mm: THP: workaround: only allow including specific headers for FINEGRAINED_THP config...
[platform/kernel/linux-rpi.git] / mm / mmap.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * mm/mmap.c
4  *
5  * Written by obz.
6  *
7  * Address space accounting code        <alan@lxorguk.ukuu.org.uk>
8  */
9
10 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
11
12 #include <linux/kernel.h>
13 #include <linux/slab.h>
14 #include <linux/backing-dev.h>
15 #include <linux/mm.h>
16 #include <linux/vmacache.h>
17 #include <linux/shm.h>
18 #include <linux/mman.h>
19 #include <linux/pagemap.h>
20 #include <linux/swap.h>
21 #include <linux/syscalls.h>
22 #include <linux/capability.h>
23 #include <linux/init.h>
24 #include <linux/file.h>
25 #include <linux/fs.h>
26 #include <linux/personality.h>
27 #include <linux/security.h>
28 #include <linux/hugetlb.h>
29 #include <linux/shmem_fs.h>
30 #include <linux/profile.h>
31 #include <linux/export.h>
32 #include <linux/mount.h>
33 #include <linux/mempolicy.h>
34 #include <linux/rmap.h>
35 #include <linux/mmu_notifier.h>
36 #include <linux/mmdebug.h>
37 #include <linux/perf_event.h>
38 #include <linux/audit.h>
39 #include <linux/khugepaged.h>
40 #include <linux/uprobes.h>
41 #include <linux/rbtree_augmented.h>
42 #include <linux/notifier.h>
43 #include <linux/memory.h>
44 #include <linux/printk.h>
45 #include <linux/userfaultfd_k.h>
46 #include <linux/moduleparam.h>
47 #include <linux/pkeys.h>
48 #include <linux/oom.h>
49 #include <linux/sched/mm.h>
50
51 #include <linux/uaccess.h>
52 #include <asm/cacheflush.h>
53 #include <asm/tlb.h>
54 #include <asm/mmu_context.h>
55 #ifdef CONFIG_FINEGRAINED_THP
56 #include <asm/finegrained_thp.h>
57 #else
58 #include <asm-generic/finegrained_thp.h>
59 #endif
60
61 #define CREATE_TRACE_POINTS
62 #include <trace/events/mmap.h>
63
64 #include "internal.h"
65
66 #ifndef arch_mmap_check
67 #define arch_mmap_check(addr, len, flags)       (0)
68 #endif
69
70 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_BITS
71 const int mmap_rnd_bits_min = CONFIG_ARCH_MMAP_RND_BITS_MIN;
72 const int mmap_rnd_bits_max = CONFIG_ARCH_MMAP_RND_BITS_MAX;
73 int mmap_rnd_bits __read_mostly = CONFIG_ARCH_MMAP_RND_BITS;
74 #endif
75 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS
76 const int mmap_rnd_compat_bits_min = CONFIG_ARCH_MMAP_RND_COMPAT_BITS_MIN;
77 const int mmap_rnd_compat_bits_max = CONFIG_ARCH_MMAP_RND_COMPAT_BITS_MAX;
78 int mmap_rnd_compat_bits __read_mostly = CONFIG_ARCH_MMAP_RND_COMPAT_BITS;
79 #endif
80
81 static bool ignore_rlimit_data;
82 core_param(ignore_rlimit_data, ignore_rlimit_data, bool, 0644);
83
84 static void unmap_region(struct mm_struct *mm,
85                 struct vm_area_struct *vma, struct vm_area_struct *prev,
86                 unsigned long start, unsigned long end);
87
88 /* description of effects of mapping type and prot in current implementation.
89  * this is due to the limited x86 page protection hardware.  The expected
90  * behavior is in parens:
91  *
92  * map_type     prot
93  *              PROT_NONE       PROT_READ       PROT_WRITE      PROT_EXEC
94  * MAP_SHARED   r: (no) no      r: (yes) yes    r: (no) yes     r: (no) yes
95  *              w: (no) no      w: (no) no      w: (yes) yes    w: (no) no
96  *              x: (no) no      x: (no) yes     x: (no) yes     x: (yes) yes
97  *
98  * MAP_PRIVATE  r: (no) no      r: (yes) yes    r: (no) yes     r: (no) yes
99  *              w: (no) no      w: (no) no      w: (copy) copy  w: (no) no
100  *              x: (no) no      x: (no) yes     x: (no) yes     x: (yes) yes
101  */
102 pgprot_t protection_map[16] __ro_after_init = {
103         __P000, __P001, __P010, __P011, __P100, __P101, __P110, __P111,
104         __S000, __S001, __S010, __S011, __S100, __S101, __S110, __S111
105 };
106
107 #ifndef CONFIG_ARCH_HAS_FILTER_PGPROT
108 static inline pgprot_t arch_filter_pgprot(pgprot_t prot)
109 {
110         return prot;
111 }
112 #endif
113
114 pgprot_t vm_get_page_prot(unsigned long vm_flags)
115 {
116         pgprot_t ret = __pgprot(pgprot_val(protection_map[vm_flags &
117                                 (VM_READ|VM_WRITE|VM_EXEC|VM_SHARED)]) |
118                         pgprot_val(arch_vm_get_page_prot(vm_flags)));
119
120         return arch_filter_pgprot(ret);
121 }
122 EXPORT_SYMBOL(vm_get_page_prot);
123
124 static pgprot_t vm_pgprot_modify(pgprot_t oldprot, unsigned long vm_flags)
125 {
126         return pgprot_modify(oldprot, vm_get_page_prot(vm_flags));
127 }
128
129 /* Update vma->vm_page_prot to reflect vma->vm_flags. */
130 void vma_set_page_prot(struct vm_area_struct *vma)
131 {
132         unsigned long vm_flags = vma->vm_flags;
133         pgprot_t vm_page_prot;
134
135         vm_page_prot = vm_pgprot_modify(vma->vm_page_prot, vm_flags);
136         if (vma_wants_writenotify(vma, vm_page_prot)) {
137                 vm_flags &= ~VM_SHARED;
138                 vm_page_prot = vm_pgprot_modify(vm_page_prot, vm_flags);
139         }
140         /* remove_protection_ptes reads vma->vm_page_prot without mmap_lock */
141         WRITE_ONCE(vma->vm_page_prot, vm_page_prot);
142 }
143
144 /*
145  * Requires inode->i_mapping->i_mmap_rwsem
146  */
147 static void __remove_shared_vm_struct(struct vm_area_struct *vma,
148                 struct file *file, struct address_space *mapping)
149 {
150         if (vma->vm_flags & VM_DENYWRITE)
151                 allow_write_access(file);
152         if (vma->vm_flags & VM_SHARED)
153                 mapping_unmap_writable(mapping);
154
155         flush_dcache_mmap_lock(mapping);
156         vma_interval_tree_remove(vma, &mapping->i_mmap);
157         flush_dcache_mmap_unlock(mapping);
158 }
159
160 /*
161  * Unlink a file-based vm structure from its interval tree, to hide
162  * vma from rmap and vmtruncate before freeing its page tables.
163  */
164 void unlink_file_vma(struct vm_area_struct *vma)
165 {
166         struct file *file = vma->vm_file;
167
168         if (file) {
169                 struct address_space *mapping = file->f_mapping;
170                 i_mmap_lock_write(mapping);
171                 __remove_shared_vm_struct(vma, file, mapping);
172                 i_mmap_unlock_write(mapping);
173         }
174 }
175
176 /*
177  * Close a vm structure and free it, returning the next.
178  */
179 static struct vm_area_struct *remove_vma(struct vm_area_struct *vma)
180 {
181         struct vm_area_struct *next = vma->vm_next;
182
183         might_sleep();
184         if (vma->vm_ops && vma->vm_ops->close)
185                 vma->vm_ops->close(vma);
186         if (vma->vm_file)
187                 fput(vma->vm_file);
188         mpol_put(vma_policy(vma));
189         vm_area_free(vma);
190         return next;
191 }
192
193 static int do_brk_flags(unsigned long addr, unsigned long request, unsigned long flags,
194                 struct list_head *uf);
195 SYSCALL_DEFINE1(brk, unsigned long, brk)
196 {
197         unsigned long retval;
198         unsigned long newbrk, oldbrk, origbrk;
199         struct mm_struct *mm = current->mm;
200         struct vm_area_struct *next;
201         unsigned long min_brk;
202         bool populate;
203         bool downgraded = false;
204         LIST_HEAD(uf);
205
206         if (mmap_write_lock_killable(mm))
207                 return -EINTR;
208
209         origbrk = mm->brk;
210
211 #ifdef CONFIG_COMPAT_BRK
212         /*
213          * CONFIG_COMPAT_BRK can still be overridden by setting
214          * randomize_va_space to 2, which will still cause mm->start_brk
215          * to be arbitrarily shifted
216          */
217         if (current->brk_randomized)
218                 min_brk = mm->start_brk;
219         else
220                 min_brk = mm->end_data;
221 #else
222         min_brk = mm->start_brk;
223 #endif
224         if (brk < min_brk)
225                 goto out;
226
227         /*
228          * Check against rlimit here. If this check is done later after the test
229          * of oldbrk with newbrk then it can escape the test and let the data
230          * segment grow beyond its set limit the in case where the limit is
231          * not page aligned -Ram Gupta
232          */
233         if (check_data_rlimit(rlimit(RLIMIT_DATA), brk, mm->start_brk,
234                               mm->end_data, mm->start_data))
235                 goto out;
236
237         newbrk = PAGE_ALIGN(brk);
238         oldbrk = PAGE_ALIGN(mm->brk);
239         if (oldbrk == newbrk) {
240                 mm->brk = brk;
241                 goto success;
242         }
243
244         /*
245          * Always allow shrinking brk.
246          * __do_munmap() may downgrade mmap_lock to read.
247          */
248         if (brk <= mm->brk) {
249                 int ret;
250
251                 /*
252                  * mm->brk must to be protected by write mmap_lock so update it
253                  * before downgrading mmap_lock. When __do_munmap() fails,
254                  * mm->brk will be restored from origbrk.
255                  */
256                 mm->brk = brk;
257                 ret = __do_munmap(mm, newbrk, oldbrk-newbrk, &uf, true);
258                 if (ret < 0) {
259                         mm->brk = origbrk;
260                         goto out;
261                 } else if (ret == 1) {
262                         downgraded = true;
263                 }
264                 goto success;
265         }
266
267         /* Check against existing mmap mappings. */
268         next = find_vma(mm, oldbrk);
269         if (next && newbrk + PAGE_SIZE > vm_start_gap(next))
270                 goto out;
271
272         /* Ok, looks good - let it rip. */
273         if (do_brk_flags(oldbrk, newbrk-oldbrk, 0, &uf) < 0)
274                 goto out;
275         mm->brk = brk;
276
277 success:
278         populate = newbrk > oldbrk && (mm->def_flags & VM_LOCKED) != 0;
279         if (newbrk > oldbrk)
280                 khugepaged_mem_hook(mm, origbrk, newbrk - oldbrk, __func__);
281         if (downgraded)
282                 mmap_read_unlock(mm);
283         else
284                 mmap_write_unlock(mm);
285         userfaultfd_unmap_complete(mm, &uf);
286         if (populate)
287                 mm_populate(oldbrk, newbrk - oldbrk);
288         return brk;
289
290 out:
291         retval = origbrk;
292         mmap_write_unlock(mm);
293         return retval;
294 }
295
296 static inline unsigned long vma_compute_gap(struct vm_area_struct *vma)
297 {
298         unsigned long gap, prev_end;
299
300         /*
301          * Note: in the rare case of a VM_GROWSDOWN above a VM_GROWSUP, we
302          * allow two stack_guard_gaps between them here, and when choosing
303          * an unmapped area; whereas when expanding we only require one.
304          * That's a little inconsistent, but keeps the code here simpler.
305          */
306         gap = vm_start_gap(vma);
307         if (vma->vm_prev) {
308                 prev_end = vm_end_gap(vma->vm_prev);
309                 if (gap > prev_end)
310                         gap -= prev_end;
311                 else
312                         gap = 0;
313         }
314         return gap;
315 }
316
317 #ifdef CONFIG_DEBUG_VM_RB
318 static unsigned long vma_compute_subtree_gap(struct vm_area_struct *vma)
319 {
320         unsigned long max = vma_compute_gap(vma), subtree_gap;
321         if (vma->vm_rb.rb_left) {
322                 subtree_gap = rb_entry(vma->vm_rb.rb_left,
323                                 struct vm_area_struct, vm_rb)->rb_subtree_gap;
324                 if (subtree_gap > max)
325                         max = subtree_gap;
326         }
327         if (vma->vm_rb.rb_right) {
328                 subtree_gap = rb_entry(vma->vm_rb.rb_right,
329                                 struct vm_area_struct, vm_rb)->rb_subtree_gap;
330                 if (subtree_gap > max)
331                         max = subtree_gap;
332         }
333         return max;
334 }
335
336 static int browse_rb(struct mm_struct *mm)
337 {
338         struct rb_root *root = &mm->mm_rb;
339         int i = 0, j, bug = 0;
340         struct rb_node *nd, *pn = NULL;
341         unsigned long prev = 0, pend = 0;
342
343         for (nd = rb_first(root); nd; nd = rb_next(nd)) {
344                 struct vm_area_struct *vma;
345                 vma = rb_entry(nd, struct vm_area_struct, vm_rb);
346                 if (vma->vm_start < prev) {
347                         pr_emerg("vm_start %lx < prev %lx\n",
348                                   vma->vm_start, prev);
349                         bug = 1;
350                 }
351                 if (vma->vm_start < pend) {
352                         pr_emerg("vm_start %lx < pend %lx\n",
353                                   vma->vm_start, pend);
354                         bug = 1;
355                 }
356                 if (vma->vm_start > vma->vm_end) {
357                         pr_emerg("vm_start %lx > vm_end %lx\n",
358                                   vma->vm_start, vma->vm_end);
359                         bug = 1;
360                 }
361                 spin_lock(&mm->page_table_lock);
362                 if (vma->rb_subtree_gap != vma_compute_subtree_gap(vma)) {
363                         pr_emerg("free gap %lx, correct %lx\n",
364                                vma->rb_subtree_gap,
365                                vma_compute_subtree_gap(vma));
366                         bug = 1;
367                 }
368                 spin_unlock(&mm->page_table_lock);
369                 i++;
370                 pn = nd;
371                 prev = vma->vm_start;
372                 pend = vma->vm_end;
373         }
374         j = 0;
375         for (nd = pn; nd; nd = rb_prev(nd))
376                 j++;
377         if (i != j) {
378                 pr_emerg("backwards %d, forwards %d\n", j, i);
379                 bug = 1;
380         }
381         return bug ? -1 : i;
382 }
383
384 static void validate_mm_rb(struct rb_root *root, struct vm_area_struct *ignore)
385 {
386         struct rb_node *nd;
387
388         for (nd = rb_first(root); nd; nd = rb_next(nd)) {
389                 struct vm_area_struct *vma;
390                 vma = rb_entry(nd, struct vm_area_struct, vm_rb);
391                 VM_BUG_ON_VMA(vma != ignore &&
392                         vma->rb_subtree_gap != vma_compute_subtree_gap(vma),
393                         vma);
394         }
395 }
396
397 static void validate_mm(struct mm_struct *mm)
398 {
399         int bug = 0;
400         int i = 0;
401         unsigned long highest_address = 0;
402         struct vm_area_struct *vma = mm->mmap;
403
404         while (vma) {
405                 struct anon_vma *anon_vma = vma->anon_vma;
406                 struct anon_vma_chain *avc;
407
408                 if (anon_vma) {
409                         anon_vma_lock_read(anon_vma);
410                         list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
411                                 anon_vma_interval_tree_verify(avc);
412                         anon_vma_unlock_read(anon_vma);
413                 }
414
415                 highest_address = vm_end_gap(vma);
416                 vma = vma->vm_next;
417                 i++;
418         }
419         if (i != mm->map_count) {
420                 pr_emerg("map_count %d vm_next %d\n", mm->map_count, i);
421                 bug = 1;
422         }
423         if (highest_address != mm->highest_vm_end) {
424                 pr_emerg("mm->highest_vm_end %lx, found %lx\n",
425                           mm->highest_vm_end, highest_address);
426                 bug = 1;
427         }
428         i = browse_rb(mm);
429         if (i != mm->map_count) {
430                 if (i != -1)
431                         pr_emerg("map_count %d rb %d\n", mm->map_count, i);
432                 bug = 1;
433         }
434         VM_BUG_ON_MM(bug, mm);
435 }
436 #else
437 #define validate_mm_rb(root, ignore) do { } while (0)
438 #define validate_mm(mm) do { } while (0)
439 #endif
440
441 RB_DECLARE_CALLBACKS_MAX(static, vma_gap_callbacks,
442                          struct vm_area_struct, vm_rb,
443                          unsigned long, rb_subtree_gap, vma_compute_gap)
444
445 /*
446  * Update augmented rbtree rb_subtree_gap values after vma->vm_start or
447  * vma->vm_prev->vm_end values changed, without modifying the vma's position
448  * in the rbtree.
449  */
450 static void vma_gap_update(struct vm_area_struct *vma)
451 {
452         /*
453          * As it turns out, RB_DECLARE_CALLBACKS_MAX() already created
454          * a callback function that does exactly what we want.
455          */
456         vma_gap_callbacks_propagate(&vma->vm_rb, NULL);
457 }
458
459 static inline void vma_rb_insert(struct vm_area_struct *vma,
460                                  struct rb_root *root)
461 {
462         /* All rb_subtree_gap values must be consistent prior to insertion */
463         validate_mm_rb(root, NULL);
464
465         rb_insert_augmented(&vma->vm_rb, root, &vma_gap_callbacks);
466 }
467
468 static void __vma_rb_erase(struct vm_area_struct *vma, struct rb_root *root)
469 {
470         /*
471          * Note rb_erase_augmented is a fairly large inline function,
472          * so make sure we instantiate it only once with our desired
473          * augmented rbtree callbacks.
474          */
475         rb_erase_augmented(&vma->vm_rb, root, &vma_gap_callbacks);
476 }
477
478 static __always_inline void vma_rb_erase_ignore(struct vm_area_struct *vma,
479                                                 struct rb_root *root,
480                                                 struct vm_area_struct *ignore)
481 {
482         /*
483          * All rb_subtree_gap values must be consistent prior to erase,
484          * with the possible exception of
485          *
486          * a. the "next" vma being erased if next->vm_start was reduced in
487          *    __vma_adjust() -> __vma_unlink()
488          * b. the vma being erased in detach_vmas_to_be_unmapped() ->
489          *    vma_rb_erase()
490          */
491         validate_mm_rb(root, ignore);
492
493         __vma_rb_erase(vma, root);
494 }
495
496 static __always_inline void vma_rb_erase(struct vm_area_struct *vma,
497                                          struct rb_root *root)
498 {
499         vma_rb_erase_ignore(vma, root, vma);
500 }
501
502 /*
503  * vma has some anon_vma assigned, and is already inserted on that
504  * anon_vma's interval trees.
