mm/page_ext: move functions around for minor cleanups to page_ext
[platform/kernel/linux-starfive.git] / mm / mmap.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * mm/mmap.c
4  *
5  * Written by obz.
6  *
7  * Address space accounting code        <alan@lxorguk.ukuu.org.uk>
8  */
9
10 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
11
12 #include <linux/kernel.h>
13 #include <linux/slab.h>
14 #include <linux/backing-dev.h>
15 #include <linux/mm.h>
16 #include <linux/mm_inline.h>
17 #include <linux/shm.h>
18 #include <linux/mman.h>
19 #include <linux/pagemap.h>
20 #include <linux/swap.h>
21 #include <linux/syscalls.h>
22 #include <linux/capability.h>
23 #include <linux/init.h>
24 #include <linux/file.h>
25 #include <linux/fs.h>
26 #include <linux/personality.h>
27 #include <linux/security.h>
28 #include <linux/hugetlb.h>
29 #include <linux/shmem_fs.h>
30 #include <linux/profile.h>
31 #include <linux/export.h>
32 #include <linux/mount.h>
33 #include <linux/mempolicy.h>
34 #include <linux/rmap.h>
35 #include <linux/mmu_notifier.h>
36 #include <linux/mmdebug.h>
37 #include <linux/perf_event.h>
38 #include <linux/audit.h>
39 #include <linux/khugepaged.h>
40 #include <linux/uprobes.h>
41 #include <linux/notifier.h>
42 #include <linux/memory.h>
43 #include <linux/printk.h>
44 #include <linux/userfaultfd_k.h>
45 #include <linux/moduleparam.h>
46 #include <linux/pkeys.h>
47 #include <linux/oom.h>
48 #include <linux/sched/mm.h>
49 #include <linux/ksm.h>
50
51 #include <linux/uaccess.h>
52 #include <asm/cacheflush.h>
53 #include <asm/tlb.h>
54 #include <asm/mmu_context.h>
55
56 #define CREATE_TRACE_POINTS
57 #include <trace/events/mmap.h>
58
59 #include "internal.h"
60
61 #ifndef arch_mmap_check
62 #define arch_mmap_check(addr, len, flags)       (0)
63 #endif
64
65 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_BITS
66 const int mmap_rnd_bits_min = CONFIG_ARCH_MMAP_RND_BITS_MIN;
67 const int mmap_rnd_bits_max = CONFIG_ARCH_MMAP_RND_BITS_MAX;
68 int mmap_rnd_bits __read_mostly = CONFIG_ARCH_MMAP_RND_BITS;
69 #endif
70 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS
71 const int mmap_rnd_compat_bits_min = CONFIG_ARCH_MMAP_RND_COMPAT_BITS_MIN;
72 const int mmap_rnd_compat_bits_max = CONFIG_ARCH_MMAP_RND_COMPAT_BITS_MAX;
73 int mmap_rnd_compat_bits __read_mostly = CONFIG_ARCH_MMAP_RND_COMPAT_BITS;
74 #endif
75
76 static bool ignore_rlimit_data;
77 core_param(ignore_rlimit_data, ignore_rlimit_data, bool, 0644);
78
79 static void unmap_region(struct mm_struct *mm, struct maple_tree *mt,
80                 struct vm_area_struct *vma, struct vm_area_struct *prev,
81                 struct vm_area_struct *next, unsigned long start,
82                 unsigned long end, bool mm_wr_locked);
83
84 static pgprot_t vm_pgprot_modify(pgprot_t oldprot, unsigned long vm_flags)
85 {
86         return pgprot_modify(oldprot, vm_get_page_prot(vm_flags));
87 }
88
89 /* Update vma->vm_page_prot to reflect vma->vm_flags. */
90 void vma_set_page_prot(struct vm_area_struct *vma)
91 {
92         unsigned long vm_flags = vma->vm_flags;
93         pgprot_t vm_page_prot;
94
95         vm_page_prot = vm_pgprot_modify(vma->vm_page_prot, vm_flags);
96         if (vma_wants_writenotify(vma, vm_page_prot)) {
97                 vm_flags &= ~VM_SHARED;
98                 vm_page_prot = vm_pgprot_modify(vm_page_prot, vm_flags);
99         }
100         /* remove_protection_ptes reads vma->vm_page_prot without mmap_lock */
101         WRITE_ONCE(vma->vm_page_prot, vm_page_prot);
102 }
103
104 /*
105  * Requires inode->i_mapping->i_mmap_rwsem
106  */
107 static void __remove_shared_vm_struct(struct vm_area_struct *vma,
108                 struct file *file, struct address_space *mapping)
109 {
110         if (vma->vm_flags & VM_SHARED)
111                 mapping_unmap_writable(mapping);
112
113         flush_dcache_mmap_lock(mapping);
114         vma_interval_tree_remove(vma, &mapping->i_mmap);
115         flush_dcache_mmap_unlock(mapping);
116 }
117
118 /*
119  * Unlink a file-based vm structure from its interval tree, to hide
120  * vma from rmap and vmtruncate before freeing its page tables.
121  */
122 void unlink_file_vma(struct vm_area_struct *vma)
123 {
124         struct file *file = vma->vm_file;
125
126         if (file) {
127                 struct address_space *mapping = file->f_mapping;
128                 i_mmap_lock_write(mapping);
129                 __remove_shared_vm_struct(vma, file, mapping);
130                 i_mmap_unlock_write(mapping);
131         }
132 }
133
134 /*
135  * Close a vm structure and free it.
136  */
137 static void remove_vma(struct vm_area_struct *vma, bool unreachable)
138 {
139         might_sleep();
140         if (vma->vm_ops && vma->vm_ops->close)
141                 vma->vm_ops->close(vma);
142         if (vma->vm_file)
143                 fput(vma->vm_file);
144         mpol_put(vma_policy(vma));
145         if (unreachable)
146                 __vm_area_free(vma);
147         else
148                 vm_area_free(vma);
149 }
150
151 static inline struct vm_area_struct *vma_prev_limit(struct vma_iterator *vmi,
152                                                     unsigned long min)
153 {
154         return mas_prev(&vmi->mas, min);
155 }
156
157 static inline int vma_iter_clear_gfp(struct vma_iterator *vmi,
158                         unsigned long start, unsigned long end, gfp_t gfp)
159 {
160         vmi->mas.index = start;
161         vmi->mas.last = end - 1;
162         mas_store_gfp(&vmi->mas, NULL, gfp);
163         if (unlikely(mas_is_err(&vmi->mas)))
164                 return -ENOMEM;
165
166         return 0;
167 }
168
169 /*
170  * check_brk_limits() - Use platform specific check of range & verify mlock
171  * limits.
172  * @addr: The address to check
173  * @len: The size of increase.
174  *
175  * Return: 0 on success.
176  */
177 static int check_brk_limits(unsigned long addr, unsigned long len)
178 {
179         unsigned long mapped_addr;
180
181         mapped_addr = get_unmapped_area(NULL, addr, len, 0, MAP_FIXED);
182         if (IS_ERR_VALUE(mapped_addr))
183                 return mapped_addr;
184
185         return mlock_future_ok(current->mm, current->mm->def_flags, len)
186                 ? 0 : -EAGAIN;
187 }
188 static int do_brk_flags(struct vma_iterator *vmi, struct vm_area_struct *brkvma,
189                 unsigned long addr, unsigned long request, unsigned long flags);
190 SYSCALL_DEFINE1(brk, unsigned long, brk)
191 {
192         unsigned long newbrk, oldbrk, origbrk;
193         struct mm_struct *mm = current->mm;
194         struct vm_area_struct *brkvma, *next = NULL;
195         unsigned long min_brk;
196         bool populate = false;
197         LIST_HEAD(uf);
198         struct vma_iterator vmi;
199
200         if (mmap_write_lock_killable(mm))
201                 return -EINTR;
202
203         origbrk = mm->brk;
204
205 #ifdef CONFIG_COMPAT_BRK
206         /*
207          * CONFIG_COMPAT_BRK can still be overridden by setting
208          * randomize_va_space to 2, which will still cause mm->start_brk
209          * to be arbitrarily shifted
210          */
211         if (current->brk_randomized)
212                 min_brk = mm->start_brk;
213         else
214                 min_brk = mm->end_data;
215 #else
216         min_brk = mm->start_brk;
217 #endif
218         if (brk < min_brk)
219                 goto out;
220
221         /*
222          * Check against rlimit here. If this check is done later after the test
223          * of oldbrk with newbrk then it can escape the test and let the data
224          * segment grow beyond its set limit the in case where the limit is
225          * not page aligned -Ram Gupta
226          */
227         if (check_data_rlimit(rlimit(RLIMIT_DATA), brk, mm->start_brk,
228                               mm->end_data, mm->start_data))
229                 goto out;
230
231         newbrk = PAGE_ALIGN(brk);
232         oldbrk = PAGE_ALIGN(mm->brk);
233         if (oldbrk == newbrk) {
234                 mm->brk = brk;
235                 goto success;
236         }
237
238         /* Always allow shrinking brk. */
239         if (brk <= mm->brk) {
240                 /* Search one past newbrk */
241                 vma_iter_init(&vmi, mm, newbrk);
242                 brkvma = vma_find(&vmi, oldbrk);
243                 if (!brkvma || brkvma->vm_start >= oldbrk)
244                         goto out; /* mapping intersects with an existing non-brk vma. */
245                 /*
246                  * mm->brk must be protected by write mmap_lock.
247                  * do_vma_munmap() will drop the lock on success,  so update it
248                  * before calling do_vma_munmap().
249                  */
250                 mm->brk = brk;
251                 if (do_vma_munmap(&vmi, brkvma, newbrk, oldbrk, &uf, true))
252                         goto out;
253
254                 goto success_unlocked;
255         }
256
257         if (check_brk_limits(oldbrk, newbrk - oldbrk))
258                 goto out;
259
260         /*
261          * Only check if the next VMA is within the stack_guard_gap of the
262          * expansion area
263          */
264         vma_iter_init(&vmi, mm, oldbrk);
265         next = vma_find(&vmi, newbrk + PAGE_SIZE + stack_guard_gap);
266         if (next && newbrk + PAGE_SIZE > vm_start_gap(next))
267                 goto out;
268
269         brkvma = vma_prev_limit(&vmi, mm->start_brk);
270         /* Ok, looks good - let it rip. */
271         if (do_brk_flags(&vmi, brkvma, oldbrk, newbrk - oldbrk, 0) < 0)
272                 goto out;
273
274         mm->brk = brk;
275         if (mm->def_flags & VM_LOCKED)
276                 populate = true;
277
278 success:
279         mmap_write_unlock(mm);
280 success_unlocked:
281         userfaultfd_unmap_complete(mm, &uf);
282         if (populate)
283                 mm_populate(oldbrk, newbrk - oldbrk);
284         return brk;
285
286 out:
287         mm->brk = origbrk;
288         mmap_write_unlock(mm);
289         return origbrk;
290 }
291
292 #if defined(CONFIG_DEBUG_VM_MAPLE_TREE)
293 static void validate_mm(struct mm_struct *mm)
294 {
295         int bug = 0;
296         int i = 0;
297         struct vm_area_struct *vma;
298         VMA_ITERATOR(vmi, mm, 0);
299
300         mt_validate(&mm->mm_mt);
301         for_each_vma(vmi, vma) {
302 #ifdef CONFIG_DEBUG_VM_RB
303                 struct anon_vma *anon_vma = vma->anon_vma;
304                 struct anon_vma_chain *avc;
305 #endif
306                 unsigned long vmi_start, vmi_end;
307                 bool warn = 0;
308
309                 vmi_start = vma_iter_addr(&vmi);
310                 vmi_end = vma_iter_end(&vmi);
311                 if (VM_WARN_ON_ONCE_MM(vma->vm_end != vmi_end, mm))
312                         warn = 1;
313
314                 if (VM_WARN_ON_ONCE_MM(vma->vm_start != vmi_start, mm))
315                         warn = 1;
316
317                 if (warn) {
318                         pr_emerg("issue in %s\n", current->comm);
319                         dump_stack();
320                         dump_vma(vma);
321                         pr_emerg("tree range: %px start %lx end %lx\n", vma,
322                                  vmi_start, vmi_end - 1);
323                         vma_iter_dump_tree(&vmi);
324                 }
325
326 #ifdef CONFIG_DEBUG_VM_RB
327                 if (anon_vma) {
328                         anon_vma_lock_read(anon_vma);
329                         list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
330                                 anon_vma_interval_tree_verify(avc);
331                         anon_vma_unlock_read(anon_vma);
332                 }
333 #endif
334                 i++;
335         }
336         if (i != mm->map_count) {
337                 pr_emerg("map_count %d vma iterator %d\n", mm->map_count, i);
338                 bug = 1;
339         }
340         VM_BUG_ON_MM(bug, mm);
341 }
342
343 #else /* !CONFIG_DEBUG_VM_MAPLE_TREE */
344 #define validate_mm(mm) do { } while (0)
345 #endif /* CONFIG_DEBUG_VM_MAPLE_TREE */
346
347 /*
348  * vma has some anon_vma assigned, and is already inserted on that
349  * anon_vma's interval trees.
350  *
351  * Before updating the vma's vm_start / vm_end / vm_pgoff fields, the
352  * vma must be removed from the anon_vma's interval trees using
353  * anon_vma_interval_tree_pre_update_vma().
354  *
355  * After the update, the vma will be reinserted using
356  * anon_vma_interval_tree_post_update_vma().
357  *
358  * The entire update must be protected by exclusive mmap_lock and by
359  * the root anon_vma's mutex.
360  */
361 static inline void
362 anon_vma_interval_tree_pre_update_vma(struct vm_area_struct *vma)
363 {
364         struct anon_vma_chain *avc;
365
366         list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
367                 anon_vma_interval_tree_remove(avc, &avc->anon_vma->rb_root);
368 }
369
370 static inline void
371 anon_vma_interval_tree_post_update_vma(struct vm_area_struct *vma)
372 {
373         struct anon_vma_chain *avc;
374
375         list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
376                 anon_vma_interval_tree_insert(avc, &avc->anon_vma->rb_root);
377 }
378
379 static unsigned long count_vma_pages_range(struct mm_struct *mm,
380                 unsigned long addr, unsigned long end)
381 {
382         VMA_ITERATOR(vmi, mm, addr);
383         struct vm_area_struct *vma;
384         unsigned long nr_pages = 0;
385
386         for_each_vma_range(vmi, vma, end) {
387                 unsigned long vm_start = max(addr, vma->vm_start);
388                 unsigned long vm_end = min(end, vma->vm_end);
389
390                 nr_pages += PHYS_PFN(vm_end - vm_start);
391         }
392
393         return nr_pages;
394 }
395
396 static void __vma_link_file(struct vm_area_struct *vma,
397                             struct address_space *mapping)
398 {
399         if (vma->vm_flags & VM_SHARED)
400                 mapping_allow_writable(mapping);
401
402         flush_dcache_mmap_lock(mapping);
403         vma_interval_tree_insert(vma, &mapping->i_mmap);
404         flush_dcache_mmap_unlock(mapping);
405 }
406
407 static int vma_link(struct mm_struct *mm, struct vm_area_struct *vma)
408 {
409         VMA_ITERATOR(vmi, mm, 0);
410         struct address_space *mapping = NULL;
411
412         if (vma_iter_prealloc(&vmi))
413                 return -ENOMEM;
414
415         vma_iter_store(&vmi, vma);
416
417         if (vma->vm_file) {
418                 mapping = vma->vm_file->f_mapping;
419                 i_mmap_lock_write(mapping);
420                 __vma_link_file(vma, mapping);
421                 i_mmap_unlock_write(mapping);
422         }
423
424         mm->map_count++;
425         validate_mm(mm);
426         return 0;
427 }
428
429 /*
430  * init_multi_vma_prep() - Initializer for struct vma_prepare
431  * @vp: The vma_prepare struct
432  * @vma: The vma that will be altered once locked
433  * @next: The next vma if it is to be adjusted
434  * @remove: The first vma to be removed
435  * @remove2: The second vma to be removed
436  */
437 static inline void init_multi_vma_prep(struct vma_prepare *vp,
438                 struct vm_area_struct *vma, struct vm_area_struct *next,
439                 struct vm_area_struct *remove, struct vm_area_struct *remove2)
440 {
441         memset(vp, 0, sizeof(struct vma_prepare));
442         vp->vma = vma;
443         vp->anon_vma = vma->anon_vma;
444         vp->remove = remove;
445         vp->remove2 = remove2;
446         vp->adj_next = next;
447         if (!vp->anon_vma && next)
448                 vp->anon_vma = next->anon_vma;
449
450         vp->file = vma->vm_file;
451         if (vp->file)
452                 vp->mapping = vma->vm_file->f_mapping;
453
454 }
455
456 /*
457  * init_vma_prep() - Initializer wrapper for vma_prepare struct
458  * @vp: The vma_prepare struct
459  * @vma: The vma that will be altered once locked
460  */
461 static inline void init_vma_prep(struct vma_prepare *vp,
462                                  struct vm_area_struct *vma)
463 {
464         init_multi_vma_prep(vp, vma, NULL, NULL, NULL);
465 }
466
467
468 /*
469  * vma_prepare() - Helper function for handling locking VMAs prior to altering
470  * @vp: The initialized vma_prepare struct
471  */
472 static inline void vma_prepare(struct vma_prepare *vp)
473 {
474         vma_start_write(vp->vma);
475         if (vp->adj_next)
476                 vma_start_write(vp->adj_next);
477         /* vp->insert is always a newly created VMA, no need for locking */
478         if (vp->remove)
479                 vma_start_write(vp->remove);
480         if (vp->remove2)
481                 vma_start_write(vp->remove2);
482
483         if (vp->file) {
484                 uprobe_munmap(vp->vma, vp->vma->vm_start, vp->vma->vm_end);
485
486                 if (vp->adj_next)
487                         uprobe_munmap(vp->adj_next, vp->adj_next->vm_start,
488                                       vp->adj_next->vm_end);
489
490                 i_mmap_lock_write(vp->mapping);
491                 if (vp->insert && vp->insert->vm_file) {
492                         /*
493                          * Put into interval tree now, so instantiated pages
494                          * are visible to arm/parisc __flush_dcache_page
495                          * throughout; but we cannot insert into address
496                          * space until vma start or end is updated.
