1 // SPDX-License-Identifier: GPL-2.0-only
7 * Address space accounting code <alan@lxorguk.ukuu.org.uk>
10 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
12 #include <linux/kernel.h>
13 #include <linux/slab.h>
14 #include <linux/backing-dev.h>
16 #include <linux/mm_inline.h>
17 #include <linux/shm.h>
18 #include <linux/mman.h>
19 #include <linux/pagemap.h>
20 #include <linux/swap.h>
21 #include <linux/syscalls.h>
22 #include <linux/capability.h>
23 #include <linux/init.h>
24 #include <linux/file.h>
26 #include <linux/personality.h>
27 #include <linux/security.h>
28 #include <linux/hugetlb.h>
29 #include <linux/shmem_fs.h>
30 #include <linux/profile.h>
31 #include <linux/export.h>
32 #include <linux/mount.h>
33 #include <linux/mempolicy.h>
34 #include <linux/rmap.h>
35 #include <linux/mmu_notifier.h>
36 #include <linux/mmdebug.h>
37 #include <linux/perf_event.h>
38 #include <linux/audit.h>
39 #include <linux/khugepaged.h>
40 #include <linux/uprobes.h>
41 #include <linux/notifier.h>
42 #include <linux/memory.h>
43 #include <linux/printk.h>
44 #include <linux/userfaultfd_k.h>
45 #include <linux/moduleparam.h>
46 #include <linux/pkeys.h>
47 #include <linux/oom.h>
48 #include <linux/sched/mm.h>
50 #include <linux/uaccess.h>
51 #include <asm/cacheflush.h>
53 #include <asm/mmu_context.h>
55 #define CREATE_TRACE_POINTS
56 #include <trace/events/mmap.h>
60 #ifndef arch_mmap_check
61 #define arch_mmap_check(addr, len, flags) (0)
64 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_BITS
65 const int mmap_rnd_bits_min = CONFIG_ARCH_MMAP_RND_BITS_MIN;
66 const int mmap_rnd_bits_max = CONFIG_ARCH_MMAP_RND_BITS_MAX;
67 int mmap_rnd_bits __read_mostly = CONFIG_ARCH_MMAP_RND_BITS;
69 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS
70 const int mmap_rnd_compat_bits_min = CONFIG_ARCH_MMAP_RND_COMPAT_BITS_MIN;
71 const int mmap_rnd_compat_bits_max = CONFIG_ARCH_MMAP_RND_COMPAT_BITS_MAX;
72 int mmap_rnd_compat_bits __read_mostly = CONFIG_ARCH_MMAP_RND_COMPAT_BITS;
75 static bool ignore_rlimit_data;
76 core_param(ignore_rlimit_data, ignore_rlimit_data, bool, 0644);
78 static void unmap_region(struct mm_struct *mm, struct maple_tree *mt,
79 struct vm_area_struct *vma, struct vm_area_struct *prev,
80 struct vm_area_struct *next, unsigned long start,
83 static pgprot_t vm_pgprot_modify(pgprot_t oldprot, unsigned long vm_flags)
85 return pgprot_modify(oldprot, vm_get_page_prot(vm_flags));
88 /* Update vma->vm_page_prot to reflect vma->vm_flags. */
89 void vma_set_page_prot(struct vm_area_struct *vma)
91 unsigned long vm_flags = vma->vm_flags;
92 pgprot_t vm_page_prot;
94 vm_page_prot = vm_pgprot_modify(vma->vm_page_prot, vm_flags);
95 if (vma_wants_writenotify(vma, vm_page_prot)) {
96 vm_flags &= ~VM_SHARED;
97 vm_page_prot = vm_pgprot_modify(vm_page_prot, vm_flags);
99 /* remove_protection_ptes reads vma->vm_page_prot without mmap_lock */
100 WRITE_ONCE(vma->vm_page_prot, vm_page_prot);
104 * Requires inode->i_mapping->i_mmap_rwsem
106 static void __remove_shared_vm_struct(struct vm_area_struct *vma,
107 struct file *file, struct address_space *mapping)
109 if (vma->vm_flags & VM_SHARED)
110 mapping_unmap_writable(mapping);
112 flush_dcache_mmap_lock(mapping);
113 vma_interval_tree_remove(vma, &mapping->i_mmap);
114 flush_dcache_mmap_unlock(mapping);
118 * Unlink a file-based vm structure from its interval tree, to hide
119 * vma from rmap and vmtruncate before freeing its page tables.
121 void unlink_file_vma(struct vm_area_struct *vma)
123 struct file *file = vma->vm_file;
126 struct address_space *mapping = file->f_mapping;
127 i_mmap_lock_write(mapping);
128 __remove_shared_vm_struct(vma, file, mapping);
129 i_mmap_unlock_write(mapping);
134 * Close a vm structure and free it.
136 static void remove_vma(struct vm_area_struct *vma)
139 if (vma->vm_ops && vma->vm_ops->close)
140 vma->vm_ops->close(vma);
143 mpol_put(vma_policy(vma));
148 * check_brk_limits() - Use platform specific check of range & verify mlock
150 * @addr: The address to check
151 * @len: The size of increase.
153 * Return: 0 on success.
155 static int check_brk_limits(unsigned long addr, unsigned long len)
157 unsigned long mapped_addr;
159 mapped_addr = get_unmapped_area(NULL, addr, len, 0, MAP_FIXED);
160 if (IS_ERR_VALUE(mapped_addr))
163 return mlock_future_check(current->mm, current->mm->def_flags, len);
165 static int do_brk_munmap(struct ma_state *mas, struct vm_area_struct *vma,
166 unsigned long newbrk, unsigned long oldbrk,
167 struct list_head *uf);
168 static int do_brk_flags(struct ma_state *mas, struct vm_area_struct *brkvma,
169 unsigned long addr, unsigned long request, unsigned long flags);
170 SYSCALL_DEFINE1(brk, unsigned long, brk)
172 unsigned long newbrk, oldbrk, origbrk;
173 struct mm_struct *mm = current->mm;
174 struct vm_area_struct *brkvma, *next = NULL;
175 unsigned long min_brk;
177 bool downgraded = false;
179 MA_STATE(mas, &mm->mm_mt, 0, 0);
181 if (mmap_write_lock_killable(mm))
186 #ifdef CONFIG_COMPAT_BRK
188 * CONFIG_COMPAT_BRK can still be overridden by setting
189 * randomize_va_space to 2, which will still cause mm->start_brk
190 * to be arbitrarily shifted
192 if (current->brk_randomized)
193 min_brk = mm->start_brk;
195 min_brk = mm->end_data;
197 min_brk = mm->start_brk;
203 * Check against rlimit here. If this check is done later after the test
204 * of oldbrk with newbrk then it can escape the test and let the data
205 * segment grow beyond its set limit the in case where the limit is
206 * not page aligned -Ram Gupta
208 if (check_data_rlimit(rlimit(RLIMIT_DATA), brk, mm->start_brk,
209 mm->end_data, mm->start_data))
212 newbrk = PAGE_ALIGN(brk);
213 oldbrk = PAGE_ALIGN(mm->brk);
214 if (oldbrk == newbrk) {
220 * Always allow shrinking brk.
221 * do_brk_munmap() may downgrade mmap_lock to read.
223 if (brk <= mm->brk) {
226 /* Search one past newbrk */
227 mas_set(&mas, newbrk);
228 brkvma = mas_find(&mas, oldbrk);
229 if (!brkvma || brkvma->vm_start >= oldbrk)
230 goto out; /* mapping intersects with an existing non-brk vma. */
232 * mm->brk must be protected by write mmap_lock.
233 * do_brk_munmap() may downgrade the lock, so update it
234 * before calling do_brk_munmap().
237 ret = do_brk_munmap(&mas, brkvma, newbrk, oldbrk, &uf);
248 if (check_brk_limits(oldbrk, newbrk - oldbrk))
252 * Only check if the next VMA is within the stack_guard_gap of the
255 mas_set(&mas, oldbrk);
256 next = mas_find(&mas, newbrk - 1 + PAGE_SIZE + stack_guard_gap);
257 if (next && newbrk + PAGE_SIZE > vm_start_gap(next))
260 brkvma = mas_prev(&mas, mm->start_brk);
261 /* Ok, looks good - let it rip. */
262 if (do_brk_flags(&mas, brkvma, oldbrk, newbrk - oldbrk, 0) < 0)
268 populate = newbrk > oldbrk && (mm->def_flags & VM_LOCKED) != 0;
270 mmap_read_unlock(mm);
272 mmap_write_unlock(mm);
273 userfaultfd_unmap_complete(mm, &uf);
275 mm_populate(oldbrk, newbrk - oldbrk);
279 mmap_write_unlock(mm);
283 #if defined(CONFIG_DEBUG_VM_MAPLE_TREE)
284 extern void mt_validate(struct maple_tree *mt);
285 extern void mt_dump(const struct maple_tree *mt);
287 /* Validate the maple tree */
288 static void validate_mm_mt(struct mm_struct *mm)
290 struct maple_tree *mt = &mm->mm_mt;
291 struct vm_area_struct *vma_mt;
293 MA_STATE(mas, mt, 0, 0);
295 mt_validate(&mm->mm_mt);
296 mas_for_each(&mas, vma_mt, ULONG_MAX) {
297 if ((vma_mt->vm_start != mas.index) ||
298 (vma_mt->vm_end - 1 != mas.last)) {
299 pr_emerg("issue in %s\n", current->comm);
302 pr_emerg("mt piv: %p %lu - %lu\n", vma_mt,
303 mas.index, mas.last);
304 pr_emerg("mt vma: %p %lu - %lu\n", vma_mt,
305 vma_mt->vm_start, vma_mt->vm_end);
308 if (vma_mt->vm_end != mas.last + 1) {
309 pr_err("vma: %p vma_mt %lu-%lu\tmt %lu-%lu\n",
310 mm, vma_mt->vm_start, vma_mt->vm_end,
311 mas.index, mas.last);
314 VM_BUG_ON_MM(vma_mt->vm_end != mas.last + 1, mm);
315 if (vma_mt->vm_start != mas.index) {
316 pr_err("vma: %p vma_mt %p %lu - %lu doesn't match\n",
317 mm, vma_mt, vma_mt->vm_start, vma_mt->vm_end);
320 VM_BUG_ON_MM(vma_mt->vm_start != mas.index, mm);
325 static void validate_mm(struct mm_struct *mm)
329 struct vm_area_struct *vma;
330 MA_STATE(mas, &mm->mm_mt, 0, 0);
334 mas_for_each(&mas, vma, ULONG_MAX) {
335 #ifdef CONFIG_DEBUG_VM_RB
336 struct anon_vma *anon_vma = vma->anon_vma;
337 struct anon_vma_chain *avc;
340 anon_vma_lock_read(anon_vma);
341 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
342 anon_vma_interval_tree_verify(avc);
343 anon_vma_unlock_read(anon_vma);
348 if (i != mm->map_count) {
349 pr_emerg("map_count %d mas_for_each %d\n", mm->map_count, i);
352 VM_BUG_ON_MM(bug, mm);
355 #else /* !CONFIG_DEBUG_VM_MAPLE_TREE */
356 #define validate_mm_mt(root) do { } while (0)
357 #define validate_mm(mm) do { } while (0)
358 #endif /* CONFIG_DEBUG_VM_MAPLE_TREE */
361 * vma has some anon_vma assigned, and is already inserted on that
362 * anon_vma's interval trees.
364 * Before updating the vma's vm_start / vm_end / vm_pgoff fields, the
365 * vma must be removed from the anon_vma's interval trees using
366 * anon_vma_interval_tree_pre_update_vma().
368 * After the update, the vma will be reinserted using
369 * anon_vma_interval_tree_post_update_vma().
371 * The entire update must be protected by exclusive mmap_lock and by
372 * the root anon_vma's mutex.
375 anon_vma_interval_tree_pre_update_vma(struct vm_area_struct *vma)
377 struct anon_vma_chain *avc;
379 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
380 anon_vma_interval_tree_remove(avc, &avc->anon_vma->rb_root);
384 anon_vma_interval_tree_post_update_vma(struct vm_area_struct *vma)
386 struct anon_vma_chain *avc;
388 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
389 anon_vma_interval_tree_insert(avc, &avc->anon_vma->rb_root);
392 static unsigned long count_vma_pages_range(struct mm_struct *mm,
393 unsigned long addr, unsigned long end)
395 VMA_ITERATOR(vmi, mm, addr);
396 struct vm_area_struct *vma;
397 unsigned long nr_pages = 0;
399 for_each_vma_range(vmi, vma, end) {
400 unsigned long vm_start = max(addr, vma->vm_start);
401 unsigned long vm_end = min(end, vma->vm_end);
403 nr_pages += PHYS_PFN(vm_end - vm_start);
409 static void __vma_link_file(struct vm_area_struct *vma,
410 struct address_space *mapping)
412 if (vma->vm_flags & VM_SHARED)
413 mapping_allow_writable(mapping);
415 flush_dcache_mmap_lock(mapping);
416 vma_interval_tree_insert(vma, &mapping->i_mmap);
417 flush_dcache_mmap_unlock(mapping);
421 * vma_mas_store() - Store a VMA in the maple tree.
422 * @vma: The vm_area_struct
423 * @mas: The maple state
425 * Efficient way to store a VMA in the maple tree when the @mas has already
426 * walked to the correct location.
428 * Note: the end address is inclusive in the maple tree.
430 void vma_mas_store(struct vm_area_struct *vma, struct ma_state *mas)
432 trace_vma_store(mas->tree, vma);
433 mas_set_range(mas, vma->vm_start, vma->vm_end - 1);
434 mas_store_prealloc(mas, vma);
438 * vma_mas_remove() - Remove a VMA from the maple tree.
439 * @vma: The vm_area_struct
440 * @mas: The maple state
442 * Efficient way to remove a VMA from the maple tree when the @mas has already
443 * been established and points to the correct location.
444 * Note: the end address is inclusive in the maple tree.
446 void vma_mas_remove(struct vm_area_struct *vma, struct ma_state *mas)
448 trace_vma_mas_szero(mas->tree, vma->vm_start, vma->vm_end - 1);
449 mas->index = vma->vm_start;
450 mas->last = vma->vm_end - 1;
451 mas_store_prealloc(mas, NULL);
455 * vma_mas_szero() - Set a given range to zero. Used when modifying a
456 * vm_area_struct start or end.
458 * @mas: The maple tree ma_state
459 * @start: The start address to zero
460 * @end: The end address to zero.
