6 * Address space accounting code <alan@lxorguk.ukuu.org.uk>
9 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
11 #include <linux/kernel.h>
12 #include <linux/slab.h>
13 #include <linux/backing-dev.h>
15 #include <linux/vmacache.h>
16 #include <linux/shm.h>
17 #include <linux/mman.h>
18 #include <linux/pagemap.h>
19 #include <linux/swap.h>
20 #include <linux/syscalls.h>
21 #include <linux/capability.h>
22 #include <linux/init.h>
23 #include <linux/file.h>
25 #include <linux/personality.h>
26 #include <linux/security.h>
27 #include <linux/hugetlb.h>
28 #include <linux/shmem_fs.h>
29 #include <linux/profile.h>
30 #include <linux/export.h>
31 #include <linux/mount.h>
32 #include <linux/mempolicy.h>
33 #include <linux/rmap.h>
34 #include <linux/mmu_notifier.h>
35 #include <linux/mmdebug.h>
36 #include <linux/perf_event.h>
37 #include <linux/audit.h>
38 #include <linux/khugepaged.h>
39 #include <linux/uprobes.h>
40 #include <linux/rbtree_augmented.h>
41 #include <linux/notifier.h>
42 #include <linux/memory.h>
43 #include <linux/printk.h>
44 #include <linux/userfaultfd_k.h>
45 #include <linux/moduleparam.h>
46 #include <linux/pkeys.h>
48 #include <asm/uaccess.h>
49 #include <asm/cacheflush.h>
51 #include <asm/mmu_context.h>
55 #ifndef arch_mmap_check
56 #define arch_mmap_check(addr, len, flags) (0)
59 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_BITS
60 const int mmap_rnd_bits_min = CONFIG_ARCH_MMAP_RND_BITS_MIN;
61 const int mmap_rnd_bits_max = CONFIG_ARCH_MMAP_RND_BITS_MAX;
62 int mmap_rnd_bits __read_mostly = CONFIG_ARCH_MMAP_RND_BITS;
64 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS
65 const int mmap_rnd_compat_bits_min = CONFIG_ARCH_MMAP_RND_COMPAT_BITS_MIN;
66 const int mmap_rnd_compat_bits_max = CONFIG_ARCH_MMAP_RND_COMPAT_BITS_MAX;
67 int mmap_rnd_compat_bits __read_mostly = CONFIG_ARCH_MMAP_RND_COMPAT_BITS;
70 static bool ignore_rlimit_data;
71 core_param(ignore_rlimit_data, ignore_rlimit_data, bool, 0644);
73 static void unmap_region(struct mm_struct *mm,
74 struct vm_area_struct *vma, struct vm_area_struct *prev,
75 unsigned long start, unsigned long end);
77 /* description of effects of mapping type and prot in current implementation.
78 * this is due to the limited x86 page protection hardware. The expected
79 * behavior is in parens:
82 * PROT_NONE PROT_READ PROT_WRITE PROT_EXEC
83 * MAP_SHARED r: (no) no r: (yes) yes r: (no) yes r: (no) yes
84 * w: (no) no w: (no) no w: (yes) yes w: (no) no
85 * x: (no) no x: (no) yes x: (no) yes x: (yes) yes
87 * MAP_PRIVATE r: (no) no r: (yes) yes r: (no) yes r: (no) yes
88 * w: (no) no w: (no) no w: (copy) copy w: (no) no
89 * x: (no) no x: (no) yes x: (no) yes x: (yes) yes
91 * On arm64, PROT_EXEC has the following behaviour for both MAP_SHARED and
97 pgprot_t protection_map[16] = {
98 __P000, __P001, __P010, __P011, __P100, __P101, __P110, __P111,
99 __S000, __S001, __S010, __S011, __S100, __S101, __S110, __S111
102 pgprot_t vm_get_page_prot(unsigned long vm_flags)
104 return __pgprot(pgprot_val(protection_map[vm_flags &
105 (VM_READ|VM_WRITE|VM_EXEC|VM_SHARED)]) |
106 pgprot_val(arch_vm_get_page_prot(vm_flags)));
108 EXPORT_SYMBOL(vm_get_page_prot);
110 static pgprot_t vm_pgprot_modify(pgprot_t oldprot, unsigned long vm_flags)
112 return pgprot_modify(oldprot, vm_get_page_prot(vm_flags));
115 /* Update vma->vm_page_prot to reflect vma->vm_flags. */
116 void vma_set_page_prot(struct vm_area_struct *vma)
118 unsigned long vm_flags = vma->vm_flags;
119 pgprot_t vm_page_prot;
121 vm_page_prot = vm_pgprot_modify(vma->vm_page_prot, vm_flags);
122 if (vma_wants_writenotify(vma, vm_page_prot)) {
123 vm_flags &= ~VM_SHARED;
124 vm_page_prot = vm_pgprot_modify(vm_page_prot, vm_flags);
126 /* remove_protection_ptes reads vma->vm_page_prot without mmap_sem */
127 WRITE_ONCE(vma->vm_page_prot, vm_page_prot);
131 * Requires inode->i_mapping->i_mmap_rwsem
133 static void __remove_shared_vm_struct(struct vm_area_struct *vma,
134 struct file *file, struct address_space *mapping)
136 if (vma->vm_flags & VM_DENYWRITE)
137 atomic_inc(&file_inode(file)->i_writecount);
138 if (vma->vm_flags & VM_SHARED)
139 mapping_unmap_writable(mapping);
141 flush_dcache_mmap_lock(mapping);
142 vma_interval_tree_remove(vma, &mapping->i_mmap);
143 flush_dcache_mmap_unlock(mapping);
147 * Unlink a file-based vm structure from its interval tree, to hide
148 * vma from rmap and vmtruncate before freeing its page tables.
150 void unlink_file_vma(struct vm_area_struct *vma)
152 struct file *file = vma->vm_file;
155 struct address_space *mapping = file->f_mapping;
156 i_mmap_lock_write(mapping);
157 __remove_shared_vm_struct(vma, file, mapping);
158 i_mmap_unlock_write(mapping);
163 * Close a vm structure and free it, returning the next.
165 static struct vm_area_struct *remove_vma(struct vm_area_struct *vma)
167 struct vm_area_struct *next = vma->vm_next;
170 if (vma->vm_ops && vma->vm_ops->close)
171 vma->vm_ops->close(vma);
174 mpol_put(vma_policy(vma));
175 kmem_cache_free(vm_area_cachep, vma);
179 static int do_brk(unsigned long addr, unsigned long len);
181 SYSCALL_DEFINE1(brk, unsigned long, brk)
183 unsigned long retval;
184 unsigned long newbrk, oldbrk;
185 struct mm_struct *mm = current->mm;
186 unsigned long min_brk;
189 if (down_write_killable(&mm->mmap_sem))
192 #ifdef CONFIG_COMPAT_BRK
194 * CONFIG_COMPAT_BRK can still be overridden by setting
195 * randomize_va_space to 2, which will still cause mm->start_brk
196 * to be arbitrarily shifted
198 if (current->brk_randomized)
199 min_brk = mm->start_brk;
201 min_brk = mm->end_data;
203 min_brk = mm->start_brk;
209 * Check against rlimit here. If this check is done later after the test
210 * of oldbrk with newbrk then it can escape the test and let the data
211 * segment grow beyond its set limit the in case where the limit is
212 * not page aligned -Ram Gupta
214 if (check_data_rlimit(rlimit(RLIMIT_DATA), brk, mm->start_brk,
215 mm->end_data, mm->start_data))
218 newbrk = PAGE_ALIGN(brk);
219 oldbrk = PAGE_ALIGN(mm->brk);
220 if (oldbrk == newbrk)
223 /* Always allow shrinking brk. */
224 if (brk <= mm->brk) {
225 if (!do_munmap(mm, newbrk, oldbrk-newbrk))
230 /* Check against existing mmap mappings. */
231 if (find_vma_intersection(mm, oldbrk, newbrk+PAGE_SIZE))
234 /* Ok, looks good - let it rip. */
235 if (do_brk(oldbrk, newbrk-oldbrk) < 0)
240 populate = newbrk > oldbrk && (mm->def_flags & VM_LOCKED) != 0;
241 up_write(&mm->mmap_sem);
243 mm_populate(oldbrk, newbrk - oldbrk);
248 up_write(&mm->mmap_sem);
252 static long vma_compute_subtree_gap(struct vm_area_struct *vma)
254 unsigned long max, subtree_gap;
257 max -= vma->vm_prev->vm_end;
258 if (vma->vm_rb.rb_left) {
259 subtree_gap = rb_entry(vma->vm_rb.rb_left,
260 struct vm_area_struct, vm_rb)->rb_subtree_gap;
261 if (subtree_gap > max)
264 if (vma->vm_rb.rb_right) {
265 subtree_gap = rb_entry(vma->vm_rb.rb_right,
266 struct vm_area_struct, vm_rb)->rb_subtree_gap;
267 if (subtree_gap > max)
273 #ifdef CONFIG_DEBUG_VM_RB
274 static int browse_rb(struct mm_struct *mm)
276 struct rb_root *root = &mm->mm_rb;
277 int i = 0, j, bug = 0;
278 struct rb_node *nd, *pn = NULL;
279 unsigned long prev = 0, pend = 0;
281 for (nd = rb_first(root); nd; nd = rb_next(nd)) {
282 struct vm_area_struct *vma;
283 vma = rb_entry(nd, struct vm_area_struct, vm_rb);
284 if (vma->vm_start < prev) {
285 pr_emerg("vm_start %lx < prev %lx\n",
286 vma->vm_start, prev);
289 if (vma->vm_start < pend) {
290 pr_emerg("vm_start %lx < pend %lx\n",
291 vma->vm_start, pend);
294 if (vma->vm_start > vma->vm_end) {
295 pr_emerg("vm_start %lx > vm_end %lx\n",
296 vma->vm_start, vma->vm_end);
299 spin_lock(&mm->page_table_lock);
300 if (vma->rb_subtree_gap != vma_compute_subtree_gap(vma)) {
301 pr_emerg("free gap %lx, correct %lx\n",
303 vma_compute_subtree_gap(vma));
306 spin_unlock(&mm->page_table_lock);
309 prev = vma->vm_start;
313 for (nd = pn; nd; nd = rb_prev(nd))
316 pr_emerg("backwards %d, forwards %d\n", j, i);
322 static void validate_mm_rb(struct rb_root *root, struct vm_area_struct *ignore)
326 for (nd = rb_first(root); nd; nd = rb_next(nd)) {
327 struct vm_area_struct *vma;
328 vma = rb_entry(nd, struct vm_area_struct, vm_rb);
329 VM_BUG_ON_VMA(vma != ignore &&
330 vma->rb_subtree_gap != vma_compute_subtree_gap(vma),
335 static void validate_mm(struct mm_struct *mm)
339 unsigned long highest_address = 0;
340 struct vm_area_struct *vma = mm->mmap;
343 struct anon_vma *anon_vma = vma->anon_vma;
344 struct anon_vma_chain *avc;
347 anon_vma_lock_read(anon_vma);
348 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
349 anon_vma_interval_tree_verify(avc);
350 anon_vma_unlock_read(anon_vma);
353 highest_address = vma->vm_end;
357 if (i != mm->map_count) {
358 pr_emerg("map_count %d vm_next %d\n", mm->map_count, i);
361 if (highest_address != mm->highest_vm_end) {
362 pr_emerg("mm->highest_vm_end %lx, found %lx\n",
363 mm->highest_vm_end, highest_address);
367 if (i != mm->map_count) {
369 pr_emerg("map_count %d rb %d\n", mm->map_count, i);
372 VM_BUG_ON_MM(bug, mm);
375 #define validate_mm_rb(root, ignore) do { } while (0)
376 #define validate_mm(mm) do { } while (0)
379 RB_DECLARE_CALLBACKS(static, vma_gap_callbacks, struct vm_area_struct, vm_rb,
380 unsigned long, rb_subtree_gap, vma_compute_subtree_gap)
383 * Update augmented rbtree rb_subtree_gap values after vma->vm_start or
384 * vma->vm_prev->vm_end values changed, without modifying the vma's position
387 static void vma_gap_update(struct vm_area_struct *vma)
390 * As it turns out, RB_DECLARE_CALLBACKS() already created a callback
391 * function that does exacltly what we want.
393 vma_gap_callbacks_propagate(&vma->vm_rb, NULL);
396 static inline void vma_rb_insert(struct vm_area_struct *vma,
397 struct rb_root *root)
399 /* All rb_subtree_gap values must be consistent prior to insertion */
400 validate_mm_rb(root, NULL);
402 rb_insert_augmented(&vma->vm_rb, root, &vma_gap_callbacks);
405 static void vma_rb_erase(struct vm_area_struct *vma, struct rb_root *root)
408 * All rb_subtree_gap values must be consistent prior to erase,
409 * with the possible exception of the vma being erased.
411 validate_mm_rb(root, vma);
414 * Note rb_erase_augmented is a fairly large inline function,
415 * so make sure we instantiate it only once with our desired
416 * augmented rbtree callbacks.
418 rb_erase_augmented(&vma->vm_rb, root, &vma_gap_callbacks);
422 * vma has some anon_vma assigned, and is already inserted on that
423 * anon_vma's interval trees.
