mm: vma_adjust: remove superfluous check for next not NULL
[platform/kernel/linux-exynos.git] / mm / mmap.c
1 /*
2  * mm/mmap.c
3  *
4  * Written by obz.
5  *
6  * Address space accounting code        <alan@lxorguk.ukuu.org.uk>
7  */
8
9 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
10
11 #include <linux/kernel.h>
12 #include <linux/slab.h>
13 #include <linux/backing-dev.h>
14 #include <linux/mm.h>
15 #include <linux/vmacache.h>
16 #include <linux/shm.h>
17 #include <linux/mman.h>
18 #include <linux/pagemap.h>
19 #include <linux/swap.h>
20 #include <linux/syscalls.h>
21 #include <linux/capability.h>
22 #include <linux/init.h>
23 #include <linux/file.h>
24 #include <linux/fs.h>
25 #include <linux/personality.h>
26 #include <linux/security.h>
27 #include <linux/hugetlb.h>
28 #include <linux/shmem_fs.h>
29 #include <linux/profile.h>
30 #include <linux/export.h>
31 #include <linux/mount.h>
32 #include <linux/mempolicy.h>
33 #include <linux/rmap.h>
34 #include <linux/mmu_notifier.h>
35 #include <linux/mmdebug.h>
36 #include <linux/perf_event.h>
37 #include <linux/audit.h>
38 #include <linux/khugepaged.h>
39 #include <linux/uprobes.h>
40 #include <linux/rbtree_augmented.h>
41 #include <linux/notifier.h>
42 #include <linux/memory.h>
43 #include <linux/printk.h>
44 #include <linux/userfaultfd_k.h>
45 #include <linux/moduleparam.h>
46 #include <linux/pkeys.h>
47
48 #include <asm/uaccess.h>
49 #include <asm/cacheflush.h>
50 #include <asm/tlb.h>
51 #include <asm/mmu_context.h>
52
53 #include "internal.h"
54
55 #ifndef arch_mmap_check
56 #define arch_mmap_check(addr, len, flags)       (0)
57 #endif
58
59 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_BITS
60 const int mmap_rnd_bits_min = CONFIG_ARCH_MMAP_RND_BITS_MIN;
61 const int mmap_rnd_bits_max = CONFIG_ARCH_MMAP_RND_BITS_MAX;
62 int mmap_rnd_bits __read_mostly = CONFIG_ARCH_MMAP_RND_BITS;
63 #endif
64 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS
65 const int mmap_rnd_compat_bits_min = CONFIG_ARCH_MMAP_RND_COMPAT_BITS_MIN;
66 const int mmap_rnd_compat_bits_max = CONFIG_ARCH_MMAP_RND_COMPAT_BITS_MAX;
67 int mmap_rnd_compat_bits __read_mostly = CONFIG_ARCH_MMAP_RND_COMPAT_BITS;
68 #endif
69
70 static bool ignore_rlimit_data;
71 core_param(ignore_rlimit_data, ignore_rlimit_data, bool, 0644);
72
73 static void unmap_region(struct mm_struct *mm,
74                 struct vm_area_struct *vma, struct vm_area_struct *prev,
75                 unsigned long start, unsigned long end);
76
77 /* description of effects of mapping type and prot in current implementation.
78  * this is due to the limited x86 page protection hardware.  The expected
79  * behavior is in parens:
80  *
81  * map_type     prot
82  *              PROT_NONE       PROT_READ       PROT_WRITE      PROT_EXEC
83  * MAP_SHARED   r: (no) no      r: (yes) yes    r: (no) yes     r: (no) yes
84  *              w: (no) no      w: (no) no      w: (yes) yes    w: (no) no
85  *              x: (no) no      x: (no) yes     x: (no) yes     x: (yes) yes
86  *
87  * MAP_PRIVATE  r: (no) no      r: (yes) yes    r: (no) yes     r: (no) yes
88  *              w: (no) no      w: (no) no      w: (copy) copy  w: (no) no
89  *              x: (no) no      x: (no) yes     x: (no) yes     x: (yes) yes
90  *
91  * On arm64, PROT_EXEC has the following behaviour for both MAP_SHARED and
92  * MAP_PRIVATE:
93  *                                                              r: (no) no
94  *                                                              w: (no) no
95  *                                                              x: (yes) yes
96  */
97 pgprot_t protection_map[16] = {
98         __P000, __P001, __P010, __P011, __P100, __P101, __P110, __P111,
99         __S000, __S001, __S010, __S011, __S100, __S101, __S110, __S111
100 };
101
102 pgprot_t vm_get_page_prot(unsigned long vm_flags)
103 {
104         return __pgprot(pgprot_val(protection_map[vm_flags &
105                                 (VM_READ|VM_WRITE|VM_EXEC|VM_SHARED)]) |
106                         pgprot_val(arch_vm_get_page_prot(vm_flags)));
107 }
108 EXPORT_SYMBOL(vm_get_page_prot);
109
110 static pgprot_t vm_pgprot_modify(pgprot_t oldprot, unsigned long vm_flags)
111 {
112         return pgprot_modify(oldprot, vm_get_page_prot(vm_flags));
113 }
114
115 /* Update vma->vm_page_prot to reflect vma->vm_flags. */
116 void vma_set_page_prot(struct vm_area_struct *vma)
117 {
118         unsigned long vm_flags = vma->vm_flags;
119         pgprot_t vm_page_prot;
120
121         vm_page_prot = vm_pgprot_modify(vma->vm_page_prot, vm_flags);
122         if (vma_wants_writenotify(vma, vm_page_prot)) {
123                 vm_flags &= ~VM_SHARED;
124                 vm_page_prot = vm_pgprot_modify(vm_page_prot, vm_flags);
125         }
126         /* remove_protection_ptes reads vma->vm_page_prot without mmap_sem */
127         WRITE_ONCE(vma->vm_page_prot, vm_page_prot);
128 }
129
130 /*
131  * Requires inode->i_mapping->i_mmap_rwsem
132  */
133 static void __remove_shared_vm_struct(struct vm_area_struct *vma,
134                 struct file *file, struct address_space *mapping)
135 {
136         if (vma->vm_flags & VM_DENYWRITE)
137                 atomic_inc(&file_inode(file)->i_writecount);
138         if (vma->vm_flags & VM_SHARED)
139                 mapping_unmap_writable(mapping);
140
141         flush_dcache_mmap_lock(mapping);
142         vma_interval_tree_remove(vma, &mapping->i_mmap);
143         flush_dcache_mmap_unlock(mapping);
144 }
145
146 /*
147  * Unlink a file-based vm structure from its interval tree, to hide
148  * vma from rmap and vmtruncate before freeing its page tables.
149  */
150 void unlink_file_vma(struct vm_area_struct *vma)
151 {
152         struct file *file = vma->vm_file;
153
154         if (file) {
155                 struct address_space *mapping = file->f_mapping;
156                 i_mmap_lock_write(mapping);
157                 __remove_shared_vm_struct(vma, file, mapping);
158                 i_mmap_unlock_write(mapping);
159         }
160 }
161
162 /*
163  * Close a vm structure and free it, returning the next.
164  */
165 static struct vm_area_struct *remove_vma(struct vm_area_struct *vma)
166 {
167         struct vm_area_struct *next = vma->vm_next;
168
169         might_sleep();
170         if (vma->vm_ops && vma->vm_ops->close)
171                 vma->vm_ops->close(vma);
172         if (vma->vm_file)
173                 fput(vma->vm_file);
174         mpol_put(vma_policy(vma));
175         kmem_cache_free(vm_area_cachep, vma);
176         return next;
177 }
178
179 static int do_brk(unsigned long addr, unsigned long len);
180
181 SYSCALL_DEFINE1(brk, unsigned long, brk)
182 {
183         unsigned long retval;
184         unsigned long newbrk, oldbrk;
185         struct mm_struct *mm = current->mm;
186         unsigned long min_brk;
187         bool populate;
188
189         if (down_write_killable(&mm->mmap_sem))
190                 return -EINTR;
191
192 #ifdef CONFIG_COMPAT_BRK
193         /*
194          * CONFIG_COMPAT_BRK can still be overridden by setting
195          * randomize_va_space to 2, which will still cause mm->start_brk
196          * to be arbitrarily shifted
197          */
198         if (current->brk_randomized)
199                 min_brk = mm->start_brk;
200         else
201                 min_brk = mm->end_data;
202 #else
203         min_brk = mm->start_brk;
204 #endif
205         if (brk < min_brk)
206                 goto out;
207
208         /*
209          * Check against rlimit here. If this check is done later after the test
210          * of oldbrk with newbrk then it can escape the test and let the data
211          * segment grow beyond its set limit the in case where the limit is
212          * not page aligned -Ram Gupta
213          */
214         if (check_data_rlimit(rlimit(RLIMIT_DATA), brk, mm->start_brk,
215                               mm->end_data, mm->start_data))
216                 goto out;
217
218         newbrk = PAGE_ALIGN(brk);
219         oldbrk = PAGE_ALIGN(mm->brk);
220         if (oldbrk == newbrk)
221                 goto set_brk;
222
223         /* Always allow shrinking brk. */
224         if (brk <= mm->brk) {
225                 if (!do_munmap(mm, newbrk, oldbrk-newbrk))
226                         goto set_brk;
227                 goto out;
228         }
229
230         /* Check against existing mmap mappings. */
231         if (find_vma_intersection(mm, oldbrk, newbrk+PAGE_SIZE))
232                 goto out;
233
234         /* Ok, looks good - let it rip. */
235         if (do_brk(oldbrk, newbrk-oldbrk) < 0)
236                 goto out;
237
238 set_brk:
239         mm->brk = brk;
240         populate = newbrk > oldbrk && (mm->def_flags & VM_LOCKED) != 0;
241         up_write(&mm->mmap_sem);
242         if (populate)
243                 mm_populate(oldbrk, newbrk - oldbrk);
244         return brk;
245
246 out:
247         retval = mm->brk;
248         up_write(&mm->mmap_sem);
249         return retval;
250 }
251
252 static long vma_compute_subtree_gap(struct vm_area_struct *vma)
253 {
254         unsigned long max, subtree_gap;
255         max = vma->vm_start;
256         if (vma->vm_prev)
257                 max -= vma->vm_prev->vm_end;
258         if (vma->vm_rb.rb_left) {
259                 subtree_gap = rb_entry(vma->vm_rb.rb_left,
260                                 struct vm_area_struct, vm_rb)->rb_subtree_gap;
261                 if (subtree_gap > max)
262                         max = subtree_gap;
263         }
264         if (vma->vm_rb.rb_right) {
265                 subtree_gap = rb_entry(vma->vm_rb.rb_right,
266                                 struct vm_area_struct, vm_rb)->rb_subtree_gap;
267                 if (subtree_gap > max)
268                         max = subtree_gap;
269         }
270         return max;
271 }
272
273 #ifdef CONFIG_DEBUG_VM_RB
274 static int browse_rb(struct mm_struct *mm)
275 {
276         struct rb_root *root = &mm->mm_rb;
277         int i = 0, j, bug = 0;
278         struct rb_node *nd, *pn = NULL;
279         unsigned long prev = 0, pend = 0;
280
281         for (nd = rb_first(root); nd; nd = rb_next(nd)) {
282                 struct vm_area_struct *vma;
283                 vma = rb_entry(nd, struct vm_area_struct, vm_rb);
284                 if (vma->vm_start < prev) {
285                         pr_emerg("vm_start %lx < prev %lx\n",
286                                   vma->vm_start, prev);
287                         bug = 1;
288                 }
289                 if (vma->vm_start < pend) {
290                         pr_emerg("vm_start %lx < pend %lx\n",
291                                   vma->vm_start, pend);
292                         bug = 1;
293                 }
294                 if (vma->vm_start > vma->vm_end) {
295                         pr_emerg("vm_start %lx > vm_end %lx\n",
296                                   vma->vm_start, vma->vm_end);
