Merge tag 'fsnotify_for_v6.6-rc7' of git://git.kernel.org/pub/scm/linux/kernel/git...
[platform/kernel/linux-starfive.git] / mm / mmap.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * mm/mmap.c
4  *
5  * Written by obz.
6  *
7  * Address space accounting code        <alan@lxorguk.ukuu.org.uk>
8  */
9
10 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
11
12 #include <linux/kernel.h>
13 #include <linux/slab.h>
14 #include <linux/backing-dev.h>
15 #include <linux/mm.h>
16 #include <linux/mm_inline.h>
17 #include <linux/shm.h>
18 #include <linux/mman.h>
19 #include <linux/pagemap.h>
20 #include <linux/swap.h>
21 #include <linux/syscalls.h>
22 #include <linux/capability.h>
23 #include <linux/init.h>
24 #include <linux/file.h>
25 #include <linux/fs.h>
26 #include <linux/personality.h>
27 #include <linux/security.h>
28 #include <linux/hugetlb.h>
29 #include <linux/shmem_fs.h>
30 #include <linux/profile.h>
31 #include <linux/export.h>
32 #include <linux/mount.h>
33 #include <linux/mempolicy.h>
34 #include <linux/rmap.h>
35 #include <linux/mmu_notifier.h>
36 #include <linux/mmdebug.h>
37 #include <linux/perf_event.h>
38 #include <linux/audit.h>
39 #include <linux/khugepaged.h>
40 #include <linux/uprobes.h>
41 #include <linux/notifier.h>
42 #include <linux/memory.h>
43 #include <linux/printk.h>
44 #include <linux/userfaultfd_k.h>
45 #include <linux/moduleparam.h>
46 #include <linux/pkeys.h>
47 #include <linux/oom.h>
48 #include <linux/sched/mm.h>
49 #include <linux/ksm.h>
50
51 #include <linux/uaccess.h>
52 #include <asm/cacheflush.h>
53 #include <asm/tlb.h>
54 #include <asm/mmu_context.h>
55
56 #define CREATE_TRACE_POINTS
57 #include <trace/events/mmap.h>
58
59 #include "internal.h"
60
61 #ifndef arch_mmap_check
62 #define arch_mmap_check(addr, len, flags)       (0)
63 #endif
64
65 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_BITS
66 const int mmap_rnd_bits_min = CONFIG_ARCH_MMAP_RND_BITS_MIN;
67 const int mmap_rnd_bits_max = CONFIG_ARCH_MMAP_RND_BITS_MAX;
68 int mmap_rnd_bits __read_mostly = CONFIG_ARCH_MMAP_RND_BITS;
69 #endif
70 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS
71 const int mmap_rnd_compat_bits_min = CONFIG_ARCH_MMAP_RND_COMPAT_BITS_MIN;
72 const int mmap_rnd_compat_bits_max = CONFIG_ARCH_MMAP_RND_COMPAT_BITS_MAX;
73 int mmap_rnd_compat_bits __read_mostly = CONFIG_ARCH_MMAP_RND_COMPAT_BITS;
74 #endif
75
76 static bool ignore_rlimit_data;
77 core_param(ignore_rlimit_data, ignore_rlimit_data, bool, 0644);
78
79 static void unmap_region(struct mm_struct *mm, struct ma_state *mas,
80                 struct vm_area_struct *vma, struct vm_area_struct *prev,
81                 struct vm_area_struct *next, unsigned long start,
82                 unsigned long end, unsigned long tree_end, bool mm_wr_locked);
83
84 static pgprot_t vm_pgprot_modify(pgprot_t oldprot, unsigned long vm_flags)
85 {
86         return pgprot_modify(oldprot, vm_get_page_prot(vm_flags));
87 }
88
89 /* Update vma->vm_page_prot to reflect vma->vm_flags. */
90 void vma_set_page_prot(struct vm_area_struct *vma)
91 {
92         unsigned long vm_flags = vma->vm_flags;
93         pgprot_t vm_page_prot;
94
95         vm_page_prot = vm_pgprot_modify(vma->vm_page_prot, vm_flags);
96         if (vma_wants_writenotify(vma, vm_page_prot)) {
97                 vm_flags &= ~VM_SHARED;
98                 vm_page_prot = vm_pgprot_modify(vm_page_prot, vm_flags);
99         }
100         /* remove_protection_ptes reads vma->vm_page_prot without mmap_lock */
101         WRITE_ONCE(vma->vm_page_prot, vm_page_prot);
102 }
103
104 /*
105  * Requires inode->i_mapping->i_mmap_rwsem
106  */
107 static void __remove_shared_vm_struct(struct vm_area_struct *vma,
108                 struct file *file, struct address_space *mapping)
109 {
110         if (vma->vm_flags & VM_SHARED)
111                 mapping_unmap_writable(mapping);
112
113         flush_dcache_mmap_lock(mapping);
114         vma_interval_tree_remove(vma, &mapping->i_mmap);
115         flush_dcache_mmap_unlock(mapping);
116 }
117
118 /*
119  * Unlink a file-based vm structure from its interval tree, to hide
120  * vma from rmap and vmtruncate before freeing its page tables.
121  */
122 void unlink_file_vma(struct vm_area_struct *vma)
123 {
124         struct file *file = vma->vm_file;
125
126         if (file) {
127                 struct address_space *mapping = file->f_mapping;
128                 i_mmap_lock_write(mapping);
129                 __remove_shared_vm_struct(vma, file, mapping);
130                 i_mmap_unlock_write(mapping);
131         }
132 }
133
134 /*
135  * Close a vm structure and free it.
136  */
137 static void remove_vma(struct vm_area_struct *vma, bool unreachable)
138 {
139         might_sleep();
140         if (vma->vm_ops && vma->vm_ops->close)
141                 vma->vm_ops->close(vma);
142         if (vma->vm_file)
143                 fput(vma->vm_file);
144         mpol_put(vma_policy(vma));
145         if (unreachable)
146                 __vm_area_free(vma);
147         else
148                 vm_area_free(vma);
149 }
150
151 static inline struct vm_area_struct *vma_prev_limit(struct vma_iterator *vmi,
152                                                     unsigned long min)
153 {
154         return mas_prev(&vmi->mas, min);
155 }
156
157 /*
158  * check_brk_limits() - Use platform specific check of range & verify mlock
159  * limits.
160  * @addr: The address to check
161  * @len: The size of increase.
162  *
163  * Return: 0 on success.
164  */
165 static int check_brk_limits(unsigned long addr, unsigned long len)
166 {
167         unsigned long mapped_addr;
168
169         mapped_addr = get_unmapped_area(NULL, addr, len, 0, MAP_FIXED);
170         if (IS_ERR_VALUE(mapped_addr))
171                 return mapped_addr;
172
173         return mlock_future_ok(current->mm, current->mm->def_flags, len)
174                 ? 0 : -EAGAIN;
175 }
176 static int do_brk_flags(struct vma_iterator *vmi, struct vm_area_struct *brkvma,
177                 unsigned long addr, unsigned long request, unsigned long flags);
178 SYSCALL_DEFINE1(brk, unsigned long, brk)
179 {
180         unsigned long newbrk, oldbrk, origbrk;
181         struct mm_struct *mm = current->mm;
182         struct vm_area_struct *brkvma, *next = NULL;
183         unsigned long min_brk;
184         bool populate = false;
185         LIST_HEAD(uf);
186         struct vma_iterator vmi;
187
188         if (mmap_write_lock_killable(mm))
189                 return -EINTR;
190
191         origbrk = mm->brk;
192
193 #ifdef CONFIG_COMPAT_BRK
194         /*
195          * CONFIG_COMPAT_BRK can still be overridden by setting
196          * randomize_va_space to 2, which will still cause mm->start_brk
197          * to be arbitrarily shifted
198          */
199         if (current->brk_randomized)
200                 min_brk = mm->start_brk;
201         else
202                 min_brk = mm->end_data;
203 #else
204         min_brk = mm->start_brk;
205 #endif
206         if (brk < min_brk)
207                 goto out;
208
209         /*
210          * Check against rlimit here. If this check is done later after the test
211          * of oldbrk with newbrk then it can escape the test and let the data
212          * segment grow beyond its set limit the in case where the limit is
213          * not page aligned -Ram Gupta
214          */
215         if (check_data_rlimit(rlimit(RLIMIT_DATA), brk, mm->start_brk,
216                               mm->end_data, mm->start_data))
217                 goto out;
218
219         newbrk = PAGE_ALIGN(brk);
220         oldbrk = PAGE_ALIGN(mm->brk);
221         if (oldbrk == newbrk) {
222                 mm->brk = brk;
223                 goto success;
224         }
225
226         /* Always allow shrinking brk. */
227         if (brk <= mm->brk) {
228                 /* Search one past newbrk */
229                 vma_iter_init(&vmi, mm, newbrk);
230                 brkvma = vma_find(&vmi, oldbrk);
231                 if (!brkvma || brkvma->vm_start >= oldbrk)
232                         goto out; /* mapping intersects with an existing non-brk vma. */
233                 /*
234                  * mm->brk must be protected by write mmap_lock.
235                  * do_vma_munmap() will drop the lock on success,  so update it
236                  * before calling do_vma_munmap().
237                  */
238                 mm->brk = brk;
239                 if (do_vma_munmap(&vmi, brkvma, newbrk, oldbrk, &uf, true))
240                         goto out;
241
242                 goto success_unlocked;
243         }
244
245         if (check_brk_limits(oldbrk, newbrk - oldbrk))
246                 goto out;
247
248         /*
249          * Only check if the next VMA is within the stack_guard_gap of the
250          * expansion area
251          */
252         vma_iter_init(&vmi, mm, oldbrk);
253         next = vma_find(&vmi, newbrk + PAGE_SIZE + stack_guard_gap);
254         if (next && newbrk + PAGE_SIZE > vm_start_gap(next))
255                 goto out;
256
257         brkvma = vma_prev_limit(&vmi, mm->start_brk);
258         /* Ok, looks good - let it rip. */
259         if (do_brk_flags(&vmi, brkvma, oldbrk, newbrk - oldbrk, 0) < 0)
260                 goto out;
261
262         mm->brk = brk;
263         if (mm->def_flags & VM_LOCKED)
264                 populate = true;
265
266 success:
267         mmap_write_unlock(mm);
268 success_unlocked:
269         userfaultfd_unmap_complete(mm, &uf);
270         if (populate)
271                 mm_populate(oldbrk, newbrk - oldbrk);
272         return brk;
273
274 out:
275         mm->brk = origbrk;
276         mmap_write_unlock(mm);
277         return origbrk;
278 }
279
280 #if defined(CONFIG_DEBUG_VM_MAPLE_TREE)
281 static void validate_mm(struct mm_struct *mm)
282 {
283         int bug = 0;
284         int i = 0;
285         struct vm_area_struct *vma;
286         VMA_ITERATOR(vmi, mm, 0);
287
288         mt_validate(&mm->mm_mt);
289         for_each_vma(vmi, vma) {
290 #ifdef CONFIG_DEBUG_VM_RB
291                 struct anon_vma *anon_vma = vma->anon_vma;
292                 struct anon_vma_chain *avc;
293 #endif
294                 unsigned long vmi_start, vmi_end;
295                 bool warn = 0;
296
297                 vmi_start = vma_iter_addr(&vmi);
298                 vmi_end = vma_iter_end(&vmi);
299                 if (VM_WARN_ON_ONCE_MM(vma->vm_end != vmi_end, mm))
300                         warn = 1;
301
302                 if (VM_WARN_ON_ONCE_MM(vma->vm_start != vmi_start, mm))
303                         warn = 1;
304
305                 if (warn) {
306                         pr_emerg("issue in %s\n", current->comm);
307                         dump_stack();
308                         dump_vma(vma);
309                         pr_emerg("tree range: %px start %lx end %lx\n", vma,
310                                  vmi_start, vmi_end - 1);
311                         vma_iter_dump_tree(&vmi);
312                 }
313
314 #ifdef CONFIG_DEBUG_VM_RB
315                 if (anon_vma) {
316                         anon_vma_lock_read(anon_vma);
317                         list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
318                                 anon_vma_interval_tree_verify(avc);
319                         anon_vma_unlock_read(anon_vma);
320                 }
321 #endif
322                 i++;
323         }
324         if (i != mm->map_count) {
325                 pr_emerg("map_count %d vma iterator %d\n", mm->map_count, i);
326                 bug = 1;
327         }
328         VM_BUG_ON_MM(bug, mm);
329 }
330
331 #else /* !CONFIG_DEBUG_VM_MAPLE_TREE */
332 #define validate_mm(mm) do { } while (0)
333 #endif /* CONFIG_DEBUG_VM_MAPLE_TREE */
334
335 /*
336  * vma has some anon_vma assigned, and is already inserted on that
337  * anon_vma's interval trees.
338  *
339  * Before updating the vma's vm_start / vm_end / vm_pgoff fields, the
340  * vma must be removed from the anon_vma's interval trees using
341  * anon_vma_interval_tree_pre_update_vma().
342  *
343  * After the update, the vma will be reinserted using
344  * anon_vma_interval_tree_post_update_vma().
345  *
346  * The entire update must be protected by exclusive mmap_lock and by
347  * the root anon_vma's mutex.
348  */
349 static inline void
350 anon_vma_interval_tree_pre_update_vma(struct vm_area_struct *vma)
351 {
352         struct anon_vma_chain *avc;
353
354         list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
355                 anon_vma_interval_tree_remove(avc, &avc->anon_vma->rb_root);
356 }
357
358 static inline void
359 anon_vma_interval_tree_post_update_vma(struct vm_area_struct *vma)
360 {
361         struct anon_vma_chain *avc;
362
363         list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
364                 anon_vma_interval_tree_insert(avc, &avc->anon_vma->rb_root);
365 }
366
367 static unsigned long count_vma_pages_range(struct mm_struct *mm,
368                 unsigned long addr, unsigned long end)
369 {
370         VMA_ITERATOR(vmi, mm, addr);
371         struct vm_area_struct *vma;
372         unsigned long nr_pages = 0;
373
374         for_each_vma_range(vmi, vma, end) {
375                 unsigned long vm_start = max(addr, vma->vm_start);
376                 unsigned long vm_end = min(end, vma->vm_end);
377
378                 nr_pages += PHYS_PFN(vm_end - vm_start);
379         }
380
381         return nr_pages;
382 }
383
384 static void __vma_link_file(struct vm_area_struct *vma,
385                             struct address_space *mapping)
386 {
387         if (vma->vm_flags & VM_SHARED)
388                 mapping_allow_writable(mapping);
389
390         flush_dcache_mmap_lock(mapping);
391         vma_interval_tree_insert(vma, &mapping->i_mmap);
392         flush_dcache_mmap_unlock(mapping);
393 }
394
395 static int vma_link(struct mm_struct *mm, struct vm_area_struct *vma)
396 {
397         VMA_ITERATOR(vmi, mm, 0);
398         struct address_space *mapping = NULL;
399
400         vma_iter_config(&vmi, vma->vm_start, vma->vm_end);
401         if (vma_iter_prealloc(&vmi, vma))
402                 return -ENOMEM;
403
404         vma_start_write(vma);
405
406         vma_iter_store(&vmi, vma);
407
408         if (vma->vm_file) {
409                 mapping = vma->vm_file->f_mapping;
410                 i_mmap_lock_write(mapping);
411                 __vma_link_file(vma, mapping);
412                 i_mmap_unlock_write(mapping);
413         }
414
415         mm->map_count++;
416         validate_mm(mm);
417         return 0;
418 }
419
420 /*
421  * init_multi_vma_prep() - Initializer for struct vma_prepare
422  * @vp: The vma_prepare struct
423  * @vma: The vma that will be altered once locked
424  * @next: The next vma if it is to be adjusted
425  * @remove: The first vma to be removed
426  * @remove2: The second vma to be removed
427  */
428 static inline void init_multi_vma_prep(struct vma_prepare *vp,
429                 struct vm_area_struct *vma, struct vm_area_struct *next,
430                 struct vm_area_struct *remove, struct vm_area_struct *remove2)
431 {
432         memset(vp, 0, sizeof(struct vma_prepare));
433         vp->vma = vma;
434         vp->anon_vma = vma->anon_vma;
435         vp->remove = remove;
436         vp->remove2 = remove2;
437         vp->adj_next = next;
438         if (!vp->anon_vma && next)
439                 vp->anon_vma = next->anon_vma;
440
441         vp->file = vma->vm_file;
442         if (vp->file)
443                 vp->mapping = vma->vm_file->f_mapping;
444
445 }
446
447 /*
448  * init_vma_prep() - Initializer wrapper for vma_prepare struct
449  * @vp: The vma_prepare struct
450  * @vma: The vma that will be altered once locked
451  */
452 static inline void init_vma_prep(struct vma_prepare *vp,
453                                  struct vm_area_struct *vma)
454 {
455         init_multi_vma_prep(vp, vma, NULL, NULL, NULL);
456 }
457
458
459 /*
460  * vma_prepare() - Helper function for handling locking VMAs prior to altering
461  * @vp: The initialized vma_prepare struct
462  */
463 static inline void vma_prepare(struct vma_prepare *vp)
464 {
465         if (vp->file) {
466                 uprobe_munmap(vp->vma, vp->vma->vm_start, vp->vma->vm_end);
467
468                 if (vp->adj_next)
469                         uprobe_munmap(vp->adj_next, vp->adj_next->vm_start,
470                                       vp->adj_next->vm_end);
471
472                 i_mmap_lock_write(vp->mapping);
473                 if (vp->insert && vp->insert->vm_file) {
474                         /*
475                          * Put into interval tree now, so instantiated pages
476                          * are visible to arm/parisc __flush_dcache_page
477                          * throughout; but we cannot insert into address
478                          * space until vma start or end is updated.
479                          */
480                         __vma_link_file(vp->insert,
481                                         vp->insert->vm_file->f_mapping);
482                 }
483         }
484
485         if (vp->anon_vma) {
486                 anon_vma_lock_write(vp->anon_vma);
487                 anon_vma_interval_tree_pre_update_vma(vp->vma);
488                 if (vp->adj_next)
489                         anon_vma_interval_tree_pre_update_vma(vp->adj_next);
490         }
491
492         if (vp->file) {
493                 flush_dcache_mmap_lock(vp->mapping);
494                 vma_interval_tree_remove(vp->vma, &vp->mapping->i_mmap);
495                 if (vp->adj_next)
496                         vma_interval_tree_remove(vp->adj_next,
497                                                  &vp->mapping->i_mmap);
498         }
499
500 }
501
502 /*
503  * vma_complete- Helper function for handling the unlocking after altering VMAs,
504  * or for inserting a VMA.