425 * Before updating the vma's vm_start / vm_end / vm_pgoff fields, the
426 * vma must be removed from the anon_vma's interval trees using
427 * anon_vma_interval_tree_pre_update_vma().
429 * After the update, the vma will be reinserted using
430 * anon_vma_interval_tree_post_update_vma().
432 * The entire update must be protected by exclusive mmap_sem and by
433 * the root anon_vma's mutex.
436 anon_vma_interval_tree_pre_update_vma(struct vm_area_struct *vma)
438 struct anon_vma_chain *avc;
440 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
441 anon_vma_interval_tree_remove(avc, &avc->anon_vma->rb_root);
445 anon_vma_interval_tree_post_update_vma(struct vm_area_struct *vma)
447 struct anon_vma_chain *avc;
449 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
450 anon_vma_interval_tree_insert(avc, &avc->anon_vma->rb_root);
453 static int find_vma_links(struct mm_struct *mm, unsigned long addr,
454 unsigned long end, struct vm_area_struct **pprev,
455 struct rb_node ***rb_link, struct rb_node **rb_parent)
457 struct rb_node **__rb_link, *__rb_parent, *rb_prev;
459 __rb_link = &mm->mm_rb.rb_node;
460 rb_prev = __rb_parent = NULL;
463 struct vm_area_struct *vma_tmp;
465 __rb_parent = *__rb_link;
466 vma_tmp = rb_entry(__rb_parent, struct vm_area_struct, vm_rb);
468 if (vma_tmp->vm_end > addr) {
469 /* Fail if an existing vma overlaps the area */
470 if (vma_tmp->vm_start < end)
472 __rb_link = &__rb_parent->rb_left;
474 rb_prev = __rb_parent;
475 __rb_link = &__rb_parent->rb_right;
481 *pprev = rb_entry(rb_prev, struct vm_area_struct, vm_rb);
482 *rb_link = __rb_link;
483 *rb_parent = __rb_parent;
487 static unsigned long count_vma_pages_range(struct mm_struct *mm,
488 unsigned long addr, unsigned long end)
490 unsigned long nr_pages = 0;
491 struct vm_area_struct *vma;
493 /* Find first overlaping mapping */
494 vma = find_vma_intersection(mm, addr, end);
498 nr_pages = (min(end, vma->vm_end) -
499 max(addr, vma->vm_start)) >> PAGE_SHIFT;
501 /* Iterate over the rest of the overlaps */
502 for (vma = vma->vm_next; vma; vma = vma->vm_next) {
503 unsigned long overlap_len;
505 if (vma->vm_start > end)
508 overlap_len = min(end, vma->vm_end) - vma->vm_start;
509 nr_pages += overlap_len >> PAGE_SHIFT;
515 void __vma_link_rb(struct mm_struct *mm, struct vm_area_struct *vma,
516 struct rb_node **rb_link, struct rb_node *rb_parent)
518 /* Update tracking information for the gap following the new vma. */
520 vma_gap_update(vma->vm_next);
522 mm->highest_vm_end = vma->vm_end;
525 * vma->vm_prev wasn't known when we followed the rbtree to find the
526 * correct insertion point for that vma. As a result, we could not
527 * update the vma vm_rb parents rb_subtree_gap values on the way down.
528 * So, we first insert the vma with a zero rb_subtree_gap value
529 * (to be consistent with what we did on the way down), and then
530 * immediately update the gap to the correct value. Finally we
531 * rebalance the rbtree after all augmented values have been set.
533 rb_link_node(&vma->vm_rb, rb_parent, rb_link);
534 vma->rb_subtree_gap = 0;
536 vma_rb_insert(vma, &mm->mm_rb);
539 static void __vma_link_file(struct vm_area_struct *vma)
545 struct address_space *mapping = file->f_mapping;
547 if (vma->vm_flags & VM_DENYWRITE)
548 atomic_dec(&file_inode(file)->i_writecount);
549 if (vma->vm_flags & VM_SHARED)
550 atomic_inc(&mapping->i_mmap_writable);
552 flush_dcache_mmap_lock(mapping);
553 vma_interval_tree_insert(vma, &mapping->i_mmap);
554 flush_dcache_mmap_unlock(mapping);
559 __vma_link(struct mm_struct *mm, struct vm_area_struct *vma,
560 struct vm_area_struct *prev, struct rb_node **rb_link,
561 struct rb_node *rb_parent)
563 __vma_link_list(mm, vma, prev, rb_parent);
564 __vma_link_rb(mm, vma, rb_link, rb_parent);
567 static void vma_link(struct mm_struct *mm, struct vm_area_struct *vma,
568 struct vm_area_struct *prev, struct rb_node **rb_link,
569 struct rb_node *rb_parent)
571 struct address_space *mapping = NULL;
574 mapping = vma->vm_file->f_mapping;
575 i_mmap_lock_write(mapping);
578 __vma_link(mm, vma, prev, rb_link, rb_parent);
579 __vma_link_file(vma);
582 i_mmap_unlock_write(mapping);
589 * Helper for vma_adjust() in the split_vma insert case: insert a vma into the
590 * mm's list and rbtree. It has already been inserted into the interval tree.
592 static void __insert_vm_struct(struct mm_struct *mm, struct vm_area_struct *vma)
594 struct vm_area_struct *prev;
595 struct rb_node **rb_link, *rb_parent;
597 if (find_vma_links(mm, vma->vm_start, vma->vm_end,
598 &prev, &rb_link, &rb_parent))
600 __vma_link(mm, vma, prev, rb_link, rb_parent);
604 static __always_inline void __vma_unlink_common(struct mm_struct *mm,
605 struct vm_area_struct *vma,
606 struct vm_area_struct *prev,
609 struct vm_area_struct *next;
611 vma_rb_erase(vma, &mm->mm_rb);
614 prev->vm_next = next;
618 prev->vm_next = next;
623 next->vm_prev = prev;
626 vmacache_invalidate(mm);
629 static inline void __vma_unlink_prev(struct mm_struct *mm,
630 struct vm_area_struct *vma,
631 struct vm_area_struct *prev)
633 __vma_unlink_common(mm, vma, prev, true);
636 static inline void __vma_unlink(struct mm_struct *mm,
637 struct vm_area_struct *vma)
639 __vma_unlink_common(mm, vma, NULL, false);
643 * We cannot adjust vm_start, vm_end, vm_pgoff fields of a vma that
644 * is already present in an i_mmap tree without adjusting the tree.
645 * The following helper function should be used when such adjustments
646 * are necessary. The "insert" vma (if any) is to be inserted
647 * before we drop the necessary locks.
649 int __vma_adjust(struct vm_area_struct *vma, unsigned long start,
650 unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert,
651 struct vm_area_struct *expand)
653 struct mm_struct *mm = vma->vm_mm;
654 struct vm_area_struct *next = vma->vm_next, *orig_vma = vma;
655 struct address_space *mapping = NULL;
656 struct rb_root *root = NULL;
657 struct anon_vma *anon_vma = NULL;
658 struct file *file = vma->vm_file;
659 bool start_changed = false, end_changed = false;
660 long adjust_next = 0;
663 if (next && !insert) {
664 struct vm_area_struct *exporter = NULL, *importer = NULL;
666 if (end >= next->vm_end) {
668 * vma expands, overlapping all the next, and
669 * perhaps the one after too (mprotect case 6).
670 * The only two other cases that gets here are
671 * case 1, case 7 and case 8.
673 if (next == expand) {
675 * The only case where we don't expand "vma"
676 * and we expand "next" instead is case 8.
678 VM_WARN_ON(end != next->vm_end);
680 * remove_next == 3 means we're
681 * removing "vma" and that to do so we
682 * swapped "vma" and "next".
685 VM_WARN_ON(file != next->vm_file);
688 VM_WARN_ON(expand != vma);
690 * case 1, 6, 7, remove_next == 2 is case 6,
691 * remove_next == 1 is case 1 or 7.
693 remove_next = 1 + (end > next->vm_end);
694 VM_WARN_ON(remove_next == 2 &&
695 end != next->vm_next->vm_end);
696 VM_WARN_ON(remove_next == 1 &&
697 end != next->vm_end);
698 /* trim end to next, for case 6 first pass */
706 * If next doesn't have anon_vma, import from vma after
707 * next, if the vma overlaps with it.
709 if (remove_next == 2 && next && !next->anon_vma)
710 exporter = next->vm_next;
712 } else if (end > next->vm_start) {
714 * vma expands, overlapping part of the next:
715 * mprotect case 5 shifting the boundary up.
717 adjust_next = (end - next->vm_start) >> PAGE_SHIFT;
720 VM_WARN_ON(expand != importer);
721 } else if (end < vma->vm_end) {
723 * vma shrinks, and !insert tells it's not
724 * split_vma inserting another: so it must be
725 * mprotect case 4 shifting the boundary down.
727 adjust_next = -((vma->vm_end - end) >> PAGE_SHIFT);
730 VM_WARN_ON(expand != importer);
734 * Easily overlooked: when mprotect shifts the boundary,
735 * make sure the expanding vma has anon_vma set if the
736 * shrinking vma had, to cover any anon pages imported.
738 if (exporter && exporter->anon_vma && !importer->anon_vma) {
741 importer->anon_vma = exporter->anon_vma;
742 error = anon_vma_clone(importer, exporter);
748 vma_adjust_trans_huge(orig_vma, start, end, adjust_next);
751 mapping = file->f_mapping;
752 root = &mapping->i_mmap;
753 uprobe_munmap(vma, vma->vm_start, vma->vm_end);
756 uprobe_munmap(next, next->vm_start, next->vm_end);
758 i_mmap_lock_write(mapping);
761 * Put into interval tree now, so instantiated pages
762 * are visible to arm/parisc __flush_dcache_page
763 * throughout; but we cannot insert into address
764 * space until vma start or end is updated.
766 __vma_link_file(insert);
770 anon_vma = vma->anon_vma;
771 if (!anon_vma && adjust_next)
772 anon_vma = next->anon_vma;
774 VM_WARN_ON(adjust_next && next->anon_vma &&
775 anon_vma != next->anon_vma);
776 anon_vma_lock_write(anon_vma);
777 anon_vma_interval_tree_pre_update_vma(vma);
779 anon_vma_interval_tree_pre_update_vma(next);
783 flush_dcache_mmap_lock(mapping);
784 vma_interval_tree_remove(vma, root);
786 vma_interval_tree_remove(next, root);
789 if (start != vma->vm_start) {
790 vma->vm_start = start;
791 start_changed = true;
793 if (end != vma->vm_end) {
797 vma->vm_pgoff = pgoff;
799 next->vm_start += adjust_next << PAGE_SHIFT;
800 next->vm_pgoff += adjust_next;
805 vma_interval_tree_insert(next, root);
806 vma_interval_tree_insert(vma, root);
807 flush_dcache_mmap_unlock(mapping);
812 * vma_merge has merged next into vma, and needs
813 * us to remove next before dropping the locks.
815 if (remove_next != 3)
816 __vma_unlink_prev(mm, next, vma);
818 /* vma is not before next if they've been swapped */
819 __vma_unlink(mm, next);
821 __remove_shared_vm_struct(next, file, mapping);
824 * split_vma has split insert from vma, and needs
825 * us to insert it before dropping the locks
826 * (it may either follow vma or precede it).
828 __insert_vm_struct(mm, insert);
834 mm->highest_vm_end = end;
835 else if (!adjust_next)
836 vma_gap_update(next);
841 anon_vma_interval_tree_post_update_vma(vma);
843 anon_vma_interval_tree_post_update_vma(next);
844 anon_vma_unlock_write(anon_vma);
847 i_mmap_unlock_write(mapping);
858 uprobe_munmap(next, next->vm_start, next->vm_end);
862 anon_vma_merge(vma, next);
864 mpol_put(vma_policy(next));
865 kmem_cache_free(vm_area_cachep, next);
867 * In mprotect's case 6 (see comments on vma_merge),
868 * we must remove another next too. It would clutter
869 * up the code too much to do both in one go.
871 if (remove_next != 3) {
873 * If "next" was removed and vma->vm_end was
874 * expanded (up) over it, in turn
875 * "next->vm_prev->vm_end" changed and the
876 * "vma->vm_next" gap must be updated.
881 * For the scope of the comment "next" and
882 * "vma" considered pre-swap(): if "vma" was
883 * removed, next->vm_start was expanded (down)
884 * over it and the "next" gap must be updated.
885 * Because of the swap() the post-swap() "vma"
886 * actually points to pre-swap() "next"
887 * (post-swap() "next" as opposed is now a
892 if (remove_next == 2) {
898 vma_gap_update(next);
901 * If remove_next == 2 we obviously can't
904 * If remove_next == 3 we can't reach this
905 * path because pre-swap() next is always not
906 * NULL. pre-swap() "next" is not being
907 * removed and its next->vm_end is not altered
908 * (and furthermore "end" already matches
909 * next->vm_end in remove_next == 3).
911 * We reach this only in the remove_next == 1
912 * case if the "next" vma that was removed was
913 * the highest vma of the mm. However in such
914 * case next->vm_end == "end" and the extended
915 * "vma" has vma->vm_end == next->vm_end so
916 * mm->highest_vm_end doesn't need any update
917 * in remove_next == 1 case.
919 VM_WARN_ON(mm->highest_vm_end != end);
931 * If the vma has a ->close operation then the driver probably needs to release
932 * per-vma resources, so we don't attempt to merge those.