505  *
506  * Before updating the vma's vm_start / vm_end / vm_pgoff fields, the
507  * vma must be removed from the anon_vma's interval trees using
508  * anon_vma_interval_tree_pre_update_vma().
509  *
510  * After the update, the vma will be reinserted using
511  * anon_vma_interval_tree_post_update_vma().
512  *
513  * The entire update must be protected by exclusive mmap_lock and by
514  * the root anon_vma's mutex.
515  */
516 static inline void
517 anon_vma_interval_tree_pre_update_vma(struct vm_area_struct *vma)
518 {
519         struct anon_vma_chain *avc;
520
521         list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
522                 anon_vma_interval_tree_remove(avc, &avc->anon_vma->rb_root);
523 }
524
525 static inline void
526 anon_vma_interval_tree_post_update_vma(struct vm_area_struct *vma)
527 {
528         struct anon_vma_chain *avc;
529
530         list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
531                 anon_vma_interval_tree_insert(avc, &avc->anon_vma->rb_root);
532 }
533
534 static int find_vma_links(struct mm_struct *mm, unsigned long addr,
535                 unsigned long end, struct vm_area_struct **pprev,
536                 struct rb_node ***rb_link, struct rb_node **rb_parent)
537 {
538         struct rb_node **__rb_link, *__rb_parent, *rb_prev;
539
540         __rb_link = &mm->mm_rb.rb_node;
541         rb_prev = __rb_parent = NULL;
542
543         while (*__rb_link) {
544                 struct vm_area_struct *vma_tmp;
545
546                 __rb_parent = *__rb_link;
547                 vma_tmp = rb_entry(__rb_parent, struct vm_area_struct, vm_rb);
548
549                 if (vma_tmp->vm_end > addr) {
550                         /* Fail if an existing vma overlaps the area */
551                         if (vma_tmp->vm_start < end)
552                                 return -ENOMEM;
553                         __rb_link = &__rb_parent->rb_left;
554                 } else {
555                         rb_prev = __rb_parent;
556                         __rb_link = &__rb_parent->rb_right;
557                 }
558         }
559
560         *pprev = NULL;
561         if (rb_prev)
562                 *pprev = rb_entry(rb_prev, struct vm_area_struct, vm_rb);
563         *rb_link = __rb_link;
564         *rb_parent = __rb_parent;
565         return 0;
566 }
567
568 /*
569  * vma_next() - Get the next VMA.
570  * @mm: The mm_struct.
571  * @vma: The current vma.
572  *
573  * If @vma is NULL, return the first vma in the mm.
574  *
575  * Returns: The next VMA after @vma.
576  */
577 static inline struct vm_area_struct *vma_next(struct mm_struct *mm,
578                                          struct vm_area_struct *vma)
579 {
580         if (!vma)
581                 return mm->mmap;
582
583         return vma->vm_next;
584 }
585
586 /*
587  * munmap_vma_range() - munmap VMAs that overlap a range.
588  * @mm: The mm struct
589  * @start: The start of the range.
590  * @len: The length of the range.
591  * @pprev: pointer to the pointer that will be set to previous vm_area_struct
592  * @rb_link: the rb_node
593  * @rb_parent: the parent rb_node
594  *
595  * Find all the vm_area_struct that overlap from @start to
596  * @end and munmap them.  Set @pprev to the previous vm_area_struct.
597  *
598  * Returns: -ENOMEM on munmap failure or 0 on success.
599  */
600 static inline int
601 munmap_vma_range(struct mm_struct *mm, unsigned long start, unsigned long len,
602                  struct vm_area_struct **pprev, struct rb_node ***link,
603                  struct rb_node **parent, struct list_head *uf)
604 {
605
606         while (find_vma_links(mm, start, start + len, pprev, link, parent))
607                 if (do_munmap(mm, start, len, uf))
608                         return -ENOMEM;
609
610         return 0;
611 }
612 static unsigned long count_vma_pages_range(struct mm_struct *mm,
613                 unsigned long addr, unsigned long end)
614 {
615         unsigned long nr_pages = 0;
616         struct vm_area_struct *vma;
617
618         /* Find first overlaping mapping */
619         vma = find_vma_intersection(mm, addr, end);
620         if (!vma)
621                 return 0;
622
623         nr_pages = (min(end, vma->vm_end) -
624                 max(addr, vma->vm_start)) >> PAGE_SHIFT;
625
626         /* Iterate over the rest of the overlaps */
627         for (vma = vma->vm_next; vma; vma = vma->vm_next) {
628                 unsigned long overlap_len;
629
630                 if (vma->vm_start > end)
631                         break;
632
633                 overlap_len = min(end, vma->vm_end) - vma->vm_start;
634                 nr_pages += overlap_len >> PAGE_SHIFT;
635         }
636
637         return nr_pages;
638 }
639
640 void __vma_link_rb(struct mm_struct *mm, struct vm_area_struct *vma,
641                 struct rb_node **rb_link, struct rb_node *rb_parent)
642 {
643         /* Update tracking information for the gap following the new vma. */
644         if (vma->vm_next)
645                 vma_gap_update(vma->vm_next);
646         else
647                 mm->highest_vm_end = vm_end_gap(vma);
648
649         /*
650          * vma->vm_prev wasn't known when we followed the rbtree to find the
651          * correct insertion point for that vma. As a result, we could not
652          * update the vma vm_rb parents rb_subtree_gap values on the way down.
653          * So, we first insert the vma with a zero rb_subtree_gap value
654          * (to be consistent with what we did on the way down), and then
655          * immediately update the gap to the correct value. Finally we
656          * rebalance the rbtree after all augmented values have been set.
657          */
658         rb_link_node(&vma->vm_rb, rb_parent, rb_link);
659         vma->rb_subtree_gap = 0;
660         vma_gap_update(vma);
661         vma_rb_insert(vma, &mm->mm_rb);
662 }
663
664 static void __vma_link_file(struct vm_area_struct *vma)
665 {
666         struct file *file;
667
668         file = vma->vm_file;
669         if (file) {
670                 struct address_space *mapping = file->f_mapping;
671
672                 if (vma->vm_flags & VM_DENYWRITE)
673                         put_write_access(file_inode(file));
674                 if (vma->vm_flags & VM_SHARED)
675                         mapping_allow_writable(mapping);
676
677                 flush_dcache_mmap_lock(mapping);
678                 vma_interval_tree_insert(vma, &mapping->i_mmap);
679                 flush_dcache_mmap_unlock(mapping);
680         }
681 }
682
683 static void
684 __vma_link(struct mm_struct *mm, struct vm_area_struct *vma,
685         struct vm_area_struct *prev, struct rb_node **rb_link,
686         struct rb_node *rb_parent)
687 {
688         __vma_link_list(mm, vma, prev);
689         __vma_link_rb(mm, vma, rb_link, rb_parent);
690 }
691
692 static void vma_link(struct mm_struct *mm, struct vm_area_struct *vma,
693                         struct vm_area_struct *prev, struct rb_node **rb_link,
694                         struct rb_node *rb_parent)
695 {
696         struct address_space *mapping = NULL;
697
698         if (vma->vm_file) {
699                 mapping = vma->vm_file->f_mapping;
700                 i_mmap_lock_write(mapping);
701         }
702
703         __vma_link(mm, vma, prev, rb_link, rb_parent);
704         __vma_link_file(vma);
705
706         if (mapping)
707                 i_mmap_unlock_write(mapping);
708
709         mm->map_count++;
710         validate_mm(mm);
711 }
712
713 /*
714  * Helper for vma_adjust() in the split_vma insert case: insert a vma into the
715  * mm's list and rbtree.  It has already been inserted into the interval tree.
716  */
717 static void __insert_vm_struct(struct mm_struct *mm, struct vm_area_struct *vma)
718 {
719         struct vm_area_struct *prev;
720         struct rb_node **rb_link, *rb_parent;
721
722         if (find_vma_links(mm, vma->vm_start, vma->vm_end,
723                            &prev, &rb_link, &rb_parent))
724                 BUG();
725         __vma_link(mm, vma, prev, rb_link, rb_parent);
726         mm->map_count++;
727 }
728
729 static __always_inline void __vma_unlink(struct mm_struct *mm,
730                                                 struct vm_area_struct *vma,
731                                                 struct vm_area_struct *ignore)
732 {
733         vma_rb_erase_ignore(vma, &mm->mm_rb, ignore);
734         __vma_unlink_list(mm, vma);
735         /* Kill the cache */
736         vmacache_invalidate(mm);
737 }
738
739 /*
740  * We cannot adjust vm_start, vm_end, vm_pgoff fields of a vma that
741  * is already present in an i_mmap tree without adjusting the tree.
742  * The following helper function should be used when such adjustments
743  * are necessary.  The "insert" vma (if any) is to be inserted
744  * before we drop the necessary locks.
745  */
746 int __vma_adjust(struct vm_area_struct *vma, unsigned long start,
747         unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert,
748         struct vm_area_struct *expand)
749 {
750         struct mm_struct *mm = vma->vm_mm;
751         struct vm_area_struct *next = vma->vm_next, *orig_vma = vma;
752         struct address_space *mapping = NULL;
753         struct rb_root_cached *root = NULL;
754         struct anon_vma *anon_vma = NULL;
755         struct file *file = vma->vm_file;
756         bool start_changed = false, end_changed = false;
757         long adjust_next = 0;
758         int remove_next = 0;
759
760         if (next && !insert) {
761                 struct vm_area_struct *exporter = NULL, *importer = NULL;
762
763                 if (end >= next->vm_end) {
764                         /*
765                          * vma expands, overlapping all the next, and
766                          * perhaps the one after too (mprotect case 6).
767                          * The only other cases that gets here are
768                          * case 1, case 7 and case 8.
769                          */
770                         if (next == expand) {
771                                 /*
772                                  * The only case where we don't expand "vma"
773                                  * and we expand "next" instead is case 8.
774                                  */
775                                 VM_WARN_ON(end != next->vm_end);
776                                 /*
777                                  * remove_next == 3 means we're
778                                  * removing "vma" and that to do so we
779                                  * swapped "vma" and "next".
780                                  */
781                                 remove_next = 3;
782                                 VM_WARN_ON(file != next->vm_file);
783                                 swap(vma, next);
784                         } else {
785                                 VM_WARN_ON(expand != vma);
786                                 /*
787                                  * case 1, 6, 7, remove_next == 2 is case 6,
788                                  * remove_next == 1 is case 1 or 7.
789                                  */
790                                 remove_next = 1 + (end > next->vm_end);
791                                 VM_WARN_ON(remove_next == 2 &&
792                                            end != next->vm_next->vm_end);
793                                 /* trim end to next, for case 6 first pass */
794                                 end = next->vm_end;
795                         }
796
797                         exporter = next;
798                         importer = vma;
799
800                         /*
801                          * If next doesn't have anon_vma, import from vma after
802                          * next, if the vma overlaps with it.
803                          */
804                         if (remove_next == 2 && !next->anon_vma)
805                                 exporter = next->vm_next;
806
807                 } else if (end > next->vm_start) {
808                         /*
809                          * vma expands, overlapping part of the next:
810                          * mprotect case 5 shifting the boundary up.
811                          */
812                         adjust_next = (end - next->vm_start);
813                         exporter = next;
814                         importer = vma;
815                         VM_WARN_ON(expand != importer);
816                 } else if (end < vma->vm_end) {
817                         /*
818                          * vma shrinks, and !insert tells it's not
819                          * split_vma inserting another: so it must be
820                          * mprotect case 4 shifting the boundary down.
821                          */
822                         adjust_next = -(vma->vm_end - end);
823                         exporter = vma;
824                         importer = next;
825                         VM_WARN_ON(expand != importer);
826                 }
827
828                 /*
829                  * Easily overlooked: when mprotect shifts the boundary,
830                  * make sure the expanding vma has anon_vma set if the
831                  * shrinking vma had, to cover any anon pages imported.
832                  */
833                 if (exporter && exporter->anon_vma && !importer->anon_vma) {
834                         int error;
835
836                         importer->anon_vma = exporter->anon_vma;
837                         error = anon_vma_clone(importer, exporter);
838                         if (error)
839                                 return error;
840                 }
841         }
842 again:
843         vma_adjust_trans_huge(orig_vma, start, end, adjust_next);
844
845         if (file) {
846                 mapping = file->f_mapping;
847                 root = &mapping->i_mmap;
848                 uprobe_munmap(vma, vma->vm_start, vma->vm_end);
849
850                 if (adjust_next)
851                         uprobe_munmap(next, next->vm_start, next->vm_end);
852
853                 i_mmap_lock_write(mapping);
854                 if (insert) {
855                         /*
856                          * Put into interval tree now, so instantiated pages
857                          * are visible to arm/parisc __flush_dcache_page
858                          * throughout; but we cannot insert into address
859                          * space until vma start or end is updated.
860                          */
861                         __vma_link_file(insert);
862                 }
863         }
864
865         anon_vma = vma->anon_vma;
866         if (!anon_vma && adjust_next)
867                 anon_vma = next->anon_vma;
868         if (anon_vma) {
869                 VM_WARN_ON(adjust_next && next->anon_vma &&
870                            anon_vma != next->anon_vma);
871                 anon_vma_lock_write(anon_vma);
872                 anon_vma_interval_tree_pre_update_vma(vma);
873                 if (adjust_next)
874                         anon_vma_interval_tree_pre_update_vma(next);
875         }
876
877         if (file) {
878                 flush_dcache_mmap_lock(mapping);
879                 vma_interval_tree_remove(vma, root);
880                 if (adjust_next)
881                         vma_interval_tree_remove(next, root);
882         }
883
884         if (start != vma->vm_start) {
885                 vma->vm_start = start;
886                 start_changed = true;
887         }
888         if (end != vma->vm_end) {
889                 vma->vm_end = end;
890                 end_changed = true;
891         }
892         vma->vm_pgoff = pgoff;
893         if (adjust_next) {
894                 next->vm_start += adjust_next;
895                 next->vm_pgoff += adjust_next >> PAGE_SHIFT;
896         }
897
898         if (file) {
899                 if (adjust_next)
900                         vma_interval_tree_insert(next, root);
901                 vma_interval_tree_insert(vma, root);
902                 flush_dcache_mmap_unlock(mapping);
903         }
904
905         if (remove_next) {
906                 /*
907                  * vma_merge has merged next into vma, and needs
908                  * us to remove next before dropping the locks.
909                  */
910                 if (remove_next != 3)
911                         __vma_unlink(mm, next, next);
912                 else
913                         /*
914                          * vma is not before next if they've been
915                          * swapped.
916                          *
917                          * pre-swap() next->vm_start was reduced so
918                          * tell validate_mm_rb to ignore pre-swap()
919                          * "next" (which is stored in post-swap()
920                          * "vma").
921                          */
922                         __vma_unlink(mm, next, vma);
923                 if (file)
924                         __remove_shared_vm_struct(next, file, mapping);
925         } else if (insert) {
926                 /*
927                  * split_vma has split insert from vma, and needs
928                  * us to insert it before dropping the locks
929                  * (it may either follow vma or precede it).
930                  */
931                 __insert_vm_struct(mm, insert);
932         } else {
933                 if (start_changed)
934                         vma_gap_update(vma);
935                 if (end_changed) {
936                         if (!next)
937                                 mm->highest_vm_end = vm_end_gap(vma);
938                         else if (!adjust_next)
939                                 vma_gap_update(next);
940                 }
941         }
942
943         if (anon_vma) {
944                 anon_vma_interval_tree_post_update_vma(vma);
945                 if (adjust_next)
946                         anon_vma_interval_tree_post_update_vma(next);
947                 anon_vma_unlock_write(anon_vma);
948         }
949
950         if (file) {
951                 i_mmap_unlock_write(mapping);
952                 uprobe_mmap(vma);
953
954                 if (adjust_next)
955                         uprobe_mmap(next);
956         }
957
958         if (remove_next) {
959                 if (file) {
960                         uprobe_munmap(next, next->vm_start, next->vm_end);
961                         fput(file);
962                 }
963                 if (next->anon_vma)
964                         anon_vma_merge(vma, next);
965                 mm->map_count--;
966                 mpol_put(vma_policy(next));
967                 vm_area_free(next);
968                 /*
969                  * In mprotect's case 6 (see comments on vma_merge),
970                  * we must remove another next too. It would clutter
971                  * up the code too much to do both in one go.
972                  */
973                 if (remove_next != 3) {
974                         /*
975                          * If "next" was removed and vma->vm_end was
976                          * expanded (up) over it, in turn
977                          * "next->vm_prev->vm_end" changed and the
978                          * "vma->vm_next" gap must be updated.
979                          */
980                         next = vma->vm_next;
981                 } else {
982                         /*
983                          * For the scope of the comment "next" and
984                          * "vma" considered pre-swap(): if "vma" was
985                          * removed, next->vm_start was expanded (down)
986                          * over it and the "next" gap must be updated.
987                          * Because of the swap() the post-swap() "vma"
988                          * actually points to pre-swap() "next"
989                          * (post-swap() "next" as opposed is now a
990                          * dangling pointer).
991                          */
992                         next = vma;
993                 }
994                 if (remove_next == 2) {
995                         remove_next = 1;
996                         end = next->vm_end;
997                         goto again;
998                 }
999                 else if (next)
1000                         vma_gap_update(next);
1001                 else {
1002                         /*
1003                          * If remove_next == 2 we obviously can't
1004                          * reach this path.
1005                          *
1006                          * If remove_next == 3 we can't reach this
1007                          * path because pre-swap() next is always not
1008                          * NULL. pre-swap() "next" is not being
1009                          * removed and its next->vm_end is not altered
1010                          * (and furthermore "end" already matches
1011                          * next->vm_end in remove_next == 3).
1012                          *
1013                          * We reach this only in the remove_next == 1
1014                          * case if the "next" vma that was removed was
1015                          * the highest vma of the mm. However in such
1016                          * case next->vm_end == "end" and the extended
1017                          * "vma" has vma->vm_end == next->vm_end so
1018                          * mm->highest_vm_end doesn't need any update
1019                          * in remove_next == 1 case.
1020                          */
1021                         VM_WARN_ON(mm->highest_vm_end != vm_end_gap(vma));
1022                 }
1023         }
1024         if (insert && file)
1025                 uprobe_mmap(insert);
1026
1027         validate_mm(mm);
1028
1029         return 0;
1030 }
1031
1032 /*
1033  * If the vma has a ->close operation then the driver probably needs to release
1034  * per-vma resources, so we don't attempt to merge those.