297                         bug = 1;
298                 }
299                 spin_lock(&mm->page_table_lock);
300                 if (vma->rb_subtree_gap != vma_compute_subtree_gap(vma)) {
301                         pr_emerg("free gap %lx, correct %lx\n",
302                                vma->rb_subtree_gap,
303                                vma_compute_subtree_gap(vma));
304                         bug = 1;
305                 }
306                 spin_unlock(&mm->page_table_lock);
307                 i++;
308                 pn = nd;
309                 prev = vma->vm_start;
310                 pend = vma->vm_end;
311         }
312         j = 0;
313         for (nd = pn; nd; nd = rb_prev(nd))
314                 j++;
315         if (i != j) {
316                 pr_emerg("backwards %d, forwards %d\n", j, i);
317                 bug = 1;
318         }
319         return bug ? -1 : i;
320 }
321
322 static void validate_mm_rb(struct rb_root *root, struct vm_area_struct *ignore)
323 {
324         struct rb_node *nd;
325
326         for (nd = rb_first(root); nd; nd = rb_next(nd)) {
327                 struct vm_area_struct *vma;
328                 vma = rb_entry(nd, struct vm_area_struct, vm_rb);
329                 VM_BUG_ON_VMA(vma != ignore &&
330                         vma->rb_subtree_gap != vma_compute_subtree_gap(vma),
331                         vma);
332         }
333 }
334
335 static void validate_mm(struct mm_struct *mm)
336 {
337         int bug = 0;
338         int i = 0;
339         unsigned long highest_address = 0;
340         struct vm_area_struct *vma = mm->mmap;
341
342         while (vma) {
343                 struct anon_vma *anon_vma = vma->anon_vma;
344                 struct anon_vma_chain *avc;
345
346                 if (anon_vma) {
347                         anon_vma_lock_read(anon_vma);
348                         list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
349                                 anon_vma_interval_tree_verify(avc);
350                         anon_vma_unlock_read(anon_vma);
351                 }
352
353                 highest_address = vma->vm_end;
354                 vma = vma->vm_next;
355                 i++;
356         }
357         if (i != mm->map_count) {
358                 pr_emerg("map_count %d vm_next %d\n", mm->map_count, i);
359                 bug = 1;
360         }
361         if (highest_address != mm->highest_vm_end) {
362                 pr_emerg("mm->highest_vm_end %lx, found %lx\n",
363                           mm->highest_vm_end, highest_address);
364                 bug = 1;
365         }
366         i = browse_rb(mm);
367         if (i != mm->map_count) {
368                 if (i != -1)
369                         pr_emerg("map_count %d rb %d\n", mm->map_count, i);
370                 bug = 1;
371         }
372         VM_BUG_ON_MM(bug, mm);
373 }
374 #else
375 #define validate_mm_rb(root, ignore) do { } while (0)
376 #define validate_mm(mm) do { } while (0)
377 #endif
378
379 RB_DECLARE_CALLBACKS(static, vma_gap_callbacks, struct vm_area_struct, vm_rb,
380                      unsigned long, rb_subtree_gap, vma_compute_subtree_gap)
381
382 /*
383  * Update augmented rbtree rb_subtree_gap values after vma->vm_start or
384  * vma->vm_prev->vm_end values changed, without modifying the vma's position
385  * in the rbtree.
386  */
387 static void vma_gap_update(struct vm_area_struct *vma)
388 {
389         /*
390          * As it turns out, RB_DECLARE_CALLBACKS() already created a callback
391          * function that does exacltly what we want.
392          */
393         vma_gap_callbacks_propagate(&vma->vm_rb, NULL);
394 }
395
396 static inline void vma_rb_insert(struct vm_area_struct *vma,
397                                  struct rb_root *root)
398 {
399         /* All rb_subtree_gap values must be consistent prior to insertion */
400         validate_mm_rb(root, NULL);
401
402         rb_insert_augmented(&vma->vm_rb, root, &vma_gap_callbacks);
403 }
404
405 static void vma_rb_erase(struct vm_area_struct *vma, struct rb_root *root)
406 {
407         /*
408          * All rb_subtree_gap values must be consistent prior to erase,
409          * with the possible exception of the vma being erased.
410          */
411         validate_mm_rb(root, vma);
412
413         /*
414          * Note rb_erase_augmented is a fairly large inline function,
415          * so make sure we instantiate it only once with our desired
416          * augmented rbtree callbacks.
417          */
418         rb_erase_augmented(&vma->vm_rb, root, &vma_gap_callbacks);
419 }
420
421 /*
422  * vma has some anon_vma assigned, and is already inserted on that
423  * anon_vma's interval trees.
424  *
425  * Before updating the vma's vm_start / vm_end / vm_pgoff fields, the
426  * vma must be removed from the anon_vma's interval trees using
427  * anon_vma_interval_tree_pre_update_vma().
428  *
429  * After the update, the vma will be reinserted using
430  * anon_vma_interval_tree_post_update_vma().
431  *
432  * The entire update must be protected by exclusive mmap_sem and by
433  * the root anon_vma's mutex.
434  */
435 static inline void
436 anon_vma_interval_tree_pre_update_vma(struct vm_area_struct *vma)
437 {
438         struct anon_vma_chain *avc;
439
440         list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
441                 anon_vma_interval_tree_remove(avc, &avc->anon_vma->rb_root);
442 }
443
444 static inline void
445 anon_vma_interval_tree_post_update_vma(struct vm_area_struct *vma)
446 {
447         struct anon_vma_chain *avc;
448
449         list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
450                 anon_vma_interval_tree_insert(avc, &avc->anon_vma->rb_root);
451 }
452
453 static int find_vma_links(struct mm_struct *mm, unsigned long addr,
454                 unsigned long end, struct vm_area_struct **pprev,
455                 struct rb_node ***rb_link, struct rb_node **rb_parent)
456 {
457         struct rb_node **__rb_link, *__rb_parent, *rb_prev;
458
459         __rb_link = &mm->mm_rb.rb_node;
460         rb_prev = __rb_parent = NULL;
461
462         while (*__rb_link) {
463                 struct vm_area_struct *vma_tmp;
464
465                 __rb_parent = *__rb_link;
466                 vma_tmp = rb_entry(__rb_parent, struct vm_area_struct, vm_rb);
467
468                 if (vma_tmp->vm_end > addr) {
469                         /* Fail if an existing vma overlaps the area */
470                         if (vma_tmp->vm_start < end)
471                                 return -ENOMEM;
472                         __rb_link = &__rb_parent->rb_left;
473                 } else {
474                         rb_prev = __rb_parent;
475                         __rb_link = &__rb_parent->rb_right;
476                 }
477         }
478
479         *pprev = NULL;
480         if (rb_prev)
481                 *pprev = rb_entry(rb_prev, struct vm_area_struct, vm_rb);
482         *rb_link = __rb_link;
483         *rb_parent = __rb_parent;
484         return 0;
485 }
486
487 static unsigned long count_vma_pages_range(struct mm_struct *mm,
488                 unsigned long addr, unsigned long end)
489 {
490         unsigned long nr_pages = 0;
491         struct vm_area_struct *vma;
492
493         /* Find first overlaping mapping */
494         vma = find_vma_intersection(mm, addr, end);
495         if (!vma)
496                 return 0;
497
498         nr_pages = (min(end, vma->vm_end) -
499                 max(addr, vma->vm_start)) >> PAGE_SHIFT;
500
501         /* Iterate over the rest of the overlaps */
502         for (vma = vma->vm_next; vma; vma = vma->vm_next) {
503                 unsigned long overlap_len;
504
505                 if (vma->vm_start > end)
506                         break;
507
508                 overlap_len = min(end, vma->vm_end) - vma->vm_start;
509                 nr_pages += overlap_len >> PAGE_SHIFT;
510         }
511
512         return nr_pages;
513 }
514
515 void __vma_link_rb(struct mm_struct *mm, struct vm_area_struct *vma,
516                 struct rb_node **rb_link, struct rb_node *rb_parent)
517 {
518         /* Update tracking information for the gap following the new vma. */
519         if (vma->vm_next)
520                 vma_gap_update(vma->vm_next);
521         else
522                 mm->highest_vm_end = vma->vm_end;
523
524         /*
525          * vma->vm_prev wasn't known when we followed the rbtree to find the
526          * correct insertion point for that vma. As a result, we could not
527          * update the vma vm_rb parents rb_subtree_gap values on the way down.
528          * So, we first insert the vma with a zero rb_subtree_gap value
529          * (to be consistent with what we did on the way down), and then
530          * immediately update the gap to the correct value. Finally we
531          * rebalance the rbtree after all augmented values have been set.
532          */
533         rb_link_node(&vma->vm_rb, rb_parent, rb_link);
534         vma->rb_subtree_gap = 0;
535         vma_gap_update(vma);
536         vma_rb_insert(vma, &mm->mm_rb);
537 }
538
539 static void __vma_link_file(struct vm_area_struct *vma)
540 {
541         struct file *file;
542
543         file = vma->vm_file;
544         if (file) {
545                 struct address_space *mapping = file->f_mapping;
546
547                 if (vma->vm_flags & VM_DENYWRITE)
548                         atomic_dec(&file_inode(file)->i_writecount);
549                 if (vma->vm_flags & VM_SHARED)
550                         atomic_inc(&mapping->i_mmap_writable);
551
552                 flush_dcache_mmap_lock(mapping);
553                 vma_interval_tree_insert(vma, &mapping->i_mmap);
554                 flush_dcache_mmap_unlock(mapping);
555         }
556 }
557
558 static void
559 __vma_link(struct mm_struct *mm, struct vm_area_struct *vma,
560         struct vm_area_struct *prev, struct rb_node **rb_link,
561         struct rb_node *rb_parent)
562 {
563         __vma_link_list(mm, vma, prev, rb_parent);
564         __vma_link_rb(mm, vma, rb_link, rb_parent);
565 }
566
567 static void vma_link(struct mm_struct *mm, struct vm_area_struct *vma,
568                         struct vm_area_struct *prev, struct rb_node **rb_link,
569                         struct rb_node *rb_parent)
570 {
571         struct address_space *mapping = NULL;
572
573         if (vma->vm_file) {
574                 mapping = vma->vm_file->f_mapping;
575                 i_mmap_lock_write(mapping);
576         }
577
578         __vma_link(mm, vma, prev, rb_link, rb_parent);
579         __vma_link_file(vma);
580
581         if (mapping)
582                 i_mmap_unlock_write(mapping);
583
584         mm->map_count++;
585         validate_mm(mm);
586 }
587
588 /*
589  * Helper for vma_adjust() in the split_vma insert case: insert a vma into the
590  * mm's list and rbtree.  It has already been inserted into the interval tree.