934 static inline int is_mergeable_vma(struct vm_area_struct *vma,
935 struct file *file, unsigned long vm_flags,
936 struct vm_userfaultfd_ctx vm_userfaultfd_ctx)
939 * VM_SOFTDIRTY should not prevent from VMA merging, if we
940 * match the flags but dirty bit -- the caller should mark
941 * merged VMA as dirty. If dirty bit won't be excluded from
942 * comparison, we increase pressue on the memory system forcing
943 * the kernel to generate new VMAs when old one could be
946 if ((vma->vm_flags ^ vm_flags) & ~VM_SOFTDIRTY)
948 if (vma->vm_file != file)
950 if (vma->vm_ops && vma->vm_ops->close)
952 if (!is_mergeable_vm_userfaultfd_ctx(vma, vm_userfaultfd_ctx))
957 static inline int is_mergeable_anon_vma(struct anon_vma *anon_vma1,
958 struct anon_vma *anon_vma2,
959 struct vm_area_struct *vma)
962 * The list_is_singular() test is to avoid merging VMA cloned from
963 * parents. This can improve scalability caused by anon_vma lock.
965 if ((!anon_vma1 || !anon_vma2) && (!vma ||
966 list_is_singular(&vma->anon_vma_chain)))
968 return anon_vma1 == anon_vma2;
972 * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
973 * in front of (at a lower virtual address and file offset than) the vma.
975 * We cannot merge two vmas if they have differently assigned (non-NULL)
976 * anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
978 * We don't check here for the merged mmap wrapping around the end of pagecache
979 * indices (16TB on ia32) because do_mmap_pgoff() does not permit mmap's which
980 * wrap, nor mmaps which cover the final page at index -1UL.
983 can_vma_merge_before(struct vm_area_struct *vma, unsigned long vm_flags,
984 struct anon_vma *anon_vma, struct file *file,
986 struct vm_userfaultfd_ctx vm_userfaultfd_ctx)
988 if (is_mergeable_vma(vma, file, vm_flags, vm_userfaultfd_ctx) &&
989 is_mergeable_anon_vma(anon_vma, vma->anon_vma, vma)) {
990 if (vma->vm_pgoff == vm_pgoff)
997 * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
998 * beyond (at a higher virtual address and file offset than) the vma.
1000 * We cannot merge two vmas if they have differently assigned (non-NULL)
1001 * anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
1004 can_vma_merge_after(struct vm_area_struct *vma, unsigned long vm_flags,
1005 struct anon_vma *anon_vma, struct file *file,
1007 struct vm_userfaultfd_ctx vm_userfaultfd_ctx)
1009 if (is_mergeable_vma(vma, file, vm_flags, vm_userfaultfd_ctx) &&
1010 is_mergeable_anon_vma(anon_vma, vma->anon_vma, vma)) {
1012 vm_pglen = vma_pages(vma);
1013 if (vma->vm_pgoff + vm_pglen == vm_pgoff)
1020 * Given a mapping request (addr,end,vm_flags,file,pgoff), figure out
1021 * whether that can be merged with its predecessor or its successor.
1022 * Or both (it neatly fills a hole).
1024 * In most cases - when called for mmap, brk or mremap - [addr,end) is
1025 * certain not to be mapped by the time vma_merge is called; but when
1026 * called for mprotect, it is certain to be already mapped (either at
1027 * an offset within prev, or at the start of next), and the flags of
1028 * this area are about to be changed to vm_flags - and the no-change
1029 * case has already been eliminated.
1031 * The following mprotect cases have to be considered, where AAAA is
1032 * the area passed down from mprotect_fixup, never extending beyond one
1033 * vma, PPPPPP is the prev vma specified, and NNNNNN the next vma after:
1035 * AAAA AAAA AAAA AAAA
1036 * PPPPPPNNNNNN PPPPPPNNNNNN PPPPPPNNNNNN PPPPNNNNXXXX
1037 * cannot merge might become might become might become
1038 * PPNNNNNNNNNN PPPPPPPPPPNN PPPPPPPPPPPP 6 or
1039 * mmap, brk or case 4 below case 5 below PPPPPPPPXXXX 7 or
1040 * mremap move: PPPPXXXXXXXX 8
1042 * PPPP NNNN PPPPPPPPPPPP PPPPPPPPNNNN PPPPNNNNNNNN
1043 * might become case 1 below case 2 below case 3 below
1045 * It is important for case 8 that the the vma NNNN overlapping the
1046 * region AAAA is never going to extended over XXXX. Instead XXXX must
1047 * be extended in region AAAA and NNNN must be removed. This way in
1048 * all cases where vma_merge succeeds, the moment vma_adjust drops the
1049 * rmap_locks, the properties of the merged vma will be already
1050 * correct for the whole merged range. Some of those properties like
1051 * vm_page_prot/vm_flags may be accessed by rmap_walks and they must
1052 * be correct for the whole merged range immediately after the
1053 * rmap_locks are released. Otherwise if XXXX would be removed and
1054 * NNNN would be extended over the XXXX range, remove_migration_ptes
1055 * or other rmap walkers (if working on addresses beyond the "end"
1056 * parameter) may establish ptes with the wrong permissions of NNNN
1057 * instead of the right permissions of XXXX.
1059 struct vm_area_struct *vma_merge(struct mm_struct *mm,
1060 struct vm_area_struct *prev, unsigned long addr,
1061 unsigned long end, unsigned long vm_flags,
1062 struct anon_vma *anon_vma, struct file *file,
1063 pgoff_t pgoff, struct mempolicy *policy,
1064 struct vm_userfaultfd_ctx vm_userfaultfd_ctx)
1066 pgoff_t pglen = (end - addr) >> PAGE_SHIFT;
1067 struct vm_area_struct *area, *next;
1071 * We later require that vma->vm_flags == vm_flags,
1072 * so this tests vma->vm_flags & VM_SPECIAL, too.
1074 if (vm_flags & VM_SPECIAL)
1078 next = prev->vm_next;
1082 if (area && area->vm_end == end) /* cases 6, 7, 8 */
1083 next = next->vm_next;
1085 /* verify some invariant that must be enforced by the caller */
1086 VM_WARN_ON(prev && addr <= prev->vm_start);
1087 VM_WARN_ON(area && end > area->vm_end);
1088 VM_WARN_ON(addr >= end);
1091 * Can it merge with the predecessor?
1093 if (prev && prev->vm_end == addr &&
1094 mpol_equal(vma_policy(prev), policy) &&
1095 can_vma_merge_after(prev, vm_flags,
1096 anon_vma, file, pgoff,
1097 vm_userfaultfd_ctx)) {
1099 * OK, it can. Can we now merge in the successor as well?
1101 if (next && end == next->vm_start &&
1102 mpol_equal(policy, vma_policy(next)) &&
1103 can_vma_merge_before(next, vm_flags,
1106 vm_userfaultfd_ctx) &&
1107 is_mergeable_anon_vma(prev->anon_vma,
1108 next->anon_vma, NULL)) {
1110 err = __vma_adjust(prev, prev->vm_start,
1111 next->vm_end, prev->vm_pgoff, NULL,
1113 } else /* cases 2, 5, 7 */
1114 err = __vma_adjust(prev, prev->vm_start,
1115 end, prev->vm_pgoff, NULL, prev);
1118 khugepaged_enter_vma_merge(prev, vm_flags);
1123 * Can this new request be merged in front of next?
1125 if (next && end == next->vm_start &&
1126 mpol_equal(policy, vma_policy(next)) &&
1127 can_vma_merge_before(next, vm_flags,
1128 anon_vma, file, pgoff+pglen,
1129 vm_userfaultfd_ctx)) {
1130 if (prev && addr < prev->vm_end) /* case 4 */
1131 err = __vma_adjust(prev, prev->vm_start,
1132 addr, prev->vm_pgoff, NULL, next);
1133 else { /* cases 3, 8 */
1134 err = __vma_adjust(area, addr, next->vm_end,
1135 next->vm_pgoff - pglen, NULL, next);
1137 * In case 3 area is already equal to next and
1138 * this is a noop, but in case 8 "area" has
1139 * been removed and next was expanded over it.
1145 khugepaged_enter_vma_merge(area, vm_flags);
1153 * Rough compatbility check to quickly see if it's even worth looking
1154 * at sharing an anon_vma.
1156 * They need to have the same vm_file, and the flags can only differ
1157 * in things that mprotect may change.
1159 * NOTE! The fact that we share an anon_vma doesn't _have_ to mean that
1160 * we can merge the two vma's. For example, we refuse to merge a vma if
1161 * there is a vm_ops->close() function, because that indicates that the
1162 * driver is doing some kind of reference counting. But that doesn't
1163 * really matter for the anon_vma sharing case.
1165 static int anon_vma_compatible(struct vm_area_struct *a, struct vm_area_struct *b)
1167 return a->vm_end == b->vm_start &&
1168 mpol_equal(vma_policy(a), vma_policy(b)) &&
1169 a->vm_file == b->vm_file &&
1170 !((a->vm_flags ^ b->vm_flags) & ~(VM_READ|VM_WRITE|VM_EXEC|VM_SOFTDIRTY)) &&
1171 b->vm_pgoff == a->vm_pgoff + ((b->vm_start - a->vm_start) >> PAGE_SHIFT);
1175 * Do some basic sanity checking to see if we can re-use the anon_vma
1176 * from 'old'. The 'a'/'b' vma's are in VM order - one of them will be
1177 * the same as 'old', the other will be the new one that is trying
1178 * to share the anon_vma.
1180 * NOTE! This runs with mm_sem held for reading, so it is possible that
1181 * the anon_vma of 'old' is concurrently in the process of being set up
1182 * by another page fault trying to merge _that_. But that's ok: if it
1183 * is being set up, that automatically means that it will be a singleton
1184 * acceptable for merging, so we can do all of this optimistically. But
1185 * we do that READ_ONCE() to make sure that we never re-load the pointer.
1187 * IOW: that the "list_is_singular()" test on the anon_vma_chain only
1188 * matters for the 'stable anon_vma' case (ie the thing we want to avoid
1189 * is to return an anon_vma that is "complex" due to having gone through
1192 * We also make sure that the two vma's are compatible (adjacent,
1193 * and with the same memory policies). That's all stable, even with just
1194 * a read lock on the mm_sem.
1196 static struct anon_vma *reusable_anon_vma(struct vm_area_struct *old, struct vm_area_struct *a, struct vm_area_struct *b)
1198 if (anon_vma_compatible(a, b)) {
1199 struct anon_vma *anon_vma = READ_ONCE(old->anon_vma);
1201 if (anon_vma && list_is_singular(&old->anon_vma_chain))
1208 * find_mergeable_anon_vma is used by anon_vma_prepare, to check
1209 * neighbouring vmas for a suitable anon_vma, before it goes off
1210 * to allocate a new anon_vma. It checks because a repetitive
1211 * sequence of mprotects and faults may otherwise lead to distinct
1212 * anon_vmas being allocated, preventing vma merge in subsequent
1215 struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *vma)
1217 struct anon_vma *anon_vma;
1218 struct vm_area_struct *near;
1220 near = vma->vm_next;
1224 anon_vma = reusable_anon_vma(near, vma, near);
1228 near = vma->vm_prev;
1232 anon_vma = reusable_anon_vma(near, near, vma);
1237 * There's no absolute need to look only at touching neighbours:
1238 * we could search further afield for "compatible" anon_vmas.
1239 * But it would probably just be a waste of time searching,
1240 * or lead to too many vmas hanging off the same anon_vma.
1241 * We're trying to allow mprotect remerging later on,
1242 * not trying to minimize memory used for anon_vmas.
1248 * If a hint addr is less than mmap_min_addr change hint to be as
1249 * low as possible but still greater than mmap_min_addr
1251 static inline unsigned long round_hint_to_min(unsigned long hint)
1254 if (((void *)hint != NULL) &&
1255 (hint < mmap_min_addr))
1256 return PAGE_ALIGN(mmap_min_addr);
1260 static inline int mlock_future_check(struct mm_struct *mm,
1261 unsigned long flags,
1264 unsigned long locked, lock_limit;
1266 /* mlock MCL_FUTURE? */
1267 if (flags & VM_LOCKED) {
1268 locked = len >> PAGE_SHIFT;
1269 locked += mm->locked_vm;
1270 lock_limit = rlimit(RLIMIT_MEMLOCK);
1271 lock_limit >>= PAGE_SHIFT;
1272 if (locked > lock_limit && !capable(CAP_IPC_LOCK))
1279 * The caller must hold down_write(¤t->mm->mmap_sem).
1281 unsigned long do_mmap(struct file *file, unsigned long addr,
1282 unsigned long len, unsigned long prot,
1283 unsigned long flags, vm_flags_t vm_flags,
1284 unsigned long pgoff, unsigned long *populate)
1286 struct mm_struct *mm = current->mm;
1295 * Does the application expect PROT_READ to imply PROT_EXEC?
1297 * (the exception is when the underlying filesystem is noexec
1298 * mounted, in which case we dont add PROT_EXEC.)
