118
119         /*
120          * Sometimes we want to use more memory than we have
121          */
122         if (sysctl_overcommit_memory == OVERCOMMIT_ALWAYS)
123                 return 0;
124
125         if (sysctl_overcommit_memory == OVERCOMMIT_GUESS) {
126                 free = global_page_state(NR_FREE_PAGES);
127                 free += global_page_state(NR_FILE_PAGES);
128
129                 /*
130                  * shmem pages shouldn't be counted as free in this
131                  * case, they can't be purged, only swapped out, and
132                  * that won't affect the overall amount of available
133                  * memory in the system.
134                  */
135                 free -= global_page_state(NR_SHMEM);
136
137                 free += nr_swap_pages;
138
139                 /*
140                  * Any slabs which are created with the
141                  * SLAB_RECLAIM_ACCOUNT flag claim to have contents
142                  * which are reclaimable, under pressure.  The dentry
143                  * cache and most inode caches should fall into this
144                  */
145                 free += global_page_state(NR_SLAB_RECLAIMABLE);
146
147                 /*
148                  * Leave reserved pages. The pages are not for anonymous pages.
149                  */
150                 if (free <= totalreserve_pages)
151                         goto error;
152                 else
153                         free -= totalreserve_pages;
154
155                 /*
156                  * Leave the last 3% for root
157                  */
158                 if (!cap_sys_admin)
159                         free -= free / 32;
160
161                 if (free > pages)
162                         return 0;
163
164                 goto error;
165         }
166
167         allowed = (totalram_pages - hugetlb_total_pages())
168                 * sysctl_overcommit_ratio / 100;
169         /*
170          * Leave the last 3% for root
171          */
172         if (!cap_sys_admin)
173                 allowed -= allowed / 32;
174         allowed += total_swap_pages;
175
176         /* Don't let a single process grow too big:
177            leave 3% of the size of this process for other processes */
178         if (mm)
179                 allowed -= mm->total_vm / 32;
180
181         if (percpu_counter_read_positive(&vm_committed_as) < allowed)
182                 return 0;
183 error:
184         vm_unacct_memory(pages);
185
186         return -ENOMEM;
187 }
188
189 /*
190  * Requires inode->i_mapping->i_mmap_mutex
191  */
192 static void __remove_shared_vm_struct(struct vm_area_struct *vma,
193                 struct file *file, struct address_space *mapping)
194 {
195         if (vma->vm_flags & VM_DENYWRITE)
196                 atomic_inc(&file->f_path.dentry->d_inode->i_writecount);
197         if (vma->vm_flags & VM_SHARED)
198                 mapping->i_mmap_writable--;
199
200         flush_dcache_mmap_lock(mapping);
201         if (unlikely(vma->vm_flags & VM_NONLINEAR))
202                 list_del_init(&vma->shared.vm_set.list);
203         else
204                 vma_prio_tree_remove(vma, &mapping->i_mmap);
205         flush_dcache_mmap_unlock(mapping);
206 }
207
208 /*
209  * Unlink a file-based vm structure from its prio_tree, to hide
210  * vma from rmap and vmtruncate before freeing its page tables.
211  */
212 void unlink_file_vma(struct vm_area_struct *vma)
213 {
214         struct file *file = vma->vm_file;
215
216         if (file) {
217                 struct address_space *mapping = file->f_mapping;
218                 mutex_lock(&mapping->i_mmap_mutex);
219                 __remove_shared_vm_struct(vma, file, mapping);
220                 mutex_unlock(&mapping->i_mmap_mutex);
221         }
222 }
223
224 /*
225  * Close a vm structure and free it, returning the next.
226  */
227 static struct vm_area_struct *remove_vma(struct vm_area_struct *vma)
228 {
229         struct vm_area_struct *next = vma->vm_next;
230
231         might_sleep();
232         if (vma->vm_ops && vma->vm_ops->close)
233                 vma->vm_ops->close(vma);
234         if (vma->vm_file) {
235                 fput(vma->vm_file);
236                 if (vma->vm_flags & VM_EXECUTABLE)
237                         removed_exe_file_vma(vma->vm_mm);
238         }
239         mpol_put(vma_policy(vma));
240         kmem_cache_free(vm_area_cachep, vma);
241         return next;
242 }
243
244 static unsigned long do_brk(unsigned long addr, unsigned long len);
245
246 SYSCALL_DEFINE1(brk, unsigned long, brk)
247 {
248         unsigned long rlim, retval;
249         unsigned long newbrk, oldbrk;
250         struct mm_struct *mm = current->mm;
251         unsigned long min_brk;
252
253         down_write(&mm->mmap_sem);
254
255 #ifdef CONFIG_COMPAT_BRK
256         /*
257          * CONFIG_COMPAT_BRK can still be overridden by setting
258          * randomize_va_space to 2, which will still cause mm->start_brk
259          * to be arbitrarily shifted
260          */
261         if (current->brk_randomized)
262                 min_brk = mm->start_brk;
263         else
264                 min_brk = mm->end_data;
265 #else
266         min_brk = mm->start_brk;
267 #endif
268         if (brk < min_brk)
269                 goto out;
270
271         /*
272          * Check against rlimit here. If this check is done later after the test
273          * of oldbrk with newbrk then it can escape the test and let the data
274          * segment grow beyond its set limit the in case where the limit is
275          * not page aligned -Ram Gupta
276          */
277         rlim = rlimit(RLIMIT_DATA);
278         if (rlim < RLIM_INFINITY && (brk - mm->start_brk) +
279                         (mm->end_data - mm->start_data) > rlim)
280                 goto out;
281
282         newbrk = PAGE_ALIGN(brk);
283         oldbrk = PAGE_ALIGN(mm->brk);
284         if (oldbrk == newbrk)
285                 goto set_brk;
286
287         /* Always allow shrinking brk. */
288         if (brk <= mm->brk) {
289                 if (!do_munmap(mm, newbrk, oldbrk-newbrk))
290                         goto set_brk;
291                 goto out;
292         }
293
294         /* Check against existing mmap mappings. */
295         if (find_vma_intersection(mm, oldbrk, newbrk+PAGE_SIZE))
296                 goto out;
297
298         /* Ok, looks good - let it rip. */
299         if (do_brk(oldbrk, newbrk-oldbrk) != oldbrk)
300                 goto out;
301 set_brk:
302         mm->brk = brk;
303 out:
304         retval = mm->brk;
305         up_write(&mm->mmap_sem);
306         return retval;
307 }
308
309 #ifdef DEBUG_MM_RB
310 static int browse_rb(struct rb_root *root)
311 {
312         int i = 0, j;
313         struct rb_node *nd, *pn = NULL;
314         unsigned long prev = 0, pend = 0;
315
316         for (nd = rb_first(root); nd; nd = rb_next(nd)) {
317                 struct vm_area_struct *vma;
318                 vma = rb_entry(nd, struct vm_area_struct, vm_rb);
319                 if (vma->vm_start < prev)
320                         printk("vm_start %lx prev %lx\n", vma->vm_start, prev), i = -1;
321                 if (vma->vm_start < pend)
322                         printk("vm_start %lx pend %lx\n", vma->vm_start, pend);
323                 if (vma->vm_start > vma->vm_end)
324                         printk("vm_end %lx < vm_start %lx\n", vma->vm_end, vma->vm_start);
325                 i++;
326                 pn = nd;
327                 prev = vma->vm_start;
328                 pend = vma->vm_end;
329         }
330         j = 0;
331         for (nd = pn; nd; nd = rb_prev(nd)) {
332                 j++;
333         }
334         if (i != j)
335                 printk("backwards %d, forwards %d\n", j, i), i = 0;
336         return i;
337 }
338
339 void validate_mm(struct mm_struct *mm)
340 {
341         int bug = 0;
342         int i = 0;
343         struct vm_area_struct *tmp = mm->mmap;
344         while (tmp) {
345                 tmp = tmp->vm_next;
346                 i++;
347         }
348         if (i != mm->map_count)
349                 printk("map_count %d vm_next %d\n", mm->map_count, i), bug = 1;
350         i = browse_rb(&mm->mm_rb);
351         if (i != mm->map_count)
352                 printk("map_count %d rb %d\n", mm->map_count, i), bug = 1;
353         BUG_ON(bug);
354 }
355 #else
356 #define validate_mm(mm) do { } while (0)
357 #endif
358
359 static struct vm_area_struct *
360 find_vma_prepare(struct mm_struct *mm, unsigned long addr,
361                 struct vm_area_struct **pprev, struct rb_node ***rb_link,
362                 struct rb_node ** rb_parent)
363 {
364         struct vm_area_struct * vma;
365         struct rb_node ** __rb_link, * __rb_parent, * rb_prev;
366
367         __rb_link = &mm->mm_rb.rb_node;
368         rb_prev = __rb_parent = NULL;
369         vma = NULL;
370
371         while (*__rb_link) {
372                 struct vm_area_struct *vma_tmp;
373
374                 __rb_parent = *__rb_link;
375                 vma_tmp = rb_entry(__rb_parent, struct vm_area_struct, vm_rb);
376
377                 if (vma_tmp->vm_end > addr) {
378                         vma = vma_tmp;
379                         if (vma_tmp->vm_start <= addr)
380                                 break;
381                         __rb_link = &__rb_parent->rb_left;
382                 } else {
383                         rb_prev = __rb_parent;
384                         __rb_link = &__rb_parent->rb_right;
385                 }
386         }
387
388         *pprev = NULL;
389         if (rb_prev)
390                 *pprev = rb_entry(rb_prev, struct vm_area_struct, vm_rb);
391         *rb_link = __rb_link;
392         *rb_parent = __rb_parent;
393         return vma;
394 }
395
396 void __vma_link_rb(struct mm_struct *mm, struct vm_area_struct *vma,
397                 struct rb_node **rb_link, struct rb_node *rb_parent)
398 {
399         rb_link_node(&vma->vm_rb, rb_parent, rb_link);
400         rb_insert_color(&vma->vm_rb, &mm->mm_rb);
401 }
402
403 static void __vma_link_file(struct vm_area_struct *vma)
404 {
405         struct file *file;
406
407         file = vma->vm_file;
408         if (file) {
409                 struct address_space *mapping = file->f_mapping;
410
411                 if (vma->vm_flags & VM_DENYWRITE)
412                         atomic_dec(&file->f_path.dentry->d_inode->i_writecount);
413                 if (vma->vm_flags & VM_SHARED)
414                         mapping->i_mmap_writable++;
415
416                 flush_dcache_mmap_lock(mapping);
417                 if (unlikely(vma->vm_flags & VM_NONLINEAR))
418                         vma_nonlinear_insert(vma, &mapping->i_mmap_nonlinear);
419                 else
420                         vma_prio_tree_insert(vma, &mapping->i_mmap);
421                 flush_dcache_mmap_unlock(mapping);
422         }
423 }
424
425 static void
426 __vma_link(struct mm_struct *mm, struct vm_area_struct *vma,
427         struct vm_area_struct *prev, struct rb_node **rb_link,
428         struct rb_node *rb_parent)
429 {
430         __vma_link_list(mm, vma, prev, rb_parent);
431         __vma_link_rb(mm, vma, rb_link, rb_parent);
432 }
433
434 static void vma_link(struct mm_struct *mm, struct vm_area_struct *vma,
435                         struct vm_area_struct *prev, struct rb_node **rb_link,
436                         struct rb_node *rb_parent)
437 {
438         struct address_space *mapping = NULL;
439
440         if (vma->vm_file)
441                 mapping = vma->vm_file->f_mapping;
442
443         if (mapping)
444                 mutex_lock(&mapping->i_mmap_mutex);
445
446         __vma_link(mm, vma, prev, rb_link, rb_parent);
447         __vma_link_file(vma);
448
449         if (mapping)
450                 mutex_unlock(&mapping->i_mmap_mutex);
451
452         mm->map_count++;
453         validate_mm(mm);
454 }
455
456 /*
457  * Helper for vma_adjust() in the split_vma insert case: insert a vma into the
458  * mm's list and rbtree.  It has already been inserted into the prio_tree.