505  *
506  * @vp: The vma_prepare struct
507  * @vmi: The vma iterator
508  * @mm: The mm_struct
509  */
510 static inline void vma_complete(struct vma_prepare *vp,
511                                 struct vma_iterator *vmi, struct mm_struct *mm)
512 {
513         if (vp->file) {
514                 if (vp->adj_next)
515                         vma_interval_tree_insert(vp->adj_next,
516                                                  &vp->mapping->i_mmap);
517                 vma_interval_tree_insert(vp->vma, &vp->mapping->i_mmap);
518                 flush_dcache_mmap_unlock(vp->mapping);
519         }
520
521         if (vp->remove && vp->file) {
522                 __remove_shared_vm_struct(vp->remove, vp->file, vp->mapping);
523                 if (vp->remove2)
524                         __remove_shared_vm_struct(vp->remove2, vp->file,
525                                                   vp->mapping);
526         } else if (vp->insert) {
527                 /*
528                  * split_vma has split insert from vma, and needs
529                  * us to insert it before dropping the locks
530                  * (it may either follow vma or precede it).
531                  */
532                 vma_iter_store(vmi, vp->insert);
533                 mm->map_count++;
534         }
535
536         if (vp->anon_vma) {
537                 anon_vma_interval_tree_post_update_vma(vp->vma);
538                 if (vp->adj_next)
539                         anon_vma_interval_tree_post_update_vma(vp->adj_next);
540                 anon_vma_unlock_write(vp->anon_vma);
541         }
542
543         if (vp->file) {
544                 i_mmap_unlock_write(vp->mapping);
545                 uprobe_mmap(vp->vma);
546
547                 if (vp->adj_next)
548                         uprobe_mmap(vp->adj_next);
549         }
550
551         if (vp->remove) {
552 again:
553                 vma_mark_detached(vp->remove, true);
554                 if (vp->file) {
555                         uprobe_munmap(vp->remove, vp->remove->vm_start,
556                                       vp->remove->vm_end);
557                         fput(vp->file);
558                 }
559                 if (vp->remove->anon_vma)
560                         anon_vma_merge(vp->vma, vp->remove);
561                 mm->map_count--;
562                 mpol_put(vma_policy(vp->remove));
563                 if (!vp->remove2)
564                         WARN_ON_ONCE(vp->vma->vm_end < vp->remove->vm_end);
565                 vm_area_free(vp->remove);
566
567                 /*
568                  * In mprotect's case 6 (see comments on vma_merge),
569                  * we are removing both mid and next vmas
570                  */
571                 if (vp->remove2) {
572                         vp->remove = vp->remove2;
573                         vp->remove2 = NULL;
574                         goto again;
575                 }
576         }
577         if (vp->insert && vp->file)
578                 uprobe_mmap(vp->insert);
579         validate_mm(mm);
580 }
581
582 /*
583  * dup_anon_vma() - Helper function to duplicate anon_vma
584  * @dst: The destination VMA
585  * @src: The source VMA
586  *
587  * Returns: 0 on success.
588  */
589 static inline int dup_anon_vma(struct vm_area_struct *dst,
590                                struct vm_area_struct *src)
591 {
592         /*
593          * Easily overlooked: when mprotect shifts the boundary, make sure the
594          * expanding vma has anon_vma set if the shrinking vma had, to cover any
595          * anon pages imported.
596          */
597         if (src->anon_vma && !dst->anon_vma) {
598                 vma_assert_write_locked(dst);
599                 dst->anon_vma = src->anon_vma;
600                 return anon_vma_clone(dst, src);
601         }
602
603         return 0;
604 }
605
606 /*
607  * vma_expand - Expand an existing VMA
608  *
609  * @vmi: The vma iterator
610  * @vma: The vma to expand
611  * @start: The start of the vma
612  * @end: The exclusive end of the vma
613  * @pgoff: The page offset of vma
614  * @next: The current of next vma.
615  *
616  * Expand @vma to @start and @end.  Can expand off the start and end.  Will
617  * expand over @next if it's different from @vma and @end == @next->vm_end.
618  * Checking if the @vma can expand and merge with @next needs to be handled by
619  * the caller.
620  *
621  * Returns: 0 on success
622  */
623 int vma_expand(struct vma_iterator *vmi, struct vm_area_struct *vma,
624                unsigned long start, unsigned long end, pgoff_t pgoff,
625                struct vm_area_struct *next)
626 {
627         bool remove_next = false;
628         struct vma_prepare vp;
629
630         vma_start_write(vma);
631         if (next && (vma != next) && (end == next->vm_end)) {
632                 int ret;
633
634                 remove_next = true;
635                 vma_start_write(next);
636                 ret = dup_anon_vma(vma, next);
637                 if (ret)
638                         return ret;
639         }
640
641         init_multi_vma_prep(&vp, vma, NULL, remove_next ? next : NULL, NULL);
642         /* Not merging but overwriting any part of next is not handled. */
643         VM_WARN_ON(next && !vp.remove &&
644                   next != vma && end > next->vm_start);
645         /* Only handles expanding */
646         VM_WARN_ON(vma->vm_start < start || vma->vm_end > end);
647
648         /* Note: vma iterator must be pointing to 'start' */
649         vma_iter_config(vmi, start, end);
650         if (vma_iter_prealloc(vmi, vma))
651                 goto nomem;
652
653         vma_prepare(&vp);
654         vma_adjust_trans_huge(vma, start, end, 0);
655         vma->vm_start = start;
656         vma->vm_end = end;
657         vma->vm_pgoff = pgoff;
658         vma_iter_store(vmi, vma);
659
660         vma_complete(&vp, vmi, vma->vm_mm);
661         return 0;
662
663 nomem:
664         return -ENOMEM;
665 }
666
667 /*
668  * vma_shrink() - Reduce an existing VMAs memory area
669  * @vmi: The vma iterator
670  * @vma: The VMA to modify
671  * @start: The new start
672  * @end: The new end
673  *
674  * Returns: 0 on success, -ENOMEM otherwise
675  */
676 int vma_shrink(struct vma_iterator *vmi, struct vm_area_struct *vma,
677                unsigned long start, unsigned long end, pgoff_t pgoff)
678 {
679         struct vma_prepare vp;
680
681         WARN_ON((vma->vm_start != start) && (vma->vm_end != end));
682
683         if (vma->vm_start < start)
684                 vma_iter_config(vmi, vma->vm_start, start);
685         else
686                 vma_iter_config(vmi, end, vma->vm_end);
687
688         if (vma_iter_prealloc(vmi, NULL))
689                 return -ENOMEM;
690
691         vma_start_write(vma);
692
693         init_vma_prep(&vp, vma);
694         vma_prepare(&vp);
695         vma_adjust_trans_huge(vma, start, end, 0);
696
697         vma_iter_clear(vmi);
698         vma->vm_start = start;
699         vma->vm_end = end;
700         vma->vm_pgoff = pgoff;
701         vma_complete(&vp, vmi, vma->vm_mm);
702         return 0;
703 }
704
705 /*
706  * If the vma has a ->close operation then the driver probably needs to release
707  * per-vma resources, so we don't attempt to merge those if the caller indicates
708  * the current vma may be removed as part of the merge.
709  */
710 static inline bool is_mergeable_vma(struct vm_area_struct *vma,
711                 struct file *file, unsigned long vm_flags,
712                 struct vm_userfaultfd_ctx vm_userfaultfd_ctx,
713                 struct anon_vma_name *anon_name, bool may_remove_vma)
714 {
715         /*
716          * VM_SOFTDIRTY should not prevent from VMA merging, if we
717          * match the flags but dirty bit -- the caller should mark
718          * merged VMA as dirty. If dirty bit won't be excluded from
719          * comparison, we increase pressure on the memory system forcing
720          * the kernel to generate new VMAs when old one could be
721          * extended instead.
722          */
723         if ((vma->vm_flags ^ vm_flags) & ~VM_SOFTDIRTY)
724                 return false;
725         if (vma->vm_file != file)
726                 return false;
727         if (may_remove_vma && vma->vm_ops && vma->vm_ops->close)
728                 return false;
729         if (!is_mergeable_vm_userfaultfd_ctx(vma, vm_userfaultfd_ctx))
730                 return false;
731         if (!anon_vma_name_eq(anon_vma_name(vma), anon_name))
732                 return false;
733         return true;
734 }
735
736 static inline bool is_mergeable_anon_vma(struct anon_vma *anon_vma1,
737                  struct anon_vma *anon_vma2, struct vm_area_struct *vma)
738 {
739         /*
740          * The list_is_singular() test is to avoid merging VMA cloned from
741          * parents. This can improve scalability caused by anon_vma lock.
742          */
743         if ((!anon_vma1 || !anon_vma2) && (!vma ||
744                 list_is_singular(&vma->anon_vma_chain)))
745                 return true;
746         return anon_vma1 == anon_vma2;
747 }
748
749 /*
750  * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
751  * in front of (at a lower virtual address and file offset than) the vma.
752  *
753  * We cannot merge two vmas if they have differently assigned (non-NULL)
754  * anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
755  *
756  * We don't check here for the merged mmap wrapping around the end of pagecache
757  * indices (16TB on ia32) because do_mmap() does not permit mmap's which
758  * wrap, nor mmaps which cover the final page at index -1UL.
759  *
760  * We assume the vma may be removed as part of the merge.
761  */
762 static bool
763 can_vma_merge_before(struct vm_area_struct *vma, unsigned long vm_flags,
764                 struct anon_vma *anon_vma, struct file *file,
765                 pgoff_t vm_pgoff, struct vm_userfaultfd_ctx vm_userfaultfd_ctx,
766                 struct anon_vma_name *anon_name)
767 {
768         if (is_mergeable_vma(vma, file, vm_flags, vm_userfaultfd_ctx, anon_name, true) &&
769             is_mergeable_anon_vma(anon_vma, vma->anon_vma, vma)) {
770                 if (vma->vm_pgoff == vm_pgoff)
771                         return true;
772         }
773         return false;
774 }
775
776 /*
777  * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
778  * beyond (at a higher virtual address and file offset than) the vma.
779  *
780  * We cannot merge two vmas if they have differently assigned (non-NULL)
781  * anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
782  *
783  * We assume that vma is not removed as part of the merge.
784  */
785 static bool
786 can_vma_merge_after(struct vm_area_struct *vma, unsigned long vm_flags,
787                 struct anon_vma *anon_vma, struct file *file,
788                 pgoff_t vm_pgoff, struct vm_userfaultfd_ctx vm_userfaultfd_ctx,
789                 struct anon_vma_name *anon_name)
790 {
791         if (is_mergeable_vma(vma, file, vm_flags, vm_userfaultfd_ctx, anon_name, false) &&
792             is_mergeable_anon_vma(anon_vma, vma->anon_vma, vma)) {
793                 pgoff_t vm_pglen;
794                 vm_pglen = vma_pages(vma);
795                 if (vma->vm_pgoff + vm_pglen == vm_pgoff)
796                         return true;
797         }
798         return false;
799 }
800
801 /*
802  * Given a mapping request (addr,end,vm_flags,file,pgoff,anon_name),
803  * figure out whether that can be merged with its predecessor or its
804  * successor.  Or both (it neatly fills a hole).
805  *
806  * In most cases - when called for mmap, brk or mremap - [addr,end) is
807  * certain not to be mapped by the time vma_merge is called; but when
808  * called for mprotect, it is certain to be already mapped (either at
809  * an offset within prev, or at the start of next), and the flags of
810  * this area are about to be changed to vm_flags - and the no-change
811  * case has already been eliminated.
812  *
813  * The following mprotect cases have to be considered, where **** is
814  * the area passed down from mprotect_fixup, never extending beyond one
815  * vma, PPPP is the previous vma, CCCC is a concurrent vma that starts
816  * at the same address as **** and is of the same or larger span, and
817  * NNNN the next vma after ****:
818  *
819  *     ****             ****                   ****
820  *    PPPPPPNNNNNN    PPPPPPNNNNNN       PPPPPPCCCCCC
821  *    cannot merge    might become       might become
822  *                    PPNNNNNNNNNN       PPPPPPPPPPCC
823  *    mmap, brk or    case 4 below       case 5 below
824  *    mremap move:
825  *                        ****               ****
826  *                    PPPP    NNNN       PPPPCCCCNNNN
827  *                    might become       might become
828  *                    PPPPPPPPPPPP 1 or  PPPPPPPPPPPP 6 or
829  *                    PPPPPPPPNNNN 2 or  PPPPPPPPNNNN 7 or
830  *                    PPPPNNNNNNNN 3     PPPPNNNNNNNN 8
831  *
832  * It is important for case 8 that the vma CCCC overlapping the
833  * region **** is never going to extended over NNNN. Instead NNNN must
834  * be extended in region **** and CCCC must be removed. This way in
835  * all cases where vma_merge succeeds, the moment vma_merge drops the
836  * rmap_locks, the properties of the merged vma will be already
837  * correct for the whole merged range. Some of those properties like
838  * vm_page_prot/vm_flags may be accessed by rmap_walks and they must
839  * be correct for the whole merged range immediately after the
840  * rmap_locks are released. Otherwise if NNNN would be removed and
841  * CCCC would be extended over the NNNN range, remove_migration_ptes
842  * or other rmap walkers (if working on addresses beyond the "end"
843  * parameter) may establish ptes with the wrong permissions of CCCC
844  * instead of the right permissions of NNNN.
845  *
846  * In the code below:
847  * PPPP is represented by *prev
848  * CCCC is represented by *curr or not represented at all (NULL)
849  * NNNN is represented by *next or not represented at all (NULL)
850  * **** is not represented - it will be merged and the vma containing the
851  *      area is returned, or the function will return NULL
852  */
853 struct vm_area_struct *vma_merge(struct vma_iterator *vmi, struct mm_struct *mm,
854                         struct vm_area_struct *prev, unsigned long addr,
855                         unsigned long end, unsigned long vm_flags,
856                         struct anon_vma *anon_vma, struct file *file,
857                         pgoff_t pgoff, struct mempolicy *policy,
858                         struct vm_userfaultfd_ctx vm_userfaultfd_ctx,
859                         struct anon_vma_name *anon_name)
860 {
861         struct vm_area_struct *curr, *next, *res;
862         struct vm_area_struct *vma, *adjust, *remove, *remove2;
863         struct vma_prepare vp;
864         pgoff_t vma_pgoff;
865         int err = 0;
866         bool merge_prev = false;
867         bool merge_next = false;
868         bool vma_expanded = false;
869         unsigned long vma_start = addr;
870         unsigned long vma_end = end;
871         pgoff_t pglen = (end - addr) >> PAGE_SHIFT;
872         long adj_start = 0;
873
874         /*
875          * We later require that vma->vm_flags == vm_flags,
876          * so this tests vma->vm_flags & VM_SPECIAL, too.
877          */
878         if (vm_flags & VM_SPECIAL)
879                 return NULL;
880
881         /* Does the input range span an existing VMA? (cases 5 - 8) */
882         curr = find_vma_intersection(mm, prev ? prev->vm_end : 0, end);
883
884         if (!curr ||                    /* cases 1 - 4 */
885             end == curr->vm_end)        /* cases 6 - 8, adjacent VMA */
886                 next = vma_lookup(mm, end);
887         else
888                 next = NULL;            /* case 5 */
889
890         if (prev) {
891                 vma_start = prev->vm_start;
892                 vma_pgoff = prev->vm_pgoff;
893
894                 /* Can we merge the predecessor? */
895                 if (addr == prev->vm_end && mpol_equal(vma_policy(prev), policy)
896                     && can_vma_merge_after(prev, vm_flags, anon_vma, file,
897                                            pgoff, vm_userfaultfd_ctx, anon_name)) {
898                         merge_prev = true;
899                         vma_prev(vmi);
900                 }
901         }
902
903         /* Can we merge the successor? */
904         if (next && mpol_equal(policy, vma_policy(next)) &&
905             can_vma_merge_before(next, vm_flags, anon_vma, file, pgoff+pglen,
906                                  vm_userfaultfd_ctx, anon_name)) {
907                 merge_next = true;
908         }
909
910         /* Verify some invariant that must be enforced by the caller. */
911         VM_WARN_ON(prev && addr <= prev->vm_start);
912         VM_WARN_ON(curr && (addr != curr->vm_start || end > curr->vm_end));
913         VM_WARN_ON(addr >= end);
914
915         if (!merge_prev && !merge_next)
916                 return NULL; /* Not mergeable. */
917
918         if (merge_prev)
919                 vma_start_write(prev);
920
921         res = vma = prev;
922         remove = remove2 = adjust = NULL;
923
924         /* Can we merge both the predecessor and the successor? */
925         if (merge_prev && merge_next &&
926             is_mergeable_anon_vma(prev->anon_vma, next->anon_vma, NULL)) {
927                 vma_start_write(next);
928                 remove = next;                          /* case 1 */
929                 vma_end = next->vm_end;
930                 err = dup_anon_vma(prev, next);
931                 if (curr) {                             /* case 6 */
932                         vma_start_write(curr);
933                         remove = curr;
934                         remove2 = next;
935                         if (!next->anon_vma)
936                                 err = dup_anon_vma(prev, curr);
937                 }
938         } else if (merge_prev) {                        /* case 2 */
939                 if (curr) {
940                         vma_start_write(curr);
941                         err = dup_anon_vma(prev, curr);
942                         if (end == curr->vm_end) {      /* case 7 */
943                                 remove = curr;
944                         } else {                        /* case 5 */
945                                 adjust = curr;
946                                 adj_start = (end - curr->vm_start);
947                         }
948                 }
949         } else { /* merge_next */
950                 vma_start_write(next);
951                 res = next;
952                 if (prev && addr < prev->vm_end) {      /* case 4 */
953                         vma_start_write(prev);
954                         vma_end = addr;
955                         adjust = next;
956                         adj_start = -(prev->vm_end - addr);
957                         err = dup_anon_vma(next, prev);
958                 } else {
959                         /*
960                          * Note that cases 3 and 8 are the ONLY ones where prev
961                          * is permitted to be (but is not necessarily) NULL.