591  */
592 static void __insert_vm_struct(struct mm_struct *mm, struct vm_area_struct *vma)
593 {
594         struct vm_area_struct *prev;
595         struct rb_node **rb_link, *rb_parent;
596
597         if (find_vma_links(mm, vma->vm_start, vma->vm_end,
598                            &prev, &rb_link, &rb_parent))
599                 BUG();
600         __vma_link(mm, vma, prev, rb_link, rb_parent);
601         mm->map_count++;
602 }
603
604 static __always_inline void __vma_unlink_common(struct mm_struct *mm,
605                                                 struct vm_area_struct *vma,
606                                                 struct vm_area_struct *prev,
607                                                 bool has_prev)
608 {
609         struct vm_area_struct *next;
610
611         vma_rb_erase(vma, &mm->mm_rb);
612         next = vma->vm_next;
613         if (has_prev)
614                 prev->vm_next = next;
615         else {
616                 prev = vma->vm_prev;
617                 if (prev)
618                         prev->vm_next = next;
619                 else
620                         mm->mmap = next;
621         }
622         if (next)
623                 next->vm_prev = prev;
624
625         /* Kill the cache */
626         vmacache_invalidate(mm);
627 }
628
629 static inline void __vma_unlink_prev(struct mm_struct *mm,
630                                      struct vm_area_struct *vma,
631                                      struct vm_area_struct *prev)
632 {
633         __vma_unlink_common(mm, vma, prev, true);
634 }
635
636 static inline void __vma_unlink(struct mm_struct *mm,
637                                 struct vm_area_struct *vma)
638 {
639         __vma_unlink_common(mm, vma, NULL, false);
640 }
641
642 /*
643  * We cannot adjust vm_start, vm_end, vm_pgoff fields of a vma that
644  * is already present in an i_mmap tree without adjusting the tree.
645  * The following helper function should be used when such adjustments
646  * are necessary.  The "insert" vma (if any) is to be inserted
647  * before we drop the necessary locks.
648  */
649 int __vma_adjust(struct vm_area_struct *vma, unsigned long start,
650         unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert,
651         struct vm_area_struct *expand)
652 {
653         struct mm_struct *mm = vma->vm_mm;
654         struct vm_area_struct *next = vma->vm_next, *orig_vma = vma;
655         struct address_space *mapping = NULL;
656         struct rb_root *root = NULL;
657         struct anon_vma *anon_vma = NULL;
658         struct file *file = vma->vm_file;
659         bool start_changed = false, end_changed = false;
660         long adjust_next = 0;
661         int remove_next = 0;
662
663         if (next && !insert) {
664                 struct vm_area_struct *exporter = NULL, *importer = NULL;
665
666                 if (end >= next->vm_end) {
667                         /*
668                          * vma expands, overlapping all the next, and
669                          * perhaps the one after too (mprotect case 6).
670                          * The only two other cases that gets here are
671                          * case 1, case 7 and case 8.
672                          */
673                         if (next == expand) {
674                                 /*
675                                  * The only case where we don't expand "vma"
676                                  * and we expand "next" instead is case 8.
677                                  */
678                                 VM_WARN_ON(end != next->vm_end);
679                                 /*
680                                  * remove_next == 3 means we're
681                                  * removing "vma" and that to do so we
682                                  * swapped "vma" and "next".
683                                  */
684                                 remove_next = 3;
685                                 VM_WARN_ON(file != next->vm_file);
686                                 swap(vma, next);
687                         } else {
688                                 VM_WARN_ON(expand != vma);
689                                 /*
690                                  * case 1, 6, 7, remove_next == 2 is case 6,
691                                  * remove_next == 1 is case 1 or 7.
692                                  */
693                                 remove_next = 1 + (end > next->vm_end);
694                                 VM_WARN_ON(remove_next == 2 &&
695                                            end != next->vm_next->vm_end);
696                                 VM_WARN_ON(remove_next == 1 &&
697                                            end != next->vm_end);
698                                 /* trim end to next, for case 6 first pass */
699                                 end = next->vm_end;
700                         }
701
702                         exporter = next;
703                         importer = vma;
704
705                         /*
706                          * If next doesn't have anon_vma, import from vma after
707                          * next, if the vma overlaps with it.
708                          */
709                         if (remove_next == 2 && !next->anon_vma)
710                                 exporter = next->vm_next;
711
712                 } else if (end > next->vm_start) {
713                         /*
714                          * vma expands, overlapping part of the next:
715                          * mprotect case 5 shifting the boundary up.
716                          */
717                         adjust_next = (end - next->vm_start) >> PAGE_SHIFT;
718                         exporter = next;
719                         importer = vma;
720                         VM_WARN_ON(expand != importer);
721                 } else if (end < vma->vm_end) {
722                         /*
723                          * vma shrinks, and !insert tells it's not
724                          * split_vma inserting another: so it must be
725                          * mprotect case 4 shifting the boundary down.
726                          */
727                         adjust_next = -((vma->vm_end - end) >> PAGE_SHIFT);
728                         exporter = vma;
729                         importer = next;
730                         VM_WARN_ON(expand != importer);
731                 }
732
733                 /*
734                  * Easily overlooked: when mprotect shifts the boundary,
735                  * make sure the expanding vma has anon_vma set if the
736                  * shrinking vma had, to cover any anon pages imported.
737                  */
738                 if (exporter && exporter->anon_vma && !importer->anon_vma) {
739                         int error;
740
741                         importer->anon_vma = exporter->anon_vma;
742                         error = anon_vma_clone(importer, exporter);
743                         if (error)
744                                 return error;
745                 }
746         }
747 again:
748         vma_adjust_trans_huge(orig_vma, start, end, adjust_next);
749
750         if (file) {
751                 mapping = file->f_mapping;
752                 root = &mapping->i_mmap;
753                 uprobe_munmap(vma, vma->vm_start, vma->vm_end);
754
755                 if (adjust_next)
756                         uprobe_munmap(next, next->vm_start, next->vm_end);
757
758                 i_mmap_lock_write(mapping);
759                 if (insert) {
760                         /*
761                          * Put into interval tree now, so instantiated pages
762                          * are visible to arm/parisc __flush_dcache_page
763                          * throughout; but we cannot insert into address
764                          * space until vma start or end is updated.
765                          */
766                         __vma_link_file(insert);
767                 }
768         }
769
770         anon_vma = vma->anon_vma;
771         if (!anon_vma && adjust_next)
772                 anon_vma = next->anon_vma;
773         if (anon_vma) {
774                 VM_WARN_ON(adjust_next && next->anon_vma &&
775                            anon_vma != next->anon_vma);
776                 anon_vma_lock_write(anon_vma);
777                 anon_vma_interval_tree_pre_update_vma(vma);
778                 if (adjust_next)
779                         anon_vma_interval_tree_pre_update_vma(next);
780         }
781
782         if (root) {
783                 flush_dcache_mmap_lock(mapping);
784                 vma_interval_tree_remove(vma, root);
785                 if (adjust_next)
786                         vma_interval_tree_remove(next, root);
787         }
788
789         if (start != vma->vm_start) {
790                 vma->vm_start = start;
791                 start_changed = true;
792         }
793         if (end != vma->vm_end) {
794                 vma->vm_end = end;
795                 end_changed = true;
796         }
797         vma->vm_pgoff = pgoff;
798         if (adjust_next) {
799                 next->vm_start += adjust_next << PAGE_SHIFT;
800                 next->vm_pgoff += adjust_next;
801         }
802
803         if (root) {
804                 if (adjust_next)
805                         vma_interval_tree_insert(next, root);
806                 vma_interval_tree_insert(vma, root);
807                 flush_dcache_mmap_unlock(mapping);
808         }
809
810         if (remove_next) {
811                 /*
812                  * vma_merge has merged next into vma, and needs
813                  * us to remove next before dropping the locks.
814                  */
815                 if (remove_next != 3)
816                         __vma_unlink_prev(mm, next, vma);
817                 else
818                         /* vma is not before next if they've been swapped */
819                         __vma_unlink(mm, next);
820                 if (file)
821                         __remove_shared_vm_struct(next, file, mapping);
822         } else if (insert) {
823                 /*
824                  * split_vma has split insert from vma, and needs
825                  * us to insert it before dropping the locks
826                  * (it may either follow vma or precede it).
827                  */
828                 __insert_vm_struct(mm, insert);
829         } else {
830                 if (start_changed)
831                         vma_gap_update(vma);
832                 if (end_changed) {
833                         if (!next)
834                                 mm->highest_vm_end = end;
835                         else if (!adjust_next)
836                                 vma_gap_update(next);
837                 }
838         }
839
840         if (anon_vma) {
841                 anon_vma_interval_tree_post_update_vma(vma);
842                 if (adjust_next)
843                         anon_vma_interval_tree_post_update_vma(next);
844                 anon_vma_unlock_write(anon_vma);
845         }
846         if (mapping)
847                 i_mmap_unlock_write(mapping);
848
849         if (root) {
850                 uprobe_mmap(vma);
851
852                 if (adjust_next)
853                         uprobe_mmap(next);
854         }
855
856         if (remove_next) {
857                 if (file) {
858                         uprobe_munmap(next, next->vm_start, next->vm_end);
859                         fput(file);
860                 }
861                 if (next->anon_vma)
862                         anon_vma_merge(vma, next);
863                 mm->map_count--;
864                 mpol_put(vma_policy(next));
865                 kmem_cache_free(vm_area_cachep, next);
866                 /*
867                  * In mprotect's case 6 (see comments on vma_merge),
868                  * we must remove another next too. It would clutter
869                  * up the code too much to do both in one go.
870                  */
871                 if (remove_next != 3) {
872                         /*
873                          * If "next" was removed and vma->vm_end was
874                          * expanded (up) over it, in turn
875                          * "next->vm_prev->vm_end" changed and the
876                          * "vma->vm_next" gap must be updated.
877                          */
878                         next = vma->vm_next;
879                 } else {
880                         /*
881                          * For the scope of the comment "next" and
882                          * "vma" considered pre-swap(): if "vma" was
883                          * removed, next->vm_start was expanded (down)
884                          * over it and the "next" gap must be updated.
885                          * Because of the swap() the post-swap() "vma"
886                          * actually points to pre-swap() "next"
887                          * (post-swap() "next" as opposed is now a
888                          * dangling pointer).
889                          */
890                         next = vma;
891                 }
892                 if (remove_next == 2) {
893                         remove_next = 1;
894                         end = next->vm_end;
895                         goto again;
896                 }
897                 else if (next)
898                         vma_gap_update(next);
899                 else {
900                         /*
901                          * If remove_next == 2 we obviously can't
902                          * reach this path.
903                          *
904                          * If remove_next == 3 we can't reach this
905                          * path because pre-swap() next is always not
906                          * NULL. pre-swap() "next" is not being
907                          * removed and its next->vm_end is not altered
908                          * (and furthermore "end" already matches
909                          * next->vm_end in remove_next == 3).
910                          *
911                          * We reach this only in the remove_next == 1
912                          * case if the "next" vma that was removed was
913                          * the highest vma of the mm. However in such
914                          * case next->vm_end == "end" and the extended
915                          * "vma" has vma->vm_end == next->vm_end so
916                          * mm->highest_vm_end doesn't need any update
917                          * in remove_next == 1 case.
918                          */
919                         VM_WARN_ON(mm->highest_vm_end != end);
920                 }
921         }
922         if (insert && file)
923                 uprobe_mmap(insert);
924
925         validate_mm(mm);
926
927         return 0;
928 }
929
930 /*
931  * If the vma has a ->close operation then the driver probably needs to release
932  * per-vma resources, so we don't attempt to merge those.
933  */
934 static inline int is_mergeable_vma(struct vm_area_struct *vma,
935                                 struct file *file, unsigned long vm_flags,
936                                 struct vm_userfaultfd_ctx vm_userfaultfd_ctx)
937 {
938         /*
939          * VM_SOFTDIRTY should not prevent from VMA merging, if we
940          * match the flags but dirty bit -- the caller should mark
941          * merged VMA as dirty. If dirty bit won't be excluded from
942          * comparison, we increase pressue on the memory system forcing
943          * the kernel to generate new VMAs when old one could be
944          * extended instead.
