pwm: lpss: Properly split driver to parts
[platform/kernel/linux-stable.git] / mm / mmap.c
1 /*
2  * mm/mmap.c
3  *
4  * Written by obz.
5  *
6  * Address space accounting code        <alan@lxorguk.ukuu.org.uk>
7  */
8
9 #include <linux/kernel.h>
10 #include <linux/slab.h>
11 #include <linux/backing-dev.h>
12 #include <linux/mm.h>
13 #include <linux/vmacache.h>
14 #include <linux/shm.h>
15 #include <linux/mman.h>
16 #include <linux/pagemap.h>
17 #include <linux/swap.h>
18 #include <linux/syscalls.h>
19 #include <linux/capability.h>
20 #include <linux/init.h>
21 #include <linux/file.h>
22 #include <linux/fs.h>
23 #include <linux/personality.h>
24 #include <linux/security.h>
25 #include <linux/hugetlb.h>
26 #include <linux/profile.h>
27 #include <linux/export.h>
28 #include <linux/mount.h>
29 #include <linux/mempolicy.h>
30 #include <linux/rmap.h>
31 #include <linux/mmu_notifier.h>
32 #include <linux/perf_event.h>
33 #include <linux/audit.h>
34 #include <linux/khugepaged.h>
35 #include <linux/uprobes.h>
36 #include <linux/rbtree_augmented.h>
37 #include <linux/sched/sysctl.h>
38 #include <linux/notifier.h>
39 #include <linux/memory.h>
40
41 #include <asm/uaccess.h>
42 #include <asm/cacheflush.h>
43 #include <asm/tlb.h>
44 #include <asm/mmu_context.h>
45
46 #include "internal.h"
47
48 #ifndef arch_mmap_check
49 #define arch_mmap_check(addr, len, flags)       (0)
50 #endif
51
52 #ifndef arch_rebalance_pgtables
53 #define arch_rebalance_pgtables(addr, len)              (addr)
54 #endif
55
56 static void unmap_region(struct mm_struct *mm,
57                 struct vm_area_struct *vma, struct vm_area_struct *prev,
58                 unsigned long start, unsigned long end);
59
60 /* description of effects of mapping type and prot in current implementation.
61  * this is due to the limited x86 page protection hardware.  The expected
62  * behavior is in parens:
63  *
64  * map_type     prot
65  *              PROT_NONE       PROT_READ       PROT_WRITE      PROT_EXEC
66  * MAP_SHARED   r: (no) no      r: (yes) yes    r: (no) yes     r: (no) yes
67  *              w: (no) no      w: (no) no      w: (yes) yes    w: (no) no
68  *              x: (no) no      x: (no) yes     x: (no) yes     x: (yes) yes
69  *              
70  * MAP_PRIVATE  r: (no) no      r: (yes) yes    r: (no) yes     r: (no) yes
71  *              w: (no) no      w: (no) no      w: (copy) copy  w: (no) no
72  *              x: (no) no      x: (no) yes     x: (no) yes     x: (yes) yes
73  *
74  */
75 pgprot_t protection_map[16] = {
76         __P000, __P001, __P010, __P011, __P100, __P101, __P110, __P111,
77         __S000, __S001, __S010, __S011, __S100, __S101, __S110, __S111
78 };
79
80 pgprot_t vm_get_page_prot(unsigned long vm_flags)
81 {
82         return __pgprot(pgprot_val(protection_map[vm_flags &
83                                 (VM_READ|VM_WRITE|VM_EXEC|VM_SHARED)]) |
84                         pgprot_val(arch_vm_get_page_prot(vm_flags)));
85 }
86 EXPORT_SYMBOL(vm_get_page_prot);
87
88 int sysctl_overcommit_memory __read_mostly = OVERCOMMIT_GUESS;  /* heuristic overcommit */
89 int sysctl_overcommit_ratio __read_mostly = 50; /* default is 50% */
90 unsigned long sysctl_overcommit_kbytes __read_mostly;
91 int sysctl_max_map_count __read_mostly = DEFAULT_MAX_MAP_COUNT;
92 unsigned long sysctl_user_reserve_kbytes __read_mostly = 1UL << 17; /* 128MB */
93 unsigned long sysctl_admin_reserve_kbytes __read_mostly = 1UL << 13; /* 8MB */
94 /*
95  * Make sure vm_committed_as in one cacheline and not cacheline shared with
96  * other variables. It can be updated by several CPUs frequently.
97  */
98 struct percpu_counter vm_committed_as ____cacheline_aligned_in_smp;
99
100 /*
101  * The global memory commitment made in the system can be a metric
102  * that can be used to drive ballooning decisions when Linux is hosted
103  * as a guest. On Hyper-V, the host implements a policy engine for dynamically
104  * balancing memory across competing virtual machines that are hosted.
105  * Several metrics drive this policy engine including the guest reported
106  * memory commitment.
107  */
108 unsigned long vm_memory_committed(void)
109 {
110         return percpu_counter_read_positive(&vm_committed_as);
111 }
112 EXPORT_SYMBOL_GPL(vm_memory_committed);
113
114 /*
115  * Check that a process has enough memory to allocate a new virtual
116  * mapping. 0 means there is enough memory for the allocation to
117  * succeed and -ENOMEM implies there is not.
118  *
119  * We currently support three overcommit policies, which are set via the
120  * vm.overcommit_memory sysctl.  See Documentation/vm/overcommit-accounting
121  *
122  * Strict overcommit modes added 2002 Feb 26 by Alan Cox.
123  * Additional code 2002 Jul 20 by Robert Love.
124  *
125  * cap_sys_admin is 1 if the process has admin privileges, 0 otherwise.
126  *
127  * Note this is a helper function intended to be used by LSMs which
128  * wish to use this logic.
129  */
130 int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin)
131 {
132         unsigned long free, allowed, reserve;
133
134         vm_acct_memory(pages);
135
136         /*
137          * Sometimes we want to use more memory than we have
138          */
139         if (sysctl_overcommit_memory == OVERCOMMIT_ALWAYS)
140                 return 0;
141
142         if (sysctl_overcommit_memory == OVERCOMMIT_GUESS) {
143                 free = global_page_state(NR_FREE_PAGES);
144                 free += global_page_state(NR_FILE_PAGES);
145
146                 /*
147                  * shmem pages shouldn't be counted as free in this
148                  * case, they can't be purged, only swapped out, and
149                  * that won't affect the overall amount of available
150                  * memory in the system.
151                  */
152                 free -= global_page_state(NR_SHMEM);
153
154                 free += get_nr_swap_pages();
155
156                 /*
157                  * Any slabs which are created with the
158                  * SLAB_RECLAIM_ACCOUNT flag claim to have contents
159                  * which are reclaimable, under pressure.  The dentry
160                  * cache and most inode caches should fall into this
161                  */
162                 free += global_page_state(NR_SLAB_RECLAIMABLE);
163
164                 /*
165                  * Leave reserved pages. The pages are not for anonymous pages.
166                  */
167                 if (free <= totalreserve_pages)
168                         goto error;
169                 else
170                         free -= totalreserve_pages;
171
172                 /*
173                  * Reserve some for root
174                  */
175                 if (!cap_sys_admin)
176                         free -= sysctl_admin_reserve_kbytes >> (PAGE_SHIFT - 10);
177
178                 if (free > pages)
179                         return 0;
180
181                 goto error;
182         }
183
184         allowed = vm_commit_limit();
185         /*
186          * Reserve some for root
187          */
188         if (!cap_sys_admin)
189                 allowed -= sysctl_admin_reserve_kbytes >> (PAGE_SHIFT - 10);
190
191         /*
192          * Don't let a single process grow so big a user can't recover
193          */
194         if (mm) {
195                 reserve = sysctl_user_reserve_kbytes >> (PAGE_SHIFT - 10);
196                 allowed -= min(mm->total_vm / 32, reserve);
197         }
198
199         if (percpu_counter_read_positive(&vm_committed_as) < allowed)
200                 return 0;
201 error:
202         vm_unacct_memory(pages);
203
204         return -ENOMEM;
205 }
206
207 /*
208  * Requires inode->i_mapping->i_mmap_mutex
209  */
210 static void __remove_shared_vm_struct(struct vm_area_struct *vma,
211                 struct file *file, struct address_space *mapping)
212 {
213         if (vma->vm_flags & VM_DENYWRITE)
214                 atomic_inc(&file_inode(file)->i_writecount);
215         if (vma->vm_flags & VM_SHARED)
216                 mapping->i_mmap_writable--;
217
218         flush_dcache_mmap_lock(mapping);
219         if (unlikely(vma->vm_flags & VM_NONLINEAR))
220                 list_del_init(&vma->shared.nonlinear);
221         else
222                 vma_interval_tree_remove(vma, &mapping->i_mmap);
223         flush_dcache_mmap_unlock(mapping);
224 }
225
226 /*
227  * Unlink a file-based vm structure from its interval tree, to hide
228  * vma from rmap and vmtruncate before freeing its page tables.
229  */
230 void unlink_file_vma(struct vm_area_struct *vma)
231 {
232         struct file *file = vma->vm_file;
233
234         if (file) {
235                 struct address_space *mapping = file->f_mapping;
236                 mutex_lock(&mapping->i_mmap_mutex);
237                 __remove_shared_vm_struct(vma, file, mapping);
238                 mutex_unlock(&mapping->i_mmap_mutex);
239         }
240 }
241
242 /*
243  * Close a vm structure and free it, returning the next.
244  */
245 static struct vm_area_struct *remove_vma(struct vm_area_struct *vma)
246 {
247         struct vm_area_struct *next = vma->vm_next;
248
249         might_sleep();
250         if (vma->vm_ops && vma->vm_ops->close)
251                 vma->vm_ops->close(vma);
252         if (vma->vm_file)
253                 fput(vma->vm_file);
254         mpol_put(vma_policy(vma));
255         kmem_cache_free(vm_area_cachep, vma);
256         return next;
257 }
258
259 static unsigned long do_brk(unsigned long addr, unsigned long len);
260
261 SYSCALL_DEFINE1(brk, unsigned long, brk)
262 {
263         unsigned long rlim, retval;
264         unsigned long newbrk, oldbrk;
265         struct mm_struct *mm = current->mm;
266         unsigned long min_brk;
267         bool populate;
268
269         down_write(&mm->mmap_sem);
270
271 #ifdef CONFIG_COMPAT_BRK
272         /*
273          * CONFIG_COMPAT_BRK can still be overridden by setting
274          * randomize_va_space to 2, which will still cause mm->start_brk
275          * to be arbitrarily shifted
276          */
277         if (current->brk_randomized)
278                 min_brk = mm->start_brk;
279         else
280                 min_brk = mm->end_data;
281 #else
282         min_brk = mm->start_brk;
283 #endif
284         if (brk < min_brk)
285                 goto out;
286
287         /*
288          * Check against rlimit here. If this check is done later after the test
289          * of oldbrk with newbrk then it can escape the test and let the data
290          * segment grow beyond its set limit the in case where the limit is
291          * not page aligned -Ram Gupta
292          */
293         rlim = rlimit(RLIMIT_DATA);
294         if (rlim < RLIM_INFINITY && (brk - mm->start_brk) +
295                         (mm->end_data - mm->start_data) > rlim)
296                 goto out;
297
298         newbrk = PAGE_ALIGN(brk);
299         oldbrk = PAGE_ALIGN(mm->brk);
300         if (oldbrk == newbrk)
301                 goto set_brk;
302
303         /* Always allow shrinking brk. */
304         if (brk <= mm->brk) {
305                 if (!do_munmap(mm, newbrk, oldbrk-newbrk))
306                         goto set_brk;
307                 goto out;
308         }
309
310         /* Check against existing mmap mappings. */
311         if (find_vma_intersection(mm, oldbrk, newbrk+PAGE_SIZE))
312                 goto out;
313
314         /* Ok, looks good - let it rip. */
315         if (do_brk(oldbrk, newbrk-oldbrk) != oldbrk)
316                 goto out;
317
318 set_brk:
319         mm->brk = brk;
320         populate = newbrk > oldbrk && (mm->def_flags & VM_LOCKED) != 0;
321         up_write(&mm->mmap_sem);
322         if (populate)
323                 mm_populate(oldbrk, newbrk - oldbrk);
324         return brk;
325
326 out:
327         retval = mm->brk;
328         up_write(&mm->mmap_sem);
329         return retval;
330 }
331
332 static long vma_compute_subtree_gap(struct vm_area_struct *vma)
333 {
334         unsigned long max, subtree_gap;
335         max = vma->vm_start;
336         if (vma->vm_prev)
337                 max -= vma->vm_prev->vm_end;
338         if (vma->vm_rb.rb_left) {
339                 subtree_gap = rb_entry(vma->vm_rb.rb_left,
340                                 struct vm_area_struct, vm_rb)->rb_subtree_gap;
341                 if (subtree_gap > max)
342                         max = subtree_gap;
343         }
344         if (vma->vm_rb.rb_right) {
345                 subtree_gap = rb_entry(vma->vm_rb.rb_right,
346                                 struct vm_area_struct, vm_rb)->rb_subtree_gap;
347                 if (subtree_gap > max)
348                         max = subtree_gap;
349         }
350         return max;
351 }
352
353 #ifdef CONFIG_DEBUG_VM_RB
354 static int browse_rb(struct rb_root *root)
355 {
356         int i = 0, j, bug = 0;
357         struct rb_node *nd, *pn = NULL;
358         unsigned long prev = 0, pend = 0;
359
360         for (nd = rb_first(root); nd; nd = rb_next(nd)) {
361                 struct vm_area_struct *vma;
362                 vma = rb_entry(nd, struct vm_area_struct, vm_rb);
363                 if (vma->vm_start < prev) {
364                         printk("vm_start %lx prev %lx\n", vma->vm_start, prev);
365                         bug = 1;
366                 }
367                 if (vma->vm_start < pend) {
368                         printk("vm_start %lx pend %lx\n", vma->vm_start, pend);
369                         bug = 1;
370                 }
371                 if (vma->vm_start > vma->vm_end) {
372                         printk("vm_end %lx < vm_start %lx\n",
373                                 vma->vm_end, vma->vm_start);
374                         bug = 1;
375                 }
376                 if (vma->rb_subtree_gap != vma_compute_subtree_gap(vma)) {
377                         printk("free gap %lx, correct %lx\n",
378                                vma->rb_subtree_gap,
379                                vma_compute_subtree_gap(vma));
380                         bug = 1;
381                 }
382                 i++;
383                 pn = nd;
384                 prev = vma->vm_start;
385                 pend = vma->vm_end;
386         }
387         j = 0;
388         for (nd = pn; nd; nd = rb_prev(nd))
389                 j++;
390         if (i != j) {
391                 printk("backwards %d, forwards %d\n", j, i);
392                 bug = 1;
393         }
394         return bug ? -1 : i;
395 }
396
397 static void validate_mm_rb(struct rb_root *root, struct vm_area_struct *ignore)
398 {
399         struct rb_node *nd;
400
401         for (nd = rb_first(root); nd; nd = rb_next(nd)) {
402                 struct vm_area_struct *vma;
403                 vma = rb_entry(nd, struct vm_area_struct, vm_rb);
404                 BUG_ON(vma != ignore &&
405                        vma->rb_subtree_gap != vma_compute_subtree_gap(vma));
406         }
407 }
408
409 void validate_mm(struct mm_struct *mm)
410 {
411         int bug = 0;
412         int i = 0;
413         unsigned long highest_address = 0;
414         struct vm_area_struct *vma = mm->mmap;
415         while (vma) {
416                 struct anon_vma_chain *avc;
417                 vma_lock_anon_vma(vma);
418                 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
419                         anon_vma_interval_tree_verify(avc);
420                 vma_unlock_anon_vma(vma);
421                 highest_address = vma->vm_end;
422                 vma = vma->vm_next;
423                 i++;
424         }
425         if (i != mm->map_count) {
426                 printk("map_count %d vm_next %d\n", mm->map_count, i);
427                 bug = 1;
428         }
429         if (highest_address != mm->highest_vm_end) {
430                 printk("mm->highest_vm_end %lx, found %lx\n",
431                        mm->highest_vm_end, highest_address);
432                 bug = 1;
433         }
434         i = browse_rb(&mm->mm_rb);
435         if (i != mm->map_count) {
436                 printk("map_count %d rb %d\n", mm->map_count, i);
437                 bug = 1;
438         }
439         BUG_ON(bug);
440 }
441 #else
442 #define validate_mm_rb(root, ignore) do { } while (0)
443 #define validate_mm(mm) do { } while (0)
444 #endif
445
446 RB_DECLARE_CALLBACKS(static, vma_gap_callbacks, struct vm_area_struct, vm_rb,
447                      unsigned long, rb_subtree_gap, vma_compute_subtree_gap)
448
449 /*
450  * Update augmented rbtree rb_subtree_gap values after vma->vm_start or
451  * vma->vm_prev->vm_end values changed, without modifying the vma's position
452  * in the rbtree.