459  */
460 static void __insert_vm_struct(struct mm_struct *mm, struct vm_area_struct *vma)
461 {
462         struct vm_area_struct *__vma, *prev;
463         struct rb_node **rb_link, *rb_parent;
464
465         __vma = find_vma_prepare(mm, vma->vm_start,&prev, &rb_link, &rb_parent);
466         BUG_ON(__vma && __vma->vm_start < vma->vm_end);
467         __vma_link(mm, vma, prev, rb_link, rb_parent);
468         mm->map_count++;
469 }
470
471 static inline void
472 __vma_unlink(struct mm_struct *mm, struct vm_area_struct *vma,
473                 struct vm_area_struct *prev)
474 {
475         struct vm_area_struct *next = vma->vm_next;
476
477         prev->vm_next = next;
478         if (next)
479                 next->vm_prev = prev;
480         rb_erase(&vma->vm_rb, &mm->mm_rb);
481         if (mm->mmap_cache == vma)
482                 mm->mmap_cache = prev;
483 }
484
485 /*
486  * We cannot adjust vm_start, vm_end, vm_pgoff fields of a vma that
487  * is already present in an i_mmap tree without adjusting the tree.
488  * The following helper function should be used when such adjustments
489  * are necessary.  The "insert" vma (if any) is to be inserted
490  * before we drop the necessary locks.
491  */
492 int vma_adjust(struct vm_area_struct *vma, unsigned long start,
493         unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert)
494 {
495         struct mm_struct *mm = vma->vm_mm;
496         struct vm_area_struct *next = vma->vm_next;
497         struct vm_area_struct *importer = NULL;
498         struct address_space *mapping = NULL;
499         struct prio_tree_root *root = NULL;
500         struct anon_vma *anon_vma = NULL;
501         struct file *file = vma->vm_file;
502         long adjust_next = 0;
503         int remove_next = 0;
504
505         if (next && !insert) {
506                 struct vm_area_struct *exporter = NULL;
507
508                 if (end >= next->vm_end) {
509                         /*
510                          * vma expands, overlapping all the next, and
511                          * perhaps the one after too (mprotect case 6).
512                          */
513 again:                  remove_next = 1 + (end > next->vm_end);
514                         end = next->vm_end;
515                         exporter = next;
516                         importer = vma;
517                 } else if (end > next->vm_start) {
518                         /*
519                          * vma expands, overlapping part of the next:
520                          * mprotect case 5 shifting the boundary up.
521                          */
522                         adjust_next = (end - next->vm_start) >> PAGE_SHIFT;
523                         exporter = next;
524                         importer = vma;
525                 } else if (end < vma->vm_end) {
526                         /*
527                          * vma shrinks, and !insert tells it's not
528                          * split_vma inserting another: so it must be
529                          * mprotect case 4 shifting the boundary down.
530                          */
531                         adjust_next = - ((vma->vm_end - end) >> PAGE_SHIFT);
532                         exporter = vma;
533                         importer = next;
534                 }
535
536                 /*
537                  * Easily overlooked: when mprotect shifts the boundary,
538                  * make sure the expanding vma has anon_vma set if the
539                  * shrinking vma had, to cover any anon pages imported.
540                  */
541                 if (exporter && exporter->anon_vma && !importer->anon_vma) {
542                         if (anon_vma_clone(importer, exporter))
543                                 return -ENOMEM;
544                         importer->anon_vma = exporter->anon_vma;
545                 }
546         }
547
548         if (file) {
549                 mapping = file->f_mapping;
550                 if (!(vma->vm_flags & VM_NONLINEAR)) {
551                         root = &mapping->i_mmap;
552                         uprobe_munmap(vma, vma->vm_start, vma->vm_end);
553
554                         if (adjust_next)
555                                 uprobe_munmap(next, next->vm_start,
556                                                         next->vm_end);
557                 }
558
559                 mutex_lock(&mapping->i_mmap_mutex);
560                 if (insert) {
561                         /*
562                          * Put into prio_tree now, so instantiated pages
563                          * are visible to arm/parisc __flush_dcache_page
564                          * throughout; but we cannot insert into address
565                          * space until vma start or end is updated.
566                          */
567                         __vma_link_file(insert);
568                 }
569         }
570
571         vma_adjust_trans_huge(vma, start, end, adjust_next);
572
573         /*
574          * When changing only vma->vm_end, we don't really need anon_vma
575          * lock. This is a fairly rare case by itself, but the anon_vma
576          * lock may be shared between many sibling processes.  Skipping
577          * the lock for brk adjustments makes a difference sometimes.
578          */
579         if (vma->anon_vma && (importer || start != vma->vm_start)) {
580                 anon_vma = vma->anon_vma;
581                 anon_vma_lock(anon_vma);
582         }
583
584         if (root) {
585                 flush_dcache_mmap_lock(mapping);
586                 vma_prio_tree_remove(vma, root);
587                 if (adjust_next)
588                         vma_prio_tree_remove(next, root);
589         }
590
591         vma->vm_start = start;
592         vma->vm_end = end;
593         vma->vm_pgoff = pgoff;
594         if (adjust_next) {
595                 next->vm_start += adjust_next << PAGE_SHIFT;
596                 next->vm_pgoff += adjust_next;
597         }
598
599         if (root) {
600                 if (adjust_next)
601                         vma_prio_tree_insert(next, root);
602                 vma_prio_tree_insert(vma, root);
603                 flush_dcache_mmap_unlock(mapping);
604         }
605
606         if (remove_next) {
607                 /*
608                  * vma_merge has merged next into vma, and needs
609                  * us to remove next before dropping the locks.
610                  */
611                 __vma_unlink(mm, next, vma);
612                 if (file)
613                         __remove_shared_vm_struct(next, file, mapping);
614         } else if (insert) {
615                 /*
616                  * split_vma has split insert from vma, and needs
617                  * us to insert it before dropping the locks
618                  * (it may either follow vma or precede it).
619                  */
620                 __insert_vm_struct(mm, insert);
621         }
622
623         if (anon_vma)
624                 anon_vma_unlock(anon_vma);
625         if (mapping)
626                 mutex_unlock(&mapping->i_mmap_mutex);
627
628         if (root) {
629                 uprobe_mmap(vma);
630
631                 if (adjust_next)
632                         uprobe_mmap(next);
633         }
634
635         if (remove_next) {
636                 if (file) {
637                         uprobe_munmap(next, next->vm_start, next->vm_end);
638                         fput(file);
639                         if (next->vm_flags & VM_EXECUTABLE)
640                                 removed_exe_file_vma(mm);
641                 }
642                 if (next->anon_vma)
643                         anon_vma_merge(vma, next);
644                 mm->map_count--;
645                 mpol_put(vma_policy(next));
646                 kmem_cache_free(vm_area_cachep, next);
647                 /*
648                  * In mprotect's case 6 (see comments on vma_merge),
649                  * we must remove another next too. It would clutter
650                  * up the code too much to do both in one go.
651                  */
652                 if (remove_next == 2) {
653                         next = vma->vm_next;
654                         goto again;
655                 }
656         }
657         if (insert && file)
658                 uprobe_mmap(insert);
659
660         validate_mm(mm);
661
662         return 0;
663 }
664
665 /*
666  * If the vma has a ->close operation then the driver probably needs to release
667  * per-vma resources, so we don't attempt to merge those.
668  */
669 static inline int is_mergeable_vma(struct vm_area_struct *vma,
670                         struct file *file, unsigned long vm_flags)
671 {
672         if (vma->vm_flags ^ vm_flags)
673                 return 0;
674         if (vma->vm_file != file)
675                 return 0;
676         if (vma->vm_ops && vma->vm_ops->close)
677                 return 0;
678         return 1;
679 }
680
681 static inline int is_mergeable_anon_vma(struct anon_vma *anon_vma1,
682                                         struct anon_vma *anon_vma2,
683                                         struct vm_area_struct *vma)
684 {
685         /*
686          * The list_is_singular() test is to avoid merging VMA cloned from
687          * parents. This can improve scalability caused by anon_vma lock.
688          */
689         if ((!anon_vma1 || !anon_vma2) && (!vma ||
690                 list_is_singular(&vma->anon_vma_chain)))
691                 return 1;
692         return anon_vma1 == anon_vma2;
693 }
694
695 /*
696  * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
697  * in front of (at a lower virtual address and file offset than) the vma.
698  *
699  * We cannot merge two vmas if they have differently assigned (non-NULL)
700  * anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
701  *
702  * We don't check here for the merged mmap wrapping around the end of pagecache
703  * indices (16TB on ia32) because do_mmap_pgoff() does not permit mmap's which
704  * wrap, nor mmaps which cover the final page at index -1UL.
705  */
706 static int
707 can_vma_merge_before(struct vm_area_struct *vma, unsigned long vm_flags,
708         struct anon_vma *anon_vma, struct file *file, pgoff_t vm_pgoff)
709 {
710         if (is_mergeable_vma(vma, file, vm_flags) &&
711             is_mergeable_anon_vma(anon_vma, vma->anon_vma, vma)) {
712                 if (vma->vm_pgoff == vm_pgoff)
713                         return 1;
714         }
715         return 0;
716 }
717
718 /*
719  * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
720  * beyond (at a higher virtual address and file offset than) the vma.
721  *
722  * We cannot merge two vmas if they have differently assigned (non-NULL)
723  * anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
724  */
725 static int
726 can_vma_merge_after(struct vm_area_struct *vma, unsigned long vm_flags,
727         struct anon_vma *anon_vma, struct file *file, pgoff_t vm_pgoff)
728 {
729         if (is_mergeable_vma(vma, file, vm_flags) &&
730             is_mergeable_anon_vma(anon_vma, vma->anon_vma, vma)) {
731                 pgoff_t vm_pglen;
732                 vm_pglen = (vma->vm_end - vma->vm_start) >> PAGE_SHIFT;
733                 if (vma->vm_pgoff + vm_pglen == vm_pgoff)
734                         return 1;
735         }
736         return 0;
737 }
738
739 /*
740  * Given a mapping request (addr,end,vm_flags,file,pgoff), figure out
741  * whether that can be merged with its predecessor or its successor.
742  * Or both (it neatly fills a hole).
743  *
744  * In most cases - when called for mmap, brk or mremap - [addr,end) is
745  * certain not to be mapped by the time vma_merge is called; but when
746  * called for mprotect, it is certain to be already mapped (either at
747  * an offset within prev, or at the start of next), and the flags of
748  * this area are about to be changed to vm_flags - and the no-change
749  * case has already been eliminated.
750  *
751  * The following mprotect cases have to be considered, where AAAA is
752  * the area passed down from mprotect_fixup, never extending beyond one
753  * vma, PPPPPP is the prev vma specified, and NNNNNN the next vma after:
754  *
755  *     AAAA             AAAA                AAAA          AAAA
756  *    PPPPPPNNNNNN    PPPPPPNNNNNN    PPPPPPNNNNNN    PPPPNNNNXXXX
757  *    cannot merge    might become    might become    might become
758  *                    PPNNNNNNNNNN    PPPPPPPPPPNN    PPPPPPPPPPPP 6 or
759  *    mmap, brk or    case 4 below    case 5 below    PPPPPPPPXXXX 7 or
760  *    mremap move:                                    PPPPNNNNNNNN 8
761  *        AAAA
762  *    PPPP    NNNN    PPPPPPPPPPPP    PPPPPPPPNNNN    PPPPNNNNNNNN
763  *    might become    case 1 below    case 2 below    case 3 below
764  *
765  * Odd one out? Case 8, because it extends NNNN but needs flags of XXXX:
766  * mprotect_fixup updates vm_flags & vm_page_prot on successful return.
767  */
768 struct vm_area_struct *vma_merge(struct mm_struct *mm,
769                         struct vm_area_struct *prev, unsigned long addr,
770                         unsigned long end, unsigned long vm_flags,
771                         struct anon_vma *anon_vma, struct file *file,
772                         pgoff_t pgoff, struct mempolicy *policy)
773 {
774         pgoff_t pglen = (end - addr) >> PAGE_SHIFT;
775         struct vm_area_struct *area, *next;
776         int err;
777
778         /*
779          * We later require that vma->vm_flags == vm_flags,
780          * so this tests vma->vm_flags & VM_SPECIAL, too.