462 static inline void vma_mas_szero(struct ma_state *mas, unsigned long start,
465 trace_vma_mas_szero(mas->tree, start, end - 1);
466 mas_set_range(mas, start, end - 1);
467 mas_store_prealloc(mas, NULL);
470 static int vma_link(struct mm_struct *mm, struct vm_area_struct *vma)
472 MA_STATE(mas, &mm->mm_mt, 0, 0);
473 struct address_space *mapping = NULL;
475 if (mas_preallocate(&mas, vma, GFP_KERNEL))
479 mapping = vma->vm_file->f_mapping;
480 i_mmap_lock_write(mapping);
483 vma_mas_store(vma, &mas);
486 __vma_link_file(vma, mapping);
487 i_mmap_unlock_write(mapping);
496 * vma_expand - Expand an existing VMA
498 * @mas: The maple state
499 * @vma: The vma to expand
500 * @start: The start of the vma
501 * @end: The exclusive end of the vma
502 * @pgoff: The page offset of vma
503 * @next: The current of next vma.
505 * Expand @vma to @start and @end. Can expand off the start and end. Will
506 * expand over @next if it's different from @vma and @end == @next->vm_end.
507 * Checking if the @vma can expand and merge with @next needs to be handled by
510 * Returns: 0 on success
512 inline int vma_expand(struct ma_state *mas, struct vm_area_struct *vma,
513 unsigned long start, unsigned long end, pgoff_t pgoff,
514 struct vm_area_struct *next)
516 struct mm_struct *mm = vma->vm_mm;
517 struct address_space *mapping = NULL;
518 struct rb_root_cached *root = NULL;
519 struct anon_vma *anon_vma = vma->anon_vma;
520 struct file *file = vma->vm_file;
521 bool remove_next = false;
522 struct vm_area_struct *anon_dup = NULL;
524 if (next && (vma != next) && (end == next->vm_end)) {
526 if (next->anon_vma && !vma->anon_vma) {
529 anon_vma = next->anon_vma;
530 vma->anon_vma = anon_vma;
531 error = anon_vma_clone(vma, next);
539 /* Not merging but overwriting any part of next is not handled. */
540 VM_BUG_ON(next && !remove_next && next != vma && end > next->vm_start);
541 /* Only handles expanding */
542 VM_BUG_ON(vma->vm_start < start || vma->vm_end > end);
544 if (mas_preallocate(mas, vma, GFP_KERNEL))
547 vma_adjust_trans_huge(vma, start, end, 0);
550 mapping = file->f_mapping;
551 root = &mapping->i_mmap;
552 uprobe_munmap(vma, vma->vm_start, vma->vm_end);
553 i_mmap_lock_write(mapping);
557 anon_vma_lock_write(anon_vma);
558 anon_vma_interval_tree_pre_update_vma(vma);
562 flush_dcache_mmap_lock(mapping);
563 vma_interval_tree_remove(vma, root);
566 vma->vm_start = start;
568 vma->vm_pgoff = pgoff;
569 /* Note: mas must be pointing to the expanding VMA */
570 vma_mas_store(vma, mas);
573 vma_interval_tree_insert(vma, root);
574 flush_dcache_mmap_unlock(mapping);
577 /* Expanding over the next vma */
578 if (remove_next && file) {
579 __remove_shared_vm_struct(next, file, mapping);
583 anon_vma_interval_tree_post_update_vma(vma);
584 anon_vma_unlock_write(anon_vma);
588 i_mmap_unlock_write(mapping);
594 uprobe_munmap(next, next->vm_start, next->vm_end);
598 anon_vma_merge(vma, next);
600 mpol_put(vma_policy(next));
609 unlink_anon_vmas(anon_dup);
615 * We cannot adjust vm_start, vm_end, vm_pgoff fields of a vma that
616 * is already present in an i_mmap tree without adjusting the tree.
617 * The following helper function should be used when such adjustments
618 * are necessary. The "insert" vma (if any) is to be inserted
619 * before we drop the necessary locks.
621 int __vma_adjust(struct vm_area_struct *vma, unsigned long start,
622 unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert,
623 struct vm_area_struct *expand)
625 struct mm_struct *mm = vma->vm_mm;
626 struct vm_area_struct *next_next = NULL; /* uninit var warning */
627 struct vm_area_struct *next = find_vma(mm, vma->vm_end);
628 struct vm_area_struct *orig_vma = vma;
629 struct address_space *mapping = NULL;
630 struct rb_root_cached *root = NULL;
631 struct anon_vma *anon_vma = NULL;
632 struct file *file = vma->vm_file;
633 bool vma_changed = false;
634 long adjust_next = 0;
636 MA_STATE(mas, &mm->mm_mt, 0, 0);
637 struct vm_area_struct *exporter = NULL, *importer = NULL;
638 struct vm_area_struct *anon_dup = NULL;
640 if (next && !insert) {
641 if (end >= next->vm_end) {
643 * vma expands, overlapping all the next, and
644 * perhaps the one after too (mprotect case 6).
645 * The only other cases that gets here are
646 * case 1, case 7 and case 8.
648 if (next == expand) {
650 * The only case where we don't expand "vma"
651 * and we expand "next" instead is case 8.
653 VM_WARN_ON(end != next->vm_end);
655 * remove_next == 3 means we're
656 * removing "vma" and that to do so we
657 * swapped "vma" and "next".
660 VM_WARN_ON(file != next->vm_file);
663 VM_WARN_ON(expand != vma);
665 * case 1, 6, 7, remove_next == 2 is case 6,
666 * remove_next == 1 is case 1 or 7.
668 remove_next = 1 + (end > next->vm_end);
669 if (remove_next == 2)
670 next_next = find_vma(mm, next->vm_end);
672 VM_WARN_ON(remove_next == 2 &&
673 end != next_next->vm_end);
680 * If next doesn't have anon_vma, import from vma after
681 * next, if the vma overlaps with it.
683 if (remove_next == 2 && !next->anon_vma)
684 exporter = next_next;
686 } else if (end > next->vm_start) {
688 * vma expands, overlapping part of the next:
689 * mprotect case 5 shifting the boundary up.
691 adjust_next = (end - next->vm_start);
694 VM_WARN_ON(expand != importer);
695 } else if (end < vma->vm_end) {
697 * vma shrinks, and !insert tells it's not
698 * split_vma inserting another: so it must be
699 * mprotect case 4 shifting the boundary down.
701 adjust_next = -(vma->vm_end - end);
704 VM_WARN_ON(expand != importer);
708 * Easily overlooked: when mprotect shifts the boundary,
709 * make sure the expanding vma has anon_vma set if the
710 * shrinking vma had, to cover any anon pages imported.
712 if (exporter && exporter->anon_vma && !importer->anon_vma) {
715 importer->anon_vma = exporter->anon_vma;
716 error = anon_vma_clone(importer, exporter);
724 if (mas_preallocate(&mas, vma, GFP_KERNEL)) {
726 unlink_anon_vmas(anon_dup);
731 vma_adjust_trans_huge(orig_vma, start, end, adjust_next);
733 mapping = file->f_mapping;
734 root = &mapping->i_mmap;
735 uprobe_munmap(vma, vma->vm_start, vma->vm_end);
738 uprobe_munmap(next, next->vm_start, next->vm_end);
740 i_mmap_lock_write(mapping);
741 if (insert && insert->vm_file) {
743 * Put into interval tree now, so instantiated pages
744 * are visible to arm/parisc __flush_dcache_page
745 * throughout; but we cannot insert into address
746 * space until vma start or end is updated.
748 __vma_link_file(insert, insert->vm_file->f_mapping);
752 anon_vma = vma->anon_vma;
753 if (!anon_vma && adjust_next)
754 anon_vma = next->anon_vma;
756 VM_WARN_ON(adjust_next && next->anon_vma &&
757 anon_vma != next->anon_vma);
758 anon_vma_lock_write(anon_vma);
759 anon_vma_interval_tree_pre_update_vma(vma);
761 anon_vma_interval_tree_pre_update_vma(next);
765 flush_dcache_mmap_lock(mapping);
766 vma_interval_tree_remove(vma, root);
768 vma_interval_tree_remove(next, root);
771 if (start != vma->vm_start) {
772 if ((vma->vm_start < start) &&
773 (!insert || (insert->vm_end != start))) {
774 vma_mas_szero(&mas, vma->vm_start, start);
775 VM_WARN_ON(insert && insert->vm_start > vma->vm_start);
779 vma->vm_start = start;
781 if (end != vma->vm_end) {
782 if (vma->vm_end > end) {
783 if ((vma->vm_end + adjust_next != end) &&
784 (!insert || (insert->vm_start != end))) {
785 vma_mas_szero(&mas, end, vma->vm_end);
788 insert->vm_end < vma->vm_end);
797 vma_mas_store(vma, &mas);
799 vma->vm_pgoff = pgoff;
801 next->vm_start += adjust_next;
802 next->vm_pgoff += adjust_next >> PAGE_SHIFT;
803 vma_mas_store(next, &mas);
808 vma_interval_tree_insert(next, root);
809 vma_interval_tree_insert(vma, root);
810 flush_dcache_mmap_unlock(mapping);
813 if (remove_next && file) {
814 __remove_shared_vm_struct(next, file, mapping);
815 if (remove_next == 2)
816 __remove_shared_vm_struct(next_next, file, mapping);
819 * split_vma has split insert from vma, and needs
820 * us to insert it before dropping the locks
821 * (it may either follow vma or precede it).
824 vma_mas_store(insert, &mas);
829 anon_vma_interval_tree_post_update_vma(vma);
831 anon_vma_interval_tree_post_update_vma(next);
832 anon_vma_unlock_write(anon_vma);
836 i_mmap_unlock_write(mapping);
846 uprobe_munmap(next, next->vm_start, next->vm_end);
850 anon_vma_merge(vma, next);
852 mpol_put(vma_policy(next));
853 if (remove_next != 2)
854 BUG_ON(vma->vm_end < next->vm_end);
858 * In mprotect's case 6 (see comments on vma_merge),
859 * we must remove next_next too.
861 if (remove_next == 2) {
877 * If the vma has a ->close operation then the driver probably needs to release
878 * per-vma resources, so we don't attempt to merge those.
880 static inline int is_mergeable_vma(struct vm_area_struct *vma,
881 struct file *file, unsigned long vm_flags,
882 struct vm_userfaultfd_ctx vm_userfaultfd_ctx,
883 struct anon_vma_name *anon_name)
886 * VM_SOFTDIRTY should not prevent from VMA merging, if we
887 * match the flags but dirty bit -- the caller should mark
888 * merged VMA as dirty. If dirty bit won't be excluded from
889 * comparison, we increase pressure on the memory system forcing
890 * the kernel to generate new VMAs when old one could be
893 if ((vma->vm_flags ^ vm_flags) & ~VM_SOFTDIRTY)
895 if (vma->vm_file != file)
897 if (vma->vm_ops && vma->vm_ops->close)
899 if (!is_mergeable_vm_userfaultfd_ctx(vma, vm_userfaultfd_ctx))
901 if (!anon_vma_name_eq(anon_vma_name(vma), anon_name))
906 static inline int is_mergeable_anon_vma(struct anon_vma *anon_vma1,
907 struct anon_vma *anon_vma2,
908 struct vm_area_struct *vma)
911 * The list_is_singular() test is to avoid merging VMA cloned from
912 * parents. This can improve scalability caused by anon_vma lock.
914 if ((!anon_vma1 || !anon_vma2) && (!vma ||
915 list_is_singular(&vma->anon_vma_chain)))
917 return anon_vma1 == anon_vma2;
921 * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
922 * in front of (at a lower virtual address and file offset than) the vma.
924 * We cannot merge two vmas if they have differently assigned (non-NULL)
925 * anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
927 * We don't check here for the merged mmap wrapping around the end of pagecache
928 * indices (16TB on ia32) because do_mmap() does not permit mmap's which
929 * wrap, nor mmaps which cover the final page at index -1UL.
932 can_vma_merge_before(struct vm_area_struct *vma, unsigned long vm_flags,
933 struct anon_vma *anon_vma, struct file *file,
935 struct vm_userfaultfd_ctx vm_userfaultfd_ctx,
936 struct anon_vma_name *anon_name)
938 if (is_mergeable_vma(vma, file, vm_flags, vm_userfaultfd_ctx, anon_name) &&
939 is_mergeable_anon_vma(anon_vma, vma->anon_vma, vma)) {
940 if (vma->vm_pgoff == vm_pgoff)
947 * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
948 * beyond (at a higher virtual address and file offset than) the vma.
950 * We cannot merge two vmas if they have differently assigned (non-NULL)
951 * anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
954 can_vma_merge_after(struct vm_area_struct *vma, unsigned long vm_flags,
955 struct anon_vma *anon_vma, struct file *file,
957 struct vm_userfaultfd_ctx vm_userfaultfd_ctx,
958 struct anon_vma_name *anon_name)
960 if (is_mergeable_vma(vma, file, vm_flags, vm_userfaultfd_ctx, anon_name) &&
961 is_mergeable_anon_vma(anon_vma, vma->anon_vma, vma)) {
963 vm_pglen = vma_pages(vma);
964 if (vma->vm_pgoff + vm_pglen == vm_pgoff)
971 * Given a mapping request (addr,end,vm_flags,file,pgoff,anon_name),
972 * figure out whether that can be merged with its predecessor or its
973 * successor. Or both (it neatly fills a hole).
975 * In most cases - when called for mmap, brk or mremap - [addr,end) is
976 * certain not to be mapped by the time vma_merge is called; but when
977 * called for mprotect, it is certain to be already mapped (either at
978 * an offset within prev, or at the start of next), and the flags of
979 * this area are about to be changed to vm_flags - and the no-change
980 * case has already been eliminated.
982 * The following mprotect cases have to be considered, where AAAA is
983 * the area passed down from mprotect_fixup, never extending beyond one
984 * vma, PPPPPP is the prev vma specified, and NNNNNN the next vma after:
987 * PPPPPPNNNNNN PPPPPPNNNNNN PPPPPPNNNNNN
988 * cannot merge might become might become
989 * PPNNNNNNNNNN PPPPPPPPPPNN
990 * mmap, brk or case 4 below case 5 below
993 * PPPP NNNN PPPPNNNNXXXX
994 * might become might become
995 * PPPPPPPPPPPP 1 or PPPPPPPPPPPP 6 or
996 * PPPPPPPPNNNN 2 or PPPPPPPPXXXX 7 or
997 * PPPPNNNNNNNN 3 PPPPXXXXXXXX 8
999 * It is important for case 8 that the vma NNNN overlapping the
1000 * region AAAA is never going to extended over XXXX. Instead XXXX must
1001 * be extended in region AAAA and NNNN must be removed. This way in
1002 * all cases where vma_merge succeeds, the moment vma_adjust drops the
1003 * rmap_locks, the properties of the merged vma will be already
1004 * correct for the whole merged range. Some of those properties like
1005 * vm_page_prot/vm_flags may be accessed by rmap_walks and they must
1006 * be correct for the whole merged range immediately after the
1007 * rmap_locks are released. Otherwise if XXXX would be removed and
1008 * NNNN would be extended over the XXXX range, remove_migration_ptes
1009 * or other rmap walkers (if working on addresses beyond the "end"
1010 * parameter) may establish ptes with the wrong permissions of NNNN
1011 * instead of the right permissions of XXXX.