945          */
946         if ((vma->vm_flags ^ vm_flags) & ~VM_SOFTDIRTY)
947                 return 0;
948         if (vma->vm_file != file)
949                 return 0;
950         if (vma->vm_ops && vma->vm_ops->close)
951                 return 0;
952         if (!is_mergeable_vm_userfaultfd_ctx(vma, vm_userfaultfd_ctx))
953                 return 0;
954         return 1;
955 }
956
957 static inline int is_mergeable_anon_vma(struct anon_vma *anon_vma1,
958                                         struct anon_vma *anon_vma2,
959                                         struct vm_area_struct *vma)
960 {
961         /*
962          * The list_is_singular() test is to avoid merging VMA cloned from
963          * parents. This can improve scalability caused by anon_vma lock.
964          */
965         if ((!anon_vma1 || !anon_vma2) && (!vma ||
966                 list_is_singular(&vma->anon_vma_chain)))
967                 return 1;
968         return anon_vma1 == anon_vma2;
969 }
970
971 /*
972  * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
973  * in front of (at a lower virtual address and file offset than) the vma.
974  *
975  * We cannot merge two vmas if they have differently assigned (non-NULL)
976  * anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
977  *
978  * We don't check here for the merged mmap wrapping around the end of pagecache
979  * indices (16TB on ia32) because do_mmap_pgoff() does not permit mmap's which
980  * wrap, nor mmaps which cover the final page at index -1UL.
981  */
982 static int
983 can_vma_merge_before(struct vm_area_struct *vma, unsigned long vm_flags,
984                      struct anon_vma *anon_vma, struct file *file,
985                      pgoff_t vm_pgoff,
986                      struct vm_userfaultfd_ctx vm_userfaultfd_ctx)
987 {
988         if (is_mergeable_vma(vma, file, vm_flags, vm_userfaultfd_ctx) &&
989             is_mergeable_anon_vma(anon_vma, vma->anon_vma, vma)) {
990                 if (vma->vm_pgoff == vm_pgoff)
991                         return 1;
992         }
993         return 0;
994 }
995
996 /*
997  * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
998  * beyond (at a higher virtual address and file offset than) the vma.
999  *
1000  * We cannot merge two vmas if they have differently assigned (non-NULL)
1001  * anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
1002  */
1003 static int
1004 can_vma_merge_after(struct vm_area_struct *vma, unsigned long vm_flags,
1005                     struct anon_vma *anon_vma, struct file *file,
1006                     pgoff_t vm_pgoff,
1007                     struct vm_userfaultfd_ctx vm_userfaultfd_ctx)
1008 {
1009         if (is_mergeable_vma(vma, file, vm_flags, vm_userfaultfd_ctx) &&
1010             is_mergeable_anon_vma(anon_vma, vma->anon_vma, vma)) {
1011                 pgoff_t vm_pglen;
1012                 vm_pglen = vma_pages(vma);
1013                 if (vma->vm_pgoff + vm_pglen == vm_pgoff)
1014                         return 1;
1015         }
1016         return 0;
1017 }
1018
1019 /*
1020  * Given a mapping request (addr,end,vm_flags,file,pgoff), figure out
1021  * whether that can be merged with its predecessor or its successor.
1022  * Or both (it neatly fills a hole).
1023  *
1024  * In most cases - when called for mmap, brk or mremap - [addr,end) is
1025  * certain not to be mapped by the time vma_merge is called; but when
1026  * called for mprotect, it is certain to be already mapped (either at
1027  * an offset within prev, or at the start of next), and the flags of
1028  * this area are about to be changed to vm_flags - and the no-change
1029  * case has already been eliminated.
1030  *
1031  * The following mprotect cases have to be considered, where AAAA is
1032  * the area passed down from mprotect_fixup, never extending beyond one
1033  * vma, PPPPPP is the prev vma specified, and NNNNNN the next vma after:
1034  *
1035  *     AAAA             AAAA                AAAA          AAAA
1036  *    PPPPPPNNNNNN    PPPPPPNNNNNN    PPPPPPNNNNNN    PPPPNNNNXXXX
1037  *    cannot merge    might become    might become    might become
1038  *                    PPNNNNNNNNNN    PPPPPPPPPPNN    PPPPPPPPPPPP 6 or
1039  *    mmap, brk or    case 4 below    case 5 below    PPPPPPPPXXXX 7 or
1040  *    mremap move:                                    PPPPXXXXXXXX 8
1041  *        AAAA
1042  *    PPPP    NNNN    PPPPPPPPPPPP    PPPPPPPPNNNN    PPPPNNNNNNNN
1043  *    might become    case 1 below    case 2 below    case 3 below
1044  *
1045  * It is important for case 8 that the the vma NNNN overlapping the
1046  * region AAAA is never going to extended over XXXX. Instead XXXX must
1047  * be extended in region AAAA and NNNN must be removed. This way in
1048  * all cases where vma_merge succeeds, the moment vma_adjust drops the
1049  * rmap_locks, the properties of the merged vma will be already
1050  * correct for the whole merged range. Some of those properties like
1051  * vm_page_prot/vm_flags may be accessed by rmap_walks and they must
1052  * be correct for the whole merged range immediately after the
1053  * rmap_locks are released. Otherwise if XXXX would be removed and
1054  * NNNN would be extended over the XXXX range, remove_migration_ptes
1055  * or other rmap walkers (if working on addresses beyond the "end"
1056  * parameter) may establish ptes with the wrong permissions of NNNN
1057  * instead of the right permissions of XXXX.
1058  */
1059 struct vm_area_struct *vma_merge(struct mm_struct *mm,
1060                         struct vm_area_struct *prev, unsigned long addr,
1061                         unsigned long end, unsigned long vm_flags,
1062                         struct anon_vma *anon_vma, struct file *file,
1063                         pgoff_t pgoff, struct mempolicy *policy,
1064                         struct vm_userfaultfd_ctx vm_userfaultfd_ctx)
1065 {
1066         pgoff_t pglen = (end - addr) >> PAGE_SHIFT;
1067         struct vm_area_struct *area, *next;
1068         int err;
1069
1070         /*
1071          * We later require that vma->vm_flags == vm_flags,
1072          * so this tests vma->vm_flags & VM_SPECIAL, too.
1073          */
1074         if (vm_flags & VM_SPECIAL)
1075                 return NULL;
1076
1077         if (prev)
1078                 next = prev->vm_next;
1079         else
1080                 next = mm->mmap;
1081         area = next;
1082         if (area && area->vm_end == end)                /* cases 6, 7, 8 */
1083                 next = next->vm_next;
1084
1085         /* verify some invariant that must be enforced by the caller */
1086         VM_WARN_ON(prev && addr <= prev->vm_start);
1087         VM_WARN_ON(area && end > area->vm_end);
1088         VM_WARN_ON(addr >= end);
1089
1090         /*
1091          * Can it merge with the predecessor?
1092          */
1093         if (prev && prev->vm_end == addr &&
1094                         mpol_equal(vma_policy(prev), policy) &&
1095                         can_vma_merge_after(prev, vm_flags,
1096                                             anon_vma, file, pgoff,
1097                                             vm_userfaultfd_ctx)) {
1098                 /*
1099                  * OK, it can.  Can we now merge in the successor as well?
1100                  */
1101                 if (next && end == next->vm_start &&
1102                                 mpol_equal(policy, vma_policy(next)) &&
1103                                 can_vma_merge_before(next, vm_flags,
1104                                                      anon_vma, file,
1105                                                      pgoff+pglen,
1106                                                      vm_userfaultfd_ctx) &&
1107                                 is_mergeable_anon_vma(prev->anon_vma,
1108                                                       next->anon_vma, NULL)) {
1109                                                         /* cases 1, 6 */
1110                         err = __vma_adjust(prev, prev->vm_start,
1111                                          next->vm_end, prev->vm_pgoff, NULL,
1112                                          prev);
1113                 } else                                  /* cases 2, 5, 7 */
1114                         err = __vma_adjust(prev, prev->vm_start,
1115                                          end, prev->vm_pgoff, NULL, prev);
1116                 if (err)
1117                         return NULL;
1118                 khugepaged_enter_vma_merge(prev, vm_flags);
1119                 return prev;
1120         }
1121
1122         /*
1123          * Can this new request be merged in front of next?
1124          */
1125         if (next && end == next->vm_start &&
1126                         mpol_equal(policy, vma_policy(next)) &&
1127                         can_vma_merge_before(next, vm_flags,
1128                                              anon_vma, file, pgoff+pglen,
1129                                              vm_userfaultfd_ctx)) {
1130                 if (prev && addr < prev->vm_end)        /* case 4 */
1131                         err = __vma_adjust(prev, prev->vm_start,
1132                                          addr, prev->vm_pgoff, NULL, next);
1133                 else {                                  /* cases 3, 8 */
1134                         err = __vma_adjust(area, addr, next->vm_end,
1135                                          next->vm_pgoff - pglen, NULL, next);
1136                         /*
1137                          * In case 3 area is already equal to next and
1138                          * this is a noop, but in case 8 "area" has
1139                          * been removed and next was expanded over it.
1140                          */
1141                         area = next;
1142                 }
1143                 if (err)
1144                         return NULL;
1145                 khugepaged_enter_vma_merge(area, vm_flags);
1146                 return area;
1147         }
1148
1149         return NULL;
1150 }
1151
1152 /*
1153  * Rough compatbility check to quickly see if it's even worth looking
1154  * at sharing an anon_vma.
1155  *
1156  * They need to have the same vm_file, and the flags can only differ
1157  * in things that mprotect may change.
1158  *
1159  * NOTE! The fact that we share an anon_vma doesn't _have_ to mean that
1160  * we can merge the two vma's. For example, we refuse to merge a vma if
1161  * there is a vm_ops->close() function, because that indicates that the
1162  * driver is doing some kind of reference counting. But that doesn't
1163  * really matter for the anon_vma sharing case.
1164  */
1165 static int anon_vma_compatible(struct vm_area_struct *a, struct vm_area_struct *b)
1166 {
1167         return a->vm_end == b->vm_start &&
1168                 mpol_equal(vma_policy(a), vma_policy(b)) &&
1169                 a->vm_file == b->vm_file &&
1170                 !((a->vm_flags ^ b->vm_flags) & ~(VM_READ|VM_WRITE|VM_EXEC|VM_SOFTDIRTY)) &&
1171                 b->vm_pgoff == a->vm_pgoff + ((b->vm_start - a->vm_start) >> PAGE_SHIFT);
1172 }
1173
1174 /*
1175  * Do some basic sanity checking to see if we can re-use the anon_vma
1176  * from 'old'. The 'a'/'b' vma's are in VM order - one of them will be
1177  * the same as 'old', the other will be the new one that is trying
1178  * to share the anon_vma.
1179  *
1180  * NOTE! This runs with mm_sem held for reading, so it is possible that
1181  * the anon_vma of 'old' is concurrently in the process of being set up
1182  * by another page fault trying to merge _that_. But that's ok: if it
1183  * is being set up, that automatically means that it will be a singleton
1184  * acceptable for merging, so we can do all of this optimistically. But
1185  * we do that READ_ONCE() to make sure that we never re-load the pointer.
1186  *
1187  * IOW: that the "list_is_singular()" test on the anon_vma_chain only
1188  * matters for the 'stable anon_vma' case (ie the thing we want to avoid
1189  * is to return an anon_vma that is "complex" due to having gone through
1190  * a fork).
1191  *
1192  * We also make sure that the two vma's are compatible (adjacent,
1193  * and with the same memory policies). That's all stable, even with just
1194  * a read lock on the mm_sem.