1035  */
1036 static inline int is_mergeable_vma(struct vm_area_struct *vma,
1037                                 struct file *file, unsigned long vm_flags,
1038                                 struct vm_userfaultfd_ctx vm_userfaultfd_ctx)
1039 {
1040         /*
1041          * VM_SOFTDIRTY should not prevent from VMA merging, if we
1042          * match the flags but dirty bit -- the caller should mark
1043          * merged VMA as dirty. If dirty bit won't be excluded from
1044          * comparison, we increase pressure on the memory system forcing
1045          * the kernel to generate new VMAs when old one could be
1046          * extended instead.
1047          */
1048         if ((vma->vm_flags ^ vm_flags) & ~VM_SOFTDIRTY)
1049                 return 0;
1050         if (vma->vm_file != file)
1051                 return 0;
1052         if (vma->vm_ops && vma->vm_ops->close)
1053                 return 0;
1054         if (!is_mergeable_vm_userfaultfd_ctx(vma, vm_userfaultfd_ctx))
1055                 return 0;
1056         return 1;
1057 }
1058
1059 static inline int is_mergeable_anon_vma(struct anon_vma *anon_vma1,
1060                                         struct anon_vma *anon_vma2,
1061                                         struct vm_area_struct *vma)
1062 {
1063         /*
1064          * The list_is_singular() test is to avoid merging VMA cloned from
1065          * parents. This can improve scalability caused by anon_vma lock.
1066          */
1067         if ((!anon_vma1 || !anon_vma2) && (!vma ||
1068                 list_is_singular(&vma->anon_vma_chain)))
1069                 return 1;
1070         return anon_vma1 == anon_vma2;
1071 }
1072
1073 /*
1074  * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
1075  * in front of (at a lower virtual address and file offset than) the vma.
1076  *
1077  * We cannot merge two vmas if they have differently assigned (non-NULL)
1078  * anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
1079  *
1080  * We don't check here for the merged mmap wrapping around the end of pagecache
1081  * indices (16TB on ia32) because do_mmap() does not permit mmap's which
1082  * wrap, nor mmaps which cover the final page at index -1UL.
1083  */
1084 static int
1085 can_vma_merge_before(struct vm_area_struct *vma, unsigned long vm_flags,
1086                      struct anon_vma *anon_vma, struct file *file,
1087                      pgoff_t vm_pgoff,
1088                      struct vm_userfaultfd_ctx vm_userfaultfd_ctx)
1089 {
1090         if (is_mergeable_vma(vma, file, vm_flags, vm_userfaultfd_ctx) &&
1091             is_mergeable_anon_vma(anon_vma, vma->anon_vma, vma)) {
1092                 if (vma->vm_pgoff == vm_pgoff)
1093                         return 1;
1094         }
1095         return 0;
1096 }
1097
1098 /*
1099  * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
1100  * beyond (at a higher virtual address and file offset than) the vma.
1101  *
1102  * We cannot merge two vmas if they have differently assigned (non-NULL)
1103  * anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
1104  */
1105 static int
1106 can_vma_merge_after(struct vm_area_struct *vma, unsigned long vm_flags,
1107                     struct anon_vma *anon_vma, struct file *file,
1108                     pgoff_t vm_pgoff,
1109                     struct vm_userfaultfd_ctx vm_userfaultfd_ctx)
1110 {
1111         if (is_mergeable_vma(vma, file, vm_flags, vm_userfaultfd_ctx) &&
1112             is_mergeable_anon_vma(anon_vma, vma->anon_vma, vma)) {
1113                 pgoff_t vm_pglen;
1114                 vm_pglen = vma_pages(vma);
1115                 if (vma->vm_pgoff + vm_pglen == vm_pgoff)
1116                         return 1;
1117         }
1118         return 0;
1119 }
1120
1121 /*
1122  * Given a mapping request (addr,end,vm_flags,file,pgoff), figure out
1123  * whether that can be merged with its predecessor or its successor.
1124  * Or both (it neatly fills a hole).
1125  *
1126  * In most cases - when called for mmap, brk or mremap - [addr,end) is
1127  * certain not to be mapped by the time vma_merge is called; but when
1128  * called for mprotect, it is certain to be already mapped (either at
1129  * an offset within prev, or at the start of next), and the flags of
1130  * this area are about to be changed to vm_flags - and the no-change
1131  * case has already been eliminated.
1132  *
1133  * The following mprotect cases have to be considered, where AAAA is
1134  * the area passed down from mprotect_fixup, never extending beyond one
1135  * vma, PPPPPP is the prev vma specified, and NNNNNN the next vma after:
1136  *
1137  *     AAAA             AAAA                   AAAA
1138  *    PPPPPPNNNNNN    PPPPPPNNNNNN       PPPPPPNNNNNN
1139  *    cannot merge    might become       might become
1140  *                    PPNNNNNNNNNN       PPPPPPPPPPNN
1141  *    mmap, brk or    case 4 below       case 5 below
1142  *    mremap move:
1143  *                        AAAA               AAAA
1144  *                    PPPP    NNNN       PPPPNNNNXXXX
1145  *                    might become       might become
1146  *                    PPPPPPPPPPPP 1 or  PPPPPPPPPPPP 6 or
1147  *                    PPPPPPPPNNNN 2 or  PPPPPPPPXXXX 7 or
1148  *                    PPPPNNNNNNNN 3     PPPPXXXXXXXX 8
1149  *
1150  * It is important for case 8 that the vma NNNN overlapping the
1151  * region AAAA is never going to extended over XXXX. Instead XXXX must
1152  * be extended in region AAAA and NNNN must be removed. This way in
1153  * all cases where vma_merge succeeds, the moment vma_adjust drops the
1154  * rmap_locks, the properties of the merged vma will be already
1155  * correct for the whole merged range. Some of those properties like
1156  * vm_page_prot/vm_flags may be accessed by rmap_walks and they must
1157  * be correct for the whole merged range immediately after the
1158  * rmap_locks are released. Otherwise if XXXX would be removed and
1159  * NNNN would be extended over the XXXX range, remove_migration_ptes
1160  * or other rmap walkers (if working on addresses beyond the "end"
1161  * parameter) may establish ptes with the wrong permissions of NNNN
1162  * instead of the right permissions of XXXX.
1163  */
1164 struct vm_area_struct *vma_merge(struct mm_struct *mm,
1165                         struct vm_area_struct *prev, unsigned long addr,
1166                         unsigned long end, unsigned long vm_flags,
1167                         struct anon_vma *anon_vma, struct file *file,
1168                         pgoff_t pgoff, struct mempolicy *policy,
1169                         struct vm_userfaultfd_ctx vm_userfaultfd_ctx)
1170 {
1171         pgoff_t pglen = (end - addr) >> PAGE_SHIFT;
1172         struct vm_area_struct *area, *next;
1173         int err;
1174
1175         /*
1176          * We later require that vma->vm_flags == vm_flags,
1177          * so this tests vma->vm_flags & VM_SPECIAL, too.
1178          */
1179         if (vm_flags & VM_SPECIAL)
1180                 return NULL;
1181
1182         next = vma_next(mm, prev);
1183         area = next;
1184         if (area && area->vm_end == end)                /* cases 6, 7, 8 */
1185                 next = next->vm_next;
1186
1187         /* verify some invariant that must be enforced by the caller */
1188         VM_WARN_ON(prev && addr <= prev->vm_start);
1189         VM_WARN_ON(area && end > area->vm_end);
1190         VM_WARN_ON(addr >= end);
1191
1192         /*
1193          * Can it merge with the predecessor?
1194          */
1195         if (prev && prev->vm_end == addr &&
1196                         mpol_equal(vma_policy(prev), policy) &&
1197                         can_vma_merge_after(prev, vm_flags,
1198                                             anon_vma, file, pgoff,
1199                                             vm_userfaultfd_ctx)) {
1200                 /*
1201                  * OK, it can.  Can we now merge in the successor as well?
1202                  */
1203                 if (next && end == next->vm_start &&
1204                                 mpol_equal(policy, vma_policy(next)) &&
1205                                 can_vma_merge_before(next, vm_flags,
1206                                                      anon_vma, file,
1207                                                      pgoff+pglen,
1208                                                      vm_userfaultfd_ctx) &&
1209                                 is_mergeable_anon_vma(prev->anon_vma,
1210                                                       next->anon_vma, NULL)) {
1211                                                         /* cases 1, 6 */
1212                         err = __vma_adjust(prev, prev->vm_start,
1213                                          next->vm_end, prev->vm_pgoff, NULL,
1214                                          prev);
1215                 } else                                  /* cases 2, 5, 7 */
1216                         err = __vma_adjust(prev, prev->vm_start,
1217                                          end, prev->vm_pgoff, NULL, prev);
1218                 if (err)
1219                         return NULL;
1220                 khugepaged_enter_vma_merge(prev, vm_flags);
1221                 return prev;
1222         }
1223
1224         /*
1225          * Can this new request be merged in front of next?
1226          */
1227         if (next && end == next->vm_start &&
1228                         mpol_equal(policy, vma_policy(next)) &&
1229                         can_vma_merge_before(next, vm_flags,
1230                                              anon_vma, file, pgoff+pglen,
1231                                              vm_userfaultfd_ctx)) {
1232                 if (prev && addr < prev->vm_end)        /* case 4 */
1233                         err = __vma_adjust(prev, prev->vm_start,
1234                                          addr, prev->vm_pgoff, NULL, next);
1235                 else {                                  /* cases 3, 8 */
1236                         err = __vma_adjust(area, addr, next->vm_end,
1237                                          next->vm_pgoff - pglen, NULL, next);
1238                         /*
1239                          * In case 3 area is already equal to next and
1240                          * this is a noop, but in case 8 "area" has
1241                          * been removed and next was expanded over it.
1242                          */
1243                         area = next;
1244                 }
1245                 if (err)
1246                         return NULL;
1247                 khugepaged_enter_vma_merge(area, vm_flags);
1248                 return area;
1249         }
1250
1251         return NULL;
1252 }
1253
1254 /*
1255  * Rough compatibility check to quickly see if it's even worth looking
1256  * at sharing an anon_vma.
1257  *
1258  * They need to have the same vm_file, and the flags can only differ
1259  * in things that mprotect may change.
1260  *
1261  * NOTE! The fact that we share an anon_vma doesn't _have_ to mean that
1262  * we can merge the two vma's. For example, we refuse to merge a vma if
1263  * there is a vm_ops->close() function, because that indicates that the
1264  * driver is doing some kind of reference counting. But that doesn't
1265  * really matter for the anon_vma sharing case.
1266  */
1267 static int anon_vma_compatible(struct vm_area_struct *a, struct vm_area_struct *b)
1268 {
1269         return a->vm_end == b->vm_start &&
1270                 mpol_equal(vma_policy(a), vma_policy(b)) &&
1271                 a->vm_file == b->vm_file &&
1272                 !((a->vm_flags ^ b->vm_flags) & ~(VM_ACCESS_FLAGS | VM_SOFTDIRTY)) &&
1273                 b->vm_pgoff == a->vm_pgoff + ((b->vm_start - a->vm_start) >> PAGE_SHIFT);
1274 }
1275
1276 /*
1277  * Do some basic sanity checking to see if we can re-use the anon_vma
1278  * from 'old'. The 'a'/'b' vma's are in VM order - one of them will be
1279  * the same as 'old', the other will be the new one that is trying
1280  * to share the anon_vma.
1281  *
1282  * NOTE! This runs with mm_sem held for reading, so it is possible that
1283  * the anon_vma of 'old' is concurrently in the process of being set up
1284  * by another page fault trying to merge _that_. But that's ok: if it
1285  * is being set up, that automatically means that it will be a singleton
1286  * acceptable for merging, so we can do all of this optimistically. But
1287  * we do that READ_ONCE() to make sure that we never re-load the pointer.
1288  *
1289  * IOW: that the "list_is_singular()" test on the anon_vma_chain only
1290  * matters for the 'stable anon_vma' case (ie the thing we want to avoid
1291  * is to return an anon_vma that is "complex" due to having gone through
1292  * a fork).
1293  *
1294  * We also make sure that the two vma's are compatible (adjacent,
1295  * and with the same memory policies). That's all stable, even with just
1296  * a read lock on the mm_sem.
1297  */
1298 static struct anon_vma *reusable_anon_vma(struct vm_area_struct *old, struct vm_area_struct *a, struct vm_area_struct *b)
1299 {
1300         if (anon_vma_compatible(a, b)) {
1301                 struct anon_vma *anon_vma = READ_ONCE(old->anon_vma);
1302
1303                 if (anon_vma && list_is_singular(&old->anon_vma_chain))
1304                         return anon_vma;
1305         }
1306         return NULL;
1307 }
1308
1309 /*
1310  * find_mergeable_anon_vma is used by anon_vma_prepare, to check
1311  * neighbouring vmas for a suitable anon_vma, before it goes off
1312  * to allocate a new anon_vma.  It checks because a repetitive
1313  * sequence of mprotects and faults may otherwise lead to distinct
1314  * anon_vmas being allocated, preventing vma merge in subsequent
1315  * mprotect.
1316  */
1317 struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *vma)
1318 {
1319         struct anon_vma *anon_vma = NULL;
1320
1321         /* Try next first. */
1322         if (vma->vm_next) {
1323                 anon_vma = reusable_anon_vma(vma->vm_next, vma, vma->vm_next);
1324                 if (anon_vma)
1325                         return anon_vma;
1326         }
1327
1328         /* Try prev next. */
1329         if (vma->vm_prev)
1330                 anon_vma = reusable_anon_vma(vma->vm_prev, vma->vm_prev, vma);
1331
1332         /*
1333          * We might reach here with anon_vma == NULL if we can't find
1334          * any reusable anon_vma.
1335          * There's no absolute need to look only at touching neighbours:
1336          * we could search further afield for "compatible" anon_vmas.
1337          * But it would probably just be a waste of time searching,
1338          * or lead to too many vmas hanging off the same anon_vma.
1339          * We're trying to allow mprotect remerging later on,
1340          * not trying to minimize memory used for anon_vmas.
1341          */
1342         return anon_vma;
1343 }
1344
1345 /*
1346  * If a hint addr is less than mmap_min_addr change hint to be as
1347  * low as possible but still greater than mmap_min_addr
1348  */
1349 static inline unsigned long round_hint_to_min(unsigned long hint)
1350 {
1351         hint &= PAGE_MASK;
1352         if (((void *)hint != NULL) &&
1353             (hint < mmap_min_addr))
1354                 return PAGE_ALIGN(mmap_min_addr);
1355         return hint;
1356 }
1357
1358 static inline int mlock_future_check(struct mm_struct *mm,
1359                                      unsigned long flags,
1360                                      unsigned long len)
1361 {
1362         unsigned long locked, lock_limit;
1363
1364         /*  mlock MCL_FUTURE? */
1365         if (flags & VM_LOCKED) {
1366                 locked = len >> PAGE_SHIFT;
1367                 locked += mm->locked_vm;
1368                 lock_limit = rlimit(RLIMIT_MEMLOCK);
1369                 lock_limit >>= PAGE_SHIFT;
1370                 if (locked > lock_limit && !capable(CAP_IPC_LOCK))
1371                         return -EAGAIN;
1372         }
1373         return 0;
1374 }
1375
1376 static inline u64 file_mmap_size_max(struct file *file, struct inode *inode)
1377 {
1378         if (S_ISREG(inode->i_mode))
1379                 return MAX_LFS_FILESIZE;
1380
1381         if (S_ISBLK(inode->i_mode))
1382                 return MAX_LFS_FILESIZE;
1383
1384         if (S_ISSOCK(inode->i_mode))
1385                 return MAX_LFS_FILESIZE;
1386
1387         /* Special "we do even unsigned file positions" case */
1388         if (file->f_mode & FMODE_UNSIGNED_OFFSET)
1389                 return 0;
1390
1391         /* Yes, random drivers might want more. But I'm tired of buggy drivers */
1392         return ULONG_MAX;
1393 }
1394
1395 static inline bool file_mmap_ok(struct file *file, struct inode *inode,
1396                                 unsigned long pgoff, unsigned long len)
1397 {
1398         u64 maxsize = file_mmap_size_max(file, inode);
1399
1400         if (maxsize && len > maxsize)
1401                 return false;
1402         maxsize -= len;
1403         if (pgoff > maxsize >> PAGE_SHIFT)
1404                 return false;
1405         return true;
1406 }
1407
1408 /*
1409  * The caller must write-lock current->mm->mmap_lock.
1410  */
1411 unsigned long do_mmap(struct file *file, unsigned long addr,
1412                         unsigned long len, unsigned long prot,
1413                         unsigned long flags, unsigned long pgoff,
1414                         unsigned long *populate, struct list_head *uf)
1415 {
1416         struct mm_struct *mm = current->mm;
1417         vm_flags_t vm_flags;
1418         int pkey = 0;
1419
1420         *populate = 0;
1421
1422         if (!len)
1423                 return -EINVAL;
1424
1425         /*
1426          * Does the application expect PROT_READ to imply PROT_EXEC?
1427          *
1428          * (the exception is when the underlying filesystem is noexec
1429          *  mounted, in which case we dont add PROT_EXEC.)
1430          */
1431         if ((prot & PROT_READ) && (current->personality & READ_IMPLIES_EXEC))
1432                 if (!(file && path_noexec(&file->f_path)))
1433                         prot |= PROT_EXEC;
1434
1435         /* force arch specific MAP_FIXED handling in get_unmapped_area */
1436         if (flags & MAP_FIXED_NOREPLACE)
1437                 flags |= MAP_FIXED;
1438
1439         if (!(flags & MAP_FIXED))
1440                 addr = round_hint_to_min(addr);
1441
1442         /* Careful about overflows.. */
1443         len = PAGE_ALIGN(len);
1444         if (!len)
1445                 return -ENOMEM;
1446
1447         /* offset overflow? */
1448         if ((pgoff + (len >> PAGE_SHIFT)) < pgoff)
1449                 return -EOVERFLOW;
1450
1451         /* Too many mappings? */
1452         if (mm->map_count > sysctl_max_map_count)
1453                 return -ENOMEM;
1454
1455 #ifdef CONFIG_FINEGRAINED_THP
1456         if ((len >> PAGE_SHIFT) >= HPAGE_CONT_PTE_NR &&
1457                         file && addr == 0)
1458                 flags |= MAP_FILE_THP;
1459 #endif
1460
1461         /* Obtain the address to map to. we verify (or select) it and ensure
1462          * that it represents a valid section of the address space.