962                          */
963                         vma = next;                     /* case 3 */
964                         vma_start = addr;
965                         vma_end = next->vm_end;
966                         vma_pgoff = next->vm_pgoff - pglen;
967                         if (curr) {                     /* case 8 */
968                                 vma_pgoff = curr->vm_pgoff;
969                                 vma_start_write(curr);
970                                 remove = curr;
971                                 err = dup_anon_vma(next, curr);
972                         }
973                 }
974         }
975
976         /* Error in anon_vma clone. */
977         if (err)
978                 return NULL;
979
980         if (vma_start < vma->vm_start || vma_end > vma->vm_end)
981                 vma_expanded = true;
982
983         if (vma_expanded) {
984                 vma_iter_config(vmi, vma_start, vma_end);
985         } else {
986                 vma_iter_config(vmi, adjust->vm_start + adj_start,
987                                 adjust->vm_end);
988         }
989
990         if (vma_iter_prealloc(vmi, vma))
991                 return NULL;
992
993         init_multi_vma_prep(&vp, vma, adjust, remove, remove2);
994         VM_WARN_ON(vp.anon_vma && adjust && adjust->anon_vma &&
995                    vp.anon_vma != adjust->anon_vma);
996
997         vma_prepare(&vp);
998         vma_adjust_trans_huge(vma, vma_start, vma_end, adj_start);
999
1000         vma->vm_start = vma_start;
1001         vma->vm_end = vma_end;
1002         vma->vm_pgoff = vma_pgoff;
1003
1004         if (vma_expanded)
1005                 vma_iter_store(vmi, vma);
1006
1007         if (adj_start) {
1008                 adjust->vm_start += adj_start;
1009                 adjust->vm_pgoff += adj_start >> PAGE_SHIFT;
1010                 if (adj_start < 0) {
1011                         WARN_ON(vma_expanded);
1012                         vma_iter_store(vmi, next);
1013                 }
1014         }
1015
1016         vma_complete(&vp, vmi, mm);
1017         khugepaged_enter_vma(res, vm_flags);
1018         return res;
1019 }
1020
1021 /*
1022  * Rough compatibility check to quickly see if it's even worth looking
1023  * at sharing an anon_vma.
1024  *
1025  * They need to have the same vm_file, and the flags can only differ
1026  * in things that mprotect may change.
1027  *
1028  * NOTE! The fact that we share an anon_vma doesn't _have_ to mean that
1029  * we can merge the two vma's. For example, we refuse to merge a vma if
1030  * there is a vm_ops->close() function, because that indicates that the
1031  * driver is doing some kind of reference counting. But that doesn't
1032  * really matter for the anon_vma sharing case.
1033  */
1034 static int anon_vma_compatible(struct vm_area_struct *a, struct vm_area_struct *b)
1035 {
1036         return a->vm_end == b->vm_start &&
1037                 mpol_equal(vma_policy(a), vma_policy(b)) &&
1038                 a->vm_file == b->vm_file &&
1039                 !((a->vm_flags ^ b->vm_flags) & ~(VM_ACCESS_FLAGS | VM_SOFTDIRTY)) &&
1040                 b->vm_pgoff == a->vm_pgoff + ((b->vm_start - a->vm_start) >> PAGE_SHIFT);
1041 }
1042
1043 /*
1044  * Do some basic sanity checking to see if we can re-use the anon_vma
1045  * from 'old'. The 'a'/'b' vma's are in VM order - one of them will be
1046  * the same as 'old', the other will be the new one that is trying
1047  * to share the anon_vma.
1048  *
1049  * NOTE! This runs with mmap_lock held for reading, so it is possible that
1050  * the anon_vma of 'old' is concurrently in the process of being set up
1051  * by another page fault trying to merge _that_. But that's ok: if it
1052  * is being set up, that automatically means that it will be a singleton
1053  * acceptable for merging, so we can do all of this optimistically. But
1054  * we do that READ_ONCE() to make sure that we never re-load the pointer.
1055  *
1056  * IOW: that the "list_is_singular()" test on the anon_vma_chain only
1057  * matters for the 'stable anon_vma' case (ie the thing we want to avoid
1058  * is to return an anon_vma that is "complex" due to having gone through
1059  * a fork).
1060  *
1061  * We also make sure that the two vma's are compatible (adjacent,
1062  * and with the same memory policies). That's all stable, even with just
1063  * a read lock on the mmap_lock.
1064  */
1065 static struct anon_vma *reusable_anon_vma(struct vm_area_struct *old, struct vm_area_struct *a, struct vm_area_struct *b)
1066 {
1067         if (anon_vma_compatible(a, b)) {
1068                 struct anon_vma *anon_vma = READ_ONCE(old->anon_vma);
1069
1070                 if (anon_vma && list_is_singular(&old->anon_vma_chain))
1071                         return anon_vma;
1072         }
1073         return NULL;
1074 }
1075
1076 /*
1077  * find_mergeable_anon_vma is used by anon_vma_prepare, to check
1078  * neighbouring vmas for a suitable anon_vma, before it goes off
1079  * to allocate a new anon_vma.  It checks because a repetitive
1080  * sequence of mprotects and faults may otherwise lead to distinct
1081  * anon_vmas being allocated, preventing vma merge in subsequent
1082  * mprotect.
1083  */
1084 struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *vma)
1085 {
1086         MA_STATE(mas, &vma->vm_mm->mm_mt, vma->vm_end, vma->vm_end);
1087         struct anon_vma *anon_vma = NULL;
1088         struct vm_area_struct *prev, *next;
1089
1090         /* Try next first. */
1091         next = mas_walk(&mas);
1092         if (next) {
1093                 anon_vma = reusable_anon_vma(next, vma, next);
1094                 if (anon_vma)
1095                         return anon_vma;
1096         }
1097
1098         prev = mas_prev(&mas, 0);
1099         VM_BUG_ON_VMA(prev != vma, vma);
1100         prev = mas_prev(&mas, 0);
1101         /* Try prev next. */
1102         if (prev)
1103                 anon_vma = reusable_anon_vma(prev, prev, vma);
1104
1105         /*
1106          * We might reach here with anon_vma == NULL if we can't find
1107          * any reusable anon_vma.
1108          * There's no absolute need to look only at touching neighbours:
1109          * we could search further afield for "compatible" anon_vmas.
1110          * But it would probably just be a waste of time searching,
1111          * or lead to too many vmas hanging off the same anon_vma.
1112          * We're trying to allow mprotect remerging later on,
1113          * not trying to minimize memory used for anon_vmas.
1114          */
1115         return anon_vma;
1116 }
1117
1118 /*
1119  * If a hint addr is less than mmap_min_addr change hint to be as
1120  * low as possible but still greater than mmap_min_addr
1121  */
1122 static inline unsigned long round_hint_to_min(unsigned long hint)
1123 {
1124         hint &= PAGE_MASK;
1125         if (((void *)hint != NULL) &&
1126             (hint < mmap_min_addr))
1127                 return PAGE_ALIGN(mmap_min_addr);
1128         return hint;
1129 }
1130
1131 bool mlock_future_ok(struct mm_struct *mm, unsigned long flags,
1132                         unsigned long bytes)
1133 {
1134         unsigned long locked_pages, limit_pages;
1135
1136         if (!(flags & VM_LOCKED) || capable(CAP_IPC_LOCK))
1137                 return true;
1138
1139         locked_pages = bytes >> PAGE_SHIFT;
1140         locked_pages += mm->locked_vm;
1141
1142         limit_pages = rlimit(RLIMIT_MEMLOCK);
1143         limit_pages >>= PAGE_SHIFT;
1144
1145         return locked_pages <= limit_pages;
1146 }
1147
1148 static inline u64 file_mmap_size_max(struct file *file, struct inode *inode)
1149 {
1150         if (S_ISREG(inode->i_mode))
1151                 return MAX_LFS_FILESIZE;
1152
1153         if (S_ISBLK(inode->i_mode))
1154                 return MAX_LFS_FILESIZE;
1155
1156         if (S_ISSOCK(inode->i_mode))
1157                 return MAX_LFS_FILESIZE;
1158
1159         /* Special "we do even unsigned file positions" case */
1160         if (file->f_mode & FMODE_UNSIGNED_OFFSET)
1161                 return 0;
1162
1163         /* Yes, random drivers might want more. But I'm tired of buggy drivers */
1164         return ULONG_MAX;
1165 }
1166
1167 static inline bool file_mmap_ok(struct file *file, struct inode *inode,
1168                                 unsigned long pgoff, unsigned long len)
1169 {
1170         u64 maxsize = file_mmap_size_max(file, inode);
1171
1172         if (maxsize && len > maxsize)
1173                 return false;
1174         maxsize -= len;
1175         if (pgoff > maxsize >> PAGE_SHIFT)
1176                 return false;
1177         return true;
1178 }
1179
1180 /*
1181  * The caller must write-lock current->mm->mmap_lock.
1182  */
1183 unsigned long do_mmap(struct file *file, unsigned long addr,
1184                         unsigned long len, unsigned long prot,
1185                         unsigned long flags, vm_flags_t vm_flags,
1186                         unsigned long pgoff, unsigned long *populate,
1187                         struct list_head *uf)
1188 {
1189         struct mm_struct *mm = current->mm;
1190         int pkey = 0;
1191
1192         *populate = 0;
1193
1194         if (!len)
1195                 return -EINVAL;
1196
1197         /*
1198          * Does the application expect PROT_READ to imply PROT_EXEC?
1199          *
1200          * (the exception is when the underlying filesystem is noexec
1201          *  mounted, in which case we dont add PROT_EXEC.)
1202          */
1203         if ((prot & PROT_READ) && (current->personality & READ_IMPLIES_EXEC))
1204                 if (!(file && path_noexec(&file->f_path)))
1205                         prot |= PROT_EXEC;
1206
1207         /* force arch specific MAP_FIXED handling in get_unmapped_area */
1208         if (flags & MAP_FIXED_NOREPLACE)
1209                 flags |= MAP_FIXED;
1210
1211         if (!(flags & MAP_FIXED))
1212                 addr = round_hint_to_min(addr);
1213
1214         /* Careful about overflows.. */
1215         len = PAGE_ALIGN(len);
1216         if (!len)
1217                 return -ENOMEM;
1218
1219         /* offset overflow? */
1220         if ((pgoff + (len >> PAGE_SHIFT)) < pgoff)
1221                 return -EOVERFLOW;
1222
1223         /* Too many mappings? */
1224         if (mm->map_count > sysctl_max_map_count)
1225                 return -ENOMEM;
1226
1227         /* Obtain the address to map to. we verify (or select) it and ensure
1228          * that it represents a valid section of the address space.
1229          */
1230         addr = get_unmapped_area(file, addr, len, pgoff, flags);
1231         if (IS_ERR_VALUE(addr))
1232                 return addr;
1233
1234         if (flags & MAP_FIXED_NOREPLACE) {
1235                 if (find_vma_intersection(mm, addr, addr + len))
1236                         return -EEXIST;
1237         }
1238
1239         if (prot == PROT_EXEC) {
1240                 pkey = execute_only_pkey(mm);
1241                 if (pkey < 0)
1242                         pkey = 0;
1243         }
1244
1245         /* Do simple checking here so the lower-level routines won't have
1246          * to. we assume access permissions have been handled by the open
1247          * of the memory object, so we don't do any here.
1248          */
1249         vm_flags |= calc_vm_prot_bits(prot, pkey) | calc_vm_flag_bits(flags) |
1250                         mm->def_flags | VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC;
1251
1252         if (flags & MAP_LOCKED)
1253                 if (!can_do_mlock())
1254                         return -EPERM;
1255
1256         if (!mlock_future_ok(mm, vm_flags, len))
1257                 return -EAGAIN;
1258
1259         if (file) {
1260                 struct inode *inode = file_inode(file);
1261                 unsigned long flags_mask;
1262
1263                 if (!file_mmap_ok(file, inode, pgoff, len))
1264                         return -EOVERFLOW;
1265
1266                 flags_mask = LEGACY_MAP_MASK | file->f_op->mmap_supported_flags;
1267
1268                 switch (flags & MAP_TYPE) {
1269                 case MAP_SHARED:
1270                         /*
1271                          * Force use of MAP_SHARED_VALIDATE with non-legacy
1272                          * flags. E.g. MAP_SYNC is dangerous to use with
1273                          * MAP_SHARED as you don't know which consistency model
1274                          * you will get. We silently ignore unsupported flags
1275                          * with MAP_SHARED to preserve backward compatibility.
1276                          */
1277                         flags &= LEGACY_MAP_MASK;
1278                         fallthrough;
1279                 case MAP_SHARED_VALIDATE:
1280                         if (flags & ~flags_mask)
1281                                 return -EOPNOTSUPP;
1282                         if (prot & PROT_WRITE) {
1283                                 if (!(file->f_mode & FMODE_WRITE))
1284                                         return -EACCES;
1285                                 if (IS_SWAPFILE(file->f_mapping->host))
1286                                         return -ETXTBSY;
1287                         }
1288
1289                         /*
1290                          * Make sure we don't allow writing to an append-only
1291                          * file..
1292                          */
1293                         if (IS_APPEND(inode) && (file->f_mode & FMODE_WRITE))
1294                                 return -EACCES;
1295
1296                         vm_flags |= VM_SHARED | VM_MAYSHARE;
1297                         if (!(file->f_mode & FMODE_WRITE))
1298                                 vm_flags &= ~(VM_MAYWRITE | VM_SHARED);
1299                         fallthrough;
1300                 case MAP_PRIVATE:
1301                         if (!(file->f_mode & FMODE_READ))
1302                                 return -EACCES;
1303                         if (path_noexec(&file->f_path)) {
1304                                 if (vm_flags & VM_EXEC)
1305                                         return -EPERM;
1306                                 vm_flags &= ~VM_MAYEXEC;
1307                         }
1308
1309                         if (!file->f_op->mmap)
1310                                 return -ENODEV;
1311                         if (vm_flags & (VM_GROWSDOWN|VM_GROWSUP))
1312                                 return -EINVAL;
1313                         break;
1314
1315                 default:
1316                         return -EINVAL;
1317                 }
1318         } else {
1319                 switch (flags & MAP_TYPE) {
1320                 case MAP_SHARED:
1321                         if (vm_flags & (VM_GROWSDOWN|VM_GROWSUP))
1322                                 return -EINVAL;
1323                         /*
1324                          * Ignore pgoff.
1325                          */
1326                         pgoff = 0;
1327                         vm_flags |= VM_SHARED | VM_MAYSHARE;
1328                         break;
1329                 case MAP_PRIVATE:
1330                         /*
1331                          * Set pgoff according to addr for anon_vma.
1332                          */
1333                         pgoff = addr >> PAGE_SHIFT;
1334                         break;
1335                 default:
1336                         return -EINVAL;
1337                 }
1338         }
1339
1340         /*
1341          * Set 'VM_NORESERVE' if we should not account for the
1342          * memory use of this mapping.
1343          */
1344         if (flags & MAP_NORESERVE) {
1345                 /* We honor MAP_NORESERVE if allowed to overcommit */
1346                 if (sysctl_overcommit_memory != OVERCOMMIT_NEVER)
1347                         vm_flags |= VM_NORESERVE;
1348
1349                 /* hugetlb applies strict overcommit unless MAP_NORESERVE */
1350                 if (file && is_file_hugepages(file))
1351                         vm_flags |= VM_NORESERVE;
1352         }
1353
1354         addr = mmap_region(file, addr, len, vm_flags, pgoff, uf);
1355         if (!IS_ERR_VALUE(addr) &&
1356             ((vm_flags & VM_LOCKED) ||
1357              (flags & (MAP_POPULATE | MAP_NONBLOCK)) == MAP_POPULATE))
1358                 *populate = len;
1359         return addr;
1360 }
1361
1362 unsigned long ksys_mmap_pgoff(unsigned long addr, unsigned long len,
1363                               unsigned long prot, unsigned long flags,
1364                               unsigned long fd, unsigned long pgoff)
1365 {
1366         struct file *file = NULL;
1367         unsigned long retval;
1368
1369         if (!(flags & MAP_ANONYMOUS)) {
1370                 audit_mmap_fd(fd, flags);
1371                 file = fget(fd);
1372                 if (!file)
1373                         return -EBADF;
1374                 if (is_file_hugepages(file)) {
1375                         len = ALIGN(len, huge_page_size(hstate_file(file)));
1376                 } else if (unlikely(flags & MAP_HUGETLB)) {
1377                         retval = -EINVAL;
1378                         goto out_fput;
1379                 }
1380         } else if (flags & MAP_HUGETLB) {
1381                 struct hstate *hs;
1382
1383                 hs = hstate_sizelog((flags >> MAP_HUGE_SHIFT) & MAP_HUGE_MASK);
1384                 if (!hs)
1385                         return -EINVAL;
1386
1387                 len = ALIGN(len, huge_page_size(hs));
1388                 /*
1389                  * VM_NORESERVE is used because the reservations will be
1390                  * taken when vm_ops->mmap() is called
1391                  */
1392                 file = hugetlb_file_setup(HUGETLB_ANON_FILE, len,
1393                                 VM_NORESERVE,
1394                                 HUGETLB_ANONHUGE_INODE,
1395                                 (flags >> MAP_HUGE_SHIFT) & MAP_HUGE_MASK);
1396                 if (IS_ERR(file))
1397                         return PTR_ERR(file);
1398         }
1399
1400         retval = vm_mmap_pgoff(file, addr, len, prot, flags, pgoff);
1401 out_fput:
1402         if (file)
1403                 fput(file);
1404         return retval;
1405 }
1406
1407 SYSCALL_DEFINE6(mmap_pgoff, unsigned long, addr, unsigned long, len,
1408                 unsigned long, prot, unsigned long, flags,
1409                 unsigned long, fd, unsigned long, pgoff)
1410 {
1411         return ksys_mmap_pgoff(addr, len, prot, flags, fd, pgoff);
1412 }
1413
1414 #ifdef __ARCH_WANT_SYS_OLD_MMAP
1415 struct mmap_arg_struct {
1416         unsigned long addr;
1417         unsigned long len;
1418         unsigned long prot;
1419         unsigned long flags;
1420         unsigned long fd;
1421         unsigned long offset;
1422 };
1423
1424 SYSCALL_DEFINE1(old_mmap, struct mmap_arg_struct __user *, arg)
1425 {
1426         struct mmap_arg_struct a;
1427
1428         if (copy_from_user(&a, arg, sizeof(a)))
1429                 return -EFAULT;
1430         if (offset_in_page(a.offset))
1431                 return -EINVAL;
1432
1433         return ksys_mmap_pgoff(a.addr, a.len, a.prot, a.flags, a.fd,
1434                                a.offset >> PAGE_SHIFT);
1435 }
1436 #endif /* __ARCH_WANT_SYS_OLD_MMAP */
1437
1438 static bool vm_ops_needs_writenotify(const struct vm_operations_struct *vm_ops)
1439 {
1440         return vm_ops && (vm_ops->page_mkwrite || vm_ops->pfn_mkwrite);
1441 }
1442
1443 static bool vma_is_shared_writable(struct vm_area_struct *vma)
1444 {
1445         return (vma->vm_flags & (VM_WRITE | VM_SHARED)) ==
1446                 (VM_WRITE | VM_SHARED);
1447 }
1448
1449 static bool vma_fs_can_writeback(struct vm_area_struct *vma)
1450 {
1451         /* No managed pages to writeback. */
1452         if (vma->vm_flags & VM_PFNMAP)
1453                 return false;
1454
1455         return vma->vm_file && vma->vm_file->f_mapping &&
1456                 mapping_can_writeback(vma->vm_file->f_mapping);
1457 }
1458
1459 /*
1460  * Does this VMA require the underlying folios to have their dirty state
1461  * tracked?