781          */
782         if (vm_flags & VM_SPECIAL)
783                 return NULL;
784
785         if (prev)
786                 next = prev->vm_next;
787         else
788                 next = mm->mmap;
789         area = next;
790         if (next && next->vm_end == end)                /* cases 6, 7, 8 */
791                 next = next->vm_next;
792
793         /*
794          * Can it merge with the predecessor?
795          */
796         if (prev && prev->vm_end == addr &&
797                         mpol_equal(vma_policy(prev), policy) &&
798                         can_vma_merge_after(prev, vm_flags,
799                                                 anon_vma, file, pgoff)) {
800                 /*
801                  * OK, it can.  Can we now merge in the successor as well?
802                  */
803                 if (next && end == next->vm_start &&
804                                 mpol_equal(policy, vma_policy(next)) &&
805                                 can_vma_merge_before(next, vm_flags,
806                                         anon_vma, file, pgoff+pglen) &&
807                                 is_mergeable_anon_vma(prev->anon_vma,
808                                                       next->anon_vma, NULL)) {
809                                                         /* cases 1, 6 */
810                         err = vma_adjust(prev, prev->vm_start,
811                                 next->vm_end, prev->vm_pgoff, NULL);
812                 } else                                  /* cases 2, 5, 7 */
813                         err = vma_adjust(prev, prev->vm_start,
814                                 end, prev->vm_pgoff, NULL);
815                 if (err)
816                         return NULL;
817                 khugepaged_enter_vma_merge(prev);
818                 return prev;
819         }
820
821         /*
822          * Can this new request be merged in front of next?
823          */
824         if (next && end == next->vm_start &&
825                         mpol_equal(policy, vma_policy(next)) &&
826                         can_vma_merge_before(next, vm_flags,
827                                         anon_vma, file, pgoff+pglen)) {
828                 if (prev && addr < prev->vm_end)        /* case 4 */
829                         err = vma_adjust(prev, prev->vm_start,
830                                 addr, prev->vm_pgoff, NULL);
831                 else                                    /* cases 3, 8 */
832                         err = vma_adjust(area, addr, next->vm_end,
833                                 next->vm_pgoff - pglen, NULL);
834                 if (err)
835                         return NULL;
836                 khugepaged_enter_vma_merge(area);
837                 return area;
838         }
839
840         return NULL;
841 }
842
843 /*
844  * Rough compatbility check to quickly see if it's even worth looking
845  * at sharing an anon_vma.
846  *
847  * They need to have the same vm_file, and the flags can only differ
848  * in things that mprotect may change.
849  *
850  * NOTE! The fact that we share an anon_vma doesn't _have_ to mean that
851  * we can merge the two vma's. For example, we refuse to merge a vma if
852  * there is a vm_ops->close() function, because that indicates that the
853  * driver is doing some kind of reference counting. But that doesn't
854  * really matter for the anon_vma sharing case.
855  */
856 static int anon_vma_compatible(struct vm_area_struct *a, struct vm_area_struct *b)
857 {
858         return a->vm_end == b->vm_start &&
859                 mpol_equal(vma_policy(a), vma_policy(b)) &&
860                 a->vm_file == b->vm_file &&
861                 !((a->vm_flags ^ b->vm_flags) & ~(VM_READ|VM_WRITE|VM_EXEC)) &&
862                 b->vm_pgoff == a->vm_pgoff + ((b->vm_start - a->vm_start) >> PAGE_SHIFT);
863 }
864
865 /*
866  * Do some basic sanity checking to see if we can re-use the anon_vma
867  * from 'old'. The 'a'/'b' vma's are in VM order - one of them will be
868  * the same as 'old', the other will be the new one that is trying
869  * to share the anon_vma.
870  *
871  * NOTE! This runs with mm_sem held for reading, so it is possible that
872  * the anon_vma of 'old' is concurrently in the process of being set up
873  * by another page fault trying to merge _that_. But that's ok: if it
874  * is being set up, that automatically means that it will be a singleton
875  * acceptable for merging, so we can do all of this optimistically. But
876  * we do that ACCESS_ONCE() to make sure that we never re-load the pointer.
877  *
878  * IOW: that the "list_is_singular()" test on the anon_vma_chain only
879  * matters for the 'stable anon_vma' case (ie the thing we want to avoid
880  * is to return an anon_vma that is "complex" due to having gone through
881  * a fork).
882  *
883  * We also make sure that the two vma's are compatible (adjacent,
884  * and with the same memory policies). That's all stable, even with just
885  * a read lock on the mm_sem.
886  */
887 static struct anon_vma *reusable_anon_vma(struct vm_area_struct *old, struct vm_area_struct *a, struct vm_area_struct *b)
888 {
889         if (anon_vma_compatible(a, b)) {
890                 struct anon_vma *anon_vma = ACCESS_ONCE(old->anon_vma);
891
892                 if (anon_vma && list_is_singular(&old->anon_vma_chain))
893                         return anon_vma;
894         }
895         return NULL;
896 }
897
898 /*
899  * find_mergeable_anon_vma is used by anon_vma_prepare, to check
900  * neighbouring vmas for a suitable anon_vma, before it goes off
901  * to allocate a new anon_vma.  It checks because a repetitive
902  * sequence of mprotects and faults may otherwise lead to distinct
903  * anon_vmas being allocated, preventing vma merge in subsequent
904  * mprotect.
905  */
906 struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *vma)
907 {
908         struct anon_vma *anon_vma;
909         struct vm_area_struct *near;
910
911         near = vma->vm_next;
912         if (!near)
913                 goto try_prev;
914
915         anon_vma = reusable_anon_vma(near, vma, near);
916         if (anon_vma)
917                 return anon_vma;
918 try_prev:
919         near = vma->vm_prev;
920         if (!near)
921                 goto none;
922
923         anon_vma = reusable_anon_vma(near, near, vma);
924         if (anon_vma)
925                 return anon_vma;
926 none:
927         /*
928          * There's no absolute need to look only at touching neighbours:
929          * we could search further afield for "compatible" anon_vmas.
930          * But it would probably just be a waste of time searching,
931          * or lead to too many vmas hanging off the same anon_vma.
932          * We're trying to allow mprotect remerging later on,
933          * not trying to minimize memory used for anon_vmas.
934          */
935         return NULL;
936 }
937
938 #ifdef CONFIG_PROC_FS
939 void vm_stat_account(struct mm_struct *mm, unsigned long flags,
940                                                 struct file *file, long pages)
941 {
942         const unsigned long stack_flags
943                 = VM_STACK_FLAGS & (VM_GROWSUP|VM_GROWSDOWN);
944
945         mm->total_vm += pages;
946
947         if (file) {
948                 mm->shared_vm += pages;
949                 if ((flags & (VM_EXEC|VM_WRITE)) == VM_EXEC)
950                         mm->exec_vm += pages;
951         } else if (flags & stack_flags)
952                 mm->stack_vm += pages;
953         if (flags & (VM_RESERVED|VM_IO))
954                 mm->reserved_vm += pages;
955 }
956 #endif /* CONFIG_PROC_FS */
957
958 /*
959  * If a hint addr is less than mmap_min_addr change hint to be as
960  * low as possible but still greater than mmap_min_addr
961  */
962 static inline unsigned long round_hint_to_min(unsigned long hint)
963 {
964         hint &= PAGE_MASK;
965         if (((void *)hint != NULL) &&
966             (hint < mmap_min_addr))
967                 return PAGE_ALIGN(mmap_min_addr);
968         return hint;
969 }
970
971 /*
972  * The caller must hold down_write(&current->mm->mmap_sem).
973  */
974
975 unsigned long do_mmap_pgoff(struct file *file, unsigned long addr,
976                         unsigned long len, unsigned long prot,
977                         unsigned long flags, unsigned long pgoff)
978 {
979         struct mm_struct * mm = current->mm;
980         struct inode *inode;
981         vm_flags_t vm_flags;
982
983         /*
984          * Does the application expect PROT_READ to imply PROT_EXEC?
985          *
986          * (the exception is when the underlying filesystem is noexec
987          *  mounted, in which case we dont add PROT_EXEC.)
988          */
989         if ((prot & PROT_READ) && (current->personality & READ_IMPLIES_EXEC))
990                 if (!(file && (file->f_path.mnt->mnt_flags & MNT_NOEXEC)))
991                         prot |= PROT_EXEC;
992
993         if (!len)
994                 return -EINVAL;
995
996         if (!(flags & MAP_FIXED))
997                 addr = round_hint_to_min(addr);
998
999         /* Careful about overflows.. */
1000         len = PAGE_ALIGN(len);
1001         if (!len)
1002                 return -ENOMEM;
1003
1004         /* offset overflow? */
1005         if ((pgoff + (len >> PAGE_SHIFT)) < pgoff)
1006                return -EOVERFLOW;
1007
1008         /* Too many mappings? */
1009         if (mm->map_count > sysctl_max_map_count)
1010                 return -ENOMEM;
1011
1012         /* Obtain the address to map to. we verify (or select) it and ensure
1013          * that it represents a valid section of the address space.
1014          */
1015         addr = get_unmapped_area(file, addr, len, pgoff, flags);
1016         if (addr & ~PAGE_MASK)
1017                 return addr;
1018
1019         /* Do simple checking here so the lower-level routines won't have
1020          * to. we assume access permissions have been handled by the open
1021          * of the memory object, so we don't do any here.
1022          */
1023         vm_flags = calc_vm_prot_bits(prot) | calc_vm_flag_bits(flags) |
1024                         mm->def_flags | VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC;
1025
1026         if (flags & MAP_LOCKED)
1027                 if (!can_do_mlock())
1028                         return -EPERM;
1029
1030         /* mlock MCL_FUTURE? */
1031         if (vm_flags & VM_LOCKED) {
1032                 unsigned long locked, lock_limit;
1033                 locked = len >> PAGE_SHIFT;
1034                 locked += mm->locked_vm;
1035                 lock_limit = rlimit(RLIMIT_MEMLOCK);
1036                 lock_limit >>= PAGE_SHIFT;
1037                 if (locked > lock_limit && !capable(CAP_IPC_LOCK))
1038                         return -EAGAIN;
1039         }
1040
1041         inode = file ? file->f_path.dentry->d_inode : NULL;
1042
1043         if (file) {
1044                 switch (flags & MAP_TYPE) {
1045                 case MAP_SHARED:
1046                         if ((prot&PROT_WRITE) && !(file->f_mode&FMODE_WRITE))
1047                                 return -EACCES;
1048
1049                         /*
1050                          * Make sure we don't allow writing to an append-only
1051                          * file..
1052                          */
1053                         if (IS_APPEND(inode) && (file->f_mode & FMODE_WRITE))
1054                                 return -EACCES;
1055
1056                         /*
1057                          * Make sure there are no mandatory locks on the file.
1058                          */
1059                         if (locks_verify_locked(inode))
1060                                 return -EAGAIN;
1061
1062                         vm_flags |= VM_SHARED | VM_MAYSHARE;
1063                         if (!(file->f_mode & FMODE_WRITE))
1064                                 vm_flags &= ~(VM_MAYWRITE | VM_SHARED);
1065
1066                         /* fall through */
1067                 case MAP_PRIVATE:
1068                         if (!(file->f_mode & FMODE_READ))
1069                                 return -EACCES;
1070                         if (file->f_path.mnt->mnt_flags & MNT_NOEXEC) {
1071                                 if (vm_flags & VM_EXEC)
1072                                         return -EPERM;
1073                                 vm_flags &= ~VM_MAYEXEC;
1074                         }
1075
1076                         if (!file->f_op || !file->f_op->mmap)
1077                                 return -ENODEV;
1078                         break;
1079
1080                 default:
1081                         return -EINVAL;
1082                 }
1083         } else {
1084                 switch (flags & MAP_TYPE) {
1085                 case MAP_SHARED:
1086                         /*
1087                          * Ignore pgoff.
1088                          */
1089                         pgoff = 0;
1090                         vm_flags |= VM_SHARED | VM_MAYSHARE;
1091                         break;
1092                 case MAP_PRIVATE:
1093                         /*
1094                          * Set pgoff according to addr for anon_vma.