1013 struct vm_area_struct *vma_merge(struct mm_struct *mm,
1014 struct vm_area_struct *prev, unsigned long addr,
1015 unsigned long end, unsigned long vm_flags,
1016 struct anon_vma *anon_vma, struct file *file,
1017 pgoff_t pgoff, struct mempolicy *policy,
1018 struct vm_userfaultfd_ctx vm_userfaultfd_ctx,
1019 struct anon_vma_name *anon_name)
1021 pgoff_t pglen = (end - addr) >> PAGE_SHIFT;
1022 struct vm_area_struct *mid, *next, *res;
1024 bool merge_prev = false;
1025 bool merge_next = false;
1028 * We later require that vma->vm_flags == vm_flags,
1029 * so this tests vma->vm_flags & VM_SPECIAL, too.
1031 if (vm_flags & VM_SPECIAL)
1034 next = find_vma(mm, prev ? prev->vm_end : 0);
1036 if (next && next->vm_end == end) /* cases 6, 7, 8 */
1037 next = find_vma(mm, next->vm_end);
1039 /* verify some invariant that must be enforced by the caller */
1040 VM_WARN_ON(prev && addr <= prev->vm_start);
1041 VM_WARN_ON(mid && end > mid->vm_end);
1042 VM_WARN_ON(addr >= end);
1044 /* Can we merge the predecessor? */
1045 if (prev && prev->vm_end == addr &&
1046 mpol_equal(vma_policy(prev), policy) &&
1047 can_vma_merge_after(prev, vm_flags,
1048 anon_vma, file, pgoff,
1049 vm_userfaultfd_ctx, anon_name)) {
1052 /* Can we merge the successor? */
1053 if (next && end == next->vm_start &&
1054 mpol_equal(policy, vma_policy(next)) &&
1055 can_vma_merge_before(next, vm_flags,
1056 anon_vma, file, pgoff+pglen,
1057 vm_userfaultfd_ctx, anon_name)) {
1060 /* Can we merge both the predecessor and the successor? */
1061 if (merge_prev && merge_next &&
1062 is_mergeable_anon_vma(prev->anon_vma,
1063 next->anon_vma, NULL)) { /* cases 1, 6 */
1064 err = __vma_adjust(prev, prev->vm_start,
1065 next->vm_end, prev->vm_pgoff, NULL,
1068 } else if (merge_prev) { /* cases 2, 5, 7 */
1069 err = __vma_adjust(prev, prev->vm_start,
1070 end, prev->vm_pgoff, NULL, prev);
1072 } else if (merge_next) {
1073 if (prev && addr < prev->vm_end) /* case 4 */
1074 err = __vma_adjust(prev, prev->vm_start,
1075 addr, prev->vm_pgoff, NULL, next);
1076 else /* cases 3, 8 */
1077 err = __vma_adjust(mid, addr, next->vm_end,
1078 next->vm_pgoff - pglen, NULL, next);
1083 * Cannot merge with predecessor or successor or error in __vma_adjust?
1087 khugepaged_enter_vma(res, vm_flags);
1092 * Rough compatibility check to quickly see if it's even worth looking
1093 * at sharing an anon_vma.
1095 * They need to have the same vm_file, and the flags can only differ
1096 * in things that mprotect may change.
1098 * NOTE! The fact that we share an anon_vma doesn't _have_ to mean that
1099 * we can merge the two vma's. For example, we refuse to merge a vma if
1100 * there is a vm_ops->close() function, because that indicates that the
1101 * driver is doing some kind of reference counting. But that doesn't
1102 * really matter for the anon_vma sharing case.
1104 static int anon_vma_compatible(struct vm_area_struct *a, struct vm_area_struct *b)
1106 return a->vm_end == b->vm_start &&
1107 mpol_equal(vma_policy(a), vma_policy(b)) &&
1108 a->vm_file == b->vm_file &&
1109 !((a->vm_flags ^ b->vm_flags) & ~(VM_ACCESS_FLAGS | VM_SOFTDIRTY)) &&
1110 b->vm_pgoff == a->vm_pgoff + ((b->vm_start - a->vm_start) >> PAGE_SHIFT);
1114 * Do some basic sanity checking to see if we can re-use the anon_vma
1115 * from 'old'. The 'a'/'b' vma's are in VM order - one of them will be
1116 * the same as 'old', the other will be the new one that is trying
1117 * to share the anon_vma.
1119 * NOTE! This runs with mmap_lock held for reading, so it is possible that
1120 * the anon_vma of 'old' is concurrently in the process of being set up
1121 * by another page fault trying to merge _that_. But that's ok: if it
1122 * is being set up, that automatically means that it will be a singleton
1123 * acceptable for merging, so we can do all of this optimistically. But
1124 * we do that READ_ONCE() to make sure that we never re-load the pointer.
1126 * IOW: that the "list_is_singular()" test on the anon_vma_chain only
1127 * matters for the 'stable anon_vma' case (ie the thing we want to avoid
1128 * is to return an anon_vma that is "complex" due to having gone through
1131 * We also make sure that the two vma's are compatible (adjacent,
1132 * and with the same memory policies). That's all stable, even with just
1133 * a read lock on the mmap_lock.
1135 static struct anon_vma *reusable_anon_vma(struct vm_area_struct *old, struct vm_area_struct *a, struct vm_area_struct *b)
1137 if (anon_vma_compatible(a, b)) {
1138 struct anon_vma *anon_vma = READ_ONCE(old->anon_vma);
1140 if (anon_vma && list_is_singular(&old->anon_vma_chain))
1147 * find_mergeable_anon_vma is used by anon_vma_prepare, to check
1148 * neighbouring vmas for a suitable anon_vma, before it goes off
1149 * to allocate a new anon_vma. It checks because a repetitive
1150 * sequence of mprotects and faults may otherwise lead to distinct
1151 * anon_vmas being allocated, preventing vma merge in subsequent
1154 struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *vma)
1156 MA_STATE(mas, &vma->vm_mm->mm_mt, vma->vm_end, vma->vm_end);
1157 struct anon_vma *anon_vma = NULL;
1158 struct vm_area_struct *prev, *next;
1160 /* Try next first. */
1161 next = mas_walk(&mas);
1163 anon_vma = reusable_anon_vma(next, vma, next);
1168 prev = mas_prev(&mas, 0);
1169 VM_BUG_ON_VMA(prev != vma, vma);
1170 prev = mas_prev(&mas, 0);
1171 /* Try prev next. */
1173 anon_vma = reusable_anon_vma(prev, prev, vma);
1176 * We might reach here with anon_vma == NULL if we can't find
1177 * any reusable anon_vma.
1178 * There's no absolute need to look only at touching neighbours:
1179 * we could search further afield for "compatible" anon_vmas.
1180 * But it would probably just be a waste of time searching,
1181 * or lead to too many vmas hanging off the same anon_vma.
1182 * We're trying to allow mprotect remerging later on,
1183 * not trying to minimize memory used for anon_vmas.
1189 * If a hint addr is less than mmap_min_addr change hint to be as
1190 * low as possible but still greater than mmap_min_addr
1192 static inline unsigned long round_hint_to_min(unsigned long hint)
1195 if (((void *)hint != NULL) &&
1196 (hint < mmap_min_addr))
1197 return PAGE_ALIGN(mmap_min_addr);
1201 int mlock_future_check(struct mm_struct *mm, unsigned long flags,
1204 unsigned long locked, lock_limit;
1206 /* mlock MCL_FUTURE? */
1207 if (flags & VM_LOCKED) {
1208 locked = len >> PAGE_SHIFT;
1209 locked += mm->locked_vm;
1210 lock_limit = rlimit(RLIMIT_MEMLOCK);
1211 lock_limit >>= PAGE_SHIFT;
1212 if (locked > lock_limit && !capable(CAP_IPC_LOCK))
1218 static inline u64 file_mmap_size_max(struct file *file, struct inode *inode)
1220 if (S_ISREG(inode->i_mode))
1221 return MAX_LFS_FILESIZE;
1223 if (S_ISBLK(inode->i_mode))
1224 return MAX_LFS_FILESIZE;
1226 if (S_ISSOCK(inode->i_mode))
1227 return MAX_LFS_FILESIZE;
1229 /* Special "we do even unsigned file positions" case */
1230 if (file->f_mode & FMODE_UNSIGNED_OFFSET)
1233 /* Yes, random drivers might want more. But I'm tired of buggy drivers */
1237 static inline bool file_mmap_ok(struct file *file, struct inode *inode,
1238 unsigned long pgoff, unsigned long len)
1240 u64 maxsize = file_mmap_size_max(file, inode);
1242 if (maxsize && len > maxsize)
1245 if (pgoff > maxsize >> PAGE_SHIFT)
1251 * The caller must write-lock current->mm->mmap_lock.
1253 unsigned long do_mmap(struct file *file, unsigned long addr,
1254 unsigned long len, unsigned long prot,
1255 unsigned long flags, unsigned long pgoff,
1256 unsigned long *populate, struct list_head *uf)
1258 struct mm_struct *mm = current->mm;
1259 vm_flags_t vm_flags;
1269 * Does the application expect PROT_READ to imply PROT_EXEC?
1271 * (the exception is when the underlying filesystem is noexec
1272 * mounted, in which case we dont add PROT_EXEC.)
1274 if ((prot & PROT_READ) && (current->personality & READ_IMPLIES_EXEC))
1275 if (!(file && path_noexec(&file->f_path)))
1278 /* force arch specific MAP_FIXED handling in get_unmapped_area */
1279 if (flags & MAP_FIXED_NOREPLACE)
1282 if (!(flags & MAP_FIXED))
1283 addr = round_hint_to_min(addr);
1285 /* Careful about overflows.. */
1286 len = PAGE_ALIGN(len);
1290 /* offset overflow? */
1291 if ((pgoff + (len >> PAGE_SHIFT)) < pgoff)
1294 /* Too many mappings? */
1295 if (mm->map_count > sysctl_max_map_count)
1298 /* Obtain the address to map to. we verify (or select) it and ensure
1299 * that it represents a valid section of the address space.
1301 addr = get_unmapped_area(file, addr, len, pgoff, flags);
1302 if (IS_ERR_VALUE(addr))
1305 if (flags & MAP_FIXED_NOREPLACE) {
1306 if (find_vma_intersection(mm, addr, addr + len))
1310 if (prot == PROT_EXEC) {
1311 pkey = execute_only_pkey(mm);
1316 /* Do simple checking here so the lower-level routines won't have
1317 * to. we assume access permissions have been handled by the open
1318 * of the memory object, so we don't do any here.
1320 vm_flags = calc_vm_prot_bits(prot, pkey) | calc_vm_flag_bits(flags) |
1321 mm->def_flags | VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC;
1323 if (flags & MAP_LOCKED)
1324 if (!can_do_mlock())
1327 if (mlock_future_check(mm, vm_flags, len))
1331 struct inode *inode = file_inode(file);
1332 unsigned long flags_mask;
1334 if (!file_mmap_ok(file, inode, pgoff, len))
1337 flags_mask = LEGACY_MAP_MASK | file->f_op->mmap_supported_flags;
1339 switch (flags & MAP_TYPE) {
1342 * Force use of MAP_SHARED_VALIDATE with non-legacy
1343 * flags. E.g. MAP_SYNC is dangerous to use with
1344 * MAP_SHARED as you don't know which consistency model
1345 * you will get. We silently ignore unsupported flags
1346 * with MAP_SHARED to preserve backward compatibility.
1348 flags &= LEGACY_MAP_MASK;
1350 case MAP_SHARED_VALIDATE:
1351 if (flags & ~flags_mask)
1353 if (prot & PROT_WRITE) {
1354 if (!(file->f_mode & FMODE_WRITE))
1356 if (IS_SWAPFILE(file->f_mapping->host))
1361 * Make sure we don't allow writing to an append-only
1364 if (IS_APPEND(inode) && (file->f_mode & FMODE_WRITE))
1367 vm_flags |= VM_SHARED | VM_MAYSHARE;
1368 if (!(file->f_mode & FMODE_WRITE))
1369 vm_flags &= ~(VM_MAYWRITE | VM_SHARED);
1372 if (!(file->f_mode & FMODE_READ))
1374 if (path_noexec(&file->f_path)) {
1375 if (vm_flags & VM_EXEC)
1377 vm_flags &= ~VM_MAYEXEC;
1380 if (!file->f_op->mmap)
1382 if (vm_flags & (VM_GROWSDOWN|VM_GROWSUP))
1390 switch (flags & MAP_TYPE) {
1392 if (vm_flags & (VM_GROWSDOWN|VM_GROWSUP))
1398 vm_flags |= VM_SHARED | VM_MAYSHARE;
1402 * Set pgoff according to addr for anon_vma.
1404 pgoff = addr >> PAGE_SHIFT;
1412 * Set 'VM_NORESERVE' if we should not account for the
1413 * memory use of this mapping.