1463          */
1464         addr = get_unmapped_area(file, addr, len, pgoff, flags);
1465         if (IS_ERR_VALUE(addr))
1466                 return addr;
1467
1468         if (flags & MAP_FIXED_NOREPLACE) {
1469                 struct vm_area_struct *vma = find_vma(mm, addr);
1470
1471                 if (vma && vma->vm_start < addr + len)
1472                         return -EEXIST;
1473         }
1474
1475         if (prot == PROT_EXEC) {
1476                 pkey = execute_only_pkey(mm);
1477                 if (pkey < 0)
1478                         pkey = 0;
1479         }
1480
1481         /* Do simple checking here so the lower-level routines won't have
1482          * to. we assume access permissions have been handled by the open
1483          * of the memory object, so we don't do any here.
1484          */
1485         vm_flags = calc_vm_prot_bits(prot, pkey) | calc_vm_flag_bits(flags) |
1486                         mm->def_flags | VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC;
1487
1488         if (flags & MAP_LOCKED)
1489                 if (!can_do_mlock())
1490                         return -EPERM;
1491
1492         if (mlock_future_check(mm, vm_flags, len))
1493                 return -EAGAIN;
1494
1495         if (file) {
1496                 struct inode *inode = file_inode(file);
1497                 unsigned long flags_mask;
1498
1499                 if (!file_mmap_ok(file, inode, pgoff, len))
1500                         return -EOVERFLOW;
1501
1502                 flags_mask = LEGACY_MAP_MASK | file->f_op->mmap_supported_flags;
1503
1504                 switch (flags & MAP_TYPE) {
1505                 case MAP_SHARED:
1506                         /*
1507                          * Force use of MAP_SHARED_VALIDATE with non-legacy
1508                          * flags. E.g. MAP_SYNC is dangerous to use with
1509                          * MAP_SHARED as you don't know which consistency model
1510                          * you will get. We silently ignore unsupported flags
1511                          * with MAP_SHARED to preserve backward compatibility.
1512                          */
1513                         flags &= LEGACY_MAP_MASK;
1514                         fallthrough;
1515                 case MAP_SHARED_VALIDATE:
1516                         if (flags & ~flags_mask)
1517                                 return -EOPNOTSUPP;
1518                         if (prot & PROT_WRITE) {
1519                                 if (!(file->f_mode & FMODE_WRITE))
1520                                         return -EACCES;
1521                                 if (IS_SWAPFILE(file->f_mapping->host))
1522                                         return -ETXTBSY;
1523                         }
1524
1525                         /*
1526                          * Make sure we don't allow writing to an append-only
1527                          * file..
1528                          */
1529                         if (IS_APPEND(inode) && (file->f_mode & FMODE_WRITE))
1530                                 return -EACCES;
1531
1532                         /*
1533                          * Make sure there are no mandatory locks on the file.
1534                          */
1535                         if (locks_verify_locked(file))
1536                                 return -EAGAIN;
1537
1538                         vm_flags |= VM_SHARED | VM_MAYSHARE;
1539                         if (!(file->f_mode & FMODE_WRITE))
1540                                 vm_flags &= ~(VM_MAYWRITE | VM_SHARED);
1541                         fallthrough;
1542                 case MAP_PRIVATE:
1543                         if (!(file->f_mode & FMODE_READ))
1544                                 return -EACCES;
1545                         if (path_noexec(&file->f_path)) {
1546                                 if (vm_flags & VM_EXEC)
1547                                         return -EPERM;
1548                                 vm_flags &= ~VM_MAYEXEC;
1549                         }
1550
1551                         if (!file->f_op->mmap)
1552                                 return -ENODEV;
1553                         if (vm_flags & (VM_GROWSDOWN|VM_GROWSUP))
1554                                 return -EINVAL;
1555                         break;
1556
1557                 default:
1558                         return -EINVAL;
1559                 }
1560         } else {
1561                 switch (flags & MAP_TYPE) {
1562                 case MAP_SHARED:
1563                         if (vm_flags & (VM_GROWSDOWN|VM_GROWSUP))
1564                                 return -EINVAL;
1565                         /*
1566                          * Ignore pgoff.
1567                          */
1568                         pgoff = 0;
1569                         vm_flags |= VM_SHARED | VM_MAYSHARE;
1570                         break;
1571                 case MAP_PRIVATE:
1572                         /*
1573                          * Set pgoff according to addr for anon_vma.
1574                          */
1575                         pgoff = addr >> PAGE_SHIFT;
1576                         break;
1577                 default:
1578                         return -EINVAL;
1579                 }
1580         }
1581
1582         /*
1583          * Set 'VM_NORESERVE' if we should not account for the
1584          * memory use of this mapping.
1585          */
1586         if (flags & MAP_NORESERVE) {
1587                 /* We honor MAP_NORESERVE if allowed to overcommit */
1588                 if (sysctl_overcommit_memory != OVERCOMMIT_NEVER)
1589                         vm_flags |= VM_NORESERVE;
1590
1591                 /* hugetlb applies strict overcommit unless MAP_NORESERVE */
1592                 if (file && is_file_hugepages(file))
1593                         vm_flags |= VM_NORESERVE;
1594         }
1595
1596         addr = mmap_region(file, addr, len, vm_flags, pgoff, uf);
1597         if (!IS_ERR_VALUE(addr) &&
1598             ((vm_flags & VM_LOCKED) ||
1599              (flags & (MAP_POPULATE | MAP_NONBLOCK)) == MAP_POPULATE))
1600                 *populate = len;
1601         return addr;
1602 }
1603
1604 unsigned long ksys_mmap_pgoff(unsigned long addr, unsigned long len,
1605                               unsigned long prot, unsigned long flags,
1606                               unsigned long fd, unsigned long pgoff)
1607 {
1608         struct file *file = NULL;
1609         unsigned long retval;
1610
1611         if (!(flags & MAP_ANONYMOUS)) {
1612                 audit_mmap_fd(fd, flags);
1613                 file = fget(fd);
1614                 if (!file)
1615                         return -EBADF;
1616                 if (is_file_hugepages(file)) {
1617                         len = ALIGN(len, huge_page_size(hstate_file(file)));
1618                 } else if (unlikely(flags & MAP_HUGETLB)) {
1619                         retval = -EINVAL;
1620                         goto out_fput;
1621                 }
1622         } else if (flags & MAP_HUGETLB) {
1623                 struct user_struct *user = NULL;
1624                 struct hstate *hs;
1625
1626                 hs = hstate_sizelog((flags >> MAP_HUGE_SHIFT) & MAP_HUGE_MASK);
1627                 if (!hs)
1628                         return -EINVAL;
1629
1630                 len = ALIGN(len, huge_page_size(hs));
1631                 /*
1632                  * VM_NORESERVE is used because the reservations will be
1633                  * taken when vm_ops->mmap() is called
1634                  * A dummy user value is used because we are not locking
1635                  * memory so no accounting is necessary
1636                  */
1637                 file = hugetlb_file_setup(HUGETLB_ANON_FILE, len,
1638                                 VM_NORESERVE,
1639                                 &user, HUGETLB_ANONHUGE_INODE,
1640                                 (flags >> MAP_HUGE_SHIFT) & MAP_HUGE_MASK);
1641                 if (IS_ERR(file))
1642                         return PTR_ERR(file);
1643         }
1644
1645         flags &= ~(MAP_EXECUTABLE | MAP_DENYWRITE);
1646
1647         retval = vm_mmap_pgoff(file, addr, len, prot, flags, pgoff);
1648 out_fput:
1649         if (file)
1650                 fput(file);
1651         return retval;
1652 }
1653
1654 SYSCALL_DEFINE6(mmap_pgoff, unsigned long, addr, unsigned long, len,
1655                 unsigned long, prot, unsigned long, flags,
1656                 unsigned long, fd, unsigned long, pgoff)
1657 {
1658         return ksys_mmap_pgoff(addr, len, prot, flags, fd, pgoff);
1659 }
1660
1661 #ifdef __ARCH_WANT_SYS_OLD_MMAP
1662 struct mmap_arg_struct {
1663         unsigned long addr;
1664         unsigned long len;
1665         unsigned long prot;
1666         unsigned long flags;
1667         unsigned long fd;
1668         unsigned long offset;
1669 };
1670
1671 SYSCALL_DEFINE1(old_mmap, struct mmap_arg_struct __user *, arg)
1672 {
1673         struct mmap_arg_struct a;
1674
1675         if (copy_from_user(&a, arg, sizeof(a)))
1676                 return -EFAULT;
1677         if (offset_in_page(a.offset))
1678                 return -EINVAL;
1679
1680         return ksys_mmap_pgoff(a.addr, a.len, a.prot, a.flags, a.fd,
1681                                a.offset >> PAGE_SHIFT);
1682 }
1683 #endif /* __ARCH_WANT_SYS_OLD_MMAP */
1684
1685 /*
1686  * Some shared mappings will want the pages marked read-only
1687  * to track write events. If so, we'll downgrade vm_page_prot
1688  * to the private version (using protection_map[] without the
1689  * VM_SHARED bit).
1690  */
1691 int vma_wants_writenotify(struct vm_area_struct *vma, pgprot_t vm_page_prot)
1692 {
1693         vm_flags_t vm_flags = vma->vm_flags;
1694         const struct vm_operations_struct *vm_ops = vma->vm_ops;
1695
1696         /* If it was private or non-writable, the write bit is already clear */
1697         if ((vm_flags & (VM_WRITE|VM_SHARED)) != ((VM_WRITE|VM_SHARED)))
1698                 return 0;
1699
1700         /* The backer wishes to know when pages are first written to? */
1701         if (vm_ops && (vm_ops->page_mkwrite || vm_ops->pfn_mkwrite))
1702                 return 1;
1703
1704         /* The open routine did something to the protections that pgprot_modify
1705          * won't preserve? */
1706         if (pgprot_val(vm_page_prot) !=
1707             pgprot_val(vm_pgprot_modify(vm_page_prot, vm_flags)))
1708                 return 0;
1709
1710         /* Do we need to track softdirty? */
1711         if (IS_ENABLED(CONFIG_MEM_SOFT_DIRTY) && !(vm_flags & VM_SOFTDIRTY))
1712                 return 1;
1713
1714         /* Specialty mapping? */
1715         if (vm_flags & VM_PFNMAP)
1716                 return 0;
1717
1718         /* Can the mapping track the dirty pages? */
1719         return vma->vm_file && vma->vm_file->f_mapping &&
1720                 mapping_can_writeback(vma->vm_file->f_mapping);
1721 }
1722
1723 /*
1724  * We account for memory if it's a private writeable mapping,
1725  * not hugepages and VM_NORESERVE wasn't set.
1726  */
1727 static inline int accountable_mapping(struct file *file, vm_flags_t vm_flags)
1728 {
1729         /*
1730          * hugetlb has its own accounting separate from the core VM
1731          * VM_HUGETLB may not be set yet so we cannot check for that flag.
1732          */
1733         if (file && is_file_hugepages(file))
1734                 return 0;
1735
1736         return (vm_flags & (VM_NORESERVE | VM_SHARED | VM_WRITE)) == VM_WRITE;
1737 }
1738
1739 unsigned long mmap_region(struct file *file, unsigned long addr,
1740                 unsigned long len, vm_flags_t vm_flags, unsigned long pgoff,
1741                 struct list_head *uf)
1742 {
1743         struct mm_struct *mm = current->mm;
1744         struct vm_area_struct *vma, *prev, *merge;
1745         int error;
1746         struct rb_node **rb_link, *rb_parent;
1747         unsigned long charged = 0;
1748
1749         /* Check against address space limit. */
1750         if (!may_expand_vm(mm, vm_flags, len >> PAGE_SHIFT)) {
1751                 unsigned long nr_pages;
1752
1753                 /*
1754                  * MAP_FIXED may remove pages of mappings that intersects with
1755                  * requested mapping. Account for the pages it would unmap.
1756                  */
1757                 nr_pages = count_vma_pages_range(mm, addr, addr + len);
1758
1759                 if (!may_expand_vm(mm, vm_flags,
1760                                         (len >> PAGE_SHIFT) - nr_pages))
1761                         return -ENOMEM;
1762         }
1763
1764         /* Clear old maps, set up prev, rb_link, rb_parent, and uf */
1765         if (munmap_vma_range(mm, addr, len, &prev, &rb_link, &rb_parent, uf))
1766                 return -ENOMEM;
1767         /*
1768          * Private writable mapping: check memory availability
1769          */
1770         if (accountable_mapping(file, vm_flags)) {
1771                 charged = len >> PAGE_SHIFT;
1772                 if (security_vm_enough_memory_mm(mm, charged))
1773                         return -ENOMEM;
1774                 vm_flags |= VM_ACCOUNT;
1775         }
1776
1777         /*
1778          * Can we just expand an old mapping?
1779          */
1780         vma = vma_merge(mm, prev, addr, addr + len, vm_flags,
1781                         NULL, file, pgoff, NULL, NULL_VM_UFFD_CTX);
1782         if (vma)
1783                 goto out;
1784
1785         /*
1786          * Determine the object being mapped and call the appropriate
1787          * specific mapper. the address has already been validated, but
1788          * not unmapped, but the maps are removed from the list.
1789          */
1790         vma = vm_area_alloc(mm);
1791         if (!vma) {
1792                 error = -ENOMEM;
1793                 goto unacct_error;
1794         }
1795
1796         vma->vm_start = addr;
1797         vma->vm_end = addr + len;
1798         vma->vm_flags = vm_flags;
1799         vma->vm_page_prot = vm_get_page_prot(vm_flags);
1800         vma->vm_pgoff = pgoff;
1801
1802         if (file) {
1803                 if (vm_flags & VM_DENYWRITE) {
1804                         error = deny_write_access(file);
1805                         if (error)
1806                                 goto free_vma;
1807                 }
1808                 if (vm_flags & VM_SHARED) {
1809                         error = mapping_map_writable(file->f_mapping);
1810                         if (error)
1811                                 goto allow_write_and_free_vma;
1812                 }
1813
1814                 /* ->mmap() can change vma->vm_file, but must guarantee that
1815                  * vma_link() below can deny write-access if VM_DENYWRITE is set
1816                  * and map writably if VM_SHARED is set. This usually means the
1817                  * new file must not have been exposed to user-space, yet.
1818                  */
1819                 vma->vm_file = get_file(file);
1820                 error = call_mmap(file, vma);
1821                 if (error)
1822                         goto unmap_and_free_vma;
1823
1824                 /* Can addr have changed??
1825                  *
1826                  * Answer: Yes, several device drivers can do it in their
1827                  *         f_op->mmap method. -DaveM
1828                  * Bug: If addr is changed, prev, rb_link, rb_parent should
1829                  *      be updated for vma_link()
1830                  */
1831                 WARN_ON_ONCE(addr != vma->vm_start);
1832
1833                 addr = vma->vm_start;
1834
1835                 /* If vm_flags changed after call_mmap(), we should try merge vma again
1836                  * as we may succeed this time.
1837                  */
1838                 if (unlikely(vm_flags != vma->vm_flags && prev)) {
1839                         merge = vma_merge(mm, prev, vma->vm_start, vma->vm_end, vma->vm_flags,
1840                                 NULL, vma->vm_file, vma->vm_pgoff, NULL, NULL_VM_UFFD_CTX);
1841                         if (merge) {
1842                                 /* ->mmap() can change vma->vm_file and fput the original file. So
1843                                  * fput the vma->vm_file here or we would add an extra fput for file
1844                                  * and cause general protection fault ultimately.
1845                                  */
1846                                 fput(vma->vm_file);
1847                                 vm_area_free(vma);
1848                                 vma = merge;
1849                                 /* Update vm_flags to pick up the change. */
1850                                 vm_flags = vma->vm_flags;
1851                                 goto unmap_writable;
1852                         }
1853                 }
1854
1855                 vm_flags = vma->vm_flags;
1856         } else if (vm_flags & VM_SHARED) {
1857                 error = shmem_zero_setup(vma);
1858                 if (error)
1859                         goto free_vma;
1860         } else {
1861                 vma_set_anonymous(vma);
1862         }
1863
1864         /* Allow architectures to sanity-check the vm_flags */
1865         if (!arch_validate_flags(vma->vm_flags)) {
1866                 error = -EINVAL;
1867                 if (file)
1868                         goto unmap_and_free_vma;
1869                 else
1870                         goto free_vma;
1871         }
1872
1873         vma_link(mm, vma, prev, rb_link, rb_parent);
1874         /* Once vma denies write, undo our temporary denial count */
1875         if (file) {
1876 unmap_writable:
1877                 if (vm_flags & VM_SHARED)
1878                         mapping_unmap_writable(file->f_mapping);
1879                 if (vm_flags & VM_DENYWRITE)
1880                         allow_write_access(file);
1881         }
1882         file = vma->vm_file;
1883         if (file && (vm_flags & VM_DENYWRITE))
1884                 /* read-only file pages */
1885                 khugepaged_mem_hook(mm, addr, len, __func__);
1886         else if (!file && !vma->vm_ops)
1887                 /* anonymous pages */
1888                 khugepaged_mem_hook(mm, addr, len, __func__);
1889 out:
1890         perf_event_mmap(vma);
1891
1892         vm_stat_account(mm, vm_flags, len >> PAGE_SHIFT);
1893         if (vm_flags & VM_LOCKED) {
1894                 if ((vm_flags & VM_SPECIAL) || vma_is_dax(vma) ||
1895                                         is_vm_hugetlb_page(vma) ||
1896                                         vma == get_gate_vma(current->mm))
1897                         vma->vm_flags &= VM_LOCKED_CLEAR_MASK;
1898                 else
1899                         mm->locked_vm += (len >> PAGE_SHIFT);
1900         }
1901
1902         if (file)
1903                 uprobe_mmap(vma);
1904
1905         /*
1906          * New (or expanded) vma always get soft dirty status.
1907          * Otherwise user-space soft-dirty page tracker won't
1908          * be able to distinguish situation when vma area unmapped,
1909          * then new mapped in-place (which must be aimed as
1910          * a completely new data area).