453  */
454 static void vma_gap_update(struct vm_area_struct *vma)
455 {
456         /*
457          * As it turns out, RB_DECLARE_CALLBACKS() already created a callback
458          * function that does exacltly what we want.
459          */
460         vma_gap_callbacks_propagate(&vma->vm_rb, NULL);
461 }
462
463 static inline void vma_rb_insert(struct vm_area_struct *vma,
464                                  struct rb_root *root)
465 {
466         /* All rb_subtree_gap values must be consistent prior to insertion */
467         validate_mm_rb(root, NULL);
468
469         rb_insert_augmented(&vma->vm_rb, root, &vma_gap_callbacks);
470 }
471
472 static void vma_rb_erase(struct vm_area_struct *vma, struct rb_root *root)
473 {
474         /*
475          * All rb_subtree_gap values must be consistent prior to erase,
476          * with the possible exception of the vma being erased.
477          */
478         validate_mm_rb(root, vma);
479
480         /*
481          * Note rb_erase_augmented is a fairly large inline function,
482          * so make sure we instantiate it only once with our desired
483          * augmented rbtree callbacks.
484          */
485         rb_erase_augmented(&vma->vm_rb, root, &vma_gap_callbacks);
486 }
487
488 /*
489  * vma has some anon_vma assigned, and is already inserted on that
490  * anon_vma's interval trees.
491  *
492  * Before updating the vma's vm_start / vm_end / vm_pgoff fields, the
493  * vma must be removed from the anon_vma's interval trees using
494  * anon_vma_interval_tree_pre_update_vma().
495  *
496  * After the update, the vma will be reinserted using
497  * anon_vma_interval_tree_post_update_vma().
498  *
499  * The entire update must be protected by exclusive mmap_sem and by
500  * the root anon_vma's mutex.
501  */
502 static inline void
503 anon_vma_interval_tree_pre_update_vma(struct vm_area_struct *vma)
504 {
505         struct anon_vma_chain *avc;
506
507         list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
508                 anon_vma_interval_tree_remove(avc, &avc->anon_vma->rb_root);
509 }
510
511 static inline void
512 anon_vma_interval_tree_post_update_vma(struct vm_area_struct *vma)
513 {
514         struct anon_vma_chain *avc;
515
516         list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
517                 anon_vma_interval_tree_insert(avc, &avc->anon_vma->rb_root);
518 }
519
520 static int find_vma_links(struct mm_struct *mm, unsigned long addr,
521                 unsigned long end, struct vm_area_struct **pprev,
522                 struct rb_node ***rb_link, struct rb_node **rb_parent)
523 {
524         struct rb_node **__rb_link, *__rb_parent, *rb_prev;
525
526         __rb_link = &mm->mm_rb.rb_node;
527         rb_prev = __rb_parent = NULL;
528
529         while (*__rb_link) {
530                 struct vm_area_struct *vma_tmp;
531
532                 __rb_parent = *__rb_link;
533                 vma_tmp = rb_entry(__rb_parent, struct vm_area_struct, vm_rb);
534
535                 if (vma_tmp->vm_end > addr) {
536                         /* Fail if an existing vma overlaps the area */
537                         if (vma_tmp->vm_start < end)
538                                 return -ENOMEM;
539                         __rb_link = &__rb_parent->rb_left;
540                 } else {
541                         rb_prev = __rb_parent;
542                         __rb_link = &__rb_parent->rb_right;
543                 }
544         }
545
546         *pprev = NULL;
547         if (rb_prev)
548                 *pprev = rb_entry(rb_prev, struct vm_area_struct, vm_rb);
549         *rb_link = __rb_link;
550         *rb_parent = __rb_parent;
551         return 0;
552 }
553
554 static unsigned long count_vma_pages_range(struct mm_struct *mm,
555                 unsigned long addr, unsigned long end)
556 {
557         unsigned long nr_pages = 0;
558         struct vm_area_struct *vma;
559
560         /* Find first overlaping mapping */
561         vma = find_vma_intersection(mm, addr, end);
562         if (!vma)
563                 return 0;
564
565         nr_pages = (min(end, vma->vm_end) -
566                 max(addr, vma->vm_start)) >> PAGE_SHIFT;
567
568         /* Iterate over the rest of the overlaps */
569         for (vma = vma->vm_next; vma; vma = vma->vm_next) {
570                 unsigned long overlap_len;
571
572                 if (vma->vm_start > end)
573                         break;
574
575                 overlap_len = min(end, vma->vm_end) - vma->vm_start;
576                 nr_pages += overlap_len >> PAGE_SHIFT;
577         }
578
579         return nr_pages;
580 }
581
582 void __vma_link_rb(struct mm_struct *mm, struct vm_area_struct *vma,
583                 struct rb_node **rb_link, struct rb_node *rb_parent)
584 {
585         /* Update tracking information for the gap following the new vma. */
586         if (vma->vm_next)
587                 vma_gap_update(vma->vm_next);
588         else
589                 mm->highest_vm_end = vma->vm_end;
590
591         /*
592          * vma->vm_prev wasn't known when we followed the rbtree to find the
593          * correct insertion point for that vma. As a result, we could not
594          * update the vma vm_rb parents rb_subtree_gap values on the way down.
595          * So, we first insert the vma with a zero rb_subtree_gap value
596          * (to be consistent with what we did on the way down), and then
597          * immediately update the gap to the correct value. Finally we
598          * rebalance the rbtree after all augmented values have been set.
599          */
600         rb_link_node(&vma->vm_rb, rb_parent, rb_link);
601         vma->rb_subtree_gap = 0;
602         vma_gap_update(vma);
603         vma_rb_insert(vma, &mm->mm_rb);
604 }
605
606 static void __vma_link_file(struct vm_area_struct *vma)
607 {
608         struct file *file;
609
610         file = vma->vm_file;
611         if (file) {
612                 struct address_space *mapping = file->f_mapping;
613
614                 if (vma->vm_flags & VM_DENYWRITE)
615                         atomic_dec(&file_inode(file)->i_writecount);
616                 if (vma->vm_flags & VM_SHARED)
617                         mapping->i_mmap_writable++;
618
619                 flush_dcache_mmap_lock(mapping);
620                 if (unlikely(vma->vm_flags & VM_NONLINEAR))
621                         vma_nonlinear_insert(vma, &mapping->i_mmap_nonlinear);
622                 else
623                         vma_interval_tree_insert(vma, &mapping->i_mmap);
624                 flush_dcache_mmap_unlock(mapping);
625         }
626 }
627
628 static void
629 __vma_link(struct mm_struct *mm, struct vm_area_struct *vma,
630         struct vm_area_struct *prev, struct rb_node **rb_link,
631         struct rb_node *rb_parent)
632 {
633         __vma_link_list(mm, vma, prev, rb_parent);
634         __vma_link_rb(mm, vma, rb_link, rb_parent);
635 }
636
637 static void vma_link(struct mm_struct *mm, struct vm_area_struct *vma,
638                         struct vm_area_struct *prev, struct rb_node **rb_link,
639                         struct rb_node *rb_parent)
640 {
641         struct address_space *mapping = NULL;
642
643         if (vma->vm_file)
644                 mapping = vma->vm_file->f_mapping;
645
646         if (mapping)
647                 mutex_lock(&mapping->i_mmap_mutex);
648
649         __vma_link(mm, vma, prev, rb_link, rb_parent);
650         __vma_link_file(vma);
651
652         if (mapping)
653                 mutex_unlock(&mapping->i_mmap_mutex);
654
655         mm->map_count++;
656         validate_mm(mm);
657 }
658
659 /*
660  * Helper for vma_adjust() in the split_vma insert case: insert a vma into the
661  * mm's list and rbtree.  It has already been inserted into the interval tree.
662  */
663 static void __insert_vm_struct(struct mm_struct *mm, struct vm_area_struct *vma)
664 {
665         struct vm_area_struct *prev;
666         struct rb_node **rb_link, *rb_parent;
667
668         if (find_vma_links(mm, vma->vm_start, vma->vm_end,
669                            &prev, &rb_link, &rb_parent))
670                 BUG();
671         __vma_link(mm, vma, prev, rb_link, rb_parent);
672         mm->map_count++;
673 }
674
675 static inline void
676 __vma_unlink(struct mm_struct *mm, struct vm_area_struct *vma,
677                 struct vm_area_struct *prev)
678 {
679         struct vm_area_struct *next;
680
681         vma_rb_erase(vma, &mm->mm_rb);
682         prev->vm_next = next = vma->vm_next;
683         if (next)
684                 next->vm_prev = prev;
685
686         /* Kill the cache */
687         vmacache_invalidate(mm);
688 }
689
690 /*
691  * We cannot adjust vm_start, vm_end, vm_pgoff fields of a vma that
692  * is already present in an i_mmap tree without adjusting the tree.
693  * The following helper function should be used when such adjustments
694  * are necessary.  The "insert" vma (if any) is to be inserted
695  * before we drop the necessary locks.
696  */
697 int vma_adjust(struct vm_area_struct *vma, unsigned long start,
698         unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert)
699 {
700         struct mm_struct *mm = vma->vm_mm;
701         struct vm_area_struct *next = vma->vm_next;
702         struct vm_area_struct *importer = NULL;
703         struct address_space *mapping = NULL;
704         struct rb_root *root = NULL;
705         struct anon_vma *anon_vma = NULL;
706         struct file *file = vma->vm_file;
707         bool start_changed = false, end_changed = false;
708         long adjust_next = 0;
709         int remove_next = 0;
710
711         if (next && !insert) {
712                 struct vm_area_struct *exporter = NULL;
713
714                 if (end >= next->vm_end) {
715                         /*
716                          * vma expands, overlapping all the next, and
717                          * perhaps the one after too (mprotect case 6).
718                          */
719 again:                  remove_next = 1 + (end > next->vm_end);
720                         end = next->vm_end;
721                         exporter = next;
722                         importer = vma;
723                 } else if (end > next->vm_start) {
724                         /*
725                          * vma expands, overlapping part of the next:
726                          * mprotect case 5 shifting the boundary up.
727                          */
728                         adjust_next = (end - next->vm_start) >> PAGE_SHIFT;
729                         exporter = next;
730                         importer = vma;
731                 } else if (end < vma->vm_end) {
732                         /*
733                          * vma shrinks, and !insert tells it's not
734                          * split_vma inserting another: so it must be
735                          * mprotect case 4 shifting the boundary down.
736                          */
737                         adjust_next = - ((vma->vm_end - end) >> PAGE_SHIFT);
738                         exporter = vma;
739                         importer = next;
740                 }
741
742                 /*
743                  * Easily overlooked: when mprotect shifts the boundary,
744                  * make sure the expanding vma has anon_vma set if the
745                  * shrinking vma had, to cover any anon pages imported.
746                  */
747                 if (exporter && exporter->anon_vma && !importer->anon_vma) {
748                         int error;
749
750                         error = anon_vma_clone(importer, exporter);
751                         if (error)
752                                 return error;
753                         importer->anon_vma = exporter->anon_vma;
754                 }
755         }
756
757         if (file) {
758                 mapping = file->f_mapping;
759                 if (!(vma->vm_flags & VM_NONLINEAR)) {
760                         root = &mapping->i_mmap;
761                         uprobe_munmap(vma, vma->vm_start, vma->vm_end);
762
763                         if (adjust_next)
764                                 uprobe_munmap(next, next->vm_start,
765                                                         next->vm_end);
766                 }
767
768                 mutex_lock(&mapping->i_mmap_mutex);
769                 if (insert) {
770                         /*
771                          * Put into interval tree now, so instantiated pages
772                          * are visible to arm/parisc __flush_dcache_page
773                          * throughout; but we cannot insert into address
774                          * space until vma start or end is updated.
775                          */
776                         __vma_link_file(insert);
777                 }
778         }
779
780         vma_adjust_trans_huge(vma, start, end, adjust_next);
781
782         anon_vma = vma->anon_vma;
783         if (!anon_vma && adjust_next)
784                 anon_vma = next->anon_vma;
785         if (anon_vma) {
786                 VM_BUG_ON(adjust_next && next->anon_vma &&
787                           anon_vma != next->anon_vma);
788                 anon_vma_lock_write(anon_vma);
789                 anon_vma_interval_tree_pre_update_vma(vma);
790                 if (adjust_next)
791                         anon_vma_interval_tree_pre_update_vma(next);
792         }
793
794         if (root) {
795                 flush_dcache_mmap_lock(mapping);
796                 vma_interval_tree_remove(vma, root);
797                 if (adjust_next)
798                         vma_interval_tree_remove(next, root);
799         }
800
801         if (start != vma->vm_start) {
802                 vma->vm_start = start;
803                 start_changed = true;
804         }
805         if (end != vma->vm_end) {
806                 vma->vm_end = end;
807                 end_changed = true;
808         }
809         vma->vm_pgoff = pgoff;
810         if (adjust_next) {
811                 next->vm_start += adjust_next << PAGE_SHIFT;
812                 next->vm_pgoff += adjust_next;
813         }
814
815         if (root) {
816                 if (adjust_next)
817                         vma_interval_tree_insert(next, root);
818                 vma_interval_tree_insert(vma, root);
819                 flush_dcache_mmap_unlock(mapping);
820         }
821
822         if (remove_next) {
823                 /*
824                  * vma_merge has merged next into vma, and needs
825                  * us to remove next before dropping the locks.
826                  */
827                 __vma_unlink(mm, next, vma);
828                 if (file)
829                         __remove_shared_vm_struct(next, file, mapping);
830         } else if (insert) {
831                 /*
832                  * split_vma has split insert from vma, and needs
833                  * us to insert it before dropping the locks
834                  * (it may either follow vma or precede it).