497                          */
498                         __vma_link_file(vp->insert,
499                                         vp->insert->vm_file->f_mapping);
500                 }
501         }
502
503         if (vp->anon_vma) {
504                 anon_vma_lock_write(vp->anon_vma);
505                 anon_vma_interval_tree_pre_update_vma(vp->vma);
506                 if (vp->adj_next)
507                         anon_vma_interval_tree_pre_update_vma(vp->adj_next);
508         }
509
510         if (vp->file) {
511                 flush_dcache_mmap_lock(vp->mapping);
512                 vma_interval_tree_remove(vp->vma, &vp->mapping->i_mmap);
513                 if (vp->adj_next)
514                         vma_interval_tree_remove(vp->adj_next,
515                                                  &vp->mapping->i_mmap);
516         }
517
518 }
519
520 /*
521  * vma_complete- Helper function for handling the unlocking after altering VMAs,
522  * or for inserting a VMA.
523  *
524  * @vp: The vma_prepare struct
525  * @vmi: The vma iterator
526  * @mm: The mm_struct
527  */
528 static inline void vma_complete(struct vma_prepare *vp,
529                                 struct vma_iterator *vmi, struct mm_struct *mm)
530 {
531         if (vp->file) {
532                 if (vp->adj_next)
533                         vma_interval_tree_insert(vp->adj_next,
534                                                  &vp->mapping->i_mmap);
535                 vma_interval_tree_insert(vp->vma, &vp->mapping->i_mmap);
536                 flush_dcache_mmap_unlock(vp->mapping);
537         }
538
539         if (vp->remove && vp->file) {
540                 __remove_shared_vm_struct(vp->remove, vp->file, vp->mapping);
541                 if (vp->remove2)
542                         __remove_shared_vm_struct(vp->remove2, vp->file,
543                                                   vp->mapping);
544         } else if (vp->insert) {
545                 /*
546                  * split_vma has split insert from vma, and needs
547                  * us to insert it before dropping the locks
548                  * (it may either follow vma or precede it).
549                  */
550                 vma_iter_store(vmi, vp->insert);
551                 mm->map_count++;
552         }
553
554         if (vp->anon_vma) {
555                 anon_vma_interval_tree_post_update_vma(vp->vma);
556                 if (vp->adj_next)
557                         anon_vma_interval_tree_post_update_vma(vp->adj_next);
558                 anon_vma_unlock_write(vp->anon_vma);
559         }
560
561         if (vp->file) {
562                 i_mmap_unlock_write(vp->mapping);
563                 uprobe_mmap(vp->vma);
564
565                 if (vp->adj_next)
566                         uprobe_mmap(vp->adj_next);
567         }
568
569         if (vp->remove) {
570 again:
571                 vma_mark_detached(vp->remove, true);
572                 if (vp->file) {
573                         uprobe_munmap(vp->remove, vp->remove->vm_start,
574                                       vp->remove->vm_end);
575                         fput(vp->file);
576                 }
577                 if (vp->remove->anon_vma)
578                         anon_vma_merge(vp->vma, vp->remove);
579                 mm->map_count--;
580                 mpol_put(vma_policy(vp->remove));
581                 if (!vp->remove2)
582                         WARN_ON_ONCE(vp->vma->vm_end < vp->remove->vm_end);
583                 vm_area_free(vp->remove);
584
585                 /*
586                  * In mprotect's case 6 (see comments on vma_merge),
587                  * we are removing both mid and next vmas
588                  */
589                 if (vp->remove2) {
590                         vp->remove = vp->remove2;
591                         vp->remove2 = NULL;
592                         goto again;
593                 }
594         }
595         if (vp->insert && vp->file)
596                 uprobe_mmap(vp->insert);
597 }
598
599 /*
600  * dup_anon_vma() - Helper function to duplicate anon_vma
601  * @dst: The destination VMA
602  * @src: The source VMA
603  *
604  * Returns: 0 on success.
605  */
606 static inline int dup_anon_vma(struct vm_area_struct *dst,
607                                struct vm_area_struct *src)
608 {
609         /*
610          * Easily overlooked: when mprotect shifts the boundary, make sure the
611          * expanding vma has anon_vma set if the shrinking vma had, to cover any
612          * anon pages imported.
613          */
614         if (src->anon_vma && !dst->anon_vma) {
615                 vma_start_write(dst);
616                 dst->anon_vma = src->anon_vma;
617                 return anon_vma_clone(dst, src);
618         }
619
620         return 0;
621 }
622
623 /*
624  * vma_expand - Expand an existing VMA
625  *
626  * @vmi: The vma iterator
627  * @vma: The vma to expand
628  * @start: The start of the vma
629  * @end: The exclusive end of the vma
630  * @pgoff: The page offset of vma
631  * @next: The current of next vma.
632  *
633  * Expand @vma to @start and @end.  Can expand off the start and end.  Will
634  * expand over @next if it's different from @vma and @end == @next->vm_end.
635  * Checking if the @vma can expand and merge with @next needs to be handled by
636  * the caller.
637  *
638  * Returns: 0 on success
639  */
640 int vma_expand(struct vma_iterator *vmi, struct vm_area_struct *vma,
641                unsigned long start, unsigned long end, pgoff_t pgoff,
642                struct vm_area_struct *next)
643 {
644         bool remove_next = false;
645         struct vma_prepare vp;
646
647         if (next && (vma != next) && (end == next->vm_end)) {
648                 int ret;
649
650                 remove_next = true;
651                 ret = dup_anon_vma(vma, next);
652                 if (ret)
653                         return ret;
654         }
655
656         init_multi_vma_prep(&vp, vma, NULL, remove_next ? next : NULL, NULL);
657         /* Not merging but overwriting any part of next is not handled. */
658         VM_WARN_ON(next && !vp.remove &&
659                   next != vma && end > next->vm_start);
660         /* Only handles expanding */
661         VM_WARN_ON(vma->vm_start < start || vma->vm_end > end);
662
663         if (vma_iter_prealloc(vmi))
664                 goto nomem;
665
666         vma_prepare(&vp);
667         vma_adjust_trans_huge(vma, start, end, 0);
668         /* VMA iterator points to previous, so set to start if necessary */
669         if (vma_iter_addr(vmi) != start)
670                 vma_iter_set(vmi, start);
671
672         vma->vm_start = start;
673         vma->vm_end = end;
674         vma->vm_pgoff = pgoff;
675         /* Note: mas must be pointing to the expanding VMA */
676         vma_iter_store(vmi, vma);
677
678         vma_complete(&vp, vmi, vma->vm_mm);
679         validate_mm(vma->vm_mm);
680         return 0;
681
682 nomem:
683         return -ENOMEM;
684 }
685
686 /*
687  * vma_shrink() - Reduce an existing VMAs memory area
688  * @vmi: The vma iterator
689  * @vma: The VMA to modify
690  * @start: The new start
691  * @end: The new end
692  *
693  * Returns: 0 on success, -ENOMEM otherwise
694  */
695 int vma_shrink(struct vma_iterator *vmi, struct vm_area_struct *vma,
696                unsigned long start, unsigned long end, pgoff_t pgoff)
697 {
698         struct vma_prepare vp;
699
700         WARN_ON((vma->vm_start != start) && (vma->vm_end != end));
701
702         if (vma_iter_prealloc(vmi))
703                 return -ENOMEM;
704
705         init_vma_prep(&vp, vma);
706         vma_prepare(&vp);
707         vma_adjust_trans_huge(vma, start, end, 0);
708
709         if (vma->vm_start < start)
710                 vma_iter_clear(vmi, vma->vm_start, start);
711
712         if (vma->vm_end > end)
713                 vma_iter_clear(vmi, end, vma->vm_end);
714
715         vma->vm_start = start;
716         vma->vm_end = end;
717         vma->vm_pgoff = pgoff;
718         vma_complete(&vp, vmi, vma->vm_mm);
719         validate_mm(vma->vm_mm);
720         return 0;
721 }
722
723 /*
724  * If the vma has a ->close operation then the driver probably needs to release
725  * per-vma resources, so we don't attempt to merge those if the caller indicates
726  * the current vma may be removed as part of the merge.
727  */
728 static inline bool is_mergeable_vma(struct vm_area_struct *vma,
729                 struct file *file, unsigned long vm_flags,
730                 struct vm_userfaultfd_ctx vm_userfaultfd_ctx,
731                 struct anon_vma_name *anon_name, bool may_remove_vma)
732 {
733         /*
734          * VM_SOFTDIRTY should not prevent from VMA merging, if we
735          * match the flags but dirty bit -- the caller should mark
736          * merged VMA as dirty. If dirty bit won't be excluded from
737          * comparison, we increase pressure on the memory system forcing
738          * the kernel to generate new VMAs when old one could be
739          * extended instead.
740          */
741         if ((vma->vm_flags ^ vm_flags) & ~VM_SOFTDIRTY)
742                 return false;
743         if (vma->vm_file != file)
744                 return false;
745         if (may_remove_vma && vma->vm_ops && vma->vm_ops->close)
746                 return false;
747         if (!is_mergeable_vm_userfaultfd_ctx(vma, vm_userfaultfd_ctx))
748                 return false;
749         if (!anon_vma_name_eq(anon_vma_name(vma), anon_name))
750                 return false;
751         return true;
752 }
753
754 static inline bool is_mergeable_anon_vma(struct anon_vma *anon_vma1,
755                  struct anon_vma *anon_vma2, struct vm_area_struct *vma)
756 {
757         /*
758          * The list_is_singular() test is to avoid merging VMA cloned from
759          * parents. This can improve scalability caused by anon_vma lock.
760          */
761         if ((!anon_vma1 || !anon_vma2) && (!vma ||
762                 list_is_singular(&vma->anon_vma_chain)))
763                 return true;
764         return anon_vma1 == anon_vma2;
765 }
766
767 /*
768  * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
769  * in front of (at a lower virtual address and file offset than) the vma.
770  *
771  * We cannot merge two vmas if they have differently assigned (non-NULL)
772  * anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
773  *
774  * We don't check here for the merged mmap wrapping around the end of pagecache
775  * indices (16TB on ia32) because do_mmap() does not permit mmap's which
776  * wrap, nor mmaps which cover the final page at index -1UL.
777  *
778  * We assume the vma may be removed as part of the merge.
779  */
780 static bool
781 can_vma_merge_before(struct vm_area_struct *vma, unsigned long vm_flags,
782                 struct anon_vma *anon_vma, struct file *file,
783                 pgoff_t vm_pgoff, struct vm_userfaultfd_ctx vm_userfaultfd_ctx,
784                 struct anon_vma_name *anon_name)
785 {
786         if (is_mergeable_vma(vma, file, vm_flags, vm_userfaultfd_ctx, anon_name, true) &&
787             is_mergeable_anon_vma(anon_vma, vma->anon_vma, vma)) {
788                 if (vma->vm_pgoff == vm_pgoff)
789                         return true;
790         }
791         return false;
792 }
793
794 /*
795  * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
796  * beyond (at a higher virtual address and file offset than) the vma.
797  *
798  * We cannot merge two vmas if they have differently assigned (non-NULL)
799  * anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
800  *
801  * We assume that vma is not removed as part of the merge.
802  */
803 static bool
804 can_vma_merge_after(struct vm_area_struct *vma, unsigned long vm_flags,
805                 struct anon_vma *anon_vma, struct file *file,
806                 pgoff_t vm_pgoff, struct vm_userfaultfd_ctx vm_userfaultfd_ctx,
807                 struct anon_vma_name *anon_name)
808 {
809         if (is_mergeable_vma(vma, file, vm_flags, vm_userfaultfd_ctx, anon_name, false) &&
810             is_mergeable_anon_vma(anon_vma, vma->anon_vma, vma)) {
811                 pgoff_t vm_pglen;
812                 vm_pglen = vma_pages(vma);
813                 if (vma->vm_pgoff + vm_pglen == vm_pgoff)
814                         return true;
815         }
816         return false;
817 }
818
819 /*
820  * Given a mapping request (addr,end,vm_flags,file,pgoff,anon_name),
821  * figure out whether that can be merged with its predecessor or its
822  * successor.  Or both (it neatly fills a hole).
823  *
824  * In most cases - when called for mmap, brk or mremap - [addr,end) is
825  * certain not to be mapped by the time vma_merge is called; but when
826  * called for mprotect, it is certain to be already mapped (either at
827  * an offset within prev, or at the start of next), and the flags of
828  * this area are about to be changed to vm_flags - and the no-change
829  * case has already been eliminated.
830  *
831  * The following mprotect cases have to be considered, where **** is
832  * the area passed down from mprotect_fixup, never extending beyond one
833  * vma, PPPP is the previous vma, CCCC is a concurrent vma that starts
834  * at the same address as **** and is of the same or larger span, and
835  * NNNN the next vma after ****:
836  *
837  *     ****             ****                   ****
838  *    PPPPPPNNNNNN    PPPPPPNNNNNN       PPPPPPCCCCCC
839  *    cannot merge    might become       might become
840  *                    PPNNNNNNNNNN       PPPPPPPPPPCC
841  *    mmap, brk or    case 4 below       case 5 below
842  *    mremap move:
843  *                        ****               ****
844  *                    PPPP    NNNN       PPPPCCCCNNNN
845  *                    might become       might become
846  *                    PPPPPPPPPPPP 1 or  PPPPPPPPPPPP 6 or
847  *                    PPPPPPPPNNNN 2 or  PPPPPPPPNNNN 7 or
848  *                    PPPPNNNNNNNN 3     PPPPNNNNNNNN 8
849  *
850  * It is important for case 8 that the vma CCCC overlapping the
851  * region **** is never going to extended over NNNN. Instead NNNN must
852  * be extended in region **** and CCCC must be removed. This way in
853  * all cases where vma_merge succeeds, the moment vma_merge drops the
854  * rmap_locks, the properties of the merged vma will be already
855  * correct for the whole merged range. Some of those properties like
856  * vm_page_prot/vm_flags may be accessed by rmap_walks and they must
857  * be correct for the whole merged range immediately after the
858  * rmap_locks are released. Otherwise if NNNN would be removed and
859  * CCCC would be extended over the NNNN range, remove_migration_ptes
860  * or other rmap walkers (if working on addresses beyond the "end"
861  * parameter) may establish ptes with the wrong permissions of CCCC
862  * instead of the right permissions of NNNN.
863  *
864  * In the code below:
865  * PPPP is represented by *prev
866  * CCCC is represented by *curr or not represented at all (NULL)
867  * NNNN is represented by *next or not represented at all (NULL)
868  * **** is not represented - it will be merged and the vma containing the
869  *      area is returned, or the function will return NULL
870  */
871 struct vm_area_struct *vma_merge(struct vma_iterator *vmi, struct mm_struct *mm,
872                         struct vm_area_struct *prev, unsigned long addr,
873                         unsigned long end, unsigned long vm_flags,
874                         struct anon_vma *anon_vma, struct file *file,
875                         pgoff_t pgoff, struct mempolicy *policy,
876                         struct vm_userfaultfd_ctx vm_userfaultfd_ctx,
877                         struct anon_vma_name *anon_name)
878 {
879         struct vm_area_struct *curr, *next, *res;
880         struct vm_area_struct *vma, *adjust, *remove, *remove2;
881         struct vma_prepare vp;
882         pgoff_t vma_pgoff;
883         int err = 0;
884         bool merge_prev = false;
885         bool merge_next = false;
886         bool vma_expanded = false;
887         unsigned long vma_start = addr;
888         unsigned long vma_end = end;
889         pgoff_t pglen = (end - addr) >> PAGE_SHIFT;
890         long adj_start = 0;
891
892         validate_mm(mm);
893         /*
894          * We later require that vma->vm_flags == vm_flags,
895          * so this tests vma->vm_flags & VM_SPECIAL, too.
896          */
897         if (vm_flags & VM_SPECIAL)
898                 return NULL;
899
900         /* Does the input range span an existing VMA? (cases 5 - 8) */
901         curr = find_vma_intersection(mm, prev ? prev->vm_end : 0, end);
902
903         if (!curr ||                    /* cases 1 - 4 */
904             end == curr->vm_end)        /* cases 6 - 8, adjacent VMA */
905                 next = vma_lookup(mm, end);
906         else
907                 next = NULL;            /* case 5 */
908
909         if (prev) {
910                 vma_start = prev->vm_start;
911                 vma_pgoff = prev->vm_pgoff;
912
913                 /* Can we merge the predecessor? */
914                 if (addr == prev->vm_end && mpol_equal(vma_policy(prev), policy)
915                     && can_vma_merge_after(prev, vm_flags, anon_vma, file,
916                                            pgoff, vm_userfaultfd_ctx, anon_name)) {
917                         merge_prev = true;
918                         vma_prev(vmi);
919                 }
920         }
921
922         /* Can we merge the successor? */
923         if (next && mpol_equal(policy, vma_policy(next)) &&
924             can_vma_merge_before(next, vm_flags, anon_vma, file, pgoff+pglen,
925                                  vm_userfaultfd_ctx, anon_name)) {
926                 merge_next = true;
927         }
928
929         /* Verify some invariant that must be enforced by the caller. */
930         VM_WARN_ON(prev && addr <= prev->vm_start);
931         VM_WARN_ON(curr && (addr != curr->vm_start || end > curr->vm_end));
932         VM_WARN_ON(addr >= end);
933
934         if (!merge_prev && !merge_next)
935                 return NULL; /* Not mergeable. */
936
937         res = vma = prev;
938         remove = remove2 = adjust = NULL;
939
940         /* Can we merge both the predecessor and the successor? */
941         if (merge_prev && merge_next &&
942             is_mergeable_anon_vma(prev->anon_vma, next->anon_vma, NULL)) {
943                 remove = next;                          /* case 1 */
944                 vma_end = next->vm_end;
945                 err = dup_anon_vma(prev, next);
946                 if (curr) {                             /* case 6 */
947                         remove = curr;
948                         remove2 = next;
949                         if (!next->anon_vma)
950                                 err = dup_anon_vma(prev, curr);
951                 }
952         } else if (merge_prev) {                        /* case 2 */
953                 if (curr) {
954                         err = dup_anon_vma(prev, curr);
955                         if (end == curr->vm_end) {      /* case 7 */
956                                 remove = curr;
957                         } else {                        /* case 5 */
958                                 adjust = curr;
959                                 adj_start = (end - curr->vm_start);
960                         }
961                 }
962         } else { /* merge_next */
963                 res = next;
964                 if (prev && addr < prev->vm_end) {      /* case 4 */
965                         vma_end = addr;
966                         adjust = next;
967                         adj_start = -(prev->vm_end - addr);
968                         err = dup_anon_vma(next, prev);
969                 } else {
970                         /*
971                          * Note that cases 3 and 8 are the ONLY ones where prev
972                          * is permitted to be (but is not necessarily) NULL.