1095                          */
1096                         pgoff = addr >> PAGE_SHIFT;
1097                         break;
1098                 default:
1099                         return -EINVAL;
1100                 }
1101         }
1102
1103         return mmap_region(file, addr, len, flags, vm_flags, pgoff);
1104 }
1105
1106 SYSCALL_DEFINE6(mmap_pgoff, unsigned long, addr, unsigned long, len,
1107                 unsigned long, prot, unsigned long, flags,
1108                 unsigned long, fd, unsigned long, pgoff)
1109 {
1110         struct file *file = NULL;
1111         unsigned long retval = -EBADF;
1112
1113         if (!(flags & MAP_ANONYMOUS)) {
1114                 audit_mmap_fd(fd, flags);
1115                 if (unlikely(flags & MAP_HUGETLB))
1116                         return -EINVAL;
1117                 file = fget(fd);
1118                 if (!file)
1119                         goto out;
1120         } else if (flags & MAP_HUGETLB) {
1121                 struct user_struct *user = NULL;
1122                 /*
1123                  * VM_NORESERVE is used because the reservations will be
1124                  * taken when vm_ops->mmap() is called
1125                  * A dummy user value is used because we are not locking
1126                  * memory so no accounting is necessary
1127                  */
1128                 file = hugetlb_file_setup(HUGETLB_ANON_FILE, addr, len,
1129                                                 VM_NORESERVE, &user,
1130                                                 HUGETLB_ANONHUGE_INODE);
1131                 if (IS_ERR(file))
1132                         return PTR_ERR(file);
1133         }
1134
1135         flags &= ~(MAP_EXECUTABLE | MAP_DENYWRITE);
1136
1137         retval = vm_mmap_pgoff(file, addr, len, prot, flags, pgoff);
1138         if (file)
1139                 fput(file);
1140 out:
1141         return retval;
1142 }
1143
1144 #ifdef __ARCH_WANT_SYS_OLD_MMAP
1145 struct mmap_arg_struct {
1146         unsigned long addr;
1147         unsigned long len;
1148         unsigned long prot;
1149         unsigned long flags;
1150         unsigned long fd;
1151         unsigned long offset;
1152 };
1153
1154 SYSCALL_DEFINE1(old_mmap, struct mmap_arg_struct __user *, arg)
1155 {
1156         struct mmap_arg_struct a;
1157
1158         if (copy_from_user(&a, arg, sizeof(a)))
1159                 return -EFAULT;
1160         if (a.offset & ~PAGE_MASK)
1161                 return -EINVAL;
1162
1163         return sys_mmap_pgoff(a.addr, a.len, a.prot, a.flags, a.fd,
1164                               a.offset >> PAGE_SHIFT);
1165 }
1166 #endif /* __ARCH_WANT_SYS_OLD_MMAP */
1167
1168 /*
1169  * Some shared mappigns will want the pages marked read-only
1170  * to track write events. If so, we'll downgrade vm_page_prot
1171  * to the private version (using protection_map[] without the
1172  * VM_SHARED bit).
1173  */
1174 int vma_wants_writenotify(struct vm_area_struct *vma)
1175 {
1176         vm_flags_t vm_flags = vma->vm_flags;
1177
1178         /* If it was private or non-writable, the write bit is already clear */
1179         if ((vm_flags & (VM_WRITE|VM_SHARED)) != ((VM_WRITE|VM_SHARED)))
1180                 return 0;
1181
1182         /* The backer wishes to know when pages are first written to? */
1183         if (vma->vm_ops && vma->vm_ops->page_mkwrite)
1184                 return 1;
1185
1186         /* The open routine did something to the protections already? */
1187         if (pgprot_val(vma->vm_page_prot) !=
1188             pgprot_val(vm_get_page_prot(vm_flags)))
1189                 return 0;
1190
1191         /* Specialty mapping? */
1192         if (vm_flags & VM_PFNMAP)
1193                 return 0;
1194
1195         /* Can the mapping track the dirty pages? */
1196         return vma->vm_file && vma->vm_file->f_mapping &&
1197                 mapping_cap_account_dirty(vma->vm_file->f_mapping);
1198 }
1199
1200 /*
1201  * We account for memory if it's a private writeable mapping,
1202  * not hugepages and VM_NORESERVE wasn't set.
1203  */
1204 static inline int accountable_mapping(struct file *file, vm_flags_t vm_flags)
1205 {
1206         /*
1207          * hugetlb has its own accounting separate from the core VM
1208          * VM_HUGETLB may not be set yet so we cannot check for that flag.
1209          */
1210         if (file && is_file_hugepages(file))
1211                 return 0;
1212
1213         return (vm_flags & (VM_NORESERVE | VM_SHARED | VM_WRITE)) == VM_WRITE;
1214 }
1215
1216 unsigned long mmap_region(struct file *file, unsigned long addr,
1217                           unsigned long len, unsigned long flags,
1218                           vm_flags_t vm_flags, unsigned long pgoff)
1219 {
1220         struct mm_struct *mm = current->mm;
1221         struct vm_area_struct *vma, *prev;
1222         int correct_wcount = 0;
1223         int error;
1224         struct rb_node **rb_link, *rb_parent;
1225         unsigned long charged = 0;
1226         struct inode *inode =  file ? file->f_path.dentry->d_inode : NULL;
1227
1228         /* Clear old maps */
1229         error = -ENOMEM;
1230 munmap_back:
1231         vma = find_vma_prepare(mm, addr, &prev, &rb_link, &rb_parent);
1232         if (vma && vma->vm_start < addr + len) {
1233                 if (do_munmap(mm, addr, len))
1234                         return -ENOMEM;
1235                 goto munmap_back;
1236         }
1237
1238         /* Check against address space limit. */
1239         if (!may_expand_vm(mm, len >> PAGE_SHIFT))
1240                 return -ENOMEM;
1241
1242         /*
1243          * Set 'VM_NORESERVE' if we should not account for the
1244          * memory use of this mapping.
1245          */
1246         if ((flags & MAP_NORESERVE)) {
1247                 /* We honor MAP_NORESERVE if allowed to overcommit */
1248                 if (sysctl_overcommit_memory != OVERCOMMIT_NEVER)
1249                         vm_flags |= VM_NORESERVE;
1250
1251                 /* hugetlb applies strict overcommit unless MAP_NORESERVE */
1252                 if (file && is_file_hugepages(file))
1253                         vm_flags |= VM_NORESERVE;
1254         }
1255
1256         /*
1257          * Private writable mapping: check memory availability
1258          */
1259         if (accountable_mapping(file, vm_flags)) {
1260                 charged = len >> PAGE_SHIFT;
1261                 if (security_vm_enough_memory_mm(mm, charged))
1262                         return -ENOMEM;
1263                 vm_flags |= VM_ACCOUNT;
1264         }
1265
1266         /*
1267          * Can we just expand an old mapping?
1268          */
1269         vma = vma_merge(mm, prev, addr, addr + len, vm_flags, NULL, file, pgoff, NULL);
1270         if (vma)
1271                 goto out;
1272
1273         /*
1274          * Determine the object being mapped and call the appropriate
1275          * specific mapper. the address has already been validated, but
1276          * not unmapped, but the maps are removed from the list.
1277          */
1278         vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
1279         if (!vma) {
1280                 error = -ENOMEM;
1281                 goto unacct_error;
1282         }
1283
1284         vma->vm_mm = mm;
1285         vma->vm_start = addr;
1286         vma->vm_end = addr + len;
1287         vma->vm_flags = vm_flags;
1288         vma->vm_page_prot = vm_get_page_prot(vm_flags);
1289         vma->vm_pgoff = pgoff;
1290         INIT_LIST_HEAD(&vma->anon_vma_chain);
1291
1292         error = -EINVAL;        /* when rejecting VM_GROWSDOWN|VM_GROWSUP */
1293
1294         if (file) {
1295                 if (vm_flags & (VM_GROWSDOWN|VM_GROWSUP))
1296                         goto free_vma;
1297                 if (vm_flags & VM_DENYWRITE) {
1298                         error = deny_write_access(file);
1299                         if (error)
1300                                 goto free_vma;
1301                         correct_wcount = 1;
1302                 }
1303                 vma->vm_file = get_file(file);
1304                 error = file->f_op->mmap(file, vma);
1305                 if (error)
1306                         goto unmap_and_free_vma;
1307                 if (vm_flags & VM_EXECUTABLE)
1308                         added_exe_file_vma(mm);
1309
1310                 /* Can addr have changed??
1311                  *
1312                  * Answer: Yes, several device drivers can do it in their
1313                  *         f_op->mmap method. -DaveM
1314                  */
1315                 addr = vma->vm_start;
1316                 pgoff = vma->vm_pgoff;
1317                 vm_flags = vma->vm_flags;
1318         } else if (vm_flags & VM_SHARED) {
1319                 if (unlikely(vm_flags & (VM_GROWSDOWN|VM_GROWSUP)))
1320                         goto free_vma;
1321                 error = shmem_zero_setup(vma);
1322                 if (error)
1323                         goto free_vma;
1324         }
1325
1326         if (vma_wants_writenotify(vma)) {
1327                 pgprot_t pprot = vma->vm_page_prot;
1328
1329                 /* Can vma->vm_page_prot have changed??
1330                  *
1331                  * Answer: Yes, drivers may have changed it in their
1332                  *         f_op->mmap method.
1333                  *
1334                  * Ensures that vmas marked as uncached stay that way.
1335                  */
1336                 vma->vm_page_prot = vm_get_page_prot(vm_flags & ~VM_SHARED);
1337                 if (pgprot_val(pprot) == pgprot_val(pgprot_noncached(pprot)))
1338                         vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot);
1339         }
1340
1341         vma_link(mm, vma, prev, rb_link, rb_parent);
1342         file = vma->vm_file;
1343
1344         /* Once vma denies write, undo our temporary denial count */
1345         if (correct_wcount)
1346                 atomic_inc(&inode->i_writecount);
1347 out:
1348         perf_event_mmap(vma);
1349
1350         vm_stat_account(mm, vm_flags, file, len >> PAGE_SHIFT);
1351         if (vm_flags & VM_LOCKED) {
1352                 if (!mlock_vma_pages_range(vma, addr, addr + len))
1353                         mm->locked_vm += (len >> PAGE_SHIFT);
1354         } else if ((flags & MAP_POPULATE) && !(flags & MAP_NONBLOCK))
1355                 make_pages_present(addr, addr + len);
1356
1357         if (file)
1358                 uprobe_mmap(vma);
1359
1360         return addr;
1361
1362 unmap_and_free_vma:
1363         if (correct_wcount)
1364                 atomic_inc(&inode->i_writecount);
1365         vma->vm_file = NULL;
1366         fput(file);
1367
1368         /* Undo any partial mapping done by a device driver. */
1369         unmap_region(mm, vma, prev, vma->vm_start, vma->vm_end);
1370         charged = 0;
1371 free_vma:
1372         kmem_cache_free(vm_area_cachep, vma);
1373 unacct_error:
1374         if (charged)
1375                 vm_unacct_memory(charged);
1376         return error;
1377 }
1378
1379 /* Get an address range which is currently unmapped.
1380  * For shmat() with addr=0.
1381  *
1382  * Ugly calling convention alert:
1383  * Return value with the low bits set means error value,
1384  * ie
1385  *      if (ret & ~PAGE_MASK)
1386  *              error = ret;
1387  *
1388  * This function "knows" that -ENOMEM has the bits set.
1389  */
1390 #ifndef HAVE_ARCH_UNMAPPED_AREA
1391 unsigned long
1392 arch_get_unmapped_area(struct file *filp, unsigned long addr,
1393                 unsigned long len, unsigned long pgoff, unsigned long flags)
1394 {
1395         struct mm_struct *mm = current->mm;
1396         struct vm_area_struct *vma;
1397         unsigned long start_addr;
1398
1399         if (len > TASK_SIZE)
1400                 return -ENOMEM;
1401
1402         if (flags & MAP_FIXED)
1403                 return addr;
1404
1405         if (addr) {
1406                 addr = PAGE_ALIGN(addr);
1407                 vma = find_vma(mm, addr);
1408                 if (TASK_SIZE - len >= addr &&
1409                     (!vma || addr + len <= vma->vm_start))
1410                         return addr;
1411         }
1412         if (len > mm->cached_hole_size) {
1413                 start_addr = addr = mm->free_area_cache;
1414         } else {
1415                 start_addr = addr = TASK_UNMAPPED_BASE;
1416                 mm->cached_hole_size = 0;
1417         }
1418
1419 full_search:
1420         for (vma = find_vma(mm, addr); ; vma = vma->vm_next) {
1421                 /* At this point:  (!vma || addr < vma->vm_end). */
1422                 if (TASK_SIZE - len < addr) {
1423                         /*
1424                          * Start a new search - just in case we missed
1425                          * some holes.