1300 if ((prot & PROT_READ) && (current->personality & READ_IMPLIES_EXEC))
1301 if (!(file && path_noexec(&file->f_path)))
1304 if (!(flags & MAP_FIXED))
1305 addr = round_hint_to_min(addr);
1307 /* Careful about overflows.. */
1308 len = PAGE_ALIGN(len);
1312 /* offset overflow? */
1313 if ((pgoff + (len >> PAGE_SHIFT)) < pgoff)
1316 /* Too many mappings? */
1317 if (mm->map_count > sysctl_max_map_count)
1320 /* Obtain the address to map to. we verify (or select) it and ensure
1321 * that it represents a valid section of the address space.
1323 addr = get_unmapped_area(file, addr, len, pgoff, flags);
1324 if (offset_in_page(addr))
1327 if (prot == PROT_EXEC) {
1328 pkey = execute_only_pkey(mm);
1333 /* Do simple checking here so the lower-level routines won't have
1334 * to. we assume access permissions have been handled by the open
1335 * of the memory object, so we don't do any here.
1337 vm_flags |= calc_vm_prot_bits(prot, pkey) | calc_vm_flag_bits(flags) |
1338 mm->def_flags | VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC;
1340 if (flags & MAP_LOCKED)
1341 if (!can_do_mlock())
1344 if (mlock_future_check(mm, vm_flags, len))
1348 struct inode *inode = file_inode(file);
1350 switch (flags & MAP_TYPE) {
1352 if ((prot&PROT_WRITE) && !(file->f_mode&FMODE_WRITE))
1356 * Make sure we don't allow writing to an append-only
1359 if (IS_APPEND(inode) && (file->f_mode & FMODE_WRITE))
1363 * Make sure there are no mandatory locks on the file.
1365 if (locks_verify_locked(file))
1368 vm_flags |= VM_SHARED | VM_MAYSHARE;
1369 if (!(file->f_mode & FMODE_WRITE))
1370 vm_flags &= ~(VM_MAYWRITE | VM_SHARED);
1374 if (!(file->f_mode & FMODE_READ))
1376 if (path_noexec(&file->f_path)) {
1377 if (vm_flags & VM_EXEC)
1379 vm_flags &= ~VM_MAYEXEC;
1382 if (!file->f_op->mmap)
1384 if (vm_flags & (VM_GROWSDOWN|VM_GROWSUP))
1392 switch (flags & MAP_TYPE) {
1394 if (vm_flags & (VM_GROWSDOWN|VM_GROWSUP))
1400 vm_flags |= VM_SHARED | VM_MAYSHARE;
1404 * Set pgoff according to addr for anon_vma.
1406 pgoff = addr >> PAGE_SHIFT;
1414 * Set 'VM_NORESERVE' if we should not account for the
1415 * memory use of this mapping.
1417 if (flags & MAP_NORESERVE) {
1418 /* We honor MAP_NORESERVE if allowed to overcommit */
1419 if (sysctl_overcommit_memory != OVERCOMMIT_NEVER)
1420 vm_flags |= VM_NORESERVE;
1422 /* hugetlb applies strict overcommit unless MAP_NORESERVE */
1423 if (file && is_file_hugepages(file))
1424 vm_flags |= VM_NORESERVE;
1427 addr = mmap_region(file, addr, len, vm_flags, pgoff);
1428 if (!IS_ERR_VALUE(addr) &&
1429 ((vm_flags & VM_LOCKED) ||
1430 (flags & (MAP_POPULATE | MAP_NONBLOCK)) == MAP_POPULATE))
1435 SYSCALL_DEFINE6(mmap_pgoff, unsigned long, addr, unsigned long, len,
1436 unsigned long, prot, unsigned long, flags,
1437 unsigned long, fd, unsigned long, pgoff)
1439 struct file *file = NULL;
1440 unsigned long retval;
1442 if (!(flags & MAP_ANONYMOUS)) {
1443 audit_mmap_fd(fd, flags);
1447 if (is_file_hugepages(file))
1448 len = ALIGN(len, huge_page_size(hstate_file(file)));
1450 if (unlikely(flags & MAP_HUGETLB && !is_file_hugepages(file)))
1452 } else if (flags & MAP_HUGETLB) {
1453 struct user_struct *user = NULL;
1456 hs = hstate_sizelog((flags >> MAP_HUGE_SHIFT) & SHM_HUGE_MASK);
1460 len = ALIGN(len, huge_page_size(hs));
1462 * VM_NORESERVE is used because the reservations will be
1463 * taken when vm_ops->mmap() is called
1464 * A dummy user value is used because we are not locking
1465 * memory so no accounting is necessary
1467 file = hugetlb_file_setup(HUGETLB_ANON_FILE, len,
1469 &user, HUGETLB_ANONHUGE_INODE,
1470 (flags >> MAP_HUGE_SHIFT) & MAP_HUGE_MASK);
1472 return PTR_ERR(file);
1475 flags &= ~(MAP_EXECUTABLE | MAP_DENYWRITE);
1477 retval = vm_mmap_pgoff(file, addr, len, prot, flags, pgoff);
1484 #ifdef __ARCH_WANT_SYS_OLD_MMAP
1485 struct mmap_arg_struct {
1489 unsigned long flags;
1491 unsigned long offset;
1494 SYSCALL_DEFINE1(old_mmap, struct mmap_arg_struct __user *, arg)
1496 struct mmap_arg_struct a;
1498 if (copy_from_user(&a, arg, sizeof(a)))
1500 if (offset_in_page(a.offset))
1503 return sys_mmap_pgoff(a.addr, a.len, a.prot, a.flags, a.fd,
1504 a.offset >> PAGE_SHIFT);
1506 #endif /* __ARCH_WANT_SYS_OLD_MMAP */
1509 * Some shared mappigns will want the pages marked read-only
1510 * to track write events. If so, we'll downgrade vm_page_prot
1511 * to the private version (using protection_map[] without the
1514 int vma_wants_writenotify(struct vm_area_struct *vma, pgprot_t vm_page_prot)
1516 vm_flags_t vm_flags = vma->vm_flags;
1517 const struct vm_operations_struct *vm_ops = vma->vm_ops;
1519 /* If it was private or non-writable, the write bit is already clear */
1520 if ((vm_flags & (VM_WRITE|VM_SHARED)) != ((VM_WRITE|VM_SHARED)))
1523 /* The backer wishes to know when pages are first written to? */
1524 if (vm_ops && (vm_ops->page_mkwrite || vm_ops->pfn_mkwrite))
1527 /* The open routine did something to the protections that pgprot_modify
1528 * won't preserve? */
1529 if (pgprot_val(vm_page_prot) !=
1530 pgprot_val(vm_pgprot_modify(vm_page_prot, vm_flags)))
1533 /* Do we need to track softdirty? */
1534 if (IS_ENABLED(CONFIG_MEM_SOFT_DIRTY) && !(vm_flags & VM_SOFTDIRTY))
1537 /* Specialty mapping? */
1538 if (vm_flags & VM_PFNMAP)
1541 /* Can the mapping track the dirty pages? */
1542 return vma->vm_file && vma->vm_file->f_mapping &&
1543 mapping_cap_account_dirty(vma->vm_file->f_mapping);
1547 * We account for memory if it's a private writeable mapping,
1548 * not hugepages and VM_NORESERVE wasn't set.
1550 static inline int accountable_mapping(struct file *file, vm_flags_t vm_flags)
1553 * hugetlb has its own accounting separate from the core VM
1554 * VM_HUGETLB may not be set yet so we cannot check for that flag.
1556 if (file && is_file_hugepages(file))
1559 return (vm_flags & (VM_NORESERVE | VM_SHARED | VM_WRITE)) == VM_WRITE;
1562 unsigned long mmap_region(struct file *file, unsigned long addr,
1563 unsigned long len, vm_flags_t vm_flags, unsigned long pgoff)
1565 struct mm_struct *mm = current->mm;
1566 struct vm_area_struct *vma, *prev;
1568 struct rb_node **rb_link, *rb_parent;
1569 unsigned long charged = 0;
1571 /* Check against address space limit. */
1572 if (!may_expand_vm(mm, vm_flags, len >> PAGE_SHIFT)) {
1573 unsigned long nr_pages;
1576 * MAP_FIXED may remove pages of mappings that intersects with
1577 * requested mapping. Account for the pages it would unmap.
1579 nr_pages = count_vma_pages_range(mm, addr, addr + len);
1581 if (!may_expand_vm(mm, vm_flags,
1582 (len >> PAGE_SHIFT) - nr_pages))
1586 /* Clear old maps */
1587 while (find_vma_links(mm, addr, addr + len, &prev, &rb_link,
1589 if (do_munmap(mm, addr, len))
1594 * Private writable mapping: check memory availability
1596 if (accountable_mapping(file, vm_flags)) {
1597 charged = len >> PAGE_SHIFT;
1598 if (security_vm_enough_memory_mm(mm, charged))
1600 vm_flags |= VM_ACCOUNT;
1604 * Can we just expand an old mapping?
1606 vma = vma_merge(mm, prev, addr, addr + len, vm_flags,
1607 NULL, file, pgoff, NULL, NULL_VM_UFFD_CTX);
1612 * Determine the object being mapped and call the appropriate
1613 * specific mapper. the address has already been validated, but
1614 * not unmapped, but the maps are removed from the list.
1616 vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
1623 vma->vm_start = addr;
1624 vma->vm_end = addr + len;
1625 vma->vm_flags = vm_flags;
1626 vma->vm_page_prot = vm_get_page_prot(vm_flags);
1627 vma->vm_pgoff = pgoff;
1628 INIT_LIST_HEAD(&vma->anon_vma_chain);
1631 if (vm_flags & VM_DENYWRITE) {
1632 error = deny_write_access(file);
1636 if (vm_flags & VM_SHARED) {
1637 error = mapping_map_writable(file->f_mapping);
1639 goto allow_write_and_free_vma;
1642 /* ->mmap() can change vma->vm_file, but must guarantee that
1643 * vma_link() below can deny write-access if VM_DENYWRITE is set
1644 * and map writably if VM_SHARED is set. This usually means the
1645 * new file must not have been exposed to user-space, yet.
1647 vma->vm_file = get_file(file);
1648 error = file->f_op->mmap(file, vma);
1650 goto unmap_and_free_vma;
1652 /* Can addr have changed??
1654 * Answer: Yes, several device drivers can do it in their
1655 * f_op->mmap method. -DaveM
1656 * Bug: If addr is changed, prev, rb_link, rb_parent should
1657 * be updated for vma_link()
1659 WARN_ON_ONCE(addr != vma->vm_start);
1661 addr = vma->vm_start;
1662 vm_flags = vma->vm_flags;
1663 } else if (vm_flags & VM_SHARED) {
1664 error = shmem_zero_setup(vma);
1669 vma_link(mm, vma, prev, rb_link, rb_parent);
1670 /* Once vma denies write, undo our temporary denial count */
1672 if (vm_flags & VM_SHARED)
1673 mapping_unmap_writable(file->f_mapping);
1674 if (vm_flags & VM_DENYWRITE)
1675 allow_write_access(file);
1677 file = vma->vm_file;
1679 perf_event_mmap(vma);
1681 vm_stat_account(mm, vm_flags, len >> PAGE_SHIFT);
1682 if (vm_flags & VM_LOCKED) {
1683 if (!((vm_flags & VM_SPECIAL) || is_vm_hugetlb_page(vma) ||
1684 vma == get_gate_vma(current->mm)))
1685 mm->locked_vm += (len >> PAGE_SHIFT);
1687 vma->vm_flags &= VM_LOCKED_CLEAR_MASK;
1694 * New (or expanded) vma always get soft dirty status.
1695 * Otherwise user-space soft-dirty page tracker won't
1696 * be able to distinguish situation when vma area unmapped,
1697 * then new mapped in-place (which must be aimed as
1698 * a completely new data area).