973                          */
974                         vma = next;                     /* case 3 */
975                         vma_start = addr;
976                         vma_end = next->vm_end;
977                         vma_pgoff = next->vm_pgoff - pglen;
978                         if (curr) {                     /* case 8 */
979                                 vma_pgoff = curr->vm_pgoff;
980                                 remove = curr;
981                                 err = dup_anon_vma(next, curr);
982                         }
983                 }
984         }
985
986         /* Error in anon_vma clone. */
987         if (err)
988                 return NULL;
989
990         if (vma_iter_prealloc(vmi))
991                 return NULL;
992
993         init_multi_vma_prep(&vp, vma, adjust, remove, remove2);
994         VM_WARN_ON(vp.anon_vma && adjust && adjust->anon_vma &&
995                    vp.anon_vma != adjust->anon_vma);
996
997         vma_prepare(&vp);
998         vma_adjust_trans_huge(vma, vma_start, vma_end, adj_start);
999         if (vma_start < vma->vm_start || vma_end > vma->vm_end)
1000                 vma_expanded = true;
1001
1002         vma->vm_start = vma_start;
1003         vma->vm_end = vma_end;
1004         vma->vm_pgoff = vma_pgoff;
1005
1006         if (vma_expanded)
1007                 vma_iter_store(vmi, vma);
1008
1009         if (adj_start) {
1010                 adjust->vm_start += adj_start;
1011                 adjust->vm_pgoff += adj_start >> PAGE_SHIFT;
1012                 if (adj_start < 0) {
1013                         WARN_ON(vma_expanded);
1014                         vma_iter_store(vmi, next);
1015                 }
1016         }
1017
1018         vma_complete(&vp, vmi, mm);
1019         vma_iter_free(vmi);
1020         validate_mm(mm);
1021         khugepaged_enter_vma(res, vm_flags);
1022
1023         return res;
1024 }
1025
1026 /*
1027  * Rough compatibility check to quickly see if it's even worth looking
1028  * at sharing an anon_vma.
1029  *
1030  * They need to have the same vm_file, and the flags can only differ
1031  * in things that mprotect may change.
1032  *
1033  * NOTE! The fact that we share an anon_vma doesn't _have_ to mean that
1034  * we can merge the two vma's. For example, we refuse to merge a vma if
1035  * there is a vm_ops->close() function, because that indicates that the
1036  * driver is doing some kind of reference counting. But that doesn't
1037  * really matter for the anon_vma sharing case.
1038  */
1039 static int anon_vma_compatible(struct vm_area_struct *a, struct vm_area_struct *b)
1040 {
1041         return a->vm_end == b->vm_start &&
1042                 mpol_equal(vma_policy(a), vma_policy(b)) &&
1043                 a->vm_file == b->vm_file &&
1044                 !((a->vm_flags ^ b->vm_flags) & ~(VM_ACCESS_FLAGS | VM_SOFTDIRTY)) &&
1045                 b->vm_pgoff == a->vm_pgoff + ((b->vm_start - a->vm_start) >> PAGE_SHIFT);
1046 }
1047
1048 /*
1049  * Do some basic sanity checking to see if we can re-use the anon_vma
1050  * from 'old'. The 'a'/'b' vma's are in VM order - one of them will be
1051  * the same as 'old', the other will be the new one that is trying
1052  * to share the anon_vma.
1053  *
1054  * NOTE! This runs with mmap_lock held for reading, so it is possible that
1055  * the anon_vma of 'old' is concurrently in the process of being set up
1056  * by another page fault trying to merge _that_. But that's ok: if it
1057  * is being set up, that automatically means that it will be a singleton
1058  * acceptable for merging, so we can do all of this optimistically. But
1059  * we do that READ_ONCE() to make sure that we never re-load the pointer.
1060  *
1061  * IOW: that the "list_is_singular()" test on the anon_vma_chain only
1062  * matters for the 'stable anon_vma' case (ie the thing we want to avoid
1063  * is to return an anon_vma that is "complex" due to having gone through
1064  * a fork).
1065  *
1066  * We also make sure that the two vma's are compatible (adjacent,
1067  * and with the same memory policies). That's all stable, even with just
1068  * a read lock on the mmap_lock.
1069  */
1070 static struct anon_vma *reusable_anon_vma(struct vm_area_struct *old, struct vm_area_struct *a, struct vm_area_struct *b)
1071 {
1072         if (anon_vma_compatible(a, b)) {
1073                 struct anon_vma *anon_vma = READ_ONCE(old->anon_vma);
1074
1075                 if (anon_vma && list_is_singular(&old->anon_vma_chain))
1076                         return anon_vma;
1077         }
1078         return NULL;
1079 }
1080
1081 /*
1082  * find_mergeable_anon_vma is used by anon_vma_prepare, to check
1083  * neighbouring vmas for a suitable anon_vma, before it goes off
1084  * to allocate a new anon_vma.  It checks because a repetitive
1085  * sequence of mprotects and faults may otherwise lead to distinct
1086  * anon_vmas being allocated, preventing vma merge in subsequent
1087  * mprotect.
1088  */
1089 struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *vma)
1090 {
1091         MA_STATE(mas, &vma->vm_mm->mm_mt, vma->vm_end, vma->vm_end);
1092         struct anon_vma *anon_vma = NULL;
1093         struct vm_area_struct *prev, *next;
1094
1095         /* Try next first. */
1096         next = mas_walk(&mas);
1097         if (next) {
1098                 anon_vma = reusable_anon_vma(next, vma, next);
1099                 if (anon_vma)
1100                         return anon_vma;
1101         }
1102
1103         prev = mas_prev(&mas, 0);
1104         VM_BUG_ON_VMA(prev != vma, vma);
1105         prev = mas_prev(&mas, 0);
1106         /* Try prev next. */
1107         if (prev)
1108                 anon_vma = reusable_anon_vma(prev, prev, vma);
1109
1110         /*
1111          * We might reach here with anon_vma == NULL if we can't find
1112          * any reusable anon_vma.
1113          * There's no absolute need to look only at touching neighbours:
1114          * we could search further afield for "compatible" anon_vmas.
1115          * But it would probably just be a waste of time searching,
1116          * or lead to too many vmas hanging off the same anon_vma.
1117          * We're trying to allow mprotect remerging later on,
1118          * not trying to minimize memory used for anon_vmas.
1119          */
1120         return anon_vma;
1121 }
1122
1123 /*
1124  * If a hint addr is less than mmap_min_addr change hint to be as
1125  * low as possible but still greater than mmap_min_addr
1126  */
1127 static inline unsigned long round_hint_to_min(unsigned long hint)
1128 {
1129         hint &= PAGE_MASK;
1130         if (((void *)hint != NULL) &&
1131             (hint < mmap_min_addr))
1132                 return PAGE_ALIGN(mmap_min_addr);
1133         return hint;
1134 }
1135
1136 bool mlock_future_ok(struct mm_struct *mm, unsigned long flags,
1137                         unsigned long bytes)
1138 {
1139         unsigned long locked_pages, limit_pages;
1140
1141         if (!(flags & VM_LOCKED) || capable(CAP_IPC_LOCK))
1142                 return true;
1143
1144         locked_pages = bytes >> PAGE_SHIFT;
1145         locked_pages += mm->locked_vm;
1146
1147         limit_pages = rlimit(RLIMIT_MEMLOCK);
1148         limit_pages >>= PAGE_SHIFT;
1149
1150         return locked_pages <= limit_pages;
1151 }
1152
1153 static inline u64 file_mmap_size_max(struct file *file, struct inode *inode)
1154 {
1155         if (S_ISREG(inode->i_mode))
1156                 return MAX_LFS_FILESIZE;
1157
1158         if (S_ISBLK(inode->i_mode))
1159                 return MAX_LFS_FILESIZE;
1160
1161         if (S_ISSOCK(inode->i_mode))
1162                 return MAX_LFS_FILESIZE;
1163
1164         /* Special "we do even unsigned file positions" case */
1165         if (file->f_mode & FMODE_UNSIGNED_OFFSET)
1166                 return 0;
1167
1168         /* Yes, random drivers might want more. But I'm tired of buggy drivers */
1169         return ULONG_MAX;
1170 }
1171
1172 static inline bool file_mmap_ok(struct file *file, struct inode *inode,
1173                                 unsigned long pgoff, unsigned long len)
1174 {
1175         u64 maxsize = file_mmap_size_max(file, inode);
1176
1177         if (maxsize && len > maxsize)
1178                 return false;
1179         maxsize -= len;
1180         if (pgoff > maxsize >> PAGE_SHIFT)
1181                 return false;
1182         return true;
1183 }
1184
1185 /*
1186  * The caller must write-lock current->mm->mmap_lock.
1187  */
1188 unsigned long do_mmap(struct file *file, unsigned long addr,
1189                         unsigned long len, unsigned long prot,
1190                         unsigned long flags, unsigned long pgoff,
1191                         unsigned long *populate, struct list_head *uf)
1192 {
1193         struct mm_struct *mm = current->mm;
1194         vm_flags_t vm_flags;
1195         int pkey = 0;
1196
1197         validate_mm(mm);
1198         *populate = 0;
1199
1200         if (!len)
1201                 return -EINVAL;
1202
1203         /*
1204          * Does the application expect PROT_READ to imply PROT_EXEC?
1205          *
1206          * (the exception is when the underlying filesystem is noexec
1207          *  mounted, in which case we dont add PROT_EXEC.)
1208          */
1209         if ((prot & PROT_READ) && (current->personality & READ_IMPLIES_EXEC))
1210                 if (!(file && path_noexec(&file->f_path)))
1211                         prot |= PROT_EXEC;
1212
1213         /* force arch specific MAP_FIXED handling in get_unmapped_area */
1214         if (flags & MAP_FIXED_NOREPLACE)
1215                 flags |= MAP_FIXED;
1216
1217         if (!(flags & MAP_FIXED))
1218                 addr = round_hint_to_min(addr);
1219
1220         /* Careful about overflows.. */
1221         len = PAGE_ALIGN(len);
1222         if (!len)
1223                 return -ENOMEM;
1224
1225         /* offset overflow? */
1226         if ((pgoff + (len >> PAGE_SHIFT)) < pgoff)
1227                 return -EOVERFLOW;
1228
1229         /* Too many mappings? */
1230         if (mm->map_count > sysctl_max_map_count)
1231                 return -ENOMEM;
1232
1233         /* Obtain the address to map to. we verify (or select) it and ensure
1234          * that it represents a valid section of the address space.
1235          */
1236         addr = get_unmapped_area(file, addr, len, pgoff, flags);
1237         if (IS_ERR_VALUE(addr))
1238                 return addr;
1239
1240         if (flags & MAP_FIXED_NOREPLACE) {
1241                 if (find_vma_intersection(mm, addr, addr + len))
1242                         return -EEXIST;
1243         }
1244
1245         if (prot == PROT_EXEC) {
1246                 pkey = execute_only_pkey(mm);
1247                 if (pkey < 0)
1248                         pkey = 0;
1249         }
1250
1251         /* Do simple checking here so the lower-level routines won't have
1252          * to. we assume access permissions have been handled by the open
1253          * of the memory object, so we don't do any here.
1254          */
1255         vm_flags = calc_vm_prot_bits(prot, pkey) | calc_vm_flag_bits(flags) |
1256                         mm->def_flags | VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC;
1257
1258         if (flags & MAP_LOCKED)
1259                 if (!can_do_mlock())
1260                         return -EPERM;
1261
1262         if (!mlock_future_ok(mm, vm_flags, len))
1263                 return -EAGAIN;
1264
1265         if (file) {
1266                 struct inode *inode = file_inode(file);
1267                 unsigned long flags_mask;
1268
1269                 if (!file_mmap_ok(file, inode, pgoff, len))
1270                         return -EOVERFLOW;
1271
1272                 flags_mask = LEGACY_MAP_MASK | file->f_op->mmap_supported_flags;
1273
1274                 switch (flags & MAP_TYPE) {
1275                 case MAP_SHARED:
1276                         /*
1277                          * Force use of MAP_SHARED_VALIDATE with non-legacy
1278                          * flags. E.g. MAP_SYNC is dangerous to use with
1279                          * MAP_SHARED as you don't know which consistency model
1280                          * you will get. We silently ignore unsupported flags
1281                          * with MAP_SHARED to preserve backward compatibility.
1282                          */
1283                         flags &= LEGACY_MAP_MASK;
1284                         fallthrough;
1285                 case MAP_SHARED_VALIDATE:
1286                         if (flags & ~flags_mask)
1287                                 return -EOPNOTSUPP;
1288                         if (prot & PROT_WRITE) {
1289                                 if (!(file->f_mode & FMODE_WRITE))
1290                                         return -EACCES;
1291                                 if (IS_SWAPFILE(file->f_mapping->host))
1292                                         return -ETXTBSY;
1293                         }
1294
1295                         /*
1296                          * Make sure we don't allow writing to an append-only
1297                          * file..
1298                          */
1299                         if (IS_APPEND(inode) && (file->f_mode & FMODE_WRITE))
1300                                 return -EACCES;
1301
1302                         vm_flags |= VM_SHARED | VM_MAYSHARE;
1303                         if (!(file->f_mode & FMODE_WRITE))
1304                                 vm_flags &= ~(VM_MAYWRITE | VM_SHARED);
1305                         fallthrough;
1306                 case MAP_PRIVATE:
1307                         if (!(file->f_mode & FMODE_READ))
1308                                 return -EACCES;
1309                         if (path_noexec(&file->f_path)) {
1310                                 if (vm_flags & VM_EXEC)
1311                                         return -EPERM;
1312                                 vm_flags &= ~VM_MAYEXEC;
1313                         }
1314
1315                         if (!file->f_op->mmap)
1316                                 return -ENODEV;
1317                         if (vm_flags & (VM_GROWSDOWN|VM_GROWSUP))
1318                                 return -EINVAL;
1319                         break;
1320
1321                 default:
1322                         return -EINVAL;
1323                 }
1324         } else {
1325                 switch (flags & MAP_TYPE) {
1326                 case MAP_SHARED:
1327                         if (vm_flags & (VM_GROWSDOWN|VM_GROWSUP))
1328                                 return -EINVAL;
1329                         /*
1330                          * Ignore pgoff.
1331                          */
1332                         pgoff = 0;
1333                         vm_flags |= VM_SHARED | VM_MAYSHARE;
1334                         break;
1335                 case MAP_PRIVATE:
1336                         /*
1337                          * Set pgoff according to addr for anon_vma.
1338                          */
1339                         pgoff = addr >> PAGE_SHIFT;
1340                         break;
1341                 default:
1342                         return -EINVAL;
1343                 }
1344         }
1345
1346         /*
1347          * Set 'VM_NORESERVE' if we should not account for the
1348          * memory use of this mapping.
1349          */
1350         if (flags & MAP_NORESERVE) {
1351                 /* We honor MAP_NORESERVE if allowed to overcommit */
1352                 if (sysctl_overcommit_memory != OVERCOMMIT_NEVER)
1353                         vm_flags |= VM_NORESERVE;
1354
1355                 /* hugetlb applies strict overcommit unless MAP_NORESERVE */
1356                 if (file && is_file_hugepages(file))
1357                         vm_flags |= VM_NORESERVE;
1358         }
1359
1360         addr = mmap_region(file, addr, len, vm_flags, pgoff, uf);
1361         if (!IS_ERR_VALUE(addr) &&
1362             ((vm_flags & VM_LOCKED) ||
1363              (flags & (MAP_POPULATE | MAP_NONBLOCK)) == MAP_POPULATE))
1364                 *populate = len;
1365         return addr;
1366 }
1367
1368 unsigned long ksys_mmap_pgoff(unsigned long addr, unsigned long len,
1369                               unsigned long prot, unsigned long flags,
1370                               unsigned long fd, unsigned long pgoff)
1371 {
1372         struct file *file = NULL;
1373         unsigned long retval;
1374
1375         if (!(flags & MAP_ANONYMOUS)) {
1376                 audit_mmap_fd(fd, flags);
1377                 file = fget(fd);
1378                 if (!file)
1379                         return -EBADF;
1380                 if (is_file_hugepages(file)) {
1381                         len = ALIGN(len, huge_page_size(hstate_file(file)));
1382                 } else if (unlikely(flags & MAP_HUGETLB)) {
1383                         retval = -EINVAL;
1384                         goto out_fput;
1385                 }
1386         } else if (flags & MAP_HUGETLB) {
1387                 struct hstate *hs;
1388
1389                 hs = hstate_sizelog((flags >> MAP_HUGE_SHIFT) & MAP_HUGE_MASK);
1390                 if (!hs)
1391                         return -EINVAL;
1392
1393                 len = ALIGN(len, huge_page_size(hs));
1394                 /*
1395                  * VM_NORESERVE is used because the reservations will be
1396                  * taken when vm_ops->mmap() is called
1397                  */
1398                 file = hugetlb_file_setup(HUGETLB_ANON_FILE, len,
1399                                 VM_NORESERVE,
1400                                 HUGETLB_ANONHUGE_INODE,
1401                                 (flags >> MAP_HUGE_SHIFT) & MAP_HUGE_MASK);
1402                 if (IS_ERR(file))
1403                         return PTR_ERR(file);
1404         }
1405
1406         retval = vm_mmap_pgoff(file, addr, len, prot, flags, pgoff);
1407 out_fput:
1408         if (file)
1409                 fput(file);
1410         return retval;
1411 }
1412
1413 SYSCALL_DEFINE6(mmap_pgoff, unsigned long, addr, unsigned long, len,
1414                 unsigned long, prot, unsigned long, flags,
1415                 unsigned long, fd, unsigned long, pgoff)
1416 {
1417         return ksys_mmap_pgoff(addr, len, prot, flags, fd, pgoff);
1418 }
1419
1420 #ifdef __ARCH_WANT_SYS_OLD_MMAP
1421 struct mmap_arg_struct {
1422         unsigned long addr;
1423         unsigned long len;
1424         unsigned long prot;
1425         unsigned long flags;
1426         unsigned long fd;
1427         unsigned long offset;
1428 };
1429
1430 SYSCALL_DEFINE1(old_mmap, struct mmap_arg_struct __user *, arg)
1431 {
1432         struct mmap_arg_struct a;
1433
1434         if (copy_from_user(&a, arg, sizeof(a)))
1435                 return -EFAULT;
1436         if (offset_in_page(a.offset))
1437                 return -EINVAL;
1438
1439         return ksys_mmap_pgoff(a.addr, a.len, a.prot, a.flags, a.fd,
1440                                a.offset >> PAGE_SHIFT);
1441 }
1442 #endif /* __ARCH_WANT_SYS_OLD_MMAP */
1443
1444 static bool vm_ops_needs_writenotify(const struct vm_operations_struct *vm_ops)
1445 {
1446         return vm_ops && (vm_ops->page_mkwrite || vm_ops->pfn_mkwrite);
1447 }
1448
1449 static bool vma_is_shared_writable(struct vm_area_struct *vma)
1450 {
1451         return (vma->vm_flags & (VM_WRITE | VM_SHARED)) ==
1452                 (VM_WRITE | VM_SHARED);
1453 }
1454
1455 static bool vma_fs_can_writeback(struct vm_area_struct *vma)
1456 {
1457         /* No managed pages to writeback. */
1458         if (vma->vm_flags & VM_PFNMAP)
1459                 return false;
1460
1461         return vma->vm_file && vma->vm_file->f_mapping &&
1462                 mapping_can_writeback(vma->vm_file->f_mapping);
1463 }
1464
1465 /*
1466  * Does this VMA require the underlying folios to have their dirty state
1467  * tracked?