1462  */
1463 bool vma_needs_dirty_tracking(struct vm_area_struct *vma)
1464 {
1465         /* Only shared, writable VMAs require dirty tracking. */
1466         if (!vma_is_shared_writable(vma))
1467                 return false;
1468
1469         /* Does the filesystem need to be notified? */
1470         if (vm_ops_needs_writenotify(vma->vm_ops))
1471                 return true;
1472
1473         /*
1474          * Even if the filesystem doesn't indicate a need for writenotify, if it
1475          * can writeback, dirty tracking is still required.
1476          */
1477         return vma_fs_can_writeback(vma);
1478 }
1479
1480 /*
1481  * Some shared mappings will want the pages marked read-only
1482  * to track write events. If so, we'll downgrade vm_page_prot
1483  * to the private version (using protection_map[] without the
1484  * VM_SHARED bit).
1485  */
1486 int vma_wants_writenotify(struct vm_area_struct *vma, pgprot_t vm_page_prot)
1487 {
1488         /* If it was private or non-writable, the write bit is already clear */
1489         if (!vma_is_shared_writable(vma))
1490                 return 0;
1491
1492         /* The backer wishes to know when pages are first written to? */
1493         if (vm_ops_needs_writenotify(vma->vm_ops))
1494                 return 1;
1495
1496         /* The open routine did something to the protections that pgprot_modify
1497          * won't preserve? */
1498         if (pgprot_val(vm_page_prot) !=
1499             pgprot_val(vm_pgprot_modify(vm_page_prot, vma->vm_flags)))
1500                 return 0;
1501
1502         /*
1503          * Do we need to track softdirty? hugetlb does not support softdirty
1504          * tracking yet.
1505          */
1506         if (vma_soft_dirty_enabled(vma) && !is_vm_hugetlb_page(vma))
1507                 return 1;
1508
1509         /* Do we need write faults for uffd-wp tracking? */
1510         if (userfaultfd_wp(vma))
1511                 return 1;
1512
1513         /* Can the mapping track the dirty pages? */
1514         return vma_fs_can_writeback(vma);
1515 }
1516
1517 /*
1518  * We account for memory if it's a private writeable mapping,
1519  * not hugepages and VM_NORESERVE wasn't set.
1520  */
1521 static inline int accountable_mapping(struct file *file, vm_flags_t vm_flags)
1522 {
1523         /*
1524          * hugetlb has its own accounting separate from the core VM
1525          * VM_HUGETLB may not be set yet so we cannot check for that flag.
1526          */
1527         if (file && is_file_hugepages(file))
1528                 return 0;
1529
1530         return (vm_flags & (VM_NORESERVE | VM_SHARED | VM_WRITE)) == VM_WRITE;
1531 }
1532
1533 /**
1534  * unmapped_area() - Find an area between the low_limit and the high_limit with
1535  * the correct alignment and offset, all from @info. Note: current->mm is used
1536  * for the search.
1537  *
1538  * @info: The unmapped area information including the range [low_limit -
1539  * high_limit), the alignment offset and mask.
1540  *
1541  * Return: A memory address or -ENOMEM.
1542  */
1543 static unsigned long unmapped_area(struct vm_unmapped_area_info *info)
1544 {
1545         unsigned long length, gap;
1546         unsigned long low_limit, high_limit;
1547         struct vm_area_struct *tmp;
1548
1549         MA_STATE(mas, &current->mm->mm_mt, 0, 0);
1550
1551         /* Adjust search length to account for worst case alignment overhead */
1552         length = info->length + info->align_mask;
1553         if (length < info->length)
1554                 return -ENOMEM;
1555
1556         low_limit = info->low_limit;
1557         if (low_limit < mmap_min_addr)
1558                 low_limit = mmap_min_addr;
1559         high_limit = info->high_limit;
1560 retry:
1561         if (mas_empty_area(&mas, low_limit, high_limit - 1, length))
1562                 return -ENOMEM;
1563
1564         gap = mas.index;
1565         gap += (info->align_offset - gap) & info->align_mask;
1566         tmp = mas_next(&mas, ULONG_MAX);
1567         if (tmp && (tmp->vm_flags & VM_STARTGAP_FLAGS)) { /* Avoid prev check if possible */
1568                 if (vm_start_gap(tmp) < gap + length - 1) {
1569                         low_limit = tmp->vm_end;
1570                         mas_reset(&mas);
1571                         goto retry;
1572                 }
1573         } else {
1574                 tmp = mas_prev(&mas, 0);
1575                 if (tmp && vm_end_gap(tmp) > gap) {
1576                         low_limit = vm_end_gap(tmp);
1577                         mas_reset(&mas);
1578                         goto retry;
1579                 }
1580         }
1581
1582         return gap;
1583 }
1584
1585 /**
1586  * unmapped_area_topdown() - Find an area between the low_limit and the
1587  * high_limit with the correct alignment and offset at the highest available
1588  * address, all from @info. Note: current->mm is used for the search.
1589  *
1590  * @info: The unmapped area information including the range [low_limit -
1591  * high_limit), the alignment offset and mask.
1592  *
1593  * Return: A memory address or -ENOMEM.
1594  */
1595 static unsigned long unmapped_area_topdown(struct vm_unmapped_area_info *info)
1596 {
1597         unsigned long length, gap, gap_end;
1598         unsigned long low_limit, high_limit;
1599         struct vm_area_struct *tmp;
1600
1601         MA_STATE(mas, &current->mm->mm_mt, 0, 0);
1602         /* Adjust search length to account for worst case alignment overhead */
1603         length = info->length + info->align_mask;
1604         if (length < info->length)
1605                 return -ENOMEM;
1606
1607         low_limit = info->low_limit;
1608         if (low_limit < mmap_min_addr)
1609                 low_limit = mmap_min_addr;
1610         high_limit = info->high_limit;
1611 retry:
1612         if (mas_empty_area_rev(&mas, low_limit, high_limit - 1, length))
1613                 return -ENOMEM;
1614
1615         gap = mas.last + 1 - info->length;
1616         gap -= (gap - info->align_offset) & info->align_mask;
1617         gap_end = mas.last;
1618         tmp = mas_next(&mas, ULONG_MAX);
1619         if (tmp && (tmp->vm_flags & VM_STARTGAP_FLAGS)) { /* Avoid prev check if possible */
1620                 if (vm_start_gap(tmp) <= gap_end) {
1621                         high_limit = vm_start_gap(tmp);
1622                         mas_reset(&mas);
1623                         goto retry;
1624                 }
1625         } else {
1626                 tmp = mas_prev(&mas, 0);
1627                 if (tmp && vm_end_gap(tmp) > gap) {
1628                         high_limit = tmp->vm_start;
1629                         mas_reset(&mas);
1630                         goto retry;
1631                 }
1632         }
1633
1634         return gap;
1635 }
1636
1637 /*
1638  * Search for an unmapped address range.
1639  *
1640  * We are looking for a range that:
1641  * - does not intersect with any VMA;
1642  * - is contained within the [low_limit, high_limit) interval;
1643  * - is at least the desired size.
1644  * - satisfies (begin_addr & align_mask) == (align_offset & align_mask)
1645  */
1646 unsigned long vm_unmapped_area(struct vm_unmapped_area_info *info)
1647 {
1648         unsigned long addr;
1649
1650         if (info->flags & VM_UNMAPPED_AREA_TOPDOWN)
1651                 addr = unmapped_area_topdown(info);
1652         else
1653                 addr = unmapped_area(info);
1654
1655         trace_vm_unmapped_area(addr, info);
1656         return addr;
1657 }
1658
1659 /* Get an address range which is currently unmapped.
1660  * For shmat() with addr=0.
1661  *
1662  * Ugly calling convention alert:
1663  * Return value with the low bits set means error value,
1664  * ie
1665  *      if (ret & ~PAGE_MASK)
1666  *              error = ret;
1667  *
1668  * This function "knows" that -ENOMEM has the bits set.
1669  */
1670 unsigned long
1671 generic_get_unmapped_area(struct file *filp, unsigned long addr,
1672                           unsigned long len, unsigned long pgoff,
1673                           unsigned long flags)
1674 {
1675         struct mm_struct *mm = current->mm;
1676         struct vm_area_struct *vma, *prev;
1677         struct vm_unmapped_area_info info;
1678         const unsigned long mmap_end = arch_get_mmap_end(addr, len, flags);
1679
1680         if (len > mmap_end - mmap_min_addr)
1681                 return -ENOMEM;
1682
1683         if (flags & MAP_FIXED)
1684                 return addr;
1685
1686         if (addr) {
1687                 addr = PAGE_ALIGN(addr);
1688                 vma = find_vma_prev(mm, addr, &prev);
1689                 if (mmap_end - len >= addr && addr >= mmap_min_addr &&
1690                     (!vma || addr + len <= vm_start_gap(vma)) &&
1691                     (!prev || addr >= vm_end_gap(prev)))
1692                         return addr;
1693         }
1694
1695         info.flags = 0;
1696         info.length = len;
1697         info.low_limit = mm->mmap_base;
1698         info.high_limit = mmap_end;
1699         info.align_mask = 0;
1700         info.align_offset = 0;
1701         return vm_unmapped_area(&info);
1702 }
1703
1704 #ifndef HAVE_ARCH_UNMAPPED_AREA
1705 unsigned long
1706 arch_get_unmapped_area(struct file *filp, unsigned long addr,
1707                        unsigned long len, unsigned long pgoff,
1708                        unsigned long flags)
1709 {
1710         return generic_get_unmapped_area(filp, addr, len, pgoff, flags);
1711 }
1712 #endif
1713
1714 /*
1715  * This mmap-allocator allocates new areas top-down from below the
1716  * stack's low limit (the base):
1717  */
1718 unsigned long
1719 generic_get_unmapped_area_topdown(struct file *filp, unsigned long addr,
1720                                   unsigned long len, unsigned long pgoff,
1721                                   unsigned long flags)
1722 {
1723         struct vm_area_struct *vma, *prev;
1724         struct mm_struct *mm = current->mm;
1725         struct vm_unmapped_area_info info;
1726         const unsigned long mmap_end = arch_get_mmap_end(addr, len, flags);
1727
1728         /* requested length too big for entire address space */
1729         if (len > mmap_end - mmap_min_addr)
1730                 return -ENOMEM;
1731
1732         if (flags & MAP_FIXED)
1733                 return addr;
1734
1735         /* requesting a specific address */
1736         if (addr) {
1737                 addr = PAGE_ALIGN(addr);
1738                 vma = find_vma_prev(mm, addr, &prev);
1739                 if (mmap_end - len >= addr && addr >= mmap_min_addr &&
1740                                 (!vma || addr + len <= vm_start_gap(vma)) &&
1741                                 (!prev || addr >= vm_end_gap(prev)))
1742                         return addr;
1743         }
1744
1745         info.flags = VM_UNMAPPED_AREA_TOPDOWN;
1746         info.length = len;
1747         info.low_limit = PAGE_SIZE;
1748         info.high_limit = arch_get_mmap_base(addr, mm->mmap_base);
1749         info.align_mask = 0;
1750         info.align_offset = 0;
1751         addr = vm_unmapped_area(&info);
1752
1753         /*
1754          * A failed mmap() very likely causes application failure,
1755          * so fall back to the bottom-up function here. This scenario
1756          * can happen with large stack limits and large mmap()
1757          * allocations.
1758          */
1759         if (offset_in_page(addr)) {
1760                 VM_BUG_ON(addr != -ENOMEM);
1761                 info.flags = 0;
1762                 info.low_limit = TASK_UNMAPPED_BASE;
1763                 info.high_limit = mmap_end;
1764                 addr = vm_unmapped_area(&info);
1765         }
1766
1767         return addr;
1768 }
1769
1770 #ifndef HAVE_ARCH_UNMAPPED_AREA_TOPDOWN
1771 unsigned long
1772 arch_get_unmapped_area_topdown(struct file *filp, unsigned long addr,
1773                                unsigned long len, unsigned long pgoff,
1774                                unsigned long flags)
1775 {
1776         return generic_get_unmapped_area_topdown(filp, addr, len, pgoff, flags);
1777 }
1778 #endif
1779
1780 unsigned long
1781 get_unmapped_area(struct file *file, unsigned long addr, unsigned long len,
1782                 unsigned long pgoff, unsigned long flags)
1783 {
1784         unsigned long (*get_area)(struct file *, unsigned long,
1785                                   unsigned long, unsigned long, unsigned long);
1786
1787         unsigned long error = arch_mmap_check(addr, len, flags);
1788         if (error)
1789                 return error;
1790
1791         /* Careful about overflows.. */
1792         if (len > TASK_SIZE)
1793                 return -ENOMEM;
1794
1795         get_area = current->mm->get_unmapped_area;
1796         if (file) {
1797                 if (file->f_op->get_unmapped_area)
1798                         get_area = file->f_op->get_unmapped_area;
1799         } else if (flags & MAP_SHARED) {
1800                 /*
1801                  * mmap_region() will call shmem_zero_setup() to create a file,
1802                  * so use shmem's get_unmapped_area in case it can be huge.
1803                  * do_mmap() will clear pgoff, so match alignment.
1804                  */
1805                 pgoff = 0;
1806                 get_area = shmem_get_unmapped_area;
1807         }
1808
1809         addr = get_area(file, addr, len, pgoff, flags);
1810         if (IS_ERR_VALUE(addr))
1811                 return addr;
1812
1813         if (addr > TASK_SIZE - len)
1814                 return -ENOMEM;
1815         if (offset_in_page(addr))
1816                 return -EINVAL;
1817
1818         error = security_mmap_addr(addr);
1819         return error ? error : addr;
1820 }
1821
1822 EXPORT_SYMBOL(get_unmapped_area);
1823
1824 /**
1825  * find_vma_intersection() - Look up the first VMA which intersects the interval
1826  * @mm: The process address space.
1827  * @start_addr: The inclusive start user address.
1828  * @end_addr: The exclusive end user address.
1829  *
1830  * Returns: The first VMA within the provided range, %NULL otherwise.  Assumes
1831  * start_addr < end_addr.
1832  */
1833 struct vm_area_struct *find_vma_intersection(struct mm_struct *mm,
1834                                              unsigned long start_addr,
1835                                              unsigned long end_addr)
1836 {
1837         unsigned long index = start_addr;
1838
1839         mmap_assert_locked(mm);
1840         return mt_find(&mm->mm_mt, &index, end_addr - 1);
1841 }
1842 EXPORT_SYMBOL(find_vma_intersection);
1843
1844 /**
1845  * find_vma() - Find the VMA for a given address, or the next VMA.
1846  * @mm: The mm_struct to check
1847  * @addr: The address
1848  *
1849  * Returns: The VMA associated with addr, or the next VMA.
1850  * May return %NULL in the case of no VMA at addr or above.
1851  */
1852 struct vm_area_struct *find_vma(struct mm_struct *mm, unsigned long addr)
1853 {
1854         unsigned long index = addr;
1855
1856         mmap_assert_locked(mm);
1857         return mt_find(&mm->mm_mt, &index, ULONG_MAX);
1858 }
1859 EXPORT_SYMBOL(find_vma);
1860
1861 /**
1862  * find_vma_prev() - Find the VMA for a given address, or the next vma and
1863  * set %pprev to the previous VMA, if any.
1864  * @mm: The mm_struct to check
1865  * @addr: The address
1866  * @pprev: The pointer to set to the previous VMA
1867  *
1868  * Note that RCU lock is missing here since the external mmap_lock() is used
1869  * instead.
1870  *
1871  * Returns: The VMA associated with @addr, or the next vma.
1872  * May return %NULL in the case of no vma at addr or above.
1873  */
1874 struct vm_area_struct *
1875 find_vma_prev(struct mm_struct *mm, unsigned long addr,
1876                         struct vm_area_struct **pprev)
1877 {
1878         struct vm_area_struct *vma;
1879         MA_STATE(mas, &mm->mm_mt, addr, addr);
1880
1881         vma = mas_walk(&mas);
1882         *pprev = mas_prev(&mas, 0);
1883         if (!vma)
1884                 vma = mas_next(&mas, ULONG_MAX);
1885         return vma;
1886 }
1887
1888 /*
1889  * Verify that the stack growth is acceptable and
1890  * update accounting. This is shared with both the
1891  * grow-up and grow-down cases.
1892  */
1893 static int acct_stack_growth(struct vm_area_struct *vma,
1894                              unsigned long size, unsigned long grow)
1895 {
1896         struct mm_struct *mm = vma->vm_mm;
1897         unsigned long new_start;
1898
1899         /* address space limit tests */
1900         if (!may_expand_vm(mm, vma->vm_flags, grow))
1901                 return -ENOMEM;
1902
1903         /* Stack limit test */
1904         if (size > rlimit(RLIMIT_STACK))
1905                 return -ENOMEM;
1906
1907         /* mlock limit tests */
1908         if (!mlock_future_ok(mm, vma->vm_flags, grow << PAGE_SHIFT))
1909                 return -ENOMEM;
1910
1911         /* Check to ensure the stack will not grow into a hugetlb-only region */
1912         new_start = (vma->vm_flags & VM_GROWSUP) ? vma->vm_start :
1913                         vma->vm_end - size;
1914         if (is_hugepage_only_range(vma->vm_mm, new_start, size))
1915                 return -EFAULT;
1916
1917         /*
1918          * Overcommit..  This must be the final test, as it will
1919          * update security statistics.
1920          */
1921         if (security_vm_enough_memory_mm(mm, grow))
1922                 return -ENOMEM;
1923
1924         return 0;
1925 }
1926
1927 #if defined(CONFIG_STACK_GROWSUP) || defined(CONFIG_IA64)
1928 /*
1929  * PA-RISC uses this for its stack; IA64 for its Register Backing Store.
1930  * vma is the last one with address > vma->vm_end.  Have to extend vma.