835                  */
836                 __insert_vm_struct(mm, insert);
837         } else {
838                 if (start_changed)
839                         vma_gap_update(vma);
840                 if (end_changed) {
841                         if (!next)
842                                 mm->highest_vm_end = end;
843                         else if (!adjust_next)
844                                 vma_gap_update(next);
845                 }
846         }
847
848         if (anon_vma) {
849                 anon_vma_interval_tree_post_update_vma(vma);
850                 if (adjust_next)
851                         anon_vma_interval_tree_post_update_vma(next);
852                 anon_vma_unlock_write(anon_vma);
853         }
854         if (mapping)
855                 mutex_unlock(&mapping->i_mmap_mutex);
856
857         if (root) {
858                 uprobe_mmap(vma);
859
860                 if (adjust_next)
861                         uprobe_mmap(next);
862         }
863
864         if (remove_next) {
865                 if (file) {
866                         uprobe_munmap(next, next->vm_start, next->vm_end);
867                         fput(file);
868                 }
869                 if (next->anon_vma)
870                         anon_vma_merge(vma, next);
871                 mm->map_count--;
872                 mpol_put(vma_policy(next));
873                 kmem_cache_free(vm_area_cachep, next);
874                 /*
875                  * In mprotect's case 6 (see comments on vma_merge),
876                  * we must remove another next too. It would clutter
877                  * up the code too much to do both in one go.
878                  */
879                 next = vma->vm_next;
880                 if (remove_next == 2)
881                         goto again;
882                 else if (next)
883                         vma_gap_update(next);
884                 else
885                         mm->highest_vm_end = end;
886         }
887         if (insert && file)
888                 uprobe_mmap(insert);
889
890         validate_mm(mm);
891
892         return 0;
893 }
894
895 /*
896  * If the vma has a ->close operation then the driver probably needs to release
897  * per-vma resources, so we don't attempt to merge those.
898  */
899 static inline int is_mergeable_vma(struct vm_area_struct *vma,
900                         struct file *file, unsigned long vm_flags)
901 {
902         /*
903          * VM_SOFTDIRTY should not prevent from VMA merging, if we
904          * match the flags but dirty bit -- the caller should mark
905          * merged VMA as dirty. If dirty bit won't be excluded from
906          * comparison, we increase pressue on the memory system forcing
907          * the kernel to generate new VMAs when old one could be
908          * extended instead.
909          */
910         if ((vma->vm_flags ^ vm_flags) & ~VM_SOFTDIRTY)
911                 return 0;
912         if (vma->vm_file != file)
913                 return 0;
914         if (vma->vm_ops && vma->vm_ops->close)
915                 return 0;
916         return 1;
917 }
918
919 static inline int is_mergeable_anon_vma(struct anon_vma *anon_vma1,
920                                         struct anon_vma *anon_vma2,
921                                         struct vm_area_struct *vma)
922 {
923         /*
924          * The list_is_singular() test is to avoid merging VMA cloned from
925          * parents. This can improve scalability caused by anon_vma lock.
926          */
927         if ((!anon_vma1 || !anon_vma2) && (!vma ||
928                 list_is_singular(&vma->anon_vma_chain)))
929                 return 1;
930         return anon_vma1 == anon_vma2;
931 }
932
933 /*
934  * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
935  * in front of (at a lower virtual address and file offset than) the vma.
936  *
937  * We cannot merge two vmas if they have differently assigned (non-NULL)
938  * anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
939  *
940  * We don't check here for the merged mmap wrapping around the end of pagecache
941  * indices (16TB on ia32) because do_mmap_pgoff() does not permit mmap's which
942  * wrap, nor mmaps which cover the final page at index -1UL.
943  */
944 static int
945 can_vma_merge_before(struct vm_area_struct *vma, unsigned long vm_flags,
946         struct anon_vma *anon_vma, struct file *file, pgoff_t vm_pgoff)
947 {
948         if (is_mergeable_vma(vma, file, vm_flags) &&
949             is_mergeable_anon_vma(anon_vma, vma->anon_vma, vma)) {
950                 if (vma->vm_pgoff == vm_pgoff)
951                         return 1;
952         }
953         return 0;
954 }
955
956 /*
957  * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
958  * beyond (at a higher virtual address and file offset than) the vma.
959  *
960  * We cannot merge two vmas if they have differently assigned (non-NULL)
961  * anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
962  */
963 static int
964 can_vma_merge_after(struct vm_area_struct *vma, unsigned long vm_flags,
965         struct anon_vma *anon_vma, struct file *file, pgoff_t vm_pgoff)
966 {
967         if (is_mergeable_vma(vma, file, vm_flags) &&
968             is_mergeable_anon_vma(anon_vma, vma->anon_vma, vma)) {
969                 pgoff_t vm_pglen;
970                 vm_pglen = vma_pages(vma);
971                 if (vma->vm_pgoff + vm_pglen == vm_pgoff)
972                         return 1;
973         }
974         return 0;
975 }
976
977 /*
978  * Given a mapping request (addr,end,vm_flags,file,pgoff), figure out
979  * whether that can be merged with its predecessor or its successor.
980  * Or both (it neatly fills a hole).
981  *
982  * In most cases - when called for mmap, brk or mremap - [addr,end) is
983  * certain not to be mapped by the time vma_merge is called; but when
984  * called for mprotect, it is certain to be already mapped (either at
985  * an offset within prev, or at the start of next), and the flags of
986  * this area are about to be changed to vm_flags - and the no-change
987  * case has already been eliminated.
988  *
989  * The following mprotect cases have to be considered, where AAAA is
990  * the area passed down from mprotect_fixup, never extending beyond one
991  * vma, PPPPPP is the prev vma specified, and NNNNNN the next vma after:
992  *
993  *     AAAA             AAAA                AAAA          AAAA
994  *    PPPPPPNNNNNN    PPPPPPNNNNNN    PPPPPPNNNNNN    PPPPNNNNXXXX
995  *    cannot merge    might become    might become    might become
996  *                    PPNNNNNNNNNN    PPPPPPPPPPNN    PPPPPPPPPPPP 6 or
997  *    mmap, brk or    case 4 below    case 5 below    PPPPPPPPXXXX 7 or
998  *    mremap move:                                    PPPPNNNNNNNN 8
999  *        AAAA
1000  *    PPPP    NNNN    PPPPPPPPPPPP    PPPPPPPPNNNN    PPPPNNNNNNNN
1001  *    might become    case 1 below    case 2 below    case 3 below
1002  *
1003  * Odd one out? Case 8, because it extends NNNN but needs flags of XXXX:
1004  * mprotect_fixup updates vm_flags & vm_page_prot on successful return.
1005  */
1006 struct vm_area_struct *vma_merge(struct mm_struct *mm,
1007                         struct vm_area_struct *prev, unsigned long addr,
1008                         unsigned long end, unsigned long vm_flags,
1009                         struct anon_vma *anon_vma, struct file *file,
1010                         pgoff_t pgoff, struct mempolicy *policy)
1011 {
1012         pgoff_t pglen = (end - addr) >> PAGE_SHIFT;
1013         struct vm_area_struct *area, *next;
1014         int err;
1015
1016         /*
1017          * We later require that vma->vm_flags == vm_flags,
1018          * so this tests vma->vm_flags & VM_SPECIAL, too.
1019          */
1020         if (vm_flags & VM_SPECIAL)
1021                 return NULL;
1022
1023         if (prev)
1024                 next = prev->vm_next;
1025         else
1026                 next = mm->mmap;
1027         area = next;
1028         if (next && next->vm_end == end)                /* cases 6, 7, 8 */
1029                 next = next->vm_next;
1030
1031         /*
1032          * Can it merge with the predecessor?
1033          */
1034         if (prev && prev->vm_end == addr &&
1035                         mpol_equal(vma_policy(prev), policy) &&
1036                         can_vma_merge_after(prev, vm_flags,
1037                                                 anon_vma, file, pgoff)) {
1038                 /*
1039                  * OK, it can.  Can we now merge in the successor as well?
1040                  */
1041                 if (next && end == next->vm_start &&
1042                                 mpol_equal(policy, vma_policy(next)) &&
1043                                 can_vma_merge_before(next, vm_flags,
1044                                         anon_vma, file, pgoff+pglen) &&
1045                                 is_mergeable_anon_vma(prev->anon_vma,
1046                                                       next->anon_vma, NULL)) {
1047                                                         /* cases 1, 6 */
1048                         err = vma_adjust(prev, prev->vm_start,
1049                                 next->vm_end, prev->vm_pgoff, NULL);
1050                 } else                                  /* cases 2, 5, 7 */
1051                         err = vma_adjust(prev, prev->vm_start,
1052                                 end, prev->vm_pgoff, NULL);
1053                 if (err)
1054                         return NULL;
1055                 khugepaged_enter_vma_merge(prev);
1056                 return prev;
1057         }
1058
1059         /*
1060          * Can this new request be merged in front of next?
1061          */
1062         if (next && end == next->vm_start &&
1063                         mpol_equal(policy, vma_policy(next)) &&
1064                         can_vma_merge_before(next, vm_flags,
1065                                         anon_vma, file, pgoff+pglen)) {
1066                 if (prev && addr < prev->vm_end)        /* case 4 */
1067                         err = vma_adjust(prev, prev->vm_start,
1068                                 addr, prev->vm_pgoff, NULL);
1069                 else                                    /* cases 3, 8 */
1070                         err = vma_adjust(area, addr, next->vm_end,
1071                                 next->vm_pgoff - pglen, NULL);
1072                 if (err)
1073                         return NULL;
1074                 khugepaged_enter_vma_merge(area);
1075                 return area;
1076         }
1077
1078         return NULL;
1079 }
1080
1081 /*
1082  * Rough compatbility check to quickly see if it's even worth looking
1083  * at sharing an anon_vma.
1084  *
1085  * They need to have the same vm_file, and the flags can only differ
1086  * in things that mprotect may change.
1087  *
1088  * NOTE! The fact that we share an anon_vma doesn't _have_ to mean that
1089  * we can merge the two vma's. For example, we refuse to merge a vma if
1090  * there is a vm_ops->close() function, because that indicates that the
1091  * driver is doing some kind of reference counting. But that doesn't
1092  * really matter for the anon_vma sharing case.
1093  */
1094 static int anon_vma_compatible(struct vm_area_struct *a, struct vm_area_struct *b)
1095 {
1096         return a->vm_end == b->vm_start &&
1097                 mpol_equal(vma_policy(a), vma_policy(b)) &&
1098                 a->vm_file == b->vm_file &&
1099                 !((a->vm_flags ^ b->vm_flags) & ~(VM_READ|VM_WRITE|VM_EXEC|VM_SOFTDIRTY)) &&
1100                 b->vm_pgoff == a->vm_pgoff + ((b->vm_start - a->vm_start) >> PAGE_SHIFT);
1101 }
1102
1103 /*
1104  * Do some basic sanity checking to see if we can re-use the anon_vma
1105  * from 'old'. The 'a'/'b' vma's are in VM order - one of them will be
1106  * the same as 'old', the other will be the new one that is trying
1107  * to share the anon_vma.
1108  *
1109  * NOTE! This runs with mm_sem held for reading, so it is possible that
1110  * the anon_vma of 'old' is concurrently in the process of being set up
1111  * by another page fault trying to merge _that_. But that's ok: if it
1112  * is being set up, that automatically means that it will be a singleton
1113  * acceptable for merging, so we can do all of this optimistically. But
1114  * we do that ACCESS_ONCE() to make sure that we never re-load the pointer.
1115  *
1116  * IOW: that the "list_is_singular()" test on the anon_vma_chain only
1117  * matters for the 'stable anon_vma' case (ie the thing we want to avoid
1118  * is to return an anon_vma that is "complex" due to having gone through
1119  * a fork).
1120  *
1121  * We also make sure that the two vma's are compatible (adjacent,
1122  * and with the same memory policies). That's all stable, even with just
1123  * a read lock on the mm_sem.
1124  */
1125 static struct anon_vma *reusable_anon_vma(struct vm_area_struct *old, struct vm_area_struct *a, struct vm_area_struct *b)
1126 {
1127         if (anon_vma_compatible(a, b)) {
1128                 struct anon_vma *anon_vma = ACCESS_ONCE(old->anon_vma);
1129
1130                 if (anon_vma && list_is_singular(&old->anon_vma_chain))
1131                         return anon_vma;
1132         }
1133         return NULL;
1134 }
1135
1136 /*
1137  * find_mergeable_anon_vma is used by anon_vma_prepare, to check
1138  * neighbouring vmas for a suitable anon_vma, before it goes off
1139  * to allocate a new anon_vma.  It checks because a repetitive
1140  * sequence of mprotects and faults may otherwise lead to distinct
1141  * anon_vmas being allocated, preventing vma merge in subsequent
1142  * mprotect.
1143  */
1144 struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *vma)
1145 {
1146         struct anon_vma *anon_vma;
1147         struct vm_area_struct *near;
1148
1149         near = vma->vm_next;
1150         if (!near)
1151                 goto try_prev;
1152
1153         anon_vma = reusable_anon_vma(near, vma, near);
1154         if (anon_vma)
1155                 return anon_vma;
1156 try_prev:
1157         near = vma->vm_prev;
1158         if (!near)
1159                 goto none;
1160
1161         anon_vma = reusable_anon_vma(near, near, vma);
1162         if (anon_vma)
1163                 return anon_vma;
1164 none:
1165         /*
1166          * There's no absolute need to look only at touching neighbours:
1167          * we could search further afield for "compatible" anon_vmas.
1168          * But it would probably just be a waste of time searching,
1169          * or lead to too many vmas hanging off the same anon_vma.
1170          * We're trying to allow mprotect remerging later on,
1171          * not trying to minimize memory used for anon_vmas.
1172          */
1173         return NULL;
1174 }
1175
1176 #ifdef CONFIG_PROC_FS
1177 void vm_stat_account(struct mm_struct *mm, unsigned long flags,
1178                                                 struct file *file, long pages)
1179 {
1180         const unsigned long stack_flags
1181                 = VM_STACK_FLAGS & (VM_GROWSUP|VM_GROWSDOWN);
1182
1183         mm->total_vm += pages;
1184
1185         if (file) {
1186                 mm->shared_vm += pages;
1187                 if ((flags & (VM_EXEC|VM_WRITE)) == VM_EXEC)
1188                         mm->exec_vm += pages;
1189         } else if (flags & stack_flags)
1190                 mm->stack_vm += pages;
1191 }
1192 #endif /* CONFIG_PROC_FS */
1193
1194 /*
1195  * If a hint addr is less than mmap_min_addr change hint to be as
1196  * low as possible but still greater than mmap_min_addr
1197  */
1198 static inline unsigned long round_hint_to_min(unsigned long hint)
1199 {
1200         hint &= PAGE_MASK;
1201         if (((void *)hint != NULL) &&
1202             (hint < mmap_min_addr))
1203                 return PAGE_ALIGN(mmap_min_addr);
1204         return hint;
1205 }
1206
1207 static inline int mlock_future_check(struct mm_struct *mm,
1208                                      unsigned long flags,
1209                                      unsigned long len)
1210 {
1211         unsigned long locked, lock_limit;
1212
1213         /*  mlock MCL_FUTURE? */
1214         if (flags & VM_LOCKED) {
1215                 locked = len >> PAGE_SHIFT;
1216                 locked += mm->locked_vm;
1217                 lock_limit = rlimit(RLIMIT_MEMLOCK);
1218                 lock_limit >>= PAGE_SHIFT;
1219                 if (locked > lock_limit && !capable(CAP_IPC_LOCK))
1220                         return -EAGAIN;
1221         }
1222         return 0;
1223 }
1224
1225 /*
1226  * The caller must hold down_write(&current->mm->mmap_sem).