1426                          */
1427                         if (start_addr != TASK_UNMAPPED_BASE) {
1428                                 addr = TASK_UNMAPPED_BASE;
1429                                 start_addr = addr;
1430                                 mm->cached_hole_size = 0;
1431                                 goto full_search;
1432                         }
1433                         return -ENOMEM;
1434                 }
1435                 if (!vma || addr + len <= vma->vm_start) {
1436                         /*
1437                          * Remember the place where we stopped the search:
1438                          */
1439                         mm->free_area_cache = addr + len;
1440                         return addr;
1441                 }
1442                 if (addr + mm->cached_hole_size < vma->vm_start)
1443                         mm->cached_hole_size = vma->vm_start - addr;
1444                 addr = vma->vm_end;
1445         }
1446 }
1447 #endif  
1448
1449 void arch_unmap_area(struct mm_struct *mm, unsigned long addr)
1450 {
1451         /*
1452          * Is this a new hole at the lowest possible address?
1453          */
1454         if (addr >= TASK_UNMAPPED_BASE && addr < mm->free_area_cache)
1455                 mm->free_area_cache = addr;
1456 }
1457
1458 /*
1459  * This mmap-allocator allocates new areas top-down from below the
1460  * stack's low limit (the base):
1461  */
1462 #ifndef HAVE_ARCH_UNMAPPED_AREA_TOPDOWN
1463 unsigned long
1464 arch_get_unmapped_area_topdown(struct file *filp, const unsigned long addr0,
1465                           const unsigned long len, const unsigned long pgoff,
1466                           const unsigned long flags)
1467 {
1468         struct vm_area_struct *vma;
1469         struct mm_struct *mm = current->mm;
1470         unsigned long addr = addr0, start_addr;
1471
1472         /* requested length too big for entire address space */
1473         if (len > TASK_SIZE)
1474                 return -ENOMEM;
1475
1476         if (flags & MAP_FIXED)
1477                 return addr;
1478
1479         /* requesting a specific address */
1480         if (addr) {
1481                 addr = PAGE_ALIGN(addr);
1482                 vma = find_vma(mm, addr);
1483                 if (TASK_SIZE - len >= addr &&
1484                                 (!vma || addr + len <= vma->vm_start))
1485                         return addr;
1486         }
1487
1488         /* check if free_area_cache is useful for us */
1489         if (len <= mm->cached_hole_size) {
1490                 mm->cached_hole_size = 0;
1491                 mm->free_area_cache = mm->mmap_base;
1492         }
1493
1494 try_again:
1495         /* either no address requested or can't fit in requested address hole */
1496         start_addr = addr = mm->free_area_cache;
1497
1498         if (addr < len)
1499                 goto fail;
1500
1501         addr -= len;
1502         do {
1503                 /*
1504                  * Lookup failure means no vma is above this address,
1505                  * else if new region fits below vma->vm_start,
1506                  * return with success:
1507                  */
1508                 vma = find_vma(mm, addr);
1509                 if (!vma || addr+len <= vma->vm_start)
1510                         /* remember the address as a hint for next time */
1511                         return (mm->free_area_cache = addr);
1512
1513                 /* remember the largest hole we saw so far */
1514                 if (addr + mm->cached_hole_size < vma->vm_start)
1515                         mm->cached_hole_size = vma->vm_start - addr;
1516
1517                 /* try just below the current vma->vm_start */
1518                 addr = vma->vm_start-len;
1519         } while (len < vma->vm_start);
1520
1521 fail:
1522         /*
1523          * if hint left us with no space for the requested
1524          * mapping then try again:
1525          *
1526          * Note: this is different with the case of bottomup
1527          * which does the fully line-search, but we use find_vma
1528          * here that causes some holes skipped.
1529          */
1530         if (start_addr != mm->mmap_base) {
1531                 mm->free_area_cache = mm->mmap_base;
1532                 mm->cached_hole_size = 0;
1533                 goto try_again;
1534         }
1535
1536         /*
1537          * A failed mmap() very likely causes application failure,
1538          * so fall back to the bottom-up function here. This scenario
1539          * can happen with large stack limits and large mmap()
1540          * allocations.
1541          */
1542         mm->cached_hole_size = ~0UL;
1543         mm->free_area_cache = TASK_UNMAPPED_BASE;
1544         addr = arch_get_unmapped_area(filp, addr0, len, pgoff, flags);
1545         /*
1546          * Restore the topdown base:
1547          */
1548         mm->free_area_cache = mm->mmap_base;
1549         mm->cached_hole_size = ~0UL;
1550
1551         return addr;
1552 }
1553 #endif
1554
1555 void arch_unmap_area_topdown(struct mm_struct *mm, unsigned long addr)
1556 {
1557         /*
1558          * Is this a new hole at the highest possible address?
1559          */
1560         if (addr > mm->free_area_cache)
1561                 mm->free_area_cache = addr;
1562
1563         /* dont allow allocations above current base */
1564         if (mm->free_area_cache > mm->mmap_base)
1565                 mm->free_area_cache = mm->mmap_base;
1566 }
1567
1568 unsigned long
1569 get_unmapped_area(struct file *file, unsigned long addr, unsigned long len,
1570                 unsigned long pgoff, unsigned long flags)
1571 {
1572         unsigned long (*get_area)(struct file *, unsigned long,
1573                                   unsigned long, unsigned long, unsigned long);
1574
1575         unsigned long error = arch_mmap_check(addr, len, flags);
1576         if (error)
1577                 return error;
1578
1579         /* Careful about overflows.. */
1580         if (len > TASK_SIZE)
1581                 return -ENOMEM;
1582
1583         get_area = current->mm->get_unmapped_area;
1584         if (file && file->f_op && file->f_op->get_unmapped_area)
1585                 get_area = file->f_op->get_unmapped_area;
1586         addr = get_area(file, addr, len, pgoff, flags);
1587         if (IS_ERR_VALUE(addr))
1588                 return addr;
1589
1590         if (addr > TASK_SIZE - len)
1591                 return -ENOMEM;
1592         if (addr & ~PAGE_MASK)
1593                 return -EINVAL;
1594
1595         addr = arch_rebalance_pgtables(addr, len);
1596         error = security_mmap_addr(addr);
1597         return error ? error : addr;
1598 }
1599
1600 EXPORT_SYMBOL(get_unmapped_area);
1601
1602 /* Look up the first VMA which satisfies  addr < vm_end,  NULL if none. */
1603 struct vm_area_struct *find_vma(struct mm_struct *mm, unsigned long addr)
1604 {
1605         struct vm_area_struct *vma = NULL;
1606
1607         if (WARN_ON_ONCE(!mm))          /* Remove this in linux-3.6 */
1608                 return NULL;
1609
1610         /* Check the cache first. */
1611         /* (Cache hit rate is typically around 35%.) */
1612         vma = mm->mmap_cache;
1613         if (!(vma && vma->vm_end > addr && vma->vm_start <= addr)) {
1614                 struct rb_node *rb_node;
1615
1616                 rb_node = mm->mm_rb.rb_node;
1617                 vma = NULL;
1618
1619                 while (rb_node) {
1620                         struct vm_area_struct *vma_tmp;
1621
1622                         vma_tmp = rb_entry(rb_node,
1623                                            struct vm_area_struct, vm_rb);
1624
1625                         if (vma_tmp->vm_end > addr) {
1626                                 vma = vma_tmp;
1627                                 if (vma_tmp->vm_start <= addr)
1628                                         break;
1629                                 rb_node = rb_node->rb_left;
1630                         } else
1631                                 rb_node = rb_node->rb_right;
1632                 }
1633                 if (vma)
1634                         mm->mmap_cache = vma;
1635         }
1636         return vma;
1637 }
1638
1639 EXPORT_SYMBOL(find_vma);
1640
1641 /*
1642  * Same as find_vma, but also return a pointer to the previous VMA in *pprev.
1643  */
1644 struct vm_area_struct *
1645 find_vma_prev(struct mm_struct *mm, unsigned long addr,
1646                         struct vm_area_struct **pprev)
1647 {
1648         struct vm_area_struct *vma;
1649
1650         vma = find_vma(mm, addr);
1651         if (vma) {
1652                 *pprev = vma->vm_prev;
1653         } else {
1654                 struct rb_node *rb_node = mm->mm_rb.rb_node;
1655                 *pprev = NULL;
1656                 while (rb_node) {
1657                         *pprev = rb_entry(rb_node, struct vm_area_struct, vm_rb);
1658                         rb_node = rb_node->rb_right;
1659                 }
1660         }
1661         return vma;
1662 }
1663
1664 /*
1665  * Verify that the stack growth is acceptable and
1666  * update accounting. This is shared with both the
1667  * grow-up and grow-down cases.
1668  */
1669 static int acct_stack_growth(struct vm_area_struct *vma, unsigned long size, unsigned long grow)
1670 {
1671         struct mm_struct *mm = vma->vm_mm;
1672         struct rlimit *rlim = current->signal->rlim;
1673         unsigned long new_start;
1674
1675         /* address space limit tests */
1676         if (!may_expand_vm(mm, grow))
1677                 return -ENOMEM;
1678
1679         /* Stack limit test */
1680         if (size > ACCESS_ONCE(rlim[RLIMIT_STACK].rlim_cur))
1681                 return -ENOMEM;
1682
1683         /* mlock limit tests */
1684         if (vma->vm_flags & VM_LOCKED) {
1685                 unsigned long locked;
1686                 unsigned long limit;
1687                 locked = mm->locked_vm + grow;
1688                 limit = ACCESS_ONCE(rlim[RLIMIT_MEMLOCK].rlim_cur);
1689                 limit >>= PAGE_SHIFT;
1690                 if (locked > limit && !capable(CAP_IPC_LOCK))
1691                         return -ENOMEM;
1692         }
1693
1694         /* Check to ensure the stack will not grow into a hugetlb-only region */
1695         new_start = (vma->vm_flags & VM_GROWSUP) ? vma->vm_start :
1696                         vma->vm_end - size;
1697         if (is_hugepage_only_range(vma->vm_mm, new_start, size))
1698                 return -EFAULT;
1699
1700         /*
1701          * Overcommit..  This must be the final test, as it will
1702          * update security statistics.
1703          */
1704         if (security_vm_enough_memory_mm(mm, grow))
1705                 return -ENOMEM;
1706
1707         /* Ok, everything looks good - let it rip */
1708         if (vma->vm_flags & VM_LOCKED)
1709                 mm->locked_vm += grow;
1710         vm_stat_account(mm, vma->vm_flags, vma->vm_file, grow);
1711         return 0;
1712 }
1713
1714 #if defined(CONFIG_STACK_GROWSUP) || defined(CONFIG_IA64)
1715 /*
1716  * PA-RISC uses this for its stack; IA64 for its Register Backing Store.
1717  * vma is the last one with address > vma->vm_end.  Have to extend vma.
1718  */
1719 int expand_upwards(struct vm_area_struct *vma, unsigned long address)
1720 {
1721         int error;
1722
1723         if (!(vma->vm_flags & VM_GROWSUP))
1724                 return -EFAULT;
1725
1726         /*
1727          * We must make sure the anon_vma is allocated
1728          * so that the anon_vma locking is not a noop.
1729          */
1730         if (unlikely(anon_vma_prepare(vma)))
1731                 return -ENOMEM;
1732         vma_lock_anon_vma(vma);
1733
1734         /*
1735          * vma->vm_start/vm_end cannot change under us because the caller
1736          * is required to hold the mmap_sem in read mode.  We need the
1737          * anon_vma lock to serialize against concurrent expand_stacks.
1738          * Also guard against wrapping around to address 0.