1415 if (flags & MAP_NORESERVE) {
1416 /* We honor MAP_NORESERVE if allowed to overcommit */
1417 if (sysctl_overcommit_memory != OVERCOMMIT_NEVER)
1418 vm_flags |= VM_NORESERVE;
1420 /* hugetlb applies strict overcommit unless MAP_NORESERVE */
1421 if (file && is_file_hugepages(file))
1422 vm_flags |= VM_NORESERVE;
1425 addr = mmap_region(file, addr, len, vm_flags, pgoff, uf);
1426 if (!IS_ERR_VALUE(addr) &&
1427 ((vm_flags & VM_LOCKED) ||
1428 (flags & (MAP_POPULATE | MAP_NONBLOCK)) == MAP_POPULATE))
1433 unsigned long ksys_mmap_pgoff(unsigned long addr, unsigned long len,
1434 unsigned long prot, unsigned long flags,
1435 unsigned long fd, unsigned long pgoff)
1437 struct file *file = NULL;
1438 unsigned long retval;
1440 if (!(flags & MAP_ANONYMOUS)) {
1441 audit_mmap_fd(fd, flags);
1445 if (is_file_hugepages(file)) {
1446 len = ALIGN(len, huge_page_size(hstate_file(file)));
1447 } else if (unlikely(flags & MAP_HUGETLB)) {
1451 } else if (flags & MAP_HUGETLB) {
1454 hs = hstate_sizelog((flags >> MAP_HUGE_SHIFT) & MAP_HUGE_MASK);
1458 len = ALIGN(len, huge_page_size(hs));
1460 * VM_NORESERVE is used because the reservations will be
1461 * taken when vm_ops->mmap() is called
1463 file = hugetlb_file_setup(HUGETLB_ANON_FILE, len,
1465 HUGETLB_ANONHUGE_INODE,
1466 (flags >> MAP_HUGE_SHIFT) & MAP_HUGE_MASK);
1468 return PTR_ERR(file);
1471 retval = vm_mmap_pgoff(file, addr, len, prot, flags, pgoff);
1478 SYSCALL_DEFINE6(mmap_pgoff, unsigned long, addr, unsigned long, len,
1479 unsigned long, prot, unsigned long, flags,
1480 unsigned long, fd, unsigned long, pgoff)
1482 return ksys_mmap_pgoff(addr, len, prot, flags, fd, pgoff);
1485 #ifdef __ARCH_WANT_SYS_OLD_MMAP
1486 struct mmap_arg_struct {
1490 unsigned long flags;
1492 unsigned long offset;
1495 SYSCALL_DEFINE1(old_mmap, struct mmap_arg_struct __user *, arg)
1497 struct mmap_arg_struct a;
1499 if (copy_from_user(&a, arg, sizeof(a)))
1501 if (offset_in_page(a.offset))
1504 return ksys_mmap_pgoff(a.addr, a.len, a.prot, a.flags, a.fd,
1505 a.offset >> PAGE_SHIFT);
1507 #endif /* __ARCH_WANT_SYS_OLD_MMAP */
1510 * Some shared mappings will want the pages marked read-only
1511 * to track write events. If so, we'll downgrade vm_page_prot
1512 * to the private version (using protection_map[] without the
1515 int vma_wants_writenotify(struct vm_area_struct *vma, pgprot_t vm_page_prot)
1517 vm_flags_t vm_flags = vma->vm_flags;
1518 const struct vm_operations_struct *vm_ops = vma->vm_ops;
1520 /* If it was private or non-writable, the write bit is already clear */
1521 if ((vm_flags & (VM_WRITE|VM_SHARED)) != ((VM_WRITE|VM_SHARED)))
1524 /* The backer wishes to know when pages are first written to? */
1525 if (vm_ops && (vm_ops->page_mkwrite || vm_ops->pfn_mkwrite))
1528 /* The open routine did something to the protections that pgprot_modify
1529 * won't preserve? */
1530 if (pgprot_val(vm_page_prot) !=
1531 pgprot_val(vm_pgprot_modify(vm_page_prot, vm_flags)))
1535 * Do we need to track softdirty? hugetlb does not support softdirty
1538 if (vma_soft_dirty_enabled(vma) && !is_vm_hugetlb_page(vma))
1541 /* Do we need write faults for uffd-wp tracking? */
1542 if (userfaultfd_wp(vma))
1545 /* Specialty mapping? */
1546 if (vm_flags & VM_PFNMAP)
1549 /* Can the mapping track the dirty pages? */
1550 return vma->vm_file && vma->vm_file->f_mapping &&
1551 mapping_can_writeback(vma->vm_file->f_mapping);
1555 * We account for memory if it's a private writeable mapping,
1556 * not hugepages and VM_NORESERVE wasn't set.
1558 static inline int accountable_mapping(struct file *file, vm_flags_t vm_flags)
1561 * hugetlb has its own accounting separate from the core VM
1562 * VM_HUGETLB may not be set yet so we cannot check for that flag.
1564 if (file && is_file_hugepages(file))
1567 return (vm_flags & (VM_NORESERVE | VM_SHARED | VM_WRITE)) == VM_WRITE;
1571 * unmapped_area() - Find an area between the low_limit and the high_limit with
1572 * the correct alignment and offset, all from @info. Note: current->mm is used
1575 * @info: The unmapped area information including the range (low_limit -
1576 * hight_limit), the alignment offset and mask.
1578 * Return: A memory address or -ENOMEM.
1580 static unsigned long unmapped_area(struct vm_unmapped_area_info *info)
1582 unsigned long length, gap, low_limit;
1583 struct vm_area_struct *tmp;
1585 MA_STATE(mas, ¤t->mm->mm_mt, 0, 0);
1587 /* Adjust search length to account for worst case alignment overhead */
1588 length = info->length + info->align_mask;
1589 if (length < info->length)
1592 low_limit = info->low_limit;
1594 if (mas_empty_area(&mas, low_limit, info->high_limit - 1, length))
1598 gap += (info->align_offset - gap) & info->align_mask;
1599 tmp = mas_next(&mas, ULONG_MAX);
1600 if (tmp && (tmp->vm_flags & VM_GROWSDOWN)) { /* Avoid prev check if possible */
1601 if (vm_start_gap(tmp) < gap + length - 1) {
1602 low_limit = tmp->vm_end;
1607 tmp = mas_prev(&mas, 0);
1608 if (tmp && vm_end_gap(tmp) > gap) {
1609 low_limit = vm_end_gap(tmp);
1619 * unmapped_area_topdown() - Find an area between the low_limit and the
1620 * high_limit with * the correct alignment and offset at the highest available
1621 * address, all from @info. Note: current->mm is used for the search.
1623 * @info: The unmapped area information including the range (low_limit -
1624 * hight_limit), the alignment offset and mask.
1626 * Return: A memory address or -ENOMEM.
1628 static unsigned long unmapped_area_topdown(struct vm_unmapped_area_info *info)
1630 unsigned long length, gap, high_limit, gap_end;
1631 struct vm_area_struct *tmp;
1633 MA_STATE(mas, ¤t->mm->mm_mt, 0, 0);
1634 /* Adjust search length to account for worst case alignment overhead */
1635 length = info->length + info->align_mask;
1636 if (length < info->length)
1639 high_limit = info->high_limit;
1641 if (mas_empty_area_rev(&mas, info->low_limit, high_limit - 1,
1645 gap = mas.last + 1 - info->length;
1646 gap -= (gap - info->align_offset) & info->align_mask;
1648 tmp = mas_next(&mas, ULONG_MAX);
1649 if (tmp && (tmp->vm_flags & VM_GROWSDOWN)) { /* Avoid prev check if possible */
1650 if (vm_start_gap(tmp) <= gap_end) {
1651 high_limit = vm_start_gap(tmp);
1656 tmp = mas_prev(&mas, 0);
1657 if (tmp && vm_end_gap(tmp) > gap) {
1658 high_limit = tmp->vm_start;
1668 * Search for an unmapped address range.
1670 * We are looking for a range that:
1671 * - does not intersect with any VMA;
1672 * - is contained within the [low_limit, high_limit) interval;
1673 * - is at least the desired size.
1674 * - satisfies (begin_addr & align_mask) == (align_offset & align_mask)
1676 unsigned long vm_unmapped_area(struct vm_unmapped_area_info *info)
1680 if (info->flags & VM_UNMAPPED_AREA_TOPDOWN)
1681 addr = unmapped_area_topdown(info);
1683 addr = unmapped_area(info);
1685 trace_vm_unmapped_area(addr, info);
1689 /* Get an address range which is currently unmapped.
1690 * For shmat() with addr=0.
1692 * Ugly calling convention alert:
1693 * Return value with the low bits set means error value,
1695 * if (ret & ~PAGE_MASK)
1698 * This function "knows" that -ENOMEM has the bits set.
1701 generic_get_unmapped_area(struct file *filp, unsigned long addr,
1702 unsigned long len, unsigned long pgoff,
1703 unsigned long flags)
1705 struct mm_struct *mm = current->mm;
1706 struct vm_area_struct *vma, *prev;
1707 struct vm_unmapped_area_info info;
1708 const unsigned long mmap_end = arch_get_mmap_end(addr, len, flags);
1710 if (len > mmap_end - mmap_min_addr)
1713 if (flags & MAP_FIXED)
1717 addr = PAGE_ALIGN(addr);
1718 vma = find_vma_prev(mm, addr, &prev);
1719 if (mmap_end - len >= addr && addr >= mmap_min_addr &&
1720 (!vma || addr + len <= vm_start_gap(vma)) &&
1721 (!prev || addr >= vm_end_gap(prev)))
1727 info.low_limit = mm->mmap_base;
1728 info.high_limit = mmap_end;
1729 info.align_mask = 0;
1730 info.align_offset = 0;
1731 return vm_unmapped_area(&info);
1734 #ifndef HAVE_ARCH_UNMAPPED_AREA
1736 arch_get_unmapped_area(struct file *filp, unsigned long addr,
1737 unsigned long len, unsigned long pgoff,
1738 unsigned long flags)
1740 return generic_get_unmapped_area(filp, addr, len, pgoff, flags);
1745 * This mmap-allocator allocates new areas top-down from below the
1746 * stack's low limit (the base):
1749 generic_get_unmapped_area_topdown(struct file *filp, unsigned long addr,
1750 unsigned long len, unsigned long pgoff,
1751 unsigned long flags)
1753 struct vm_area_struct *vma, *prev;
1754 struct mm_struct *mm = current->mm;
1755 struct vm_unmapped_area_info info;
1756 const unsigned long mmap_end = arch_get_mmap_end(addr, len, flags);
1758 /* requested length too big for entire address space */
1759 if (len > mmap_end - mmap_min_addr)
1762 if (flags & MAP_FIXED)
1765 /* requesting a specific address */
1767 addr = PAGE_ALIGN(addr);
1768 vma = find_vma_prev(mm, addr, &prev);
1769 if (mmap_end - len >= addr && addr >= mmap_min_addr &&
1770 (!vma || addr + len <= vm_start_gap(vma)) &&
1771 (!prev || addr >= vm_end_gap(prev)))
1775 info.flags = VM_UNMAPPED_AREA_TOPDOWN;
1777 info.low_limit = max(PAGE_SIZE, mmap_min_addr);
1778 info.high_limit = arch_get_mmap_base(addr, mm->mmap_base);
1779 info.align_mask = 0;
1780 info.align_offset = 0;
1781 addr = vm_unmapped_area(&info);
1784 * A failed mmap() very likely causes application failure,
1785 * so fall back to the bottom-up function here. This scenario
1786 * can happen with large stack limits and large mmap()
1789 if (offset_in_page(addr)) {
1790 VM_BUG_ON(addr != -ENOMEM);
1792 info.low_limit = TASK_UNMAPPED_BASE;
1793 info.high_limit = mmap_end;
1794 addr = vm_unmapped_area(&info);
1800 #ifndef HAVE_ARCH_UNMAPPED_AREA_TOPDOWN
1802 arch_get_unmapped_area_topdown(struct file *filp, unsigned long addr,
1803 unsigned long len, unsigned long pgoff,
1804 unsigned long flags)
1806 return generic_get_unmapped_area_topdown(filp, addr, len, pgoff, flags);
1811 get_unmapped_area(struct file *file, unsigned long addr, unsigned long len,
1812 unsigned long pgoff, unsigned long flags)
1814 unsigned long (*get_area)(struct file *, unsigned long,
1815 unsigned long, unsigned long, unsigned long);
1817 unsigned long error = arch_mmap_check(addr, len, flags);
1821 /* Careful about overflows.. */
1822 if (len > TASK_SIZE)
1825 get_area = current->mm->get_unmapped_area;
1827 if (file->f_op->get_unmapped_area)
1828 get_area = file->f_op->get_unmapped_area;
1829 } else if (flags & MAP_SHARED) {
1831 * mmap_region() will call shmem_zero_setup() to create a file,
1832 * so use shmem's get_unmapped_area in case it can be huge.
1833 * do_mmap() will clear pgoff, so match alignment.
1836 get_area = shmem_get_unmapped_area;
1839 addr = get_area(file, addr, len, pgoff, flags);
1840 if (IS_ERR_VALUE(addr))
1843 if (addr > TASK_SIZE - len)
1845 if (offset_in_page(addr))
1848 error = security_mmap_addr(addr);
1849 return error ? error : addr;
1852 EXPORT_SYMBOL(get_unmapped_area);
1855 * find_vma_intersection() - Look up the first VMA which intersects the interval
1856 * @mm: The process address space.
1857 * @start_addr: The inclusive start user address.
1858 * @end_addr: The exclusive end user address.
1860 * Returns: The first VMA within the provided range, %NULL otherwise. Assumes
1861 * start_addr < end_addr.
1863 struct vm_area_struct *find_vma_intersection(struct mm_struct *mm,
1864 unsigned long start_addr,
1865 unsigned long end_addr)
1867 unsigned long index = start_addr;
1869 mmap_assert_locked(mm);
1870 return mt_find(&mm->mm_mt, &index, end_addr - 1);
1872 EXPORT_SYMBOL(find_vma_intersection);
1875 * find_vma() - Find the VMA for a given address, or the next VMA.
1876 * @mm: The mm_struct to check
1877 * @addr: The address
1879 * Returns: The VMA associated with addr, or the next VMA.
1880 * May return %NULL in the case of no VMA at addr or above.
1882 struct vm_area_struct *find_vma(struct mm_struct *mm, unsigned long addr)
1884 unsigned long index = addr;
1886 mmap_assert_locked(mm);
1887 return mt_find(&mm->mm_mt, &index, ULONG_MAX);
1889 EXPORT_SYMBOL(find_vma);
1892 * find_vma_prev() - Find the VMA for a given address, or the next vma and
1893 * set %pprev to the previous VMA, if any.
1894 * @mm: The mm_struct to check
1895 * @addr: The address
1896 * @pprev: The pointer to set to the previous VMA
1898 * Note that RCU lock is missing here since the external mmap_lock() is used
1901 * Returns: The VMA associated with @addr, or the next vma.
1902 * May return %NULL in the case of no vma at addr or above.
1904 struct vm_area_struct *
1905 find_vma_prev(struct mm_struct *mm, unsigned long addr,
1906 struct vm_area_struct **pprev)
1908 struct vm_area_struct *vma;
1909 MA_STATE(mas, &mm->mm_mt, addr, addr);
1911 vma = mas_walk(&mas);
1912 *pprev = mas_prev(&mas, 0);
1914 vma = mas_next(&mas, ULONG_MAX);
1919 * Verify that the stack growth is acceptable and
1920 * update accounting. This is shared with both the
1921 * grow-up and grow-down cases.
1923 static int acct_stack_growth(struct vm_area_struct *vma,
1924 unsigned long size, unsigned long grow)
1926 struct mm_struct *mm = vma->vm_mm;
1927 unsigned long new_start;
1929 /* address space limit tests */
1930 if (!may_expand_vm(mm, vma->vm_flags, grow))
1933 /* Stack limit test */
1934 if (size > rlimit(RLIMIT_STACK))
1937 /* mlock limit tests */
1938 if (mlock_future_check(mm, vma->vm_flags, grow << PAGE_SHIFT))
1941 /* Check to ensure the stack will not grow into a hugetlb-only region */
1942 new_start = (vma->vm_flags & VM_GROWSUP) ? vma->vm_start :
1944 if (is_hugepage_only_range(vma->vm_mm, new_start, size))
1948 * Overcommit.. This must be the final test, as it will
1949 * update security statistics.