1700 vma->vm_flags |= VM_SOFTDIRTY;
1702 vma_set_page_prot(vma);
1707 vma->vm_file = NULL;
1710 /* Undo any partial mapping done by a device driver. */
1711 unmap_region(mm, vma, prev, vma->vm_start, vma->vm_end);
1713 if (vm_flags & VM_SHARED)
1714 mapping_unmap_writable(file->f_mapping);
1715 allow_write_and_free_vma:
1716 if (vm_flags & VM_DENYWRITE)
1717 allow_write_access(file);
1719 kmem_cache_free(vm_area_cachep, vma);
1722 vm_unacct_memory(charged);
1726 unsigned long unmapped_area(struct vm_unmapped_area_info *info)
1729 * We implement the search by looking for an rbtree node that
1730 * immediately follows a suitable gap. That is,
1731 * - gap_start = vma->vm_prev->vm_end <= info->high_limit - length;
1732 * - gap_end = vma->vm_start >= info->low_limit + length;
1733 * - gap_end - gap_start >= length
1736 struct mm_struct *mm = current->mm;
1737 struct vm_area_struct *vma;
1738 unsigned long length, low_limit, high_limit, gap_start, gap_end;
1740 /* Adjust search length to account for worst case alignment overhead */
1741 length = info->length + info->align_mask;
1742 if (length < info->length)
1745 /* Adjust search limits by the desired length */
1746 if (info->high_limit < length)
1748 high_limit = info->high_limit - length;
1750 if (info->low_limit > high_limit)
1752 low_limit = info->low_limit + length;
1754 /* Check if rbtree root looks promising */
1755 if (RB_EMPTY_ROOT(&mm->mm_rb))
1757 vma = rb_entry(mm->mm_rb.rb_node, struct vm_area_struct, vm_rb);
1758 if (vma->rb_subtree_gap < length)
1762 /* Visit left subtree if it looks promising */
1763 gap_end = vma->vm_start;
1764 if (gap_end >= low_limit && vma->vm_rb.rb_left) {
1765 struct vm_area_struct *left =
1766 rb_entry(vma->vm_rb.rb_left,
1767 struct vm_area_struct, vm_rb);
1768 if (left->rb_subtree_gap >= length) {
1774 gap_start = vma->vm_prev ? vma->vm_prev->vm_end : 0;
1776 /* Check if current node has a suitable gap */
1777 if (gap_start > high_limit)
1779 if (gap_end >= low_limit && gap_end - gap_start >= length)
1782 /* Visit right subtree if it looks promising */
1783 if (vma->vm_rb.rb_right) {
1784 struct vm_area_struct *right =
1785 rb_entry(vma->vm_rb.rb_right,
1786 struct vm_area_struct, vm_rb);
1787 if (right->rb_subtree_gap >= length) {
1793 /* Go back up the rbtree to find next candidate node */
1795 struct rb_node *prev = &vma->vm_rb;
1796 if (!rb_parent(prev))
1798 vma = rb_entry(rb_parent(prev),
1799 struct vm_area_struct, vm_rb);
1800 if (prev == vma->vm_rb.rb_left) {
1801 gap_start = vma->vm_prev->vm_end;
1802 gap_end = vma->vm_start;
1809 /* Check highest gap, which does not precede any rbtree node */
1810 gap_start = mm->highest_vm_end;
1811 gap_end = ULONG_MAX; /* Only for VM_BUG_ON below */
1812 if (gap_start > high_limit)
1816 /* We found a suitable gap. Clip it with the original low_limit. */
1817 if (gap_start < info->low_limit)
1818 gap_start = info->low_limit;
1820 /* Adjust gap address to the desired alignment */
1821 gap_start += (info->align_offset - gap_start) & info->align_mask;
1823 VM_BUG_ON(gap_start + info->length > info->high_limit);
1824 VM_BUG_ON(gap_start + info->length > gap_end);
1828 unsigned long unmapped_area_topdown(struct vm_unmapped_area_info *info)
1830 struct mm_struct *mm = current->mm;
1831 struct vm_area_struct *vma;
1832 unsigned long length, low_limit, high_limit, gap_start, gap_end;
1834 /* Adjust search length to account for worst case alignment overhead */
1835 length = info->length + info->align_mask;
1836 if (length < info->length)
1840 * Adjust search limits by the desired length.
1841 * See implementation comment at top of unmapped_area().
1843 gap_end = info->high_limit;
1844 if (gap_end < length)
1846 high_limit = gap_end - length;
1848 if (info->low_limit > high_limit)
1850 low_limit = info->low_limit + length;
1852 /* Check highest gap, which does not precede any rbtree node */
1853 gap_start = mm->highest_vm_end;
1854 if (gap_start <= high_limit)
1857 /* Check if rbtree root looks promising */
1858 if (RB_EMPTY_ROOT(&mm->mm_rb))
1860 vma = rb_entry(mm->mm_rb.rb_node, struct vm_area_struct, vm_rb);
1861 if (vma->rb_subtree_gap < length)
1865 /* Visit right subtree if it looks promising */
1866 gap_start = vma->vm_prev ? vma->vm_prev->vm_end : 0;
1867 if (gap_start <= high_limit && vma->vm_rb.rb_right) {
1868 struct vm_area_struct *right =
1869 rb_entry(vma->vm_rb.rb_right,
1870 struct vm_area_struct, vm_rb);
1871 if (right->rb_subtree_gap >= length) {
1878 /* Check if current node has a suitable gap */
1879 gap_end = vma->vm_start;
1880 if (gap_end < low_limit)
1882 if (gap_start <= high_limit && gap_end - gap_start >= length)
1885 /* Visit left subtree if it looks promising */
1886 if (vma->vm_rb.rb_left) {
1887 struct vm_area_struct *left =
1888 rb_entry(vma->vm_rb.rb_left,
1889 struct vm_area_struct, vm_rb);
1890 if (left->rb_subtree_gap >= length) {
1896 /* Go back up the rbtree to find next candidate node */
1898 struct rb_node *prev = &vma->vm_rb;
1899 if (!rb_parent(prev))
1901 vma = rb_entry(rb_parent(prev),
1902 struct vm_area_struct, vm_rb);
1903 if (prev == vma->vm_rb.rb_right) {
1904 gap_start = vma->vm_prev ?
1905 vma->vm_prev->vm_end : 0;
1912 /* We found a suitable gap. Clip it with the original high_limit. */
1913 if (gap_end > info->high_limit)
1914 gap_end = info->high_limit;
1917 /* Compute highest gap address at the desired alignment */
1918 gap_end -= info->length;
1919 gap_end -= (gap_end - info->align_offset) & info->align_mask;
1921 VM_BUG_ON(gap_end < info->low_limit);
1922 VM_BUG_ON(gap_end < gap_start);
1926 /* Get an address range which is currently unmapped.
1927 * For shmat() with addr=0.
1929 * Ugly calling convention alert:
1930 * Return value with the low bits set means error value,
1932 * if (ret & ~PAGE_MASK)
1935 * This function "knows" that -ENOMEM has the bits set.
1937 #ifndef HAVE_ARCH_UNMAPPED_AREA
1939 arch_get_unmapped_area(struct file *filp, unsigned long addr,
1940 unsigned long len, unsigned long pgoff, unsigned long flags)
1942 struct mm_struct *mm = current->mm;
1943 struct vm_area_struct *vma;
1944 struct vm_unmapped_area_info info;
1946 if (len > TASK_SIZE - mmap_min_addr)
1949 if (flags & MAP_FIXED)
1953 addr = PAGE_ALIGN(addr);
1954 vma = find_vma(mm, addr);
1955 if (TASK_SIZE - len >= addr && addr >= mmap_min_addr &&
1956 (!vma || addr + len <= vma->vm_start))
1962 info.low_limit = mm->mmap_base;
1963 info.high_limit = TASK_SIZE;
1964 info.align_mask = 0;
1965 return vm_unmapped_area(&info);
1970 * This mmap-allocator allocates new areas top-down from below the
1971 * stack's low limit (the base):
1973 #ifndef HAVE_ARCH_UNMAPPED_AREA_TOPDOWN
1975 arch_get_unmapped_area_topdown(struct file *filp, const unsigned long addr0,
1976 const unsigned long len, const unsigned long pgoff,
1977 const unsigned long flags)
1979 struct vm_area_struct *vma;
1980 struct mm_struct *mm = current->mm;
1981 unsigned long addr = addr0;
1982 struct vm_unmapped_area_info info;
1984 /* requested length too big for entire address space */
1985 if (len > TASK_SIZE - mmap_min_addr)
1988 if (flags & MAP_FIXED)
1991 /* requesting a specific address */
1993 addr = PAGE_ALIGN(addr);
1994 vma = find_vma(mm, addr);
1995 if (TASK_SIZE - len >= addr && addr >= mmap_min_addr &&
1996 (!vma || addr + len <= vma->vm_start))
2000 info.flags = VM_UNMAPPED_AREA_TOPDOWN;
2002 info.low_limit = max(PAGE_SIZE, mmap_min_addr);
2003 info.high_limit = mm->mmap_base;
2004 info.align_mask = 0;
2005 addr = vm_unmapped_area(&info);
2008 * A failed mmap() very likely causes application failure,
2009 * so fall back to the bottom-up function here. This scenario
2010 * can happen with large stack limits and large mmap()
2013 if (offset_in_page(addr)) {
2014 VM_BUG_ON(addr != -ENOMEM);
2016 info.low_limit = TASK_UNMAPPED_BASE;
2017 info.high_limit = TASK_SIZE;
2018 addr = vm_unmapped_area(&info);
2026 get_unmapped_area(struct file *file, unsigned long addr, unsigned long len,
2027 unsigned long pgoff, unsigned long flags)
2029 unsigned long (*get_area)(struct file *, unsigned long,
2030 unsigned long, unsigned long, unsigned long);
2032 unsigned long error = arch_mmap_check(addr, len, flags);
2036 /* Careful about overflows.. */
2037 if (len > TASK_SIZE)
2040 get_area = current->mm->get_unmapped_area;
2042 if (file->f_op->get_unmapped_area)
2043 get_area = file->f_op->get_unmapped_area;
2044 } else if (flags & MAP_SHARED) {
2046 * mmap_region() will call shmem_zero_setup() to create a file,
2047 * so use shmem's get_unmapped_area in case it can be huge.
2048 * do_mmap_pgoff() will clear pgoff, so match alignment.
2051 get_area = shmem_get_unmapped_area;
2054 addr = get_area(file, addr, len, pgoff, flags);
2055 if (IS_ERR_VALUE(addr))
2058 if (addr > TASK_SIZE - len)
2060 if (offset_in_page(addr))
2063 error = security_mmap_addr(addr);
2064 return error ? error : addr;
2067 EXPORT_SYMBOL(get_unmapped_area);
2069 /* Look up the first VMA which satisfies addr < vm_end, NULL if none. */
2070 struct vm_area_struct *find_vma(struct mm_struct *mm, unsigned long addr)
2072 struct rb_node *rb_node;
2073 struct vm_area_struct *vma;
2075 /* Check the cache first. */
2076 vma = vmacache_find(mm, addr);
2080 rb_node = mm->mm_rb.rb_node;
2083 struct vm_area_struct *tmp;
2085 tmp = rb_entry(rb_node, struct vm_area_struct, vm_rb);
2087 if (tmp->vm_end > addr) {
2089 if (tmp->vm_start <= addr)
2091 rb_node = rb_node->rb_left;
2093 rb_node = rb_node->rb_right;
2097 vmacache_update(addr, vma);
2101 EXPORT_SYMBOL(find_vma);
2104 * Same as find_vma, but also return a pointer to the previous VMA in *pprev.
2106 struct vm_area_struct *
2107 find_vma_prev(struct mm_struct *mm, unsigned long addr,
2108 struct vm_area_struct **pprev)
2110 struct vm_area_struct *vma;
2112 vma = find_vma(mm, addr);
2114 *pprev = vma->vm_prev;
2116 struct rb_node *rb_node = mm->mm_rb.rb_node;
2119 *pprev = rb_entry(rb_node, struct vm_area_struct, vm_rb);
2120 rb_node = rb_node->rb_right;
2127 * Verify that the stack growth is acceptable and
2128 * update accounting. This is shared with both the
2129 * grow-up and grow-down cases.
2131 static int acct_stack_growth(struct vm_area_struct *vma, unsigned long size, unsigned long grow)
2133 struct mm_struct *mm = vma->vm_mm;
2134 struct rlimit *rlim = current->signal->rlim;
2135 unsigned long new_start, actual_size;
2137 /* address space limit tests */
2138 if (!may_expand_vm(mm, vma->vm_flags, grow))
2141 /* Stack limit test */
2143 if (size && (vma->vm_flags & (VM_GROWSUP | VM_GROWSDOWN)))
2144 actual_size -= PAGE_SIZE;
2145 if (actual_size > READ_ONCE(rlim[RLIMIT_STACK].rlim_cur))
2148 /* mlock limit tests */
2149 if (vma->vm_flags & VM_LOCKED) {
2150 unsigned long locked;
2151 unsigned long limit;
2152 locked = mm->locked_vm + grow;
2153 limit = READ_ONCE(rlim[RLIMIT_MEMLOCK].rlim_cur);
2154 limit >>= PAGE_SHIFT;
2155 if (locked > limit && !capable(CAP_IPC_LOCK))
2159 /* Check to ensure the stack will not grow into a hugetlb-only region */
2160 new_start = (vma->vm_flags & VM_GROWSUP) ? vma->vm_start :
2162 if (is_hugepage_only_range(vma->vm_mm, new_start, size))
2166 * Overcommit.. This must be the final test, as it will
2167 * update security statistics.
2169 if (security_vm_enough_memory_mm(mm, grow))
2175 #if defined(CONFIG_STACK_GROWSUP) || defined(CONFIG_IA64)
2177 * PA-RISC uses this for its stack; IA64 for its Register Backing Store.
2178 * vma is the last one with address > vma->vm_end. Have to extend vma.
2180 int expand_upwards(struct vm_area_struct *vma, unsigned long address)
2182 struct mm_struct *mm = vma->vm_mm;
2185 if (!(vma->vm_flags & VM_GROWSUP))
2188 /* Guard against wrapping around to address 0. */
2189 if (address < PAGE_ALIGN(address+4))
2190 address = PAGE_ALIGN(address+4);
2194 /* We must make sure the anon_vma is allocated. */
2195 if (unlikely(anon_vma_prepare(vma)))
2199 * vma->vm_start/vm_end cannot change under us because the caller
2200 * is required to hold the mmap_sem in read mode. We need the
2201 * anon_vma lock to serialize against concurrent expand_stacks.
2203 anon_vma_lock_write(vma->anon_vma);
2205 /* Somebody else might have raced and expanded it already */
2206 if (address > vma->vm_end) {
2207 unsigned long size, grow;
2209 size = address - vma->vm_start;
2210 grow = (address - vma->vm_end) >> PAGE_SHIFT;
2213 if (vma->vm_pgoff + (size >> PAGE_SHIFT) >= vma->vm_pgoff) {
2214 error = acct_stack_growth(vma, size, grow);
2217 * vma_gap_update() doesn't support concurrent
2218 * updates, but we only hold a shared mmap_sem
2219 * lock here, so we need to protect against
2220 * concurrent vma expansions.