1931  */
1932 static int expand_upwards(struct vm_area_struct *vma, unsigned long address)
1933 {
1934         struct mm_struct *mm = vma->vm_mm;
1935         struct vm_area_struct *next;
1936         unsigned long gap_addr;
1937         int error = 0;
1938         MA_STATE(mas, &mm->mm_mt, vma->vm_start, address);
1939
1940         if (!(vma->vm_flags & VM_GROWSUP))
1941                 return -EFAULT;
1942
1943         /* Guard against exceeding limits of the address space. */
1944         address &= PAGE_MASK;
1945         if (address >= (TASK_SIZE & PAGE_MASK))
1946                 return -ENOMEM;
1947         address += PAGE_SIZE;
1948
1949         /* Enforce stack_guard_gap */
1950         gap_addr = address + stack_guard_gap;
1951
1952         /* Guard against overflow */
1953         if (gap_addr < address || gap_addr > TASK_SIZE)
1954                 gap_addr = TASK_SIZE;
1955
1956         next = find_vma_intersection(mm, vma->vm_end, gap_addr);
1957         if (next && vma_is_accessible(next)) {
1958                 if (!(next->vm_flags & VM_GROWSUP))
1959                         return -ENOMEM;
1960                 /* Check that both stack segments have the same anon_vma? */
1961         }
1962
1963         if (next)
1964                 mas_prev_range(&mas, address);
1965
1966         __mas_set_range(&mas, vma->vm_start, address - 1);
1967         if (mas_preallocate(&mas, vma, GFP_KERNEL))
1968                 return -ENOMEM;
1969
1970         /* We must make sure the anon_vma is allocated. */
1971         if (unlikely(anon_vma_prepare(vma))) {
1972                 mas_destroy(&mas);
1973                 return -ENOMEM;
1974         }
1975
1976         /* Lock the VMA before expanding to prevent concurrent page faults */
1977         vma_start_write(vma);
1978         /*
1979          * vma->vm_start/vm_end cannot change under us because the caller
1980          * is required to hold the mmap_lock in read mode.  We need the
1981          * anon_vma lock to serialize against concurrent expand_stacks.
1982          */
1983         anon_vma_lock_write(vma->anon_vma);
1984
1985         /* Somebody else might have raced and expanded it already */
1986         if (address > vma->vm_end) {
1987                 unsigned long size, grow;
1988
1989                 size = address - vma->vm_start;
1990                 grow = (address - vma->vm_end) >> PAGE_SHIFT;
1991
1992                 error = -ENOMEM;
1993                 if (vma->vm_pgoff + (size >> PAGE_SHIFT) >= vma->vm_pgoff) {
1994                         error = acct_stack_growth(vma, size, grow);
1995                         if (!error) {
1996                                 /*
1997                                  * We only hold a shared mmap_lock lock here, so
1998                                  * we need to protect against concurrent vma
1999                                  * expansions.  anon_vma_lock_write() doesn't
2000                                  * help here, as we don't guarantee that all
2001                                  * growable vmas in a mm share the same root
2002                                  * anon vma.  So, we reuse mm->page_table_lock
2003                                  * to guard against concurrent vma expansions.
2004                                  */
2005                                 spin_lock(&mm->page_table_lock);
2006                                 if (vma->vm_flags & VM_LOCKED)
2007                                         mm->locked_vm += grow;
2008                                 vm_stat_account(mm, vma->vm_flags, grow);
2009                                 anon_vma_interval_tree_pre_update_vma(vma);
2010                                 vma->vm_end = address;
2011                                 /* Overwrite old entry in mtree. */
2012                                 mas_store_prealloc(&mas, vma);
2013                                 anon_vma_interval_tree_post_update_vma(vma);
2014                                 spin_unlock(&mm->page_table_lock);
2015
2016                                 perf_event_mmap(vma);
2017                         }
2018                 }
2019         }
2020         anon_vma_unlock_write(vma->anon_vma);
2021         khugepaged_enter_vma(vma, vma->vm_flags);
2022         mas_destroy(&mas);
2023         validate_mm(mm);
2024         return error;
2025 }
2026 #endif /* CONFIG_STACK_GROWSUP || CONFIG_IA64 */
2027
2028 /*
2029  * vma is the first one with address < vma->vm_start.  Have to extend vma.
2030  * mmap_lock held for writing.
2031  */
2032 int expand_downwards(struct vm_area_struct *vma, unsigned long address)
2033 {
2034         struct mm_struct *mm = vma->vm_mm;
2035         MA_STATE(mas, &mm->mm_mt, vma->vm_start, vma->vm_start);
2036         struct vm_area_struct *prev;
2037         int error = 0;
2038
2039         if (!(vma->vm_flags & VM_GROWSDOWN))
2040                 return -EFAULT;
2041
2042         address &= PAGE_MASK;
2043         if (address < mmap_min_addr || address < FIRST_USER_ADDRESS)
2044                 return -EPERM;
2045
2046         /* Enforce stack_guard_gap */
2047         prev = mas_prev(&mas, 0);
2048         /* Check that both stack segments have the same anon_vma? */
2049         if (prev) {
2050                 if (!(prev->vm_flags & VM_GROWSDOWN) &&
2051                     vma_is_accessible(prev) &&
2052                     (address - prev->vm_end < stack_guard_gap))
2053                         return -ENOMEM;
2054         }
2055
2056         if (prev)
2057                 mas_next_range(&mas, vma->vm_start);
2058
2059         __mas_set_range(&mas, address, vma->vm_end - 1);
2060         if (mas_preallocate(&mas, vma, GFP_KERNEL))
2061                 return -ENOMEM;
2062
2063         /* We must make sure the anon_vma is allocated. */
2064         if (unlikely(anon_vma_prepare(vma))) {
2065                 mas_destroy(&mas);
2066                 return -ENOMEM;
2067         }
2068
2069         /* Lock the VMA before expanding to prevent concurrent page faults */
2070         vma_start_write(vma);
2071         /*
2072          * vma->vm_start/vm_end cannot change under us because the caller
2073          * is required to hold the mmap_lock in read mode.  We need the
2074          * anon_vma lock to serialize against concurrent expand_stacks.
2075          */
2076         anon_vma_lock_write(vma->anon_vma);
2077
2078         /* Somebody else might have raced and expanded it already */
2079         if (address < vma->vm_start) {
2080                 unsigned long size, grow;
2081
2082                 size = vma->vm_end - address;
2083                 grow = (vma->vm_start - address) >> PAGE_SHIFT;
2084
2085                 error = -ENOMEM;
2086                 if (grow <= vma->vm_pgoff) {
2087                         error = acct_stack_growth(vma, size, grow);
2088                         if (!error) {
2089                                 /*
2090                                  * We only hold a shared mmap_lock lock here, so
2091                                  * we need to protect against concurrent vma
2092                                  * expansions.  anon_vma_lock_write() doesn't
2093                                  * help here, as we don't guarantee that all
2094                                  * growable vmas in a mm share the same root
2095                                  * anon vma.  So, we reuse mm->page_table_lock
2096                                  * to guard against concurrent vma expansions.
2097                                  */
2098                                 spin_lock(&mm->page_table_lock);
2099                                 if (vma->vm_flags & VM_LOCKED)
2100                                         mm->locked_vm += grow;
2101                                 vm_stat_account(mm, vma->vm_flags, grow);
2102                                 anon_vma_interval_tree_pre_update_vma(vma);
2103                                 vma->vm_start = address;
2104                                 vma->vm_pgoff -= grow;
2105                                 /* Overwrite old entry in mtree. */
2106                                 mas_store_prealloc(&mas, vma);
2107                                 anon_vma_interval_tree_post_update_vma(vma);
2108                                 spin_unlock(&mm->page_table_lock);
2109
2110                                 perf_event_mmap(vma);
2111                         }
2112                 }
2113         }
2114         anon_vma_unlock_write(vma->anon_vma);
2115         khugepaged_enter_vma(vma, vma->vm_flags);
2116         mas_destroy(&mas);
2117         validate_mm(mm);
2118         return error;
2119 }
2120
2121 /* enforced gap between the expanding stack and other mappings. */
2122 unsigned long stack_guard_gap = 256UL<<PAGE_SHIFT;
2123
2124 static int __init cmdline_parse_stack_guard_gap(char *p)
2125 {
2126         unsigned long val;
2127         char *endptr;
2128
2129         val = simple_strtoul(p, &endptr, 10);
2130         if (!*endptr)
2131                 stack_guard_gap = val << PAGE_SHIFT;
2132
2133         return 1;
2134 }
2135 __setup("stack_guard_gap=", cmdline_parse_stack_guard_gap);
2136
2137 #ifdef CONFIG_STACK_GROWSUP
2138 int expand_stack_locked(struct vm_area_struct *vma, unsigned long address)
2139 {
2140         return expand_upwards(vma, address);
2141 }
2142
2143 struct vm_area_struct *find_extend_vma_locked(struct mm_struct *mm, unsigned long addr)
2144 {
2145         struct vm_area_struct *vma, *prev;
2146
2147         addr &= PAGE_MASK;
2148         vma = find_vma_prev(mm, addr, &prev);
2149         if (vma && (vma->vm_start <= addr))
2150                 return vma;
2151         if (!prev)
2152                 return NULL;
2153         if (expand_stack_locked(prev, addr))
2154                 return NULL;
2155         if (prev->vm_flags & VM_LOCKED)
2156                 populate_vma_page_range(prev, addr, prev->vm_end, NULL);
2157         return prev;
2158 }
2159 #else
2160 int expand_stack_locked(struct vm_area_struct *vma, unsigned long address)
2161 {
2162         if (unlikely(!(vma->vm_flags & VM_GROWSDOWN)))
2163                 return -EINVAL;
2164         return expand_downwards(vma, address);
2165 }
2166
2167 struct vm_area_struct *find_extend_vma_locked(struct mm_struct *mm, unsigned long addr)
2168 {
2169         struct vm_area_struct *vma;
2170         unsigned long start;
2171
2172         addr &= PAGE_MASK;
2173         vma = find_vma(mm, addr);
2174         if (!vma)
2175                 return NULL;
2176         if (vma->vm_start <= addr)
2177                 return vma;
2178         start = vma->vm_start;
2179         if (expand_stack_locked(vma, addr))
2180                 return NULL;
2181         if (vma->vm_flags & VM_LOCKED)
2182                 populate_vma_page_range(vma, addr, start, NULL);
2183         return vma;
2184 }
2185 #endif
2186
2187 /*
2188  * IA64 has some horrid mapping rules: it can expand both up and down,
2189  * but with various special rules.
2190  *
2191  * We'll get rid of this architecture eventually, so the ugliness is
2192  * temporary.
2193  */
2194 #ifdef CONFIG_IA64
2195 static inline bool vma_expand_ok(struct vm_area_struct *vma, unsigned long addr)
2196 {
2197         return REGION_NUMBER(addr) == REGION_NUMBER(vma->vm_start) &&
2198                 REGION_OFFSET(addr) < RGN_MAP_LIMIT;
2199 }
2200
2201 /*
2202  * IA64 stacks grow down, but there's a special register backing store
2203  * that can grow up. Only sequentially, though, so the new address must
2204  * match vm_end.
2205  */
2206 static inline int vma_expand_up(struct vm_area_struct *vma, unsigned long addr)
2207 {
2208         if (!vma_expand_ok(vma, addr))
2209                 return -EFAULT;
2210         if (vma->vm_end != (addr & PAGE_MASK))
2211                 return -EFAULT;
2212         return expand_upwards(vma, addr);
2213 }
2214
2215 static inline bool vma_expand_down(struct vm_area_struct *vma, unsigned long addr)
2216 {
2217         if (!vma_expand_ok(vma, addr))
2218                 return -EFAULT;
2219         return expand_downwards(vma, addr);
2220 }
2221
2222 #elif defined(CONFIG_STACK_GROWSUP)
2223
2224 #define vma_expand_up(vma,addr) expand_upwards(vma, addr)
2225 #define vma_expand_down(vma, addr) (-EFAULT)
2226
2227 #else
2228
2229 #define vma_expand_up(vma,addr) (-EFAULT)
2230 #define vma_expand_down(vma, addr) expand_downwards(vma, addr)
2231
2232 #endif
2233
2234 /*
2235  * expand_stack(): legacy interface for page faulting. Don't use unless
2236  * you have to.
2237  *
2238  * This is called with the mm locked for reading, drops the lock, takes
2239  * the lock for writing, tries to look up a vma again, expands it if
2240  * necessary, and downgrades the lock to reading again.
2241  *
2242  * If no vma is found or it can't be expanded, it returns NULL and has
2243  * dropped the lock.
2244  */
2245 struct vm_area_struct *expand_stack(struct mm_struct *mm, unsigned long addr)
2246 {
2247         struct vm_area_struct *vma, *prev;
2248
2249         mmap_read_unlock(mm);
2250         if (mmap_write_lock_killable(mm))
2251                 return NULL;
2252
2253         vma = find_vma_prev(mm, addr, &prev);
2254         if (vma && vma->vm_start <= addr)
2255                 goto success;
2256
2257         if (prev && !vma_expand_up(prev, addr)) {
2258                 vma = prev;
2259                 goto success;
2260         }
2261
2262         if (vma && !vma_expand_down(vma, addr))
2263                 goto success;
2264
2265         mmap_write_unlock(mm);
2266         return NULL;
2267
2268 success:
2269         mmap_write_downgrade(mm);
2270         return vma;
2271 }
2272
2273 /*
2274  * Ok - we have the memory areas we should free on a maple tree so release them,
2275  * and do the vma updates.
2276  *
2277  * Called with the mm semaphore held.
2278  */
2279 static inline void remove_mt(struct mm_struct *mm, struct ma_state *mas)
2280 {
2281         unsigned long nr_accounted = 0;
2282         struct vm_area_struct *vma;
2283
2284         /* Update high watermark before we lower total_vm */
2285         update_hiwater_vm(mm);
2286         mas_for_each(mas, vma, ULONG_MAX) {
2287                 long nrpages = vma_pages(vma);
2288
2289                 if (vma->vm_flags & VM_ACCOUNT)
2290                         nr_accounted += nrpages;
2291                 vm_stat_account(mm, vma->vm_flags, -nrpages);
2292                 remove_vma(vma, false);
2293         }
2294         vm_unacct_memory(nr_accounted);
2295 }
2296
2297 /*
2298  * Get rid of page table information in the indicated region.
2299  *
2300  * Called with the mm semaphore held.
2301  */
2302 static void unmap_region(struct mm_struct *mm, struct ma_state *mas,
2303                 struct vm_area_struct *vma, struct vm_area_struct *prev,
2304                 struct vm_area_struct *next, unsigned long start,
2305                 unsigned long end, unsigned long tree_end, bool mm_wr_locked)
2306 {
2307         struct mmu_gather tlb;
2308         unsigned long mt_start = mas->index;
2309
2310         lru_add_drain();
2311         tlb_gather_mmu(&tlb, mm);
2312         update_hiwater_rss(mm);
2313         unmap_vmas(&tlb, mas, vma, start, end, tree_end, mm_wr_locked);
2314         mas_set(mas, mt_start);
2315         free_pgtables(&tlb, mas, vma, prev ? prev->vm_end : FIRST_USER_ADDRESS,
2316                                  next ? next->vm_start : USER_PGTABLES_CEILING,
2317                                  mm_wr_locked);
2318         tlb_finish_mmu(&tlb);
2319 }
2320
2321 /*
2322  * __split_vma() bypasses sysctl_max_map_count checking.  We use this where it
2323  * has already been checked or doesn't make sense to fail.
2324  * VMA Iterator will point to the end VMA.
2325  */
2326 int __split_vma(struct vma_iterator *vmi, struct vm_area_struct *vma,
2327                 unsigned long addr, int new_below)
2328 {
2329         struct vma_prepare vp;
2330         struct vm_area_struct *new;
2331         int err;
2332
2333         WARN_ON(vma->vm_start >= addr);
2334         WARN_ON(vma->vm_end <= addr);
2335
2336         if (vma->vm_ops && vma->vm_ops->may_split) {
2337                 err = vma->vm_ops->may_split(vma, addr);
2338                 if (err)
2339                         return err;
2340         }
2341
2342         new = vm_area_dup(vma);
2343         if (!new)
2344                 return -ENOMEM;
2345
2346         if (new_below) {
2347                 new->vm_end = addr;
2348         } else {
2349                 new->vm_start = addr;
2350                 new->vm_pgoff += ((addr - vma->vm_start) >> PAGE_SHIFT);
2351         }
2352
2353         err = -ENOMEM;
2354         vma_iter_config(vmi, new->vm_start, new->vm_end);
2355         if (vma_iter_prealloc(vmi, new))
2356                 goto out_free_vma;
2357
2358         err = vma_dup_policy(vma, new);
2359         if (err)
2360                 goto out_free_vmi;
2361
2362         err = anon_vma_clone(new, vma);
2363         if (err)
2364                 goto out_free_mpol;
2365
2366         if (new->vm_file)
2367                 get_file(new->vm_file);
2368
2369         if (new->vm_ops && new->vm_ops->open)
2370                 new->vm_ops->open(new);
2371
2372         vma_start_write(vma);
2373         vma_start_write(new);
2374
2375         init_vma_prep(&vp, vma);
2376         vp.insert = new;
2377         vma_prepare(&vp);
2378         vma_adjust_trans_huge(vma, vma->vm_start, addr, 0);
2379
2380         if (new_below) {
2381                 vma->vm_start = addr;
2382                 vma->vm_pgoff += (addr - new->vm_start) >> PAGE_SHIFT;
2383         } else {
2384                 vma->vm_end = addr;
2385         }
2386
2387         /* vma_complete stores the new vma */
2388         vma_complete(&vp, vmi, vma->vm_mm);
2389
2390         /* Success. */
2391         if (new_below)
2392                 vma_next(vmi);
2393         return 0;
2394
2395 out_free_mpol:
2396         mpol_put(vma_policy(new));
2397 out_free_vmi:
2398         vma_iter_free(vmi);
2399 out_free_vma:
2400         vm_area_free(new);
2401         return err;
2402 }
2403
2404 /*
2405  * Split a vma into two pieces at address 'addr', a new vma is allocated
2406  * either for the first part or the tail.
2407  */
2408 int split_vma(struct vma_iterator *vmi, struct vm_area_struct *vma,
2409               unsigned long addr, int new_below)
2410 {
2411         if (vma->vm_mm->map_count >= sysctl_max_map_count)
2412                 return -ENOMEM;
2413
2414         return __split_vma(vmi, vma, addr, new_below);
2415 }
2416
2417 /*
2418  * do_vmi_align_munmap() - munmap the aligned region from @start to @end.
2419  * @vmi: The vma iterator
2420  * @vma: The starting vm_area_struct
2421  * @mm: The mm_struct
2422  * @start: The aligned start address to munmap.
2423  * @end: The aligned end address to munmap.
2424  * @uf: The userfaultfd list_head
2425  * @unlock: Set to true to drop the mmap_lock.  unlocking only happens on
2426  * success.
2427  *
2428  * Return: 0 on success and drops the lock if so directed, error and leaves the
2429  * lock held otherwise.
2430  */
2431 static int
2432 do_vmi_align_munmap(struct vma_iterator *vmi, struct vm_area_struct *vma,
2433                     struct mm_struct *mm, unsigned long start,
2434                     unsigned long end, struct list_head *uf, bool unlock)
2435 {
2436         struct vm_area_struct *prev, *next = NULL;
2437         struct maple_tree mt_detach;
2438         int count = 0;
2439         int error = -ENOMEM;
2440         unsigned long locked_vm = 0;
2441         MA_STATE(mas_detach, &mt_detach, 0, 0);
2442         mt_init_flags(&mt_detach, vmi->mas.tree->ma_flags & MT_FLAGS_LOCK_MASK);
2443         mt_on_stack(mt_detach);
2444
2445         /*
2446          * If we need to split any vma, do it now to save pain later.