1951 if (security_vm_enough_memory_mm(mm, grow))
1957 #if defined(CONFIG_STACK_GROWSUP) || defined(CONFIG_IA64)
1959 * PA-RISC uses this for its stack; IA64 for its Register Backing Store.
1960 * vma is the last one with address > vma->vm_end. Have to extend vma.
1962 static int expand_upwards(struct vm_area_struct *vma, unsigned long address)
1964 struct mm_struct *mm = vma->vm_mm;
1965 struct vm_area_struct *next;
1966 unsigned long gap_addr;
1968 MA_STATE(mas, &mm->mm_mt, 0, 0);
1970 if (!(vma->vm_flags & VM_GROWSUP))
1973 /* Guard against exceeding limits of the address space. */
1974 address &= PAGE_MASK;
1975 if (address >= (TASK_SIZE & PAGE_MASK))
1977 address += PAGE_SIZE;
1979 /* Enforce stack_guard_gap */
1980 gap_addr = address + stack_guard_gap;
1982 /* Guard against overflow */
1983 if (gap_addr < address || gap_addr > TASK_SIZE)
1984 gap_addr = TASK_SIZE;
1986 next = find_vma_intersection(mm, vma->vm_end, gap_addr);
1987 if (next && vma_is_accessible(next)) {
1988 if (!(next->vm_flags & VM_GROWSUP))
1990 /* Check that both stack segments have the same anon_vma? */
1993 if (mas_preallocate(&mas, vma, GFP_KERNEL))
1996 /* We must make sure the anon_vma is allocated. */
1997 if (unlikely(anon_vma_prepare(vma))) {
2003 * vma->vm_start/vm_end cannot change under us because the caller
2004 * is required to hold the mmap_lock in read mode. We need the
2005 * anon_vma lock to serialize against concurrent expand_stacks.
2007 anon_vma_lock_write(vma->anon_vma);
2009 /* Somebody else might have raced and expanded it already */
2010 if (address > vma->vm_end) {
2011 unsigned long size, grow;
2013 size = address - vma->vm_start;
2014 grow = (address - vma->vm_end) >> PAGE_SHIFT;
2017 if (vma->vm_pgoff + (size >> PAGE_SHIFT) >= vma->vm_pgoff) {
2018 error = acct_stack_growth(vma, size, grow);
2021 * We only hold a shared mmap_lock lock here, so
2022 * we need to protect against concurrent vma
2023 * expansions. anon_vma_lock_write() doesn't
2024 * help here, as we don't guarantee that all
2025 * growable vmas in a mm share the same root
2026 * anon vma. So, we reuse mm->page_table_lock
2027 * to guard against concurrent vma expansions.
2029 spin_lock(&mm->page_table_lock);
2030 if (vma->vm_flags & VM_LOCKED)
2031 mm->locked_vm += grow;
2032 vm_stat_account(mm, vma->vm_flags, grow);
2033 anon_vma_interval_tree_pre_update_vma(vma);
2034 vma->vm_end = address;
2035 /* Overwrite old entry in mtree. */
2036 vma_mas_store(vma, &mas);
2037 anon_vma_interval_tree_post_update_vma(vma);
2038 spin_unlock(&mm->page_table_lock);
2040 perf_event_mmap(vma);
2044 anon_vma_unlock_write(vma->anon_vma);
2045 khugepaged_enter_vma(vma, vma->vm_flags);
2049 #endif /* CONFIG_STACK_GROWSUP || CONFIG_IA64 */
2052 * vma is the first one with address < vma->vm_start. Have to extend vma.
2053 * mmap_lock held for writing.
2055 int expand_downwards(struct vm_area_struct *vma, unsigned long address)
2057 struct mm_struct *mm = vma->vm_mm;
2058 MA_STATE(mas, &mm->mm_mt, vma->vm_start, vma->vm_start);
2059 struct vm_area_struct *prev;
2062 if (!(vma->vm_flags & VM_GROWSDOWN))
2065 address &= PAGE_MASK;
2066 if (address < mmap_min_addr || address < FIRST_USER_ADDRESS)
2069 /* Enforce stack_guard_gap */
2070 prev = mas_prev(&mas, 0);
2071 /* Check that both stack segments have the same anon_vma? */
2073 if (!(prev->vm_flags & VM_GROWSDOWN) &&
2074 vma_is_accessible(prev) &&
2075 (address - prev->vm_end < stack_guard_gap))
2079 if (mas_preallocate(&mas, vma, GFP_KERNEL))
2082 /* We must make sure the anon_vma is allocated. */
2083 if (unlikely(anon_vma_prepare(vma))) {
2089 * vma->vm_start/vm_end cannot change under us because the caller
2090 * is required to hold the mmap_lock in read mode. We need the
2091 * anon_vma lock to serialize against concurrent expand_stacks.
2093 anon_vma_lock_write(vma->anon_vma);
2095 /* Somebody else might have raced and expanded it already */
2096 if (address < vma->vm_start) {
2097 unsigned long size, grow;
2099 size = vma->vm_end - address;
2100 grow = (vma->vm_start - address) >> PAGE_SHIFT;
2103 if (grow <= vma->vm_pgoff) {
2104 error = acct_stack_growth(vma, size, grow);
2107 * We only hold a shared mmap_lock lock here, so
2108 * we need to protect against concurrent vma
2109 * expansions. anon_vma_lock_write() doesn't
2110 * help here, as we don't guarantee that all
2111 * growable vmas in a mm share the same root
2112 * anon vma. So, we reuse mm->page_table_lock
2113 * to guard against concurrent vma expansions.
2115 spin_lock(&mm->page_table_lock);
2116 if (vma->vm_flags & VM_LOCKED)
2117 mm->locked_vm += grow;
2118 vm_stat_account(mm, vma->vm_flags, grow);
2119 anon_vma_interval_tree_pre_update_vma(vma);
2120 vma->vm_start = address;
2121 vma->vm_pgoff -= grow;
2122 /* Overwrite old entry in mtree. */
2123 vma_mas_store(vma, &mas);
2124 anon_vma_interval_tree_post_update_vma(vma);
2125 spin_unlock(&mm->page_table_lock);
2127 perf_event_mmap(vma);
2131 anon_vma_unlock_write(vma->anon_vma);
2132 khugepaged_enter_vma(vma, vma->vm_flags);
2137 /* enforced gap between the expanding stack and other mappings. */
2138 unsigned long stack_guard_gap = 256UL<<PAGE_SHIFT;
2140 static int __init cmdline_parse_stack_guard_gap(char *p)
2145 val = simple_strtoul(p, &endptr, 10);
2147 stack_guard_gap = val << PAGE_SHIFT;
2151 __setup("stack_guard_gap=", cmdline_parse_stack_guard_gap);
2153 #ifdef CONFIG_STACK_GROWSUP
2154 int expand_stack_locked(struct vm_area_struct *vma, unsigned long address)
2156 return expand_upwards(vma, address);
2159 struct vm_area_struct *find_extend_vma_locked(struct mm_struct *mm, unsigned long addr)
2161 struct vm_area_struct *vma, *prev;
2164 vma = find_vma_prev(mm, addr, &prev);
2165 if (vma && (vma->vm_start <= addr))
2169 if (expand_stack_locked(prev, addr))
2171 if (prev->vm_flags & VM_LOCKED)
2172 populate_vma_page_range(prev, addr, prev->vm_end, NULL);
2176 int expand_stack_locked(struct vm_area_struct *vma, unsigned long address)
2178 if (unlikely(!(vma->vm_flags & VM_GROWSDOWN)))
2180 return expand_downwards(vma, address);
2183 struct vm_area_struct *find_extend_vma_locked(struct mm_struct *mm, unsigned long addr)
2185 struct vm_area_struct *vma;
2186 unsigned long start;
2189 vma = find_vma(mm, addr);
2192 if (vma->vm_start <= addr)
2194 start = vma->vm_start;
2195 if (expand_stack_locked(vma, addr))
2197 if (vma->vm_flags & VM_LOCKED)
2198 populate_vma_page_range(vma, addr, start, NULL);
2204 * IA64 has some horrid mapping rules: it can expand both up and down,
2205 * but with various special rules.
2207 * We'll get rid of this architecture eventually, so the ugliness is
2211 static inline bool vma_expand_ok(struct vm_area_struct *vma, unsigned long addr)
2213 return REGION_NUMBER(addr) == REGION_NUMBER(vma->vm_start) &&
2214 REGION_OFFSET(addr) < RGN_MAP_LIMIT;
2218 * IA64 stacks grow down, but there's a special register backing store
2219 * that can grow up. Only sequentially, though, so the new address must
2222 static inline int vma_expand_up(struct vm_area_struct *vma, unsigned long addr)
2224 if (!vma_expand_ok(vma, addr))
2226 if (vma->vm_end != (addr & PAGE_MASK))
2228 return expand_upwards(vma, addr);
2231 static inline bool vma_expand_down(struct vm_area_struct *vma, unsigned long addr)
2233 if (!vma_expand_ok(vma, addr))
2235 return expand_downwards(vma, addr);
2238 #elif defined(CONFIG_STACK_GROWSUP)
2240 #define vma_expand_up(vma,addr) expand_upwards(vma, addr)
2241 #define vma_expand_down(vma, addr) (-EFAULT)
2245 #define vma_expand_up(vma,addr) (-EFAULT)
2246 #define vma_expand_down(vma, addr) expand_downwards(vma, addr)
2251 * expand_stack(): legacy interface for page faulting. Don't use unless
2254 * This is called with the mm locked for reading, drops the lock, takes
2255 * the lock for writing, tries to look up a vma again, expands it if
2256 * necessary, and downgrades the lock to reading again.
2258 * If no vma is found or it can't be expanded, it returns NULL and has
2261 struct vm_area_struct *expand_stack(struct mm_struct *mm, unsigned long addr)
2263 struct vm_area_struct *vma, *prev;
2265 mmap_read_unlock(mm);
2266 if (mmap_write_lock_killable(mm))
2269 vma = find_vma_prev(mm, addr, &prev);
2270 if (vma && vma->vm_start <= addr)
2273 if (prev && !vma_expand_up(prev, addr)) {
2278 if (vma && !vma_expand_down(vma, addr))
2281 mmap_write_unlock(mm);
2285 mmap_write_downgrade(mm);
2290 * Ok - we have the memory areas we should free on a maple tree so release them,
2291 * and do the vma updates.
2293 * Called with the mm semaphore held.
2295 static inline void remove_mt(struct mm_struct *mm, struct ma_state *mas)
2297 unsigned long nr_accounted = 0;
2298 struct vm_area_struct *vma;
2300 /* Update high watermark before we lower total_vm */
2301 update_hiwater_vm(mm);
2302 mas_for_each(mas, vma, ULONG_MAX) {
2303 long nrpages = vma_pages(vma);
2305 if (vma->vm_flags & VM_ACCOUNT)
2306 nr_accounted += nrpages;
2307 vm_stat_account(mm, vma->vm_flags, -nrpages);
2310 vm_unacct_memory(nr_accounted);
2315 * Get rid of page table information in the indicated region.
2317 * Called with the mm semaphore held.
2319 static void unmap_region(struct mm_struct *mm, struct maple_tree *mt,
2320 struct vm_area_struct *vma, struct vm_area_struct *prev,
2321 struct vm_area_struct *next,
2322 unsigned long start, unsigned long end)
2324 struct mmu_gather tlb;
2327 tlb_gather_mmu(&tlb, mm);
2328 update_hiwater_rss(mm);
2329 unmap_vmas(&tlb, mt, vma, start, end);
2330 free_pgtables(&tlb, mt, vma, prev ? prev->vm_end : FIRST_USER_ADDRESS,
2331 next ? next->vm_start : USER_PGTABLES_CEILING);
2332 tlb_finish_mmu(&tlb);
2336 * __split_vma() bypasses sysctl_max_map_count checking. We use this where it
2337 * has already been checked or doesn't make sense to fail.
2339 int __split_vma(struct mm_struct *mm, struct vm_area_struct *vma,
2340 unsigned long addr, int new_below)
2342 struct vm_area_struct *new;
2346 if (vma->vm_ops && vma->vm_ops->may_split) {
2347 err = vma->vm_ops->may_split(vma, addr);
2352 new = vm_area_dup(vma);
2359 new->vm_start = addr;
2360 new->vm_pgoff += ((addr - vma->vm_start) >> PAGE_SHIFT);
2363 err = vma_dup_policy(vma, new);
2367 err = anon_vma_clone(new, vma);
2372 get_file(new->vm_file);
2374 if (new->vm_ops && new->vm_ops->open)
2375 new->vm_ops->open(new);
2378 err = vma_adjust(vma, addr, vma->vm_end, vma->vm_pgoff +
2379 ((addr - new->vm_start) >> PAGE_SHIFT), new);
2381 err = vma_adjust(vma, vma->vm_start, addr, vma->vm_pgoff, new);
2387 /* Avoid vm accounting in close() operation */
2388 new->vm_start = new->vm_end;
2390 /* Clean everything up if vma_adjust failed. */
2391 if (new->vm_ops && new->vm_ops->close)
2392 new->vm_ops->close(new);
2395 unlink_anon_vmas(new);
2397 mpol_put(vma_policy(new));
2405 * Split a vma into two pieces at address 'addr', a new vma is allocated
2406 * either for the first part or the tail.
2408 int split_vma(struct mm_struct *mm, struct vm_area_struct *vma,
2409 unsigned long addr, int new_below)
2411 if (mm->map_count >= sysctl_max_map_count)
2414 return __split_vma(mm, vma, addr, new_below);
2418 * do_mas_align_munmap() - munmap the aligned region from @start to @end.
2419 * @mas: The maple_state, ideally set up to alter the correct tree location.
2420 * @vma: The starting vm_area_struct
2421 * @mm: The mm_struct
2422 * @start: The aligned start address to munmap.
2423 * @end: The aligned end address to munmap.
2424 * @uf: The userfaultfd list_head
2425 * @downgrade: Set to true to attempt a write downgrade of the mmap_sem
2427 * If @downgrade is true, check return code for potential release of the lock.
2430 do_mas_align_munmap(struct ma_state *mas, struct vm_area_struct *vma,
2431 struct mm_struct *mm, unsigned long start,
2432 unsigned long end, struct list_head *uf, bool downgrade)
2434 struct vm_area_struct *prev, *next = NULL;
2435 struct maple_tree mt_detach;
2437 int error = -ENOMEM;
2438 unsigned long locked_vm = 0;
2439 MA_STATE(mas_detach, &mt_detach, 0, 0);
2440 mt_init_flags(&mt_detach, mas->tree->ma_flags & MT_FLAGS_LOCK_MASK);
2441 mt_set_external_lock(&mt_detach, &mm->mmap_lock);
2443 if (mas_preallocate(mas, vma, GFP_KERNEL))
2446 mas->last = end - 1;
2448 * If we need to split any vma, do it now to save pain later.