1468  */
1469 bool vma_needs_dirty_tracking(struct vm_area_struct *vma)
1470 {
1471         /* Only shared, writable VMAs require dirty tracking. */
1472         if (!vma_is_shared_writable(vma))
1473                 return false;
1474
1475         /* Does the filesystem need to be notified? */
1476         if (vm_ops_needs_writenotify(vma->vm_ops))
1477                 return true;
1478
1479         /*
1480          * Even if the filesystem doesn't indicate a need for writenotify, if it
1481          * can writeback, dirty tracking is still required.
1482          */
1483         return vma_fs_can_writeback(vma);
1484 }
1485
1486 /*
1487  * Some shared mappings will want the pages marked read-only
1488  * to track write events. If so, we'll downgrade vm_page_prot
1489  * to the private version (using protection_map[] without the
1490  * VM_SHARED bit).
1491  */
1492 int vma_wants_writenotify(struct vm_area_struct *vma, pgprot_t vm_page_prot)
1493 {
1494         /* If it was private or non-writable, the write bit is already clear */
1495         if (!vma_is_shared_writable(vma))
1496                 return 0;
1497
1498         /* The backer wishes to know when pages are first written to? */
1499         if (vm_ops_needs_writenotify(vma->vm_ops))
1500                 return 1;
1501
1502         /* The open routine did something to the protections that pgprot_modify
1503          * won't preserve? */
1504         if (pgprot_val(vm_page_prot) !=
1505             pgprot_val(vm_pgprot_modify(vm_page_prot, vma->vm_flags)))
1506                 return 0;
1507
1508         /*
1509          * Do we need to track softdirty? hugetlb does not support softdirty
1510          * tracking yet.
1511          */
1512         if (vma_soft_dirty_enabled(vma) && !is_vm_hugetlb_page(vma))
1513                 return 1;
1514
1515         /* Do we need write faults for uffd-wp tracking? */
1516         if (userfaultfd_wp(vma))
1517                 return 1;
1518
1519         /* Can the mapping track the dirty pages? */
1520         return vma_fs_can_writeback(vma);
1521 }
1522
1523 /*
1524  * We account for memory if it's a private writeable mapping,
1525  * not hugepages and VM_NORESERVE wasn't set.
1526  */
1527 static inline int accountable_mapping(struct file *file, vm_flags_t vm_flags)
1528 {
1529         /*
1530          * hugetlb has its own accounting separate from the core VM
1531          * VM_HUGETLB may not be set yet so we cannot check for that flag.
1532          */
1533         if (file && is_file_hugepages(file))
1534                 return 0;
1535
1536         return (vm_flags & (VM_NORESERVE | VM_SHARED | VM_WRITE)) == VM_WRITE;
1537 }
1538
1539 /**
1540  * unmapped_area() - Find an area between the low_limit and the high_limit with
1541  * the correct alignment and offset, all from @info. Note: current->mm is used
1542  * for the search.
1543  *
1544  * @info: The unmapped area information including the range [low_limit -
1545  * high_limit), the alignment offset and mask.
1546  *
1547  * Return: A memory address or -ENOMEM.
1548  */
1549 static unsigned long unmapped_area(struct vm_unmapped_area_info *info)
1550 {
1551         unsigned long length, gap;
1552         unsigned long low_limit, high_limit;
1553         struct vm_area_struct *tmp;
1554
1555         MA_STATE(mas, &current->mm->mm_mt, 0, 0);
1556
1557         /* Adjust search length to account for worst case alignment overhead */
1558         length = info->length + info->align_mask;
1559         if (length < info->length)
1560                 return -ENOMEM;
1561
1562         low_limit = info->low_limit;
1563         if (low_limit < mmap_min_addr)
1564                 low_limit = mmap_min_addr;
1565         high_limit = info->high_limit;
1566 retry:
1567         if (mas_empty_area(&mas, low_limit, high_limit - 1, length))
1568                 return -ENOMEM;
1569
1570         gap = mas.index;
1571         gap += (info->align_offset - gap) & info->align_mask;
1572         tmp = mas_next(&mas, ULONG_MAX);
1573         if (tmp && (tmp->vm_flags & VM_GROWSDOWN)) { /* Avoid prev check if possible */
1574                 if (vm_start_gap(tmp) < gap + length - 1) {
1575                         low_limit = tmp->vm_end;
1576                         mas_reset(&mas);
1577                         goto retry;
1578                 }
1579         } else {
1580                 tmp = mas_prev(&mas, 0);
1581                 if (tmp && vm_end_gap(tmp) > gap) {
1582                         low_limit = vm_end_gap(tmp);
1583                         mas_reset(&mas);
1584                         goto retry;
1585                 }
1586         }
1587
1588         return gap;
1589 }
1590
1591 /**
1592  * unmapped_area_topdown() - Find an area between the low_limit and the
1593  * high_limit with the correct alignment and offset at the highest available
1594  * address, all from @info. Note: current->mm is used for the search.
1595  *
1596  * @info: The unmapped area information including the range [low_limit -
1597  * high_limit), the alignment offset and mask.
1598  *
1599  * Return: A memory address or -ENOMEM.
1600  */
1601 static unsigned long unmapped_area_topdown(struct vm_unmapped_area_info *info)
1602 {
1603         unsigned long length, gap, gap_end;
1604         unsigned long low_limit, high_limit;
1605         struct vm_area_struct *tmp;
1606
1607         MA_STATE(mas, &current->mm->mm_mt, 0, 0);
1608         /* Adjust search length to account for worst case alignment overhead */
1609         length = info->length + info->align_mask;
1610         if (length < info->length)
1611                 return -ENOMEM;
1612
1613         low_limit = info->low_limit;
1614         if (low_limit < mmap_min_addr)
1615                 low_limit = mmap_min_addr;
1616         high_limit = info->high_limit;
1617 retry:
1618         if (mas_empty_area_rev(&mas, low_limit, high_limit - 1, length))
1619                 return -ENOMEM;
1620
1621         gap = mas.last + 1 - info->length;
1622         gap -= (gap - info->align_offset) & info->align_mask;
1623         gap_end = mas.last;
1624         tmp = mas_next(&mas, ULONG_MAX);
1625         if (tmp && (tmp->vm_flags & VM_GROWSDOWN)) { /* Avoid prev check if possible */
1626                 if (vm_start_gap(tmp) <= gap_end) {
1627                         high_limit = vm_start_gap(tmp);
1628                         mas_reset(&mas);
1629                         goto retry;
1630                 }
1631         } else {
1632                 tmp = mas_prev(&mas, 0);
1633                 if (tmp && vm_end_gap(tmp) > gap) {
1634                         high_limit = tmp->vm_start;
1635                         mas_reset(&mas);
1636                         goto retry;
1637                 }
1638         }
1639
1640         return gap;
1641 }
1642
1643 /*
1644  * Search for an unmapped address range.
1645  *
1646  * We are looking for a range that:
1647  * - does not intersect with any VMA;
1648  * - is contained within the [low_limit, high_limit) interval;
1649  * - is at least the desired size.
1650  * - satisfies (begin_addr & align_mask) == (align_offset & align_mask)
1651  */
1652 unsigned long vm_unmapped_area(struct vm_unmapped_area_info *info)
1653 {
1654         unsigned long addr;
1655
1656         if (info->flags & VM_UNMAPPED_AREA_TOPDOWN)
1657                 addr = unmapped_area_topdown(info);
1658         else
1659                 addr = unmapped_area(info);
1660
1661         trace_vm_unmapped_area(addr, info);
1662         return addr;
1663 }
1664
1665 /* Get an address range which is currently unmapped.
1666  * For shmat() with addr=0.
1667  *
1668  * Ugly calling convention alert:
1669  * Return value with the low bits set means error value,
1670  * ie
1671  *      if (ret & ~PAGE_MASK)
1672  *              error = ret;
1673  *
1674  * This function "knows" that -ENOMEM has the bits set.
1675  */
1676 unsigned long
1677 generic_get_unmapped_area(struct file *filp, unsigned long addr,
1678                           unsigned long len, unsigned long pgoff,
1679                           unsigned long flags)
1680 {
1681         struct mm_struct *mm = current->mm;
1682         struct vm_area_struct *vma, *prev;
1683         struct vm_unmapped_area_info info;
1684         const unsigned long mmap_end = arch_get_mmap_end(addr, len, flags);
1685
1686         if (len > mmap_end - mmap_min_addr)
1687                 return -ENOMEM;
1688
1689         if (flags & MAP_FIXED)
1690                 return addr;
1691
1692         if (addr) {
1693                 addr = PAGE_ALIGN(addr);
1694                 vma = find_vma_prev(mm, addr, &prev);
1695                 if (mmap_end - len >= addr && addr >= mmap_min_addr &&
1696                     (!vma || addr + len <= vm_start_gap(vma)) &&
1697                     (!prev || addr >= vm_end_gap(prev)))
1698                         return addr;
1699         }
1700
1701         info.flags = 0;
1702         info.length = len;
1703         info.low_limit = mm->mmap_base;
1704         info.high_limit = mmap_end;
1705         info.align_mask = 0;
1706         info.align_offset = 0;
1707         return vm_unmapped_area(&info);
1708 }
1709
1710 #ifndef HAVE_ARCH_UNMAPPED_AREA
1711 unsigned long
1712 arch_get_unmapped_area(struct file *filp, unsigned long addr,
1713                        unsigned long len, unsigned long pgoff,
1714                        unsigned long flags)
1715 {
1716         return generic_get_unmapped_area(filp, addr, len, pgoff, flags);
1717 }
1718 #endif
1719
1720 /*
1721  * This mmap-allocator allocates new areas top-down from below the
1722  * stack's low limit (the base):
1723  */
1724 unsigned long
1725 generic_get_unmapped_area_topdown(struct file *filp, unsigned long addr,
1726                                   unsigned long len, unsigned long pgoff,
1727                                   unsigned long flags)
1728 {
1729         struct vm_area_struct *vma, *prev;
1730         struct mm_struct *mm = current->mm;
1731         struct vm_unmapped_area_info info;
1732         const unsigned long mmap_end = arch_get_mmap_end(addr, len, flags);
1733
1734         /* requested length too big for entire address space */
1735         if (len > mmap_end - mmap_min_addr)
1736                 return -ENOMEM;
1737
1738         if (flags & MAP_FIXED)
1739                 return addr;
1740
1741         /* requesting a specific address */
1742         if (addr) {
1743                 addr = PAGE_ALIGN(addr);
1744                 vma = find_vma_prev(mm, addr, &prev);
1745                 if (mmap_end - len >= addr && addr >= mmap_min_addr &&
1746                                 (!vma || addr + len <= vm_start_gap(vma)) &&
1747                                 (!prev || addr >= vm_end_gap(prev)))
1748                         return addr;
1749         }
1750
1751         info.flags = VM_UNMAPPED_AREA_TOPDOWN;
1752         info.length = len;
1753         info.low_limit = PAGE_SIZE;
1754         info.high_limit = arch_get_mmap_base(addr, mm->mmap_base);
1755         info.align_mask = 0;
1756         info.align_offset = 0;
1757         addr = vm_unmapped_area(&info);
1758
1759         /*
1760          * A failed mmap() very likely causes application failure,
1761          * so fall back to the bottom-up function here. This scenario
1762          * can happen with large stack limits and large mmap()
1763          * allocations.
1764          */
1765         if (offset_in_page(addr)) {
1766                 VM_BUG_ON(addr != -ENOMEM);
1767                 info.flags = 0;
1768                 info.low_limit = TASK_UNMAPPED_BASE;
1769                 info.high_limit = mmap_end;
1770                 addr = vm_unmapped_area(&info);
1771         }
1772
1773         return addr;
1774 }
1775
1776 #ifndef HAVE_ARCH_UNMAPPED_AREA_TOPDOWN
1777 unsigned long
1778 arch_get_unmapped_area_topdown(struct file *filp, unsigned long addr,
1779                                unsigned long len, unsigned long pgoff,
1780                                unsigned long flags)
1781 {
1782         return generic_get_unmapped_area_topdown(filp, addr, len, pgoff, flags);
1783 }
1784 #endif
1785
1786 unsigned long
1787 get_unmapped_area(struct file *file, unsigned long addr, unsigned long len,
1788                 unsigned long pgoff, unsigned long flags)
1789 {
1790         unsigned long (*get_area)(struct file *, unsigned long,
1791                                   unsigned long, unsigned long, unsigned long);
1792
1793         unsigned long error = arch_mmap_check(addr, len, flags);
1794         if (error)
1795                 return error;
1796
1797         /* Careful about overflows.. */
1798         if (len > TASK_SIZE)
1799                 return -ENOMEM;
1800
1801         get_area = current->mm->get_unmapped_area;
1802         if (file) {
1803                 if (file->f_op->get_unmapped_area)
1804                         get_area = file->f_op->get_unmapped_area;
1805         } else if (flags & MAP_SHARED) {
1806                 /*
1807                  * mmap_region() will call shmem_zero_setup() to create a file,
1808                  * so use shmem's get_unmapped_area in case it can be huge.
1809                  * do_mmap() will clear pgoff, so match alignment.
1810                  */
1811                 pgoff = 0;
1812                 get_area = shmem_get_unmapped_area;
1813         }
1814
1815         addr = get_area(file, addr, len, pgoff, flags);
1816         if (IS_ERR_VALUE(addr))
1817                 return addr;
1818
1819         if (addr > TASK_SIZE - len)
1820                 return -ENOMEM;
1821         if (offset_in_page(addr))
1822                 return -EINVAL;
1823
1824         error = security_mmap_addr(addr);
1825         return error ? error : addr;
1826 }
1827
1828 EXPORT_SYMBOL(get_unmapped_area);
1829
1830 /**
1831  * find_vma_intersection() - Look up the first VMA which intersects the interval
1832  * @mm: The process address space.
1833  * @start_addr: The inclusive start user address.
1834  * @end_addr: The exclusive end user address.
1835  *
1836  * Returns: The first VMA within the provided range, %NULL otherwise.  Assumes
1837  * start_addr < end_addr.
1838  */
1839 struct vm_area_struct *find_vma_intersection(struct mm_struct *mm,
1840                                              unsigned long start_addr,
1841                                              unsigned long end_addr)
1842 {
1843         unsigned long index = start_addr;
1844
1845         mmap_assert_locked(mm);
1846         return mt_find(&mm->mm_mt, &index, end_addr - 1);
1847 }
1848 EXPORT_SYMBOL(find_vma_intersection);
1849
1850 /**
1851  * find_vma() - Find the VMA for a given address, or the next VMA.
1852  * @mm: The mm_struct to check
1853  * @addr: The address
1854  *
1855  * Returns: The VMA associated with addr, or the next VMA.
1856  * May return %NULL in the case of no VMA at addr or above.
1857  */
1858 struct vm_area_struct *find_vma(struct mm_struct *mm, unsigned long addr)
1859 {
1860         unsigned long index = addr;
1861
1862         mmap_assert_locked(mm);
1863         return mt_find(&mm->mm_mt, &index, ULONG_MAX);
1864 }
1865 EXPORT_SYMBOL(find_vma);
1866
1867 /**
1868  * find_vma_prev() - Find the VMA for a given address, or the next vma and
1869  * set %pprev to the previous VMA, if any.
1870  * @mm: The mm_struct to check
1871  * @addr: The address
1872  * @pprev: The pointer to set to the previous VMA
1873  *
1874  * Note that RCU lock is missing here since the external mmap_lock() is used
1875  * instead.
1876  *
1877  * Returns: The VMA associated with @addr, or the next vma.
1878  * May return %NULL in the case of no vma at addr or above.
1879  */
1880 struct vm_area_struct *
1881 find_vma_prev(struct mm_struct *mm, unsigned long addr,
1882                         struct vm_area_struct **pprev)
1883 {
1884         struct vm_area_struct *vma;
1885         MA_STATE(mas, &mm->mm_mt, addr, addr);
1886
1887         vma = mas_walk(&mas);
1888         *pprev = mas_prev(&mas, 0);
1889         if (!vma)
1890                 vma = mas_next(&mas, ULONG_MAX);
1891         return vma;
1892 }
1893
1894 /*
1895  * Verify that the stack growth is acceptable and
1896  * update accounting. This is shared with both the
1897  * grow-up and grow-down cases.
1898  */
1899 static int acct_stack_growth(struct vm_area_struct *vma,
1900                              unsigned long size, unsigned long grow)
1901 {
1902         struct mm_struct *mm = vma->vm_mm;
1903         unsigned long new_start;
1904
1905         /* address space limit tests */
1906         if (!may_expand_vm(mm, vma->vm_flags, grow))
1907                 return -ENOMEM;
1908
1909         /* Stack limit test */
1910         if (size > rlimit(RLIMIT_STACK))
1911                 return -ENOMEM;
1912
1913         /* mlock limit tests */
1914         if (!mlock_future_ok(mm, vma->vm_flags, grow << PAGE_SHIFT))
1915                 return -ENOMEM;
1916
1917         /* Check to ensure the stack will not grow into a hugetlb-only region */
1918         new_start = (vma->vm_flags & VM_GROWSUP) ? vma->vm_start :
1919                         vma->vm_end - size;
1920         if (is_hugepage_only_range(vma->vm_mm, new_start, size))
1921                 return -EFAULT;
1922
1923         /*
1924          * Overcommit..  This must be the final test, as it will
1925          * update security statistics.
1926          */
1927         if (security_vm_enough_memory_mm(mm, grow))
1928                 return -ENOMEM;
1929
1930         return 0;
1931 }
1932
1933 #if defined(CONFIG_STACK_GROWSUP) || defined(CONFIG_IA64)
1934 /*
1935  * PA-RISC uses this for its stack; IA64 for its Register Backing Store.
1936  * vma is the last one with address > vma->vm_end.  Have to extend vma.