1911          */
1912         vma->vm_flags |= VM_SOFTDIRTY;
1913
1914         vma_set_page_prot(vma);
1915
1916         return addr;
1917
1918 unmap_and_free_vma:
1919         vma->vm_file = NULL;
1920         fput(file);
1921
1922         /* Undo any partial mapping done by a device driver. */
1923         unmap_region(mm, vma, prev, vma->vm_start, vma->vm_end);
1924         charged = 0;
1925         if (vm_flags & VM_SHARED)
1926                 mapping_unmap_writable(file->f_mapping);
1927 allow_write_and_free_vma:
1928         if (vm_flags & VM_DENYWRITE)
1929                 allow_write_access(file);
1930 free_vma:
1931         vm_area_free(vma);
1932 unacct_error:
1933         if (charged)
1934                 vm_unacct_memory(charged);
1935         return error;
1936 }
1937
1938 static unsigned long unmapped_area(struct vm_unmapped_area_info *info)
1939 {
1940         /*
1941          * We implement the search by looking for an rbtree node that
1942          * immediately follows a suitable gap. That is,
1943          * - gap_start = vma->vm_prev->vm_end <= info->high_limit - length;
1944          * - gap_end   = vma->vm_start        >= info->low_limit  + length;
1945          * - gap_end - gap_start >= length
1946          */
1947
1948         struct mm_struct *mm = current->mm;
1949         struct vm_area_struct *vma;
1950         unsigned long length, low_limit, high_limit, gap_start, gap_end;
1951
1952         /* Adjust search length to account for worst case alignment overhead */
1953         length = info->length + info->align_mask;
1954         if (length < info->length)
1955                 return -ENOMEM;
1956
1957         /* Adjust search limits by the desired length */
1958         if (info->high_limit < length)
1959                 return -ENOMEM;
1960         high_limit = info->high_limit - length;
1961
1962         if (info->low_limit > high_limit)
1963                 return -ENOMEM;
1964         low_limit = info->low_limit + length;
1965
1966         /* Check if rbtree root looks promising */
1967         if (RB_EMPTY_ROOT(&mm->mm_rb))
1968                 goto check_highest;
1969         vma = rb_entry(mm->mm_rb.rb_node, struct vm_area_struct, vm_rb);
1970         if (vma->rb_subtree_gap < length)
1971                 goto check_highest;
1972
1973         while (true) {
1974                 /* Visit left subtree if it looks promising */
1975                 gap_end = vm_start_gap(vma);
1976                 if (gap_end >= low_limit && vma->vm_rb.rb_left) {
1977                         struct vm_area_struct *left =
1978                                 rb_entry(vma->vm_rb.rb_left,
1979                                          struct vm_area_struct, vm_rb);
1980                         if (left->rb_subtree_gap >= length) {
1981                                 vma = left;
1982                                 continue;
1983                         }
1984                 }
1985
1986                 gap_start = vma->vm_prev ? vm_end_gap(vma->vm_prev) : 0;
1987 check_current:
1988                 /* Check if current node has a suitable gap */
1989                 if (gap_start > high_limit)
1990                         return -ENOMEM;
1991                 if (gap_end >= low_limit &&
1992                     gap_end > gap_start && gap_end - gap_start >= length)
1993                         goto found;
1994
1995                 /* Visit right subtree if it looks promising */
1996                 if (vma->vm_rb.rb_right) {
1997                         struct vm_area_struct *right =
1998                                 rb_entry(vma->vm_rb.rb_right,
1999                                          struct vm_area_struct, vm_rb);
2000                         if (right->rb_subtree_gap >= length) {
2001                                 vma = right;
2002                                 continue;
2003                         }
2004                 }
2005
2006                 /* Go back up the rbtree to find next candidate node */
2007                 while (true) {
2008                         struct rb_node *prev = &vma->vm_rb;
2009                         if (!rb_parent(prev))
2010                                 goto check_highest;
2011                         vma = rb_entry(rb_parent(prev),
2012                                        struct vm_area_struct, vm_rb);
2013                         if (prev == vma->vm_rb.rb_left) {
2014                                 gap_start = vm_end_gap(vma->vm_prev);
2015                                 gap_end = vm_start_gap(vma);
2016                                 goto check_current;
2017                         }
2018                 }
2019         }
2020
2021 check_highest:
2022         /* Check highest gap, which does not precede any rbtree node */
2023         gap_start = mm->highest_vm_end;
2024         gap_end = ULONG_MAX;  /* Only for VM_BUG_ON below */
2025         if (gap_start > high_limit)
2026                 return -ENOMEM;
2027
2028 found:
2029         /* We found a suitable gap. Clip it with the original low_limit. */
2030         if (gap_start < info->low_limit)
2031                 gap_start = info->low_limit;
2032
2033         /* Adjust gap address to the desired alignment */
2034         gap_start += (info->align_offset - gap_start) & info->align_mask;
2035
2036         VM_BUG_ON(gap_start + info->length > info->high_limit);
2037         VM_BUG_ON(gap_start + info->length > gap_end);
2038         return gap_start;
2039 }
2040
2041 static unsigned long unmapped_area_topdown(struct vm_unmapped_area_info *info)
2042 {
2043         struct mm_struct *mm = current->mm;
2044         struct vm_area_struct *vma;
2045         unsigned long length, low_limit, high_limit, gap_start, gap_end;
2046
2047         /* Adjust search length to account for worst case alignment overhead */
2048         length = info->length + info->align_mask;
2049         if (length < info->length)
2050                 return -ENOMEM;
2051
2052         /*
2053          * Adjust search limits by the desired length.
2054          * See implementation comment at top of unmapped_area().
2055          */
2056         gap_end = info->high_limit;
2057         if (gap_end < length)
2058                 return -ENOMEM;
2059         high_limit = gap_end - length;
2060
2061         if (info->low_limit > high_limit)
2062                 return -ENOMEM;
2063         low_limit = info->low_limit + length;
2064
2065         /* Check highest gap, which does not precede any rbtree node */
2066         gap_start = mm->highest_vm_end;
2067         if (gap_start <= high_limit)
2068                 goto found_highest;
2069
2070         /* Check if rbtree root looks promising */
2071         if (RB_EMPTY_ROOT(&mm->mm_rb))
2072                 return -ENOMEM;
2073         vma = rb_entry(mm->mm_rb.rb_node, struct vm_area_struct, vm_rb);
2074         if (vma->rb_subtree_gap < length)
2075                 return -ENOMEM;
2076
2077         while (true) {
2078                 /* Visit right subtree if it looks promising */
2079                 gap_start = vma->vm_prev ? vm_end_gap(vma->vm_prev) : 0;
2080                 if (gap_start <= high_limit && vma->vm_rb.rb_right) {
2081                         struct vm_area_struct *right =
2082                                 rb_entry(vma->vm_rb.rb_right,
2083                                          struct vm_area_struct, vm_rb);
2084                         if (right->rb_subtree_gap >= length) {
2085                                 vma = right;
2086                                 continue;
2087                         }
2088                 }
2089
2090 check_current:
2091                 /* Check if current node has a suitable gap */
2092                 gap_end = vm_start_gap(vma);
2093                 if (gap_end < low_limit)
2094                         return -ENOMEM;
2095                 if (gap_start <= high_limit &&
2096                     gap_end > gap_start && gap_end - gap_start >= length)
2097                         goto found;
2098
2099                 /* Visit left subtree if it looks promising */
2100                 if (vma->vm_rb.rb_left) {
2101                         struct vm_area_struct *left =
2102                                 rb_entry(vma->vm_rb.rb_left,
2103                                          struct vm_area_struct, vm_rb);
2104                         if (left->rb_subtree_gap >= length) {
2105                                 vma = left;
2106                                 continue;
2107                         }
2108                 }
2109
2110                 /* Go back up the rbtree to find next candidate node */
2111                 while (true) {
2112                         struct rb_node *prev = &vma->vm_rb;
2113                         if (!rb_parent(prev))
2114                                 return -ENOMEM;
2115                         vma = rb_entry(rb_parent(prev),
2116                                        struct vm_area_struct, vm_rb);
2117                         if (prev == vma->vm_rb.rb_right) {
2118                                 gap_start = vma->vm_prev ?
2119                                         vm_end_gap(vma->vm_prev) : 0;
2120                                 goto check_current;
2121                         }
2122                 }
2123         }
2124
2125 found:
2126         /* We found a suitable gap. Clip it with the original high_limit. */
2127         if (gap_end > info->high_limit)
2128                 gap_end = info->high_limit;
2129
2130 found_highest:
2131         /* Compute highest gap address at the desired alignment */
2132         gap_end -= info->length;
2133         gap_end -= (gap_end - info->align_offset) & info->align_mask;
2134
2135         VM_BUG_ON(gap_end < info->low_limit);
2136         VM_BUG_ON(gap_end < gap_start);
2137         return gap_end;
2138 }
2139
2140 /*
2141  * Search for an unmapped address range.
2142  *
2143  * We are looking for a range that:
2144  * - does not intersect with any VMA;
2145  * - is contained within the [low_limit, high_limit) interval;
2146  * - is at least the desired size.
2147  * - satisfies (begin_addr & align_mask) == (align_offset & align_mask)
2148  */
2149 unsigned long vm_unmapped_area(struct vm_unmapped_area_info *info)
2150 {
2151         unsigned long addr;
2152
2153         if (info->flags & VM_UNMAPPED_AREA_TOPDOWN)
2154                 addr = unmapped_area_topdown(info);
2155         else
2156                 addr = unmapped_area(info);
2157
2158         trace_vm_unmapped_area(addr, info);
2159         return addr;
2160 }
2161
2162 #ifndef arch_get_mmap_end
2163 #define arch_get_mmap_end(addr) (TASK_SIZE)
2164 #endif
2165
2166 #ifndef arch_get_mmap_base
2167 #define arch_get_mmap_base(addr, base) (base)
2168 #endif
2169
2170 /* Get an address range which is currently unmapped.
2171  * For shmat() with addr=0.
2172  *
2173  * Ugly calling convention alert:
2174  * Return value with the low bits set means error value,
2175  * ie
2176  *      if (ret & ~PAGE_MASK)
2177  *              error = ret;
2178  *
2179  * This function "knows" that -ENOMEM has the bits set.
2180  */
2181 #ifndef HAVE_ARCH_UNMAPPED_AREA
2182 unsigned long
2183 arch_get_unmapped_area(struct file *filp, unsigned long addr,
2184                 unsigned long len, unsigned long pgoff, unsigned long flags)
2185 {
2186         struct mm_struct *mm = current->mm;
2187         struct vm_area_struct *vma, *prev;
2188         struct vm_unmapped_area_info info;
2189         const unsigned long mmap_end = arch_get_mmap_end(addr);
2190
2191         if (len > mmap_end - mmap_min_addr)
2192                 return -ENOMEM;
2193
2194         if (flags & MAP_FIXED)
2195                 return addr;
2196
2197         if (addr) {
2198                 addr = PAGE_ALIGN(addr);
2199                 vma = find_vma_prev(mm, addr, &prev);
2200                 if (mmap_end - len >= addr && addr >= mmap_min_addr &&
2201                     (!vma || addr + len <= vm_start_gap(vma)) &&
2202                     (!prev || addr >= vm_end_gap(prev)))
2203                         return addr;
2204         }
2205
2206         info.flags = 0;
2207         info.length = len;
2208         info.low_limit = mm->mmap_base;
2209         info.high_limit = mmap_end;
2210         info.align_mask = 0;
2211         info.align_offset = 0;
2212
2213 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
2214         if (!addr && len >= HPAGE_PMD_SIZE) {
2215                 info.align_mask = HPAGE_PMD_SIZE - 1;
2216                 info.align_offset = HPAGE_PMD_SIZE;
2217 #ifdef CONFIG_FINEGRAINED_THP
2218         } else if (!addr && len >= HPAGE_CONT_PTE_SIZE) {
2219                 info.align_mask = HPAGE_CONT_PTE_SIZE - 1;
2220                 info.align_offset = HPAGE_CONT_PTE_SIZE;
2221 #endif
2222         }
2223 #endif
2224
2225         return vm_unmapped_area(&info);
2226 }
2227 #endif
2228
2229 /*
2230  * This mmap-allocator allocates new areas top-down from below the
2231  * stack's low limit (the base):
2232  */
2233 #ifndef HAVE_ARCH_UNMAPPED_AREA_TOPDOWN
2234 unsigned long
2235 arch_get_unmapped_area_topdown(struct file *filp, unsigned long addr,
2236                           unsigned long len, unsigned long pgoff,
2237                           unsigned long flags)
2238 {
2239         struct vm_area_struct *vma, *prev;
2240         struct mm_struct *mm = current->mm;
2241         struct vm_unmapped_area_info info;
2242         const unsigned long mmap_end = arch_get_mmap_end(addr);
2243
2244         /* requested length too big for entire address space */
2245         if (len > mmap_end - mmap_min_addr)
2246                 return -ENOMEM;
2247
2248         if (flags & MAP_FIXED)
2249                 return addr;
2250
2251         /* requesting a specific address */
2252         if (addr) {
2253                 addr = PAGE_ALIGN(addr);
2254                 vma = find_vma_prev(mm, addr, &prev);
2255                 if (mmap_end - len >= addr && addr >= mmap_min_addr &&
2256                                 (!vma || addr + len <= vm_start_gap(vma)) &&
2257                                 (!prev || addr >= vm_end_gap(prev)))
2258                         return addr;
2259         }
2260
2261         info.flags = VM_UNMAPPED_AREA_TOPDOWN;
2262         info.length = len;
2263         info.low_limit = max(PAGE_SIZE, mmap_min_addr);
2264         info.high_limit = arch_get_mmap_base(addr, mm->mmap_base);
2265         info.align_mask = 0;
2266         info.align_offset = 0;
2267
2268 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
2269         if (!addr && len >= HPAGE_PMD_SIZE) {
2270                 info.align_mask = HPAGE_PMD_SIZE - 1;
2271                 info.align_offset = HPAGE_PMD_SIZE;
2272 #ifdef CONFIG_FINEGRAINED_THP
2273         } else if (!addr && len >= HPAGE_CONT_PTE_SIZE) {
2274                 info.align_mask = HPAGE_CONT_PTE_SIZE - 1;
2275                 info.align_offset = HPAGE_CONT_PTE_SIZE;
2276 #endif
2277         }
2278 #endif
2279
2280         addr = vm_unmapped_area(&info);
2281
2282         /*
2283          * A failed mmap() very likely causes application failure,
2284          * so fall back to the bottom-up function here. This scenario
2285          * can happen with large stack limits and large mmap()
2286          * allocations.
2287          */
2288         if (offset_in_page(addr)) {
2289                 VM_BUG_ON(addr != -ENOMEM);
2290                 info.flags = 0;
2291                 info.low_limit = TASK_UNMAPPED_BASE;
2292                 info.high_limit = mmap_end;
2293                 addr = vm_unmapped_area(&info);
2294         }
2295
2296         return addr;
2297 }
2298 #endif
2299
2300 unsigned long
2301 get_unmapped_area(struct file *file, unsigned long addr, unsigned long len,
2302                 unsigned long pgoff, unsigned long flags)
2303 {
2304         unsigned long (*get_area)(struct file *, unsigned long,
2305                                   unsigned long, unsigned long, unsigned long);
2306
2307         unsigned long error = arch_mmap_check(addr, len, flags);
2308         if (error)
2309                 return error;
2310
2311         /* Careful about overflows.. */
2312         if (len > TASK_SIZE)
2313                 return -ENOMEM;
2314
2315         get_area = current->mm->get_unmapped_area;
2316         if (file) {
2317                 if (file->f_op->get_unmapped_area)
2318                         get_area = file->f_op->get_unmapped_area;
2319         } else if (flags & MAP_SHARED) {
2320                 /*
2321                  * mmap_region() will call shmem_zero_setup() to create a file,
2322                  * so use shmem's get_unmapped_area in case it can be huge.
2323                  * do_mmap() will clear pgoff, so match alignment.
2324                  */
2325                 pgoff = 0;
2326                 get_area = shmem_get_unmapped_area;
2327         }
2328
2329         addr = get_area(file, addr, len, pgoff, flags);
2330         if (IS_ERR_VALUE(addr))
2331                 return addr;
2332
2333         if (addr > TASK_SIZE - len)
2334                 return -ENOMEM;
2335         if (offset_in_page(addr))
2336                 return -EINVAL;
2337
2338         error = security_mmap_addr(addr);
2339         return error ? error : addr;
2340 }
2341
2342 EXPORT_SYMBOL(get_unmapped_area);
2343
2344 /* Look up the first VMA which satisfies  addr < vm_end,  NULL if none. */
2345 struct vm_area_struct *find_vma(struct mm_struct *mm, unsigned long addr)
2346 {
2347         struct rb_node *rb_node;
2348         struct vm_area_struct *vma;
2349
2350         /* Check the cache first. */
2351         vma = vmacache_find(mm, addr);
2352         if (likely(vma))
2353                 return vma;
2354
2355         rb_node = mm->mm_rb.rb_node;
2356
2357         while (rb_node) {
2358                 struct vm_area_struct *tmp;
2359
2360                 tmp = rb_entry(rb_node, struct vm_area_struct, vm_rb);
2361
2362                 if (tmp->vm_end > addr) {
2363                         vma = tmp;
2364                         if (tmp->vm_start <= addr)
2365                                 break;
2366                         rb_node = rb_node->rb_left;
2367                 } else
2368                         rb_node = rb_node->rb_right;
2369         }
2370
2371         if (vma)
2372                 vmacache_update(addr, vma);
2373         return vma;
2374 }
2375
2376 EXPORT_SYMBOL(find_vma);
2377
2378 /*
2379  * Same as find_vma, but also return a pointer to the previous VMA in *pprev.
2380  */
2381 struct vm_area_struct *
2382 find_vma_prev(struct mm_struct *mm, unsigned long addr,
2383                         struct vm_area_struct **pprev)
2384 {
2385         struct vm_area_struct *vma;
2386
2387         vma = find_vma(mm, addr);
2388         if (vma) {
2389                 *pprev = vma->vm_prev;
2390         } else {
2391                 struct rb_node *rb_node = rb_last(&mm->mm_rb);
2392
2393                 *pprev = rb_node ? rb_entry(rb_node, struct vm_area_struct, vm_rb) : NULL;
2394         }
2395         return vma;
2396 }
2397
2398 /*
2399  * Verify that the stack growth is acceptable and
2400  * update accounting. This is shared with both the
2401  * grow-up and grow-down cases.
2402  */
2403 static int acct_stack_growth(struct vm_area_struct *vma,
2404                              unsigned long size, unsigned long grow)
2405 {
2406         struct mm_struct *mm = vma->vm_mm;
2407         unsigned long new_start;
2408
2409         /* address space limit tests */
2410         if (!may_expand_vm(mm, vma->vm_flags, grow))
2411                 return -ENOMEM;
2412
2413         /* Stack limit test */
2414         if (size > rlimit(RLIMIT_STACK))
2415                 return -ENOMEM;
2416
2417         /* mlock limit tests */
2418         if (vma->vm_flags & VM_LOCKED) {
2419                 unsigned long locked;
2420                 unsigned long limit;
2421                 locked = mm->locked_vm + grow;
2422                 limit = rlimit(RLIMIT_MEMLOCK);
2423                 limit >>= PAGE_SHIFT;
2424                 if (locked > limit && !capable(CAP_IPC_LOCK))
2425                         return -ENOMEM;
2426         }
2427
2428         /* Check to ensure the stack will not grow into a hugetlb-only region */
2429         new_start = (vma->vm_flags & VM_GROWSUP) ? vma->vm_start :
2430                         vma->vm_end - size;
2431         if (is_hugepage_only_range(vma->vm_mm, new_start, size))
2432                 return -EFAULT;
2433
2434         /*
2435          * Overcommit..  This must be the final test, as it will
2436          * update security statistics.