1739          */
1740         if (address < PAGE_ALIGN(address+4))
1741                 address = PAGE_ALIGN(address+4);
1742         else {
1743                 vma_unlock_anon_vma(vma);
1744                 return -ENOMEM;
1745         }
1746         error = 0;
1747
1748         /* Somebody else might have raced and expanded it already */
1749         if (address > vma->vm_end) {
1750                 unsigned long size, grow;
1751
1752                 size = address - vma->vm_start;
1753                 grow = (address - vma->vm_end) >> PAGE_SHIFT;
1754
1755                 error = -ENOMEM;
1756                 if (vma->vm_pgoff + (size >> PAGE_SHIFT) >= vma->vm_pgoff) {
1757                         error = acct_stack_growth(vma, size, grow);
1758                         if (!error) {
1759                                 vma->vm_end = address;
1760                                 perf_event_mmap(vma);
1761                         }
1762                 }
1763         }
1764         vma_unlock_anon_vma(vma);
1765         khugepaged_enter_vma_merge(vma);
1766         return error;
1767 }
1768 #endif /* CONFIG_STACK_GROWSUP || CONFIG_IA64 */
1769
1770 /*
1771  * vma is the first one with address < vma->vm_start.  Have to extend vma.
1772  */
1773 int expand_downwards(struct vm_area_struct *vma,
1774                                    unsigned long address)
1775 {
1776         int error;
1777
1778         /*
1779          * We must make sure the anon_vma is allocated
1780          * so that the anon_vma locking is not a noop.
1781          */
1782         if (unlikely(anon_vma_prepare(vma)))
1783                 return -ENOMEM;
1784
1785         address &= PAGE_MASK;
1786         error = security_mmap_addr(address);
1787         if (error)
1788                 return error;
1789
1790         vma_lock_anon_vma(vma);
1791
1792         /*
1793          * vma->vm_start/vm_end cannot change under us because the caller
1794          * is required to hold the mmap_sem in read mode.  We need the
1795          * anon_vma lock to serialize against concurrent expand_stacks.
1796          */
1797
1798         /* Somebody else might have raced and expanded it already */
1799         if (address < vma->vm_start) {
1800                 unsigned long size, grow;
1801
1802                 size = vma->vm_end - address;
1803                 grow = (vma->vm_start - address) >> PAGE_SHIFT;
1804
1805                 error = -ENOMEM;
1806                 if (grow <= vma->vm_pgoff) {
1807                         error = acct_stack_growth(vma, size, grow);
1808                         if (!error) {
1809                                 vma->vm_start = address;
1810                                 vma->vm_pgoff -= grow;
1811                                 perf_event_mmap(vma);
1812                         }
1813                 }
1814         }
1815         vma_unlock_anon_vma(vma);
1816         khugepaged_enter_vma_merge(vma);
1817         return error;
1818 }
1819
1820 #ifdef CONFIG_STACK_GROWSUP
1821 int expand_stack(struct vm_area_struct *vma, unsigned long address)
1822 {
1823         return expand_upwards(vma, address);
1824 }
1825
1826 struct vm_area_struct *
1827 find_extend_vma(struct mm_struct *mm, unsigned long addr)
1828 {
1829         struct vm_area_struct *vma, *prev;
1830
1831         addr &= PAGE_MASK;
1832         vma = find_vma_prev(mm, addr, &prev);
1833         if (vma && (vma->vm_start <= addr))
1834                 return vma;
1835         if (!prev || expand_stack(prev, addr))
1836                 return NULL;
1837         if (prev->vm_flags & VM_LOCKED) {
1838                 mlock_vma_pages_range(prev, addr, prev->vm_end);
1839         }
1840         return prev;
1841 }
1842 #else
1843 int expand_stack(struct vm_area_struct *vma, unsigned long address)
1844 {
1845         return expand_downwards(vma, address);
1846 }
1847
1848 struct vm_area_struct *
1849 find_extend_vma(struct mm_struct * mm, unsigned long addr)
1850 {
1851         struct vm_area_struct * vma;
1852         unsigned long start;
1853
1854         addr &= PAGE_MASK;
1855         vma = find_vma(mm,addr);
1856         if (!vma)
1857                 return NULL;
1858         if (vma->vm_start <= addr)
1859                 return vma;
1860         if (!(vma->vm_flags & VM_GROWSDOWN))
1861                 return NULL;
1862         start = vma->vm_start;
1863         if (expand_stack(vma, addr))
1864                 return NULL;
1865         if (vma->vm_flags & VM_LOCKED) {
1866                 mlock_vma_pages_range(vma, addr, start);
1867         }
1868         return vma;
1869 }
1870 #endif
1871
1872 /*
1873  * Ok - we have the memory areas we should free on the vma list,
1874  * so release them, and do the vma updates.
1875  *
1876  * Called with the mm semaphore held.
1877  */
1878 static void remove_vma_list(struct mm_struct *mm, struct vm_area_struct *vma)
1879 {
1880         unsigned long nr_accounted = 0;
1881
1882         /* Update high watermark before we lower total_vm */
1883         update_hiwater_vm(mm);
1884         do {
1885                 long nrpages = vma_pages(vma);
1886
1887                 if (vma->vm_flags & VM_ACCOUNT)
1888                         nr_accounted += nrpages;
1889                 vm_stat_account(mm, vma->vm_flags, vma->vm_file, -nrpages);
1890                 vma = remove_vma(vma);
1891         } while (vma);
1892         vm_unacct_memory(nr_accounted);
1893         validate_mm(mm);
1894 }
1895
1896 /*
1897  * Get rid of page table information in the indicated region.
1898  *
1899  * Called with the mm semaphore held.
1900  */
1901 static void unmap_region(struct mm_struct *mm,
1902                 struct vm_area_struct *vma, struct vm_area_struct *prev,
1903                 unsigned long start, unsigned long end)
1904 {
1905         struct vm_area_struct *next = prev? prev->vm_next: mm->mmap;
1906         struct mmu_gather tlb;
1907
1908         lru_add_drain();
1909         tlb_gather_mmu(&tlb, mm, 0);
1910         update_hiwater_rss(mm);
1911         unmap_vmas(&tlb, vma, start, end);
1912         free_pgtables(&tlb, vma, prev ? prev->vm_end : FIRST_USER_ADDRESS,
1913                                  next ? next->vm_start : 0);
1914         tlb_finish_mmu(&tlb, start, end);
1915 }
1916
1917 /*
1918  * Create a list of vma's touched by the unmap, removing them from the mm's
1919  * vma list as we go..
1920  */
1921 static void
1922 detach_vmas_to_be_unmapped(struct mm_struct *mm, struct vm_area_struct *vma,
1923         struct vm_area_struct *prev, unsigned long end)
1924 {
1925         struct vm_area_struct **insertion_point;
1926         struct vm_area_struct *tail_vma = NULL;
1927         unsigned long addr;
1928
1929         insertion_point = (prev ? &prev->vm_next : &mm->mmap);
1930         vma->vm_prev = NULL;
1931         do {
1932                 rb_erase(&vma->vm_rb, &mm->mm_rb);
1933                 mm->map_count--;
1934                 tail_vma = vma;
1935                 vma = vma->vm_next;
1936         } while (vma && vma->vm_start < end);
1937         *insertion_point = vma;
1938         if (vma)
1939                 vma->vm_prev = prev;
1940         tail_vma->vm_next = NULL;
1941         if (mm->unmap_area == arch_unmap_area)
1942                 addr = prev ? prev->vm_end : mm->mmap_base;
1943         else
1944                 addr = vma ?  vma->vm_start : mm->mmap_base;
1945         mm->unmap_area(mm, addr);
1946         mm->mmap_cache = NULL;          /* Kill the cache. */
1947 }
1948
1949 /*
1950  * __split_vma() bypasses sysctl_max_map_count checking.  We use this on the
1951  * munmap path where it doesn't make sense to fail.
1952  */
1953 static int __split_vma(struct mm_struct * mm, struct vm_area_struct * vma,
1954               unsigned long addr, int new_below)
1955 {
1956         struct mempolicy *pol;
1957         struct vm_area_struct *new;
1958         int err = -ENOMEM;
1959
1960         if (is_vm_hugetlb_page(vma) && (addr &
1961                                         ~(huge_page_mask(hstate_vma(vma)))))
1962                 return -EINVAL;
1963
1964         new = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
1965         if (!new)
1966                 goto out_err;
1967
1968         /* most fields are the same, copy all, and then fixup */
1969         *new = *vma;
1970
1971         INIT_LIST_HEAD(&new->anon_vma_chain);
1972
1973         if (new_below)
1974                 new->vm_end = addr;
1975         else {
1976                 new->vm_start = addr;
1977                 new->vm_pgoff += ((addr - vma->vm_start) >> PAGE_SHIFT);
1978         }
1979
1980         pol = mpol_dup(vma_policy(vma));
1981         if (IS_ERR(pol)) {
1982                 err = PTR_ERR(pol);
1983                 goto out_free_vma;
1984         }
1985         vma_set_policy(new, pol);
1986
1987         if (anon_vma_clone(new, vma))
1988                 goto out_free_mpol;
1989
1990         if (new->vm_file) {
1991                 get_file(new->vm_file);
1992                 if (vma->vm_flags & VM_EXECUTABLE)
1993                         added_exe_file_vma(mm);
1994         }
1995
1996         if (new->vm_ops && new->vm_ops->open)
1997                 new->vm_ops->open(new);
1998
1999         if (new_below)
2000                 err = vma_adjust(vma, addr, vma->vm_end, vma->vm_pgoff +
2001                         ((addr - new->vm_start) >> PAGE_SHIFT), new);
2002         else
2003                 err = vma_adjust(vma, vma->vm_start, addr, vma->vm_pgoff, new);
2004
2005         /* Success. */
2006         if (!err)
2007                 return 0;
2008
2009         /* Clean everything up if vma_adjust failed. */
2010         if (new->vm_ops && new->vm_ops->close)
2011                 new->vm_ops->close(new);
2012         if (new->vm_file) {
2013                 if (vma->vm_flags & VM_EXECUTABLE)
2014                         removed_exe_file_vma(mm);
2015                 fput(new->vm_file);
2016         }
2017         unlink_anon_vmas(new);
2018  out_free_mpol:
2019         mpol_put(pol);
2020  out_free_vma:
2021         kmem_cache_free(vm_area_cachep, new);
2022  out_err:
2023         return err;
2024 }
2025
2026 /*
2027  * Split a vma into two pieces at address 'addr', a new vma is allocated
2028  * either for the first part or the tail.
2029  */
2030 int split_vma(struct mm_struct *mm, struct vm_area_struct *vma,
2031               unsigned long addr, int new_below)
2032 {
2033         if (mm->map_count >= sysctl_max_map_count)
2034                 return -ENOMEM;
2035
2036         return __split_vma(mm, vma, addr, new_below);
2037 }
2038
2039 /* Munmap is split into 2 main parts -- this part which finds
2040  * what needs doing, and the areas themselves, which do the
2041  * work.  This now handles partial unmappings.
2042  * Jeremy Fitzhardinge <jeremy@goop.org>
2043  */
2044 int do_munmap(struct mm_struct *mm, unsigned long start, size_t len)
2045 {
2046         unsigned long end;
2047         struct vm_area_struct *vma, *prev, *last;
2048
2049         if ((start & ~PAGE_MASK) || start > TASK_SIZE || len > TASK_SIZE-start)
2050                 return -EINVAL;
2051
2052         if ((len = PAGE_ALIGN(len)) == 0)
2053                 return -EINVAL;
2054
2055         /* Find the first overlapping VMA */
2056         vma = find_vma(mm, start);
2057         if (!vma)
2058                 return 0;
2059         prev = vma->vm_prev;
2060         /* we have  start < vma->vm_end  */
2061
2062         /* if it doesn't overlap, we have nothing.. */
2063         end = start + len;
2064         if (vma->vm_start >= end)
2065                 return 0;
2066
2067         /*
2068          * If we need to split any vma, do it now to save pain later.
2069          *
2070          * Note: mremap's move_vma VM_ACCOUNT handling assumes a partially
2071          * unmapped vm_area_struct will remain in use: so lower split_vma
2072          * places tmp vma above, and higher split_vma places tmp vma below.