1937  */
1938 static int expand_upwards(struct vm_area_struct *vma, unsigned long address)
1939 {
1940         struct mm_struct *mm = vma->vm_mm;
1941         struct vm_area_struct *next;
1942         unsigned long gap_addr;
1943         int error = 0;
1944         MA_STATE(mas, &mm->mm_mt, 0, 0);
1945
1946         if (!(vma->vm_flags & VM_GROWSUP))
1947                 return -EFAULT;
1948
1949         /* Guard against exceeding limits of the address space. */
1950         address &= PAGE_MASK;
1951         if (address >= (TASK_SIZE & PAGE_MASK))
1952                 return -ENOMEM;
1953         address += PAGE_SIZE;
1954
1955         /* Enforce stack_guard_gap */
1956         gap_addr = address + stack_guard_gap;
1957
1958         /* Guard against overflow */
1959         if (gap_addr < address || gap_addr > TASK_SIZE)
1960                 gap_addr = TASK_SIZE;
1961
1962         next = find_vma_intersection(mm, vma->vm_end, gap_addr);
1963         if (next && vma_is_accessible(next)) {
1964                 if (!(next->vm_flags & VM_GROWSUP))
1965                         return -ENOMEM;
1966                 /* Check that both stack segments have the same anon_vma? */
1967         }
1968
1969         if (mas_preallocate(&mas, GFP_KERNEL))
1970                 return -ENOMEM;
1971
1972         /* We must make sure the anon_vma is allocated. */
1973         if (unlikely(anon_vma_prepare(vma))) {
1974                 mas_destroy(&mas);
1975                 return -ENOMEM;
1976         }
1977
1978         /* Lock the VMA before expanding to prevent concurrent page faults */
1979         vma_start_write(vma);
1980         /*
1981          * vma->vm_start/vm_end cannot change under us because the caller
1982          * is required to hold the mmap_lock in read mode.  We need the
1983          * anon_vma lock to serialize against concurrent expand_stacks.
1984          */
1985         anon_vma_lock_write(vma->anon_vma);
1986
1987         /* Somebody else might have raced and expanded it already */
1988         if (address > vma->vm_end) {
1989                 unsigned long size, grow;
1990
1991                 size = address - vma->vm_start;
1992                 grow = (address - vma->vm_end) >> PAGE_SHIFT;
1993
1994                 error = -ENOMEM;
1995                 if (vma->vm_pgoff + (size >> PAGE_SHIFT) >= vma->vm_pgoff) {
1996                         error = acct_stack_growth(vma, size, grow);
1997                         if (!error) {
1998                                 /*
1999                                  * We only hold a shared mmap_lock lock here, so
2000                                  * we need to protect against concurrent vma
2001                                  * expansions.  anon_vma_lock_write() doesn't
2002                                  * help here, as we don't guarantee that all
2003                                  * growable vmas in a mm share the same root
2004                                  * anon vma.  So, we reuse mm->page_table_lock
2005                                  * to guard against concurrent vma expansions.
2006                                  */
2007                                 spin_lock(&mm->page_table_lock);
2008                                 if (vma->vm_flags & VM_LOCKED)
2009                                         mm->locked_vm += grow;
2010                                 vm_stat_account(mm, vma->vm_flags, grow);
2011                                 anon_vma_interval_tree_pre_update_vma(vma);
2012                                 vma->vm_end = address;
2013                                 /* Overwrite old entry in mtree. */
2014                                 mas_set_range(&mas, vma->vm_start, address - 1);
2015                                 mas_store_prealloc(&mas, vma);
2016                                 anon_vma_interval_tree_post_update_vma(vma);
2017                                 spin_unlock(&mm->page_table_lock);
2018
2019                                 perf_event_mmap(vma);
2020                         }
2021                 }
2022         }
2023         anon_vma_unlock_write(vma->anon_vma);
2024         khugepaged_enter_vma(vma, vma->vm_flags);
2025         mas_destroy(&mas);
2026         return error;
2027 }
2028 #endif /* CONFIG_STACK_GROWSUP || CONFIG_IA64 */
2029
2030 /*
2031  * vma is the first one with address < vma->vm_start.  Have to extend vma.
2032  * mmap_lock held for writing.
2033  */
2034 int expand_downwards(struct vm_area_struct *vma, unsigned long address)
2035 {
2036         struct mm_struct *mm = vma->vm_mm;
2037         MA_STATE(mas, &mm->mm_mt, vma->vm_start, vma->vm_start);
2038         struct vm_area_struct *prev;
2039         int error = 0;
2040
2041         if (!(vma->vm_flags & VM_GROWSDOWN))
2042                 return -EFAULT;
2043
2044         address &= PAGE_MASK;
2045         if (address < mmap_min_addr || address < FIRST_USER_ADDRESS)
2046                 return -EPERM;
2047
2048         /* Enforce stack_guard_gap */
2049         prev = mas_prev(&mas, 0);
2050         /* Check that both stack segments have the same anon_vma? */
2051         if (prev) {
2052                 if (!(prev->vm_flags & VM_GROWSDOWN) &&
2053                     vma_is_accessible(prev) &&
2054                     (address - prev->vm_end < stack_guard_gap))
2055                         return -ENOMEM;
2056         }
2057
2058         if (mas_preallocate(&mas, GFP_KERNEL))
2059                 return -ENOMEM;
2060
2061         /* We must make sure the anon_vma is allocated. */
2062         if (unlikely(anon_vma_prepare(vma))) {
2063                 mas_destroy(&mas);
2064                 return -ENOMEM;
2065         }
2066
2067         /* Lock the VMA before expanding to prevent concurrent page faults */
2068         vma_start_write(vma);
2069         /*
2070          * vma->vm_start/vm_end cannot change under us because the caller
2071          * is required to hold the mmap_lock in read mode.  We need the
2072          * anon_vma lock to serialize against concurrent expand_stacks.
2073          */
2074         anon_vma_lock_write(vma->anon_vma);
2075
2076         /* Somebody else might have raced and expanded it already */
2077         if (address < vma->vm_start) {
2078                 unsigned long size, grow;
2079
2080                 size = vma->vm_end - address;
2081                 grow = (vma->vm_start - address) >> PAGE_SHIFT;
2082
2083                 error = -ENOMEM;
2084                 if (grow <= vma->vm_pgoff) {
2085                         error = acct_stack_growth(vma, size, grow);
2086                         if (!error) {
2087                                 /*
2088                                  * We only hold a shared mmap_lock lock here, so
2089                                  * we need to protect against concurrent vma
2090                                  * expansions.  anon_vma_lock_write() doesn't
2091                                  * help here, as we don't guarantee that all
2092                                  * growable vmas in a mm share the same root
2093                                  * anon vma.  So, we reuse mm->page_table_lock
2094                                  * to guard against concurrent vma expansions.
2095                                  */
2096                                 spin_lock(&mm->page_table_lock);
2097                                 if (vma->vm_flags & VM_LOCKED)
2098                                         mm->locked_vm += grow;
2099                                 vm_stat_account(mm, vma->vm_flags, grow);
2100                                 anon_vma_interval_tree_pre_update_vma(vma);
2101                                 vma->vm_start = address;
2102                                 vma->vm_pgoff -= grow;
2103                                 /* Overwrite old entry in mtree. */
2104                                 mas_set_range(&mas, address, vma->vm_end - 1);
2105                                 mas_store_prealloc(&mas, vma);
2106                                 anon_vma_interval_tree_post_update_vma(vma);
2107                                 spin_unlock(&mm->page_table_lock);
2108
2109                                 perf_event_mmap(vma);
2110                         }
2111                 }
2112         }
2113         anon_vma_unlock_write(vma->anon_vma);
2114         khugepaged_enter_vma(vma, vma->vm_flags);
2115         mas_destroy(&mas);
2116         return error;
2117 }
2118
2119 /* enforced gap between the expanding stack and other mappings. */
2120 unsigned long stack_guard_gap = 256UL<<PAGE_SHIFT;
2121
2122 static int __init cmdline_parse_stack_guard_gap(char *p)
2123 {
2124         unsigned long val;
2125         char *endptr;
2126
2127         val = simple_strtoul(p, &endptr, 10);
2128         if (!*endptr)
2129                 stack_guard_gap = val << PAGE_SHIFT;
2130
2131         return 1;
2132 }
2133 __setup("stack_guard_gap=", cmdline_parse_stack_guard_gap);
2134
2135 #ifdef CONFIG_STACK_GROWSUP
2136 int expand_stack_locked(struct vm_area_struct *vma, unsigned long address)
2137 {
2138         return expand_upwards(vma, address);
2139 }
2140
2141 struct vm_area_struct *find_extend_vma_locked(struct mm_struct *mm, unsigned long addr)
2142 {
2143         struct vm_area_struct *vma, *prev;
2144
2145         addr &= PAGE_MASK;
2146         vma = find_vma_prev(mm, addr, &prev);
2147         if (vma && (vma->vm_start <= addr))
2148                 return vma;
2149         if (!prev)
2150                 return NULL;
2151         if (expand_stack_locked(prev, addr))
2152                 return NULL;
2153         if (prev->vm_flags & VM_LOCKED)
2154                 populate_vma_page_range(prev, addr, prev->vm_end, NULL);
2155         return prev;
2156 }
2157 #else
2158 int expand_stack_locked(struct vm_area_struct *vma, unsigned long address)
2159 {
2160         if (unlikely(!(vma->vm_flags & VM_GROWSDOWN)))
2161                 return -EINVAL;
2162         return expand_downwards(vma, address);
2163 }
2164
2165 struct vm_area_struct *find_extend_vma_locked(struct mm_struct *mm, unsigned long addr)
2166 {
2167         struct vm_area_struct *vma;
2168         unsigned long start;
2169
2170         addr &= PAGE_MASK;
2171         vma = find_vma(mm, addr);
2172         if (!vma)
2173                 return NULL;
2174         if (vma->vm_start <= addr)
2175                 return vma;
2176         start = vma->vm_start;
2177         if (expand_stack_locked(vma, addr))
2178                 return NULL;
2179         if (vma->vm_flags & VM_LOCKED)
2180                 populate_vma_page_range(vma, addr, start, NULL);
2181         return vma;
2182 }
2183 #endif
2184
2185 /*
2186  * IA64 has some horrid mapping rules: it can expand both up and down,
2187  * but with various special rules.
2188  *
2189  * We'll get rid of this architecture eventually, so the ugliness is
2190  * temporary.
2191  */
2192 #ifdef CONFIG_IA64
2193 static inline bool vma_expand_ok(struct vm_area_struct *vma, unsigned long addr)
2194 {
2195         return REGION_NUMBER(addr) == REGION_NUMBER(vma->vm_start) &&
2196                 REGION_OFFSET(addr) < RGN_MAP_LIMIT;
2197 }
2198
2199 /*
2200  * IA64 stacks grow down, but there's a special register backing store
2201  * that can grow up. Only sequentially, though, so the new address must
2202  * match vm_end.
2203  */
2204 static inline int vma_expand_up(struct vm_area_struct *vma, unsigned long addr)
2205 {
2206         if (!vma_expand_ok(vma, addr))
2207                 return -EFAULT;
2208         if (vma->vm_end != (addr & PAGE_MASK))
2209                 return -EFAULT;
2210         return expand_upwards(vma, addr);
2211 }
2212
2213 static inline bool vma_expand_down(struct vm_area_struct *vma, unsigned long addr)
2214 {
2215         if (!vma_expand_ok(vma, addr))
2216                 return -EFAULT;
2217         return expand_downwards(vma, addr);
2218 }
2219
2220 #elif defined(CONFIG_STACK_GROWSUP)
2221
2222 #define vma_expand_up(vma,addr) expand_upwards(vma, addr)
2223 #define vma_expand_down(vma, addr) (-EFAULT)
2224
2225 #else
2226
2227 #define vma_expand_up(vma,addr) (-EFAULT)
2228 #define vma_expand_down(vma, addr) expand_downwards(vma, addr)
2229
2230 #endif
2231
2232 /*
2233  * expand_stack(): legacy interface for page faulting. Don't use unless
2234  * you have to.
2235  *
2236  * This is called with the mm locked for reading, drops the lock, takes
2237  * the lock for writing, tries to look up a vma again, expands it if
2238  * necessary, and downgrades the lock to reading again.
2239  *
2240  * If no vma is found or it can't be expanded, it returns NULL and has
2241  * dropped the lock.
2242  */
2243 struct vm_area_struct *expand_stack(struct mm_struct *mm, unsigned long addr)
2244 {
2245         struct vm_area_struct *vma, *prev;
2246
2247         mmap_read_unlock(mm);
2248         if (mmap_write_lock_killable(mm))
2249                 return NULL;
2250
2251         vma = find_vma_prev(mm, addr, &prev);
2252         if (vma && vma->vm_start <= addr)
2253                 goto success;
2254
2255         if (prev && !vma_expand_up(prev, addr)) {
2256                 vma = prev;
2257                 goto success;
2258         }
2259
2260         if (vma && !vma_expand_down(vma, addr))
2261                 goto success;
2262
2263         mmap_write_unlock(mm);
2264         return NULL;
2265
2266 success:
2267         mmap_write_downgrade(mm);
2268         return vma;
2269 }
2270
2271 /*
2272  * Ok - we have the memory areas we should free on a maple tree so release them,
2273  * and do the vma updates.
2274  *
2275  * Called with the mm semaphore held.
2276  */
2277 static inline void remove_mt(struct mm_struct *mm, struct ma_state *mas)
2278 {
2279         unsigned long nr_accounted = 0;
2280         struct vm_area_struct *vma;
2281
2282         /* Update high watermark before we lower total_vm */
2283         update_hiwater_vm(mm);
2284         mas_for_each(mas, vma, ULONG_MAX) {
2285                 long nrpages = vma_pages(vma);
2286
2287                 if (vma->vm_flags & VM_ACCOUNT)
2288                         nr_accounted += nrpages;
2289                 vm_stat_account(mm, vma->vm_flags, -nrpages);
2290                 remove_vma(vma, false);
2291         }
2292         vm_unacct_memory(nr_accounted);
2293         validate_mm(mm);
2294 }
2295
2296 /*
2297  * Get rid of page table information in the indicated region.
2298  *
2299  * Called with the mm semaphore held.
2300  */
2301 static void unmap_region(struct mm_struct *mm, struct maple_tree *mt,
2302                 struct vm_area_struct *vma, struct vm_area_struct *prev,
2303                 struct vm_area_struct *next,
2304                 unsigned long start, unsigned long end, bool mm_wr_locked)
2305 {
2306         struct mmu_gather tlb;
2307
2308         lru_add_drain();
2309         tlb_gather_mmu(&tlb, mm);
2310         update_hiwater_rss(mm);
2311         unmap_vmas(&tlb, mt, vma, start, end, mm_wr_locked);
2312         free_pgtables(&tlb, mt, vma, prev ? prev->vm_end : FIRST_USER_ADDRESS,
2313                                  next ? next->vm_start : USER_PGTABLES_CEILING,
2314                                  mm_wr_locked);
2315         tlb_finish_mmu(&tlb);
2316 }
2317
2318 /*
2319  * __split_vma() bypasses sysctl_max_map_count checking.  We use this where it
2320  * has already been checked or doesn't make sense to fail.
2321  * VMA Iterator will point to the end VMA.
2322  */
2323 int __split_vma(struct vma_iterator *vmi, struct vm_area_struct *vma,
2324                 unsigned long addr, int new_below)
2325 {
2326         struct vma_prepare vp;
2327         struct vm_area_struct *new;
2328         int err;
2329
2330         validate_mm(vma->vm_mm);
2331
2332         WARN_ON(vma->vm_start >= addr);
2333         WARN_ON(vma->vm_end <= addr);
2334
2335         if (vma->vm_ops && vma->vm_ops->may_split) {
2336                 err = vma->vm_ops->may_split(vma, addr);
2337                 if (err)
2338                         return err;
2339         }
2340
2341         new = vm_area_dup(vma);
2342         if (!new)
2343                 return -ENOMEM;
2344
2345         err = -ENOMEM;
2346         if (vma_iter_prealloc(vmi))
2347                 goto out_free_vma;
2348
2349         if (new_below) {
2350                 new->vm_end = addr;
2351         } else {
2352                 new->vm_start = addr;
2353                 new->vm_pgoff += ((addr - vma->vm_start) >> PAGE_SHIFT);
2354         }
2355
2356         err = vma_dup_policy(vma, new);
2357         if (err)
2358                 goto out_free_vmi;
2359
2360         err = anon_vma_clone(new, vma);
2361         if (err)
2362                 goto out_free_mpol;
2363
2364         if (new->vm_file)
2365                 get_file(new->vm_file);
2366
2367         if (new->vm_ops && new->vm_ops->open)
2368                 new->vm_ops->open(new);
2369
2370         init_vma_prep(&vp, vma);
2371         vp.insert = new;
2372         vma_prepare(&vp);
2373         vma_adjust_trans_huge(vma, vma->vm_start, addr, 0);
2374
2375         if (new_below) {
2376                 vma->vm_start = addr;
2377                 vma->vm_pgoff += (addr - new->vm_start) >> PAGE_SHIFT;
2378         } else {
2379                 vma->vm_end = addr;
2380         }
2381
2382         /* vma_complete stores the new vma */
2383         vma_complete(&vp, vmi, vma->vm_mm);
2384
2385         /* Success. */
2386         if (new_below)
2387                 vma_next(vmi);
2388         validate_mm(vma->vm_mm);
2389         return 0;
2390
2391 out_free_mpol:
2392         mpol_put(vma_policy(new));
2393 out_free_vmi:
2394         vma_iter_free(vmi);
2395 out_free_vma:
2396         vm_area_free(new);
2397         validate_mm(vma->vm_mm);
2398         return err;
2399 }
2400
2401 /*
2402  * Split a vma into two pieces at address 'addr', a new vma is allocated
2403  * either for the first part or the tail.
2404  */
2405 int split_vma(struct vma_iterator *vmi, struct vm_area_struct *vma,
2406               unsigned long addr, int new_below)
2407 {
2408         if (vma->vm_mm->map_count >= sysctl_max_map_count)
2409                 return -ENOMEM;
2410
2411         return __split_vma(vmi, vma, addr, new_below);
2412 }
2413
2414 /*
2415  * do_vmi_align_munmap() - munmap the aligned region from @start to @end.
2416  * @vmi: The vma iterator
2417  * @vma: The starting vm_area_struct
2418  * @mm: The mm_struct
2419  * @start: The aligned start address to munmap.
2420  * @end: The aligned end address to munmap.
2421  * @uf: The userfaultfd list_head
2422  * @unlock: Set to true to drop the mmap_lock.  unlocking only happens on
2423  * success.
2424  *
2425  * Return: 0 on success and drops the lock if so directed, error and leaves the
2426  * lock held otherwise.