2437          */
2438         if (security_vm_enough_memory_mm(mm, grow))
2439                 return -ENOMEM;
2440
2441         return 0;
2442 }
2443
2444 #if defined(CONFIG_STACK_GROWSUP) || defined(CONFIG_IA64)
2445 /*
2446  * PA-RISC uses this for its stack; IA64 for its Register Backing Store.
2447  * vma is the last one with address > vma->vm_end.  Have to extend vma.
2448  */
2449 int expand_upwards(struct vm_area_struct *vma, unsigned long address)
2450 {
2451         struct mm_struct *mm = vma->vm_mm;
2452         struct vm_area_struct *next;
2453         unsigned long gap_addr;
2454         int error = 0;
2455
2456         if (!(vma->vm_flags & VM_GROWSUP))
2457                 return -EFAULT;
2458
2459         /* Guard against exceeding limits of the address space. */
2460         address &= PAGE_MASK;
2461         if (address >= (TASK_SIZE & PAGE_MASK))
2462                 return -ENOMEM;
2463         address += PAGE_SIZE;
2464
2465         /* Enforce stack_guard_gap */
2466         gap_addr = address + stack_guard_gap;
2467
2468         /* Guard against overflow */
2469         if (gap_addr < address || gap_addr > TASK_SIZE)
2470                 gap_addr = TASK_SIZE;
2471
2472         next = vma->vm_next;
2473         if (next && next->vm_start < gap_addr && vma_is_accessible(next)) {
2474                 if (!(next->vm_flags & VM_GROWSUP))
2475                         return -ENOMEM;
2476                 /* Check that both stack segments have the same anon_vma? */
2477         }
2478
2479         /* We must make sure the anon_vma is allocated. */
2480         if (unlikely(anon_vma_prepare(vma)))
2481                 return -ENOMEM;
2482
2483         /*
2484          * vma->vm_start/vm_end cannot change under us because the caller
2485          * is required to hold the mmap_lock in read mode.  We need the
2486          * anon_vma lock to serialize against concurrent expand_stacks.
2487          */
2488         anon_vma_lock_write(vma->anon_vma);
2489
2490         /* Somebody else might have raced and expanded it already */
2491         if (address > vma->vm_end) {
2492                 unsigned long size, grow;
2493
2494                 size = address - vma->vm_start;
2495                 grow = (address - vma->vm_end) >> PAGE_SHIFT;
2496
2497                 error = -ENOMEM;
2498                 if (vma->vm_pgoff + (size >> PAGE_SHIFT) >= vma->vm_pgoff) {
2499                         error = acct_stack_growth(vma, size, grow);
2500                         if (!error) {
2501                                 /*
2502                                  * vma_gap_update() doesn't support concurrent
2503                                  * updates, but we only hold a shared mmap_lock
2504                                  * lock here, so we need to protect against
2505                                  * concurrent vma expansions.
2506                                  * anon_vma_lock_write() doesn't help here, as
2507                                  * we don't guarantee that all growable vmas
2508                                  * in a mm share the same root anon vma.
2509                                  * So, we reuse mm->page_table_lock to guard
2510                                  * against concurrent vma expansions.
2511                                  */
2512                                 spin_lock(&mm->page_table_lock);
2513                                 if (vma->vm_flags & VM_LOCKED)
2514                                         mm->locked_vm += grow;
2515                                 vm_stat_account(mm, vma->vm_flags, grow);
2516                                 anon_vma_interval_tree_pre_update_vma(vma);
2517                                 vma->vm_end = address;
2518                                 anon_vma_interval_tree_post_update_vma(vma);
2519                                 if (vma->vm_next)
2520                                         vma_gap_update(vma->vm_next);
2521                                 else
2522                                         mm->highest_vm_end = vm_end_gap(vma);
2523                                 spin_unlock(&mm->page_table_lock);
2524
2525                                 perf_event_mmap(vma);
2526                         }
2527                 }
2528         }
2529         anon_vma_unlock_write(vma->anon_vma);
2530         khugepaged_enter_vma_merge(vma, vma->vm_flags);
2531         validate_mm(mm);
2532         return error;
2533 }
2534 #endif /* CONFIG_STACK_GROWSUP || CONFIG_IA64 */
2535
2536 /*
2537  * vma is the first one with address < vma->vm_start.  Have to extend vma.
2538  */
2539 int expand_downwards(struct vm_area_struct *vma,
2540                                    unsigned long address)
2541 {
2542         struct mm_struct *mm = vma->vm_mm;
2543         struct vm_area_struct *prev;
2544         int error = 0;
2545
2546         address &= PAGE_MASK;
2547         if (address < mmap_min_addr)
2548                 return -EPERM;
2549
2550         /* Enforce stack_guard_gap */
2551         prev = vma->vm_prev;
2552         /* Check that both stack segments have the same anon_vma? */
2553         if (prev && !(prev->vm_flags & VM_GROWSDOWN) &&
2554                         vma_is_accessible(prev)) {
2555                 if (address - prev->vm_end < stack_guard_gap)
2556                         return -ENOMEM;
2557         }
2558
2559         /* We must make sure the anon_vma is allocated. */
2560         if (unlikely(anon_vma_prepare(vma)))
2561                 return -ENOMEM;
2562
2563         /*
2564          * vma->vm_start/vm_end cannot change under us because the caller
2565          * is required to hold the mmap_lock in read mode.  We need the
2566          * anon_vma lock to serialize against concurrent expand_stacks.
2567          */
2568         anon_vma_lock_write(vma->anon_vma);
2569
2570         /* Somebody else might have raced and expanded it already */
2571         if (address < vma->vm_start) {
2572                 unsigned long size, grow;
2573
2574                 size = vma->vm_end - address;
2575                 grow = (vma->vm_start - address) >> PAGE_SHIFT;
2576
2577                 error = -ENOMEM;
2578                 if (grow <= vma->vm_pgoff) {
2579                         error = acct_stack_growth(vma, size, grow);
2580                         if (!error) {
2581                                 /*
2582                                  * vma_gap_update() doesn't support concurrent
2583                                  * updates, but we only hold a shared mmap_lock
2584                                  * lock here, so we need to protect against
2585                                  * concurrent vma expansions.
2586                                  * anon_vma_lock_write() doesn't help here, as
2587                                  * we don't guarantee that all growable vmas
2588                                  * in a mm share the same root anon vma.
2589                                  * So, we reuse mm->page_table_lock to guard
2590                                  * against concurrent vma expansions.
2591                                  */
2592                                 spin_lock(&mm->page_table_lock);
2593                                 if (vma->vm_flags & VM_LOCKED)
2594                                         mm->locked_vm += grow;
2595                                 vm_stat_account(mm, vma->vm_flags, grow);
2596                                 anon_vma_interval_tree_pre_update_vma(vma);
2597                                 vma->vm_start = address;
2598                                 vma->vm_pgoff -= grow;
2599                                 anon_vma_interval_tree_post_update_vma(vma);
2600                                 vma_gap_update(vma);
2601                                 spin_unlock(&mm->page_table_lock);
2602
2603                                 perf_event_mmap(vma);
2604                         }
2605                 }
2606         }
2607         anon_vma_unlock_write(vma->anon_vma);
2608         khugepaged_enter_vma_merge(vma, vma->vm_flags);
2609         validate_mm(mm);
2610         return error;
2611 }
2612
2613 /* enforced gap between the expanding stack and other mappings. */
2614 unsigned long stack_guard_gap = 256UL<<PAGE_SHIFT;
2615
2616 static int __init cmdline_parse_stack_guard_gap(char *p)
2617 {
2618         unsigned long val;
2619         char *endptr;
2620
2621         val = simple_strtoul(p, &endptr, 10);
2622         if (!*endptr)
2623                 stack_guard_gap = val << PAGE_SHIFT;
2624
2625         return 0;
2626 }
2627 __setup("stack_guard_gap=", cmdline_parse_stack_guard_gap);
2628
2629 #ifdef CONFIG_STACK_GROWSUP
2630 int expand_stack(struct vm_area_struct *vma, unsigned long address)
2631 {
2632         return expand_upwards(vma, address);
2633 }
2634
2635 struct vm_area_struct *
2636 find_extend_vma(struct mm_struct *mm, unsigned long addr)
2637 {
2638         struct vm_area_struct *vma, *prev;
2639
2640         addr &= PAGE_MASK;
2641         vma = find_vma_prev(mm, addr, &prev);
2642         if (vma && (vma->vm_start <= addr))
2643                 return vma;
2644         /* don't alter vm_end if the coredump is running */
2645         if (!prev || expand_stack(prev, addr))
2646                 return NULL;
2647         if (prev->vm_flags & VM_LOCKED)
2648                 populate_vma_page_range(prev, addr, prev->vm_end, NULL);
2649         return prev;
2650 }
2651 #else
2652 int expand_stack(struct vm_area_struct *vma, unsigned long address)
2653 {
2654         return expand_downwards(vma, address);
2655 }
2656
2657 struct vm_area_struct *
2658 find_extend_vma(struct mm_struct *mm, unsigned long addr)
2659 {
2660         struct vm_area_struct *vma;
2661         unsigned long start;
2662
2663         addr &= PAGE_MASK;
2664         vma = find_vma(mm, addr);
2665         if (!vma)
2666                 return NULL;
2667         if (vma->vm_start <= addr)
2668                 return vma;
2669         if (!(vma->vm_flags & VM_GROWSDOWN))
2670                 return NULL;
2671         start = vma->vm_start;
2672         if (expand_stack(vma, addr))
2673                 return NULL;
2674         if (vma->vm_flags & VM_LOCKED)
2675                 populate_vma_page_range(vma, addr, start, NULL);
2676         return vma;
2677 }
2678 #endif
2679
2680 EXPORT_SYMBOL_GPL(find_extend_vma);
2681
2682 /*
2683  * Ok - we have the memory areas we should free on the vma list,
2684  * so release them, and do the vma updates.
2685  *
2686  * Called with the mm semaphore held.
2687  */
2688 static void remove_vma_list(struct mm_struct *mm, struct vm_area_struct *vma)
2689 {
2690         unsigned long nr_accounted = 0;
2691
2692         /* Update high watermark before we lower total_vm */
2693         update_hiwater_vm(mm);
2694         do {
2695                 long nrpages = vma_pages(vma);
2696
2697                 if (vma->vm_flags & VM_ACCOUNT)
2698                         nr_accounted += nrpages;
2699                 vm_stat_account(mm, vma->vm_flags, -nrpages);
2700                 vma = remove_vma(vma);
2701         } while (vma);
2702         vm_unacct_memory(nr_accounted);
2703         validate_mm(mm);
2704 }
2705
2706 /*
2707  * Get rid of page table information in the indicated region.
2708  *
2709  * Called with the mm semaphore held.
2710  */
2711 static void unmap_region(struct mm_struct *mm,
2712                 struct vm_area_struct *vma, struct vm_area_struct *prev,
2713                 unsigned long start, unsigned long end)
2714 {
2715         struct vm_area_struct *next = vma_next(mm, prev);
2716         struct mmu_gather tlb;
2717
2718         lru_add_drain();
2719         tlb_gather_mmu(&tlb, mm, start, end);
2720         update_hiwater_rss(mm);
2721         unmap_vmas(&tlb, vma, start, end);
2722         free_pgtables(&tlb, vma, prev ? prev->vm_end : FIRST_USER_ADDRESS,
2723                                  next ? next->vm_start : USER_PGTABLES_CEILING);
2724         tlb_finish_mmu(&tlb, start, end);
2725 }
2726
2727 /*
2728  * Create a list of vma's touched by the unmap, removing them from the mm's
2729  * vma list as we go..
2730  */
2731 static bool
2732 detach_vmas_to_be_unmapped(struct mm_struct *mm, struct vm_area_struct *vma,
2733         struct vm_area_struct *prev, unsigned long end)
2734 {
2735         struct vm_area_struct **insertion_point;
2736         struct vm_area_struct *tail_vma = NULL;
2737
2738         insertion_point = (prev ? &prev->vm_next : &mm->mmap);
2739         vma->vm_prev = NULL;
2740         do {
2741                 vma_rb_erase(vma, &mm->mm_rb);
2742                 mm->map_count--;
2743                 tail_vma = vma;
2744                 vma = vma->vm_next;
2745         } while (vma && vma->vm_start < end);
2746         *insertion_point = vma;
2747         if (vma) {
2748                 vma->vm_prev = prev;
2749                 vma_gap_update(vma);
2750         } else
2751                 mm->highest_vm_end = prev ? vm_end_gap(prev) : 0;
2752         tail_vma->vm_next = NULL;
2753
2754         /* Kill the cache */
2755         vmacache_invalidate(mm);
2756
2757         /*
2758          * Do not downgrade mmap_lock if we are next to VM_GROWSDOWN or
2759          * VM_GROWSUP VMA. Such VMAs can change their size under
2760          * down_read(mmap_lock) and collide with the VMA we are about to unmap.
2761          */
2762         if (vma && (vma->vm_flags & VM_GROWSDOWN))
2763                 return false;
2764         if (prev && (prev->vm_flags & VM_GROWSUP))
2765                 return false;
2766         return true;
2767 }
2768
2769 /*
2770  * __split_vma() bypasses sysctl_max_map_count checking.  We use this where it
2771  * has already been checked or doesn't make sense to fail.
2772  */
2773 int __split_vma(struct mm_struct *mm, struct vm_area_struct *vma,
2774                 unsigned long addr, int new_below)
2775 {
2776         struct vm_area_struct *new;
2777         int err;
2778
2779         if (vma->vm_ops && vma->vm_ops->split) {
2780                 err = vma->vm_ops->split(vma, addr);
2781                 if (err)
2782                         return err;
2783         }
2784
2785         new = vm_area_dup(vma);
2786         if (!new)
2787                 return -ENOMEM;
2788
2789         if (new_below)
2790                 new->vm_end = addr;
2791         else {
2792                 new->vm_start = addr;
2793                 new->vm_pgoff += ((addr - vma->vm_start) >> PAGE_SHIFT);
2794         }
2795
2796         err = vma_dup_policy(vma, new);
2797         if (err)
2798                 goto out_free_vma;
2799
2800         err = anon_vma_clone(new, vma);
2801         if (err)
2802                 goto out_free_mpol;
2803
2804         if (new->vm_file)
2805                 get_file(new->vm_file);
2806
2807         if (new->vm_ops && new->vm_ops->open)
2808                 new->vm_ops->open(new);
2809
2810         if (new_below)
2811                 err = vma_adjust(vma, addr, vma->vm_end, vma->vm_pgoff +
2812                         ((addr - new->vm_start) >> PAGE_SHIFT), new);
2813         else
2814                 err = vma_adjust(vma, vma->vm_start, addr, vma->vm_pgoff, new);
2815
2816         /* Success. */
2817         if (!err)
2818                 return 0;
2819
2820         /* Clean everything up if vma_adjust failed. */
2821         if (new->vm_ops && new->vm_ops->close)
2822                 new->vm_ops->close(new);
2823         if (new->vm_file)
2824                 fput(new->vm_file);
2825         unlink_anon_vmas(new);
2826  out_free_mpol:
2827         mpol_put(vma_policy(new));
2828  out_free_vma:
2829         vm_area_free(new);
2830         return err;
2831 }
2832
2833 /*
2834  * Split a vma into two pieces at address 'addr', a new vma is allocated
2835  * either for the first part or the tail.
2836  */
2837 int split_vma(struct mm_struct *mm, struct vm_area_struct *vma,
2838               unsigned long addr, int new_below)
2839 {
2840         if (mm->map_count >= sysctl_max_map_count)
2841                 return -ENOMEM;
2842
2843         return __split_vma(mm, vma, addr, new_below);
2844 }
2845
2846 /* Munmap is split into 2 main parts -- this part which finds
2847  * what needs doing, and the areas themselves, which do the
2848  * work.  This now handles partial unmappings.
2849  * Jeremy Fitzhardinge <jeremy@goop.org>
2850  */
2851 int __do_munmap(struct mm_struct *mm, unsigned long start, size_t len,
2852                 struct list_head *uf, bool downgrade)
2853 {
2854         unsigned long end;
2855         struct vm_area_struct *vma, *prev, *last;
2856
2857         if ((offset_in_page(start)) || start > TASK_SIZE || len > TASK_SIZE-start)
2858                 return -EINVAL;
2859
2860         len = PAGE_ALIGN(len);
2861         end = start + len;
2862         if (len == 0)
2863                 return -EINVAL;
2864
2865         /*
2866          * arch_unmap() might do unmaps itself.  It must be called
2867          * and finish any rbtree manipulation before this code
2868          * runs and also starts to manipulate the rbtree.
2869          */
2870         arch_unmap(mm, start, end);
2871
2872         /* Find the first overlapping VMA */
2873         vma = find_vma(mm, start);
2874         if (!vma)
2875                 return 0;
2876         prev = vma->vm_prev;
2877         /* we have  start < vma->vm_end  */
2878
2879         /* if it doesn't overlap, we have nothing.. */
2880         if (vma->vm_start >= end)
2881                 return 0;
2882
2883         /*
2884          * If we need to split any vma, do it now to save pain later.
2885          *
2886          * Note: mremap's move_vma VM_ACCOUNT handling assumes a partially
2887          * unmapped vm_area_struct will remain in use: so lower split_vma
2888          * places tmp vma above, and higher split_vma places tmp vma below.
2889          */
2890         if (start > vma->vm_start) {
2891                 int error;
2892
2893                 /*
2894                  * Make sure that map_count on return from munmap() will
2895                  * not exceed its limit; but let map_count go just above
2896                  * its limit temporarily, to help free resources as expected.
2897                  */
2898                 if (end < vma->vm_end && mm->map_count >= sysctl_max_map_count)
2899                         return -ENOMEM;
2900
2901                 error = __split_vma(mm, vma, start, 0);
2902                 if (error)
2903                         return error;
2904                 prev = vma;
2905         }
2906
2907         /* Does it split the last one? */
2908         last = find_vma(mm, end);
2909         if (last && end > last->vm_start) {
2910                 int error = __split_vma(mm, last, end, 1);
2911                 if (error)
2912                         return error;
2913         }
2914         vma = vma_next(mm, prev);
2915
2916         if (unlikely(uf)) {
2917                 /*
2918                  * If userfaultfd_unmap_prep returns an error the vmas
2919                  * will remain splitted, but userland will get a
2920                  * highly unexpected error anyway. This is no
2921                  * different than the case where the first of the two
2922                  * __split_vma fails, but we don't undo the first
2923                  * split, despite we could. This is unlikely enough
2924                  * failure that it's not worth optimizing it for.