2447          *
2448          * Note: mremap's move_vma VM_ACCOUNT handling assumes a partially
2449          * unmapped vm_area_struct will remain in use: so lower split_vma
2450          * places tmp vma above, and higher split_vma places tmp vma below.
2451          */
2452
2453         /* Does it split the first one? */
2454         if (start > vma->vm_start) {
2455
2456                 /*
2457                  * Make sure that map_count on return from munmap() will
2458                  * not exceed its limit; but let map_count go just above
2459                  * its limit temporarily, to help free resources as expected.
2460                  */
2461                 if (end < vma->vm_end && mm->map_count >= sysctl_max_map_count)
2462                         goto map_count_exceeded;
2463
2464                 error = __split_vma(vmi, vma, start, 1);
2465                 if (error)
2466                         goto start_split_failed;
2467         }
2468
2469         /*
2470          * Detach a range of VMAs from the mm. Using next as a temp variable as
2471          * it is always overwritten.
2472          */
2473         next = vma;
2474         do {
2475                 /* Does it split the end? */
2476                 if (next->vm_end > end) {
2477                         error = __split_vma(vmi, next, end, 0);
2478                         if (error)
2479                                 goto end_split_failed;
2480                 }
2481                 vma_start_write(next);
2482                 mas_set(&mas_detach, count);
2483                 error = mas_store_gfp(&mas_detach, next, GFP_KERNEL);
2484                 if (error)
2485                         goto munmap_gather_failed;
2486                 vma_mark_detached(next, true);
2487                 if (next->vm_flags & VM_LOCKED)
2488                         locked_vm += vma_pages(next);
2489
2490                 count++;
2491                 if (unlikely(uf)) {
2492                         /*
2493                          * If userfaultfd_unmap_prep returns an error the vmas
2494                          * will remain split, but userland will get a
2495                          * highly unexpected error anyway. This is no
2496                          * different than the case where the first of the two
2497                          * __split_vma fails, but we don't undo the first
2498                          * split, despite we could. This is unlikely enough
2499                          * failure that it's not worth optimizing it for.
2500                          */
2501                         error = userfaultfd_unmap_prep(next, start, end, uf);
2502
2503                         if (error)
2504                                 goto userfaultfd_error;
2505                 }
2506 #ifdef CONFIG_DEBUG_VM_MAPLE_TREE
2507                 BUG_ON(next->vm_start < start);
2508                 BUG_ON(next->vm_start > end);
2509 #endif
2510         } for_each_vma_range(*vmi, next, end);
2511
2512 #if defined(CONFIG_DEBUG_VM_MAPLE_TREE)
2513         /* Make sure no VMAs are about to be lost. */
2514         {
2515                 MA_STATE(test, &mt_detach, 0, 0);
2516                 struct vm_area_struct *vma_mas, *vma_test;
2517                 int test_count = 0;
2518
2519                 vma_iter_set(vmi, start);
2520                 rcu_read_lock();
2521                 vma_test = mas_find(&test, count - 1);
2522                 for_each_vma_range(*vmi, vma_mas, end) {
2523                         BUG_ON(vma_mas != vma_test);
2524                         test_count++;
2525                         vma_test = mas_next(&test, count - 1);
2526                 }
2527                 rcu_read_unlock();
2528                 BUG_ON(count != test_count);
2529         }
2530 #endif
2531
2532         while (vma_iter_addr(vmi) > start)
2533                 vma_iter_prev_range(vmi);
2534
2535         error = vma_iter_clear_gfp(vmi, start, end, GFP_KERNEL);
2536         if (error)
2537                 goto clear_tree_failed;
2538
2539         /* Point of no return */
2540         mm->locked_vm -= locked_vm;
2541         mm->map_count -= count;
2542         if (unlock)
2543                 mmap_write_downgrade(mm);
2544
2545         prev = vma_iter_prev_range(vmi);
2546         next = vma_next(vmi);
2547         if (next)
2548                 vma_iter_prev_range(vmi);
2549
2550         /*
2551          * We can free page tables without write-locking mmap_lock because VMAs
2552          * were isolated before we downgraded mmap_lock.
2553          */
2554         mas_set(&mas_detach, 1);
2555         unmap_region(mm, &mas_detach, vma, prev, next, start, end, count,
2556                      !unlock);
2557         /* Statistics and freeing VMAs */
2558         mas_set(&mas_detach, 0);
2559         remove_mt(mm, &mas_detach);
2560         validate_mm(mm);
2561         if (unlock)
2562                 mmap_read_unlock(mm);
2563
2564         __mt_destroy(&mt_detach);
2565         return 0;
2566
2567 clear_tree_failed:
2568 userfaultfd_error:
2569 munmap_gather_failed:
2570 end_split_failed:
2571         mas_set(&mas_detach, 0);
2572         mas_for_each(&mas_detach, next, end)
2573                 vma_mark_detached(next, false);
2574
2575         __mt_destroy(&mt_detach);
2576 start_split_failed:
2577 map_count_exceeded:
2578         validate_mm(mm);
2579         return error;
2580 }
2581
2582 /*
2583  * do_vmi_munmap() - munmap a given range.
2584  * @vmi: The vma iterator
2585  * @mm: The mm_struct
2586  * @start: The start address to munmap
2587  * @len: The length of the range to munmap
2588  * @uf: The userfaultfd list_head
2589  * @unlock: set to true if the user wants to drop the mmap_lock on success
2590  *
2591  * This function takes a @mas that is either pointing to the previous VMA or set
2592  * to MA_START and sets it up to remove the mapping(s).  The @len will be
2593  * aligned and any arch_unmap work will be preformed.
2594  *
2595  * Return: 0 on success and drops the lock if so directed, error and leaves the
2596  * lock held otherwise.
2597  */
2598 int do_vmi_munmap(struct vma_iterator *vmi, struct mm_struct *mm,
2599                   unsigned long start, size_t len, struct list_head *uf,
2600                   bool unlock)
2601 {
2602         unsigned long end;
2603         struct vm_area_struct *vma;
2604
2605         if ((offset_in_page(start)) || start > TASK_SIZE || len > TASK_SIZE-start)
2606                 return -EINVAL;
2607
2608         end = start + PAGE_ALIGN(len);
2609         if (end == start)
2610                 return -EINVAL;
2611
2612          /* arch_unmap() might do unmaps itself.  */
2613         arch_unmap(mm, start, end);
2614
2615         /* Find the first overlapping VMA */
2616         vma = vma_find(vmi, end);
2617         if (!vma) {
2618                 if (unlock)
2619                         mmap_write_unlock(mm);
2620                 return 0;
2621         }
2622
2623         return do_vmi_align_munmap(vmi, vma, mm, start, end, uf, unlock);
2624 }
2625
2626 /* do_munmap() - Wrapper function for non-maple tree aware do_munmap() calls.
2627  * @mm: The mm_struct
2628  * @start: The start address to munmap
2629  * @len: The length to be munmapped.
2630  * @uf: The userfaultfd list_head
2631  *
2632  * Return: 0 on success, error otherwise.
2633  */
2634 int do_munmap(struct mm_struct *mm, unsigned long start, size_t len,
2635               struct list_head *uf)
2636 {
2637         VMA_ITERATOR(vmi, mm, start);
2638
2639         return do_vmi_munmap(&vmi, mm, start, len, uf, false);
2640 }
2641
2642 unsigned long mmap_region(struct file *file, unsigned long addr,
2643                 unsigned long len, vm_flags_t vm_flags, unsigned long pgoff,
2644                 struct list_head *uf)
2645 {
2646         struct mm_struct *mm = current->mm;
2647         struct vm_area_struct *vma = NULL;
2648         struct vm_area_struct *next, *prev, *merge;
2649         pgoff_t pglen = len >> PAGE_SHIFT;
2650         unsigned long charged = 0;
2651         unsigned long end = addr + len;
2652         unsigned long merge_start = addr, merge_end = end;
2653         pgoff_t vm_pgoff;
2654         int error;
2655         VMA_ITERATOR(vmi, mm, addr);
2656
2657         /* Check against address space limit. */
2658         if (!may_expand_vm(mm, vm_flags, len >> PAGE_SHIFT)) {
2659                 unsigned long nr_pages;
2660
2661                 /*
2662                  * MAP_FIXED may remove pages of mappings that intersects with
2663                  * requested mapping. Account for the pages it would unmap.
2664                  */
2665                 nr_pages = count_vma_pages_range(mm, addr, end);
2666
2667                 if (!may_expand_vm(mm, vm_flags,
2668                                         (len >> PAGE_SHIFT) - nr_pages))
2669                         return -ENOMEM;
2670         }
2671
2672         /* Unmap any existing mapping in the area */
2673         if (do_vmi_munmap(&vmi, mm, addr, len, uf, false))
2674                 return -ENOMEM;
2675
2676         /*
2677          * Private writable mapping: check memory availability
2678          */
2679         if (accountable_mapping(file, vm_flags)) {
2680                 charged = len >> PAGE_SHIFT;
2681                 if (security_vm_enough_memory_mm(mm, charged))
2682                         return -ENOMEM;
2683                 vm_flags |= VM_ACCOUNT;
2684         }
2685
2686         next = vma_next(&vmi);
2687         prev = vma_prev(&vmi);
2688         if (vm_flags & VM_SPECIAL) {
2689                 if (prev)
2690                         vma_iter_next_range(&vmi);
2691                 goto cannot_expand;
2692         }
2693
2694         /* Attempt to expand an old mapping */
2695         /* Check next */
2696         if (next && next->vm_start == end && !vma_policy(next) &&
2697             can_vma_merge_before(next, vm_flags, NULL, file, pgoff+pglen,
2698                                  NULL_VM_UFFD_CTX, NULL)) {
2699                 merge_end = next->vm_end;
2700                 vma = next;
2701                 vm_pgoff = next->vm_pgoff - pglen;
2702         }
2703
2704         /* Check prev */
2705         if (prev && prev->vm_end == addr && !vma_policy(prev) &&
2706             (vma ? can_vma_merge_after(prev, vm_flags, vma->anon_vma, file,
2707                                        pgoff, vma->vm_userfaultfd_ctx, NULL) :
2708                    can_vma_merge_after(prev, vm_flags, NULL, file, pgoff,
2709                                        NULL_VM_UFFD_CTX, NULL))) {
2710                 merge_start = prev->vm_start;
2711                 vma = prev;
2712                 vm_pgoff = prev->vm_pgoff;
2713         } else if (prev) {
2714                 vma_iter_next_range(&vmi);
2715         }
2716
2717         /* Actually expand, if possible */
2718         if (vma &&
2719             !vma_expand(&vmi, vma, merge_start, merge_end, vm_pgoff, next)) {
2720                 khugepaged_enter_vma(vma, vm_flags);
2721                 goto expanded;
2722         }
2723
2724         if (vma == prev)
2725                 vma_iter_set(&vmi, addr);
2726 cannot_expand:
2727
2728         /*
2729          * Determine the object being mapped and call the appropriate
2730          * specific mapper. the address has already been validated, but
2731          * not unmapped, but the maps are removed from the list.
2732          */
2733         vma = vm_area_alloc(mm);
2734         if (!vma) {
2735                 error = -ENOMEM;
2736                 goto unacct_error;
2737         }
2738
2739         vma_iter_config(&vmi, addr, end);
2740         vma->vm_start = addr;
2741         vma->vm_end = end;
2742         vm_flags_init(vma, vm_flags);
2743         vma->vm_page_prot = vm_get_page_prot(vm_flags);
2744         vma->vm_pgoff = pgoff;
2745
2746         if (file) {
2747                 if (vm_flags & VM_SHARED) {
2748                         error = mapping_map_writable(file->f_mapping);
2749                         if (error)
2750                                 goto free_vma;
2751                 }
2752
2753                 vma->vm_file = get_file(file);
2754                 error = call_mmap(file, vma);
2755                 if (error)
2756                         goto unmap_and_free_vma;
2757
2758                 /*
2759                  * Expansion is handled above, merging is handled below.
2760                  * Drivers should not alter the address of the VMA.
2761                  */
2762                 error = -EINVAL;
2763                 if (WARN_ON((addr != vma->vm_start)))
2764                         goto close_and_free_vma;
2765
2766                 vma_iter_config(&vmi, addr, end);
2767                 /*
2768                  * If vm_flags changed after call_mmap(), we should try merge
2769                  * vma again as we may succeed this time.
2770                  */
2771                 if (unlikely(vm_flags != vma->vm_flags && prev)) {
2772                         merge = vma_merge(&vmi, mm, prev, vma->vm_start,
2773                                     vma->vm_end, vma->vm_flags, NULL,
2774                                     vma->vm_file, vma->vm_pgoff, NULL,
2775                                     NULL_VM_UFFD_CTX, NULL);
2776                         if (merge) {
2777                                 /*
2778                                  * ->mmap() can change vma->vm_file and fput
2779                                  * the original file. So fput the vma->vm_file
2780                                  * here or we would add an extra fput for file
2781                                  * and cause general protection fault
2782                                  * ultimately.
2783                                  */
2784                                 fput(vma->vm_file);
2785                                 vm_area_free(vma);
2786                                 vma = merge;
2787                                 /* Update vm_flags to pick up the change. */
2788                                 vm_flags = vma->vm_flags;
2789                                 goto unmap_writable;
2790                         }
2791                 }
2792
2793                 vm_flags = vma->vm_flags;
2794         } else if (vm_flags & VM_SHARED) {
2795                 error = shmem_zero_setup(vma);
2796                 if (error)
2797                         goto free_vma;
2798         } else {
2799                 vma_set_anonymous(vma);
2800         }
2801
2802         if (map_deny_write_exec(vma, vma->vm_flags)) {
2803                 error = -EACCES;
2804                 goto close_and_free_vma;
2805         }
2806
2807         /* Allow architectures to sanity-check the vm_flags */
2808         error = -EINVAL;
2809         if (!arch_validate_flags(vma->vm_flags))
2810                 goto close_and_free_vma;
2811
2812         error = -ENOMEM;
2813         if (vma_iter_prealloc(&vmi, vma))
2814                 goto close_and_free_vma;
2815
2816         /* Lock the VMA since it is modified after insertion into VMA tree */
2817         vma_start_write(vma);
2818         vma_iter_store(&vmi, vma);
2819         mm->map_count++;
2820         if (vma->vm_file) {
2821                 i_mmap_lock_write(vma->vm_file->f_mapping);
2822                 if (vma->vm_flags & VM_SHARED)
2823                         mapping_allow_writable(vma->vm_file->f_mapping);
2824
2825                 flush_dcache_mmap_lock(vma->vm_file->f_mapping);
2826                 vma_interval_tree_insert(vma, &vma->vm_file->f_mapping->i_mmap);
2827                 flush_dcache_mmap_unlock(vma->vm_file->f_mapping);
2828                 i_mmap_unlock_write(vma->vm_file->f_mapping);
2829         }
2830
2831         /*
2832          * vma_merge() calls khugepaged_enter_vma() either, the below
2833          * call covers the non-merge case.
2834          */
2835         khugepaged_enter_vma(vma, vma->vm_flags);
2836
2837         /* Once vma denies write, undo our temporary denial count */
2838 unmap_writable:
2839         if (file && vm_flags & VM_SHARED)
2840                 mapping_unmap_writable(file->f_mapping);
2841         file = vma->vm_file;
2842         ksm_add_vma(vma);
2843 expanded:
2844         perf_event_mmap(vma);
2845
2846         vm_stat_account(mm, vm_flags, len >> PAGE_SHIFT);
2847         if (vm_flags & VM_LOCKED) {
2848                 if ((vm_flags & VM_SPECIAL) || vma_is_dax(vma) ||
2849                                         is_vm_hugetlb_page(vma) ||
2850                                         vma == get_gate_vma(current->mm))
2851                         vm_flags_clear(vma, VM_LOCKED_MASK);
2852                 else
2853                         mm->locked_vm += (len >> PAGE_SHIFT);
2854         }
2855
2856         if (file)
2857                 uprobe_mmap(vma);
2858
2859         /*
2860          * New (or expanded) vma always get soft dirty status.
2861          * Otherwise user-space soft-dirty page tracker won't
2862          * be able to distinguish situation when vma area unmapped,
2863          * then new mapped in-place (which must be aimed as
2864          * a completely new data area).
2865          */
2866         vm_flags_set(vma, VM_SOFTDIRTY);
2867
2868         vma_set_page_prot(vma);
2869
2870         validate_mm(mm);
2871         return addr;
2872
2873 close_and_free_vma:
2874         if (file && vma->vm_ops && vma->vm_ops->close)
2875                 vma->vm_ops->close(vma);
2876
2877         if (file || vma->vm_file) {
2878 unmap_and_free_vma:
2879                 fput(vma->vm_file);
2880                 vma->vm_file = NULL;
2881
2882                 vma_iter_set(&vmi, vma->vm_end);
2883                 /* Undo any partial mapping done by a device driver. */
2884                 unmap_region(mm, &vmi.mas, vma, prev, next, vma->vm_start,
2885                              vma->vm_end, vma->vm_end, true);
2886         }
2887         if (file && (vm_flags & VM_SHARED))
2888                 mapping_unmap_writable(file->f_mapping);
2889 free_vma:
2890         vm_area_free(vma);
2891 unacct_error:
2892         if (charged)
2893                 vm_unacct_memory(charged);
2894         validate_mm(mm);
2895         return error;
2896 }
2897
2898 static int __vm_munmap(unsigned long start, size_t len, bool unlock)
2899 {
2900         int ret;
2901         struct mm_struct *mm = current->mm;
2902         LIST_HEAD(uf);
2903         VMA_ITERATOR(vmi, mm, start);
2904
2905         if (mmap_write_lock_killable(mm))
2906                 return -EINTR;
2907
2908         ret = do_vmi_munmap(&vmi, mm, start, len, &uf, unlock);
2909         if (ret || !unlock)
2910                 mmap_write_unlock(mm);
2911
2912         userfaultfd_unmap_complete(mm, &uf);
2913         return ret;
2914 }
2915
2916 int vm_munmap(unsigned long start, size_t len)
2917 {
2918         return __vm_munmap(start, len, false);
2919 }
2920 EXPORT_SYMBOL(vm_munmap);
2921
2922 SYSCALL_DEFINE2(munmap, unsigned long, addr, size_t, len)
2923 {
2924         addr = untagged_addr(addr);
2925         return __vm_munmap(addr, len, true);
2926 }
2927
2928
2929 /*
2930  * Emulation of deprecated remap_file_pages() syscall.