2221 * anon_vma_lock_write() doesn't help here, as
2222 * we don't guarantee that all growable vmas
2223 * in a mm share the same root anon vma.
2224 * So, we reuse mm->page_table_lock to guard
2225 * against concurrent vma expansions.
2227 spin_lock(&mm->page_table_lock);
2228 if (vma->vm_flags & VM_LOCKED)
2229 mm->locked_vm += grow;
2230 vm_stat_account(mm, vma->vm_flags, grow);
2231 anon_vma_interval_tree_pre_update_vma(vma);
2232 vma->vm_end = address;
2233 anon_vma_interval_tree_post_update_vma(vma);
2235 vma_gap_update(vma->vm_next);
2237 mm->highest_vm_end = address;
2238 spin_unlock(&mm->page_table_lock);
2240 perf_event_mmap(vma);
2244 anon_vma_unlock_write(vma->anon_vma);
2245 khugepaged_enter_vma_merge(vma, vma->vm_flags);
2249 #endif /* CONFIG_STACK_GROWSUP || CONFIG_IA64 */
2252 * vma is the first one with address < vma->vm_start. Have to extend vma.
2254 int expand_downwards(struct vm_area_struct *vma,
2255 unsigned long address)
2257 struct mm_struct *mm = vma->vm_mm;
2260 address &= PAGE_MASK;
2261 error = security_mmap_addr(address);
2265 /* We must make sure the anon_vma is allocated. */
2266 if (unlikely(anon_vma_prepare(vma)))
2270 * vma->vm_start/vm_end cannot change under us because the caller
2271 * is required to hold the mmap_sem in read mode. We need the
2272 * anon_vma lock to serialize against concurrent expand_stacks.
2274 anon_vma_lock_write(vma->anon_vma);
2276 /* Somebody else might have raced and expanded it already */
2277 if (address < vma->vm_start) {
2278 unsigned long size, grow;
2280 size = vma->vm_end - address;
2281 grow = (vma->vm_start - address) >> PAGE_SHIFT;
2284 if (grow <= vma->vm_pgoff) {
2285 error = acct_stack_growth(vma, size, grow);
2288 * vma_gap_update() doesn't support concurrent
2289 * updates, but we only hold a shared mmap_sem
2290 * lock here, so we need to protect against
2291 * concurrent vma expansions.
2292 * anon_vma_lock_write() doesn't help here, as
2293 * we don't guarantee that all growable vmas
2294 * in a mm share the same root anon vma.
2295 * So, we reuse mm->page_table_lock to guard
2296 * against concurrent vma expansions.
2298 spin_lock(&mm->page_table_lock);
2299 if (vma->vm_flags & VM_LOCKED)
2300 mm->locked_vm += grow;
2301 vm_stat_account(mm, vma->vm_flags, grow);
2302 anon_vma_interval_tree_pre_update_vma(vma);
2303 vma->vm_start = address;
2304 vma->vm_pgoff -= grow;
2305 anon_vma_interval_tree_post_update_vma(vma);
2306 vma_gap_update(vma);
2307 spin_unlock(&mm->page_table_lock);
2309 perf_event_mmap(vma);
2313 anon_vma_unlock_write(vma->anon_vma);
2314 khugepaged_enter_vma_merge(vma, vma->vm_flags);
2320 * Note how expand_stack() refuses to expand the stack all the way to
2321 * abut the next virtual mapping, *unless* that mapping itself is also
2322 * a stack mapping. We want to leave room for a guard page, after all
2323 * (the guard page itself is not added here, that is done by the
2324 * actual page faulting logic)
2326 * This matches the behavior of the guard page logic (see mm/memory.c:
2327 * check_stack_guard_page()), which only allows the guard page to be
2328 * removed under these circumstances.
2330 #ifdef CONFIG_STACK_GROWSUP
2331 int expand_stack(struct vm_area_struct *vma, unsigned long address)
2333 struct vm_area_struct *next;
2335 address &= PAGE_MASK;
2336 next = vma->vm_next;
2337 if (next && next->vm_start == address + PAGE_SIZE) {
2338 if (!(next->vm_flags & VM_GROWSUP))
2341 return expand_upwards(vma, address);
2344 struct vm_area_struct *
2345 find_extend_vma(struct mm_struct *mm, unsigned long addr)
2347 struct vm_area_struct *vma, *prev;
2350 vma = find_vma_prev(mm, addr, &prev);
2351 if (vma && (vma->vm_start <= addr))
2353 if (!prev || expand_stack(prev, addr))
2355 if (prev->vm_flags & VM_LOCKED)
2356 populate_vma_page_range(prev, addr, prev->vm_end, NULL);
2360 int expand_stack(struct vm_area_struct *vma, unsigned long address)
2362 struct vm_area_struct *prev;
2364 address &= PAGE_MASK;
2365 prev = vma->vm_prev;
2366 if (prev && prev->vm_end == address) {
2367 if (!(prev->vm_flags & VM_GROWSDOWN))
2370 return expand_downwards(vma, address);
2373 struct vm_area_struct *
2374 find_extend_vma(struct mm_struct *mm, unsigned long addr)
2376 struct vm_area_struct *vma;
2377 unsigned long start;
2380 vma = find_vma(mm, addr);
2383 if (vma->vm_start <= addr)
2385 if (!(vma->vm_flags & VM_GROWSDOWN))
2387 start = vma->vm_start;
2388 if (expand_stack(vma, addr))
2390 if (vma->vm_flags & VM_LOCKED)
2391 populate_vma_page_range(vma, addr, start, NULL);
2396 EXPORT_SYMBOL_GPL(find_extend_vma);
2399 * Ok - we have the memory areas we should free on the vma list,
2400 * so release them, and do the vma updates.
2402 * Called with the mm semaphore held.
2404 static void remove_vma_list(struct mm_struct *mm, struct vm_area_struct *vma)
2406 unsigned long nr_accounted = 0;
2408 /* Update high watermark before we lower total_vm */
2409 update_hiwater_vm(mm);
2411 long nrpages = vma_pages(vma);
2413 if (vma->vm_flags & VM_ACCOUNT)
2414 nr_accounted += nrpages;
2415 vm_stat_account(mm, vma->vm_flags, -nrpages);
2416 vma = remove_vma(vma);
2418 vm_unacct_memory(nr_accounted);
2423 * Get rid of page table information in the indicated region.
2425 * Called with the mm semaphore held.
2427 static void unmap_region(struct mm_struct *mm,
2428 struct vm_area_struct *vma, struct vm_area_struct *prev,
2429 unsigned long start, unsigned long end)
2431 struct vm_area_struct *next = prev ? prev->vm_next : mm->mmap;
2432 struct mmu_gather tlb;
2435 tlb_gather_mmu(&tlb, mm, start, end);
2436 update_hiwater_rss(mm);
2437 unmap_vmas(&tlb, vma, start, end);
2438 free_pgtables(&tlb, vma, prev ? prev->vm_end : FIRST_USER_ADDRESS,
2439 next ? next->vm_start : USER_PGTABLES_CEILING);
2440 tlb_finish_mmu(&tlb, start, end);
2444 * Create a list of vma's touched by the unmap, removing them from the mm's
2445 * vma list as we go..
2448 detach_vmas_to_be_unmapped(struct mm_struct *mm, struct vm_area_struct *vma,
2449 struct vm_area_struct *prev, unsigned long end)
2451 struct vm_area_struct **insertion_point;
2452 struct vm_area_struct *tail_vma = NULL;
2454 insertion_point = (prev ? &prev->vm_next : &mm->mmap);
2455 vma->vm_prev = NULL;
2457 vma_rb_erase(vma, &mm->mm_rb);
2461 } while (vma && vma->vm_start < end);
2462 *insertion_point = vma;
2464 vma->vm_prev = prev;
2465 vma_gap_update(vma);
2467 mm->highest_vm_end = prev ? prev->vm_end : 0;
2468 tail_vma->vm_next = NULL;
2470 /* Kill the cache */
2471 vmacache_invalidate(mm);
2475 * __split_vma() bypasses sysctl_max_map_count checking. We use this on the
2476 * munmap path where it doesn't make sense to fail.
2478 static int __split_vma(struct mm_struct *mm, struct vm_area_struct *vma,
2479 unsigned long addr, int new_below)
2481 struct vm_area_struct *new;
2484 if (is_vm_hugetlb_page(vma) && (addr &
2485 ~(huge_page_mask(hstate_vma(vma)))))
2488 new = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
2492 /* most fields are the same, copy all, and then fixup */
2495 INIT_LIST_HEAD(&new->anon_vma_chain);
2500 new->vm_start = addr;
2501 new->vm_pgoff += ((addr - vma->vm_start) >> PAGE_SHIFT);
2504 err = vma_dup_policy(vma, new);
2508 err = anon_vma_clone(new, vma);
2513 get_file(new->vm_file);
2515 if (new->vm_ops && new->vm_ops->open)
2516 new->vm_ops->open(new);
2519 err = vma_adjust(vma, addr, vma->vm_end, vma->vm_pgoff +
2520 ((addr - new->vm_start) >> PAGE_SHIFT), new);
2522 err = vma_adjust(vma, vma->vm_start, addr, vma->vm_pgoff, new);
2528 /* Clean everything up if vma_adjust failed. */
2529 if (new->vm_ops && new->vm_ops->close)
2530 new->vm_ops->close(new);
2533 unlink_anon_vmas(new);
2535 mpol_put(vma_policy(new));
2537 kmem_cache_free(vm_area_cachep, new);
2542 * Split a vma into two pieces at address 'addr', a new vma is allocated
2543 * either for the first part or the tail.
2545 int split_vma(struct mm_struct *mm, struct vm_area_struct *vma,
2546 unsigned long addr, int new_below)
2548 if (mm->map_count >= sysctl_max_map_count)
2551 return __split_vma(mm, vma, addr, new_below);
2554 /* Munmap is split into 2 main parts -- this part which finds
2555 * what needs doing, and the areas themselves, which do the
2556 * work. This now handles partial unmappings.
2557 * Jeremy Fitzhardinge <jeremy@goop.org>
2559 int do_munmap(struct mm_struct *mm, unsigned long start, size_t len)
2562 struct vm_area_struct *vma, *prev, *last;
2564 if ((offset_in_page(start)) || start > TASK_SIZE || len > TASK_SIZE-start)
2567 len = PAGE_ALIGN(len);
2571 /* Find the first overlapping VMA */
2572 vma = find_vma(mm, start);
2575 prev = vma->vm_prev;
2576 /* we have start < vma->vm_end */
2578 /* if it doesn't overlap, we have nothing.. */
2580 if (vma->vm_start >= end)
2584 * If we need to split any vma, do it now to save pain later.
2586 * Note: mremap's move_vma VM_ACCOUNT handling assumes a partially
2587 * unmapped vm_area_struct will remain in use: so lower split_vma
2588 * places tmp vma above, and higher split_vma places tmp vma below.
2590 if (start > vma->vm_start) {
2594 * Make sure that map_count on return from munmap() will
2595 * not exceed its limit; but let map_count go just above
2596 * its limit temporarily, to help free resources as expected.
2598 if (end < vma->vm_end && mm->map_count >= sysctl_max_map_count)
2601 error = __split_vma(mm, vma, start, 0);
2607 /* Does it split the last one? */
2608 last = find_vma(mm, end);
2609 if (last && end > last->vm_start) {
2610 int error = __split_vma(mm, last, end, 1);
2614 vma = prev ? prev->vm_next : mm->mmap;
2617 * unlock any mlock()ed ranges before detaching vmas
2619 if (mm->locked_vm) {
2620 struct vm_area_struct *tmp = vma;
2621 while (tmp && tmp->vm_start < end) {
2622 if (tmp->vm_flags & VM_LOCKED) {
2623 mm->locked_vm -= vma_pages(tmp);
2624 munlock_vma_pages_all(tmp);
2631 * Remove the vma's, and unmap the actual pages
2633 detach_vmas_to_be_unmapped(mm, vma, prev, end);
2634 unmap_region(mm, vma, prev, start, end);
2636 arch_unmap(mm, vma, start, end);
2638 /* Fix up all other VM information */
2639 remove_vma_list(mm, vma);
2644 int vm_munmap(unsigned long start, size_t len)
2647 struct mm_struct *mm = current->mm;
2649 if (down_write_killable(&mm->mmap_sem))
2652 ret = do_munmap(mm, start, len);
2653 up_write(&mm->mmap_sem);
2656 EXPORT_SYMBOL(vm_munmap);
2658 SYSCALL_DEFINE2(munmap, unsigned long, addr, size_t, len)
2661 struct mm_struct *mm = current->mm;
2663 profile_munmap(addr);
2664 if (down_write_killable(&mm->mmap_sem))
2666 ret = do_munmap(mm, addr, len);
2667 up_write(&mm->mmap_sem);
2673 * Emulation of deprecated remap_file_pages() syscall.