2925                  */
2926                 int error = userfaultfd_unmap_prep(vma, start, end, uf);
2927                 if (error)
2928                         return error;
2929         }
2930
2931         /*
2932          * unlock any mlock()ed ranges before detaching vmas
2933          */
2934         if (mm->locked_vm) {
2935                 struct vm_area_struct *tmp = vma;
2936                 while (tmp && tmp->vm_start < end) {
2937                         if (tmp->vm_flags & VM_LOCKED) {
2938                                 mm->locked_vm -= vma_pages(tmp);
2939                                 munlock_vma_pages_all(tmp);
2940                         }
2941
2942                         tmp = tmp->vm_next;
2943                 }
2944         }
2945
2946         /* Detach vmas from rbtree */
2947         if (!detach_vmas_to_be_unmapped(mm, vma, prev, end))
2948                 downgrade = false;
2949
2950         if (downgrade)
2951                 mmap_write_downgrade(mm);
2952
2953         unmap_region(mm, vma, prev, start, end);
2954
2955         /* Fix up all other VM information */
2956         remove_vma_list(mm, vma);
2957
2958         return downgrade ? 1 : 0;
2959 }
2960
2961 int do_munmap(struct mm_struct *mm, unsigned long start, size_t len,
2962               struct list_head *uf)
2963 {
2964         return __do_munmap(mm, start, len, uf, false);
2965 }
2966
2967 static int __vm_munmap(unsigned long start, size_t len, bool downgrade)
2968 {
2969         int ret;
2970         struct mm_struct *mm = current->mm;
2971         LIST_HEAD(uf);
2972
2973         if (mmap_write_lock_killable(mm))
2974                 return -EINTR;
2975
2976         ret = __do_munmap(mm, start, len, &uf, downgrade);
2977         /*
2978          * Returning 1 indicates mmap_lock is downgraded.
2979          * But 1 is not legal return value of vm_munmap() and munmap(), reset
2980          * it to 0 before return.
2981          */
2982         if (ret == 1) {
2983                 mmap_read_unlock(mm);
2984                 ret = 0;
2985         } else
2986                 mmap_write_unlock(mm);
2987
2988         userfaultfd_unmap_complete(mm, &uf);
2989         return ret;
2990 }
2991
2992 int vm_munmap(unsigned long start, size_t len)
2993 {
2994         return __vm_munmap(start, len, false);
2995 }
2996 EXPORT_SYMBOL(vm_munmap);
2997
2998 SYSCALL_DEFINE2(munmap, unsigned long, addr, size_t, len)
2999 {
3000         addr = untagged_addr(addr);
3001         profile_munmap(addr);
3002         return __vm_munmap(addr, len, true);
3003 }
3004
3005
3006 /*
3007  * Emulation of deprecated remap_file_pages() syscall.
3008  */
3009 SYSCALL_DEFINE5(remap_file_pages, unsigned long, start, unsigned long, size,
3010                 unsigned long, prot, unsigned long, pgoff, unsigned long, flags)
3011 {
3012
3013         struct mm_struct *mm = current->mm;
3014         struct vm_area_struct *vma;
3015         unsigned long populate = 0;
3016         unsigned long ret = -EINVAL;
3017         struct file *file;
3018
3019         pr_warn_once("%s (%d) uses deprecated remap_file_pages() syscall. See Documentation/vm/remap_file_pages.rst.\n",
3020                      current->comm, current->pid);
3021
3022         if (prot)
3023                 return ret;
3024         start = start & PAGE_MASK;
3025         size = size & PAGE_MASK;
3026
3027         if (start + size <= start)
3028                 return ret;
3029
3030         /* Does pgoff wrap? */
3031         if (pgoff + (size >> PAGE_SHIFT) < pgoff)
3032                 return ret;
3033
3034         if (mmap_write_lock_killable(mm))
3035                 return -EINTR;
3036
3037         vma = find_vma(mm, start);
3038
3039         if (!vma || !(vma->vm_flags & VM_SHARED))
3040                 goto out;
3041
3042         if (start < vma->vm_start)
3043                 goto out;
3044
3045         if (start + size > vma->vm_end) {
3046                 struct vm_area_struct *next;
3047
3048                 for (next = vma->vm_next; next; next = next->vm_next) {
3049                         /* hole between vmas ? */
3050                         if (next->vm_start != next->vm_prev->vm_end)
3051                                 goto out;
3052
3053                         if (next->vm_file != vma->vm_file)
3054                                 goto out;
3055
3056                         if (next->vm_flags != vma->vm_flags)
3057                                 goto out;
3058
3059                         if (start + size <= next->vm_end)
3060                                 break;
3061                 }
3062
3063                 if (!next)
3064                         goto out;
3065         }
3066
3067         prot |= vma->vm_flags & VM_READ ? PROT_READ : 0;
3068         prot |= vma->vm_flags & VM_WRITE ? PROT_WRITE : 0;
3069         prot |= vma->vm_flags & VM_EXEC ? PROT_EXEC : 0;
3070
3071         flags &= MAP_NONBLOCK;
3072         flags |= MAP_SHARED | MAP_FIXED | MAP_POPULATE;
3073         if (vma->vm_flags & VM_LOCKED) {
3074                 struct vm_area_struct *tmp;
3075                 flags |= MAP_LOCKED;
3076
3077                 /* drop PG_Mlocked flag for over-mapped range */
3078                 for (tmp = vma; tmp->vm_start >= start + size;
3079                                 tmp = tmp->vm_next) {
3080                         /*
3081                          * Split pmd and munlock page on the border
3082                          * of the range.
3083                          */
3084                         vma_adjust_trans_huge(tmp, start, start + size, 0);
3085
3086                         munlock_vma_pages_range(tmp,
3087                                         max(tmp->vm_start, start),
3088                                         min(tmp->vm_end, start + size));
3089                 }
3090         }
3091
3092         file = get_file(vma->vm_file);
3093         ret = do_mmap(vma->vm_file, start, size,
3094                         prot, flags, pgoff, &populate, NULL);
3095         fput(file);
3096 out:
3097         mmap_write_unlock(mm);
3098         if (populate)
3099                 mm_populate(ret, populate);
3100         if (!IS_ERR_VALUE(ret))
3101                 ret = 0;
3102         return ret;
3103 }
3104
3105 /*
3106  *  this is really a simplified "do_mmap".  it only handles
3107  *  anonymous maps.  eventually we may be able to do some
3108  *  brk-specific accounting here.
3109  */
3110 static int do_brk_flags(unsigned long addr, unsigned long len, unsigned long flags, struct list_head *uf)
3111 {
3112         struct mm_struct *mm = current->mm;
3113         struct vm_area_struct *vma, *prev;
3114         struct rb_node **rb_link, *rb_parent;
3115         pgoff_t pgoff = addr >> PAGE_SHIFT;
3116         int error;
3117         unsigned long mapped_addr;
3118
3119         /* Until we need other flags, refuse anything except VM_EXEC. */
3120         if ((flags & (~VM_EXEC)) != 0)
3121                 return -EINVAL;
3122         flags |= VM_DATA_DEFAULT_FLAGS | VM_ACCOUNT | mm->def_flags;
3123
3124         mapped_addr = get_unmapped_area(NULL, addr, len, 0, MAP_FIXED);
3125         if (IS_ERR_VALUE(mapped_addr))
3126                 return mapped_addr;
3127
3128         error = mlock_future_check(mm, mm->def_flags, len);
3129         if (error)
3130                 return error;
3131
3132         /* Clear old maps, set up prev, rb_link, rb_parent, and uf */
3133         if (munmap_vma_range(mm, addr, len, &prev, &rb_link, &rb_parent, uf))
3134                 return -ENOMEM;
3135
3136         /* Check against address space limits *after* clearing old maps... */
3137         if (!may_expand_vm(mm, flags, len >> PAGE_SHIFT))
3138                 return -ENOMEM;
3139
3140         if (mm->map_count > sysctl_max_map_count)
3141                 return -ENOMEM;
3142
3143         if (security_vm_enough_memory_mm(mm, len >> PAGE_SHIFT))
3144                 return -ENOMEM;
3145
3146         /* Can we just expand an old private anonymous mapping? */
3147         vma = vma_merge(mm, prev, addr, addr + len, flags,
3148                         NULL, NULL, pgoff, NULL, NULL_VM_UFFD_CTX);
3149         if (vma)
3150                 goto out;
3151
3152         /*
3153          * create a vma struct for an anonymous mapping
3154          */
3155         vma = vm_area_alloc(mm);
3156         if (!vma) {
3157                 vm_unacct_memory(len >> PAGE_SHIFT);
3158                 return -ENOMEM;
3159         }
3160
3161         vma_set_anonymous(vma);
3162         vma->vm_start = addr;
3163         vma->vm_end = addr + len;
3164         vma->vm_pgoff = pgoff;
3165         vma->vm_flags = flags;
3166         vma->vm_page_prot = vm_get_page_prot(flags);
3167         vma_link(mm, vma, prev, rb_link, rb_parent);
3168 out:
3169         perf_event_mmap(vma);
3170         mm->total_vm += len >> PAGE_SHIFT;
3171         mm->data_vm += len >> PAGE_SHIFT;
3172         if (flags & VM_LOCKED)
3173                 mm->locked_vm += (len >> PAGE_SHIFT);
3174         vma->vm_flags |= VM_SOFTDIRTY;
3175         return 0;
3176 }
3177
3178 int vm_brk_flags(unsigned long addr, unsigned long request, unsigned long flags)
3179 {
3180         struct mm_struct *mm = current->mm;
3181         unsigned long len;
3182         int ret;
3183         bool populate;
3184         LIST_HEAD(uf);
3185
3186         len = PAGE_ALIGN(request);
3187         if (len < request)
3188                 return -ENOMEM;
3189         if (!len)
3190                 return 0;
3191
3192         if (mmap_write_lock_killable(mm))
3193                 return -EINTR;
3194
3195         ret = do_brk_flags(addr, len, flags, &uf);
3196         populate = ((mm->def_flags & VM_LOCKED) != 0);
3197         mmap_write_unlock(mm);
3198         userfaultfd_unmap_complete(mm, &uf);
3199         if (populate && !ret)
3200                 mm_populate(addr, len);
3201         return ret;
3202 }
3203 EXPORT_SYMBOL(vm_brk_flags);
3204
3205 int vm_brk(unsigned long addr, unsigned long len)
3206 {
3207         return vm_brk_flags(addr, len, 0);
3208 }
3209 EXPORT_SYMBOL(vm_brk);
3210
3211 /* Release all mmaps. */
3212 void exit_mmap(struct mm_struct *mm)
3213 {
3214         struct mmu_gather tlb;
3215         struct vm_area_struct *vma;
3216         unsigned long nr_accounted = 0;
3217
3218         /* mm's last user has gone, and its about to be pulled down */
3219         mmu_notifier_release(mm);
3220
3221         if (unlikely(mm_is_oom_victim(mm))) {
3222                 /*
3223                  * Manually reap the mm to free as much memory as possible.
3224                  * Then, as the oom reaper does, set MMF_OOM_SKIP to disregard
3225                  * this mm from further consideration.  Taking mm->mmap_lock for
3226                  * write after setting MMF_OOM_SKIP will guarantee that the oom
3227                  * reaper will not run on this mm again after mmap_lock is
3228                  * dropped.
3229                  *
3230                  * Nothing can be holding mm->mmap_lock here and the above call
3231                  * to mmu_notifier_release(mm) ensures mmu notifier callbacks in
3232                  * __oom_reap_task_mm() will not block.
3233                  *
3234                  * This needs to be done before calling munlock_vma_pages_all(),
3235                  * which clears VM_LOCKED, otherwise the oom reaper cannot
3236                  * reliably test it.
3237                  */
3238                 (void)__oom_reap_task_mm(mm);
3239
3240                 set_bit(MMF_OOM_SKIP, &mm->flags);
3241                 mmap_write_lock(mm);
3242                 mmap_write_unlock(mm);
3243         }
3244
3245         if (mm->locked_vm) {
3246                 vma = mm->mmap;
3247                 while (vma) {
3248                         if (vma->vm_flags & VM_LOCKED)
3249                                 munlock_vma_pages_all(vma);
3250                         vma = vma->vm_next;
3251                 }
3252         }
3253
3254         arch_exit_mmap(mm);
3255
3256         vma = mm->mmap;
3257         if (!vma)       /* Can happen if dup_mmap() received an OOM */
3258                 return;
3259
3260         lru_add_drain();
3261         flush_cache_mm(mm);
3262         tlb_gather_mmu(&tlb, mm, 0, -1);
3263         /* update_hiwater_rss(mm) here? but nobody should be looking */
3264         /* Use -1 here to ensure all VMAs in the mm are unmapped */
3265         unmap_vmas(&tlb, vma, 0, -1);
3266         free_pgtables(&tlb, vma, FIRST_USER_ADDRESS, USER_PGTABLES_CEILING);
3267         tlb_finish_mmu(&tlb, 0, -1);
3268
3269         /*
3270          * Walk the list again, actually closing and freeing it,
3271          * with preemption enabled, without holding any MM locks.
3272          */
3273         while (vma) {
3274                 if (vma->vm_flags & VM_ACCOUNT)
3275                         nr_accounted += vma_pages(vma);
3276                 vma = remove_vma(vma);
3277                 cond_resched();
3278         }
3279         vm_unacct_memory(nr_accounted);
3280 }
3281
3282 /* Insert vm structure into process list sorted by address
3283  * and into the inode's i_mmap tree.  If vm_file is non-NULL
3284  * then i_mmap_rwsem is taken here.
3285  */
3286 int insert_vm_struct(struct mm_struct *mm, struct vm_area_struct *vma)
3287 {
3288         struct vm_area_struct *prev;
3289         struct rb_node **rb_link, *rb_parent;
3290
3291         if (find_vma_links(mm, vma->vm_start, vma->vm_end,
3292                            &prev, &rb_link, &rb_parent))
3293                 return -ENOMEM;
3294         if ((vma->vm_flags & VM_ACCOUNT) &&
3295              security_vm_enough_memory_mm(mm, vma_pages(vma)))
3296                 return -ENOMEM;
3297
3298         /*
3299          * The vm_pgoff of a purely anonymous vma should be irrelevant
3300          * until its first write fault, when page's anon_vma and index
3301          * are set.  But now set the vm_pgoff it will almost certainly
3302          * end up with (unless mremap moves it elsewhere before that
3303          * first wfault), so /proc/pid/maps tells a consistent story.
3304          *
3305          * By setting it to reflect the virtual start address of the
3306          * vma, merges and splits can happen in a seamless way, just
3307          * using the existing file pgoff checks and manipulations.
3308          * Similarly in do_mmap and in do_brk_flags.
3309          */
3310         if (vma_is_anonymous(vma)) {
3311                 BUG_ON(vma->anon_vma);
3312                 vma->vm_pgoff = vma->vm_start >> PAGE_SHIFT;
3313         }
3314
3315         vma_link(mm, vma, prev, rb_link, rb_parent);
3316         return 0;
3317 }
3318
3319 /*
3320  * Copy the vma structure to a new location in the same mm,
3321  * prior to moving page table entries, to effect an mremap move.
3322  */
3323 struct vm_area_struct *copy_vma(struct vm_area_struct **vmap,
3324         unsigned long addr, unsigned long len, pgoff_t pgoff,
3325         bool *need_rmap_locks)
3326 {
3327         struct vm_area_struct *vma = *vmap;
3328         unsigned long vma_start = vma->vm_start;
3329         struct mm_struct *mm = vma->vm_mm;
3330         struct vm_area_struct *new_vma, *prev;
3331         struct rb_node **rb_link, *rb_parent;
3332         bool faulted_in_anon_vma = true;
3333
3334         /*
3335          * If anonymous vma has not yet been faulted, update new pgoff
3336          * to match new location, to increase its chance of merging.
3337          */
3338         if (unlikely(vma_is_anonymous(vma) && !vma->anon_vma)) {
3339                 pgoff = addr >> PAGE_SHIFT;
3340                 faulted_in_anon_vma = false;
3341         }
3342
3343         if (find_vma_links(mm, addr, addr + len, &prev, &rb_link, &rb_parent))
3344                 return NULL;    /* should never get here */
3345         new_vma = vma_merge(mm, prev, addr, addr + len, vma->vm_flags,
3346                             vma->anon_vma, vma->vm_file, pgoff, vma_policy(vma),
3347                             vma->vm_userfaultfd_ctx);
3348         if (new_vma) {
3349                 /*
3350                  * Source vma may have been merged into new_vma
3351                  */
3352                 if (unlikely(vma_start >= new_vma->vm_start &&
3353                              vma_start < new_vma->vm_end)) {
3354                         /*
3355                          * The only way we can get a vma_merge with
3356                          * self during an mremap is if the vma hasn't
3357                          * been faulted in yet and we were allowed to
3358                          * reset the dst vma->vm_pgoff to the
3359                          * destination address of the mremap to allow
3360                          * the merge to happen. mremap must change the
3361                          * vm_pgoff linearity between src and dst vmas
3362                          * (in turn preventing a vma_merge) to be
3363                          * safe. It is only safe to keep the vm_pgoff
3364                          * linear if there are no pages mapped yet.