2427  */
2428 static int
2429 do_vmi_align_munmap(struct vma_iterator *vmi, struct vm_area_struct *vma,
2430                     struct mm_struct *mm, unsigned long start,
2431                     unsigned long end, struct list_head *uf, bool unlock)
2432 {
2433         struct vm_area_struct *prev, *next = NULL;
2434         struct maple_tree mt_detach;
2435         int count = 0;
2436         int error = -ENOMEM;
2437         unsigned long locked_vm = 0;
2438         MA_STATE(mas_detach, &mt_detach, 0, 0);
2439         mt_init_flags(&mt_detach, vmi->mas.tree->ma_flags & MT_FLAGS_LOCK_MASK);
2440         mt_set_external_lock(&mt_detach, &mm->mmap_lock);
2441
2442         /*
2443          * If we need to split any vma, do it now to save pain later.
2444          *
2445          * Note: mremap's move_vma VM_ACCOUNT handling assumes a partially
2446          * unmapped vm_area_struct will remain in use: so lower split_vma
2447          * places tmp vma above, and higher split_vma places tmp vma below.
2448          */
2449
2450         /* Does it split the first one? */
2451         if (start > vma->vm_start) {
2452
2453                 /*
2454                  * Make sure that map_count on return from munmap() will
2455                  * not exceed its limit; but let map_count go just above
2456                  * its limit temporarily, to help free resources as expected.
2457                  */
2458                 if (end < vma->vm_end && mm->map_count >= sysctl_max_map_count)
2459                         goto map_count_exceeded;
2460
2461                 error = __split_vma(vmi, vma, start, 0);
2462                 if (error)
2463                         goto start_split_failed;
2464
2465                 vma = vma_iter_load(vmi);
2466         }
2467
2468         prev = vma_prev(vmi);
2469         if (unlikely((!prev)))
2470                 vma_iter_set(vmi, start);
2471
2472         /*
2473          * Detach a range of VMAs from the mm. Using next as a temp variable as
2474          * it is always overwritten.
2475          */
2476         for_each_vma_range(*vmi, next, end) {
2477                 /* Does it split the end? */
2478                 if (next->vm_end > end) {
2479                         error = __split_vma(vmi, next, end, 0);
2480                         if (error)
2481                                 goto end_split_failed;
2482                 }
2483                 vma_start_write(next);
2484                 mas_set_range(&mas_detach, next->vm_start, next->vm_end - 1);
2485                 error = mas_store_gfp(&mas_detach, next, GFP_KERNEL);
2486                 if (error)
2487                         goto munmap_gather_failed;
2488                 vma_mark_detached(next, true);
2489                 if (next->vm_flags & VM_LOCKED)
2490                         locked_vm += vma_pages(next);
2491
2492                 count++;
2493                 if (unlikely(uf)) {
2494                         /*
2495                          * If userfaultfd_unmap_prep returns an error the vmas
2496                          * will remain split, but userland will get a
2497                          * highly unexpected error anyway. This is no
2498                          * different than the case where the first of the two
2499                          * __split_vma fails, but we don't undo the first
2500                          * split, despite we could. This is unlikely enough
2501                          * failure that it's not worth optimizing it for.
2502                          */
2503                         error = userfaultfd_unmap_prep(next, start, end, uf);
2504
2505                         if (error)
2506                                 goto userfaultfd_error;
2507                 }
2508 #ifdef CONFIG_DEBUG_VM_MAPLE_TREE
2509                 BUG_ON(next->vm_start < start);
2510                 BUG_ON(next->vm_start > end);
2511 #endif
2512         }
2513
2514         if (vma_iter_end(vmi) > end)
2515                 next = vma_iter_load(vmi);
2516
2517         if (!next)
2518                 next = vma_next(vmi);
2519
2520 #if defined(CONFIG_DEBUG_VM_MAPLE_TREE)
2521         /* Make sure no VMAs are about to be lost. */
2522         {
2523                 MA_STATE(test, &mt_detach, start, end - 1);
2524                 struct vm_area_struct *vma_mas, *vma_test;
2525                 int test_count = 0;
2526
2527                 vma_iter_set(vmi, start);
2528                 rcu_read_lock();
2529                 vma_test = mas_find(&test, end - 1);
2530                 for_each_vma_range(*vmi, vma_mas, end) {
2531                         BUG_ON(vma_mas != vma_test);
2532                         test_count++;
2533                         vma_test = mas_next(&test, end - 1);
2534                 }
2535                 rcu_read_unlock();
2536                 BUG_ON(count != test_count);
2537         }
2538 #endif
2539         vma_iter_set(vmi, start);
2540         error = vma_iter_clear_gfp(vmi, start, end, GFP_KERNEL);
2541         if (error)
2542                 goto clear_tree_failed;
2543
2544         /* Point of no return */
2545         mm->locked_vm -= locked_vm;
2546         mm->map_count -= count;
2547         if (unlock)
2548                 mmap_write_downgrade(mm);
2549
2550         /*
2551          * We can free page tables without write-locking mmap_lock because VMAs
2552          * were isolated before we downgraded mmap_lock.
2553          */
2554         unmap_region(mm, &mt_detach, vma, prev, next, start, end, !unlock);
2555         /* Statistics and freeing VMAs */
2556         mas_set(&mas_detach, start);
2557         remove_mt(mm, &mas_detach);
2558         __mt_destroy(&mt_detach);
2559         validate_mm(mm);
2560         if (unlock)
2561                 mmap_read_unlock(mm);
2562
2563         return 0;
2564
2565 clear_tree_failed:
2566 userfaultfd_error:
2567 munmap_gather_failed:
2568 end_split_failed:
2569         mas_set(&mas_detach, 0);
2570         mas_for_each(&mas_detach, next, end)
2571                 vma_mark_detached(next, false);
2572
2573         __mt_destroy(&mt_detach);
2574 start_split_failed:
2575 map_count_exceeded:
2576         validate_mm(mm);
2577         return error;
2578 }
2579
2580 /*
2581  * do_vmi_munmap() - munmap a given range.
2582  * @vmi: The vma iterator
2583  * @mm: The mm_struct
2584  * @start: The start address to munmap
2585  * @len: The length of the range to munmap
2586  * @uf: The userfaultfd list_head
2587  * @unlock: set to true if the user wants to drop the mmap_lock on success
2588  *
2589  * This function takes a @mas that is either pointing to the previous VMA or set
2590  * to MA_START and sets it up to remove the mapping(s).  The @len will be
2591  * aligned and any arch_unmap work will be preformed.
2592  *
2593  * Return: 0 on success and drops the lock if so directed, error and leaves the
2594  * lock held otherwise.
2595  */
2596 int do_vmi_munmap(struct vma_iterator *vmi, struct mm_struct *mm,
2597                   unsigned long start, size_t len, struct list_head *uf,
2598                   bool unlock)
2599 {
2600         unsigned long end;
2601         struct vm_area_struct *vma;
2602
2603         if ((offset_in_page(start)) || start > TASK_SIZE || len > TASK_SIZE-start)
2604                 return -EINVAL;
2605
2606         end = start + PAGE_ALIGN(len);
2607         if (end == start)
2608                 return -EINVAL;
2609
2610          /* arch_unmap() might do unmaps itself.  */
2611         arch_unmap(mm, start, end);
2612
2613         /* Find the first overlapping VMA */
2614         vma = vma_find(vmi, end);
2615         if (!vma) {
2616                 if (unlock)
2617                         mmap_write_unlock(mm);
2618                 return 0;
2619         }
2620
2621         return do_vmi_align_munmap(vmi, vma, mm, start, end, uf, unlock);
2622 }
2623
2624 /* do_munmap() - Wrapper function for non-maple tree aware do_munmap() calls.
2625  * @mm: The mm_struct
2626  * @start: The start address to munmap
2627  * @len: The length to be munmapped.
2628  * @uf: The userfaultfd list_head
2629  *
2630  * Return: 0 on success, error otherwise.
2631  */
2632 int do_munmap(struct mm_struct *mm, unsigned long start, size_t len,
2633               struct list_head *uf)
2634 {
2635         VMA_ITERATOR(vmi, mm, start);
2636
2637         return do_vmi_munmap(&vmi, mm, start, len, uf, false);
2638 }
2639
2640 unsigned long mmap_region(struct file *file, unsigned long addr,
2641                 unsigned long len, vm_flags_t vm_flags, unsigned long pgoff,
2642                 struct list_head *uf)
2643 {
2644         struct mm_struct *mm = current->mm;
2645         struct vm_area_struct *vma = NULL;
2646         struct vm_area_struct *next, *prev, *merge;
2647         pgoff_t pglen = len >> PAGE_SHIFT;
2648         unsigned long charged = 0;
2649         unsigned long end = addr + len;
2650         unsigned long merge_start = addr, merge_end = end;
2651         pgoff_t vm_pgoff;
2652         int error;
2653         VMA_ITERATOR(vmi, mm, addr);
2654
2655         /* Check against address space limit. */
2656         if (!may_expand_vm(mm, vm_flags, len >> PAGE_SHIFT)) {
2657                 unsigned long nr_pages;
2658
2659                 /*
2660                  * MAP_FIXED may remove pages of mappings that intersects with
2661                  * requested mapping. Account for the pages it would unmap.
2662                  */
2663                 nr_pages = count_vma_pages_range(mm, addr, end);
2664
2665                 if (!may_expand_vm(mm, vm_flags,
2666                                         (len >> PAGE_SHIFT) - nr_pages))
2667                         return -ENOMEM;
2668         }
2669
2670         /* Unmap any existing mapping in the area */
2671         if (do_vmi_munmap(&vmi, mm, addr, len, uf, false))
2672                 return -ENOMEM;
2673
2674         /*
2675          * Private writable mapping: check memory availability
2676          */
2677         if (accountable_mapping(file, vm_flags)) {
2678                 charged = len >> PAGE_SHIFT;
2679                 if (security_vm_enough_memory_mm(mm, charged))
2680                         return -ENOMEM;
2681                 vm_flags |= VM_ACCOUNT;
2682         }
2683
2684         next = vma_next(&vmi);
2685         prev = vma_prev(&vmi);
2686         if (vm_flags & VM_SPECIAL)
2687                 goto cannot_expand;
2688
2689         /* Attempt to expand an old mapping */
2690         /* Check next */
2691         if (next && next->vm_start == end && !vma_policy(next) &&
2692             can_vma_merge_before(next, vm_flags, NULL, file, pgoff+pglen,
2693                                  NULL_VM_UFFD_CTX, NULL)) {
2694                 merge_end = next->vm_end;
2695                 vma = next;
2696                 vm_pgoff = next->vm_pgoff - pglen;
2697         }
2698
2699         /* Check prev */
2700         if (prev && prev->vm_end == addr && !vma_policy(prev) &&
2701             (vma ? can_vma_merge_after(prev, vm_flags, vma->anon_vma, file,
2702                                        pgoff, vma->vm_userfaultfd_ctx, NULL) :
2703                    can_vma_merge_after(prev, vm_flags, NULL, file, pgoff,
2704                                        NULL_VM_UFFD_CTX, NULL))) {
2705                 merge_start = prev->vm_start;
2706                 vma = prev;
2707                 vm_pgoff = prev->vm_pgoff;
2708         }
2709
2710
2711         /* Actually expand, if possible */
2712         if (vma &&
2713             !vma_expand(&vmi, vma, merge_start, merge_end, vm_pgoff, next)) {
2714                 khugepaged_enter_vma(vma, vm_flags);
2715                 goto expanded;
2716         }
2717
2718 cannot_expand:
2719         if (prev)
2720                 vma_iter_next_range(&vmi);
2721
2722         /*
2723          * Determine the object being mapped and call the appropriate
2724          * specific mapper. the address has already been validated, but
2725          * not unmapped, but the maps are removed from the list.
2726          */
2727         vma = vm_area_alloc(mm);
2728         if (!vma) {
2729                 error = -ENOMEM;
2730                 goto unacct_error;
2731         }
2732
2733         vma_iter_set(&vmi, addr);
2734         vma->vm_start = addr;
2735         vma->vm_end = end;
2736         vm_flags_init(vma, vm_flags);
2737         vma->vm_page_prot = vm_get_page_prot(vm_flags);
2738         vma->vm_pgoff = pgoff;
2739
2740         if (file) {
2741                 if (vm_flags & VM_SHARED) {
2742                         error = mapping_map_writable(file->f_mapping);
2743                         if (error)
2744                                 goto free_vma;
2745                 }
2746
2747                 vma->vm_file = get_file(file);
2748                 error = call_mmap(file, vma);
2749                 if (error)
2750                         goto unmap_and_free_vma;
2751
2752                 /*
2753                  * Expansion is handled above, merging is handled below.
2754                  * Drivers should not alter the address of the VMA.
2755                  */
2756                 error = -EINVAL;
2757                 if (WARN_ON((addr != vma->vm_start)))
2758                         goto close_and_free_vma;
2759
2760                 vma_iter_set(&vmi, addr);
2761                 /*
2762                  * If vm_flags changed after call_mmap(), we should try merge
2763                  * vma again as we may succeed this time.
2764                  */
2765                 if (unlikely(vm_flags != vma->vm_flags && prev)) {
2766                         merge = vma_merge(&vmi, mm, prev, vma->vm_start,
2767                                     vma->vm_end, vma->vm_flags, NULL,
2768                                     vma->vm_file, vma->vm_pgoff, NULL,
2769                                     NULL_VM_UFFD_CTX, NULL);
2770                         if (merge) {
2771                                 /*
2772                                  * ->mmap() can change vma->vm_file and fput
2773                                  * the original file. So fput the vma->vm_file
2774                                  * here or we would add an extra fput for file
2775                                  * and cause general protection fault
2776                                  * ultimately.
2777                                  */
2778                                 fput(vma->vm_file);
2779                                 vm_area_free(vma);
2780                                 vma = merge;
2781                                 /* Update vm_flags to pick up the change. */
2782                                 vm_flags = vma->vm_flags;
2783                                 goto unmap_writable;
2784                         }
2785                 }
2786
2787                 vm_flags = vma->vm_flags;
2788         } else if (vm_flags & VM_SHARED) {
2789                 error = shmem_zero_setup(vma);
2790                 if (error)
2791                         goto free_vma;
2792         } else {
2793                 vma_set_anonymous(vma);
2794         }
2795
2796         if (map_deny_write_exec(vma, vma->vm_flags)) {
2797                 error = -EACCES;
2798                 goto close_and_free_vma;
2799         }
2800
2801         /* Allow architectures to sanity-check the vm_flags */
2802         error = -EINVAL;
2803         if (!arch_validate_flags(vma->vm_flags))
2804                 goto close_and_free_vma;
2805
2806         error = -ENOMEM;
2807         if (vma_iter_prealloc(&vmi))
2808                 goto close_and_free_vma;
2809
2810         /* Lock the VMA since it is modified after insertion into VMA tree */
2811         vma_start_write(vma);
2812         vma_iter_store(&vmi, vma);
2813         mm->map_count++;
2814         if (vma->vm_file) {
2815                 i_mmap_lock_write(vma->vm_file->f_mapping);
2816                 if (vma->vm_flags & VM_SHARED)
2817                         mapping_allow_writable(vma->vm_file->f_mapping);
2818
2819                 flush_dcache_mmap_lock(vma->vm_file->f_mapping);
2820                 vma_interval_tree_insert(vma, &vma->vm_file->f_mapping->i_mmap);
2821                 flush_dcache_mmap_unlock(vma->vm_file->f_mapping);
2822                 i_mmap_unlock_write(vma->vm_file->f_mapping);
2823         }
2824
2825         /*
2826          * vma_merge() calls khugepaged_enter_vma() either, the below
2827          * call covers the non-merge case.
2828          */
2829         khugepaged_enter_vma(vma, vma->vm_flags);
2830
2831         /* Once vma denies write, undo our temporary denial count */
2832 unmap_writable:
2833         if (file && vm_flags & VM_SHARED)
2834                 mapping_unmap_writable(file->f_mapping);
2835         file = vma->vm_file;
2836         ksm_add_vma(vma);
2837 expanded:
2838         perf_event_mmap(vma);
2839
2840         vm_stat_account(mm, vm_flags, len >> PAGE_SHIFT);
2841         if (vm_flags & VM_LOCKED) {
2842                 if ((vm_flags & VM_SPECIAL) || vma_is_dax(vma) ||
2843                                         is_vm_hugetlb_page(vma) ||
2844                                         vma == get_gate_vma(current->mm))
2845                         vm_flags_clear(vma, VM_LOCKED_MASK);
2846                 else
2847                         mm->locked_vm += (len >> PAGE_SHIFT);
2848         }
2849
2850         if (file)
2851                 uprobe_mmap(vma);
2852
2853         /*
2854          * New (or expanded) vma always get soft dirty status.
2855          * Otherwise user-space soft-dirty page tracker won't
2856          * be able to distinguish situation when vma area unmapped,
2857          * then new mapped in-place (which must be aimed as
2858          * a completely new data area).
2859          */
2860         vm_flags_set(vma, VM_SOFTDIRTY);
2861
2862         vma_set_page_prot(vma);
2863
2864         validate_mm(mm);
2865         return addr;
2866
2867 close_and_free_vma:
2868         if (file && vma->vm_ops && vma->vm_ops->close)
2869                 vma->vm_ops->close(vma);
2870
2871         if (file || vma->vm_file) {
2872 unmap_and_free_vma:
2873                 fput(vma->vm_file);
2874                 vma->vm_file = NULL;
2875
2876                 /* Undo any partial mapping done by a device driver. */
2877                 unmap_region(mm, &mm->mm_mt, vma, prev, next, vma->vm_start,
2878                              vma->vm_end, true);
2879         }
2880         if (file && (vm_flags & VM_SHARED))
2881                 mapping_unmap_writable(file->f_mapping);
2882 free_vma:
2883         vm_area_free(vma);
2884 unacct_error:
2885         if (charged)
2886                 vm_unacct_memory(charged);
2887         validate_mm(mm);
2888         return error;
2889 }
2890
2891 static int __vm_munmap(unsigned long start, size_t len, bool unlock)
2892 {
2893         int ret;
2894         struct mm_struct *mm = current->mm;
2895         LIST_HEAD(uf);
2896         VMA_ITERATOR(vmi, mm, start);
2897
2898         if (mmap_write_lock_killable(mm))
2899                 return -EINTR;
2900
2901         ret = do_vmi_munmap(&vmi, mm, start, len, &uf, unlock);
2902         if (ret || !unlock)
2903                 mmap_write_unlock(mm);
2904
2905         userfaultfd_unmap_complete(mm, &uf);
2906         return ret;
2907 }
2908
2909 int vm_munmap(unsigned long start, size_t len)
2910 {
2911         return __vm_munmap(start, len, false);
2912 }
2913 EXPORT_SYMBOL(vm_munmap);
2914
2915 SYSCALL_DEFINE2(munmap, unsigned long, addr, size_t, len)
2916 {
2917         addr = untagged_addr(addr);
2918         return __vm_munmap(addr, len, true);
2919 }
2920
2921
2922 /*
2923  * Emulation of deprecated remap_file_pages() syscall.