2675 SYSCALL_DEFINE5(remap_file_pages, unsigned long, start, unsigned long, size,
2676 unsigned long, prot, unsigned long, pgoff, unsigned long, flags)
2679 struct mm_struct *mm = current->mm;
2680 struct vm_area_struct *vma;
2681 unsigned long populate = 0;
2682 unsigned long ret = -EINVAL;
2685 pr_warn_once("%s (%d) uses deprecated remap_file_pages() syscall. See Documentation/vm/remap_file_pages.txt.\n",
2686 current->comm, current->pid);
2690 start = start & PAGE_MASK;
2691 size = size & PAGE_MASK;
2693 if (start + size <= start)
2696 /* Does pgoff wrap? */
2697 if (pgoff + (size >> PAGE_SHIFT) < pgoff)
2700 if (down_write_killable(&mm->mmap_sem))
2703 vma = find_vma(mm, start);
2705 if (!vma || !(vma->vm_flags & VM_SHARED))
2708 if (start < vma->vm_start)
2711 if (start + size > vma->vm_end) {
2712 struct vm_area_struct *next;
2714 for (next = vma->vm_next; next; next = next->vm_next) {
2715 /* hole between vmas ? */
2716 if (next->vm_start != next->vm_prev->vm_end)
2719 if (next->vm_file != vma->vm_file)
2722 if (next->vm_flags != vma->vm_flags)
2725 if (start + size <= next->vm_end)
2733 prot |= vma->vm_flags & VM_READ ? PROT_READ : 0;
2734 prot |= vma->vm_flags & VM_WRITE ? PROT_WRITE : 0;
2735 prot |= vma->vm_flags & VM_EXEC ? PROT_EXEC : 0;
2737 flags &= MAP_NONBLOCK;
2738 flags |= MAP_SHARED | MAP_FIXED | MAP_POPULATE;
2739 if (vma->vm_flags & VM_LOCKED) {
2740 struct vm_area_struct *tmp;
2741 flags |= MAP_LOCKED;
2743 /* drop PG_Mlocked flag for over-mapped range */
2744 for (tmp = vma; tmp->vm_start >= start + size;
2745 tmp = tmp->vm_next) {
2747 * Split pmd and munlock page on the border
2750 vma_adjust_trans_huge(tmp, start, start + size, 0);
2752 munlock_vma_pages_range(tmp,
2753 max(tmp->vm_start, start),
2754 min(tmp->vm_end, start + size));
2758 file = get_file(vma->vm_file);
2759 ret = do_mmap_pgoff(vma->vm_file, start, size,
2760 prot, flags, pgoff, &populate);
2763 up_write(&mm->mmap_sem);
2765 mm_populate(ret, populate);
2766 if (!IS_ERR_VALUE(ret))
2771 static inline void verify_mm_writelocked(struct mm_struct *mm)
2773 #ifdef CONFIG_DEBUG_VM
2774 if (unlikely(down_read_trylock(&mm->mmap_sem))) {
2776 up_read(&mm->mmap_sem);
2782 * this is really a simplified "do_mmap". it only handles
2783 * anonymous maps. eventually we may be able to do some
2784 * brk-specific accounting here.
2786 static int do_brk(unsigned long addr, unsigned long request)
2788 struct mm_struct *mm = current->mm;
2789 struct vm_area_struct *vma, *prev;
2790 unsigned long flags, len;
2791 struct rb_node **rb_link, *rb_parent;
2792 pgoff_t pgoff = addr >> PAGE_SHIFT;
2795 len = PAGE_ALIGN(request);
2801 flags = VM_DATA_DEFAULT_FLAGS | VM_ACCOUNT | mm->def_flags;
2803 error = get_unmapped_area(NULL, addr, len, 0, MAP_FIXED);
2804 if (offset_in_page(error))
2807 error = mlock_future_check(mm, mm->def_flags, len);
2812 * mm->mmap_sem is required to protect against another thread
2813 * changing the mappings in case we sleep.
2815 verify_mm_writelocked(mm);
2818 * Clear old maps. this also does some error checking for us
2820 while (find_vma_links(mm, addr, addr + len, &prev, &rb_link,
2822 if (do_munmap(mm, addr, len))
2826 /* Check against address space limits *after* clearing old maps... */
2827 if (!may_expand_vm(mm, flags, len >> PAGE_SHIFT))
2830 if (mm->map_count > sysctl_max_map_count)
2833 if (security_vm_enough_memory_mm(mm, len >> PAGE_SHIFT))
2836 /* Can we just expand an old private anonymous mapping? */
2837 vma = vma_merge(mm, prev, addr, addr + len, flags,
2838 NULL, NULL, pgoff, NULL, NULL_VM_UFFD_CTX);
2843 * create a vma struct for an anonymous mapping
2845 vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
2847 vm_unacct_memory(len >> PAGE_SHIFT);
2851 INIT_LIST_HEAD(&vma->anon_vma_chain);
2853 vma->vm_start = addr;
2854 vma->vm_end = addr + len;
2855 vma->vm_pgoff = pgoff;
2856 vma->vm_flags = flags;
2857 vma->vm_page_prot = vm_get_page_prot(flags);
2858 vma_link(mm, vma, prev, rb_link, rb_parent);
2860 perf_event_mmap(vma);
2861 mm->total_vm += len >> PAGE_SHIFT;
2862 mm->data_vm += len >> PAGE_SHIFT;
2863 if (flags & VM_LOCKED)
2864 mm->locked_vm += (len >> PAGE_SHIFT);
2865 vma->vm_flags |= VM_SOFTDIRTY;
2869 int vm_brk(unsigned long addr, unsigned long len)
2871 struct mm_struct *mm = current->mm;
2875 if (down_write_killable(&mm->mmap_sem))
2878 ret = do_brk(addr, len);
2879 populate = ((mm->def_flags & VM_LOCKED) != 0);
2880 up_write(&mm->mmap_sem);
2881 if (populate && !ret)
2882 mm_populate(addr, len);
2885 EXPORT_SYMBOL(vm_brk);
2887 /* Release all mmaps. */
2888 void exit_mmap(struct mm_struct *mm)
2890 struct mmu_gather tlb;
2891 struct vm_area_struct *vma;
2892 unsigned long nr_accounted = 0;
2894 /* mm's last user has gone, and its about to be pulled down */
2895 mmu_notifier_release(mm);
2897 if (mm->locked_vm) {
2900 if (vma->vm_flags & VM_LOCKED)
2901 munlock_vma_pages_all(vma);
2909 if (!vma) /* Can happen if dup_mmap() received an OOM */
2914 tlb_gather_mmu(&tlb, mm, 0, -1);
2915 /* update_hiwater_rss(mm) here? but nobody should be looking */
2916 /* Use -1 here to ensure all VMAs in the mm are unmapped */
2917 unmap_vmas(&tlb, vma, 0, -1);
2919 free_pgtables(&tlb, vma, FIRST_USER_ADDRESS, USER_PGTABLES_CEILING);
2920 tlb_finish_mmu(&tlb, 0, -1);
2923 * Walk the list again, actually closing and freeing it,
2924 * with preemption enabled, without holding any MM locks.
2927 if (vma->vm_flags & VM_ACCOUNT)
2928 nr_accounted += vma_pages(vma);
2929 vma = remove_vma(vma);
2931 vm_unacct_memory(nr_accounted);
2934 /* Insert vm structure into process list sorted by address
2935 * and into the inode's i_mmap tree. If vm_file is non-NULL
2936 * then i_mmap_rwsem is taken here.
2938 int insert_vm_struct(struct mm_struct *mm, struct vm_area_struct *vma)
2940 struct vm_area_struct *prev;
2941 struct rb_node **rb_link, *rb_parent;
2943 if (find_vma_links(mm, vma->vm_start, vma->vm_end,
2944 &prev, &rb_link, &rb_parent))
2946 if ((vma->vm_flags & VM_ACCOUNT) &&
2947 security_vm_enough_memory_mm(mm, vma_pages(vma)))
2951 * The vm_pgoff of a purely anonymous vma should be irrelevant
2952 * until its first write fault, when page's anon_vma and index
2953 * are set. But now set the vm_pgoff it will almost certainly
2954 * end up with (unless mremap moves it elsewhere before that
2955 * first wfault), so /proc/pid/maps tells a consistent story.
2957 * By setting it to reflect the virtual start address of the
2958 * vma, merges and splits can happen in a seamless way, just
2959 * using the existing file pgoff checks and manipulations.
2960 * Similarly in do_mmap_pgoff and in do_brk.
2962 if (vma_is_anonymous(vma)) {
2963 BUG_ON(vma->anon_vma);
2964 vma->vm_pgoff = vma->vm_start >> PAGE_SHIFT;
2967 vma_link(mm, vma, prev, rb_link, rb_parent);
2972 * Copy the vma structure to a new location in the same mm,
2973 * prior to moving page table entries, to effect an mremap move.
2975 struct vm_area_struct *copy_vma(struct vm_area_struct **vmap,
2976 unsigned long addr, unsigned long len, pgoff_t pgoff,
2977 bool *need_rmap_locks)
2979 struct vm_area_struct *vma = *vmap;
2980 unsigned long vma_start = vma->vm_start;
2981 struct mm_struct *mm = vma->vm_mm;
2982 struct vm_area_struct *new_vma, *prev;
2983 struct rb_node **rb_link, *rb_parent;
2984 bool faulted_in_anon_vma = true;
2987 * If anonymous vma has not yet been faulted, update new pgoff
2988 * to match new location, to increase its chance of merging.
2990 if (unlikely(vma_is_anonymous(vma) && !vma->anon_vma)) {
2991 pgoff = addr >> PAGE_SHIFT;
2992 faulted_in_anon_vma = false;
2995 if (find_vma_links(mm, addr, addr + len, &prev, &rb_link, &rb_parent))
2996 return NULL; /* should never get here */
2997 new_vma = vma_merge(mm, prev, addr, addr + len, vma->vm_flags,
2998 vma->anon_vma, vma->vm_file, pgoff, vma_policy(vma),
2999 vma->vm_userfaultfd_ctx);
3002 * Source vma may have been merged into new_vma
3004 if (unlikely(vma_start >= new_vma->vm_start &&
3005 vma_start < new_vma->vm_end)) {
3007 * The only way we can get a vma_merge with
3008 * self during an mremap is if the vma hasn't
3009 * been faulted in yet and we were allowed to
3010 * reset the dst vma->vm_pgoff to the
3011 * destination address of the mremap to allow
3012 * the merge to happen. mremap must change the
3013 * vm_pgoff linearity between src and dst vmas
3014 * (in turn preventing a vma_merge) to be
3015 * safe. It is only safe to keep the vm_pgoff
3016 * linear if there are no pages mapped yet.
3018 VM_BUG_ON_VMA(faulted_in_anon_vma, new_vma);
3019 *vmap = vma = new_vma;
3021 *need_rmap_locks = (new_vma->vm_pgoff <= vma->vm_pgoff);
3023 new_vma = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
3027 new_vma->vm_start = addr;
3028 new_vma->vm_end = addr + len;
3029 new_vma->vm_pgoff = pgoff;
3030 if (vma_dup_policy(vma, new_vma))
3032 INIT_LIST_HEAD(&new_vma->anon_vma_chain);
3033 if (anon_vma_clone(new_vma, vma))
3034 goto out_free_mempol;
3035 if (new_vma->vm_file)
3036 get_file(new_vma->vm_file);
3037 if (new_vma->vm_ops && new_vma->vm_ops->open)
3038 new_vma->vm_ops->open(new_vma);
3039 vma_link(mm, new_vma, prev, rb_link, rb_parent);
3040 *need_rmap_locks = false;
3045 mpol_put(vma_policy(new_vma));
3047 kmem_cache_free(vm_area_cachep, new_vma);
3053 * Return true if the calling process may expand its vm space by the passed
3056 bool may_expand_vm(struct mm_struct *mm, vm_flags_t flags, unsigned long npages)
3058 if (mm->total_vm + npages > rlimit(RLIMIT_AS) >> PAGE_SHIFT)
3061 if (is_data_mapping(flags) &&
3062 mm->data_vm + npages > rlimit(RLIMIT_DATA) >> PAGE_SHIFT) {
3063 /* Workaround for Valgrind */
3064 if (rlimit(RLIMIT_DATA) == 0 &&
3065 mm->data_vm + npages <= rlimit_max(RLIMIT_DATA) >> PAGE_SHIFT)
3067 if (!ignore_rlimit_data) {
3068 pr_warn_once("%s (%d): VmData %lu exceed data ulimit %lu. Update limits or use boot option ignore_rlimit_data.\n",
3069 current->comm, current->pid,
3070 (mm->data_vm + npages) << PAGE_SHIFT,
3071 rlimit(RLIMIT_DATA));
3079 void vm_stat_account(struct mm_struct *mm, vm_flags_t flags, long npages)
3081 mm->total_vm += npages;
3083 if (is_exec_mapping(flags))
3084 mm->exec_vm += npages;
3085 else if (is_stack_mapping(flags))
3086 mm->stack_vm += npages;
3087 else if (is_data_mapping(flags))
3088 mm->data_vm += npages;
3091 static int special_mapping_fault(struct vm_area_struct *vma,
3092 struct vm_fault *vmf);
3095 * Having a close hook prevents vma merging regardless of flags.