2450 * Note: mremap's move_vma VM_ACCOUNT handling assumes a partially
2451 * unmapped vm_area_struct will remain in use: so lower split_vma
2452 * places tmp vma above, and higher split_vma places tmp vma below.
2455 /* Does it split the first one? */
2456 if (start > vma->vm_start) {
2459 * Make sure that map_count on return from munmap() will
2460 * not exceed its limit; but let map_count go just above
2461 * its limit temporarily, to help free resources as expected.
2463 if (end < vma->vm_end && mm->map_count >= sysctl_max_map_count)
2464 goto map_count_exceeded;
2467 * mas_pause() is not needed since mas->index needs to be set
2468 * differently than vma->vm_end anyways.
2470 error = __split_vma(mm, vma, start, 0);
2472 goto start_split_failed;
2474 mas_set(mas, start);
2475 vma = mas_walk(mas);
2478 prev = mas_prev(mas, 0);
2479 if (unlikely((!prev)))
2480 mas_set(mas, start);
2483 * Detach a range of VMAs from the mm. Using next as a temp variable as
2484 * it is always overwritten.
2486 mas_for_each(mas, next, end - 1) {
2487 /* Does it split the end? */
2488 if (next->vm_end > end) {
2489 struct vm_area_struct *split;
2491 error = __split_vma(mm, next, end, 1);
2493 goto end_split_failed;
2496 split = mas_prev(mas, 0);
2497 mas_set_range(&mas_detach, split->vm_start, split->vm_end - 1);
2498 error = mas_store_gfp(&mas_detach, split, GFP_KERNEL);
2500 goto munmap_gather_failed;
2501 if (split->vm_flags & VM_LOCKED)
2502 locked_vm += vma_pages(split);
2509 mas_set_range(&mas_detach, next->vm_start, next->vm_end - 1);
2510 error = mas_store_gfp(&mas_detach, next, GFP_KERNEL);
2512 goto munmap_gather_failed;
2513 if (next->vm_flags & VM_LOCKED)
2514 locked_vm += vma_pages(next);
2517 #ifdef CONFIG_DEBUG_VM_MAPLE_TREE
2518 BUG_ON(next->vm_start < start);
2519 BUG_ON(next->vm_start > end);
2524 next = mas_next(mas, ULONG_MAX);
2528 * If userfaultfd_unmap_prep returns an error the vmas
2529 * will remain split, but userland will get a
2530 * highly unexpected error anyway. This is no
2531 * different than the case where the first of the two
2532 * __split_vma fails, but we don't undo the first
2533 * split, despite we could. This is unlikely enough
2534 * failure that it's not worth optimizing it for.
2536 error = userfaultfd_unmap_prep(mm, start, end, uf);
2539 goto userfaultfd_error;
2542 /* Point of no return */
2543 mas_set_range(mas, start, end - 1);
2544 #if defined(CONFIG_DEBUG_VM_MAPLE_TREE)
2545 /* Make sure no VMAs are about to be lost. */
2547 MA_STATE(test, &mt_detach, start, end - 1);
2548 struct vm_area_struct *vma_mas, *vma_test;
2552 vma_test = mas_find(&test, end - 1);
2553 mas_for_each(mas, vma_mas, end - 1) {
2554 BUG_ON(vma_mas != vma_test);
2556 vma_test = mas_next(&test, end - 1);
2559 BUG_ON(count != test_count);
2560 mas_set_range(mas, start, end - 1);
2563 /* Point of no return */
2564 mas_store_prealloc(mas, NULL);
2566 mm->locked_vm -= locked_vm;
2567 mm->map_count -= count;
2569 * Do not downgrade mmap_lock if we are next to VM_GROWSDOWN or
2570 * VM_GROWSUP VMA. Such VMAs can change their size under
2571 * down_read(mmap_lock) and collide with the VMA we are about to unmap.
2574 if (next && (next->vm_flags & VM_GROWSDOWN))
2576 else if (prev && (prev->vm_flags & VM_GROWSUP))
2579 mmap_write_downgrade(mm);
2582 unmap_region(mm, &mt_detach, vma, prev, next, start, end);
2583 /* Statistics and freeing VMAs */
2584 mas_set(&mas_detach, start);
2585 remove_mt(mm, &mas_detach);
2586 __mt_destroy(&mt_detach);
2590 return downgrade ? 1 : 0;
2593 munmap_gather_failed:
2595 __mt_destroy(&mt_detach);
2603 * do_mas_munmap() - munmap a given range.
2604 * @mas: The maple state
2605 * @mm: The mm_struct
2606 * @start: The start address to munmap
2607 * @len: The length of the range to munmap
2608 * @uf: The userfaultfd list_head
2609 * @downgrade: set to true if the user wants to attempt to write_downgrade the
2612 * This function takes a @mas that is either pointing to the previous VMA or set
2613 * to MA_START and sets it up to remove the mapping(s). The @len will be
2614 * aligned and any arch_unmap work will be preformed.
2616 * Returns: -EINVAL on failure, 1 on success and unlock, 0 otherwise.
2618 int do_mas_munmap(struct ma_state *mas, struct mm_struct *mm,
2619 unsigned long start, size_t len, struct list_head *uf,
2623 struct vm_area_struct *vma;
2625 if ((offset_in_page(start)) || start > TASK_SIZE || len > TASK_SIZE-start)
2628 end = start + PAGE_ALIGN(len);
2632 /* arch_unmap() might do unmaps itself. */
2633 arch_unmap(mm, start, end);
2635 /* Find the first overlapping VMA */
2636 vma = mas_find(mas, end - 1);
2640 return do_mas_align_munmap(mas, vma, mm, start, end, uf, downgrade);
2643 /* do_munmap() - Wrapper function for non-maple tree aware do_munmap() calls.
2644 * @mm: The mm_struct
2645 * @start: The start address to munmap
2646 * @len: The length to be munmapped.
2647 * @uf: The userfaultfd list_head
2649 int do_munmap(struct mm_struct *mm, unsigned long start, size_t len,
2650 struct list_head *uf)
2652 MA_STATE(mas, &mm->mm_mt, start, start);
2654 return do_mas_munmap(&mas, mm, start, len, uf, false);
2657 unsigned long mmap_region(struct file *file, unsigned long addr,
2658 unsigned long len, vm_flags_t vm_flags, unsigned long pgoff,
2659 struct list_head *uf)
2661 struct mm_struct *mm = current->mm;
2662 struct vm_area_struct *vma = NULL;
2663 struct vm_area_struct *next, *prev, *merge;
2664 pgoff_t pglen = len >> PAGE_SHIFT;
2665 unsigned long charged = 0;
2666 unsigned long end = addr + len;
2667 unsigned long merge_start = addr, merge_end = end;
2670 MA_STATE(mas, &mm->mm_mt, addr, end - 1);
2672 /* Check against address space limit. */
2673 if (!may_expand_vm(mm, vm_flags, len >> PAGE_SHIFT)) {
2674 unsigned long nr_pages;
2677 * MAP_FIXED may remove pages of mappings that intersects with
2678 * requested mapping. Account for the pages it would unmap.
2680 nr_pages = count_vma_pages_range(mm, addr, end);
2682 if (!may_expand_vm(mm, vm_flags,
2683 (len >> PAGE_SHIFT) - nr_pages))
2687 /* Unmap any existing mapping in the area */
2688 if (do_mas_munmap(&mas, mm, addr, len, uf, false))
2692 * Private writable mapping: check memory availability
2694 if (accountable_mapping(file, vm_flags)) {
2695 charged = len >> PAGE_SHIFT;
2696 if (security_vm_enough_memory_mm(mm, charged))
2698 vm_flags |= VM_ACCOUNT;
2701 next = mas_next(&mas, ULONG_MAX);
2702 prev = mas_prev(&mas, 0);
2703 if (vm_flags & VM_SPECIAL)
2706 /* Attempt to expand an old mapping */
2708 if (next && next->vm_start == end && !vma_policy(next) &&
2709 can_vma_merge_before(next, vm_flags, NULL, file, pgoff+pglen,
2710 NULL_VM_UFFD_CTX, NULL)) {
2711 merge_end = next->vm_end;
2713 vm_pgoff = next->vm_pgoff - pglen;
2717 if (prev && prev->vm_end == addr && !vma_policy(prev) &&
2718 (vma ? can_vma_merge_after(prev, vm_flags, vma->anon_vma, file,
2719 pgoff, vma->vm_userfaultfd_ctx, NULL) :
2720 can_vma_merge_after(prev, vm_flags, NULL, file, pgoff,
2721 NULL_VM_UFFD_CTX, NULL))) {
2722 merge_start = prev->vm_start;
2724 vm_pgoff = prev->vm_pgoff;
2728 /* Actually expand, if possible */
2730 !vma_expand(&mas, vma, merge_start, merge_end, vm_pgoff, next)) {
2731 khugepaged_enter_vma(vma, vm_flags);
2739 * Determine the object being mapped and call the appropriate
2740 * specific mapper. the address has already been validated, but
2741 * not unmapped, but the maps are removed from the list.
2743 vma = vm_area_alloc(mm);
2749 vma->vm_start = addr;
2751 vma->vm_flags = vm_flags;
2752 vma->vm_page_prot = vm_get_page_prot(vm_flags);
2753 vma->vm_pgoff = pgoff;
2756 if (vm_flags & VM_SHARED) {
2757 error = mapping_map_writable(file->f_mapping);
2762 vma->vm_file = get_file(file);
2763 error = call_mmap(file, vma);
2765 goto unmap_and_free_vma;
2768 * Expansion is handled above, merging is handled below.
2769 * Drivers should not alter the address of the VMA.
2771 if (WARN_ON((addr != vma->vm_start))) {
2773 goto close_and_free_vma;
2778 * If vm_flags changed after call_mmap(), we should try merge
2779 * vma again as we may succeed this time.
2781 if (unlikely(vm_flags != vma->vm_flags && prev)) {
2782 merge = vma_merge(mm, prev, vma->vm_start, vma->vm_end, vma->vm_flags,
2783 NULL, vma->vm_file, vma->vm_pgoff, NULL, NULL_VM_UFFD_CTX, NULL);
2786 * ->mmap() can change vma->vm_file and fput
2787 * the original file. So fput the vma->vm_file
2788 * here or we would add an extra fput for file
2789 * and cause general protection fault
2795 /* Update vm_flags to pick up the change. */
2796 vm_flags = vma->vm_flags;
2797 goto unmap_writable;
2801 vm_flags = vma->vm_flags;
2802 } else if (vm_flags & VM_SHARED) {
2803 error = shmem_zero_setup(vma);
2807 vma_set_anonymous(vma);
2810 /* Allow architectures to sanity-check the vm_flags */
2811 if (!arch_validate_flags(vma->vm_flags)) {
2814 goto close_and_free_vma;
2815 else if (vma->vm_file)
2816 goto unmap_and_free_vma;
2821 if (mas_preallocate(&mas, vma, GFP_KERNEL)) {
2824 goto close_and_free_vma;
2825 else if (vma->vm_file)
2826 goto unmap_and_free_vma;
2832 i_mmap_lock_write(vma->vm_file->f_mapping);
2834 vma_mas_store(vma, &mas);
2837 if (vma->vm_flags & VM_SHARED)
2838 mapping_allow_writable(vma->vm_file->f_mapping);
2840 flush_dcache_mmap_lock(vma->vm_file->f_mapping);
2841 vma_interval_tree_insert(vma, &vma->vm_file->f_mapping->i_mmap);
2842 flush_dcache_mmap_unlock(vma->vm_file->f_mapping);
2843 i_mmap_unlock_write(vma->vm_file->f_mapping);
2847 * vma_merge() calls khugepaged_enter_vma() either, the below
2848 * call covers the non-merge case.
2850 khugepaged_enter_vma(vma, vma->vm_flags);
2852 /* Once vma denies write, undo our temporary denial count */
2854 if (file && vm_flags & VM_SHARED)
2855 mapping_unmap_writable(file->f_mapping);
2856 file = vma->vm_file;
2858 perf_event_mmap(vma);
2860 vm_stat_account(mm, vm_flags, len >> PAGE_SHIFT);
2861 if (vm_flags & VM_LOCKED) {
2862 if ((vm_flags & VM_SPECIAL) || vma_is_dax(vma) ||
2863 is_vm_hugetlb_page(vma) ||
2864 vma == get_gate_vma(current->mm))
2865 vma->vm_flags &= VM_LOCKED_CLEAR_MASK;
2867 mm->locked_vm += (len >> PAGE_SHIFT);
2874 * New (or expanded) vma always get soft dirty status.
2875 * Otherwise user-space soft-dirty page tracker won't
2876 * be able to distinguish situation when vma area unmapped,
2877 * then new mapped in-place (which must be aimed as
2878 * a completely new data area).
2880 vma->vm_flags |= VM_SOFTDIRTY;
2882 vma_set_page_prot(vma);
2888 if (vma->vm_ops && vma->vm_ops->close)
2889 vma->vm_ops->close(vma);
2892 vma->vm_file = NULL;
2894 /* Undo any partial mapping done by a device driver. */
2895 unmap_region(mm, mas.tree, vma, prev, next, vma->vm_start, vma->vm_end);
2896 if (file && (vm_flags & VM_SHARED))
2897 mapping_unmap_writable(file->f_mapping);
2902 vm_unacct_memory(charged);
2907 static int __vm_munmap(unsigned long start, size_t len, bool downgrade)
2910 struct mm_struct *mm = current->mm;
2912 MA_STATE(mas, &mm->mm_mt, start, start);
2914 if (mmap_write_lock_killable(mm))
2917 ret = do_mas_munmap(&mas, mm, start, len, &uf, downgrade);
2919 * Returning 1 indicates mmap_lock is downgraded.
2920 * But 1 is not legal return value of vm_munmap() and munmap(), reset
2921 * it to 0 before return.
2924 mmap_read_unlock(mm);
2927 mmap_write_unlock(mm);
2929 userfaultfd_unmap_complete(mm, &uf);
2933 int vm_munmap(unsigned long start, size_t len)
2935 return __vm_munmap(start, len, false);
2937 EXPORT_SYMBOL(vm_munmap);
2939 SYSCALL_DEFINE2(munmap, unsigned long, addr, size_t, len)
2941 addr = untagged_addr(addr);
2942 return __vm_munmap(addr, len, true);
2947 * Emulation of deprecated remap_file_pages() syscall.