2924  */
2925 SYSCALL_DEFINE5(remap_file_pages, unsigned long, start, unsigned long, size,
2926                 unsigned long, prot, unsigned long, pgoff, unsigned long, flags)
2927 {
2928
2929         struct mm_struct *mm = current->mm;
2930         struct vm_area_struct *vma;
2931         unsigned long populate = 0;
2932         unsigned long ret = -EINVAL;
2933         struct file *file;
2934
2935         pr_warn_once("%s (%d) uses deprecated remap_file_pages() syscall. See Documentation/mm/remap_file_pages.rst.\n",
2936                      current->comm, current->pid);
2937
2938         if (prot)
2939                 return ret;
2940         start = start & PAGE_MASK;
2941         size = size & PAGE_MASK;
2942
2943         if (start + size <= start)
2944                 return ret;
2945
2946         /* Does pgoff wrap? */
2947         if (pgoff + (size >> PAGE_SHIFT) < pgoff)
2948                 return ret;
2949
2950         if (mmap_write_lock_killable(mm))
2951                 return -EINTR;
2952
2953         vma = vma_lookup(mm, start);
2954
2955         if (!vma || !(vma->vm_flags & VM_SHARED))
2956                 goto out;
2957
2958         if (start + size > vma->vm_end) {
2959                 VMA_ITERATOR(vmi, mm, vma->vm_end);
2960                 struct vm_area_struct *next, *prev = vma;
2961
2962                 for_each_vma_range(vmi, next, start + size) {
2963                         /* hole between vmas ? */
2964                         if (next->vm_start != prev->vm_end)
2965                                 goto out;
2966
2967                         if (next->vm_file != vma->vm_file)
2968                                 goto out;
2969
2970                         if (next->vm_flags != vma->vm_flags)
2971                                 goto out;
2972
2973                         if (start + size <= next->vm_end)
2974                                 break;
2975
2976                         prev = next;
2977                 }
2978
2979                 if (!next)
2980                         goto out;
2981         }
2982
2983         prot |= vma->vm_flags & VM_READ ? PROT_READ : 0;
2984         prot |= vma->vm_flags & VM_WRITE ? PROT_WRITE : 0;
2985         prot |= vma->vm_flags & VM_EXEC ? PROT_EXEC : 0;
2986
2987         flags &= MAP_NONBLOCK;
2988         flags |= MAP_SHARED | MAP_FIXED | MAP_POPULATE;
2989         if (vma->vm_flags & VM_LOCKED)
2990                 flags |= MAP_LOCKED;
2991
2992         file = get_file(vma->vm_file);
2993         ret = do_mmap(vma->vm_file, start, size,
2994                         prot, flags, pgoff, &populate, NULL);
2995         fput(file);
2996 out:
2997         mmap_write_unlock(mm);
2998         if (populate)
2999                 mm_populate(ret, populate);
3000         if (!IS_ERR_VALUE(ret))
3001                 ret = 0;
3002         return ret;
3003 }
3004
3005 /*
3006  * do_vma_munmap() - Unmap a full or partial vma.
3007  * @vmi: The vma iterator pointing at the vma
3008  * @vma: The first vma to be munmapped
3009  * @start: the start of the address to unmap
3010  * @end: The end of the address to unmap
3011  * @uf: The userfaultfd list_head
3012  * @unlock: Drop the lock on success
3013  *
3014  * unmaps a VMA mapping when the vma iterator is already in position.
3015  * Does not handle alignment.
3016  *
3017  * Return: 0 on success drops the lock of so directed, error on failure and will
3018  * still hold the lock.
3019  */
3020 int do_vma_munmap(struct vma_iterator *vmi, struct vm_area_struct *vma,
3021                 unsigned long start, unsigned long end, struct list_head *uf,
3022                 bool unlock)
3023 {
3024         struct mm_struct *mm = vma->vm_mm;
3025
3026         arch_unmap(mm, start, end);
3027         return do_vmi_align_munmap(vmi, vma, mm, start, end, uf, unlock);
3028 }
3029
3030 /*
3031  * do_brk_flags() - Increase the brk vma if the flags match.
3032  * @vmi: The vma iterator
3033  * @addr: The start address
3034  * @len: The length of the increase
3035  * @vma: The vma,
3036  * @flags: The VMA Flags
3037  *
3038  * Extend the brk VMA from addr to addr + len.  If the VMA is NULL or the flags
3039  * do not match then create a new anonymous VMA.  Eventually we may be able to
3040  * do some brk-specific accounting here.
3041  */
3042 static int do_brk_flags(struct vma_iterator *vmi, struct vm_area_struct *vma,
3043                 unsigned long addr, unsigned long len, unsigned long flags)
3044 {
3045         struct mm_struct *mm = current->mm;
3046         struct vma_prepare vp;
3047
3048         validate_mm(mm);
3049         /*
3050          * Check against address space limits by the changed size
3051          * Note: This happens *after* clearing old mappings in some code paths.
3052          */
3053         flags |= VM_DATA_DEFAULT_FLAGS | VM_ACCOUNT | mm->def_flags;
3054         if (!may_expand_vm(mm, flags, len >> PAGE_SHIFT))
3055                 return -ENOMEM;
3056
3057         if (mm->map_count > sysctl_max_map_count)
3058                 return -ENOMEM;
3059
3060         if (security_vm_enough_memory_mm(mm, len >> PAGE_SHIFT))
3061                 return -ENOMEM;
3062
3063         /*
3064          * Expand the existing vma if possible; Note that singular lists do not
3065          * occur after forking, so the expand will only happen on new VMAs.
3066          */
3067         if (vma && vma->vm_end == addr && !vma_policy(vma) &&
3068             can_vma_merge_after(vma, flags, NULL, NULL,
3069                                 addr >> PAGE_SHIFT, NULL_VM_UFFD_CTX, NULL)) {
3070                 if (vma_iter_prealloc(vmi))
3071                         goto unacct_fail;
3072
3073                 init_vma_prep(&vp, vma);
3074                 vma_prepare(&vp);
3075                 vma_adjust_trans_huge(vma, vma->vm_start, addr + len, 0);
3076                 vma->vm_end = addr + len;
3077                 vm_flags_set(vma, VM_SOFTDIRTY);
3078                 vma_iter_store(vmi, vma);
3079
3080                 vma_complete(&vp, vmi, mm);
3081                 khugepaged_enter_vma(vma, flags);
3082                 goto out;
3083         }
3084
3085         /* create a vma struct for an anonymous mapping */
3086         vma = vm_area_alloc(mm);
3087         if (!vma)
3088                 goto unacct_fail;
3089
3090         vma_set_anonymous(vma);
3091         vma->vm_start = addr;
3092         vma->vm_end = addr + len;
3093         vma->vm_pgoff = addr >> PAGE_SHIFT;
3094         vm_flags_init(vma, flags);
3095         vma->vm_page_prot = vm_get_page_prot(flags);
3096         if (vma_iter_store_gfp(vmi, vma, GFP_KERNEL))
3097                 goto mas_store_fail;
3098
3099         mm->map_count++;
3100         ksm_add_vma(vma);
3101 out:
3102         perf_event_mmap(vma);
3103         mm->total_vm += len >> PAGE_SHIFT;
3104         mm->data_vm += len >> PAGE_SHIFT;
3105         if (flags & VM_LOCKED)
3106                 mm->locked_vm += (len >> PAGE_SHIFT);
3107         vm_flags_set(vma, VM_SOFTDIRTY);
3108         validate_mm(mm);
3109         return 0;
3110
3111 mas_store_fail:
3112         vm_area_free(vma);
3113 unacct_fail:
3114         vm_unacct_memory(len >> PAGE_SHIFT);
3115         return -ENOMEM;
3116 }
3117
3118 int vm_brk_flags(unsigned long addr, unsigned long request, unsigned long flags)
3119 {
3120         struct mm_struct *mm = current->mm;
3121         struct vm_area_struct *vma = NULL;
3122         unsigned long len;
3123         int ret;
3124         bool populate;
3125         LIST_HEAD(uf);
3126         VMA_ITERATOR(vmi, mm, addr);
3127
3128         len = PAGE_ALIGN(request);
3129         if (len < request)
3130                 return -ENOMEM;
3131         if (!len)
3132                 return 0;
3133
3134         if (mmap_write_lock_killable(mm))
3135                 return -EINTR;
3136
3137         /* Until we need other flags, refuse anything except VM_EXEC. */
3138         if ((flags & (~VM_EXEC)) != 0)
3139                 return -EINVAL;
3140
3141         ret = check_brk_limits(addr, len);
3142         if (ret)
3143                 goto limits_failed;
3144
3145         ret = do_vmi_munmap(&vmi, mm, addr, len, &uf, 0);
3146         if (ret)
3147                 goto munmap_failed;
3148
3149         vma = vma_prev(&vmi);
3150         ret = do_brk_flags(&vmi, vma, addr, len, flags);
3151         populate = ((mm->def_flags & VM_LOCKED) != 0);
3152         mmap_write_unlock(mm);
3153         userfaultfd_unmap_complete(mm, &uf);
3154         if (populate && !ret)
3155                 mm_populate(addr, len);
3156         return ret;
3157
3158 munmap_failed:
3159 limits_failed:
3160         mmap_write_unlock(mm);
3161         return ret;
3162 }
3163 EXPORT_SYMBOL(vm_brk_flags);
3164
3165 int vm_brk(unsigned long addr, unsigned long len)
3166 {
3167         return vm_brk_flags(addr, len, 0);
3168 }
3169 EXPORT_SYMBOL(vm_brk);
3170
3171 /* Release all mmaps. */
3172 void exit_mmap(struct mm_struct *mm)
3173 {
3174         struct mmu_gather tlb;
3175         struct vm_area_struct *vma;
3176         unsigned long nr_accounted = 0;
3177         MA_STATE(mas, &mm->mm_mt, 0, 0);
3178         int count = 0;
3179
3180         /* mm's last user has gone, and its about to be pulled down */
3181         mmu_notifier_release(mm);
3182
3183         mmap_read_lock(mm);
3184         arch_exit_mmap(mm);
3185
3186         vma = mas_find(&mas, ULONG_MAX);
3187         if (!vma) {
3188                 /* Can happen if dup_mmap() received an OOM */
3189                 mmap_read_unlock(mm);
3190                 return;
3191         }
3192
3193         lru_add_drain();
3194         flush_cache_mm(mm);
3195         tlb_gather_mmu_fullmm(&tlb, mm);
3196         /* update_hiwater_rss(mm) here? but nobody should be looking */
3197         /* Use ULONG_MAX here to ensure all VMAs in the mm are unmapped */
3198         unmap_vmas(&tlb, &mm->mm_mt, vma, 0, ULONG_MAX, false);
3199         mmap_read_unlock(mm);
3200
3201         /*
3202          * Set MMF_OOM_SKIP to hide this task from the oom killer/reaper
3203          * because the memory has been already freed.
3204          */
3205         set_bit(MMF_OOM_SKIP, &mm->flags);
3206         mmap_write_lock(mm);
3207         mt_clear_in_rcu(&mm->mm_mt);
3208         free_pgtables(&tlb, &mm->mm_mt, vma, FIRST_USER_ADDRESS,
3209                       USER_PGTABLES_CEILING, true);
3210         tlb_finish_mmu(&tlb);
3211
3212         /*
3213          * Walk the list again, actually closing and freeing it, with preemption
3214          * enabled, without holding any MM locks besides the unreachable
3215          * mmap_write_lock.
3216          */
3217         do {
3218                 if (vma->vm_flags & VM_ACCOUNT)
3219                         nr_accounted += vma_pages(vma);
3220                 remove_vma(vma, true);
3221                 count++;
3222                 cond_resched();
3223         } while ((vma = mas_find(&mas, ULONG_MAX)) != NULL);
3224
3225         BUG_ON(count != mm->map_count);
3226
3227         trace_exit_mmap(mm);
3228         __mt_destroy(&mm->mm_mt);
3229         mmap_write_unlock(mm);
3230         vm_unacct_memory(nr_accounted);
3231 }
3232
3233 /* Insert vm structure into process list sorted by address
3234  * and into the inode's i_mmap tree.  If vm_file is non-NULL
3235  * then i_mmap_rwsem is taken here.
3236  */
3237 int insert_vm_struct(struct mm_struct *mm, struct vm_area_struct *vma)
3238 {
3239         unsigned long charged = vma_pages(vma);
3240
3241
3242         if (find_vma_intersection(mm, vma->vm_start, vma->vm_end))
3243                 return -ENOMEM;
3244
3245         if ((vma->vm_flags & VM_ACCOUNT) &&
3246              security_vm_enough_memory_mm(mm, charged))
3247                 return -ENOMEM;
3248
3249         /*
3250          * The vm_pgoff of a purely anonymous vma should be irrelevant
3251          * until its first write fault, when page's anon_vma and index
3252          * are set.  But now set the vm_pgoff it will almost certainly
3253          * end up with (unless mremap moves it elsewhere before that
3254          * first wfault), so /proc/pid/maps tells a consistent story.
3255          *
3256          * By setting it to reflect the virtual start address of the
3257          * vma, merges and splits can happen in a seamless way, just
3258          * using the existing file pgoff checks and manipulations.
3259          * Similarly in do_mmap and in do_brk_flags.
3260          */
3261         if (vma_is_anonymous(vma)) {
3262                 BUG_ON(vma->anon_vma);
3263                 vma->vm_pgoff = vma->vm_start >> PAGE_SHIFT;
3264         }
3265
3266         if (vma_link(mm, vma)) {
3267                 vm_unacct_memory(charged);
3268                 return -ENOMEM;
3269         }
3270
3271         return 0;
3272 }
3273
3274 /*
3275  * Copy the vma structure to a new location in the same mm,
3276  * prior to moving page table entries, to effect an mremap move.
3277  */
3278 struct vm_area_struct *copy_vma(struct vm_area_struct **vmap,
3279         unsigned long addr, unsigned long len, pgoff_t pgoff,
3280         bool *need_rmap_locks)
3281 {
3282         struct vm_area_struct *vma = *vmap;
3283         unsigned long vma_start = vma->vm_start;
3284         struct mm_struct *mm = vma->vm_mm;
3285         struct vm_area_struct *new_vma, *prev;
3286         bool faulted_in_anon_vma = true;
3287         VMA_ITERATOR(vmi, mm, addr);
3288
3289         validate_mm(mm);
3290         /*
3291          * If anonymous vma has not yet been faulted, update new pgoff
3292          * to match new location, to increase its chance of merging.
3293          */
3294         if (unlikely(vma_is_anonymous(vma) && !vma->anon_vma)) {
3295                 pgoff = addr >> PAGE_SHIFT;
3296                 faulted_in_anon_vma = false;
3297         }
3298
3299         new_vma = find_vma_prev(mm, addr, &prev);
3300         if (new_vma && new_vma->vm_start < addr + len)
3301                 return NULL;    /* should never get here */
3302
3303         new_vma = vma_merge(&vmi, mm, prev, addr, addr + len, vma->vm_flags,
3304                             vma->anon_vma, vma->vm_file, pgoff, vma_policy(vma),
3305                             vma->vm_userfaultfd_ctx, anon_vma_name(vma));
3306         if (new_vma) {
3307                 /*
3308                  * Source vma may have been merged into new_vma
3309                  */
3310                 if (unlikely(vma_start >= new_vma->vm_start &&
3311                              vma_start < new_vma->vm_end)) {
3312                         /*
3313                          * The only way we can get a vma_merge with
3314                          * self during an mremap is if the vma hasn't
3315                          * been faulted in yet and we were allowed to
3316                          * reset the dst vma->vm_pgoff to the
3317                          * destination address of the mremap to allow
3318                          * the merge to happen. mremap must change the
3319                          * vm_pgoff linearity between src and dst vmas
3320                          * (in turn preventing a vma_merge) to be
3321                          * safe. It is only safe to keep the vm_pgoff
3322                          * linear if there are no pages mapped yet.
3323                          */
3324                         VM_BUG_ON_VMA(faulted_in_anon_vma, new_vma);
3325                         *vmap = vma = new_vma;
3326                 }
3327                 *need_rmap_locks = (new_vma->vm_pgoff <= vma->vm_pgoff);
3328         } else {
3329                 new_vma = vm_area_dup(vma);
3330                 if (!new_vma)
3331                         goto out;
3332                 new_vma->vm_start = addr;
3333                 new_vma->vm_end = addr + len;
3334                 new_vma->vm_pgoff = pgoff;
3335                 if (vma_dup_policy(vma, new_vma))
3336                         goto out_free_vma;
3337                 if (anon_vma_clone(new_vma, vma))
3338                         goto out_free_mempol;
3339                 if (new_vma->vm_file)
3340                         get_file(new_vma->vm_file);
3341                 if (new_vma->vm_ops && new_vma->vm_ops->open)
3342                         new_vma->vm_ops->open(new_vma);
3343                 vma_start_write(new_vma);
3344                 if (vma_link(mm, new_vma))
3345                         goto out_vma_link;
3346                 *need_rmap_locks = false;
3347         }
3348         validate_mm(mm);
3349         return new_vma;
3350
3351 out_vma_link:
3352         if (new_vma->vm_ops && new_vma->vm_ops->close)
3353                 new_vma->vm_ops->close(new_vma);
3354
3355         if (new_vma->vm_file)
3356                 fput(new_vma->vm_file);
3357
3358         unlink_anon_vmas(new_vma);
3359 out_free_mempol:
3360         mpol_put(vma_policy(new_vma));
3361 out_free_vma:
3362         vm_area_free(new_vma);
3363 out:
3364         validate_mm(mm);
3365         return NULL;
3366 }
3367
3368 /*
3369  * Return true if the calling process may expand its vm space by the passed
3370  * number of pages
3371  */
3372 bool may_expand_vm(struct mm_struct *mm, vm_flags_t flags, unsigned long npages)
3373 {
3374         if (mm->total_vm + npages > rlimit(RLIMIT_AS) >> PAGE_SHIFT)
3375                 return false;
3376
3377         if (is_data_mapping(flags) &&
3378             mm->data_vm + npages > rlimit(RLIMIT_DATA) >> PAGE_SHIFT) {
3379                 /* Workaround for Valgrind */
3380                 if (rlimit(RLIMIT_DATA) == 0 &&
3381                     mm->data_vm + npages <= rlimit_max(RLIMIT_DATA) >> PAGE_SHIFT)
3382                         return true;
3383
3384                 pr_warn_once("%s (%d): VmData %lu exceed data ulimit %lu. Update limits%s.\n",
3385                              current->comm, current->pid,
3386                              (mm->data_vm + npages) << PAGE_SHIFT,
3387                              rlimit(RLIMIT_DATA),
3388                              ignore_rlimit_data ? "" : " or use boot option ignore_rlimit_data");
3389
3390                 if (!ignore_rlimit_data)
3391                         return false;
3392         }
3393
3394         return true;
3395 }
3396
3397 void vm_stat_account(struct mm_struct *mm, vm_flags_t flags, long npages)
3398 {
3399         WRITE_ONCE(mm->total_vm, READ_ONCE(mm->total_vm)+npages);
3400
3401         if (is_exec_mapping(flags))
3402                 mm->exec_vm += npages;
3403         else if (is_stack_mapping(flags))
3404                 mm->stack_vm += npages;
3405         else if (is_data_mapping(flags))
3406                 mm->data_vm += npages;
3407 }
3408
3409 static vm_fault_t special_mapping_fault(struct vm_fault *vmf);
3410
3411 /*
3412  * Having a close hook prevents vma merging regardless of flags.