1195  */
1196 static struct anon_vma *reusable_anon_vma(struct vm_area_struct *old, struct vm_area_struct *a, struct vm_area_struct *b)
1197 {
1198         if (anon_vma_compatible(a, b)) {
1199                 struct anon_vma *anon_vma = READ_ONCE(old->anon_vma);
1200
1201                 if (anon_vma && list_is_singular(&old->anon_vma_chain))
1202                         return anon_vma;
1203         }
1204         return NULL;
1205 }
1206
1207 /*
1208  * find_mergeable_anon_vma is used by anon_vma_prepare, to check
1209  * neighbouring vmas for a suitable anon_vma, before it goes off
1210  * to allocate a new anon_vma.  It checks because a repetitive
1211  * sequence of mprotects and faults may otherwise lead to distinct
1212  * anon_vmas being allocated, preventing vma merge in subsequent
1213  * mprotect.
1214  */
1215 struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *vma)
1216 {
1217         struct anon_vma *anon_vma;
1218         struct vm_area_struct *near;
1219
1220         near = vma->vm_next;
1221         if (!near)
1222                 goto try_prev;
1223
1224         anon_vma = reusable_anon_vma(near, vma, near);
1225         if (anon_vma)
1226                 return anon_vma;
1227 try_prev:
1228         near = vma->vm_prev;
1229         if (!near)
1230                 goto none;
1231
1232         anon_vma = reusable_anon_vma(near, near, vma);
1233         if (anon_vma)
1234                 return anon_vma;
1235 none:
1236         /*
1237          * There's no absolute need to look only at touching neighbours:
1238          * we could search further afield for "compatible" anon_vmas.
1239          * But it would probably just be a waste of time searching,
1240          * or lead to too many vmas hanging off the same anon_vma.
1241          * We're trying to allow mprotect remerging later on,
1242          * not trying to minimize memory used for anon_vmas.
1243          */
1244         return NULL;
1245 }
1246
1247 /*
1248  * If a hint addr is less than mmap_min_addr change hint to be as
1249  * low as possible but still greater than mmap_min_addr
1250  */
1251 static inline unsigned long round_hint_to_min(unsigned long hint)
1252 {
1253         hint &= PAGE_MASK;
1254         if (((void *)hint != NULL) &&
1255             (hint < mmap_min_addr))
1256                 return PAGE_ALIGN(mmap_min_addr);
1257         return hint;
1258 }
1259
1260 static inline int mlock_future_check(struct mm_struct *mm,
1261                                      unsigned long flags,
1262                                      unsigned long len)
1263 {
1264         unsigned long locked, lock_limit;
1265
1266         /*  mlock MCL_FUTURE? */
1267         if (flags & VM_LOCKED) {
1268                 locked = len >> PAGE_SHIFT;
1269                 locked += mm->locked_vm;
1270                 lock_limit = rlimit(RLIMIT_MEMLOCK);
1271                 lock_limit >>= PAGE_SHIFT;
1272                 if (locked > lock_limit && !capable(CAP_IPC_LOCK))
1273                         return -EAGAIN;
1274         }
1275         return 0;
1276 }
1277
1278 /*
1279  * The caller must hold down_write(&current->mm->mmap_sem).
1280  */
1281 unsigned long do_mmap(struct file *file, unsigned long addr,
1282                         unsigned long len, unsigned long prot,
1283                         unsigned long flags, vm_flags_t vm_flags,
1284                         unsigned long pgoff, unsigned long *populate)
1285 {
1286         struct mm_struct *mm = current->mm;
1287         int pkey = 0;
1288
1289         *populate = 0;
1290
1291         if (!len)
1292                 return -EINVAL;
1293
1294         /*
1295          * Does the application expect PROT_READ to imply PROT_EXEC?
1296          *
1297          * (the exception is when the underlying filesystem is noexec
1298          *  mounted, in which case we dont add PROT_EXEC.)
1299          */
1300         if ((prot & PROT_READ) && (current->personality & READ_IMPLIES_EXEC))
1301                 if (!(file && path_noexec(&file->f_path)))
1302                         prot |= PROT_EXEC;
1303
1304         if (!(flags & MAP_FIXED))
1305                 addr = round_hint_to_min(addr);
1306
1307         /* Careful about overflows.. */
1308         len = PAGE_ALIGN(len);
1309         if (!len)
1310                 return -ENOMEM;
1311
1312         /* offset overflow? */
1313         if ((pgoff + (len >> PAGE_SHIFT)) < pgoff)
1314                 return -EOVERFLOW;
1315
1316         /* Too many mappings? */
1317         if (mm->map_count > sysctl_max_map_count)
1318                 return -ENOMEM;
1319
1320         /* Obtain the address to map to. we verify (or select) it and ensure
1321          * that it represents a valid section of the address space.
1322          */
1323         addr = get_unmapped_area(file, addr, len, pgoff, flags);
1324         if (offset_in_page(addr))
1325                 return addr;
1326
1327         if (prot == PROT_EXEC) {
1328                 pkey = execute_only_pkey(mm);
1329                 if (pkey < 0)
1330                         pkey = 0;
1331         }
1332
1333         /* Do simple checking here so the lower-level routines won't have
1334          * to. we assume access permissions have been handled by the open
1335          * of the memory object, so we don't do any here.
1336          */
1337         vm_flags |= calc_vm_prot_bits(prot, pkey) | calc_vm_flag_bits(flags) |
1338                         mm->def_flags | VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC;
1339
1340         if (flags & MAP_LOCKED)
1341                 if (!can_do_mlock())
1342                         return -EPERM;
1343
1344         if (mlock_future_check(mm, vm_flags, len))
1345                 return -EAGAIN;
1346
1347         if (file) {
1348                 struct inode *inode = file_inode(file);
1349
1350                 switch (flags & MAP_TYPE) {
1351                 case MAP_SHARED:
1352                         if ((prot&PROT_WRITE) && !(file->f_mode&FMODE_WRITE))
1353                                 return -EACCES;
1354
1355                         /*
1356                          * Make sure we don't allow writing to an append-only
1357                          * file..
1358                          */
1359                         if (IS_APPEND(inode) && (file->f_mode & FMODE_WRITE))
1360                                 return -EACCES;
1361
1362                         /*
1363                          * Make sure there are no mandatory locks on the file.
1364                          */
1365                         if (locks_verify_locked(file))
1366                                 return -EAGAIN;
1367
1368                         vm_flags |= VM_SHARED | VM_MAYSHARE;
1369                         if (!(file->f_mode & FMODE_WRITE))
1370                                 vm_flags &= ~(VM_MAYWRITE | VM_SHARED);
1371
1372                         /* fall through */
1373                 case MAP_PRIVATE:
1374                         if (!(file->f_mode & FMODE_READ))
1375                                 return -EACCES;
1376                         if (path_noexec(&file->f_path)) {
1377                                 if (vm_flags & VM_EXEC)
1378                                         return -EPERM;
1379                                 vm_flags &= ~VM_MAYEXEC;
1380                         }
1381
1382                         if (!file->f_op->mmap)
1383                                 return -ENODEV;
1384                         if (vm_flags & (VM_GROWSDOWN|VM_GROWSUP))
1385                                 return -EINVAL;
1386                         break;
1387
1388                 default:
1389                         return -EINVAL;
1390                 }
1391         } else {
1392                 switch (flags & MAP_TYPE) {
1393                 case MAP_SHARED:
1394                         if (vm_flags & (VM_GROWSDOWN|VM_GROWSUP))
1395                                 return -EINVAL;
1396                         /*
1397                          * Ignore pgoff.
1398                          */
1399                         pgoff = 0;
1400                         vm_flags |= VM_SHARED | VM_MAYSHARE;
1401                         break;
1402                 case MAP_PRIVATE:
1403                         /*
1404                          * Set pgoff according to addr for anon_vma.
1405                          */
1406                         pgoff = addr >> PAGE_SHIFT;
1407                         break;
1408                 default:
1409                         return -EINVAL;
1410                 }
1411         }
1412
1413         /*
1414          * Set 'VM_NORESERVE' if we should not account for the
1415          * memory use of this mapping.
1416          */
1417         if (flags & MAP_NORESERVE) {
1418                 /* We honor MAP_NORESERVE if allowed to overcommit */
1419                 if (sysctl_overcommit_memory != OVERCOMMIT_NEVER)
1420                         vm_flags |= VM_NORESERVE;
1421
1422                 /* hugetlb applies strict overcommit unless MAP_NORESERVE */
1423                 if (file && is_file_hugepages(file))
1424                         vm_flags |= VM_NORESERVE;
1425         }
1426
1427         addr = mmap_region(file, addr, len, vm_flags, pgoff);
1428         if (!IS_ERR_VALUE(addr) &&
1429             ((vm_flags & VM_LOCKED) ||
1430              (flags & (MAP_POPULATE | MAP_NONBLOCK)) == MAP_POPULATE))
1431                 *populate = len;
1432         return addr;
1433 }
1434
1435 SYSCALL_DEFINE6(mmap_pgoff, unsigned long, addr, unsigned long, len,
1436                 unsigned long, prot, unsigned long, flags,
1437                 unsigned long, fd, unsigned long, pgoff)
1438 {
1439         struct file *file = NULL;
1440         unsigned long retval;
1441
1442         if (!(flags & MAP_ANONYMOUS)) {
1443                 audit_mmap_fd(fd, flags);
1444                 file = fget(fd);
1445                 if (!file)
1446                         return -EBADF;
1447                 if (is_file_hugepages(file))
1448                         len = ALIGN(len, huge_page_size(hstate_file(file)));
1449                 retval = -EINVAL;
1450                 if (unlikely(flags & MAP_HUGETLB && !is_file_hugepages(file)))
1451                         goto out_fput;
1452         } else if (flags & MAP_HUGETLB) {
1453                 struct user_struct *user = NULL;
1454                 struct hstate *hs;
1455
1456                 hs = hstate_sizelog((flags >> MAP_HUGE_SHIFT) & SHM_HUGE_MASK);
1457                 if (!hs)
1458                         return -EINVAL;
1459
1460                 len = ALIGN(len, huge_page_size(hs));
1461                 /*
1462                  * VM_NORESERVE is used because the reservations will be
1463                  * taken when vm_ops->mmap() is called
1464                  * A dummy user value is used because we are not locking
1465                  * memory so no accounting is necessary
1466                  */
1467                 file = hugetlb_file_setup(HUGETLB_ANON_FILE, len,
1468                                 VM_NORESERVE,
1469                                 &user, HUGETLB_ANONHUGE_INODE,
1470                                 (flags >> MAP_HUGE_SHIFT) & MAP_HUGE_MASK);
1471                 if (IS_ERR(file))
1472                         return PTR_ERR(file);
1473         }
1474
1475         flags &= ~(MAP_EXECUTABLE | MAP_DENYWRITE);
1476
1477         retval = vm_mmap_pgoff(file, addr, len, prot, flags, pgoff);
1478 out_fput:
1479         if (file)
1480                 fput(file);
1481         return retval;
1482 }
1483
1484 #ifdef __ARCH_WANT_SYS_OLD_MMAP
1485 struct mmap_arg_struct {
1486         unsigned long addr;
1487         unsigned long len;
1488         unsigned long prot;
1489         unsigned long flags;
1490         unsigned long fd;
1491         unsigned long offset;
1492 };
1493
1494 SYSCALL_DEFINE1(old_mmap, struct mmap_arg_struct __user *, arg)
1495 {
1496         struct mmap_arg_struct a;
1497
1498         if (copy_from_user(&a, arg, sizeof(a)))
1499                 return -EFAULT;
1500         if (offset_in_page(a.offset))
1501                 return -EINVAL;
1502
1503         return sys_mmap_pgoff(a.addr, a.len, a.prot, a.flags, a.fd,
1504                               a.offset >> PAGE_SHIFT);
1505 }
1506 #endif /* __ARCH_WANT_SYS_OLD_MMAP */
1507
1508 /*
1509  * Some shared mappigns will want the pages marked read-only
1510  * to track write events. If so, we'll downgrade vm_page_prot
1511  * to the private version (using protection_map[] without the
1512  * VM_SHARED bit).