2931  */
2932 SYSCALL_DEFINE5(remap_file_pages, unsigned long, start, unsigned long, size,
2933                 unsigned long, prot, unsigned long, pgoff, unsigned long, flags)
2934 {
2935
2936         struct mm_struct *mm = current->mm;
2937         struct vm_area_struct *vma;
2938         unsigned long populate = 0;
2939         unsigned long ret = -EINVAL;
2940         struct file *file;
2941
2942         pr_warn_once("%s (%d) uses deprecated remap_file_pages() syscall. See Documentation/mm/remap_file_pages.rst.\n",
2943                      current->comm, current->pid);
2944
2945         if (prot)
2946                 return ret;
2947         start = start & PAGE_MASK;
2948         size = size & PAGE_MASK;
2949
2950         if (start + size <= start)
2951                 return ret;
2952
2953         /* Does pgoff wrap? */
2954         if (pgoff + (size >> PAGE_SHIFT) < pgoff)
2955                 return ret;
2956
2957         if (mmap_write_lock_killable(mm))
2958                 return -EINTR;
2959
2960         vma = vma_lookup(mm, start);
2961
2962         if (!vma || !(vma->vm_flags & VM_SHARED))
2963                 goto out;
2964
2965         if (start + size > vma->vm_end) {
2966                 VMA_ITERATOR(vmi, mm, vma->vm_end);
2967                 struct vm_area_struct *next, *prev = vma;
2968
2969                 for_each_vma_range(vmi, next, start + size) {
2970                         /* hole between vmas ? */
2971                         if (next->vm_start != prev->vm_end)
2972                                 goto out;
2973
2974                         if (next->vm_file != vma->vm_file)
2975                                 goto out;
2976
2977                         if (next->vm_flags != vma->vm_flags)
2978                                 goto out;
2979
2980                         if (start + size <= next->vm_end)
2981                                 break;
2982
2983                         prev = next;
2984                 }
2985
2986                 if (!next)
2987                         goto out;
2988         }
2989
2990         prot |= vma->vm_flags & VM_READ ? PROT_READ : 0;
2991         prot |= vma->vm_flags & VM_WRITE ? PROT_WRITE : 0;
2992         prot |= vma->vm_flags & VM_EXEC ? PROT_EXEC : 0;
2993
2994         flags &= MAP_NONBLOCK;
2995         flags |= MAP_SHARED | MAP_FIXED | MAP_POPULATE;
2996         if (vma->vm_flags & VM_LOCKED)
2997                 flags |= MAP_LOCKED;
2998
2999         file = get_file(vma->vm_file);
3000         ret = do_mmap(vma->vm_file, start, size,
3001                         prot, flags, 0, pgoff, &populate, NULL);
3002         fput(file);
3003 out:
3004         mmap_write_unlock(mm);
3005         if (populate)
3006                 mm_populate(ret, populate);
3007         if (!IS_ERR_VALUE(ret))
3008                 ret = 0;
3009         return ret;
3010 }
3011
3012 /*
3013  * do_vma_munmap() - Unmap a full or partial vma.
3014  * @vmi: The vma iterator pointing at the vma
3015  * @vma: The first vma to be munmapped
3016  * @start: the start of the address to unmap
3017  * @end: The end of the address to unmap
3018  * @uf: The userfaultfd list_head
3019  * @unlock: Drop the lock on success
3020  *
3021  * unmaps a VMA mapping when the vma iterator is already in position.
3022  * Does not handle alignment.
3023  *
3024  * Return: 0 on success drops the lock of so directed, error on failure and will
3025  * still hold the lock.
3026  */
3027 int do_vma_munmap(struct vma_iterator *vmi, struct vm_area_struct *vma,
3028                 unsigned long start, unsigned long end, struct list_head *uf,
3029                 bool unlock)
3030 {
3031         struct mm_struct *mm = vma->vm_mm;
3032
3033         arch_unmap(mm, start, end);
3034         return do_vmi_align_munmap(vmi, vma, mm, start, end, uf, unlock);
3035 }
3036
3037 /*
3038  * do_brk_flags() - Increase the brk vma if the flags match.
3039  * @vmi: The vma iterator
3040  * @addr: The start address
3041  * @len: The length of the increase
3042  * @vma: The vma,
3043  * @flags: The VMA Flags
3044  *
3045  * Extend the brk VMA from addr to addr + len.  If the VMA is NULL or the flags
3046  * do not match then create a new anonymous VMA.  Eventually we may be able to
3047  * do some brk-specific accounting here.
3048  */
3049 static int do_brk_flags(struct vma_iterator *vmi, struct vm_area_struct *vma,
3050                 unsigned long addr, unsigned long len, unsigned long flags)
3051 {
3052         struct mm_struct *mm = current->mm;
3053         struct vma_prepare vp;
3054
3055         /*
3056          * Check against address space limits by the changed size
3057          * Note: This happens *after* clearing old mappings in some code paths.
3058          */
3059         flags |= VM_DATA_DEFAULT_FLAGS | VM_ACCOUNT | mm->def_flags;
3060         if (!may_expand_vm(mm, flags, len >> PAGE_SHIFT))
3061                 return -ENOMEM;
3062
3063         if (mm->map_count > sysctl_max_map_count)
3064                 return -ENOMEM;
3065
3066         if (security_vm_enough_memory_mm(mm, len >> PAGE_SHIFT))
3067                 return -ENOMEM;
3068
3069         /*
3070          * Expand the existing vma if possible; Note that singular lists do not
3071          * occur after forking, so the expand will only happen on new VMAs.
3072          */
3073         if (vma && vma->vm_end == addr && !vma_policy(vma) &&
3074             can_vma_merge_after(vma, flags, NULL, NULL,
3075                                 addr >> PAGE_SHIFT, NULL_VM_UFFD_CTX, NULL)) {
3076                 vma_iter_config(vmi, vma->vm_start, addr + len);
3077                 if (vma_iter_prealloc(vmi, vma))
3078                         goto unacct_fail;
3079
3080                 vma_start_write(vma);
3081
3082                 init_vma_prep(&vp, vma);
3083                 vma_prepare(&vp);
3084                 vma_adjust_trans_huge(vma, vma->vm_start, addr + len, 0);
3085                 vma->vm_end = addr + len;
3086                 vm_flags_set(vma, VM_SOFTDIRTY);
3087                 vma_iter_store(vmi, vma);
3088
3089                 vma_complete(&vp, vmi, mm);
3090                 khugepaged_enter_vma(vma, flags);
3091                 goto out;
3092         }
3093
3094         if (vma)
3095                 vma_iter_next_range(vmi);
3096         /* create a vma struct for an anonymous mapping */
3097         vma = vm_area_alloc(mm);
3098         if (!vma)
3099                 goto unacct_fail;
3100
3101         vma_set_anonymous(vma);
3102         vma->vm_start = addr;
3103         vma->vm_end = addr + len;
3104         vma->vm_pgoff = addr >> PAGE_SHIFT;
3105         vm_flags_init(vma, flags);
3106         vma->vm_page_prot = vm_get_page_prot(flags);
3107         vma_start_write(vma);
3108         if (vma_iter_store_gfp(vmi, vma, GFP_KERNEL))
3109                 goto mas_store_fail;
3110
3111         mm->map_count++;
3112         validate_mm(mm);
3113         ksm_add_vma(vma);
3114 out:
3115         perf_event_mmap(vma);
3116         mm->total_vm += len >> PAGE_SHIFT;
3117         mm->data_vm += len >> PAGE_SHIFT;
3118         if (flags & VM_LOCKED)
3119                 mm->locked_vm += (len >> PAGE_SHIFT);
3120         vm_flags_set(vma, VM_SOFTDIRTY);
3121         return 0;
3122
3123 mas_store_fail:
3124         vm_area_free(vma);
3125 unacct_fail:
3126         vm_unacct_memory(len >> PAGE_SHIFT);
3127         return -ENOMEM;
3128 }
3129
3130 int vm_brk_flags(unsigned long addr, unsigned long request, unsigned long flags)
3131 {
3132         struct mm_struct *mm = current->mm;
3133         struct vm_area_struct *vma = NULL;
3134         unsigned long len;
3135         int ret;
3136         bool populate;
3137         LIST_HEAD(uf);
3138         VMA_ITERATOR(vmi, mm, addr);
3139
3140         len = PAGE_ALIGN(request);
3141         if (len < request)
3142                 return -ENOMEM;
3143         if (!len)
3144                 return 0;
3145
3146         if (mmap_write_lock_killable(mm))
3147                 return -EINTR;
3148
3149         /* Until we need other flags, refuse anything except VM_EXEC. */
3150         if ((flags & (~VM_EXEC)) != 0)
3151                 return -EINVAL;
3152
3153         ret = check_brk_limits(addr, len);
3154         if (ret)
3155                 goto limits_failed;
3156
3157         ret = do_vmi_munmap(&vmi, mm, addr, len, &uf, 0);
3158         if (ret)
3159                 goto munmap_failed;
3160
3161         vma = vma_prev(&vmi);
3162         ret = do_brk_flags(&vmi, vma, addr, len, flags);
3163         populate = ((mm->def_flags & VM_LOCKED) != 0);
3164         mmap_write_unlock(mm);
3165         userfaultfd_unmap_complete(mm, &uf);
3166         if (populate && !ret)
3167                 mm_populate(addr, len);
3168         return ret;
3169
3170 munmap_failed:
3171 limits_failed:
3172         mmap_write_unlock(mm);
3173         return ret;
3174 }
3175 EXPORT_SYMBOL(vm_brk_flags);
3176
3177 int vm_brk(unsigned long addr, unsigned long len)
3178 {
3179         return vm_brk_flags(addr, len, 0);
3180 }
3181 EXPORT_SYMBOL(vm_brk);
3182
3183 /* Release all mmaps. */
3184 void exit_mmap(struct mm_struct *mm)
3185 {
3186         struct mmu_gather tlb;
3187         struct vm_area_struct *vma;
3188         unsigned long nr_accounted = 0;
3189         MA_STATE(mas, &mm->mm_mt, 0, 0);
3190         int count = 0;
3191
3192         /* mm's last user has gone, and its about to be pulled down */
3193         mmu_notifier_release(mm);
3194
3195         mmap_read_lock(mm);
3196         arch_exit_mmap(mm);
3197
3198         vma = mas_find(&mas, ULONG_MAX);
3199         if (!vma) {
3200                 /* Can happen if dup_mmap() received an OOM */
3201                 mmap_read_unlock(mm);
3202                 return;
3203         }
3204
3205         lru_add_drain();
3206         flush_cache_mm(mm);
3207         tlb_gather_mmu_fullmm(&tlb, mm);
3208         /* update_hiwater_rss(mm) here? but nobody should be looking */
3209         /* Use ULONG_MAX here to ensure all VMAs in the mm are unmapped */
3210         unmap_vmas(&tlb, &mas, vma, 0, ULONG_MAX, ULONG_MAX, false);
3211         mmap_read_unlock(mm);
3212
3213         /*
3214          * Set MMF_OOM_SKIP to hide this task from the oom killer/reaper
3215          * because the memory has been already freed.
3216          */
3217         set_bit(MMF_OOM_SKIP, &mm->flags);
3218         mmap_write_lock(mm);
3219         mt_clear_in_rcu(&mm->mm_mt);
3220         mas_set(&mas, vma->vm_end);
3221         free_pgtables(&tlb, &mas, vma, FIRST_USER_ADDRESS,
3222                       USER_PGTABLES_CEILING, true);
3223         tlb_finish_mmu(&tlb);
3224
3225         /*
3226          * Walk the list again, actually closing and freeing it, with preemption
3227          * enabled, without holding any MM locks besides the unreachable
3228          * mmap_write_lock.
3229          */
3230         mas_set(&mas, vma->vm_end);
3231         do {
3232                 if (vma->vm_flags & VM_ACCOUNT)
3233                         nr_accounted += vma_pages(vma);
3234                 remove_vma(vma, true);
3235                 count++;
3236                 cond_resched();
3237         } while ((vma = mas_find(&mas, ULONG_MAX)) != NULL);
3238
3239         BUG_ON(count != mm->map_count);
3240
3241         trace_exit_mmap(mm);
3242         __mt_destroy(&mm->mm_mt);
3243         mmap_write_unlock(mm);
3244         vm_unacct_memory(nr_accounted);
3245 }
3246
3247 /* Insert vm structure into process list sorted by address
3248  * and into the inode's i_mmap tree.  If vm_file is non-NULL
3249  * then i_mmap_rwsem is taken here.
3250  */
3251 int insert_vm_struct(struct mm_struct *mm, struct vm_area_struct *vma)
3252 {
3253         unsigned long charged = vma_pages(vma);
3254
3255
3256         if (find_vma_intersection(mm, vma->vm_start, vma->vm_end))
3257                 return -ENOMEM;
3258
3259         if ((vma->vm_flags & VM_ACCOUNT) &&
3260              security_vm_enough_memory_mm(mm, charged))
3261                 return -ENOMEM;
3262
3263         /*
3264          * The vm_pgoff of a purely anonymous vma should be irrelevant
3265          * until its first write fault, when page's anon_vma and index
3266          * are set.  But now set the vm_pgoff it will almost certainly
3267          * end up with (unless mremap moves it elsewhere before that
3268          * first wfault), so /proc/pid/maps tells a consistent story.
3269          *
3270          * By setting it to reflect the virtual start address of the
3271          * vma, merges and splits can happen in a seamless way, just
3272          * using the existing file pgoff checks and manipulations.
3273          * Similarly in do_mmap and in do_brk_flags.
3274          */
3275         if (vma_is_anonymous(vma)) {
3276                 BUG_ON(vma->anon_vma);
3277                 vma->vm_pgoff = vma->vm_start >> PAGE_SHIFT;
3278         }
3279
3280         if (vma_link(mm, vma)) {
3281                 vm_unacct_memory(charged);
3282                 return -ENOMEM;
3283         }
3284
3285         return 0;
3286 }
3287
3288 /*
3289  * Copy the vma structure to a new location in the same mm,
3290  * prior to moving page table entries, to effect an mremap move.
3291  */
3292 struct vm_area_struct *copy_vma(struct vm_area_struct **vmap,
3293         unsigned long addr, unsigned long len, pgoff_t pgoff,
3294         bool *need_rmap_locks)
3295 {
3296         struct vm_area_struct *vma = *vmap;
3297         unsigned long vma_start = vma->vm_start;
3298         struct mm_struct *mm = vma->vm_mm;
3299         struct vm_area_struct *new_vma, *prev;
3300         bool faulted_in_anon_vma = true;
3301         VMA_ITERATOR(vmi, mm, addr);
3302
3303         /*
3304          * If anonymous vma has not yet been faulted, update new pgoff
3305          * to match new location, to increase its chance of merging.
3306          */
3307         if (unlikely(vma_is_anonymous(vma) && !vma->anon_vma)) {
3308                 pgoff = addr >> PAGE_SHIFT;
3309                 faulted_in_anon_vma = false;
3310         }
3311
3312         new_vma = find_vma_prev(mm, addr, &prev);
3313         if (new_vma && new_vma->vm_start < addr + len)
3314                 return NULL;    /* should never get here */
3315
3316         new_vma = vma_merge(&vmi, mm, prev, addr, addr + len, vma->vm_flags,
3317                             vma->anon_vma, vma->vm_file, pgoff, vma_policy(vma),
3318                             vma->vm_userfaultfd_ctx, anon_vma_name(vma));
3319         if (new_vma) {
3320                 /*
3321                  * Source vma may have been merged into new_vma
3322                  */
3323                 if (unlikely(vma_start >= new_vma->vm_start &&
3324                              vma_start < new_vma->vm_end)) {
3325                         /*
3326                          * The only way we can get a vma_merge with
3327                          * self during an mremap is if the vma hasn't
3328                          * been faulted in yet and we were allowed to
3329                          * reset the dst vma->vm_pgoff to the
3330                          * destination address of the mremap to allow
3331                          * the merge to happen. mremap must change the
3332                          * vm_pgoff linearity between src and dst vmas
3333                          * (in turn preventing a vma_merge) to be
3334                          * safe. It is only safe to keep the vm_pgoff
3335                          * linear if there are no pages mapped yet.
3336                          */
3337                         VM_BUG_ON_VMA(faulted_in_anon_vma, new_vma);
3338                         *vmap = vma = new_vma;
3339                 }
3340                 *need_rmap_locks = (new_vma->vm_pgoff <= vma->vm_pgoff);
3341         } else {
3342                 new_vma = vm_area_dup(vma);
3343                 if (!new_vma)
3344                         goto out;
3345                 new_vma->vm_start = addr;
3346                 new_vma->vm_end = addr + len;
3347                 new_vma->vm_pgoff = pgoff;
3348                 if (vma_dup_policy(vma, new_vma))
3349                         goto out_free_vma;
3350                 if (anon_vma_clone(new_vma, vma))
3351                         goto out_free_mempol;
3352                 if (new_vma->vm_file)
3353                         get_file(new_vma->vm_file);
3354                 if (new_vma->vm_ops && new_vma->vm_ops->open)
3355                         new_vma->vm_ops->open(new_vma);
3356                 if (vma_link(mm, new_vma))
3357                         goto out_vma_link;
3358                 *need_rmap_locks = false;
3359         }
3360         return new_vma;
3361
3362 out_vma_link:
3363         if (new_vma->vm_ops && new_vma->vm_ops->close)
3364                 new_vma->vm_ops->close(new_vma);
3365
3366         if (new_vma->vm_file)
3367                 fput(new_vma->vm_file);
3368
3369         unlink_anon_vmas(new_vma);
3370 out_free_mempol:
3371         mpol_put(vma_policy(new_vma));
3372 out_free_vma:
3373         vm_area_free(new_vma);
3374 out:
3375         return NULL;
3376 }
3377
3378 /*
3379  * Return true if the calling process may expand its vm space by the passed
3380  * number of pages
3381  */
3382 bool may_expand_vm(struct mm_struct *mm, vm_flags_t flags, unsigned long npages)
3383 {
3384         if (mm->total_vm + npages > rlimit(RLIMIT_AS) >> PAGE_SHIFT)
3385                 return false;
3386
3387         if (is_data_mapping(flags) &&
3388             mm->data_vm + npages > rlimit(RLIMIT_DATA) >> PAGE_SHIFT) {
3389                 /* Workaround for Valgrind */
3390                 if (rlimit(RLIMIT_DATA) == 0 &&
3391                     mm->data_vm + npages <= rlimit_max(RLIMIT_DATA) >> PAGE_SHIFT)
3392                         return true;
3393
3394                 pr_warn_once("%s (%d): VmData %lu exceed data ulimit %lu. Update limits%s.\n",
3395                              current->comm, current->pid,
3396                              (mm->data_vm + npages) << PAGE_SHIFT,
3397                              rlimit(RLIMIT_DATA),
3398                              ignore_rlimit_data ? "" : " or use boot option ignore_rlimit_data");
3399
3400                 if (!ignore_rlimit_data)
3401                         return false;
3402         }
3403
3404         return true;
3405 }
3406
3407 void vm_stat_account(struct mm_struct *mm, vm_flags_t flags, long npages)
3408 {
3409         WRITE_ONCE(mm->total_vm, READ_ONCE(mm->total_vm)+npages);
3410
3411         if (is_exec_mapping(flags))
3412                 mm->exec_vm += npages;
3413         else if (is_stack_mapping(flags))
3414                 mm->stack_vm += npages;
3415         else if (is_data_mapping(flags))
3416                 mm->data_vm += npages;
3417 }
3418
3419 static vm_fault_t special_mapping_fault(struct vm_fault *vmf);
3420
3421 /*
3422  * Having a close hook prevents vma merging regardless of flags.