3413  */
3414 static void special_mapping_close(struct vm_area_struct *vma)
3415 {
3416 }
3417
3418 static const char *special_mapping_name(struct vm_area_struct *vma)
3419 {
3420         return ((struct vm_special_mapping *)vma->vm_private_data)->name;
3421 }
3422
3423 static int special_mapping_mremap(struct vm_area_struct *new_vma)
3424 {
3425         struct vm_special_mapping *sm = new_vma->vm_private_data;
3426
3427         if (WARN_ON_ONCE(current->mm != new_vma->vm_mm))
3428                 return -EFAULT;
3429
3430         if (sm->mremap)
3431                 return sm->mremap(sm, new_vma);
3432
3433         return 0;
3434 }
3435
3436 static int special_mapping_split(struct vm_area_struct *vma, unsigned long addr)
3437 {
3438         /*
3439          * Forbid splitting special mappings - kernel has expectations over
3440          * the number of pages in mapping. Together with VM_DONTEXPAND
3441          * the size of vma should stay the same over the special mapping's
3442          * lifetime.
3443          */
3444         return -EINVAL;
3445 }
3446
3447 static const struct vm_operations_struct special_mapping_vmops = {
3448         .close = special_mapping_close,
3449         .fault = special_mapping_fault,
3450         .mremap = special_mapping_mremap,
3451         .name = special_mapping_name,
3452         /* vDSO code relies that VVAR can't be accessed remotely */
3453         .access = NULL,
3454         .may_split = special_mapping_split,
3455 };
3456
3457 static const struct vm_operations_struct legacy_special_mapping_vmops = {
3458         .close = special_mapping_close,
3459         .fault = special_mapping_fault,
3460 };
3461
3462 static vm_fault_t special_mapping_fault(struct vm_fault *vmf)
3463 {
3464         struct vm_area_struct *vma = vmf->vma;
3465         pgoff_t pgoff;
3466         struct page **pages;
3467
3468         if (vma->vm_ops == &legacy_special_mapping_vmops) {
3469                 pages = vma->vm_private_data;
3470         } else {
3471                 struct vm_special_mapping *sm = vma->vm_private_data;
3472
3473                 if (sm->fault)
3474                         return sm->fault(sm, vmf->vma, vmf);
3475
3476                 pages = sm->pages;
3477         }
3478
3479         for (pgoff = vmf->pgoff; pgoff && *pages; ++pages)
3480                 pgoff--;
3481
3482         if (*pages) {
3483                 struct page *page = *pages;
3484                 get_page(page);
3485                 vmf->page = page;
3486                 return 0;
3487         }
3488
3489         return VM_FAULT_SIGBUS;
3490 }
3491
3492 static struct vm_area_struct *__install_special_mapping(
3493         struct mm_struct *mm,
3494         unsigned long addr, unsigned long len,
3495         unsigned long vm_flags, void *priv,
3496         const struct vm_operations_struct *ops)
3497 {
3498         int ret;
3499         struct vm_area_struct *vma;
3500
3501         validate_mm(mm);
3502         vma = vm_area_alloc(mm);
3503         if (unlikely(vma == NULL))
3504                 return ERR_PTR(-ENOMEM);
3505
3506         vma->vm_start = addr;
3507         vma->vm_end = addr + len;
3508
3509         vm_flags_init(vma, (vm_flags | mm->def_flags |
3510                       VM_DONTEXPAND | VM_SOFTDIRTY) & ~VM_LOCKED_MASK);
3511         vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
3512
3513         vma->vm_ops = ops;
3514         vma->vm_private_data = priv;
3515
3516         ret = insert_vm_struct(mm, vma);
3517         if (ret)
3518                 goto out;
3519
3520         vm_stat_account(mm, vma->vm_flags, len >> PAGE_SHIFT);
3521
3522         perf_event_mmap(vma);
3523
3524         validate_mm(mm);
3525         return vma;
3526
3527 out:
3528         vm_area_free(vma);
3529         validate_mm(mm);
3530         return ERR_PTR(ret);
3531 }
3532
3533 bool vma_is_special_mapping(const struct vm_area_struct *vma,
3534         const struct vm_special_mapping *sm)
3535 {
3536         return vma->vm_private_data == sm &&
3537                 (vma->vm_ops == &special_mapping_vmops ||
3538                  vma->vm_ops == &legacy_special_mapping_vmops);
3539 }
3540
3541 /*
3542  * Called with mm->mmap_lock held for writing.
3543  * Insert a new vma covering the given region, with the given flags.
3544  * Its pages are supplied by the given array of struct page *.
3545  * The array can be shorter than len >> PAGE_SHIFT if it's null-terminated.
3546  * The region past the last page supplied will always produce SIGBUS.
3547  * The array pointer and the pages it points to are assumed to stay alive
3548  * for as long as this mapping might exist.
3549  */
3550 struct vm_area_struct *_install_special_mapping(
3551         struct mm_struct *mm,
3552         unsigned long addr, unsigned long len,
3553         unsigned long vm_flags, const struct vm_special_mapping *spec)
3554 {
3555         return __install_special_mapping(mm, addr, len, vm_flags, (void *)spec,
3556                                         &special_mapping_vmops);
3557 }
3558
3559 int install_special_mapping(struct mm_struct *mm,
3560                             unsigned long addr, unsigned long len,
3561                             unsigned long vm_flags, struct page **pages)
3562 {
3563         struct vm_area_struct *vma = __install_special_mapping(
3564                 mm, addr, len, vm_flags, (void *)pages,
3565                 &legacy_special_mapping_vmops);
3566
3567         return PTR_ERR_OR_ZERO(vma);
3568 }
3569
3570 static DEFINE_MUTEX(mm_all_locks_mutex);
3571
3572 static void vm_lock_anon_vma(struct mm_struct *mm, struct anon_vma *anon_vma)
3573 {
3574         if (!test_bit(0, (unsigned long *) &anon_vma->root->rb_root.rb_root.rb_node)) {
3575                 /*
3576                  * The LSB of head.next can't change from under us
3577                  * because we hold the mm_all_locks_mutex.
3578                  */
3579                 down_write_nest_lock(&anon_vma->root->rwsem, &mm->mmap_lock);
3580                 /*
3581                  * We can safely modify head.next after taking the
3582                  * anon_vma->root->rwsem. If some other vma in this mm shares
3583                  * the same anon_vma we won't take it again.
3584                  *
3585                  * No need of atomic instructions here, head.next
3586                  * can't change from under us thanks to the
3587                  * anon_vma->root->rwsem.
3588                  */
3589                 if (__test_and_set_bit(0, (unsigned long *)
3590                                        &anon_vma->root->rb_root.rb_root.rb_node))
3591                         BUG();
3592         }
3593 }
3594
3595 static void vm_lock_mapping(struct mm_struct *mm, struct address_space *mapping)
3596 {
3597         if (!test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) {
3598                 /*
3599                  * AS_MM_ALL_LOCKS can't change from under us because
3600                  * we hold the mm_all_locks_mutex.
3601                  *
3602                  * Operations on ->flags have to be atomic because
3603                  * even if AS_MM_ALL_LOCKS is stable thanks to the
3604                  * mm_all_locks_mutex, there may be other cpus
3605                  * changing other bitflags in parallel to us.
3606                  */
3607                 if (test_and_set_bit(AS_MM_ALL_LOCKS, &mapping->flags))
3608                         BUG();
3609                 down_write_nest_lock(&mapping->i_mmap_rwsem, &mm->mmap_lock);
3610         }
3611 }
3612
3613 /*
3614  * This operation locks against the VM for all pte/vma/mm related
3615  * operations that could ever happen on a certain mm. This includes
3616  * vmtruncate, try_to_unmap, and all page faults.
3617  *
3618  * The caller must take the mmap_lock in write mode before calling
3619  * mm_take_all_locks(). The caller isn't allowed to release the
3620  * mmap_lock until mm_drop_all_locks() returns.
3621  *
3622  * mmap_lock in write mode is required in order to block all operations
3623  * that could modify pagetables and free pages without need of
3624  * altering the vma layout. It's also needed in write mode to avoid new
3625  * anon_vmas to be associated with existing vmas.
3626  *
3627  * A single task can't take more than one mm_take_all_locks() in a row
3628  * or it would deadlock.
3629  *
3630  * The LSB in anon_vma->rb_root.rb_node and the AS_MM_ALL_LOCKS bitflag in
3631  * mapping->flags avoid to take the same lock twice, if more than one
3632  * vma in this mm is backed by the same anon_vma or address_space.
3633  *
3634  * We take locks in following order, accordingly to comment at beginning
3635  * of mm/rmap.c:
3636  *   - all hugetlbfs_i_mmap_rwsem_key locks (aka mapping->i_mmap_rwsem for
3637  *     hugetlb mapping);
3638  *   - all vmas marked locked
3639  *   - all i_mmap_rwsem locks;
3640  *   - all anon_vma->rwseml
3641  *
3642  * We can take all locks within these types randomly because the VM code
3643  * doesn't nest them and we protected from parallel mm_take_all_locks() by
3644  * mm_all_locks_mutex.
3645  *
3646  * mm_take_all_locks() and mm_drop_all_locks are expensive operations
3647  * that may have to take thousand of locks.
3648  *
3649  * mm_take_all_locks() can fail if it's interrupted by signals.
3650  */
3651 int mm_take_all_locks(struct mm_struct *mm)
3652 {
3653         struct vm_area_struct *vma;
3654         struct anon_vma_chain *avc;
3655         MA_STATE(mas, &mm->mm_mt, 0, 0);
3656
3657         mmap_assert_write_locked(mm);
3658
3659         mutex_lock(&mm_all_locks_mutex);
3660
3661         mas_for_each(&mas, vma, ULONG_MAX) {
3662                 if (signal_pending(current))
3663                         goto out_unlock;
3664                 vma_start_write(vma);
3665         }
3666
3667         mas_set(&mas, 0);
3668         mas_for_each(&mas, vma, ULONG_MAX) {
3669                 if (signal_pending(current))
3670                         goto out_unlock;
3671                 if (vma->vm_file && vma->vm_file->f_mapping &&
3672                                 is_vm_hugetlb_page(vma))
3673                         vm_lock_mapping(mm, vma->vm_file->f_mapping);
3674         }
3675
3676         mas_set(&mas, 0);
3677         mas_for_each(&mas, vma, ULONG_MAX) {
3678                 if (signal_pending(current))
3679                         goto out_unlock;
3680                 if (vma->vm_file && vma->vm_file->f_mapping &&
3681                                 !is_vm_hugetlb_page(vma))
3682                         vm_lock_mapping(mm, vma->vm_file->f_mapping);
3683         }
3684
3685         mas_set(&mas, 0);
3686         mas_for_each(&mas, vma, ULONG_MAX) {
3687                 if (signal_pending(current))
3688                         goto out_unlock;
3689                 if (vma->anon_vma)
3690                         list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
3691                                 vm_lock_anon_vma(mm, avc->anon_vma);
3692         }
3693
3694         return 0;
3695
3696 out_unlock:
3697         mm_drop_all_locks(mm);
3698         return -EINTR;
3699 }
3700
3701 static void vm_unlock_anon_vma(struct anon_vma *anon_vma)
3702 {
3703         if (test_bit(0, (unsigned long *) &anon_vma->root->rb_root.rb_root.rb_node)) {
3704                 /*
3705                  * The LSB of head.next can't change to 0 from under
3706                  * us because we hold the mm_all_locks_mutex.
3707                  *
3708                  * We must however clear the bitflag before unlocking
3709                  * the vma so the users using the anon_vma->rb_root will
3710                  * never see our bitflag.
3711                  *
3712                  * No need of atomic instructions here, head.next
3713                  * can't change from under us until we release the
3714                  * anon_vma->root->rwsem.
3715                  */
3716                 if (!__test_and_clear_bit(0, (unsigned long *)
3717                                           &anon_vma->root->rb_root.rb_root.rb_node))
3718                         BUG();
3719                 anon_vma_unlock_write(anon_vma);
3720         }
3721 }
3722
3723 static void vm_unlock_mapping(struct address_space *mapping)
3724 {
3725         if (test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) {
3726                 /*
3727                  * AS_MM_ALL_LOCKS can't change to 0 from under us
3728                  * because we hold the mm_all_locks_mutex.
3729                  */
3730                 i_mmap_unlock_write(mapping);
3731                 if (!test_and_clear_bit(AS_MM_ALL_LOCKS,
3732                                         &mapping->flags))
3733                         BUG();
3734         }
3735 }
3736
3737 /*
3738  * The mmap_lock cannot be released by the caller until
3739  * mm_drop_all_locks() returns.
3740  */
3741 void mm_drop_all_locks(struct mm_struct *mm)
3742 {
3743         struct vm_area_struct *vma;
3744         struct anon_vma_chain *avc;
3745         MA_STATE(mas, &mm->mm_mt, 0, 0);
3746
3747         mmap_assert_write_locked(mm);
3748         BUG_ON(!mutex_is_locked(&mm_all_locks_mutex));
3749
3750         mas_for_each(&mas, vma, ULONG_MAX) {
3751                 if (vma->anon_vma)
3752                         list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
3753                                 vm_unlock_anon_vma(avc->anon_vma);
3754                 if (vma->vm_file && vma->vm_file->f_mapping)
3755                         vm_unlock_mapping(vma->vm_file->f_mapping);
3756         }
3757         vma_end_write_all(mm);
3758
3759         mutex_unlock(&mm_all_locks_mutex);
3760 }
3761
3762 /*
3763  * initialise the percpu counter for VM
3764  */
3765 void __init mmap_init(void)
3766 {
3767         int ret;
3768
3769         ret = percpu_counter_init(&vm_committed_as, 0, GFP_KERNEL);
3770         VM_BUG_ON(ret);
3771 }
3772
3773 /*
3774  * Initialise sysctl_user_reserve_kbytes.
3775  *
3776  * This is intended to prevent a user from starting a single memory hogging
3777  * process, such that they cannot recover (kill the hog) in OVERCOMMIT_NEVER
3778  * mode.
3779  *
3780  * The default value is min(3% of free memory, 128MB)
3781  * 128MB is enough to recover with sshd/login, bash, and top/kill.
3782  */
3783 static int init_user_reserve(void)
3784 {
3785         unsigned long free_kbytes;
3786
3787         free_kbytes = global_zone_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
3788
3789         sysctl_user_reserve_kbytes = min(free_kbytes / 32, 1UL << 17);
3790         return 0;
3791 }
3792 subsys_initcall(init_user_reserve);
3793
3794 /*
3795  * Initialise sysctl_admin_reserve_kbytes.
3796  *
3797  * The purpose of sysctl_admin_reserve_kbytes is to allow the sys admin
3798  * to log in and kill a memory hogging process.
3799  *
3800  * Systems with more than 256MB will reserve 8MB, enough to recover
3801  * with sshd, bash, and top in OVERCOMMIT_GUESS. Smaller systems will
3802  * only reserve 3% of free pages by default.
3803  */
3804 static int init_admin_reserve(void)
3805 {
3806         unsigned long free_kbytes;
3807
3808         free_kbytes = global_zone_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
3809
3810         sysctl_admin_reserve_kbytes = min(free_kbytes / 32, 1UL << 13);
3811         return 0;
3812 }
3813 subsys_initcall(init_admin_reserve);
3814
3815 /*
3816  * Reinititalise user and admin reserves if memory is added or removed.
3817  *
3818  * The default user reserve max is 128MB, and the default max for the
3819  * admin reserve is 8MB. These are usually, but not always, enough to
3820  * enable recovery from a memory hogging process using login/sshd, a shell,
3821  * and tools like top. It may make sense to increase or even disable the
3822  * reserve depending on the existence of swap or variations in the recovery
3823  * tools. So, the admin may have changed them.
3824  *
3825  * If memory is added and the reserves have been eliminated or increased above
3826  * the default max, then we'll trust the admin.
3827  *
3828  * If memory is removed and there isn't enough free memory, then we
3829  * need to reset the reserves.
3830  *
3831  * Otherwise keep the reserve set by the admin.
3832  */
3833 static int reserve_mem_notifier(struct notifier_block *nb,
3834                              unsigned long action, void *data)
3835 {
3836         unsigned long tmp, free_kbytes;
3837
3838         switch (action) {
3839         case MEM_ONLINE:
3840                 /* Default max is 128MB. Leave alone if modified by operator. */
3841                 tmp = sysctl_user_reserve_kbytes;
3842                 if (0 < tmp && tmp < (1UL << 17))
3843                         init_user_reserve();
3844
3845                 /* Default max is 8MB.  Leave alone if modified by operator. */
3846                 tmp = sysctl_admin_reserve_kbytes;
3847                 if (0 < tmp && tmp < (1UL << 13))
3848                         init_admin_reserve();
3849
3850                 break;
3851         case MEM_OFFLINE:
3852                 free_kbytes = global_zone_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
3853
3854                 if (sysctl_user_reserve_kbytes > free_kbytes) {
3855                         init_user_reserve();
3856                         pr_info("vm.user_reserve_kbytes reset to %lu\n",
3857                                 sysctl_user_reserve_kbytes);
3858                 }
3859
3860                 if (sysctl_admin_reserve_kbytes > free_kbytes) {
3861                         init_admin_reserve();
3862                         pr_info("vm.admin_reserve_kbytes reset to %lu\n",
3863                                 sysctl_admin_reserve_kbytes);
3864                 }
3865                 break;
3866         default:
3867                 break;
3868         }
3869         return NOTIFY_OK;
3870 }
3871
3872 static int __meminit init_reserve_notifier(void)
3873 {
3874         if (hotplug_memory_notifier(reserve_mem_notifier, DEFAULT_CALLBACK_PRI))
3875                 pr_err("Failed registering memory add/remove notifier for admin reserve\n");
3876
3877         return 0;
3878 }
3879 subsys_initcall(init_reserve_notifier);