2949 SYSCALL_DEFINE5(remap_file_pages, unsigned long, start, unsigned long, size,
2950 unsigned long, prot, unsigned long, pgoff, unsigned long, flags)
2953 struct mm_struct *mm = current->mm;
2954 struct vm_area_struct *vma;
2955 unsigned long populate = 0;
2956 unsigned long ret = -EINVAL;
2959 pr_warn_once("%s (%d) uses deprecated remap_file_pages() syscall. See Documentation/mm/remap_file_pages.rst.\n",
2960 current->comm, current->pid);
2964 start = start & PAGE_MASK;
2965 size = size & PAGE_MASK;
2967 if (start + size <= start)
2970 /* Does pgoff wrap? */
2971 if (pgoff + (size >> PAGE_SHIFT) < pgoff)
2974 if (mmap_write_lock_killable(mm))
2977 vma = vma_lookup(mm, start);
2979 if (!vma || !(vma->vm_flags & VM_SHARED))
2982 if (start + size > vma->vm_end) {
2983 VMA_ITERATOR(vmi, mm, vma->vm_end);
2984 struct vm_area_struct *next, *prev = vma;
2986 for_each_vma_range(vmi, next, start + size) {
2987 /* hole between vmas ? */
2988 if (next->vm_start != prev->vm_end)
2991 if (next->vm_file != vma->vm_file)
2994 if (next->vm_flags != vma->vm_flags)
2997 if (start + size <= next->vm_end)
3007 prot |= vma->vm_flags & VM_READ ? PROT_READ : 0;
3008 prot |= vma->vm_flags & VM_WRITE ? PROT_WRITE : 0;
3009 prot |= vma->vm_flags & VM_EXEC ? PROT_EXEC : 0;
3011 flags &= MAP_NONBLOCK;
3012 flags |= MAP_SHARED | MAP_FIXED | MAP_POPULATE;
3013 if (vma->vm_flags & VM_LOCKED)
3014 flags |= MAP_LOCKED;
3016 file = get_file(vma->vm_file);
3017 ret = do_mmap(vma->vm_file, start, size,
3018 prot, flags, pgoff, &populate, NULL);
3021 mmap_write_unlock(mm);
3023 mm_populate(ret, populate);
3024 if (!IS_ERR_VALUE(ret))
3030 * brk_munmap() - Unmap a parital vma.
3031 * @mas: The maple tree state.
3032 * @vma: The vma to be modified
3033 * @newbrk: the start of the address to unmap
3034 * @oldbrk: The end of the address to unmap
3035 * @uf: The userfaultfd list_head
3037 * Returns: 1 on success.
3038 * unmaps a partial VMA mapping. Does not handle alignment, downgrades lock if
3041 static int do_brk_munmap(struct ma_state *mas, struct vm_area_struct *vma,
3042 unsigned long newbrk, unsigned long oldbrk,
3043 struct list_head *uf)
3045 struct mm_struct *mm = vma->vm_mm;
3048 arch_unmap(mm, newbrk, oldbrk);
3049 ret = do_mas_align_munmap(mas, vma, mm, newbrk, oldbrk, uf, true);
3055 * do_brk_flags() - Increase the brk vma if the flags match.
3056 * @mas: The maple tree state.
3057 * @addr: The start address
3058 * @len: The length of the increase
3060 * @flags: The VMA Flags
3062 * Extend the brk VMA from addr to addr + len. If the VMA is NULL or the flags
3063 * do not match then create a new anonymous VMA. Eventually we may be able to
3064 * do some brk-specific accounting here.
3066 static int do_brk_flags(struct ma_state *mas, struct vm_area_struct *vma,
3067 unsigned long addr, unsigned long len, unsigned long flags)
3069 struct mm_struct *mm = current->mm;
3073 * Check against address space limits by the changed size
3074 * Note: This happens *after* clearing old mappings in some code paths.
3076 flags |= VM_DATA_DEFAULT_FLAGS | VM_ACCOUNT | mm->def_flags;
3077 if (!may_expand_vm(mm, flags, len >> PAGE_SHIFT))
3080 if (mm->map_count > sysctl_max_map_count)
3083 if (security_vm_enough_memory_mm(mm, len >> PAGE_SHIFT))
3087 * Expand the existing vma if possible; Note that singular lists do not
3088 * occur after forking, so the expand will only happen on new VMAs.
3090 if (vma && vma->vm_end == addr && !vma_policy(vma) &&
3091 can_vma_merge_after(vma, flags, NULL, NULL,
3092 addr >> PAGE_SHIFT, NULL_VM_UFFD_CTX, NULL)) {
3093 mas_set_range(mas, vma->vm_start, addr + len - 1);
3094 if (mas_preallocate(mas, vma, GFP_KERNEL))
3097 vma_adjust_trans_huge(vma, vma->vm_start, addr + len, 0);
3098 if (vma->anon_vma) {
3099 anon_vma_lock_write(vma->anon_vma);
3100 anon_vma_interval_tree_pre_update_vma(vma);
3102 vma->vm_end = addr + len;
3103 vma->vm_flags |= VM_SOFTDIRTY;
3104 mas_store_prealloc(mas, vma);
3106 if (vma->anon_vma) {
3107 anon_vma_interval_tree_post_update_vma(vma);
3108 anon_vma_unlock_write(vma->anon_vma);
3110 khugepaged_enter_vma(vma, flags);
3114 /* create a vma struct for an anonymous mapping */
3115 vma = vm_area_alloc(mm);
3117 goto vma_alloc_fail;
3119 vma_set_anonymous(vma);
3120 vma->vm_start = addr;
3121 vma->vm_end = addr + len;
3122 vma->vm_pgoff = addr >> PAGE_SHIFT;
3123 vma->vm_flags = flags;
3124 vma->vm_page_prot = vm_get_page_prot(flags);
3125 mas_set_range(mas, vma->vm_start, addr + len - 1);
3126 if (mas_store_gfp(mas, vma, GFP_KERNEL))
3127 goto mas_store_fail;
3131 perf_event_mmap(vma);
3132 mm->total_vm += len >> PAGE_SHIFT;
3133 mm->data_vm += len >> PAGE_SHIFT;
3134 if (flags & VM_LOCKED)
3135 mm->locked_vm += (len >> PAGE_SHIFT);
3136 vma->vm_flags |= VM_SOFTDIRTY;
3143 vm_unacct_memory(len >> PAGE_SHIFT);
3147 int vm_brk_flags(unsigned long addr, unsigned long request, unsigned long flags)
3149 struct mm_struct *mm = current->mm;
3150 struct vm_area_struct *vma = NULL;
3155 MA_STATE(mas, &mm->mm_mt, addr, addr);
3157 len = PAGE_ALIGN(request);
3163 /* Until we need other flags, refuse anything except VM_EXEC. */
3164 if ((flags & (~VM_EXEC)) != 0)
3167 if (mmap_write_lock_killable(mm))
3170 ret = check_brk_limits(addr, len);
3174 ret = do_mas_munmap(&mas, mm, addr, len, &uf, 0);
3178 vma = mas_prev(&mas, 0);
3179 ret = do_brk_flags(&mas, vma, addr, len, flags);
3180 populate = ((mm->def_flags & VM_LOCKED) != 0);
3181 mmap_write_unlock(mm);
3182 userfaultfd_unmap_complete(mm, &uf);
3183 if (populate && !ret)
3184 mm_populate(addr, len);
3189 mmap_write_unlock(mm);
3192 EXPORT_SYMBOL(vm_brk_flags);
3194 int vm_brk(unsigned long addr, unsigned long len)
3196 return vm_brk_flags(addr, len, 0);
3198 EXPORT_SYMBOL(vm_brk);
3200 /* Release all mmaps. */
3201 void exit_mmap(struct mm_struct *mm)
3203 struct mmu_gather tlb;
3204 struct vm_area_struct *vma;
3205 unsigned long nr_accounted = 0;
3206 MA_STATE(mas, &mm->mm_mt, 0, 0);
3209 /* mm's last user has gone, and its about to be pulled down */
3210 mmu_notifier_release(mm);
3215 vma = mas_find(&mas, ULONG_MAX);
3217 /* Can happen if dup_mmap() received an OOM */
3218 mmap_read_unlock(mm);
3224 tlb_gather_mmu_fullmm(&tlb, mm);
3225 /* update_hiwater_rss(mm) here? but nobody should be looking */
3226 /* Use ULONG_MAX here to ensure all VMAs in the mm are unmapped */
3227 unmap_vmas(&tlb, &mm->mm_mt, vma, 0, ULONG_MAX);
3228 mmap_read_unlock(mm);
3231 * Set MMF_OOM_SKIP to hide this task from the oom killer/reaper
3232 * because the memory has been already freed.
3234 set_bit(MMF_OOM_SKIP, &mm->flags);
3235 mmap_write_lock(mm);
3236 mt_clear_in_rcu(&mm->mm_mt);
3237 free_pgtables(&tlb, &mm->mm_mt, vma, FIRST_USER_ADDRESS,
3238 USER_PGTABLES_CEILING);
3239 tlb_finish_mmu(&tlb);
3242 * Walk the list again, actually closing and freeing it, with preemption
3243 * enabled, without holding any MM locks besides the unreachable
3247 if (vma->vm_flags & VM_ACCOUNT)
3248 nr_accounted += vma_pages(vma);
3252 } while ((vma = mas_find(&mas, ULONG_MAX)) != NULL);
3254 BUG_ON(count != mm->map_count);
3256 trace_exit_mmap(mm);
3257 __mt_destroy(&mm->mm_mt);
3258 mmap_write_unlock(mm);
3259 vm_unacct_memory(nr_accounted);
3262 /* Insert vm structure into process list sorted by address
3263 * and into the inode's i_mmap tree. If vm_file is non-NULL
3264 * then i_mmap_rwsem is taken here.
3266 int insert_vm_struct(struct mm_struct *mm, struct vm_area_struct *vma)
3268 unsigned long charged = vma_pages(vma);
3271 if (find_vma_intersection(mm, vma->vm_start, vma->vm_end))
3274 if ((vma->vm_flags & VM_ACCOUNT) &&
3275 security_vm_enough_memory_mm(mm, charged))
3279 * The vm_pgoff of a purely anonymous vma should be irrelevant
3280 * until its first write fault, when page's anon_vma and index
3281 * are set. But now set the vm_pgoff it will almost certainly
3282 * end up with (unless mremap moves it elsewhere before that
3283 * first wfault), so /proc/pid/maps tells a consistent story.
3285 * By setting it to reflect the virtual start address of the
3286 * vma, merges and splits can happen in a seamless way, just
3287 * using the existing file pgoff checks and manipulations.
3288 * Similarly in do_mmap and in do_brk_flags.
3290 if (vma_is_anonymous(vma)) {
3291 BUG_ON(vma->anon_vma);
3292 vma->vm_pgoff = vma->vm_start >> PAGE_SHIFT;
3295 if (vma_link(mm, vma)) {
3296 vm_unacct_memory(charged);
3304 * Copy the vma structure to a new location in the same mm,
3305 * prior to moving page table entries, to effect an mremap move.
3307 struct vm_area_struct *copy_vma(struct vm_area_struct **vmap,
3308 unsigned long addr, unsigned long len, pgoff_t pgoff,
3309 bool *need_rmap_locks)
3311 struct vm_area_struct *vma = *vmap;
3312 unsigned long vma_start = vma->vm_start;
3313 struct mm_struct *mm = vma->vm_mm;
3314 struct vm_area_struct *new_vma, *prev;
3315 bool faulted_in_anon_vma = true;
3319 * If anonymous vma has not yet been faulted, update new pgoff
3320 * to match new location, to increase its chance of merging.
3322 if (unlikely(vma_is_anonymous(vma) && !vma->anon_vma)) {
3323 pgoff = addr >> PAGE_SHIFT;
3324 faulted_in_anon_vma = false;
3327 new_vma = find_vma_prev(mm, addr, &prev);
3328 if (new_vma && new_vma->vm_start < addr + len)
3329 return NULL; /* should never get here */
3331 new_vma = vma_merge(mm, prev, addr, addr + len, vma->vm_flags,
3332 vma->anon_vma, vma->vm_file, pgoff, vma_policy(vma),
3333 vma->vm_userfaultfd_ctx, anon_vma_name(vma));
3336 * Source vma may have been merged into new_vma
3338 if (unlikely(vma_start >= new_vma->vm_start &&
3339 vma_start < new_vma->vm_end)) {
3341 * The only way we can get a vma_merge with
3342 * self during an mremap is if the vma hasn't
3343 * been faulted in yet and we were allowed to
3344 * reset the dst vma->vm_pgoff to the
3345 * destination address of the mremap to allow
3346 * the merge to happen. mremap must change the
3347 * vm_pgoff linearity between src and dst vmas
3348 * (in turn preventing a vma_merge) to be
3349 * safe. It is only safe to keep the vm_pgoff
3350 * linear if there are no pages mapped yet.
3352 VM_BUG_ON_VMA(faulted_in_anon_vma, new_vma);
3353 *vmap = vma = new_vma;
3355 *need_rmap_locks = (new_vma->vm_pgoff <= vma->vm_pgoff);
3357 new_vma = vm_area_dup(vma);
3360 new_vma->vm_start = addr;
3361 new_vma->vm_end = addr + len;
3362 new_vma->vm_pgoff = pgoff;
3363 if (vma_dup_policy(vma, new_vma))
3365 if (anon_vma_clone(new_vma, vma))
3366 goto out_free_mempol;
3367 if (new_vma->vm_file)
3368 get_file(new_vma->vm_file);
3369 if (new_vma->vm_ops && new_vma->vm_ops->open)
3370 new_vma->vm_ops->open(new_vma);
3371 if (vma_link(mm, new_vma))
3373 *need_rmap_locks = false;
3379 if (new_vma->vm_ops && new_vma->vm_ops->close)
3380 new_vma->vm_ops->close(new_vma);
3382 if (new_vma->vm_file)
3383 fput(new_vma->vm_file);
3385 unlink_anon_vmas(new_vma);
3387 mpol_put(vma_policy(new_vma));
3389 vm_area_free(new_vma);
3396 * Return true if the calling process may expand its vm space by the passed
3399 bool may_expand_vm(struct mm_struct *mm, vm_flags_t flags, unsigned long npages)
3401 if (mm->total_vm + npages > rlimit(RLIMIT_AS) >> PAGE_SHIFT)
3404 if (is_data_mapping(flags) &&
3405 mm->data_vm + npages > rlimit(RLIMIT_DATA) >> PAGE_SHIFT) {
3406 /* Workaround for Valgrind */
3407 if (rlimit(RLIMIT_DATA) == 0 &&
3408 mm->data_vm + npages <= rlimit_max(RLIMIT_DATA) >> PAGE_SHIFT)
3411 pr_warn_once("%s (%d): VmData %lu exceed data ulimit %lu. Update limits%s.\n",
3412 current->comm, current->pid,
3413 (mm->data_vm + npages) << PAGE_SHIFT,
3414 rlimit(RLIMIT_DATA),
3415 ignore_rlimit_data ? "" : " or use boot option ignore_rlimit_data");
3417 if (!ignore_rlimit_data)
3424 void vm_stat_account(struct mm_struct *mm, vm_flags_t flags, long npages)
3426 WRITE_ONCE(mm->total_vm, READ_ONCE(mm->total_vm)+npages);
3428 if (is_exec_mapping(flags))
3429 mm->exec_vm += npages;
3430 else if (is_stack_mapping(flags))
3431 mm->stack_vm += npages;
3432 else if (is_data_mapping(flags))
3433 mm->data_vm += npages;
3436 static vm_fault_t special_mapping_fault(struct vm_fault *vmf);
3439 * Having a close hook prevents vma merging regardless of flags.