3423  */
3424 static void special_mapping_close(struct vm_area_struct *vma)
3425 {
3426 }
3427
3428 static const char *special_mapping_name(struct vm_area_struct *vma)
3429 {
3430         return ((struct vm_special_mapping *)vma->vm_private_data)->name;
3431 }
3432
3433 static int special_mapping_mremap(struct vm_area_struct *new_vma)
3434 {
3435         struct vm_special_mapping *sm = new_vma->vm_private_data;
3436
3437         if (WARN_ON_ONCE(current->mm != new_vma->vm_mm))
3438                 return -EFAULT;
3439
3440         if (sm->mremap)
3441                 return sm->mremap(sm, new_vma);
3442
3443         return 0;
3444 }
3445
3446 static int special_mapping_split(struct vm_area_struct *vma, unsigned long addr)
3447 {
3448         /*
3449          * Forbid splitting special mappings - kernel has expectations over
3450          * the number of pages in mapping. Together with VM_DONTEXPAND
3451          * the size of vma should stay the same over the special mapping's
3452          * lifetime.
3453          */
3454         return -EINVAL;
3455 }
3456
3457 static const struct vm_operations_struct special_mapping_vmops = {
3458         .close = special_mapping_close,
3459         .fault = special_mapping_fault,
3460         .mremap = special_mapping_mremap,
3461         .name = special_mapping_name,
3462         /* vDSO code relies that VVAR can't be accessed remotely */
3463         .access = NULL,
3464         .may_split = special_mapping_split,
3465 };
3466
3467 static const struct vm_operations_struct legacy_special_mapping_vmops = {
3468         .close = special_mapping_close,
3469         .fault = special_mapping_fault,
3470 };
3471
3472 static vm_fault_t special_mapping_fault(struct vm_fault *vmf)
3473 {
3474         struct vm_area_struct *vma = vmf->vma;
3475         pgoff_t pgoff;
3476         struct page **pages;
3477
3478         if (vma->vm_ops == &legacy_special_mapping_vmops) {
3479                 pages = vma->vm_private_data;
3480         } else {
3481                 struct vm_special_mapping *sm = vma->vm_private_data;
3482
3483                 if (sm->fault)
3484                         return sm->fault(sm, vmf->vma, vmf);
3485
3486                 pages = sm->pages;
3487         }
3488
3489         for (pgoff = vmf->pgoff; pgoff && *pages; ++pages)
3490                 pgoff--;
3491
3492         if (*pages) {
3493                 struct page *page = *pages;
3494                 get_page(page);
3495                 vmf->page = page;
3496                 return 0;
3497         }
3498
3499         return VM_FAULT_SIGBUS;
3500 }
3501
3502 static struct vm_area_struct *__install_special_mapping(
3503         struct mm_struct *mm,
3504         unsigned long addr, unsigned long len,
3505         unsigned long vm_flags, void *priv,
3506         const struct vm_operations_struct *ops)
3507 {
3508         int ret;
3509         struct vm_area_struct *vma;
3510
3511         vma = vm_area_alloc(mm);
3512         if (unlikely(vma == NULL))
3513                 return ERR_PTR(-ENOMEM);
3514
3515         vma->vm_start = addr;
3516         vma->vm_end = addr + len;
3517
3518         vm_flags_init(vma, (vm_flags | mm->def_flags |
3519                       VM_DONTEXPAND | VM_SOFTDIRTY) & ~VM_LOCKED_MASK);
3520         vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
3521
3522         vma->vm_ops = ops;
3523         vma->vm_private_data = priv;
3524
3525         ret = insert_vm_struct(mm, vma);
3526         if (ret)
3527                 goto out;
3528
3529         vm_stat_account(mm, vma->vm_flags, len >> PAGE_SHIFT);
3530
3531         perf_event_mmap(vma);
3532
3533         return vma;
3534
3535 out:
3536         vm_area_free(vma);
3537         return ERR_PTR(ret);
3538 }
3539
3540 bool vma_is_special_mapping(const struct vm_area_struct *vma,
3541         const struct vm_special_mapping *sm)
3542 {
3543         return vma->vm_private_data == sm &&
3544                 (vma->vm_ops == &special_mapping_vmops ||
3545                  vma->vm_ops == &legacy_special_mapping_vmops);
3546 }
3547
3548 /*
3549  * Called with mm->mmap_lock held for writing.
3550  * Insert a new vma covering the given region, with the given flags.
3551  * Its pages are supplied by the given array of struct page *.
3552  * The array can be shorter than len >> PAGE_SHIFT if it's null-terminated.
3553  * The region past the last page supplied will always produce SIGBUS.
3554  * The array pointer and the pages it points to are assumed to stay alive
3555  * for as long as this mapping might exist.
3556  */
3557 struct vm_area_struct *_install_special_mapping(
3558         struct mm_struct *mm,
3559         unsigned long addr, unsigned long len,
3560         unsigned long vm_flags, const struct vm_special_mapping *spec)
3561 {
3562         return __install_special_mapping(mm, addr, len, vm_flags, (void *)spec,
3563                                         &special_mapping_vmops);
3564 }
3565
3566 int install_special_mapping(struct mm_struct *mm,
3567                             unsigned long addr, unsigned long len,
3568                             unsigned long vm_flags, struct page **pages)
3569 {
3570         struct vm_area_struct *vma = __install_special_mapping(
3571                 mm, addr, len, vm_flags, (void *)pages,
3572                 &legacy_special_mapping_vmops);
3573
3574         return PTR_ERR_OR_ZERO(vma);
3575 }
3576
3577 static DEFINE_MUTEX(mm_all_locks_mutex);
3578
3579 static void vm_lock_anon_vma(struct mm_struct *mm, struct anon_vma *anon_vma)
3580 {
3581         if (!test_bit(0, (unsigned long *) &anon_vma->root->rb_root.rb_root.rb_node)) {
3582                 /*
3583                  * The LSB of head.next can't change from under us
3584                  * because we hold the mm_all_locks_mutex.
3585                  */
3586                 down_write_nest_lock(&anon_vma->root->rwsem, &mm->mmap_lock);
3587                 /*
3588                  * We can safely modify head.next after taking the
3589                  * anon_vma->root->rwsem. If some other vma in this mm shares
3590                  * the same anon_vma we won't take it again.
3591                  *
3592                  * No need of atomic instructions here, head.next
3593                  * can't change from under us thanks to the
3594                  * anon_vma->root->rwsem.
3595                  */
3596                 if (__test_and_set_bit(0, (unsigned long *)
3597                                        &anon_vma->root->rb_root.rb_root.rb_node))
3598                         BUG();
3599         }
3600 }
3601
3602 static void vm_lock_mapping(struct mm_struct *mm, struct address_space *mapping)
3603 {
3604         if (!test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) {
3605                 /*
3606                  * AS_MM_ALL_LOCKS can't change from under us because
3607                  * we hold the mm_all_locks_mutex.
3608                  *
3609                  * Operations on ->flags have to be atomic because
3610                  * even if AS_MM_ALL_LOCKS is stable thanks to the
3611                  * mm_all_locks_mutex, there may be other cpus
3612                  * changing other bitflags in parallel to us.
3613                  */
3614                 if (test_and_set_bit(AS_MM_ALL_LOCKS, &mapping->flags))
3615                         BUG();
3616                 down_write_nest_lock(&mapping->i_mmap_rwsem, &mm->mmap_lock);
3617         }
3618 }
3619
3620 /*
3621  * This operation locks against the VM for all pte/vma/mm related
3622  * operations that could ever happen on a certain mm. This includes
3623  * vmtruncate, try_to_unmap, and all page faults.
3624  *
3625  * The caller must take the mmap_lock in write mode before calling
3626  * mm_take_all_locks(). The caller isn't allowed to release the
3627  * mmap_lock until mm_drop_all_locks() returns.
3628  *
3629  * mmap_lock in write mode is required in order to block all operations
3630  * that could modify pagetables and free pages without need of
3631  * altering the vma layout. It's also needed in write mode to avoid new
3632  * anon_vmas to be associated with existing vmas.
3633  *
3634  * A single task can't take more than one mm_take_all_locks() in a row
3635  * or it would deadlock.
3636  *
3637  * The LSB in anon_vma->rb_root.rb_node and the AS_MM_ALL_LOCKS bitflag in
3638  * mapping->flags avoid to take the same lock twice, if more than one
3639  * vma in this mm is backed by the same anon_vma or address_space.
3640  *
3641  * We take locks in following order, accordingly to comment at beginning
3642  * of mm/rmap.c:
3643  *   - all hugetlbfs_i_mmap_rwsem_key locks (aka mapping->i_mmap_rwsem for
3644  *     hugetlb mapping);
3645  *   - all vmas marked locked
3646  *   - all i_mmap_rwsem locks;
3647  *   - all anon_vma->rwseml
3648  *
3649  * We can take all locks within these types randomly because the VM code
3650  * doesn't nest them and we protected from parallel mm_take_all_locks() by
3651  * mm_all_locks_mutex.
3652  *
3653  * mm_take_all_locks() and mm_drop_all_locks are expensive operations
3654  * that may have to take thousand of locks.
3655  *
3656  * mm_take_all_locks() can fail if it's interrupted by signals.
3657  */
3658 int mm_take_all_locks(struct mm_struct *mm)
3659 {
3660         struct vm_area_struct *vma;
3661         struct anon_vma_chain *avc;
3662         MA_STATE(mas, &mm->mm_mt, 0, 0);
3663
3664         mmap_assert_write_locked(mm);
3665
3666         mutex_lock(&mm_all_locks_mutex);
3667
3668         /*
3669          * vma_start_write() does not have a complement in mm_drop_all_locks()
3670          * because vma_start_write() is always asymmetrical; it marks a VMA as
3671          * being written to until mmap_write_unlock() or mmap_write_downgrade()
3672          * is reached.
3673          */
3674         mas_for_each(&mas, vma, ULONG_MAX) {
3675                 if (signal_pending(current))
3676                         goto out_unlock;
3677                 vma_start_write(vma);
3678         }
3679
3680         mas_set(&mas, 0);
3681         mas_for_each(&mas, vma, ULONG_MAX) {
3682                 if (signal_pending(current))
3683                         goto out_unlock;
3684                 if (vma->vm_file && vma->vm_file->f_mapping &&
3685                                 is_vm_hugetlb_page(vma))
3686                         vm_lock_mapping(mm, vma->vm_file->f_mapping);
3687         }
3688
3689         mas_set(&mas, 0);
3690         mas_for_each(&mas, vma, ULONG_MAX) {
3691                 if (signal_pending(current))
3692                         goto out_unlock;
3693                 if (vma->vm_file && vma->vm_file->f_mapping &&
3694                                 !is_vm_hugetlb_page(vma))
3695                         vm_lock_mapping(mm, vma->vm_file->f_mapping);
3696         }
3697
3698         mas_set(&mas, 0);
3699         mas_for_each(&mas, vma, ULONG_MAX) {
3700                 if (signal_pending(current))
3701                         goto out_unlock;
3702                 if (vma->anon_vma)
3703                         list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
3704                                 vm_lock_anon_vma(mm, avc->anon_vma);
3705         }
3706
3707         return 0;
3708
3709 out_unlock:
3710         mm_drop_all_locks(mm);
3711         return -EINTR;
3712 }
3713
3714 static void vm_unlock_anon_vma(struct anon_vma *anon_vma)
3715 {
3716         if (test_bit(0, (unsigned long *) &anon_vma->root->rb_root.rb_root.rb_node)) {
3717                 /*
3718                  * The LSB of head.next can't change to 0 from under
3719                  * us because we hold the mm_all_locks_mutex.
3720                  *
3721                  * We must however clear the bitflag before unlocking
3722                  * the vma so the users using the anon_vma->rb_root will
3723                  * never see our bitflag.
3724                  *
3725                  * No need of atomic instructions here, head.next
3726                  * can't change from under us until we release the
3727                  * anon_vma->root->rwsem.
3728                  */
3729                 if (!__test_and_clear_bit(0, (unsigned long *)
3730                                           &anon_vma->root->rb_root.rb_root.rb_node))
3731                         BUG();
3732                 anon_vma_unlock_write(anon_vma);
3733         }
3734 }
3735
3736 static void vm_unlock_mapping(struct address_space *mapping)
3737 {
3738         if (test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) {
3739                 /*
3740                  * AS_MM_ALL_LOCKS can't change to 0 from under us
3741                  * because we hold the mm_all_locks_mutex.
3742                  */
3743                 i_mmap_unlock_write(mapping);
3744                 if (!test_and_clear_bit(AS_MM_ALL_LOCKS,
3745                                         &mapping->flags))
3746                         BUG();
3747         }
3748 }
3749
3750 /*
3751  * The mmap_lock cannot be released by the caller until
3752  * mm_drop_all_locks() returns.
3753  */
3754 void mm_drop_all_locks(struct mm_struct *mm)
3755 {
3756         struct vm_area_struct *vma;
3757         struct anon_vma_chain *avc;
3758         MA_STATE(mas, &mm->mm_mt, 0, 0);
3759
3760         mmap_assert_write_locked(mm);
3761         BUG_ON(!mutex_is_locked(&mm_all_locks_mutex));
3762
3763         mas_for_each(&mas, vma, ULONG_MAX) {
3764                 if (vma->anon_vma)
3765                         list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
3766                                 vm_unlock_anon_vma(avc->anon_vma);
3767                 if (vma->vm_file && vma->vm_file->f_mapping)
3768                         vm_unlock_mapping(vma->vm_file->f_mapping);
3769         }
3770
3771         mutex_unlock(&mm_all_locks_mutex);
3772 }
3773
3774 /*
3775  * initialise the percpu counter for VM
3776  */
3777 void __init mmap_init(void)
3778 {
3779         int ret;
3780
3781         ret = percpu_counter_init(&vm_committed_as, 0, GFP_KERNEL);
3782         VM_BUG_ON(ret);
3783 }
3784
3785 /*
3786  * Initialise sysctl_user_reserve_kbytes.
3787  *
3788  * This is intended to prevent a user from starting a single memory hogging
3789  * process, such that they cannot recover (kill the hog) in OVERCOMMIT_NEVER
3790  * mode.
3791  *
3792  * The default value is min(3% of free memory, 128MB)
3793  * 128MB is enough to recover with sshd/login, bash, and top/kill.
3794  */
3795 static int init_user_reserve(void)
3796 {
3797         unsigned long free_kbytes;
3798
3799         free_kbytes = K(global_zone_page_state(NR_FREE_PAGES));
3800
3801         sysctl_user_reserve_kbytes = min(free_kbytes / 32, 1UL << 17);
3802         return 0;
3803 }
3804 subsys_initcall(init_user_reserve);
3805
3806 /*
3807  * Initialise sysctl_admin_reserve_kbytes.
3808  *
3809  * The purpose of sysctl_admin_reserve_kbytes is to allow the sys admin
3810  * to log in and kill a memory hogging process.
3811  *
3812  * Systems with more than 256MB will reserve 8MB, enough to recover
3813  * with sshd, bash, and top in OVERCOMMIT_GUESS. Smaller systems will
3814  * only reserve 3% of free pages by default.
3815  */
3816 static int init_admin_reserve(void)
3817 {
3818         unsigned long free_kbytes;
3819
3820         free_kbytes = K(global_zone_page_state(NR_FREE_PAGES));
3821
3822         sysctl_admin_reserve_kbytes = min(free_kbytes / 32, 1UL << 13);
3823         return 0;
3824 }
3825 subsys_initcall(init_admin_reserve);
3826
3827 /*
3828  * Reinititalise user and admin reserves if memory is added or removed.
3829  *
3830  * The default user reserve max is 128MB, and the default max for the
3831  * admin reserve is 8MB. These are usually, but not always, enough to
3832  * enable recovery from a memory hogging process using login/sshd, a shell,
3833  * and tools like top. It may make sense to increase or even disable the
3834  * reserve depending on the existence of swap or variations in the recovery
3835  * tools. So, the admin may have changed them.
3836  *
3837  * If memory is added and the reserves have been eliminated or increased above
3838  * the default max, then we'll trust the admin.
3839  *
3840  * If memory is removed and there isn't enough free memory, then we
3841  * need to reset the reserves.
3842  *
3843  * Otherwise keep the reserve set by the admin.
3844  */
3845 static int reserve_mem_notifier(struct notifier_block *nb,
3846                              unsigned long action, void *data)
3847 {
3848         unsigned long tmp, free_kbytes;
3849
3850         switch (action) {
3851         case MEM_ONLINE:
3852                 /* Default max is 128MB. Leave alone if modified by operator. */
3853                 tmp = sysctl_user_reserve_kbytes;
3854                 if (0 < tmp && tmp < (1UL << 17))
3855                         init_user_reserve();
3856
3857                 /* Default max is 8MB.  Leave alone if modified by operator. */
3858                 tmp = sysctl_admin_reserve_kbytes;
3859                 if (0 < tmp && tmp < (1UL << 13))
3860                         init_admin_reserve();
3861
3862                 break;
3863         case MEM_OFFLINE:
3864                 free_kbytes = K(global_zone_page_state(NR_FREE_PAGES));
3865
3866                 if (sysctl_user_reserve_kbytes > free_kbytes) {
3867                         init_user_reserve();
3868                         pr_info("vm.user_reserve_kbytes reset to %lu\n",
3869                                 sysctl_user_reserve_kbytes);
3870                 }
3871
3872                 if (sysctl_admin_reserve_kbytes > free_kbytes) {
3873                         init_admin_reserve();
3874                         pr_info("vm.admin_reserve_kbytes reset to %lu\n",
3875                                 sysctl_admin_reserve_kbytes);
3876                 }
3877                 break;
3878         default:
3879                 break;
3880         }
3881         return NOTIFY_OK;
3882 }
3883
3884 static int __meminit init_reserve_notifier(void)
3885 {
3886         if (hotplug_memory_notifier(reserve_mem_notifier, DEFAULT_CALLBACK_PRI))
3887                 pr_err("Failed registering memory add/remove notifier for admin reserve\n");
3888
3889         return 0;
3890 }
3891 subsys_initcall(init_reserve_notifier);