1513  */
1514 int vma_wants_writenotify(struct vm_area_struct *vma, pgprot_t vm_page_prot)
1515 {
1516         vm_flags_t vm_flags = vma->vm_flags;
1517         const struct vm_operations_struct *vm_ops = vma->vm_ops;
1518
1519         /* If it was private or non-writable, the write bit is already clear */
1520         if ((vm_flags & (VM_WRITE|VM_SHARED)) != ((VM_WRITE|VM_SHARED)))
1521                 return 0;
1522
1523         /* The backer wishes to know when pages are first written to? */
1524         if (vm_ops && (vm_ops->page_mkwrite || vm_ops->pfn_mkwrite))
1525                 return 1;
1526
1527         /* The open routine did something to the protections that pgprot_modify
1528          * won't preserve? */
1529         if (pgprot_val(vm_page_prot) !=
1530             pgprot_val(vm_pgprot_modify(vm_page_prot, vm_flags)))
1531                 return 0;
1532
1533         /* Do we need to track softdirty? */
1534         if (IS_ENABLED(CONFIG_MEM_SOFT_DIRTY) && !(vm_flags & VM_SOFTDIRTY))
1535                 return 1;
1536
1537         /* Specialty mapping? */
1538         if (vm_flags & VM_PFNMAP)
1539                 return 0;
1540
1541         /* Can the mapping track the dirty pages? */
1542         return vma->vm_file && vma->vm_file->f_mapping &&
1543                 mapping_cap_account_dirty(vma->vm_file->f_mapping);
1544 }
1545
1546 /*
1547  * We account for memory if it's a private writeable mapping,
1548  * not hugepages and VM_NORESERVE wasn't set.
1549  */
1550 static inline int accountable_mapping(struct file *file, vm_flags_t vm_flags)
1551 {
1552         /*
1553          * hugetlb has its own accounting separate from the core VM
1554          * VM_HUGETLB may not be set yet so we cannot check for that flag.
1555          */
1556         if (file && is_file_hugepages(file))
1557                 return 0;
1558
1559         return (vm_flags & (VM_NORESERVE | VM_SHARED | VM_WRITE)) == VM_WRITE;
1560 }
1561
1562 unsigned long mmap_region(struct file *file, unsigned long addr,
1563                 unsigned long len, vm_flags_t vm_flags, unsigned long pgoff)
1564 {
1565         struct mm_struct *mm = current->mm;
1566         struct vm_area_struct *vma, *prev;
1567         int error;
1568         struct rb_node **rb_link, *rb_parent;
1569         unsigned long charged = 0;
1570
1571         /* Check against address space limit. */
1572         if (!may_expand_vm(mm, vm_flags, len >> PAGE_SHIFT)) {
1573                 unsigned long nr_pages;
1574
1575                 /*
1576                  * MAP_FIXED may remove pages of mappings that intersects with
1577                  * requested mapping. Account for the pages it would unmap.
1578                  */
1579                 nr_pages = count_vma_pages_range(mm, addr, addr + len);
1580
1581                 if (!may_expand_vm(mm, vm_flags,
1582                                         (len >> PAGE_SHIFT) - nr_pages))
1583                         return -ENOMEM;
1584         }
1585
1586         /* Clear old maps */
1587         while (find_vma_links(mm, addr, addr + len, &prev, &rb_link,
1588                               &rb_parent)) {
1589                 if (do_munmap(mm, addr, len))
1590                         return -ENOMEM;
1591         }
1592
1593         /*
1594          * Private writable mapping: check memory availability
1595          */
1596         if (accountable_mapping(file, vm_flags)) {
1597                 charged = len >> PAGE_SHIFT;
1598                 if (security_vm_enough_memory_mm(mm, charged))
1599                         return -ENOMEM;
1600                 vm_flags |= VM_ACCOUNT;
1601         }
1602
1603         /*
1604          * Can we just expand an old mapping?
1605          */
1606         vma = vma_merge(mm, prev, addr, addr + len, vm_flags,
1607                         NULL, file, pgoff, NULL, NULL_VM_UFFD_CTX);
1608         if (vma)
1609                 goto out;
1610
1611         /*
1612          * Determine the object being mapped and call the appropriate
1613          * specific mapper. the address has already been validated, but
1614          * not unmapped, but the maps are removed from the list.
1615          */
1616         vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
1617         if (!vma) {
1618                 error = -ENOMEM;
1619                 goto unacct_error;
1620         }
1621
1622         vma->vm_mm = mm;
1623         vma->vm_start = addr;
1624         vma->vm_end = addr + len;
1625         vma->vm_flags = vm_flags;
1626         vma->vm_page_prot = vm_get_page_prot(vm_flags);
1627         vma->vm_pgoff = pgoff;
1628         INIT_LIST_HEAD(&vma->anon_vma_chain);
1629
1630         if (file) {
1631                 if (vm_flags & VM_DENYWRITE) {
1632                         error = deny_write_access(file);
1633                         if (error)
1634                                 goto free_vma;
1635                 }
1636                 if (vm_flags & VM_SHARED) {
1637                         error = mapping_map_writable(file->f_mapping);
1638                         if (error)
1639                                 goto allow_write_and_free_vma;
1640                 }
1641
1642                 /* ->mmap() can change vma->vm_file, but must guarantee that
1643                  * vma_link() below can deny write-access if VM_DENYWRITE is set
1644                  * and map writably if VM_SHARED is set. This usually means the
1645                  * new file must not have been exposed to user-space, yet.
1646                  */
1647                 vma->vm_file = get_file(file);
1648                 error = file->f_op->mmap(file, vma);
1649                 if (error)
1650                         goto unmap_and_free_vma;
1651
1652                 /* Can addr have changed??
1653                  *
1654                  * Answer: Yes, several device drivers can do it in their
1655                  *         f_op->mmap method. -DaveM
1656                  * Bug: If addr is changed, prev, rb_link, rb_parent should
1657                  *      be updated for vma_link()
1658                  */
1659                 WARN_ON_ONCE(addr != vma->vm_start);
1660
1661                 addr = vma->vm_start;
1662                 vm_flags = vma->vm_flags;
1663         } else if (vm_flags & VM_SHARED) {
1664                 error = shmem_zero_setup(vma);
1665                 if (error)
1666                         goto free_vma;
1667         }
1668
1669         vma_link(mm, vma, prev, rb_link, rb_parent);
1670         /* Once vma denies write, undo our temporary denial count */
1671         if (file) {
1672                 if (vm_flags & VM_SHARED)
1673                         mapping_unmap_writable(file->f_mapping);
1674                 if (vm_flags & VM_DENYWRITE)
1675                         allow_write_access(file);
1676         }
1677         file = vma->vm_file;
1678 out:
1679         perf_event_mmap(vma);
1680
1681         vm_stat_account(mm, vm_flags, len >> PAGE_SHIFT);
1682         if (vm_flags & VM_LOCKED) {
1683                 if (!((vm_flags & VM_SPECIAL) || is_vm_hugetlb_page(vma) ||
1684                                         vma == get_gate_vma(current->mm)))
1685                         mm->locked_vm += (len >> PAGE_SHIFT);
1686                 else
1687                         vma->vm_flags &= VM_LOCKED_CLEAR_MASK;
1688         }
1689
1690         if (file)
1691                 uprobe_mmap(vma);
1692
1693         /*
1694          * New (or expanded) vma always get soft dirty status.
1695          * Otherwise user-space soft-dirty page tracker won't
1696          * be able to distinguish situation when vma area unmapped,
1697          * then new mapped in-place (which must be aimed as
1698          * a completely new data area).
1699          */
1700         vma->vm_flags |= VM_SOFTDIRTY;
1701
1702         vma_set_page_prot(vma);
1703
1704         return addr;
1705
1706 unmap_and_free_vma:
1707         vma->vm_file = NULL;
1708         fput(file);
1709
1710         /* Undo any partial mapping done by a device driver. */
1711         unmap_region(mm, vma, prev, vma->vm_start, vma->vm_end);
1712         charged = 0;
1713         if (vm_flags & VM_SHARED)
1714                 mapping_unmap_writable(file->f_mapping);
1715 allow_write_and_free_vma:
1716         if (vm_flags & VM_DENYWRITE)
1717                 allow_write_access(file);
1718 free_vma:
1719         kmem_cache_free(vm_area_cachep, vma);
1720 unacct_error:
1721         if (charged)
1722                 vm_unacct_memory(charged);
1723         return error;
1724 }
1725
1726 unsigned long unmapped_area(struct vm_unmapped_area_info *info)
1727 {
1728         /*
1729          * We implement the search by looking for an rbtree node that
1730          * immediately follows a suitable gap. That is,
1731          * - gap_start = vma->vm_prev->vm_end <= info->high_limit - length;
1732          * - gap_end   = vma->vm_start        >= info->low_limit  + length;
1733          * - gap_end - gap_start >= length
1734          */
1735
1736         struct mm_struct *mm = current->mm;
1737         struct vm_area_struct *vma;
1738         unsigned long length, low_limit, high_limit, gap_start, gap_end;
1739
1740         /* Adjust search length to account for worst case alignment overhead */
1741         length = info->length + info->align_mask;
1742         if (length < info->length)
1743                 return -ENOMEM;
1744
1745         /* Adjust search limits by the desired length */
1746         if (info->high_limit < length)
1747                 return -ENOMEM;
1748         high_limit = info->high_limit - length;
1749
1750         if (info->low_limit > high_limit)
1751                 return -ENOMEM;
1752         low_limit = info->low_limit + length;
1753
1754         /* Check if rbtree root looks promising */
1755         if (RB_EMPTY_ROOT(&mm->mm_rb))
1756                 goto check_highest;
1757         vma = rb_entry(mm->mm_rb.rb_node, struct vm_area_struct, vm_rb);
1758         if (vma->rb_subtree_gap < length)
1759                 goto check_highest;
1760
1761         while (true) {
1762                 /* Visit left subtree if it looks promising */
1763                 gap_end = vma->vm_start;
1764                 if (gap_end >= low_limit && vma->vm_rb.rb_left) {
1765                         struct vm_area_struct *left =
1766                                 rb_entry(vma->vm_rb.rb_left,
1767                                          struct vm_area_struct, vm_rb);
1768                         if (left->rb_subtree_gap >= length) {
1769                                 vma = left;
1770                                 continue;
1771                         }
1772                 }
1773
1774                 gap_start = vma->vm_prev ? vma->vm_prev->vm_end : 0;
1775 check_current:
1776                 /* Check if current node has a suitable gap */
1777                 if (gap_start > high_limit)
1778                         return -ENOMEM;
1779                 if (gap_end >= low_limit && gap_end - gap_start >= length)
1780                         goto found;
1781
1782                 /* Visit right subtree if it looks promising */
1783                 if (vma->vm_rb.rb_right) {
1784                         struct vm_area_struct *right =
1785                                 rb_entry(vma->vm_rb.rb_right,
1786                                          struct vm_area_struct, vm_rb);
1787                         if (right->rb_subtree_gap >= length) {
1788                                 vma = right;
1789                                 continue;
1790                         }
1791                 }
1792
1793                 /* Go back up the rbtree to find next candidate node */
1794                 while (true) {
1795                         struct rb_node *prev = &vma->vm_rb;
1796                         if (!rb_parent(prev))
1797                                 goto check_highest;
1798                         vma = rb_entry(rb_parent(prev),
1799                                        struct vm_area_struct, vm_rb);
1800                         if (prev == vma->vm_rb.rb_left) {
1801                                 gap_start = vma->vm_prev->vm_end;
1802                                 gap_end = vma->vm_start;
1803                                 goto check_current;
1804                         }
1805                 }
1806         }
1807
1808 check_highest:
1809         /* Check highest gap, which does not precede any rbtree node */
1810         gap_start = mm->highest_vm_end;
1811         gap_end = ULONG_MAX;  /* Only for VM_BUG_ON below */
1812         if (gap_start > high_limit)
1813                 return -ENOMEM;
1814
1815 found:
1816         /* We found a suitable gap. Clip it with the original low_limit. */
1817         if (gap_start < info->low_limit)
1818                 gap_start = info->low_limit;
1819
1820         /* Adjust gap address to the desired alignment */
1821         gap_start += (info->align_offset - gap_start) & info->align_mask;
1822
1823         VM_BUG_ON(gap_start + info->length > info->high_limit);
1824         VM_BUG_ON(gap_start + info->length > gap_end);
1825         return gap_start;
1826 }
1827
1828 unsigned long unmapped_area_topdown(struct vm_unmapped_area_info *info)
1829 {
1830         struct mm_struct *mm = current->mm;
1831         struct vm_area_struct *vma;
1832         unsigned long length, low_limit, high_limit, gap_start, gap_end;
1833
1834         /* Adjust search length to account for worst case alignment overhead */
1835         length = info->length + info->align_mask;
1836         if (length < info->length)
1837                 return -ENOMEM;
1838
1839         /*
1840          * Adjust search limits by the desired length.