3441 static void special_mapping_close(struct vm_area_struct *vma)
3445 static const char *special_mapping_name(struct vm_area_struct *vma)
3447 return ((struct vm_special_mapping *)vma->vm_private_data)->name;
3450 static int special_mapping_mremap(struct vm_area_struct *new_vma)
3452 struct vm_special_mapping *sm = new_vma->vm_private_data;
3454 if (WARN_ON_ONCE(current->mm != new_vma->vm_mm))
3458 return sm->mremap(sm, new_vma);
3463 static int special_mapping_split(struct vm_area_struct *vma, unsigned long addr)
3466 * Forbid splitting special mappings - kernel has expectations over
3467 * the number of pages in mapping. Together with VM_DONTEXPAND
3468 * the size of vma should stay the same over the special mapping's
3474 static const struct vm_operations_struct special_mapping_vmops = {
3475 .close = special_mapping_close,
3476 .fault = special_mapping_fault,
3477 .mremap = special_mapping_mremap,
3478 .name = special_mapping_name,
3479 /* vDSO code relies that VVAR can't be accessed remotely */
3481 .may_split = special_mapping_split,
3484 static const struct vm_operations_struct legacy_special_mapping_vmops = {
3485 .close = special_mapping_close,
3486 .fault = special_mapping_fault,
3489 static vm_fault_t special_mapping_fault(struct vm_fault *vmf)
3491 struct vm_area_struct *vma = vmf->vma;
3493 struct page **pages;
3495 if (vma->vm_ops == &legacy_special_mapping_vmops) {
3496 pages = vma->vm_private_data;
3498 struct vm_special_mapping *sm = vma->vm_private_data;
3501 return sm->fault(sm, vmf->vma, vmf);
3506 for (pgoff = vmf->pgoff; pgoff && *pages; ++pages)
3510 struct page *page = *pages;
3516 return VM_FAULT_SIGBUS;
3519 static struct vm_area_struct *__install_special_mapping(
3520 struct mm_struct *mm,
3521 unsigned long addr, unsigned long len,
3522 unsigned long vm_flags, void *priv,
3523 const struct vm_operations_struct *ops)
3526 struct vm_area_struct *vma;
3529 vma = vm_area_alloc(mm);
3530 if (unlikely(vma == NULL))
3531 return ERR_PTR(-ENOMEM);
3533 vma->vm_start = addr;
3534 vma->vm_end = addr + len;
3536 vma->vm_flags = vm_flags | mm->def_flags | VM_DONTEXPAND | VM_SOFTDIRTY;
3537 vma->vm_flags &= VM_LOCKED_CLEAR_MASK;
3538 vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
3541 vma->vm_private_data = priv;
3543 ret = insert_vm_struct(mm, vma);
3547 vm_stat_account(mm, vma->vm_flags, len >> PAGE_SHIFT);
3549 perf_event_mmap(vma);
3557 return ERR_PTR(ret);
3560 bool vma_is_special_mapping(const struct vm_area_struct *vma,
3561 const struct vm_special_mapping *sm)
3563 return vma->vm_private_data == sm &&
3564 (vma->vm_ops == &special_mapping_vmops ||
3565 vma->vm_ops == &legacy_special_mapping_vmops);
3569 * Called with mm->mmap_lock held for writing.
3570 * Insert a new vma covering the given region, with the given flags.
3571 * Its pages are supplied by the given array of struct page *.
3572 * The array can be shorter than len >> PAGE_SHIFT if it's null-terminated.
3573 * The region past the last page supplied will always produce SIGBUS.
3574 * The array pointer and the pages it points to are assumed to stay alive
3575 * for as long as this mapping might exist.
3577 struct vm_area_struct *_install_special_mapping(
3578 struct mm_struct *mm,
3579 unsigned long addr, unsigned long len,
3580 unsigned long vm_flags, const struct vm_special_mapping *spec)
3582 return __install_special_mapping(mm, addr, len, vm_flags, (void *)spec,
3583 &special_mapping_vmops);
3586 int install_special_mapping(struct mm_struct *mm,
3587 unsigned long addr, unsigned long len,
3588 unsigned long vm_flags, struct page **pages)
3590 struct vm_area_struct *vma = __install_special_mapping(
3591 mm, addr, len, vm_flags, (void *)pages,
3592 &legacy_special_mapping_vmops);
3594 return PTR_ERR_OR_ZERO(vma);
3597 static DEFINE_MUTEX(mm_all_locks_mutex);
3599 static void vm_lock_anon_vma(struct mm_struct *mm, struct anon_vma *anon_vma)
3601 if (!test_bit(0, (unsigned long *) &anon_vma->root->rb_root.rb_root.rb_node)) {
3603 * The LSB of head.next can't change from under us
3604 * because we hold the mm_all_locks_mutex.
3606 down_write_nest_lock(&anon_vma->root->rwsem, &mm->mmap_lock);
3608 * We can safely modify head.next after taking the
3609 * anon_vma->root->rwsem. If some other vma in this mm shares
3610 * the same anon_vma we won't take it again.
3612 * No need of atomic instructions here, head.next
3613 * can't change from under us thanks to the
3614 * anon_vma->root->rwsem.
3616 if (__test_and_set_bit(0, (unsigned long *)
3617 &anon_vma->root->rb_root.rb_root.rb_node))
3622 static void vm_lock_mapping(struct mm_struct *mm, struct address_space *mapping)
3624 if (!test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) {
3626 * AS_MM_ALL_LOCKS can't change from under us because
3627 * we hold the mm_all_locks_mutex.
3629 * Operations on ->flags have to be atomic because
3630 * even if AS_MM_ALL_LOCKS is stable thanks to the
3631 * mm_all_locks_mutex, there may be other cpus
3632 * changing other bitflags in parallel to us.
3634 if (test_and_set_bit(AS_MM_ALL_LOCKS, &mapping->flags))
3636 down_write_nest_lock(&mapping->i_mmap_rwsem, &mm->mmap_lock);
3641 * This operation locks against the VM for all pte/vma/mm related
3642 * operations that could ever happen on a certain mm. This includes
3643 * vmtruncate, try_to_unmap, and all page faults.
3645 * The caller must take the mmap_lock in write mode before calling
3646 * mm_take_all_locks(). The caller isn't allowed to release the
3647 * mmap_lock until mm_drop_all_locks() returns.
3649 * mmap_lock in write mode is required in order to block all operations
3650 * that could modify pagetables and free pages without need of
3651 * altering the vma layout. It's also needed in write mode to avoid new
3652 * anon_vmas to be associated with existing vmas.
3654 * A single task can't take more than one mm_take_all_locks() in a row
3655 * or it would deadlock.
3657 * The LSB in anon_vma->rb_root.rb_node and the AS_MM_ALL_LOCKS bitflag in
3658 * mapping->flags avoid to take the same lock twice, if more than one
3659 * vma in this mm is backed by the same anon_vma or address_space.
3661 * We take locks in following order, accordingly to comment at beginning
3663 * - all hugetlbfs_i_mmap_rwsem_key locks (aka mapping->i_mmap_rwsem for
3665 * - all i_mmap_rwsem locks;
3666 * - all anon_vma->rwseml
3668 * We can take all locks within these types randomly because the VM code
3669 * doesn't nest them and we protected from parallel mm_take_all_locks() by
3670 * mm_all_locks_mutex.
3672 * mm_take_all_locks() and mm_drop_all_locks are expensive operations
3673 * that may have to take thousand of locks.
3675 * mm_take_all_locks() can fail if it's interrupted by signals.
3677 int mm_take_all_locks(struct mm_struct *mm)
3679 struct vm_area_struct *vma;
3680 struct anon_vma_chain *avc;
3681 MA_STATE(mas, &mm->mm_mt, 0, 0);
3683 mmap_assert_write_locked(mm);
3685 mutex_lock(&mm_all_locks_mutex);
3687 mas_for_each(&mas, vma, ULONG_MAX) {
3688 if (signal_pending(current))
3690 if (vma->vm_file && vma->vm_file->f_mapping &&
3691 is_vm_hugetlb_page(vma))
3692 vm_lock_mapping(mm, vma->vm_file->f_mapping);
3696 mas_for_each(&mas, vma, ULONG_MAX) {
3697 if (signal_pending(current))
3699 if (vma->vm_file && vma->vm_file->f_mapping &&
3700 !is_vm_hugetlb_page(vma))
3701 vm_lock_mapping(mm, vma->vm_file->f_mapping);
3705 mas_for_each(&mas, vma, ULONG_MAX) {
3706 if (signal_pending(current))
3709 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
3710 vm_lock_anon_vma(mm, avc->anon_vma);
3716 mm_drop_all_locks(mm);
3720 static void vm_unlock_anon_vma(struct anon_vma *anon_vma)
3722 if (test_bit(0, (unsigned long *) &anon_vma->root->rb_root.rb_root.rb_node)) {
3724 * The LSB of head.next can't change to 0 from under
3725 * us because we hold the mm_all_locks_mutex.
3727 * We must however clear the bitflag before unlocking
3728 * the vma so the users using the anon_vma->rb_root will
3729 * never see our bitflag.
3731 * No need of atomic instructions here, head.next
3732 * can't change from under us until we release the
3733 * anon_vma->root->rwsem.
3735 if (!__test_and_clear_bit(0, (unsigned long *)
3736 &anon_vma->root->rb_root.rb_root.rb_node))
3738 anon_vma_unlock_write(anon_vma);
3742 static void vm_unlock_mapping(struct address_space *mapping)
3744 if (test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) {
3746 * AS_MM_ALL_LOCKS can't change to 0 from under us
3747 * because we hold the mm_all_locks_mutex.
3749 i_mmap_unlock_write(mapping);
3750 if (!test_and_clear_bit(AS_MM_ALL_LOCKS,
3757 * The mmap_lock cannot be released by the caller until
3758 * mm_drop_all_locks() returns.
3760 void mm_drop_all_locks(struct mm_struct *mm)
3762 struct vm_area_struct *vma;
3763 struct anon_vma_chain *avc;
3764 MA_STATE(mas, &mm->mm_mt, 0, 0);
3766 mmap_assert_write_locked(mm);
3767 BUG_ON(!mutex_is_locked(&mm_all_locks_mutex));
3769 mas_for_each(&mas, vma, ULONG_MAX) {
3771 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
3772 vm_unlock_anon_vma(avc->anon_vma);
3773 if (vma->vm_file && vma->vm_file->f_mapping)
3774 vm_unlock_mapping(vma->vm_file->f_mapping);
3777 mutex_unlock(&mm_all_locks_mutex);
3781 * initialise the percpu counter for VM
3783 void __init mmap_init(void)
3787 ret = percpu_counter_init(&vm_committed_as, 0, GFP_KERNEL);
3792 * Initialise sysctl_user_reserve_kbytes.
3794 * This is intended to prevent a user from starting a single memory hogging
3795 * process, such that they cannot recover (kill the hog) in OVERCOMMIT_NEVER
3798 * The default value is min(3% of free memory, 128MB)
3799 * 128MB is enough to recover with sshd/login, bash, and top/kill.
3801 static int init_user_reserve(void)
3803 unsigned long free_kbytes;
3805 free_kbytes = global_zone_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
3807 sysctl_user_reserve_kbytes = min(free_kbytes / 32, 1UL << 17);
3810 subsys_initcall(init_user_reserve);
3813 * Initialise sysctl_admin_reserve_kbytes.
3815 * The purpose of sysctl_admin_reserve_kbytes is to allow the sys admin
3816 * to log in and kill a memory hogging process.
3818 * Systems with more than 256MB will reserve 8MB, enough to recover
3819 * with sshd, bash, and top in OVERCOMMIT_GUESS. Smaller systems will
3820 * only reserve 3% of free pages by default.
3822 static int init_admin_reserve(void)
3824 unsigned long free_kbytes;
3826 free_kbytes = global_zone_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
3828 sysctl_admin_reserve_kbytes = min(free_kbytes / 32, 1UL << 13);
3831 subsys_initcall(init_admin_reserve);
3834 * Reinititalise user and admin reserves if memory is added or removed.
3836 * The default user reserve max is 128MB, and the default max for the
3837 * admin reserve is 8MB. These are usually, but not always, enough to
3838 * enable recovery from a memory hogging process using login/sshd, a shell,
3839 * and tools like top. It may make sense to increase or even disable the
3840 * reserve depending on the existence of swap or variations in the recovery
3841 * tools. So, the admin may have changed them.
3843 * If memory is added and the reserves have been eliminated or increased above
3844 * the default max, then we'll trust the admin.
3846 * If memory is removed and there isn't enough free memory, then we
3847 * need to reset the reserves.
3849 * Otherwise keep the reserve set by the admin.
3851 static int reserve_mem_notifier(struct notifier_block *nb,
3852 unsigned long action, void *data)
3854 unsigned long tmp, free_kbytes;
3858 /* Default max is 128MB. Leave alone if modified by operator. */
3859 tmp = sysctl_user_reserve_kbytes;
3860 if (0 < tmp && tmp < (1UL << 17))
3861 init_user_reserve();
3863 /* Default max is 8MB. Leave alone if modified by operator. */
3864 tmp = sysctl_admin_reserve_kbytes;
3865 if (0 < tmp && tmp < (1UL << 13))
3866 init_admin_reserve();
3870 free_kbytes = global_zone_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
3872 if (sysctl_user_reserve_kbytes > free_kbytes) {
3873 init_user_reserve();
3874 pr_info("vm.user_reserve_kbytes reset to %lu\n",
3875 sysctl_user_reserve_kbytes);
3878 if (sysctl_admin_reserve_kbytes > free_kbytes) {
3879 init_admin_reserve();
3880 pr_info("vm.admin_reserve_kbytes reset to %lu\n",
3881 sysctl_admin_reserve_kbytes);
3890 static struct notifier_block reserve_mem_nb = {
3891 .notifier_call = reserve_mem_notifier,
3894 static int __meminit init_reserve_notifier(void)
3896 if (register_hotmemory_notifier(&reserve_mem_nb))
3897 pr_err("Failed registering memory add/remove notifier for admin reserve\n");
3901 subsys_initcall(init_reserve_notifier);