1227  */
1228
1229 unsigned long do_mmap_pgoff(struct file *file, unsigned long addr,
1230                         unsigned long len, unsigned long prot,
1231                         unsigned long flags, unsigned long pgoff,
1232                         unsigned long *populate)
1233 {
1234         struct mm_struct * mm = current->mm;
1235         vm_flags_t vm_flags;
1236
1237         *populate = 0;
1238
1239         /*
1240          * Does the application expect PROT_READ to imply PROT_EXEC?
1241          *
1242          * (the exception is when the underlying filesystem is noexec
1243          *  mounted, in which case we dont add PROT_EXEC.)
1244          */
1245         if ((prot & PROT_READ) && (current->personality & READ_IMPLIES_EXEC))
1246                 if (!(file && (file->f_path.mnt->mnt_flags & MNT_NOEXEC)))
1247                         prot |= PROT_EXEC;
1248
1249         if (!len)
1250                 return -EINVAL;
1251
1252         if (!(flags & MAP_FIXED))
1253                 addr = round_hint_to_min(addr);
1254
1255         /* Careful about overflows.. */
1256         len = PAGE_ALIGN(len);
1257         if (!len)
1258                 return -ENOMEM;
1259
1260         /* offset overflow? */
1261         if ((pgoff + (len >> PAGE_SHIFT)) < pgoff)
1262                return -EOVERFLOW;
1263
1264         /* Too many mappings? */
1265         if (mm->map_count > sysctl_max_map_count)
1266                 return -ENOMEM;
1267
1268         /* Obtain the address to map to. we verify (or select) it and ensure
1269          * that it represents a valid section of the address space.
1270          */
1271         addr = get_unmapped_area(file, addr, len, pgoff, flags);
1272         if (addr & ~PAGE_MASK)
1273                 return addr;
1274
1275         /* Do simple checking here so the lower-level routines won't have
1276          * to. we assume access permissions have been handled by the open
1277          * of the memory object, so we don't do any here.
1278          */
1279         vm_flags = calc_vm_prot_bits(prot) | calc_vm_flag_bits(flags) |
1280                         mm->def_flags | VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC;
1281
1282         if (flags & MAP_LOCKED)
1283                 if (!can_do_mlock())
1284                         return -EPERM;
1285
1286         if (mlock_future_check(mm, vm_flags, len))
1287                 return -EAGAIN;
1288
1289         if (file) {
1290                 struct inode *inode = file_inode(file);
1291
1292                 switch (flags & MAP_TYPE) {
1293                 case MAP_SHARED:
1294                         if ((prot&PROT_WRITE) && !(file->f_mode&FMODE_WRITE))
1295                                 return -EACCES;
1296
1297                         /*
1298                          * Make sure we don't allow writing to an append-only
1299                          * file..
1300                          */
1301                         if (IS_APPEND(inode) && (file->f_mode & FMODE_WRITE))
1302                                 return -EACCES;
1303
1304                         /*
1305                          * Make sure there are no mandatory locks on the file.
1306                          */
1307                         if (locks_verify_locked(inode))
1308                                 return -EAGAIN;
1309
1310                         vm_flags |= VM_SHARED | VM_MAYSHARE;
1311                         if (!(file->f_mode & FMODE_WRITE))
1312                                 vm_flags &= ~(VM_MAYWRITE | VM_SHARED);
1313
1314                         /* fall through */
1315                 case MAP_PRIVATE:
1316                         if (!(file->f_mode & FMODE_READ))
1317                                 return -EACCES;
1318                         if (file->f_path.mnt->mnt_flags & MNT_NOEXEC) {
1319                                 if (vm_flags & VM_EXEC)
1320                                         return -EPERM;
1321                                 vm_flags &= ~VM_MAYEXEC;
1322                         }
1323
1324                         if (!file->f_op->mmap)
1325                                 return -ENODEV;
1326                         if (vm_flags & (VM_GROWSDOWN|VM_GROWSUP))
1327                                 return -EINVAL;
1328                         break;
1329
1330                 default:
1331                         return -EINVAL;
1332                 }
1333         } else {
1334                 switch (flags & MAP_TYPE) {
1335                 case MAP_SHARED:
1336                         if (vm_flags & (VM_GROWSDOWN|VM_GROWSUP))
1337                                 return -EINVAL;
1338                         /*
1339                          * Ignore pgoff.
1340                          */
1341                         pgoff = 0;
1342                         vm_flags |= VM_SHARED | VM_MAYSHARE;
1343                         break;
1344                 case MAP_PRIVATE:
1345                         /*
1346                          * Set pgoff according to addr for anon_vma.
1347                          */
1348                         pgoff = addr >> PAGE_SHIFT;
1349                         break;
1350                 default:
1351                         return -EINVAL;
1352                 }
1353         }
1354
1355         /*
1356          * Set 'VM_NORESERVE' if we should not account for the
1357          * memory use of this mapping.
1358          */
1359         if (flags & MAP_NORESERVE) {
1360                 /* We honor MAP_NORESERVE if allowed to overcommit */
1361                 if (sysctl_overcommit_memory != OVERCOMMIT_NEVER)
1362                         vm_flags |= VM_NORESERVE;
1363
1364                 /* hugetlb applies strict overcommit unless MAP_NORESERVE */
1365                 if (file && is_file_hugepages(file))
1366                         vm_flags |= VM_NORESERVE;
1367         }
1368
1369         addr = mmap_region(file, addr, len, vm_flags, pgoff);
1370         if (!IS_ERR_VALUE(addr) &&
1371             ((vm_flags & VM_LOCKED) ||
1372              (flags & (MAP_POPULATE | MAP_NONBLOCK)) == MAP_POPULATE))
1373                 *populate = len;
1374         return addr;
1375 }
1376
1377 SYSCALL_DEFINE6(mmap_pgoff, unsigned long, addr, unsigned long, len,
1378                 unsigned long, prot, unsigned long, flags,
1379                 unsigned long, fd, unsigned long, pgoff)
1380 {
1381         struct file *file = NULL;
1382         unsigned long retval = -EBADF;
1383
1384         if (!(flags & MAP_ANONYMOUS)) {
1385                 audit_mmap_fd(fd, flags);
1386                 file = fget(fd);
1387                 if (!file)
1388                         goto out;
1389                 if (is_file_hugepages(file))
1390                         len = ALIGN(len, huge_page_size(hstate_file(file)));
1391                 retval = -EINVAL;
1392                 if (unlikely(flags & MAP_HUGETLB && !is_file_hugepages(file)))
1393                         goto out_fput;
1394         } else if (flags & MAP_HUGETLB) {
1395                 struct user_struct *user = NULL;
1396                 struct hstate *hs;
1397
1398                 hs = hstate_sizelog((flags >> MAP_HUGE_SHIFT) & SHM_HUGE_MASK);
1399                 if (!hs)
1400                         return -EINVAL;
1401
1402                 len = ALIGN(len, huge_page_size(hs));
1403                 /*
1404                  * VM_NORESERVE is used because the reservations will be
1405                  * taken when vm_ops->mmap() is called
1406                  * A dummy user value is used because we are not locking
1407                  * memory so no accounting is necessary
1408                  */
1409                 file = hugetlb_file_setup(HUGETLB_ANON_FILE, len,
1410                                 VM_NORESERVE,
1411                                 &user, HUGETLB_ANONHUGE_INODE,
1412                                 (flags >> MAP_HUGE_SHIFT) & MAP_HUGE_MASK);
1413                 if (IS_ERR(file))
1414                         return PTR_ERR(file);
1415         }
1416
1417         flags &= ~(MAP_EXECUTABLE | MAP_DENYWRITE);
1418
1419         retval = vm_mmap_pgoff(file, addr, len, prot, flags, pgoff);
1420 out_fput:
1421         if (file)
1422                 fput(file);
1423 out:
1424         return retval;
1425 }
1426
1427 #ifdef __ARCH_WANT_SYS_OLD_MMAP
1428 struct mmap_arg_struct {
1429         unsigned long addr;
1430         unsigned long len;
1431         unsigned long prot;
1432         unsigned long flags;
1433         unsigned long fd;
1434         unsigned long offset;
1435 };
1436
1437 SYSCALL_DEFINE1(old_mmap, struct mmap_arg_struct __user *, arg)
1438 {
1439         struct mmap_arg_struct a;
1440
1441         if (copy_from_user(&a, arg, sizeof(a)))
1442                 return -EFAULT;
1443         if (a.offset & ~PAGE_MASK)
1444                 return -EINVAL;
1445
1446         return sys_mmap_pgoff(a.addr, a.len, a.prot, a.flags, a.fd,
1447                               a.offset >> PAGE_SHIFT);
1448 }
1449 #endif /* __ARCH_WANT_SYS_OLD_MMAP */
1450
1451 /*
1452  * Some shared mappigns will want the pages marked read-only
1453  * to track write events. If so, we'll downgrade vm_page_prot
1454  * to the private version (using protection_map[] without the
1455  * VM_SHARED bit).
1456  */
1457 int vma_wants_writenotify(struct vm_area_struct *vma)
1458 {
1459         vm_flags_t vm_flags = vma->vm_flags;
1460
1461         /* If it was private or non-writable, the write bit is already clear */
1462         if ((vm_flags & (VM_WRITE|VM_SHARED)) != ((VM_WRITE|VM_SHARED)))
1463                 return 0;
1464
1465         /* The backer wishes to know when pages are first written to? */
1466         if (vma->vm_ops && vma->vm_ops->page_mkwrite)
1467                 return 1;
1468
1469         /* The open routine did something to the protections already? */
1470         if (pgprot_val(vma->vm_page_prot) !=
1471             pgprot_val(vm_get_page_prot(vm_flags)))
1472                 return 0;
1473
1474         /* Specialty mapping? */
1475         if (vm_flags & VM_PFNMAP)
1476                 return 0;
1477
1478         /* Can the mapping track the dirty pages? */
1479         return vma->vm_file && vma->vm_file->f_mapping &&
1480                 mapping_cap_account_dirty(vma->vm_file->f_mapping);
1481 }
1482
1483 /*
1484  * We account for memory if it's a private writeable mapping,
1485  * not hugepages and VM_NORESERVE wasn't set.
1486  */
1487 static inline int accountable_mapping(struct file *file, vm_flags_t vm_flags)
1488 {
1489         /*
1490          * hugetlb has its own accounting separate from the core VM
1491          * VM_HUGETLB may not be set yet so we cannot check for that flag.
1492          */
1493         if (file && is_file_hugepages(file))
1494                 return 0;
1495
1496         return (vm_flags & (VM_NORESERVE | VM_SHARED | VM_WRITE)) == VM_WRITE;
1497 }
1498
1499 unsigned long mmap_region(struct file *file, unsigned long addr,
1500                 unsigned long len, vm_flags_t vm_flags, unsigned long pgoff)
1501 {
1502         struct mm_struct *mm = current->mm;
1503         struct vm_area_struct *vma, *prev;
1504         int error;
1505         struct rb_node **rb_link, *rb_parent;
1506         unsigned long charged = 0;
1507
1508         /* Check against address space limit. */
1509         if (!may_expand_vm(mm, len >> PAGE_SHIFT)) {
1510                 unsigned long nr_pages;
1511
1512                 /*
1513                  * MAP_FIXED may remove pages of mappings that intersects with
1514                  * requested mapping. Account for the pages it would unmap.
1515                  */
1516                 if (!(vm_flags & MAP_FIXED))
1517                         return -ENOMEM;
1518
1519                 nr_pages = count_vma_pages_range(mm, addr, addr + len);
1520
1521                 if (!may_expand_vm(mm, (len >> PAGE_SHIFT) - nr_pages))
1522                         return -ENOMEM;
1523         }
1524
1525         /* Clear old maps */
1526         error = -ENOMEM;
1527 munmap_back:
1528         if (find_vma_links(mm, addr, addr + len, &prev, &rb_link, &rb_parent)) {
1529                 if (do_munmap(mm, addr, len))
1530                         return -ENOMEM;
1531                 goto munmap_back;
1532         }
1533
1534         /*
1535          * Private writable mapping: check memory availability
1536          */
1537         if (accountable_mapping(file, vm_flags)) {
1538                 charged = len >> PAGE_SHIFT;
1539                 if (security_vm_enough_memory_mm(mm, charged))
1540                         return -ENOMEM;
1541                 vm_flags |= VM_ACCOUNT;
1542         }
1543
1544         /*
1545          * Can we just expand an old mapping?
1546          */
1547         vma = vma_merge(mm, prev, addr, addr + len, vm_flags, NULL, file, pgoff, NULL);
1548         if (vma)
1549                 goto out;
1550
1551         /*
1552          * Determine the object being mapped and call the appropriate
1553          * specific mapper. the address has already been validated, but
1554          * not unmapped, but the maps are removed from the list.
1555          */
1556         vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
1557         if (!vma) {
1558                 error = -ENOMEM;
1559                 goto unacct_error;
1560         }
1561
1562         vma->vm_mm = mm;
1563         vma->vm_start = addr;
1564         vma->vm_end = addr + len;
1565         vma->vm_flags = vm_flags;
1566         vma->vm_page_prot = vm_get_page_prot(vm_flags);
1567         vma->vm_pgoff = pgoff;
1568         INIT_LIST_HEAD(&vma->anon_vma_chain);
1569
1570         if (file) {
1571                 if (vm_flags & VM_DENYWRITE) {
1572                         error = deny_write_access(file);
1573                         if (error)
1574                                 goto free_vma;
1575                 }
1576                 vma->vm_file = get_file(file);
1577                 error = file->f_op->mmap(file, vma);
1578                 if (error)
1579                         goto unmap_and_free_vma;
1580
1581                 /* Can addr have changed??
1582                  *
1583                  * Answer: Yes, several device drivers can do it in their
1584                  *         f_op->mmap method. -DaveM
1585                  * Bug: If addr is changed, prev, rb_link, rb_parent should
1586                  *      be updated for vma_link()
1587                  */
1588                 WARN_ON_ONCE(addr != vma->vm_start);
1589
1590                 addr = vma->vm_start;
1591                 vm_flags = vma->vm_flags;
1592         } else if (vm_flags & VM_SHARED) {
1593                 error = shmem_zero_setup(vma);
1594                 if (error)
1595                         goto free_vma;
1596         }
1597
1598         if (vma_wants_writenotify(vma)) {
1599                 pgprot_t pprot = vma->vm_page_prot;
1600
1601                 /* Can vma->vm_page_prot have changed??
1602                  *
1603                  * Answer: Yes, drivers may have changed it in their
1604                  *         f_op->mmap method.
1605                  *
1606                  * Ensures that vmas marked as uncached stay that way.
1607                  */
1608                 vma->vm_page_prot = vm_get_page_prot(vm_flags & ~VM_SHARED);
1609                 if (pgprot_val(pprot) == pgprot_val(pgprot_noncached(pprot)))
1610                         vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot);
1611         }
1612
1613         vma_link(mm, vma, prev, rb_link, rb_parent);
1614         /* Once vma denies write, undo our temporary denial count */
1615         if (vm_flags & VM_DENYWRITE)
1616                 allow_write_access(file);
1617         file = vma->vm_file;
1618 out:
1619         perf_event_mmap(vma);
1620
1621         vm_stat_account(mm, vm_flags, file, len >> PAGE_SHIFT);
1622         if (vm_flags & VM_LOCKED) {
1623                 if (!((vm_flags & VM_SPECIAL) || is_vm_hugetlb_page(vma) ||
1624                                         vma == get_gate_vma(current->mm)))
1625                         mm->locked_vm += (len >> PAGE_SHIFT);
1626                 else
1627                         vma->vm_flags &= ~VM_LOCKED;
1628         }
1629
1630         if (file)
1631                 uprobe_mmap(vma);
1632
1633         /*
1634          * New (or expanded) vma always get soft dirty status.