2073          */
2074         if (start > vma->vm_start) {
2075                 int error;
2076
2077                 /*
2078                  * Make sure that map_count on return from munmap() will
2079                  * not exceed its limit; but let map_count go just above
2080                  * its limit temporarily, to help free resources as expected.
2081                  */
2082                 if (end < vma->vm_end && mm->map_count >= sysctl_max_map_count)
2083                         return -ENOMEM;
2084
2085                 error = __split_vma(mm, vma, start, 0);
2086                 if (error)
2087                         return error;
2088                 prev = vma;
2089         }
2090
2091         /* Does it split the last one? */
2092         last = find_vma(mm, end);
2093         if (last && end > last->vm_start) {
2094                 int error = __split_vma(mm, last, end, 1);
2095                 if (error)
2096                         return error;
2097         }
2098         vma = prev? prev->vm_next: mm->mmap;
2099
2100         /*
2101          * unlock any mlock()ed ranges before detaching vmas
2102          */
2103         if (mm->locked_vm) {
2104                 struct vm_area_struct *tmp = vma;
2105                 while (tmp && tmp->vm_start < end) {
2106                         if (tmp->vm_flags & VM_LOCKED) {
2107                                 mm->locked_vm -= vma_pages(tmp);
2108                                 munlock_vma_pages_all(tmp);
2109                         }
2110                         tmp = tmp->vm_next;
2111                 }
2112         }
2113
2114         /*
2115          * Remove the vma's, and unmap the actual pages
2116          */
2117         detach_vmas_to_be_unmapped(mm, vma, prev, end);
2118         unmap_region(mm, vma, prev, start, end);
2119
2120         /* Fix up all other VM information */
2121         remove_vma_list(mm, vma);
2122
2123         return 0;
2124 }
2125
2126 int vm_munmap(unsigned long start, size_t len)
2127 {
2128         int ret;
2129         struct mm_struct *mm = current->mm;
2130
2131         down_write(&mm->mmap_sem);
2132         ret = do_munmap(mm, start, len);
2133         up_write(&mm->mmap_sem);
2134         return ret;
2135 }
2136 EXPORT_SYMBOL(vm_munmap);
2137
2138 SYSCALL_DEFINE2(munmap, unsigned long, addr, size_t, len)
2139 {
2140         profile_munmap(addr);
2141         return vm_munmap(addr, len);
2142 }
2143
2144 static inline void verify_mm_writelocked(struct mm_struct *mm)
2145 {
2146 #ifdef CONFIG_DEBUG_VM
2147         if (unlikely(down_read_trylock(&mm->mmap_sem))) {
2148                 WARN_ON(1);
2149                 up_read(&mm->mmap_sem);
2150         }
2151 #endif
2152 }
2153
2154 /*
2155  *  this is really a simplified "do_mmap".  it only handles
2156  *  anonymous maps.  eventually we may be able to do some
2157  *  brk-specific accounting here.
2158  */
2159 static unsigned long do_brk(unsigned long addr, unsigned long len)
2160 {
2161         struct mm_struct * mm = current->mm;
2162         struct vm_area_struct * vma, * prev;
2163         unsigned long flags;
2164         struct rb_node ** rb_link, * rb_parent;
2165         pgoff_t pgoff = addr >> PAGE_SHIFT;
2166         int error;
2167
2168         len = PAGE_ALIGN(len);
2169         if (!len)
2170                 return addr;
2171
2172         flags = VM_DATA_DEFAULT_FLAGS | VM_ACCOUNT | mm->def_flags;
2173
2174         error = get_unmapped_area(NULL, addr, len, 0, MAP_FIXED);
2175         if (error & ~PAGE_MASK)
2176                 return error;
2177
2178         /*
2179          * mlock MCL_FUTURE?
2180          */
2181         if (mm->def_flags & VM_LOCKED) {
2182                 unsigned long locked, lock_limit;
2183                 locked = len >> PAGE_SHIFT;
2184                 locked += mm->locked_vm;
2185                 lock_limit = rlimit(RLIMIT_MEMLOCK);
2186                 lock_limit >>= PAGE_SHIFT;
2187                 if (locked > lock_limit && !capable(CAP_IPC_LOCK))
2188                         return -EAGAIN;
2189         }
2190
2191         /*
2192          * mm->mmap_sem is required to protect against another thread
2193          * changing the mappings in case we sleep.
2194          */
2195         verify_mm_writelocked(mm);
2196
2197         /*
2198          * Clear old maps.  this also does some error checking for us
2199          */
2200  munmap_back:
2201         vma = find_vma_prepare(mm, addr, &prev, &rb_link, &rb_parent);
2202         if (vma && vma->vm_start < addr + len) {
2203                 if (do_munmap(mm, addr, len))
2204                         return -ENOMEM;
2205                 goto munmap_back;
2206         }
2207
2208         /* Check against address space limits *after* clearing old maps... */
2209         if (!may_expand_vm(mm, len >> PAGE_SHIFT))
2210                 return -ENOMEM;
2211
2212         if (mm->map_count > sysctl_max_map_count)
2213                 return -ENOMEM;
2214
2215         if (security_vm_enough_memory_mm(mm, len >> PAGE_SHIFT))
2216                 return -ENOMEM;
2217
2218         /* Can we just expand an old private anonymous mapping? */
2219         vma = vma_merge(mm, prev, addr, addr + len, flags,
2220                                         NULL, NULL, pgoff, NULL);
2221         if (vma)
2222                 goto out;
2223
2224         /*
2225          * create a vma struct for an anonymous mapping
2226          */
2227         vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
2228         if (!vma) {
2229                 vm_unacct_memory(len >> PAGE_SHIFT);
2230                 return -ENOMEM;
2231         }
2232
2233         INIT_LIST_HEAD(&vma->anon_vma_chain);
2234         vma->vm_mm = mm;
2235         vma->vm_start = addr;
2236         vma->vm_end = addr + len;
2237         vma->vm_pgoff = pgoff;
2238         vma->vm_flags = flags;
2239         vma->vm_page_prot = vm_get_page_prot(flags);
2240         vma_link(mm, vma, prev, rb_link, rb_parent);
2241 out:
2242         perf_event_mmap(vma);
2243         mm->total_vm += len >> PAGE_SHIFT;
2244         if (flags & VM_LOCKED) {
2245                 if (!mlock_vma_pages_range(vma, addr, addr + len))
2246                         mm->locked_vm += (len >> PAGE_SHIFT);
2247         }
2248         return addr;
2249 }
2250
2251 unsigned long vm_brk(unsigned long addr, unsigned long len)
2252 {
2253         struct mm_struct *mm = current->mm;
2254         unsigned long ret;
2255
2256         down_write(&mm->mmap_sem);
2257         ret = do_brk(addr, len);
2258         up_write(&mm->mmap_sem);
2259         return ret;
2260 }
2261 EXPORT_SYMBOL(vm_brk);
2262
2263 /* Release all mmaps. */
2264 void exit_mmap(struct mm_struct *mm)
2265 {
2266         struct mmu_gather tlb;
2267         struct vm_area_struct *vma;
2268         unsigned long nr_accounted = 0;
2269
2270         /* mm's last user has gone, and its about to be pulled down */
2271         mmu_notifier_release(mm);
2272
2273         if (mm->locked_vm) {
2274                 vma = mm->mmap;
2275                 while (vma) {
2276                         if (vma->vm_flags & VM_LOCKED)
2277                                 munlock_vma_pages_all(vma);
2278                         vma = vma->vm_next;
2279                 }
2280         }
2281
2282         arch_exit_mmap(mm);
2283
2284         vma = mm->mmap;
2285         if (!vma)       /* Can happen if dup_mmap() received an OOM */
2286                 return;
2287
2288         lru_add_drain();
2289         flush_cache_mm(mm);
2290         tlb_gather_mmu(&tlb, mm, 1);
2291         /* update_hiwater_rss(mm) here? but nobody should be looking */
2292         /* Use -1 here to ensure all VMAs in the mm are unmapped */
2293         unmap_vmas(&tlb, vma, 0, -1);
2294
2295         free_pgtables(&tlb, vma, FIRST_USER_ADDRESS, 0);
2296         tlb_finish_mmu(&tlb, 0, -1);
2297
2298         /*
2299          * Walk the list again, actually closing and freeing it,
2300          * with preemption enabled, without holding any MM locks.
2301          */
2302         while (vma) {
2303                 if (vma->vm_flags & VM_ACCOUNT)
2304                         nr_accounted += vma_pages(vma);
2305                 vma = remove_vma(vma);
2306         }
2307         vm_unacct_memory(nr_accounted);
2308
2309         WARN_ON(mm->nr_ptes > (FIRST_USER_ADDRESS+PMD_SIZE-1)>>PMD_SHIFT);
2310 }
2311
2312 /* Insert vm structure into process list sorted by address
2313  * and into the inode's i_mmap tree.  If vm_file is non-NULL
2314  * then i_mmap_mutex is taken here.
2315  */
2316 int insert_vm_struct(struct mm_struct * mm, struct vm_area_struct * vma)
2317 {
2318         struct vm_area_struct * __vma, * prev;
2319         struct rb_node ** rb_link, * rb_parent;
2320
2321         /*
2322          * The vm_pgoff of a purely anonymous vma should be irrelevant
2323          * until its first write fault, when page's anon_vma and index
2324          * are set.  But now set the vm_pgoff it will almost certainly
2325          * end up with (unless mremap moves it elsewhere before that
2326          * first wfault), so /proc/pid/maps tells a consistent story.
2327          *
2328          * By setting it to reflect the virtual start address of the
2329          * vma, merges and splits can happen in a seamless way, just
2330          * using the existing file pgoff checks and manipulations.
2331          * Similarly in do_mmap_pgoff and in do_brk.
2332          */
2333         if (!vma->vm_file) {
2334                 BUG_ON(vma->anon_vma);
2335                 vma->vm_pgoff = vma->vm_start >> PAGE_SHIFT;
2336         }
2337         __vma = find_vma_prepare(mm,vma->vm_start,&prev,&rb_link,&rb_parent);
2338         if (__vma && __vma->vm_start < vma->vm_end)
2339                 return -ENOMEM;
2340         if ((vma->vm_flags & VM_ACCOUNT) &&
2341              security_vm_enough_memory_mm(mm, vma_pages(vma)))
2342                 return -ENOMEM;
2343
2344         vma_link(mm, vma, prev, rb_link, rb_parent);
2345         return 0;
2346 }
2347
2348 /*
2349  * Copy the vma structure to a new location in the same mm,
2350  * prior to moving page table entries, to effect an mremap move.
2351  */
2352 struct vm_area_struct *copy_vma(struct vm_area_struct **vmap,
2353         unsigned long addr, unsigned long len, pgoff_t pgoff)
2354 {
2355         struct vm_area_struct *vma = *vmap;
2356         unsigned long vma_start = vma->vm_start;
2357         struct mm_struct *mm = vma->vm_mm;
2358         struct vm_area_struct *new_vma, *prev;
2359         struct rb_node **rb_link, *rb_parent;
2360         struct mempolicy *pol;
2361         bool faulted_in_anon_vma = true;
2362
2363         /*
2364          * If anonymous vma has not yet been faulted, update new pgoff
2365          * to match new location, to increase its chance of merging.
2366          */
2367         if (unlikely(!vma->vm_file && !vma->anon_vma)) {
2368                 pgoff = addr >> PAGE_SHIFT;
2369                 faulted_in_anon_vma = false;
2370         }
2371
2372         find_vma_prepare(mm, addr, &prev, &rb_link, &rb_parent);
2373         new_vma = vma_merge(mm, prev, addr, addr + len, vma->vm_flags,
2374                         vma->anon_vma, vma->vm_file, pgoff, vma_policy(vma));
2375         if (new_vma) {
2376                 /*
2377                  * Source vma may have been merged into new_vma
2378                  */
2379                 if (unlikely(vma_start >= new_vma->vm_start &&
2380                              vma_start < new_vma->vm_end)) {
2381                         /*
2382                          * The only way we can get a vma_merge with
2383                          * self during an mremap is if the vma hasn't
2384                          * been faulted in yet and we were allowed to
2385                          * reset the dst vma->vm_pgoff to the
2386                          * destination address of the mremap to allow
2387                          * the merge to happen. mremap must change the
2388                          * vm_pgoff linearity between src and dst vmas
2389                          * (in turn preventing a vma_merge) to be
2390                          * safe. It is only safe to keep the vm_pgoff
2391                          * linear if there are no pages mapped yet.