3365                          */
3366                         VM_BUG_ON_VMA(faulted_in_anon_vma, new_vma);
3367                         *vmap = vma = new_vma;
3368                 }
3369                 *need_rmap_locks = (new_vma->vm_pgoff <= vma->vm_pgoff);
3370         } else {
3371                 new_vma = vm_area_dup(vma);
3372                 if (!new_vma)
3373                         goto out;
3374                 new_vma->vm_start = addr;
3375                 new_vma->vm_end = addr + len;
3376                 new_vma->vm_pgoff = pgoff;
3377                 if (vma_dup_policy(vma, new_vma))
3378                         goto out_free_vma;
3379                 if (anon_vma_clone(new_vma, vma))
3380                         goto out_free_mempol;
3381                 if (new_vma->vm_file)
3382                         get_file(new_vma->vm_file);
3383                 if (new_vma->vm_ops && new_vma->vm_ops->open)
3384                         new_vma->vm_ops->open(new_vma);
3385                 vma_link(mm, new_vma, prev, rb_link, rb_parent);
3386                 *need_rmap_locks = false;
3387         }
3388         return new_vma;
3389
3390 out_free_mempol:
3391         mpol_put(vma_policy(new_vma));
3392 out_free_vma:
3393         vm_area_free(new_vma);
3394 out:
3395         return NULL;
3396 }
3397
3398 /*
3399  * Return true if the calling process may expand its vm space by the passed
3400  * number of pages
3401  */
3402 bool may_expand_vm(struct mm_struct *mm, vm_flags_t flags, unsigned long npages)
3403 {
3404         if (mm->total_vm + npages > rlimit(RLIMIT_AS) >> PAGE_SHIFT)
3405                 return false;
3406
3407         if (is_data_mapping(flags) &&
3408             mm->data_vm + npages > rlimit(RLIMIT_DATA) >> PAGE_SHIFT) {
3409                 /* Workaround for Valgrind */
3410                 if (rlimit(RLIMIT_DATA) == 0 &&
3411                     mm->data_vm + npages <= rlimit_max(RLIMIT_DATA) >> PAGE_SHIFT)
3412                         return true;
3413
3414                 pr_warn_once("%s (%d): VmData %lu exceed data ulimit %lu. Update limits%s.\n",
3415                              current->comm, current->pid,
3416                              (mm->data_vm + npages) << PAGE_SHIFT,
3417                              rlimit(RLIMIT_DATA),
3418                              ignore_rlimit_data ? "" : " or use boot option ignore_rlimit_data");
3419
3420                 if (!ignore_rlimit_data)
3421                         return false;
3422         }
3423
3424         return true;
3425 }
3426
3427 void vm_stat_account(struct mm_struct *mm, vm_flags_t flags, long npages)
3428 {
3429         mm->total_vm += npages;
3430
3431         if (is_exec_mapping(flags))
3432                 mm->exec_vm += npages;
3433         else if (is_stack_mapping(flags))
3434                 mm->stack_vm += npages;
3435         else if (is_data_mapping(flags))
3436                 mm->data_vm += npages;
3437 }
3438
3439 static vm_fault_t special_mapping_fault(struct vm_fault *vmf);
3440
3441 /*
3442  * Having a close hook prevents vma merging regardless of flags.
3443  */
3444 static void special_mapping_close(struct vm_area_struct *vma)
3445 {
3446 }
3447
3448 static const char *special_mapping_name(struct vm_area_struct *vma)
3449 {
3450         return ((struct vm_special_mapping *)vma->vm_private_data)->name;
3451 }
3452
3453 static int special_mapping_mremap(struct vm_area_struct *new_vma)
3454 {
3455         struct vm_special_mapping *sm = new_vma->vm_private_data;
3456
3457         if (WARN_ON_ONCE(current->mm != new_vma->vm_mm))
3458                 return -EFAULT;
3459
3460         if (sm->mremap)
3461                 return sm->mremap(sm, new_vma);
3462
3463         return 0;
3464 }
3465
3466 static const struct vm_operations_struct special_mapping_vmops = {
3467         .close = special_mapping_close,
3468         .fault = special_mapping_fault,
3469         .mremap = special_mapping_mremap,
3470         .name = special_mapping_name,
3471         /* vDSO code relies that VVAR can't be accessed remotely */
3472         .access = NULL,
3473 };
3474
3475 static const struct vm_operations_struct legacy_special_mapping_vmops = {
3476         .close = special_mapping_close,
3477         .fault = special_mapping_fault,
3478 };
3479
3480 static vm_fault_t special_mapping_fault(struct vm_fault *vmf)
3481 {
3482         struct vm_area_struct *vma = vmf->vma;
3483         pgoff_t pgoff;
3484         struct page **pages;
3485
3486         if (vma->vm_ops == &legacy_special_mapping_vmops) {
3487                 pages = vma->vm_private_data;
3488         } else {
3489                 struct vm_special_mapping *sm = vma->vm_private_data;
3490
3491                 if (sm->fault)
3492                         return sm->fault(sm, vmf->vma, vmf);
3493
3494                 pages = sm->pages;
3495         }
3496
3497         for (pgoff = vmf->pgoff; pgoff && *pages; ++pages)
3498                 pgoff--;
3499
3500         if (*pages) {
3501                 struct page *page = *pages;
3502                 get_page(page);
3503                 vmf->page = page;
3504                 return 0;
3505         }
3506
3507         return VM_FAULT_SIGBUS;
3508 }
3509
3510 static struct vm_area_struct *__install_special_mapping(
3511         struct mm_struct *mm,
3512         unsigned long addr, unsigned long len,
3513         unsigned long vm_flags, void *priv,
3514         const struct vm_operations_struct *ops)
3515 {
3516         int ret;
3517         struct vm_area_struct *vma;
3518
3519         vma = vm_area_alloc(mm);
3520         if (unlikely(vma == NULL))
3521                 return ERR_PTR(-ENOMEM);
3522
3523         vma->vm_start = addr;
3524         vma->vm_end = addr + len;
3525
3526         vma->vm_flags = vm_flags | mm->def_flags | VM_DONTEXPAND | VM_SOFTDIRTY;
3527         vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
3528
3529         vma->vm_ops = ops;
3530         vma->vm_private_data = priv;
3531
3532         ret = insert_vm_struct(mm, vma);
3533         if (ret)
3534                 goto out;
3535
3536         vm_stat_account(mm, vma->vm_flags, len >> PAGE_SHIFT);
3537
3538         perf_event_mmap(vma);
3539
3540         return vma;
3541
3542 out:
3543         vm_area_free(vma);
3544         return ERR_PTR(ret);
3545 }
3546
3547 bool vma_is_special_mapping(const struct vm_area_struct *vma,
3548         const struct vm_special_mapping *sm)
3549 {
3550         return vma->vm_private_data == sm &&
3551                 (vma->vm_ops == &special_mapping_vmops ||
3552                  vma->vm_ops == &legacy_special_mapping_vmops);
3553 }
3554
3555 /*
3556  * Called with mm->mmap_lock held for writing.
3557  * Insert a new vma covering the given region, with the given flags.
3558  * Its pages are supplied by the given array of struct page *.
3559  * The array can be shorter than len >> PAGE_SHIFT if it's null-terminated.
3560  * The region past the last page supplied will always produce SIGBUS.
3561  * The array pointer and the pages it points to are assumed to stay alive
3562  * for as long as this mapping might exist.
3563  */
3564 struct vm_area_struct *_install_special_mapping(
3565         struct mm_struct *mm,
3566         unsigned long addr, unsigned long len,
3567         unsigned long vm_flags, const struct vm_special_mapping *spec)
3568 {
3569         return __install_special_mapping(mm, addr, len, vm_flags, (void *)spec,
3570                                         &special_mapping_vmops);
3571 }
3572
3573 int install_special_mapping(struct mm_struct *mm,
3574                             unsigned long addr, unsigned long len,
3575                             unsigned long vm_flags, struct page **pages)
3576 {
3577         struct vm_area_struct *vma = __install_special_mapping(
3578                 mm, addr, len, vm_flags, (void *)pages,
3579                 &legacy_special_mapping_vmops);
3580
3581         return PTR_ERR_OR_ZERO(vma);
3582 }
3583
3584 static DEFINE_MUTEX(mm_all_locks_mutex);
3585
3586 static void vm_lock_anon_vma(struct mm_struct *mm, struct anon_vma *anon_vma)
3587 {
3588         if (!test_bit(0, (unsigned long *) &anon_vma->root->rb_root.rb_root.rb_node)) {
3589                 /*
3590                  * The LSB of head.next can't change from under us
3591                  * because we hold the mm_all_locks_mutex.
3592                  */
3593                 down_write_nest_lock(&anon_vma->root->rwsem, &mm->mmap_lock);
3594                 /*
3595                  * We can safely modify head.next after taking the
3596                  * anon_vma->root->rwsem. If some other vma in this mm shares
3597                  * the same anon_vma we won't take it again.
3598                  *
3599                  * No need of atomic instructions here, head.next
3600                  * can't change from under us thanks to the
3601                  * anon_vma->root->rwsem.
3602                  */
3603                 if (__test_and_set_bit(0, (unsigned long *)
3604                                        &anon_vma->root->rb_root.rb_root.rb_node))
3605                         BUG();
3606         }
3607 }
3608
3609 static void vm_lock_mapping(struct mm_struct *mm, struct address_space *mapping)
3610 {
3611         if (!test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) {
3612                 /*
3613                  * AS_MM_ALL_LOCKS can't change from under us because
3614                  * we hold the mm_all_locks_mutex.
3615                  *
3616                  * Operations on ->flags have to be atomic because
3617                  * even if AS_MM_ALL_LOCKS is stable thanks to the
3618                  * mm_all_locks_mutex, there may be other cpus
3619                  * changing other bitflags in parallel to us.
3620                  */
3621                 if (test_and_set_bit(AS_MM_ALL_LOCKS, &mapping->flags))
3622                         BUG();
3623                 down_write_nest_lock(&mapping->i_mmap_rwsem, &mm->mmap_lock);
3624         }
3625 }
3626
3627 /*
3628  * This operation locks against the VM for all pte/vma/mm related
3629  * operations that could ever happen on a certain mm. This includes
3630  * vmtruncate, try_to_unmap, and all page faults.
3631  *
3632  * The caller must take the mmap_lock in write mode before calling
3633  * mm_take_all_locks(). The caller isn't allowed to release the
3634  * mmap_lock until mm_drop_all_locks() returns.
3635  *
3636  * mmap_lock in write mode is required in order to block all operations
3637  * that could modify pagetables and free pages without need of
3638  * altering the vma layout. It's also needed in write mode to avoid new
3639  * anon_vmas to be associated with existing vmas.
3640  *
3641  * A single task can't take more than one mm_take_all_locks() in a row
3642  * or it would deadlock.
3643  *
3644  * The LSB in anon_vma->rb_root.rb_node and the AS_MM_ALL_LOCKS bitflag in
3645  * mapping->flags avoid to take the same lock twice, if more than one
3646  * vma in this mm is backed by the same anon_vma or address_space.
3647  *
3648  * We take locks in following order, accordingly to comment at beginning
3649  * of mm/rmap.c:
3650  *   - all hugetlbfs_i_mmap_rwsem_key locks (aka mapping->i_mmap_rwsem for
3651  *     hugetlb mapping);
3652  *   - all i_mmap_rwsem locks;
3653  *   - all anon_vma->rwseml
3654  *
3655  * We can take all locks within these types randomly because the VM code
3656  * doesn't nest them and we protected from parallel mm_take_all_locks() by
3657  * mm_all_locks_mutex.
3658  *
3659  * mm_take_all_locks() and mm_drop_all_locks are expensive operations
3660  * that may have to take thousand of locks.
3661  *
3662  * mm_take_all_locks() can fail if it's interrupted by signals.
3663  */
3664 int mm_take_all_locks(struct mm_struct *mm)
3665 {
3666         struct vm_area_struct *vma;
3667         struct anon_vma_chain *avc;
3668
3669         BUG_ON(mmap_read_trylock(mm));
3670
3671         mutex_lock(&mm_all_locks_mutex);
3672
3673         for (vma = mm->mmap; vma; vma = vma->vm_next) {
3674                 if (signal_pending(current))
3675                         goto out_unlock;
3676                 if (vma->vm_file && vma->vm_file->f_mapping &&
3677                                 is_vm_hugetlb_page(vma))
3678                         vm_lock_mapping(mm, vma->vm_file->f_mapping);
3679         }
3680
3681         for (vma = mm->mmap; vma; vma = vma->vm_next) {
3682                 if (signal_pending(current))
3683                         goto out_unlock;
3684                 if (vma->vm_file && vma->vm_file->f_mapping &&
3685                                 !is_vm_hugetlb_page(vma))
3686                         vm_lock_mapping(mm, vma->vm_file->f_mapping);
3687         }
3688
3689         for (vma = mm->mmap; vma; vma = vma->vm_next) {
3690                 if (signal_pending(current))
3691                         goto out_unlock;
3692                 if (vma->anon_vma)
3693                         list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
3694                                 vm_lock_anon_vma(mm, avc->anon_vma);
3695         }
3696
3697         return 0;
3698
3699 out_unlock:
3700         mm_drop_all_locks(mm);
3701         return -EINTR;
3702 }
3703
3704 static void vm_unlock_anon_vma(struct anon_vma *anon_vma)
3705 {
3706         if (test_bit(0, (unsigned long *) &anon_vma->root->rb_root.rb_root.rb_node)) {
3707                 /*
3708                  * The LSB of head.next can't change to 0 from under
3709                  * us because we hold the mm_all_locks_mutex.
3710                  *
3711                  * We must however clear the bitflag before unlocking
3712                  * the vma so the users using the anon_vma->rb_root will
3713                  * never see our bitflag.
3714                  *
3715                  * No need of atomic instructions here, head.next
3716                  * can't change from under us until we release the
3717                  * anon_vma->root->rwsem.
3718                  */
3719                 if (!__test_and_clear_bit(0, (unsigned long *)
3720                                           &anon_vma->root->rb_root.rb_root.rb_node))
3721                         BUG();
3722                 anon_vma_unlock_write(anon_vma);
3723         }
3724 }
3725
3726 static void vm_unlock_mapping(struct address_space *mapping)
3727 {
3728         if (test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) {
3729                 /*
3730                  * AS_MM_ALL_LOCKS can't change to 0 from under us
3731                  * because we hold the mm_all_locks_mutex.
3732                  */
3733                 i_mmap_unlock_write(mapping);
3734                 if (!test_and_clear_bit(AS_MM_ALL_LOCKS,
3735                                         &mapping->flags))
3736                         BUG();
3737         }
3738 }
3739
3740 /*
3741  * The mmap_lock cannot be released by the caller until
3742  * mm_drop_all_locks() returns.
3743  */
3744 void mm_drop_all_locks(struct mm_struct *mm)
3745 {
3746         struct vm_area_struct *vma;
3747         struct anon_vma_chain *avc;
3748
3749         BUG_ON(mmap_read_trylock(mm));
3750         BUG_ON(!mutex_is_locked(&mm_all_locks_mutex));
3751
3752         for (vma = mm->mmap; vma; vma = vma->vm_next) {
3753                 if (vma->anon_vma)
3754                         list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
3755                                 vm_unlock_anon_vma(avc->anon_vma);
3756                 if (vma->vm_file && vma->vm_file->f_mapping)
3757                         vm_unlock_mapping(vma->vm_file->f_mapping);
3758         }
3759
3760         mutex_unlock(&mm_all_locks_mutex);
3761 }
3762
3763 /*
3764  * initialise the percpu counter for VM
3765  */
3766 void __init mmap_init(void)
3767 {
3768         int ret;
3769
3770         ret = percpu_counter_init(&vm_committed_as, 0, GFP_KERNEL);
3771         VM_BUG_ON(ret);
3772 }
3773
3774 /*
3775  * Initialise sysctl_user_reserve_kbytes.
3776  *
3777  * This is intended to prevent a user from starting a single memory hogging
3778  * process, such that they cannot recover (kill the hog) in OVERCOMMIT_NEVER
3779  * mode.
3780  *
3781  * The default value is min(3% of free memory, 128MB)
3782  * 128MB is enough to recover with sshd/login, bash, and top/kill.
3783  */
3784 static int init_user_reserve(void)
3785 {
3786         unsigned long free_kbytes;
3787
3788         free_kbytes = global_zone_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
3789
3790         sysctl_user_reserve_kbytes = min(free_kbytes / 32, 1UL << 17);
3791         return 0;
3792 }
3793 subsys_initcall(init_user_reserve);
3794
3795 /*
3796  * Initialise sysctl_admin_reserve_kbytes.
3797  *
3798  * The purpose of sysctl_admin_reserve_kbytes is to allow the sys admin
3799  * to log in and kill a memory hogging process.
3800  *
3801  * Systems with more than 256MB will reserve 8MB, enough to recover
3802  * with sshd, bash, and top in OVERCOMMIT_GUESS. Smaller systems will
3803  * only reserve 3% of free pages by default.
3804  */
3805 static int init_admin_reserve(void)
3806 {
3807         unsigned long free_kbytes;
3808
3809         free_kbytes = global_zone_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
3810
3811         sysctl_admin_reserve_kbytes = min(free_kbytes / 32, 1UL << 13);
3812         return 0;
3813 }
3814 subsys_initcall(init_admin_reserve);
3815
3816 /*
3817  * Reinititalise user and admin reserves if memory is added or removed.
3818  *
3819  * The default user reserve max is 128MB, and the default max for the
3820  * admin reserve is 8MB. These are usually, but not always, enough to
3821  * enable recovery from a memory hogging process using login/sshd, a shell,
3822  * and tools like top. It may make sense to increase or even disable the
3823  * reserve depending on the existence of swap or variations in the recovery
3824  * tools. So, the admin may have changed them.
3825  *
3826  * If memory is added and the reserves have been eliminated or increased above
3827  * the default max, then we'll trust the admin.
3828  *
3829  * If memory is removed and there isn't enough free memory, then we
3830  * need to reset the reserves.
3831  *
3832  * Otherwise keep the reserve set by the admin.
3833  */
3834 static int reserve_mem_notifier(struct notifier_block *nb,
3835                              unsigned long action, void *data)
3836 {
3837         unsigned long tmp, free_kbytes;
3838
3839         switch (action) {
3840         case MEM_ONLINE:
3841                 /* Default max is 128MB. Leave alone if modified by operator. */
3842                 tmp = sysctl_user_reserve_kbytes;
3843                 if (0 < tmp && tmp < (1UL << 17))
3844                         init_user_reserve();
3845
3846                 /* Default max is 8MB.  Leave alone if modified by operator. */
3847                 tmp = sysctl_admin_reserve_kbytes;
3848                 if (0 < tmp && tmp < (1UL << 13))
3849                         init_admin_reserve();
3850
3851                 break;
3852         case MEM_OFFLINE:
3853                 free_kbytes = global_zone_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
3854
3855                 if (sysctl_user_reserve_kbytes > free_kbytes) {
3856                         init_user_reserve();
3857                         pr_info("vm.user_reserve_kbytes reset to %lu\n",
3858                                 sysctl_user_reserve_kbytes);
3859                 }
3860
3861                 if (sysctl_admin_reserve_kbytes > free_kbytes) {
3862                         init_admin_reserve();
3863                         pr_info("vm.admin_reserve_kbytes reset to %lu\n",
3864                                 sysctl_admin_reserve_kbytes);
3865                 }
3866                 break;
3867         default:
3868                 break;
3869         }
3870         return NOTIFY_OK;
3871 }
3872
3873 static struct notifier_block reserve_mem_nb = {
3874         .notifier_call = reserve_mem_notifier,
3875 };
3876
3877 static int __meminit init_reserve_notifier(void)
3878 {
3879         if (register_hotmemory_notifier(&reserve_mem_nb))
3880                 pr_err("Failed registering memory add/remove notifier for admin reserve\n");
3881
3882         return 0;
3883 }
3884 subsys_initcall(init_reserve_notifier);