1635          * Otherwise user-space soft-dirty page tracker won't
1636          * be able to distinguish situation when vma area unmapped,
1637          * then new mapped in-place (which must be aimed as
1638          * a completely new data area).
1639          */
1640         vma->vm_flags |= VM_SOFTDIRTY;
1641
1642         return addr;
1643
1644 unmap_and_free_vma:
1645         if (vm_flags & VM_DENYWRITE)
1646                 allow_write_access(file);
1647         vma->vm_file = NULL;
1648         fput(file);
1649
1650         /* Undo any partial mapping done by a device driver. */
1651         unmap_region(mm, vma, prev, vma->vm_start, vma->vm_end);
1652         charged = 0;
1653 free_vma:
1654         kmem_cache_free(vm_area_cachep, vma);
1655 unacct_error:
1656         if (charged)
1657                 vm_unacct_memory(charged);
1658         return error;
1659 }
1660
1661 unsigned long unmapped_area(struct vm_unmapped_area_info *info)
1662 {
1663         /*
1664          * We implement the search by looking for an rbtree node that
1665          * immediately follows a suitable gap. That is,
1666          * - gap_start = vma->vm_prev->vm_end <= info->high_limit - length;
1667          * - gap_end   = vma->vm_start        >= info->low_limit  + length;
1668          * - gap_end - gap_start >= length
1669          */
1670
1671         struct mm_struct *mm = current->mm;
1672         struct vm_area_struct *vma;
1673         unsigned long length, low_limit, high_limit, gap_start, gap_end;
1674
1675         /* Adjust search length to account for worst case alignment overhead */
1676         length = info->length + info->align_mask;
1677         if (length < info->length)
1678                 return -ENOMEM;
1679
1680         /* Adjust search limits by the desired length */
1681         if (info->high_limit < length)
1682                 return -ENOMEM;
1683         high_limit = info->high_limit - length;
1684
1685         if (info->low_limit > high_limit)
1686                 return -ENOMEM;
1687         low_limit = info->low_limit + length;
1688
1689         /* Check if rbtree root looks promising */
1690         if (RB_EMPTY_ROOT(&mm->mm_rb))
1691                 goto check_highest;
1692         vma = rb_entry(mm->mm_rb.rb_node, struct vm_area_struct, vm_rb);
1693         if (vma->rb_subtree_gap < length)
1694                 goto check_highest;
1695
1696         while (true) {
1697                 /* Visit left subtree if it looks promising */
1698                 gap_end = vma->vm_start;
1699                 if (gap_end >= low_limit && vma->vm_rb.rb_left) {
1700                         struct vm_area_struct *left =
1701                                 rb_entry(vma->vm_rb.rb_left,
1702                                          struct vm_area_struct, vm_rb);
1703                         if (left->rb_subtree_gap >= length) {
1704                                 vma = left;
1705                                 continue;
1706                         }
1707                 }
1708
1709                 gap_start = vma->vm_prev ? vma->vm_prev->vm_end : 0;
1710 check_current:
1711                 /* Check if current node has a suitable gap */
1712                 if (gap_start > high_limit)
1713                         return -ENOMEM;
1714                 if (gap_end >= low_limit && gap_end - gap_start >= length)
1715                         goto found;
1716
1717                 /* Visit right subtree if it looks promising */
1718                 if (vma->vm_rb.rb_right) {
1719                         struct vm_area_struct *right =
1720                                 rb_entry(vma->vm_rb.rb_right,
1721                                          struct vm_area_struct, vm_rb);
1722                         if (right->rb_subtree_gap >= length) {
1723                                 vma = right;
1724                                 continue;
1725                         }
1726                 }
1727
1728                 /* Go back up the rbtree to find next candidate node */
1729                 while (true) {
1730                         struct rb_node *prev = &vma->vm_rb;
1731                         if (!rb_parent(prev))
1732                                 goto check_highest;
1733                         vma = rb_entry(rb_parent(prev),
1734                                        struct vm_area_struct, vm_rb);
1735                         if (prev == vma->vm_rb.rb_left) {
1736                                 gap_start = vma->vm_prev->vm_end;
1737                                 gap_end = vma->vm_start;
1738                                 goto check_current;
1739                         }
1740                 }
1741         }
1742
1743 check_highest:
1744         /* Check highest gap, which does not precede any rbtree node */
1745         gap_start = mm->highest_vm_end;
1746         gap_end = ULONG_MAX;  /* Only for VM_BUG_ON below */
1747         if (gap_start > high_limit)
1748                 return -ENOMEM;
1749
1750 found:
1751         /* We found a suitable gap. Clip it with the original low_limit. */
1752         if (gap_start < info->low_limit)
1753                 gap_start = info->low_limit;
1754
1755         /* Adjust gap address to the desired alignment */
1756         gap_start += (info->align_offset - gap_start) & info->align_mask;
1757
1758         VM_BUG_ON(gap_start + info->length > info->high_limit);
1759         VM_BUG_ON(gap_start + info->length > gap_end);
1760         return gap_start;
1761 }
1762
1763 unsigned long unmapped_area_topdown(struct vm_unmapped_area_info *info)
1764 {
1765         struct mm_struct *mm = current->mm;
1766         struct vm_area_struct *vma;
1767         unsigned long length, low_limit, high_limit, gap_start, gap_end;
1768
1769         /* Adjust search length to account for worst case alignment overhead */
1770         length = info->length + info->align_mask;
1771         if (length < info->length)
1772                 return -ENOMEM;
1773
1774         /*
1775          * Adjust search limits by the desired length.
1776          * See implementation comment at top of unmapped_area().
1777          */
1778         gap_end = info->high_limit;
1779         if (gap_end < length)
1780                 return -ENOMEM;
1781         high_limit = gap_end - length;
1782
1783         if (info->low_limit > high_limit)
1784                 return -ENOMEM;
1785         low_limit = info->low_limit + length;
1786
1787         /* Check highest gap, which does not precede any rbtree node */
1788         gap_start = mm->highest_vm_end;
1789         if (gap_start <= high_limit)
1790                 goto found_highest;
1791
1792         /* Check if rbtree root looks promising */
1793         if (RB_EMPTY_ROOT(&mm->mm_rb))
1794                 return -ENOMEM;
1795         vma = rb_entry(mm->mm_rb.rb_node, struct vm_area_struct, vm_rb);
1796         if (vma->rb_subtree_gap < length)
1797                 return -ENOMEM;
1798
1799         while (true) {
1800                 /* Visit right subtree if it looks promising */
1801                 gap_start = vma->vm_prev ? vma->vm_prev->vm_end : 0;
1802                 if (gap_start <= high_limit && vma->vm_rb.rb_right) {
1803                         struct vm_area_struct *right =
1804                                 rb_entry(vma->vm_rb.rb_right,
1805                                          struct vm_area_struct, vm_rb);
1806                         if (right->rb_subtree_gap >= length) {
1807                                 vma = right;
1808                                 continue;
1809                         }
1810                 }
1811
1812 check_current:
1813                 /* Check if current node has a suitable gap */
1814                 gap_end = vma->vm_start;
1815                 if (gap_end < low_limit)
1816                         return -ENOMEM;
1817                 if (gap_start <= high_limit && gap_end - gap_start >= length)
1818                         goto found;
1819
1820                 /* Visit left subtree if it looks promising */
1821                 if (vma->vm_rb.rb_left) {
1822                         struct vm_area_struct *left =
1823                                 rb_entry(vma->vm_rb.rb_left,
1824                                          struct vm_area_struct, vm_rb);
1825                         if (left->rb_subtree_gap >= length) {
1826                                 vma = left;
1827                                 continue;
1828                         }
1829                 }
1830
1831                 /* Go back up the rbtree to find next candidate node */
1832                 while (true) {
1833                         struct rb_node *prev = &vma->vm_rb;
1834                         if (!rb_parent(prev))
1835                                 return -ENOMEM;
1836                         vma = rb_entry(rb_parent(prev),
1837                                        struct vm_area_struct, vm_rb);
1838                         if (prev == vma->vm_rb.rb_right) {
1839                                 gap_start = vma->vm_prev ?
1840                                         vma->vm_prev->vm_end : 0;
1841                                 goto check_current;
1842                         }
1843                 }
1844         }
1845
1846 found:
1847         /* We found a suitable gap. Clip it with the original high_limit. */
1848         if (gap_end > info->high_limit)
1849                 gap_end = info->high_limit;
1850
1851 found_highest:
1852         /* Compute highest gap address at the desired alignment */
1853         gap_end -= info->length;
1854         gap_end -= (gap_end - info->align_offset) & info->align_mask;
1855
1856         VM_BUG_ON(gap_end < info->low_limit);
1857         VM_BUG_ON(gap_end < gap_start);
1858         return gap_end;
1859 }
1860
1861 /* Get an address range which is currently unmapped.
1862  * For shmat() with addr=0.
1863  *
1864  * Ugly calling convention alert:
1865  * Return value with the low bits set means error value,
1866  * ie
1867  *      if (ret & ~PAGE_MASK)
1868  *              error = ret;
1869  *
1870  * This function "knows" that -ENOMEM has the bits set.
1871  */
1872 #ifndef HAVE_ARCH_UNMAPPED_AREA
1873 unsigned long
1874 arch_get_unmapped_area(struct file *filp, unsigned long addr,
1875                 unsigned long len, unsigned long pgoff, unsigned long flags)
1876 {
1877         struct mm_struct *mm = current->mm;
1878         struct vm_area_struct *vma;
1879         struct vm_unmapped_area_info info;
1880
1881         if (len > TASK_SIZE - mmap_min_addr)
1882                 return -ENOMEM;
1883
1884         if (flags & MAP_FIXED)
1885                 return addr;
1886
1887         if (addr) {
1888                 addr = PAGE_ALIGN(addr);
1889                 vma = find_vma(mm, addr);
1890                 if (TASK_SIZE - len >= addr && addr >= mmap_min_addr &&
1891                     (!vma || addr + len <= vma->vm_start))
1892                         return addr;
1893         }
1894
1895         info.flags = 0;
1896         info.length = len;
1897         info.low_limit = mm->mmap_base;
1898         info.high_limit = TASK_SIZE;
1899         info.align_mask = 0;
1900         return vm_unmapped_area(&info);
1901 }
1902 #endif  
1903
1904 /*
1905  * This mmap-allocator allocates new areas top-down from below the
1906  * stack's low limit (the base):
1907  */
1908 #ifndef HAVE_ARCH_UNMAPPED_AREA_TOPDOWN
1909 unsigned long
1910 arch_get_unmapped_area_topdown(struct file *filp, const unsigned long addr0,
1911                           const unsigned long len, const unsigned long pgoff,
1912                           const unsigned long flags)
1913 {
1914         struct vm_area_struct *vma;
1915         struct mm_struct *mm = current->mm;
1916         unsigned long addr = addr0;
1917         struct vm_unmapped_area_info info;
1918
1919         /* requested length too big for entire address space */
1920         if (len > TASK_SIZE - mmap_min_addr)
1921                 return -ENOMEM;
1922
1923         if (flags & MAP_FIXED)
1924                 return addr;
1925
1926         /* requesting a specific address */
1927         if (addr) {
1928                 addr = PAGE_ALIGN(addr);
1929                 vma = find_vma(mm, addr);
1930                 if (TASK_SIZE - len >= addr && addr >= mmap_min_addr &&
1931                                 (!vma || addr + len <= vma->vm_start))
1932                         return addr;
1933         }
1934
1935         info.flags = VM_UNMAPPED_AREA_TOPDOWN;
1936         info.length = len;
1937         info.low_limit = max(PAGE_SIZE, mmap_min_addr);
1938         info.high_limit = mm->mmap_base;
1939         info.align_mask = 0;
1940         addr = vm_unmapped_area(&info);
1941
1942         /*
1943          * A failed mmap() very likely causes application failure,
1944          * so fall back to the bottom-up function here. This scenario
1945          * can happen with large stack limits and large mmap()
1946          * allocations.
1947          */
1948         if (addr & ~PAGE_MASK) {
1949                 VM_BUG_ON(addr != -ENOMEM);
1950                 info.flags = 0;
1951                 info.low_limit = TASK_UNMAPPED_BASE;
1952                 info.high_limit = TASK_SIZE;
1953                 addr = vm_unmapped_area(&info);
1954         }
1955
1956         return addr;
1957 }
1958 #endif
1959
1960 unsigned long
1961 get_unmapped_area(struct file *file, unsigned long addr, unsigned long len,
1962                 unsigned long pgoff, unsigned long flags)
1963 {
1964         unsigned long (*get_area)(struct file *, unsigned long,
1965                                   unsigned long, unsigned long, unsigned long);
1966
1967         unsigned long error = arch_mmap_check(addr, len, flags);
1968         if (error)
1969                 return error;
1970
1971         /* Careful about overflows.. */
1972         if (len > TASK_SIZE)
1973                 return -ENOMEM;
1974
1975         get_area = current->mm->get_unmapped_area;
1976         if (file && file->f_op->get_unmapped_area)
1977                 get_area = file->f_op->get_unmapped_area;
1978         addr = get_area(file, addr, len, pgoff, flags);
1979         if (IS_ERR_VALUE(addr))
1980                 return addr;
1981
1982         if (addr > TASK_SIZE - len)
1983                 return -ENOMEM;
1984         if (addr & ~PAGE_MASK)
1985                 return -EINVAL;
1986
1987         addr = arch_rebalance_pgtables(addr, len);
1988         error = security_mmap_addr(addr);
1989         return error ? error : addr;
1990 }
1991
1992 EXPORT_SYMBOL(get_unmapped_area);
1993
1994 /* Look up the first VMA which satisfies  addr < vm_end,  NULL if none. */
1995 struct vm_area_struct *find_vma(struct mm_struct *mm, unsigned long addr)
1996 {
1997         struct rb_node *rb_node;
1998         struct vm_area_struct *vma;
1999
2000         /* Check the cache first. */
2001         vma = vmacache_find(mm, addr);
2002         if (likely(vma))
2003                 return vma;
2004
2005         rb_node = mm->mm_rb.rb_node;
2006         vma = NULL;
2007
2008         while (rb_node) {
2009                 struct vm_area_struct *tmp;
2010
2011                 tmp = rb_entry(rb_node, struct vm_area_struct, vm_rb);
2012
2013                 if (tmp->vm_end > addr) {
2014                         vma = tmp;
2015                         if (tmp->vm_start <= addr)
2016                                 break;
2017                         rb_node = rb_node->rb_left;
2018                 } else
2019                         rb_node = rb_node->rb_right;
2020         }
2021
2022         if (vma)
2023                 vmacache_update(addr, vma);
2024         return vma;
2025 }
2026
2027 EXPORT_SYMBOL(find_vma);
2028
2029 /*
2030  * Same as find_vma, but also return a pointer to the previous VMA in *pprev.