3097 static void special_mapping_close(struct vm_area_struct *vma)
3101 static const char *special_mapping_name(struct vm_area_struct *vma)
3103 return ((struct vm_special_mapping *)vma->vm_private_data)->name;
3106 static int special_mapping_mremap(struct vm_area_struct *new_vma)
3108 struct vm_special_mapping *sm = new_vma->vm_private_data;
3111 return sm->mremap(sm, new_vma);
3115 static const struct vm_operations_struct special_mapping_vmops = {
3116 .close = special_mapping_close,
3117 .fault = special_mapping_fault,
3118 .mremap = special_mapping_mremap,
3119 .name = special_mapping_name,
3122 static const struct vm_operations_struct legacy_special_mapping_vmops = {
3123 .close = special_mapping_close,
3124 .fault = special_mapping_fault,
3127 static int special_mapping_fault(struct vm_area_struct *vma,
3128 struct vm_fault *vmf)
3131 struct page **pages;
3133 if (vma->vm_ops == &legacy_special_mapping_vmops) {
3134 pages = vma->vm_private_data;
3136 struct vm_special_mapping *sm = vma->vm_private_data;
3139 return sm->fault(sm, vma, vmf);
3144 for (pgoff = vmf->pgoff; pgoff && *pages; ++pages)
3148 struct page *page = *pages;
3154 return VM_FAULT_SIGBUS;
3157 static struct vm_area_struct *__install_special_mapping(
3158 struct mm_struct *mm,
3159 unsigned long addr, unsigned long len,
3160 unsigned long vm_flags, void *priv,
3161 const struct vm_operations_struct *ops)
3164 struct vm_area_struct *vma;
3166 vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
3167 if (unlikely(vma == NULL))
3168 return ERR_PTR(-ENOMEM);
3170 INIT_LIST_HEAD(&vma->anon_vma_chain);
3172 vma->vm_start = addr;
3173 vma->vm_end = addr + len;
3175 vma->vm_flags = vm_flags | mm->def_flags | VM_DONTEXPAND | VM_SOFTDIRTY;
3176 vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
3179 vma->vm_private_data = priv;
3181 ret = insert_vm_struct(mm, vma);
3185 vm_stat_account(mm, vma->vm_flags, len >> PAGE_SHIFT);
3187 perf_event_mmap(vma);
3192 kmem_cache_free(vm_area_cachep, vma);
3193 return ERR_PTR(ret);
3196 bool vma_is_special_mapping(const struct vm_area_struct *vma,
3197 const struct vm_special_mapping *sm)
3199 return vma->vm_private_data == sm &&
3200 (vma->vm_ops == &special_mapping_vmops ||
3201 vma->vm_ops == &legacy_special_mapping_vmops);
3205 * Called with mm->mmap_sem held for writing.
3206 * Insert a new vma covering the given region, with the given flags.
3207 * Its pages are supplied by the given array of struct page *.
3208 * The array can be shorter than len >> PAGE_SHIFT if it's null-terminated.
3209 * The region past the last page supplied will always produce SIGBUS.
3210 * The array pointer and the pages it points to are assumed to stay alive
3211 * for as long as this mapping might exist.
3213 struct vm_area_struct *_install_special_mapping(
3214 struct mm_struct *mm,
3215 unsigned long addr, unsigned long len,
3216 unsigned long vm_flags, const struct vm_special_mapping *spec)
3218 return __install_special_mapping(mm, addr, len, vm_flags, (void *)spec,
3219 &special_mapping_vmops);
3222 int install_special_mapping(struct mm_struct *mm,
3223 unsigned long addr, unsigned long len,
3224 unsigned long vm_flags, struct page **pages)
3226 struct vm_area_struct *vma = __install_special_mapping(
3227 mm, addr, len, vm_flags, (void *)pages,
3228 &legacy_special_mapping_vmops);
3230 return PTR_ERR_OR_ZERO(vma);
3233 static DEFINE_MUTEX(mm_all_locks_mutex);
3235 static void vm_lock_anon_vma(struct mm_struct *mm, struct anon_vma *anon_vma)
3237 if (!test_bit(0, (unsigned long *) &anon_vma->root->rb_root.rb_node)) {
3239 * The LSB of head.next can't change from under us
3240 * because we hold the mm_all_locks_mutex.
3242 down_write_nest_lock(&anon_vma->root->rwsem, &mm->mmap_sem);
3244 * We can safely modify head.next after taking the
3245 * anon_vma->root->rwsem. If some other vma in this mm shares
3246 * the same anon_vma we won't take it again.
3248 * No need of atomic instructions here, head.next
3249 * can't change from under us thanks to the
3250 * anon_vma->root->rwsem.
3252 if (__test_and_set_bit(0, (unsigned long *)
3253 &anon_vma->root->rb_root.rb_node))
3258 static void vm_lock_mapping(struct mm_struct *mm, struct address_space *mapping)
3260 if (!test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) {
3262 * AS_MM_ALL_LOCKS can't change from under us because
3263 * we hold the mm_all_locks_mutex.
3265 * Operations on ->flags have to be atomic because
3266 * even if AS_MM_ALL_LOCKS is stable thanks to the
3267 * mm_all_locks_mutex, there may be other cpus
3268 * changing other bitflags in parallel to us.
3270 if (test_and_set_bit(AS_MM_ALL_LOCKS, &mapping->flags))
3272 down_write_nest_lock(&mapping->i_mmap_rwsem, &mm->mmap_sem);
3277 * This operation locks against the VM for all pte/vma/mm related
3278 * operations that could ever happen on a certain mm. This includes
3279 * vmtruncate, try_to_unmap, and all page faults.
3281 * The caller must take the mmap_sem in write mode before calling
3282 * mm_take_all_locks(). The caller isn't allowed to release the
3283 * mmap_sem until mm_drop_all_locks() returns.
3285 * mmap_sem in write mode is required in order to block all operations
3286 * that could modify pagetables and free pages without need of
3287 * altering the vma layout. It's also needed in write mode to avoid new
3288 * anon_vmas to be associated with existing vmas.
3290 * A single task can't take more than one mm_take_all_locks() in a row
3291 * or it would deadlock.
3293 * The LSB in anon_vma->rb_root.rb_node and the AS_MM_ALL_LOCKS bitflag in
3294 * mapping->flags avoid to take the same lock twice, if more than one
3295 * vma in this mm is backed by the same anon_vma or address_space.
3297 * We take locks in following order, accordingly to comment at beginning
3299 * - all hugetlbfs_i_mmap_rwsem_key locks (aka mapping->i_mmap_rwsem for
3301 * - all i_mmap_rwsem locks;
3302 * - all anon_vma->rwseml
3304 * We can take all locks within these types randomly because the VM code
3305 * doesn't nest them and we protected from parallel mm_take_all_locks() by
3306 * mm_all_locks_mutex.
3308 * mm_take_all_locks() and mm_drop_all_locks are expensive operations
3309 * that may have to take thousand of locks.
3311 * mm_take_all_locks() can fail if it's interrupted by signals.
3313 int mm_take_all_locks(struct mm_struct *mm)
3315 struct vm_area_struct *vma;
3316 struct anon_vma_chain *avc;
3318 BUG_ON(down_read_trylock(&mm->mmap_sem));
3320 mutex_lock(&mm_all_locks_mutex);
3322 for (vma = mm->mmap; vma; vma = vma->vm_next) {
3323 if (signal_pending(current))
3325 if (vma->vm_file && vma->vm_file->f_mapping &&
3326 is_vm_hugetlb_page(vma))
3327 vm_lock_mapping(mm, vma->vm_file->f_mapping);
3330 for (vma = mm->mmap; vma; vma = vma->vm_next) {
3331 if (signal_pending(current))
3333 if (vma->vm_file && vma->vm_file->f_mapping &&
3334 !is_vm_hugetlb_page(vma))
3335 vm_lock_mapping(mm, vma->vm_file->f_mapping);
3338 for (vma = mm->mmap; vma; vma = vma->vm_next) {
3339 if (signal_pending(current))
3342 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
3343 vm_lock_anon_vma(mm, avc->anon_vma);
3349 mm_drop_all_locks(mm);
3353 static void vm_unlock_anon_vma(struct anon_vma *anon_vma)
3355 if (test_bit(0, (unsigned long *) &anon_vma->root->rb_root.rb_node)) {
3357 * The LSB of head.next can't change to 0 from under
3358 * us because we hold the mm_all_locks_mutex.
3360 * We must however clear the bitflag before unlocking
3361 * the vma so the users using the anon_vma->rb_root will
3362 * never see our bitflag.
3364 * No need of atomic instructions here, head.next
3365 * can't change from under us until we release the
3366 * anon_vma->root->rwsem.
3368 if (!__test_and_clear_bit(0, (unsigned long *)
3369 &anon_vma->root->rb_root.rb_node))
3371 anon_vma_unlock_write(anon_vma);
3375 static void vm_unlock_mapping(struct address_space *mapping)
3377 if (test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) {
3379 * AS_MM_ALL_LOCKS can't change to 0 from under us
3380 * because we hold the mm_all_locks_mutex.
3382 i_mmap_unlock_write(mapping);
3383 if (!test_and_clear_bit(AS_MM_ALL_LOCKS,
3390 * The mmap_sem cannot be released by the caller until
3391 * mm_drop_all_locks() returns.
3393 void mm_drop_all_locks(struct mm_struct *mm)
3395 struct vm_area_struct *vma;
3396 struct anon_vma_chain *avc;
3398 BUG_ON(down_read_trylock(&mm->mmap_sem));
3399 BUG_ON(!mutex_is_locked(&mm_all_locks_mutex));
3401 for (vma = mm->mmap; vma; vma = vma->vm_next) {
3403 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
3404 vm_unlock_anon_vma(avc->anon_vma);
3405 if (vma->vm_file && vma->vm_file->f_mapping)
3406 vm_unlock_mapping(vma->vm_file->f_mapping);
3409 mutex_unlock(&mm_all_locks_mutex);
3413 * initialise the VMA slab
3415 void __init mmap_init(void)
3419 ret = percpu_counter_init(&vm_committed_as, 0, GFP_KERNEL);
3424 * Initialise sysctl_user_reserve_kbytes.
3426 * This is intended to prevent a user from starting a single memory hogging
3427 * process, such that they cannot recover (kill the hog) in OVERCOMMIT_NEVER
3430 * The default value is min(3% of free memory, 128MB)
3431 * 128MB is enough to recover with sshd/login, bash, and top/kill.
3433 static int init_user_reserve(void)
3435 unsigned long free_kbytes;
3437 free_kbytes = global_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
3439 sysctl_user_reserve_kbytes = min(free_kbytes / 32, 1UL << 17);
3442 subsys_initcall(init_user_reserve);
3445 * Initialise sysctl_admin_reserve_kbytes.
3447 * The purpose of sysctl_admin_reserve_kbytes is to allow the sys admin
3448 * to log in and kill a memory hogging process.
3450 * Systems with more than 256MB will reserve 8MB, enough to recover
3451 * with sshd, bash, and top in OVERCOMMIT_GUESS. Smaller systems will
3452 * only reserve 3% of free pages by default.
3454 static int init_admin_reserve(void)
3456 unsigned long free_kbytes;
3458 free_kbytes = global_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
3460 sysctl_admin_reserve_kbytes = min(free_kbytes / 32, 1UL << 13);
3463 subsys_initcall(init_admin_reserve);
3466 * Reinititalise user and admin reserves if memory is added or removed.
3468 * The default user reserve max is 128MB, and the default max for the
3469 * admin reserve is 8MB. These are usually, but not always, enough to
3470 * enable recovery from a memory hogging process using login/sshd, a shell,
3471 * and tools like top. It may make sense to increase or even disable the
3472 * reserve depending on the existence of swap or variations in the recovery
3473 * tools. So, the admin may have changed them.
3475 * If memory is added and the reserves have been eliminated or increased above
3476 * the default max, then we'll trust the admin.
3478 * If memory is removed and there isn't enough free memory, then we
3479 * need to reset the reserves.
3481 * Otherwise keep the reserve set by the admin.
3483 static int reserve_mem_notifier(struct notifier_block *nb,
3484 unsigned long action, void *data)
3486 unsigned long tmp, free_kbytes;
3490 /* Default max is 128MB. Leave alone if modified by operator. */
3491 tmp = sysctl_user_reserve_kbytes;
3492 if (0 < tmp && tmp < (1UL << 17))
3493 init_user_reserve();
3495 /* Default max is 8MB. Leave alone if modified by operator. */
3496 tmp = sysctl_admin_reserve_kbytes;
3497 if (0 < tmp && tmp < (1UL << 13))
3498 init_admin_reserve();
3502 free_kbytes = global_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
3504 if (sysctl_user_reserve_kbytes > free_kbytes) {
3505 init_user_reserve();
3506 pr_info("vm.user_reserve_kbytes reset to %lu\n",
3507 sysctl_user_reserve_kbytes);
3510 if (sysctl_admin_reserve_kbytes > free_kbytes) {
3511 init_admin_reserve();
3512 pr_info("vm.admin_reserve_kbytes reset to %lu\n",
3513 sysctl_admin_reserve_kbytes);
3522 static struct notifier_block reserve_mem_nb = {
3523 .notifier_call = reserve_mem_notifier,
3526 static int __meminit init_reserve_notifier(void)
3528 if (register_hotmemory_notifier(&reserve_mem_nb))
3529 pr_err("Failed registering memory add/remove notifier for admin reserve\n");
3533 subsys_initcall(init_reserve_notifier);