2392                          */
2393                         VM_BUG_ON(faulted_in_anon_vma);
2394                         *vmap = new_vma;
2395                 } else
2396                         anon_vma_moveto_tail(new_vma);
2397         } else {
2398                 new_vma = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
2399                 if (new_vma) {
2400                         *new_vma = *vma;
2401                         pol = mpol_dup(vma_policy(vma));
2402                         if (IS_ERR(pol))
2403                                 goto out_free_vma;
2404                         INIT_LIST_HEAD(&new_vma->anon_vma_chain);
2405                         if (anon_vma_clone(new_vma, vma))
2406                                 goto out_free_mempol;
2407                         vma_set_policy(new_vma, pol);
2408                         new_vma->vm_start = addr;
2409                         new_vma->vm_end = addr + len;
2410                         new_vma->vm_pgoff = pgoff;
2411                         if (new_vma->vm_file) {
2412                                 get_file(new_vma->vm_file);
2413
2414                                 if (vma->vm_flags & VM_EXECUTABLE)
2415                                         added_exe_file_vma(mm);
2416                         }
2417                         if (new_vma->vm_ops && new_vma->vm_ops->open)
2418                                 new_vma->vm_ops->open(new_vma);
2419                         vma_link(mm, new_vma, prev, rb_link, rb_parent);
2420                 }
2421         }
2422         return new_vma;
2423
2424  out_free_mempol:
2425         mpol_put(pol);
2426  out_free_vma:
2427         kmem_cache_free(vm_area_cachep, new_vma);
2428         return NULL;
2429 }
2430
2431 /*
2432  * Return true if the calling process may expand its vm space by the passed
2433  * number of pages
2434  */
2435 int may_expand_vm(struct mm_struct *mm, unsigned long npages)
2436 {
2437         unsigned long cur = mm->total_vm;       /* pages */
2438         unsigned long lim;
2439
2440         lim = rlimit(RLIMIT_AS) >> PAGE_SHIFT;
2441
2442         if (cur + npages > lim)
2443                 return 0;
2444         return 1;
2445 }
2446
2447
2448 static int special_mapping_fault(struct vm_area_struct *vma,
2449                                 struct vm_fault *vmf)
2450 {
2451         pgoff_t pgoff;
2452         struct page **pages;
2453
2454         /*
2455          * special mappings have no vm_file, and in that case, the mm
2456          * uses vm_pgoff internally. So we have to subtract it from here.
2457          * We are allowed to do this because we are the mm; do not copy
2458          * this code into drivers!
2459          */
2460         pgoff = vmf->pgoff - vma->vm_pgoff;
2461
2462         for (pages = vma->vm_private_data; pgoff && *pages; ++pages)
2463                 pgoff--;
2464
2465         if (*pages) {
2466                 struct page *page = *pages;
2467                 get_page(page);
2468                 vmf->page = page;
2469                 return 0;
2470         }
2471
2472         return VM_FAULT_SIGBUS;
2473 }
2474
2475 /*
2476  * Having a close hook prevents vma merging regardless of flags.
2477  */
2478 static void special_mapping_close(struct vm_area_struct *vma)
2479 {
2480 }
2481
2482 static const struct vm_operations_struct special_mapping_vmops = {
2483         .close = special_mapping_close,
2484         .fault = special_mapping_fault,
2485 };
2486
2487 /*
2488  * Called with mm->mmap_sem held for writing.
2489  * Insert a new vma covering the given region, with the given flags.
2490  * Its pages are supplied by the given array of struct page *.
2491  * The array can be shorter than len >> PAGE_SHIFT if it's null-terminated.
2492  * The region past the last page supplied will always produce SIGBUS.
2493  * The array pointer and the pages it points to are assumed to stay alive
2494  * for as long as this mapping might exist.
2495  */
2496 int install_special_mapping(struct mm_struct *mm,
2497                             unsigned long addr, unsigned long len,
2498                             unsigned long vm_flags, struct page **pages)
2499 {
2500         int ret;
2501         struct vm_area_struct *vma;
2502
2503         vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
2504         if (unlikely(vma == NULL))
2505                 return -ENOMEM;
2506
2507         INIT_LIST_HEAD(&vma->anon_vma_chain);
2508         vma->vm_mm = mm;
2509         vma->vm_start = addr;
2510         vma->vm_end = addr + len;
2511
2512         vma->vm_flags = vm_flags | mm->def_flags | VM_DONTEXPAND;
2513         vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
2514
2515         vma->vm_ops = &special_mapping_vmops;
2516         vma->vm_private_data = pages;
2517
2518         ret = insert_vm_struct(mm, vma);
2519         if (ret)
2520                 goto out;
2521
2522         mm->total_vm += len >> PAGE_SHIFT;
2523
2524         perf_event_mmap(vma);
2525
2526         return 0;
2527
2528 out:
2529         kmem_cache_free(vm_area_cachep, vma);
2530         return ret;
2531 }
2532
2533 static DEFINE_MUTEX(mm_all_locks_mutex);
2534
2535 static void vm_lock_anon_vma(struct mm_struct *mm, struct anon_vma *anon_vma)
2536 {
2537         if (!test_bit(0, (unsigned long *) &anon_vma->root->head.next)) {
2538                 /*
2539                  * The LSB of head.next can't change from under us
2540                  * because we hold the mm_all_locks_mutex.
2541                  */
2542                 mutex_lock_nest_lock(&anon_vma->root->mutex, &mm->mmap_sem);
2543                 /*
2544                  * We can safely modify head.next after taking the
2545                  * anon_vma->root->mutex. If some other vma in this mm shares
2546                  * the same anon_vma we won't take it again.
2547                  *
2548                  * No need of atomic instructions here, head.next
2549                  * can't change from under us thanks to the
2550                  * anon_vma->root->mutex.
2551                  */
2552                 if (__test_and_set_bit(0, (unsigned long *)
2553                                        &anon_vma->root->head.next))
2554                         BUG();
2555         }
2556 }
2557
2558 static void vm_lock_mapping(struct mm_struct *mm, struct address_space *mapping)
2559 {
2560         if (!test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) {
2561                 /*
2562                  * AS_MM_ALL_LOCKS can't change from under us because
2563                  * we hold the mm_all_locks_mutex.
2564                  *
2565                  * Operations on ->flags have to be atomic because
2566                  * even if AS_MM_ALL_LOCKS is stable thanks to the
2567                  * mm_all_locks_mutex, there may be other cpus
2568                  * changing other bitflags in parallel to us.
2569                  */
2570                 if (test_and_set_bit(AS_MM_ALL_LOCKS, &mapping->flags))
2571                         BUG();
2572                 mutex_lock_nest_lock(&mapping->i_mmap_mutex, &mm->mmap_sem);
2573         }
2574 }
2575
2576 /*
2577  * This operation locks against the VM for all pte/vma/mm related
2578  * operations that could ever happen on a certain mm. This includes
2579  * vmtruncate, try_to_unmap, and all page faults.
2580  *
2581  * The caller must take the mmap_sem in write mode before calling
2582  * mm_take_all_locks(). The caller isn't allowed to release the
2583  * mmap_sem until mm_drop_all_locks() returns.
2584  *
2585  * mmap_sem in write mode is required in order to block all operations
2586  * that could modify pagetables and free pages without need of
2587  * altering the vma layout (for example populate_range() with
2588  * nonlinear vmas). It's also needed in write mode to avoid new
2589  * anon_vmas to be associated with existing vmas.
2590  *
2591  * A single task can't take more than one mm_take_all_locks() in a row
2592  * or it would deadlock.
2593  *
2594  * The LSB in anon_vma->head.next and the AS_MM_ALL_LOCKS bitflag in
2595  * mapping->flags avoid to take the same lock twice, if more than one
2596  * vma in this mm is backed by the same anon_vma or address_space.
2597  *
2598  * We can take all the locks in random order because the VM code
2599  * taking i_mmap_mutex or anon_vma->mutex outside the mmap_sem never
2600  * takes more than one of them in a row. Secondly we're protected
2601  * against a concurrent mm_take_all_locks() by the mm_all_locks_mutex.
2602  *
2603  * mm_take_all_locks() and mm_drop_all_locks are expensive operations
2604  * that may have to take thousand of locks.
2605  *
2606  * mm_take_all_locks() can fail if it's interrupted by signals.
2607  */
2608 int mm_take_all_locks(struct mm_struct *mm)
2609 {
2610         struct vm_area_struct *vma;
2611         struct anon_vma_chain *avc;
2612
2613         BUG_ON(down_read_trylock(&mm->mmap_sem));
2614
2615         mutex_lock(&mm_all_locks_mutex);
2616
2617         for (vma = mm->mmap; vma; vma = vma->vm_next) {
2618                 if (signal_pending(current))
2619                         goto out_unlock;
2620                 if (vma->vm_file && vma->vm_file->f_mapping)
2621                         vm_lock_mapping(mm, vma->vm_file->f_mapping);
2622         }
2623
2624         for (vma = mm->mmap; vma; vma = vma->vm_next) {
2625                 if (signal_pending(current))
2626                         goto out_unlock;
2627                 if (vma->anon_vma)
2628                         list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
2629                                 vm_lock_anon_vma(mm, avc->anon_vma);
2630         }
2631
2632         return 0;
2633
2634 out_unlock:
2635         mm_drop_all_locks(mm);
2636         return -EINTR;
2637 }
2638
2639 static void vm_unlock_anon_vma(struct anon_vma *anon_vma)
2640 {
2641         if (test_bit(0, (unsigned long *) &anon_vma->root->head.next)) {
2642                 /*
2643                  * The LSB of head.next can't change to 0 from under
2644                  * us because we hold the mm_all_locks_mutex.
2645                  *
2646                  * We must however clear the bitflag before unlocking
2647                  * the vma so the users using the anon_vma->head will
2648                  * never see our bitflag.
2649                  *
2650                  * No need of atomic instructions here, head.next
2651                  * can't change from under us until we release the
2652                  * anon_vma->root->mutex.
2653                  */
2654                 if (!__test_and_clear_bit(0, (unsigned long *)
2655                                           &anon_vma->root->head.next))
2656                         BUG();
2657                 anon_vma_unlock(anon_vma);
2658         }
2659 }
2660
2661 static void vm_unlock_mapping(struct address_space *mapping)
2662 {
2663         if (test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) {
2664                 /*
2665                  * AS_MM_ALL_LOCKS can't change to 0 from under us
2666                  * because we hold the mm_all_locks_mutex.
2667                  */
2668                 mutex_unlock(&mapping->i_mmap_mutex);
2669                 if (!test_and_clear_bit(AS_MM_ALL_LOCKS,
2670                                         &mapping->flags))
2671                         BUG();
2672         }
2673 }
2674
2675 /*
2676  * The mmap_sem cannot be released by the caller until
2677  * mm_drop_all_locks() returns.
2678  */
2679 void mm_drop_all_locks(struct mm_struct *mm)
2680 {
2681         struct vm_area_struct *vma;
2682         struct anon_vma_chain *avc;
2683
2684         BUG_ON(down_read_trylock(&mm->mmap_sem));
2685         BUG_ON(!mutex_is_locked(&mm_all_locks_mutex));
2686
2687         for (vma = mm->mmap; vma; vma = vma->vm_next) {
2688                 if (vma->anon_vma)
2689                         list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
2690                                 vm_unlock_anon_vma(avc->anon_vma);
2691                 if (vma->vm_file && vma->vm_file->f_mapping)
2692                         vm_unlock_mapping(vma->vm_file->f_mapping);
2693         }
2694
2695         mutex_unlock(&mm_all_locks_mutex);
2696 }
2697
2698 /*
2699  * initialise the VMA slab
2700  */
2701 void __init mmap_init(void)
2702 {
2703         int ret;
2704
2705         ret = percpu_counter_init(&vm_committed_as, 0);
2706         VM_BUG_ON(ret);
2707 }