2031  */
2032 struct vm_area_struct *
2033 find_vma_prev(struct mm_struct *mm, unsigned long addr,
2034                         struct vm_area_struct **pprev)
2035 {
2036         struct vm_area_struct *vma;
2037
2038         vma = find_vma(mm, addr);
2039         if (vma) {
2040                 *pprev = vma->vm_prev;
2041         } else {
2042                 struct rb_node *rb_node = mm->mm_rb.rb_node;
2043                 *pprev = NULL;
2044                 while (rb_node) {
2045                         *pprev = rb_entry(rb_node, struct vm_area_struct, vm_rb);
2046                         rb_node = rb_node->rb_right;
2047                 }
2048         }
2049         return vma;
2050 }
2051
2052 /*
2053  * Verify that the stack growth is acceptable and
2054  * update accounting. This is shared with both the
2055  * grow-up and grow-down cases.
2056  */
2057 static int acct_stack_growth(struct vm_area_struct *vma, unsigned long size, unsigned long grow)
2058 {
2059         struct mm_struct *mm = vma->vm_mm;
2060         struct rlimit *rlim = current->signal->rlim;
2061         unsigned long new_start;
2062
2063         /* address space limit tests */
2064         if (!may_expand_vm(mm, grow))
2065                 return -ENOMEM;
2066
2067         /* Stack limit test */
2068         if (size > ACCESS_ONCE(rlim[RLIMIT_STACK].rlim_cur))
2069                 return -ENOMEM;
2070
2071         /* mlock limit tests */
2072         if (vma->vm_flags & VM_LOCKED) {
2073                 unsigned long locked;
2074                 unsigned long limit;
2075                 locked = mm->locked_vm + grow;
2076                 limit = ACCESS_ONCE(rlim[RLIMIT_MEMLOCK].rlim_cur);
2077                 limit >>= PAGE_SHIFT;
2078                 if (locked > limit && !capable(CAP_IPC_LOCK))
2079                         return -ENOMEM;
2080         }
2081
2082         /* Check to ensure the stack will not grow into a hugetlb-only region */
2083         new_start = (vma->vm_flags & VM_GROWSUP) ? vma->vm_start :
2084                         vma->vm_end - size;
2085         if (is_hugepage_only_range(vma->vm_mm, new_start, size))
2086                 return -EFAULT;
2087
2088         /*
2089          * Overcommit..  This must be the final test, as it will
2090          * update security statistics.
2091          */
2092         if (security_vm_enough_memory_mm(mm, grow))
2093                 return -ENOMEM;
2094
2095         /* Ok, everything looks good - let it rip */
2096         if (vma->vm_flags & VM_LOCKED)
2097                 mm->locked_vm += grow;
2098         vm_stat_account(mm, vma->vm_flags, vma->vm_file, grow);
2099         return 0;
2100 }
2101
2102 #if defined(CONFIG_STACK_GROWSUP) || defined(CONFIG_IA64)
2103 /*
2104  * PA-RISC uses this for its stack; IA64 for its Register Backing Store.
2105  * vma is the last one with address > vma->vm_end.  Have to extend vma.
2106  */
2107 int expand_upwards(struct vm_area_struct *vma, unsigned long address)
2108 {
2109         int error;
2110
2111         if (!(vma->vm_flags & VM_GROWSUP))
2112                 return -EFAULT;
2113
2114         /*
2115          * We must make sure the anon_vma is allocated
2116          * so that the anon_vma locking is not a noop.
2117          */
2118         if (unlikely(anon_vma_prepare(vma)))
2119                 return -ENOMEM;
2120         vma_lock_anon_vma(vma);
2121
2122         /*
2123          * vma->vm_start/vm_end cannot change under us because the caller
2124          * is required to hold the mmap_sem in read mode.  We need the
2125          * anon_vma lock to serialize against concurrent expand_stacks.
2126          * Also guard against wrapping around to address 0.
2127          */
2128         if (address < PAGE_ALIGN(address+4))
2129                 address = PAGE_ALIGN(address+4);
2130         else {
2131                 vma_unlock_anon_vma(vma);
2132                 return -ENOMEM;
2133         }
2134         error = 0;
2135
2136         /* Somebody else might have raced and expanded it already */
2137         if (address > vma->vm_end) {
2138                 unsigned long size, grow;
2139
2140                 size = address - vma->vm_start;
2141                 grow = (address - vma->vm_end) >> PAGE_SHIFT;
2142
2143                 error = -ENOMEM;
2144                 if (vma->vm_pgoff + (size >> PAGE_SHIFT) >= vma->vm_pgoff) {
2145                         error = acct_stack_growth(vma, size, grow);
2146                         if (!error) {
2147                                 /*
2148                                  * vma_gap_update() doesn't support concurrent
2149                                  * updates, but we only hold a shared mmap_sem
2150                                  * lock here, so we need to protect against
2151                                  * concurrent vma expansions.
2152                                  * vma_lock_anon_vma() doesn't help here, as
2153                                  * we don't guarantee that all growable vmas
2154                                  * in a mm share the same root anon vma.
2155                                  * So, we reuse mm->page_table_lock to guard
2156                                  * against concurrent vma expansions.
2157                                  */
2158                                 spin_lock(&vma->vm_mm->page_table_lock);
2159                                 anon_vma_interval_tree_pre_update_vma(vma);
2160                                 vma->vm_end = address;
2161                                 anon_vma_interval_tree_post_update_vma(vma);
2162                                 if (vma->vm_next)
2163                                         vma_gap_update(vma->vm_next);
2164                                 else
2165                                         vma->vm_mm->highest_vm_end = address;
2166                                 spin_unlock(&vma->vm_mm->page_table_lock);
2167
2168                                 perf_event_mmap(vma);
2169                         }
2170                 }
2171         }
2172         vma_unlock_anon_vma(vma);
2173         khugepaged_enter_vma_merge(vma);
2174         validate_mm(vma->vm_mm);
2175         return error;
2176 }
2177 #endif /* CONFIG_STACK_GROWSUP || CONFIG_IA64 */
2178
2179 /*
2180  * vma is the first one with address < vma->vm_start.  Have to extend vma.
2181  */
2182 int expand_downwards(struct vm_area_struct *vma,
2183                                    unsigned long address)
2184 {
2185         int error;
2186
2187         /*
2188          * We must make sure the anon_vma is allocated
2189          * so that the anon_vma locking is not a noop.
2190          */
2191         if (unlikely(anon_vma_prepare(vma)))
2192                 return -ENOMEM;
2193
2194         address &= PAGE_MASK;
2195         error = security_mmap_addr(address);
2196         if (error)
2197                 return error;
2198
2199         vma_lock_anon_vma(vma);
2200
2201         /*
2202          * vma->vm_start/vm_end cannot change under us because the caller
2203          * is required to hold the mmap_sem in read mode.  We need the
2204          * anon_vma lock to serialize against concurrent expand_stacks.
2205          */
2206
2207         /* Somebody else might have raced and expanded it already */
2208         if (address < vma->vm_start) {
2209                 unsigned long size, grow;
2210
2211                 size = vma->vm_end - address;
2212                 grow = (vma->vm_start - address) >> PAGE_SHIFT;
2213
2214                 error = -ENOMEM;
2215                 if (grow <= vma->vm_pgoff) {
2216                         error = acct_stack_growth(vma, size, grow);
2217                         if (!error) {
2218                                 /*
2219                                  * vma_gap_update() doesn't support concurrent
2220                                  * updates, but we only hold a shared mmap_sem
2221                                  * lock here, so we need to protect against
2222                                  * concurrent vma expansions.
2223                                  * vma_lock_anon_vma() doesn't help here, as
2224                                  * we don't guarantee that all growable vmas
2225                                  * in a mm share the same root anon vma.
2226                                  * So, we reuse mm->page_table_lock to guard
2227                                  * against concurrent vma expansions.
2228                                  */
2229                                 spin_lock(&vma->vm_mm->page_table_lock);
2230                                 anon_vma_interval_tree_pre_update_vma(vma);
2231                                 vma->vm_start = address;
2232                                 vma->vm_pgoff -= grow;
2233                                 anon_vma_interval_tree_post_update_vma(vma);
2234                                 vma_gap_update(vma);
2235                                 spin_unlock(&vma->vm_mm->page_table_lock);
2236
2237                                 perf_event_mmap(vma);
2238                         }
2239                 }
2240         }
2241         vma_unlock_anon_vma(vma);
2242         khugepaged_enter_vma_merge(vma);
2243         validate_mm(vma->vm_mm);
2244         return error;
2245 }
2246
2247 /*
2248  * Note how expand_stack() refuses to expand the stack all the way to
2249  * abut the next virtual mapping, *unless* that mapping itself is also
2250  * a stack mapping. We want to leave room for a guard page, after all
2251  * (the guard page itself is not added here, that is done by the
2252  * actual page faulting logic)
2253  *
2254  * This matches the behavior of the guard page logic (see mm/memory.c:
2255  * check_stack_guard_page()), which only allows the guard page to be
2256  * removed under these circumstances.
2257  */
2258 #ifdef CONFIG_STACK_GROWSUP
2259 int expand_stack(struct vm_area_struct *vma, unsigned long address)
2260 {
2261         struct vm_area_struct *next;
2262
2263         address &= PAGE_MASK;
2264         next = vma->vm_next;
2265         if (next && next->vm_start == address + PAGE_SIZE) {
2266                 if (!(next->vm_flags & VM_GROWSUP))
2267                         return -ENOMEM;
2268         }
2269         return expand_upwards(vma, address);
2270 }
2271
2272 struct vm_area_struct *
2273 find_extend_vma(struct mm_struct *mm, unsigned long addr)
2274 {
2275         struct vm_area_struct *vma, *prev;
2276
2277         addr &= PAGE_MASK;
2278         vma = find_vma_prev(mm, addr, &prev);
2279         if (vma && (vma->vm_start <= addr))
2280                 return vma;
2281         if (!prev || expand_stack(prev, addr))
2282                 return NULL;
2283         if (prev->vm_flags & VM_LOCKED)
2284                 __mlock_vma_pages_range(prev, addr, prev->vm_end, NULL);
2285         return prev;
2286 }
2287 #else
2288 int expand_stack(struct vm_area_struct *vma, unsigned long address)
2289 {
2290         struct vm_area_struct *prev;
2291
2292         address &= PAGE_MASK;
2293         prev = vma->vm_prev;
2294         if (prev && prev->vm_end == address) {
2295                 if (!(prev->vm_flags & VM_GROWSDOWN))
2296                         return -ENOMEM;
2297         }
2298         return expand_downwards(vma, address);
2299 }
2300
2301 struct vm_area_struct *
2302 find_extend_vma(struct mm_struct * mm, unsigned long addr)
2303 {
2304         struct vm_area_struct * vma;
2305         unsigned long start;
2306
2307         addr &= PAGE_MASK;
2308         vma = find_vma(mm,addr);
2309         if (!vma)
2310                 return NULL;
2311         if (vma->vm_start <= addr)
2312                 return vma;
2313         if (!(vma->vm_flags & VM_GROWSDOWN))
2314                 return NULL;
2315         start = vma->vm_start;
2316         if (expand_stack(vma, addr))
2317                 return NULL;
2318         if (vma->vm_flags & VM_LOCKED)
2319                 __mlock_vma_pages_range(vma, addr, start, NULL);
2320         return vma;
2321 }
2322 #endif
2323
2324 /*
2325  * Ok - we have the memory areas we should free on the vma list,
2326  * so release them, and do the vma updates.
2327  *
2328  * Called with the mm semaphore held.
2329  */
2330 static void remove_vma_list(struct mm_struct *mm, struct vm_area_struct *vma)
2331 {
2332         unsigned long nr_accounted = 0;
2333
2334         /* Update high watermark before we lower total_vm */
2335         update_hiwater_vm(mm);
2336         do {
2337                 long nrpages = vma_pages(vma);
2338
2339                 if (vma->vm_flags & VM_ACCOUNT)
2340                         nr_accounted += nrpages;
2341                 vm_stat_account(mm, vma->vm_flags, vma->vm_file, -nrpages);
2342                 vma = remove_vma(vma);
2343         } while (vma);
2344         vm_unacct_memory(nr_accounted);
2345         validate_mm(mm);
2346 }
2347
2348 /*
2349  * Get rid of page table information in the indicated region.
2350  *
2351  * Called with the mm semaphore held.
2352  */
2353 static void unmap_region(struct mm_struct *mm,
2354                 struct vm_area_struct *vma, struct vm_area_struct *prev,
2355                 unsigned long start, unsigned long end)
2356 {
2357         struct vm_area_struct *next = prev? prev->vm_next: mm->mmap;
2358         struct mmu_gather tlb;
2359
2360         lru_add_drain();
2361         tlb_gather_mmu(&tlb, mm, start, end);
2362         update_hiwater_rss(mm);
2363         unmap_vmas(&tlb, vma, start, end);
2364         free_pgtables(&tlb, vma, prev ? prev->vm_end : FIRST_USER_ADDRESS,
2365                                  next ? next->vm_start : USER_PGTABLES_CEILING);
2366         tlb_finish_mmu(&tlb, start, end);
2367 }
2368
2369 /*
2370  * Create a list of vma's touched by the unmap, removing them from the mm's
2371  * vma list as we go..
2372  */
2373 static void
2374 detach_vmas_to_be_unmapped(struct mm_struct *mm, struct vm_area_struct *vma,
2375         struct vm_area_struct *prev, unsigned long end)
2376 {
2377         struct vm_area_struct **insertion_point;
2378         struct vm_area_struct *tail_vma = NULL;
2379
2380         insertion_point = (prev ? &prev->vm_next : &mm->mmap);
2381         vma->vm_prev = NULL;
2382         do {
2383                 vma_rb_erase(vma, &mm->mm_rb);
2384                 mm->map_count--;
2385                 tail_vma = vma;
2386                 vma = vma->vm_next;
2387         } while (vma && vma->vm_start < end);
2388         *insertion_point = vma;
2389         if (vma) {
2390                 vma->vm_prev = prev;
2391                 vma_gap_update(vma);
2392         } else
2393                 mm->highest_vm_end = prev ? prev->vm_end : 0;
2394         tail_vma->vm_next = NULL;
2395
2396         /* Kill the cache */
2397         vmacache_invalidate(mm);
2398 }
2399
2400 /*
2401  * __split_vma() bypasses sysctl_max_map_count checking.  We use this on the
2402  * munmap path where it doesn't make sense to fail.
2403  */
2404 static int __split_vma(struct mm_struct * mm, struct vm_area_struct * vma,
2405               unsigned long addr, int new_below)
2406 {
2407         struct vm_area_struct *new;
2408         int err = -ENOMEM;
2409
2410         if (is_vm_hugetlb_page(vma) && (addr &
2411                                         ~(huge_page_mask(hstate_vma(vma)))))
2412                 return -EINVAL;
2413
2414         new = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
2415         if (!new)
2416                 goto out_err;
2417
2418         /* most fields are the same, copy all, and then fixup */
2419         *new = *vma;
2420
2421         INIT_LIST_HEAD(&new->anon_vma_chain);
2422
2423         if (new_below)
2424                 new->vm_end = addr;
2425         else {
2426                 new->vm_start = addr;
2427                 new->vm_pgoff += ((addr - vma->vm_start) >> PAGE_SHIFT);
2428         }
2429
2430         err = vma_dup_policy(vma, new);
2431         if (err)
2432                 goto out_free_vma;
2433
2434         err = anon_vma_clone(new, vma);
2435         if (err)
2436                 goto out_free_mpol;
2437
2438         if (new->vm_file)
2439                 get_file(new->vm_file);
2440
2441         if (new->vm_ops && new->vm_ops->open)
2442                 new->vm_ops->open(new);
2443
2444         if (new_below)
2445                 err = vma_adjust(vma, addr, vma->vm_end, vma->vm_pgoff +
2446                         ((addr - new->vm_start) >> PAGE_SHIFT), new);
2447         else
2448                 err = vma_adjust(vma, vma->vm_start, addr, vma->vm_pgoff, new);
2449
2450         /* Success. */
2451         if (!err)
2452                 return 0;
2453
2454         /* Clean everything up if vma_adjust failed. */
2455         if (new->vm_ops && new->vm_ops->close)
2456                 new->vm_ops->close(new);
2457         if (new->vm_file)
2458                 fput(new->vm_file);
2459         unlink_anon_vmas(new);
2460  out_free_mpol:
2461         mpol_put(vma_policy(new));
2462  out_free_vma:
2463         kmem_cache_free(vm_area_cachep, new);
2464  out_err:
2465         return err;
2466 }
2467
2468 /*
2469  * Split a vma into two pieces at address 'addr', a new vma is allocated
2470  * either for the first part or the tail.