1841          * See implementation comment at top of unmapped_area().
1842          */
1843         gap_end = info->high_limit;
1844         if (gap_end < length)
1845                 return -ENOMEM;
1846         high_limit = gap_end - length;
1847
1848         if (info->low_limit > high_limit)
1849                 return -ENOMEM;
1850         low_limit = info->low_limit + length;
1851
1852         /* Check highest gap, which does not precede any rbtree node */
1853         gap_start = mm->highest_vm_end;
1854         if (gap_start <= high_limit)
1855                 goto found_highest;
1856
1857         /* Check if rbtree root looks promising */
1858         if (RB_EMPTY_ROOT(&mm->mm_rb))
1859                 return -ENOMEM;
1860         vma = rb_entry(mm->mm_rb.rb_node, struct vm_area_struct, vm_rb);
1861         if (vma->rb_subtree_gap < length)
1862                 return -ENOMEM;
1863
1864         while (true) {
1865                 /* Visit right subtree if it looks promising */
1866                 gap_start = vma->vm_prev ? vma->vm_prev->vm_end : 0;
1867                 if (gap_start <= high_limit && vma->vm_rb.rb_right) {
1868                         struct vm_area_struct *right =
1869                                 rb_entry(vma->vm_rb.rb_right,
1870                                          struct vm_area_struct, vm_rb);
1871                         if (right->rb_subtree_gap >= length) {
1872                                 vma = right;
1873                                 continue;
1874                         }
1875                 }
1876
1877 check_current:
1878                 /* Check if current node has a suitable gap */
1879                 gap_end = vma->vm_start;
1880                 if (gap_end < low_limit)
1881                         return -ENOMEM;
1882                 if (gap_start <= high_limit && gap_end - gap_start >= length)
1883                         goto found;
1884
1885                 /* Visit left subtree if it looks promising */
1886                 if (vma->vm_rb.rb_left) {
1887                         struct vm_area_struct *left =
1888                                 rb_entry(vma->vm_rb.rb_left,
1889                                          struct vm_area_struct, vm_rb);
1890                         if (left->rb_subtree_gap >= length) {
1891                                 vma = left;
1892                                 continue;
1893                         }
1894                 }
1895
1896                 /* Go back up the rbtree to find next candidate node */
1897                 while (true) {
1898                         struct rb_node *prev = &vma->vm_rb;
1899                         if (!rb_parent(prev))
1900                                 return -ENOMEM;
1901                         vma = rb_entry(rb_parent(prev),
1902                                        struct vm_area_struct, vm_rb);
1903                         if (prev == vma->vm_rb.rb_right) {
1904                                 gap_start = vma->vm_prev ?
1905                                         vma->vm_prev->vm_end : 0;
1906                                 goto check_current;
1907                         }
1908                 }
1909         }
1910
1911 found:
1912         /* We found a suitable gap. Clip it with the original high_limit. */
1913         if (gap_end > info->high_limit)
1914                 gap_end = info->high_limit;
1915
1916 found_highest:
1917         /* Compute highest gap address at the desired alignment */
1918         gap_end -= info->length;
1919         gap_end -= (gap_end - info->align_offset) & info->align_mask;
1920
1921         VM_BUG_ON(gap_end < info->low_limit);
1922         VM_BUG_ON(gap_end < gap_start);
1923         return gap_end;
1924 }
1925
1926 /* Get an address range which is currently unmapped.
1927  * For shmat() with addr=0.
1928  *
1929  * Ugly calling convention alert:
1930  * Return value with the low bits set means error value,
1931  * ie
1932  *      if (ret & ~PAGE_MASK)
1933  *              error = ret;
1934  *
1935  * This function "knows" that -ENOMEM has the bits set.
1936  */
1937 #ifndef HAVE_ARCH_UNMAPPED_AREA
1938 unsigned long
1939 arch_get_unmapped_area(struct file *filp, unsigned long addr,
1940                 unsigned long len, unsigned long pgoff, unsigned long flags)
1941 {
1942         struct mm_struct *mm = current->mm;
1943         struct vm_area_struct *vma;
1944         struct vm_unmapped_area_info info;
1945
1946         if (len > TASK_SIZE - mmap_min_addr)
1947                 return -ENOMEM;
1948
1949         if (flags & MAP_FIXED)
1950                 return addr;
1951
1952         if (addr) {
1953                 addr = PAGE_ALIGN(addr);
1954                 vma = find_vma(mm, addr);
1955                 if (TASK_SIZE - len >= addr && addr >= mmap_min_addr &&
1956                     (!vma || addr + len <= vma->vm_start))
1957                         return addr;
1958         }
1959
1960         info.flags = 0;
1961         info.length = len;
1962         info.low_limit = mm->mmap_base;
1963         info.high_limit = TASK_SIZE;
1964         info.align_mask = 0;
1965         return vm_unmapped_area(&info);
1966 }
1967 #endif
1968
1969 /*
1970  * This mmap-allocator allocates new areas top-down from below the
1971  * stack's low limit (the base):
1972  */
1973 #ifndef HAVE_ARCH_UNMAPPED_AREA_TOPDOWN
1974 unsigned long
1975 arch_get_unmapped_area_topdown(struct file *filp, const unsigned long addr0,
1976                           const unsigned long len, const unsigned long pgoff,
1977                           const unsigned long flags)
1978 {
1979         struct vm_area_struct *vma;
1980         struct mm_struct *mm = current->mm;
1981         unsigned long addr = addr0;
1982         struct vm_unmapped_area_info info;
1983
1984         /* requested length too big for entire address space */
1985         if (len > TASK_SIZE - mmap_min_addr)
1986                 return -ENOMEM;
1987
1988         if (flags & MAP_FIXED)
1989                 return addr;
1990
1991         /* requesting a specific address */
1992         if (addr) {
1993                 addr = PAGE_ALIGN(addr);
1994                 vma = find_vma(mm, addr);
1995                 if (TASK_SIZE - len >= addr && addr >= mmap_min_addr &&
1996                                 (!vma || addr + len <= vma->vm_start))
1997                         return addr;
1998         }
1999
2000         info.flags = VM_UNMAPPED_AREA_TOPDOWN;
2001         info.length = len;
2002         info.low_limit = max(PAGE_SIZE, mmap_min_addr);
2003         info.high_limit = mm->mmap_base;
2004         info.align_mask = 0;
2005         addr = vm_unmapped_area(&info);
2006
2007         /*
2008          * A failed mmap() very likely causes application failure,
2009          * so fall back to the bottom-up function here. This scenario
2010          * can happen with large stack limits and large mmap()
2011          * allocations.
2012          */
2013         if (offset_in_page(addr)) {
2014                 VM_BUG_ON(addr != -ENOMEM);
2015                 info.flags = 0;
2016                 info.low_limit = TASK_UNMAPPED_BASE;
2017                 info.high_limit = TASK_SIZE;
2018                 addr = vm_unmapped_area(&info);
2019         }
2020
2021         return addr;
2022 }
2023 #endif
2024
2025 unsigned long
2026 get_unmapped_area(struct file *file, unsigned long addr, unsigned long len,
2027                 unsigned long pgoff, unsigned long flags)
2028 {
2029         unsigned long (*get_area)(struct file *, unsigned long,
2030                                   unsigned long, unsigned long, unsigned long);
2031
2032         unsigned long error = arch_mmap_check(addr, len, flags);
2033         if (error)
2034                 return error;
2035
2036         /* Careful about overflows.. */
2037         if (len > TASK_SIZE)
2038                 return -ENOMEM;
2039
2040         get_area = current->mm->get_unmapped_area;
2041         if (file) {
2042                 if (file->f_op->get_unmapped_area)
2043                         get_area = file->f_op->get_unmapped_area;
2044         } else if (flags & MAP_SHARED) {
2045                 /*
2046                  * mmap_region() will call shmem_zero_setup() to create a file,
2047                  * so use shmem's get_unmapped_area in case it can be huge.
2048                  * do_mmap_pgoff() will clear pgoff, so match alignment.
2049                  */
2050                 pgoff = 0;
2051                 get_area = shmem_get_unmapped_area;
2052         }
2053
2054         addr = get_area(file, addr, len, pgoff, flags);
2055         if (IS_ERR_VALUE(addr))
2056                 return addr;
2057
2058         if (addr > TASK_SIZE - len)
2059                 return -ENOMEM;
2060         if (offset_in_page(addr))
2061                 return -EINVAL;
2062
2063         error = security_mmap_addr(addr);
2064         return error ? error : addr;
2065 }
2066
2067 EXPORT_SYMBOL(get_unmapped_area);
2068
2069 /* Look up the first VMA which satisfies  addr < vm_end,  NULL if none. */
2070 struct vm_area_struct *find_vma(struct mm_struct *mm, unsigned long addr)
2071 {
2072         struct rb_node *rb_node;
2073         struct vm_area_struct *vma;
2074
2075         /* Check the cache first. */
2076         vma = vmacache_find(mm, addr);
2077         if (likely(vma))
2078                 return vma;
2079
2080         rb_node = mm->mm_rb.rb_node;
2081
2082         while (rb_node) {
2083                 struct vm_area_struct *tmp;
2084
2085                 tmp = rb_entry(rb_node, struct vm_area_struct, vm_rb);
2086
2087                 if (tmp->vm_end > addr) {
2088                         vma = tmp;
2089                         if (tmp->vm_start <= addr)
2090                                 break;
2091                         rb_node = rb_node->rb_left;
2092                 } else
2093                         rb_node = rb_node->rb_right;
2094         }
2095
2096         if (vma)
2097                 vmacache_update(addr, vma);
2098         return vma;
2099 }
2100
2101 EXPORT_SYMBOL(find_vma);
2102
2103 /*
2104  * Same as find_vma, but also return a pointer to the previous VMA in *pprev.