2471  */
2472 int split_vma(struct mm_struct *mm, struct vm_area_struct *vma,
2473               unsigned long addr, int new_below)
2474 {
2475         if (mm->map_count >= sysctl_max_map_count)
2476                 return -ENOMEM;
2477
2478         return __split_vma(mm, vma, addr, new_below);
2479 }
2480
2481 /* Munmap is split into 2 main parts -- this part which finds
2482  * what needs doing, and the areas themselves, which do the
2483  * work.  This now handles partial unmappings.
2484  * Jeremy Fitzhardinge <jeremy@goop.org>
2485  */
2486 int do_munmap(struct mm_struct *mm, unsigned long start, size_t len)
2487 {
2488         unsigned long end;
2489         struct vm_area_struct *vma, *prev, *last;
2490
2491         if ((start & ~PAGE_MASK) || start > TASK_SIZE || len > TASK_SIZE-start)
2492                 return -EINVAL;
2493
2494         if ((len = PAGE_ALIGN(len)) == 0)
2495                 return -EINVAL;
2496
2497         /* Find the first overlapping VMA */
2498         vma = find_vma(mm, start);
2499         if (!vma)
2500                 return 0;
2501         prev = vma->vm_prev;
2502         /* we have  start < vma->vm_end  */
2503
2504         /* if it doesn't overlap, we have nothing.. */
2505         end = start + len;
2506         if (vma->vm_start >= end)
2507                 return 0;
2508
2509         /*
2510          * If we need to split any vma, do it now to save pain later.
2511          *
2512          * Note: mremap's move_vma VM_ACCOUNT handling assumes a partially
2513          * unmapped vm_area_struct will remain in use: so lower split_vma
2514          * places tmp vma above, and higher split_vma places tmp vma below.
2515          */
2516         if (start > vma->vm_start) {
2517                 int error;
2518
2519                 /*
2520                  * Make sure that map_count on return from munmap() will
2521                  * not exceed its limit; but let map_count go just above
2522                  * its limit temporarily, to help free resources as expected.
2523                  */
2524                 if (end < vma->vm_end && mm->map_count >= sysctl_max_map_count)
2525                         return -ENOMEM;
2526
2527                 error = __split_vma(mm, vma, start, 0);
2528                 if (error)
2529                         return error;
2530                 prev = vma;
2531         }
2532
2533         /* Does it split the last one? */
2534         last = find_vma(mm, end);
2535         if (last && end > last->vm_start) {
2536                 int error = __split_vma(mm, last, end, 1);
2537                 if (error)
2538                         return error;
2539         }
2540         vma = prev? prev->vm_next: mm->mmap;
2541
2542         /*
2543          * unlock any mlock()ed ranges before detaching vmas
2544          */
2545         if (mm->locked_vm) {
2546                 struct vm_area_struct *tmp = vma;
2547                 while (tmp && tmp->vm_start < end) {
2548                         if (tmp->vm_flags & VM_LOCKED) {
2549                                 mm->locked_vm -= vma_pages(tmp);
2550                                 munlock_vma_pages_all(tmp);
2551                         }
2552                         tmp = tmp->vm_next;
2553                 }
2554         }
2555
2556         /*
2557          * Remove the vma's, and unmap the actual pages
2558          */
2559         detach_vmas_to_be_unmapped(mm, vma, prev, end);
2560         unmap_region(mm, vma, prev, start, end);
2561
2562         /* Fix up all other VM information */
2563         remove_vma_list(mm, vma);
2564
2565         return 0;
2566 }
2567
2568 int vm_munmap(unsigned long start, size_t len)
2569 {
2570         int ret;
2571         struct mm_struct *mm = current->mm;
2572
2573         down_write(&mm->mmap_sem);
2574         ret = do_munmap(mm, start, len);
2575         up_write(&mm->mmap_sem);
2576         return ret;
2577 }
2578 EXPORT_SYMBOL(vm_munmap);
2579
2580 SYSCALL_DEFINE2(munmap, unsigned long, addr, size_t, len)
2581 {
2582         profile_munmap(addr);
2583         return vm_munmap(addr, len);
2584 }
2585
2586 static inline void verify_mm_writelocked(struct mm_struct *mm)
2587 {
2588 #ifdef CONFIG_DEBUG_VM
2589         if (unlikely(down_read_trylock(&mm->mmap_sem))) {
2590                 WARN_ON(1);
2591                 up_read(&mm->mmap_sem);
2592         }
2593 #endif
2594 }
2595
2596 /*
2597  *  this is really a simplified "do_mmap".  it only handles
2598  *  anonymous maps.  eventually we may be able to do some
2599  *  brk-specific accounting here.
2600  */
2601 static unsigned long do_brk(unsigned long addr, unsigned long len)
2602 {
2603         struct mm_struct * mm = current->mm;
2604         struct vm_area_struct * vma, * prev;
2605         unsigned long flags;
2606         struct rb_node ** rb_link, * rb_parent;
2607         pgoff_t pgoff = addr >> PAGE_SHIFT;
2608         int error;
2609
2610         len = PAGE_ALIGN(len);
2611         if (!len)
2612                 return addr;
2613
2614         flags = VM_DATA_DEFAULT_FLAGS | VM_ACCOUNT | mm->def_flags;
2615
2616         error = get_unmapped_area(NULL, addr, len, 0, MAP_FIXED);
2617         if (error & ~PAGE_MASK)
2618                 return error;
2619
2620         error = mlock_future_check(mm, mm->def_flags, len);
2621         if (error)
2622                 return error;
2623
2624         /*
2625          * mm->mmap_sem is required to protect against another thread
2626          * changing the mappings in case we sleep.
2627          */
2628         verify_mm_writelocked(mm);
2629
2630         /*
2631          * Clear old maps.  this also does some error checking for us
2632          */
2633  munmap_back:
2634         if (find_vma_links(mm, addr, addr + len, &prev, &rb_link, &rb_parent)) {
2635                 if (do_munmap(mm, addr, len))
2636                         return -ENOMEM;
2637                 goto munmap_back;
2638         }
2639
2640         /* Check against address space limits *after* clearing old maps... */
2641         if (!may_expand_vm(mm, len >> PAGE_SHIFT))
2642                 return -ENOMEM;
2643
2644         if (mm->map_count > sysctl_max_map_count)
2645                 return -ENOMEM;
2646
2647         if (security_vm_enough_memory_mm(mm, len >> PAGE_SHIFT))
2648                 return -ENOMEM;
2649
2650         /* Can we just expand an old private anonymous mapping? */
2651         vma = vma_merge(mm, prev, addr, addr + len, flags,
2652                                         NULL, NULL, pgoff, NULL);
2653         if (vma)
2654                 goto out;
2655
2656         /*
2657          * create a vma struct for an anonymous mapping
2658          */
2659         vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
2660         if (!vma) {
2661                 vm_unacct_memory(len >> PAGE_SHIFT);
2662                 return -ENOMEM;
2663         }
2664
2665         INIT_LIST_HEAD(&vma->anon_vma_chain);
2666         vma->vm_mm = mm;
2667         vma->vm_start = addr;
2668         vma->vm_end = addr + len;
2669         vma->vm_pgoff = pgoff;
2670         vma->vm_flags = flags;
2671         vma->vm_page_prot = vm_get_page_prot(flags);
2672         vma_link(mm, vma, prev, rb_link, rb_parent);
2673 out:
2674         perf_event_mmap(vma);
2675         mm->total_vm += len >> PAGE_SHIFT;
2676         if (flags & VM_LOCKED)
2677                 mm->locked_vm += (len >> PAGE_SHIFT);
2678         vma->vm_flags |= VM_SOFTDIRTY;
2679         return addr;
2680 }
2681
2682 unsigned long vm_brk(unsigned long addr, unsigned long len)
2683 {
2684         struct mm_struct *mm = current->mm;
2685         unsigned long ret;
2686         bool populate;
2687
2688         down_write(&mm->mmap_sem);
2689         ret = do_brk(addr, len);
2690         populate = ((mm->def_flags & VM_LOCKED) != 0);
2691         up_write(&mm->mmap_sem);
2692         if (populate)
2693                 mm_populate(addr, len);
2694         return ret;
2695 }
2696 EXPORT_SYMBOL(vm_brk);
2697
2698 /* Release all mmaps. */
2699 void exit_mmap(struct mm_struct *mm)
2700 {
2701         struct mmu_gather tlb;
2702         struct vm_area_struct *vma;
2703         unsigned long nr_accounted = 0;
2704
2705         /* mm's last user has gone, and its about to be pulled down */
2706         mmu_notifier_release(mm);
2707
2708         if (mm->locked_vm) {
2709                 vma = mm->mmap;
2710                 while (vma) {
2711                         if (vma->vm_flags & VM_LOCKED)
2712                                 munlock_vma_pages_all(vma);
2713                         vma = vma->vm_next;
2714                 }
2715         }
2716
2717         arch_exit_mmap(mm);
2718
2719         vma = mm->mmap;
2720         if (!vma)       /* Can happen if dup_mmap() received an OOM */
2721                 return;
2722
2723         lru_add_drain();
2724         flush_cache_mm(mm);
2725         tlb_gather_mmu(&tlb, mm, 0, -1);
2726         /* update_hiwater_rss(mm) here? but nobody should be looking */
2727         /* Use -1 here to ensure all VMAs in the mm are unmapped */
2728         unmap_vmas(&tlb, vma, 0, -1);
2729
2730         free_pgtables(&tlb, vma, FIRST_USER_ADDRESS, USER_PGTABLES_CEILING);
2731         tlb_finish_mmu(&tlb, 0, -1);
2732
2733         /*
2734          * Walk the list again, actually closing and freeing it,
2735          * with preemption enabled, without holding any MM locks.
2736          */
2737         while (vma) {
2738                 if (vma->vm_flags & VM_ACCOUNT)
2739                         nr_accounted += vma_pages(vma);
2740                 vma = remove_vma(vma);
2741         }
2742         vm_unacct_memory(nr_accounted);
2743
2744         WARN_ON(atomic_long_read(&mm->nr_ptes) >
2745                         (FIRST_USER_ADDRESS+PMD_SIZE-1)>>PMD_SHIFT);
2746 }
2747
2748 /* Insert vm structure into process list sorted by address
2749  * and into the inode's i_mmap tree.  If vm_file is non-NULL
2750  * then i_mmap_mutex is taken here.
2751  */
2752 int insert_vm_struct(struct mm_struct *mm, struct vm_area_struct *vma)
2753 {
2754         struct vm_area_struct *prev;
2755         struct rb_node **rb_link, *rb_parent;
2756
2757         /*
2758          * The vm_pgoff of a purely anonymous vma should be irrelevant
2759          * until its first write fault, when page's anon_vma and index
2760          * are set.  But now set the vm_pgoff it will almost certainly
2761          * end up with (unless mremap moves it elsewhere before that
2762          * first wfault), so /proc/pid/maps tells a consistent story.
2763          *
2764          * By setting it to reflect the virtual start address of the
2765          * vma, merges and splits can happen in a seamless way, just
2766          * using the existing file pgoff checks and manipulations.
2767          * Similarly in do_mmap_pgoff and in do_brk.
2768          */
2769         if (!vma->vm_file) {
2770                 BUG_ON(vma->anon_vma);
2771                 vma->vm_pgoff = vma->vm_start >> PAGE_SHIFT;
2772         }
2773         if (find_vma_links(mm, vma->vm_start, vma->vm_end,
2774                            &prev, &rb_link, &rb_parent))
2775                 return -ENOMEM;
2776         if ((vma->vm_flags & VM_ACCOUNT) &&
2777              security_vm_enough_memory_mm(mm, vma_pages(vma)))
2778                 return -ENOMEM;
2779
2780         vma_link(mm, vma, prev, rb_link, rb_parent);
2781         return 0;
2782 }
2783
2784 /*
2785  * Copy the vma structure to a new location in the same mm,
2786  * prior to moving page table entries, to effect an mremap move.
2787  */
2788 struct vm_area_struct *copy_vma(struct vm_area_struct **vmap,
2789         unsigned long addr, unsigned long len, pgoff_t pgoff,
2790         bool *need_rmap_locks)
2791 {
2792         struct vm_area_struct *vma = *vmap;
2793         unsigned long vma_start = vma->vm_start;
2794         struct mm_struct *mm = vma->vm_mm;
2795         struct vm_area_struct *new_vma, *prev;
2796         struct rb_node **rb_link, *rb_parent;
2797         bool faulted_in_anon_vma = true;
2798
2799         /*
2800          * If anonymous vma has not yet been faulted, update new pgoff
2801          * to match new location, to increase its chance of merging.
2802          */
2803         if (unlikely(!vma->vm_file && !vma->anon_vma)) {
2804                 pgoff = addr >> PAGE_SHIFT;
2805                 faulted_in_anon_vma = false;
2806         }
2807
2808         if (find_vma_links(mm, addr, addr + len, &prev, &rb_link, &rb_parent))
2809                 return NULL;    /* should never get here */
2810         new_vma = vma_merge(mm, prev, addr, addr + len, vma->vm_flags,
2811                         vma->anon_vma, vma->vm_file, pgoff, vma_policy(vma));
2812         if (new_vma) {
2813                 /*
2814                  * Source vma may have been merged into new_vma
2815                  */
2816                 if (unlikely(vma_start >= new_vma->vm_start &&
2817                              vma_start < new_vma->vm_end)) {
2818                         /*
2819                          * The only way we can get a vma_merge with
2820                          * self during an mremap is if the vma hasn't
2821                          * been faulted in yet and we were allowed to
2822                          * reset the dst vma->vm_pgoff to the
2823                          * destination address of the mremap to allow
2824                          * the merge to happen. mremap must change the
2825                          * vm_pgoff linearity between src and dst vmas
2826                          * (in turn preventing a vma_merge) to be
2827                          * safe. It is only safe to keep the vm_pgoff
2828                          * linear if there are no pages mapped yet.
2829                          */
2830                         VM_BUG_ON(faulted_in_anon_vma);
2831                         *vmap = vma = new_vma;
2832                 }
2833                 *need_rmap_locks = (new_vma->vm_pgoff <= vma->vm_pgoff);
2834         } else {
2835                 new_vma = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
2836                 if (new_vma) {
2837                         *new_vma = *vma;
2838                         new_vma->vm_start = addr;
2839                         new_vma->vm_end = addr + len;
2840                         new_vma->vm_pgoff = pgoff;
2841                         if (vma_dup_policy(vma, new_vma))
2842                                 goto out_free_vma;
2843                         INIT_LIST_HEAD(&new_vma->anon_vma_chain);
2844                         if (anon_vma_clone(new_vma, vma))
2845                                 goto out_free_mempol;
2846                         if (new_vma->vm_file)
2847                                 get_file(new_vma->vm_file);
2848                         if (new_vma->vm_ops && new_vma->vm_ops->open)
2849                                 new_vma->vm_ops->open(new_vma);
2850                         vma_link(mm, new_vma, prev, rb_link, rb_parent);
2851                         *need_rmap_locks = false;
2852                 }
2853         }
2854         return new_vma;
2855
2856  out_free_mempol:
2857         mpol_put(vma_policy(new_vma));
2858  out_free_vma:
2859         kmem_cache_free(vm_area_cachep, new_vma);
2860         return NULL;
2861 }
2862
2863 /*
2864  * Return true if the calling process may expand its vm space by the passed
2865  * number of pages
2866  */
2867 int may_expand_vm(struct mm_struct *mm, unsigned long npages)
2868 {
2869         unsigned long cur = mm->total_vm;       /* pages */
2870         unsigned long lim;
2871
2872         lim = rlimit(RLIMIT_AS) >> PAGE_SHIFT;
2873
2874         if (cur + npages > lim)
2875                 return 0;
2876         return 1;
2877 }
2878
2879
2880 static int special_mapping_fault(struct vm_area_struct *vma,
2881                                 struct vm_fault *vmf)
2882 {
2883         pgoff_t pgoff;
2884         struct page **pages;
2885
2886         /*
2887          * special mappings have no vm_file, and in that case, the mm
2888          * uses vm_pgoff internally. So we have to subtract it from here.
2889          * We are allowed to do this because we are the mm; do not copy
2890          * this code into drivers!
2891          */
2892         pgoff = vmf->pgoff - vma->vm_pgoff;
2893
2894         for (pages = vma->vm_private_data; pgoff && *pages; ++pages)
2895                 pgoff--;
2896
2897         if (*pages) {
2898                 struct page *page = *pages;
2899                 get_page(page);
2900                 vmf->page = page;
2901                 return 0;
2902         }
2903
2904         return VM_FAULT_SIGBUS;
2905 }
2906
2907 /*
2908  * Having a close hook prevents vma merging regardless of flags.
2909  */
2910 static void special_mapping_close(struct vm_area_struct *vma)
2911 {
2912 }
2913
2914 static const struct vm_operations_struct special_mapping_vmops = {
2915         .close = special_mapping_close,
2916         .fault = special_mapping_fault,
2917 };
2918
2919 /*
2920  * Called with mm->mmap_sem held for writing.
2921  * Insert a new vma covering the given region, with the given flags.
2922  * Its pages are supplied by the given array of struct page *.
2923  * The array can be shorter than len >> PAGE_SHIFT if it's null-terminated.
2924  * The region past the last page supplied will always produce SIGBUS.
2925  * The array pointer and the pages it points to are assumed to stay alive
2926  * for as long as this mapping might exist.
2927  */
2928 int install_special_mapping(struct mm_struct *mm,
2929                             unsigned long addr, unsigned long len,
2930                             unsigned long vm_flags, struct page **pages)
2931 {
2932         int ret;
2933         struct vm_area_struct *vma;
2934
2935         vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
2936         if (unlikely(vma == NULL))
2937                 return -ENOMEM;
2938
2939         INIT_LIST_HEAD(&vma->anon_vma_chain);
2940         vma->vm_mm = mm;
2941         vma->vm_start = addr;
2942         vma->vm_end = addr + len;
2943
2944         vma->vm_flags = vm_flags | mm->def_flags | VM_DONTEXPAND | VM_SOFTDIRTY;
2945         vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
2946
2947         vma->vm_ops = &special_mapping_vmops;
2948         vma->vm_private_data = pages;
2949
2950         ret = insert_vm_struct(mm, vma);
2951         if (ret)
2952                 goto out;
2953
2954         mm->total_vm += len >> PAGE_SHIFT;
2955
2956         perf_event_mmap(vma);
2957
2958         return 0;
2959
2960 out:
2961         kmem_cache_free(vm_area_cachep, vma);
2962         return ret;
2963 }
2964
2965 static DEFINE_MUTEX(mm_all_locks_mutex);
2966
2967 static void vm_lock_anon_vma(struct mm_struct *mm, struct anon_vma *anon_vma)
2968 {
2969         if (!test_bit(0, (unsigned long *) &anon_vma->root->rb_root.rb_node)) {
2970                 /*
2971                  * The LSB of head.next can't change from under us
2972                  * because we hold the mm_all_locks_mutex.
2973                  */
2974                 down_write_nest_lock(&anon_vma->root->rwsem, &mm->mmap_sem);
2975                 /*
2976                  * We can safely modify head.next after taking the
2977                  * anon_vma->root->rwsem. If some other vma in this mm shares
2978                  * the same anon_vma we won't take it again.
2979                  *
2980                  * No need of atomic instructions here, head.next
2981                  * can't change from under us thanks to the
2982                  * anon_vma->root->rwsem.
2983                  */
2984                 if (__test_and_set_bit(0, (unsigned long *)
2985                                        &anon_vma->root->rb_root.rb_node))
2986                         BUG();
2987         }
2988 }
2989
2990 static void vm_lock_mapping(struct mm_struct *mm, struct address_space *mapping)
2991 {
2992         if (!test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) {
2993                 /*
2994                  * AS_MM_ALL_LOCKS can't change from under us because
2995                  * we hold the mm_all_locks_mutex.
2996                  *
2997                  * Operations on ->flags have to be atomic because
2998                  * even if AS_MM_ALL_LOCKS is stable thanks to the
2999                  * mm_all_locks_mutex, there may be other cpus
3000                  * changing other bitflags in parallel to us.
3001                  */
3002                 if (test_and_set_bit(AS_MM_ALL_LOCKS, &mapping->flags))
3003                         BUG();
3004                 mutex_lock_nest_lock(&mapping->i_mmap_mutex, &mm->mmap_sem);
3005         }
3006 }
3007
3008 /*
3009  * This operation locks against the VM for all pte/vma/mm related
3010  * operations that could ever happen on a certain mm. This includes
3011  * vmtruncate, try_to_unmap, and all page faults.
3012  *
3013  * The caller must take the mmap_sem in write mode before calling
3014  * mm_take_all_locks(). The caller isn't allowed to release the
3015  * mmap_sem until mm_drop_all_locks() returns.
3016  *
3017  * mmap_sem in write mode is required in order to block all operations
3018  * that could modify pagetables and free pages without need of
3019  * altering the vma layout (for example populate_range() with
3020  * nonlinear vmas). It's also needed in write mode to avoid new
3021  * anon_vmas to be associated with existing vmas.
3022  *
3023  * A single task can't take more than one mm_take_all_locks() in a row
3024  * or it would deadlock.
3025  *
3026  * The LSB in anon_vma->rb_root.rb_node and the AS_MM_ALL_LOCKS bitflag in
3027  * mapping->flags avoid to take the same lock twice, if more than one
3028  * vma in this mm is backed by the same anon_vma or address_space.
3029  *
3030  * We can take all the locks in random order because the VM code
3031  * taking i_mmap_mutex or anon_vma->rwsem outside the mmap_sem never
3032  * takes more than one of them in a row. Secondly we're protected
3033  * against a concurrent mm_take_all_locks() by the mm_all_locks_mutex.
3034  *
3035  * mm_take_all_locks() and mm_drop_all_locks are expensive operations
3036  * that may have to take thousand of locks.
3037  *
3038  * mm_take_all_locks() can fail if it's interrupted by signals.
3039  */
3040 int mm_take_all_locks(struct mm_struct *mm)
3041 {
3042         struct vm_area_struct *vma;
3043         struct anon_vma_chain *avc;
3044
3045         BUG_ON(down_read_trylock(&mm->mmap_sem));
3046
3047         mutex_lock(&mm_all_locks_mutex);
3048
3049         for (vma = mm->mmap; vma; vma = vma->vm_next) {
3050                 if (signal_pending(current))
3051                         goto out_unlock;
3052                 if (vma->vm_file && vma->vm_file->f_mapping)
3053                         vm_lock_mapping(mm, vma->vm_file->f_mapping);
3054         }
3055
3056         for (vma = mm->mmap; vma; vma = vma->vm_next) {
3057                 if (signal_pending(current))
3058                         goto out_unlock;
3059                 if (vma->anon_vma)
3060                         list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
3061                                 vm_lock_anon_vma(mm, avc->anon_vma);
3062         }
3063
3064         return 0;
3065
3066 out_unlock:
3067         mm_drop_all_locks(mm);
3068         return -EINTR;
3069 }
3070
3071 static void vm_unlock_anon_vma(struct anon_vma *anon_vma)
3072 {
3073         if (test_bit(0, (unsigned long *) &anon_vma->root->rb_root.rb_node)) {
3074                 /*
3075                  * The LSB of head.next can't change to 0 from under
3076                  * us because we hold the mm_all_locks_mutex.
3077                  *
3078                  * We must however clear the bitflag before unlocking
3079                  * the vma so the users using the anon_vma->rb_root will
3080                  * never see our bitflag.
3081                  *
3082                  * No need of atomic instructions here, head.next
3083                  * can't change from under us until we release the
3084                  * anon_vma->root->rwsem.
3085                  */
3086                 if (!__test_and_clear_bit(0, (unsigned long *)
3087                                           &anon_vma->root->rb_root.rb_node))
3088                         BUG();
3089                 anon_vma_unlock_write(anon_vma);
3090         }
3091 }
3092
3093 static void vm_unlock_mapping(struct address_space *mapping)
3094 {
3095         if (test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) {
3096                 /*
3097                  * AS_MM_ALL_LOCKS can't change to 0 from under us
3098                  * because we hold the mm_all_locks_mutex.
3099                  */
3100                 mutex_unlock(&mapping->i_mmap_mutex);
3101                 if (!test_and_clear_bit(AS_MM_ALL_LOCKS,
3102                                         &mapping->flags))
3103                         BUG();
3104         }
3105 }
3106
3107 /*
3108  * The mmap_sem cannot be released by the caller until
3109  * mm_drop_all_locks() returns.
3110  */
3111 void mm_drop_all_locks(struct mm_struct *mm)
3112 {
3113         struct vm_area_struct *vma;
3114         struct anon_vma_chain *avc;
3115
3116         BUG_ON(down_read_trylock(&mm->mmap_sem));
3117         BUG_ON(!mutex_is_locked(&mm_all_locks_mutex));
3118
3119         for (vma = mm->mmap; vma; vma = vma->vm_next) {
3120                 if (vma->anon_vma)
3121                         list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
3122                                 vm_unlock_anon_vma(avc->anon_vma);
3123                 if (vma->vm_file && vma->vm_file->f_mapping)
3124                         vm_unlock_mapping(vma->vm_file->f_mapping);
3125         }
3126
3127         mutex_unlock(&mm_all_locks_mutex);
3128 }
3129
3130 /*
3131  * initialise the VMA slab
3132  */
3133 void __init mmap_init(void)
3134 {
3135         int ret;
3136
3137         ret = percpu_counter_init(&vm_committed_as, 0);
3138         VM_BUG_ON(ret);
3139 }
3140
3141 /*
3142  * Initialise sysctl_user_reserve_kbytes.
3143  *
3144  * This is intended to prevent a user from starting a single memory hogging
3145  * process, such that they cannot recover (kill the hog) in OVERCOMMIT_NEVER
3146  * mode.
3147  *
3148  * The default value is min(3% of free memory, 128MB)
3149  * 128MB is enough to recover with sshd/login, bash, and top/kill.
3150  */
3151 static int init_user_reserve(void)
3152 {
3153         unsigned long free_kbytes;
3154
3155         free_kbytes = global_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
3156
3157         sysctl_user_reserve_kbytes = min(free_kbytes / 32, 1UL << 17);
3158         return 0;
3159 }
3160 subsys_initcall(init_user_reserve);
3161
3162 /*
3163  * Initialise sysctl_admin_reserve_kbytes.
3164  *
3165  * The purpose of sysctl_admin_reserve_kbytes is to allow the sys admin
3166  * to log in and kill a memory hogging process.
3167  *
3168  * Systems with more than 256MB will reserve 8MB, enough to recover
3169  * with sshd, bash, and top in OVERCOMMIT_GUESS. Smaller systems will
3170  * only reserve 3% of free pages by default.
3171  */
3172 static int init_admin_reserve(void)
3173 {
3174         unsigned long free_kbytes;
3175
3176         free_kbytes = global_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
3177
3178         sysctl_admin_reserve_kbytes = min(free_kbytes / 32, 1UL << 13);
3179         return 0;
3180 }
3181 subsys_initcall(init_admin_reserve);
3182
3183 /*
3184  * Reinititalise user and admin reserves if memory is added or removed.
3185  *
3186  * The default user reserve max is 128MB, and the default max for the
3187  * admin reserve is 8MB. These are usually, but not always, enough to
3188  * enable recovery from a memory hogging process using login/sshd, a shell,
3189  * and tools like top. It may make sense to increase or even disable the
3190  * reserve depending on the existence of swap or variations in the recovery
3191  * tools. So, the admin may have changed them.
3192  *
3193  * If memory is added and the reserves have been eliminated or increased above
3194  * the default max, then we'll trust the admin.
3195  *
3196  * If memory is removed and there isn't enough free memory, then we
3197  * need to reset the reserves.
3198  *
3199  * Otherwise keep the reserve set by the admin.
3200  */
3201 static int reserve_mem_notifier(struct notifier_block *nb,
3202                              unsigned long action, void *data)
3203 {
3204         unsigned long tmp, free_kbytes;
3205
3206         switch (action) {
3207         case MEM_ONLINE:
3208                 /* Default max is 128MB. Leave alone if modified by operator. */
3209                 tmp = sysctl_user_reserve_kbytes;
3210                 if (0 < tmp && tmp < (1UL << 17))
3211                         init_user_reserve();
3212
3213                 /* Default max is 8MB.  Leave alone if modified by operator. */
3214                 tmp = sysctl_admin_reserve_kbytes;
3215                 if (0 < tmp && tmp < (1UL << 13))
3216                         init_admin_reserve();
3217
3218                 break;
3219         case MEM_OFFLINE:
3220                 free_kbytes = global_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
3221
3222                 if (sysctl_user_reserve_kbytes > free_kbytes) {
3223                         init_user_reserve();
3224                         pr_info("vm.user_reserve_kbytes reset to %lu\n",
3225                                 sysctl_user_reserve_kbytes);
3226                 }
3227
3228                 if (sysctl_admin_reserve_kbytes > free_kbytes) {
3229                         init_admin_reserve();
3230                         pr_info("vm.admin_reserve_kbytes reset to %lu\n",
3231                                 sysctl_admin_reserve_kbytes);
3232                 }
3233                 break;
3234         default:
3235                 break;
3236         }
3237         return NOTIFY_OK;
3238 }
3239
3240 static struct notifier_block reserve_mem_nb = {
3241         .notifier_call = reserve_mem_notifier,
3242 };
3243
3244 static int __meminit init_reserve_notifier(void)
3245 {
3246         if (register_hotmemory_notifier(&reserve_mem_nb))
3247                 printk("Failed registering memory add/remove notifier for admin reserve");
3248
3249         return 0;
3250 }
3251 subsys_initcall(init_reserve_notifier);