2105  */
2106 struct vm_area_struct *
2107 find_vma_prev(struct mm_struct *mm, unsigned long addr,
2108                         struct vm_area_struct **pprev)
2109 {
2110         struct vm_area_struct *vma;
2111
2112         vma = find_vma(mm, addr);
2113         if (vma) {
2114                 *pprev = vma->vm_prev;
2115         } else {
2116                 struct rb_node *rb_node = mm->mm_rb.rb_node;
2117                 *pprev = NULL;
2118                 while (rb_node) {
2119                         *pprev = rb_entry(rb_node, struct vm_area_struct, vm_rb);
2120                         rb_node = rb_node->rb_right;
2121                 }
2122         }
2123         return vma;
2124 }
2125
2126 /*
2127  * Verify that the stack growth is acceptable and
2128  * update accounting. This is shared with both the
2129  * grow-up and grow-down cases.
2130  */
2131 static int acct_stack_growth(struct vm_area_struct *vma, unsigned long size, unsigned long grow)
2132 {
2133         struct mm_struct *mm = vma->vm_mm;
2134         struct rlimit *rlim = current->signal->rlim;
2135         unsigned long new_start, actual_size;
2136
2137         /* address space limit tests */
2138         if (!may_expand_vm(mm, vma->vm_flags, grow))
2139                 return -ENOMEM;
2140
2141         /* Stack limit test */
2142         actual_size = size;
2143         if (size && (vma->vm_flags & (VM_GROWSUP | VM_GROWSDOWN)))
2144                 actual_size -= PAGE_SIZE;
2145         if (actual_size > READ_ONCE(rlim[RLIMIT_STACK].rlim_cur))
2146                 return -ENOMEM;
2147
2148         /* mlock limit tests */
2149         if (vma->vm_flags & VM_LOCKED) {
2150                 unsigned long locked;
2151                 unsigned long limit;
2152                 locked = mm->locked_vm + grow;
2153                 limit = READ_ONCE(rlim[RLIMIT_MEMLOCK].rlim_cur);
2154                 limit >>= PAGE_SHIFT;
2155                 if (locked > limit && !capable(CAP_IPC_LOCK))
2156                         return -ENOMEM;
2157         }
2158
2159         /* Check to ensure the stack will not grow into a hugetlb-only region */
2160         new_start = (vma->vm_flags & VM_GROWSUP) ? vma->vm_start :
2161                         vma->vm_end - size;
2162         if (is_hugepage_only_range(vma->vm_mm, new_start, size))
2163                 return -EFAULT;
2164
2165         /*
2166          * Overcommit..  This must be the final test, as it will
2167          * update security statistics.
2168          */
2169         if (security_vm_enough_memory_mm(mm, grow))
2170                 return -ENOMEM;
2171
2172         return 0;
2173 }
2174
2175 #if defined(CONFIG_STACK_GROWSUP) || defined(CONFIG_IA64)
2176 /*
2177  * PA-RISC uses this for its stack; IA64 for its Register Backing Store.
2178  * vma is the last one with address > vma->vm_end.  Have to extend vma.
2179  */
2180 int expand_upwards(struct vm_area_struct *vma, unsigned long address)
2181 {
2182         struct mm_struct *mm = vma->vm_mm;
2183         int error = 0;
2184
2185         if (!(vma->vm_flags & VM_GROWSUP))
2186                 return -EFAULT;
2187
2188         /* Guard against wrapping around to address 0. */
2189         if (address < PAGE_ALIGN(address+4))
2190                 address = PAGE_ALIGN(address+4);
2191         else
2192                 return -ENOMEM;
2193
2194         /* We must make sure the anon_vma is allocated. */
2195         if (unlikely(anon_vma_prepare(vma)))
2196                 return -ENOMEM;
2197
2198         /*
2199          * vma->vm_start/vm_end cannot change under us because the caller
2200          * is required to hold the mmap_sem in read mode.  We need the
2201          * anon_vma lock to serialize against concurrent expand_stacks.
2202          */
2203         anon_vma_lock_write(vma->anon_vma);
2204
2205         /* Somebody else might have raced and expanded it already */
2206         if (address > vma->vm_end) {
2207                 unsigned long size, grow;
2208
2209                 size = address - vma->vm_start;
2210                 grow = (address - vma->vm_end) >> PAGE_SHIFT;
2211
2212                 error = -ENOMEM;
2213                 if (vma->vm_pgoff + (size >> PAGE_SHIFT) >= vma->vm_pgoff) {
2214                         error = acct_stack_growth(vma, size, grow);
2215                         if (!error) {
2216                                 /*
2217                                  * vma_gap_update() doesn't support concurrent
2218                                  * updates, but we only hold a shared mmap_sem
2219                                  * lock here, so we need to protect against
2220                                  * concurrent vma expansions.
2221                                  * anon_vma_lock_write() doesn't help here, as
2222                                  * we don't guarantee that all growable vmas
2223                                  * in a mm share the same root anon vma.
2224                                  * So, we reuse mm->page_table_lock to guard
2225                                  * against concurrent vma expansions.
2226                                  */
2227                                 spin_lock(&mm->page_table_lock);
2228                                 if (vma->vm_flags & VM_LOCKED)
2229                                         mm->locked_vm += grow;
2230                                 vm_stat_account(mm, vma->vm_flags, grow);
2231                                 anon_vma_interval_tree_pre_update_vma(vma);
2232                                 vma->vm_end = address;
2233                                 anon_vma_interval_tree_post_update_vma(vma);
2234                                 if (vma->vm_next)
2235                                         vma_gap_update(vma->vm_next);
2236                                 else
2237                                         mm->highest_vm_end = address;
2238                                 spin_unlock(&mm->page_table_lock);
2239
2240                                 perf_event_mmap(vma);
2241                         }
2242                 }
2243         }
2244         anon_vma_unlock_write(vma->anon_vma);
2245         khugepaged_enter_vma_merge(vma, vma->vm_flags);
2246         validate_mm(mm);
2247         return error;
2248 }
2249 #endif /* CONFIG_STACK_GROWSUP || CONFIG_IA64 */
2250
2251 /*
2252  * vma is the first one with address < vma->vm_start.  Have to extend vma.
2253  */
2254 int expand_downwards(struct vm_area_struct *vma,
2255                                    unsigned long address)
2256 {
2257         struct mm_struct *mm = vma->vm_mm;
2258         int error;
2259
2260         address &= PAGE_MASK;
2261         error = security_mmap_addr(address);
2262         if (error)
2263                 return error;
2264
2265         /* We must make sure the anon_vma is allocated. */
2266         if (unlikely(anon_vma_prepare(vma)))
2267                 return -ENOMEM;
2268
2269         /*
2270          * vma->vm_start/vm_end cannot change under us because the caller
2271          * is required to hold the mmap_sem in read mode.  We need the
2272          * anon_vma lock to serialize against concurrent expand_stacks.
2273          */
2274         anon_vma_lock_write(vma->anon_vma);
2275
2276         /* Somebody else might have raced and expanded it already */
2277         if (address < vma->vm_start) {
2278                 unsigned long size, grow;
2279
2280                 size = vma->vm_end - address;
2281                 grow = (vma->vm_start - address) >> PAGE_SHIFT;
2282
2283                 error = -ENOMEM;
2284                 if (grow <= vma->vm_pgoff) {
2285                         error = acct_stack_growth(vma, size, grow);
2286                         if (!error) {
2287                                 /*
2288                                  * vma_gap_update() doesn't support concurrent
2289                                  * updates, but we only hold a shared mmap_sem
2290                                  * lock here, so we need to protect against
2291                                  * concurrent vma expansions.
2292                                  * anon_vma_lock_write() doesn't help here, as
2293                                  * we don't guarantee that all growable vmas
2294                                  * in a mm share the same root anon vma.
2295                                  * So, we reuse mm->page_table_lock to guard
2296                                  * against concurrent vma expansions.
2297                                  */
2298                                 spin_lock(&mm->page_table_lock);
2299                                 if (vma->vm_flags & VM_LOCKED)
2300                                         mm->locked_vm += grow;
2301                                 vm_stat_account(mm, vma->vm_flags, grow);
2302                                 anon_vma_interval_tree_pre_update_vma(vma);
2303                                 vma->vm_start = address;
2304                                 vma->vm_pgoff -= grow;
2305                                 anon_vma_interval_tree_post_update_vma(vma);
2306                                 vma_gap_update(vma);
2307                                 spin_unlock(&mm->page_table_lock);
2308
2309                                 perf_event_mmap(vma);
2310                         }
2311                 }
2312         }
2313         anon_vma_unlock_write(vma->anon_vma);
2314         khugepaged_enter_vma_merge(vma, vma->vm_flags);
2315         validate_mm(mm);
2316         return error;
2317 }
2318
2319 /*
2320  * Note how expand_stack() refuses to expand the stack all the way to
2321  * abut the next virtual mapping, *unless* that mapping itself is also
2322  * a stack mapping. We want to leave room for a guard page, after all
2323  * (the guard page itself is not added here, that is done by the
2324  * actual page faulting logic)
2325  *
2326  * This matches the behavior of the guard page logic (see mm/memory.c:
2327  * check_stack_guard_page()), which only allows the guard page to be
2328  * removed under these circumstances.
2329  */
2330 #ifdef CONFIG_STACK_GROWSUP
2331 int expand_stack(struct vm_area_struct *vma, unsigned long address)
2332 {
2333         struct vm_area_struct *next;
2334
2335         address &= PAGE_MASK;
2336         next = vma->vm_next;
2337         if (next && next->vm_start == address + PAGE_SIZE) {
2338                 if (!(next->vm_flags & VM_GROWSUP))
2339                         return -ENOMEM;
2340         }
2341         return expand_upwards(vma, address);
2342 }
2343
2344 struct vm_area_struct *
2345 find_extend_vma(struct mm_struct *mm, unsigned long addr)
2346 {
2347         struct vm_area_struct *vma, *prev;
2348
2349         addr &= PAGE_MASK;
2350         vma = find_vma_prev(mm, addr, &prev);
2351         if (vma && (vma->vm_start <= addr))
2352                 return vma;
2353         if (!prev || expand_stack(prev, addr))
2354                 return NULL;
2355         if (prev->vm_flags & VM_LOCKED)
2356                 populate_vma_page_range(prev, addr, prev->vm_end, NULL);
2357         return prev;
2358 }
2359 #else
2360 int expand_stack(struct vm_area_struct *vma, unsigned long address)
2361 {
2362         struct vm_area_struct *prev;
2363
2364         address &= PAGE_MASK;
2365         prev = vma->vm_prev;
2366         if (prev && prev->vm_end == address) {
2367                 if (!(prev->vm_flags & VM_GROWSDOWN))
2368                         return -ENOMEM;
2369         }
2370         return expand_downwards(vma, address);
2371 }
2372
2373 struct vm_area_struct *
2374 find_extend_vma(struct mm_struct *mm, unsigned long addr)
2375 {
2376         struct vm_area_struct *vma;
2377         unsigned long start;
2378
2379         addr &= PAGE_MASK;
2380         vma = find_vma(mm, addr);
2381         if (!vma)
2382                 return NULL;
2383         if (vma->vm_start <= addr)
2384                 return vma;
2385         if (!(vma->vm_flags & VM_GROWSDOWN))
2386                 return NULL;
2387         start = vma->vm_start;
2388         if (expand_stack(vma, addr))
2389                 return NULL;
2390         if (vma->vm_flags & VM_LOCKED)
2391                 populate_vma_page_range(vma, addr, start, NULL);
2392         return vma;
2393 }
2394 #endif
2395
2396 EXPORT_SYMBOL_GPL(find_extend_vma);
2397
2398 /*
2399  * Ok - we have the memory areas we should free on the vma list,
2400  * so release them, and do the vma updates.
2401  *
2402  * Called with the mm semaphore held.
2403  */
2404 static void remove_vma_list(struct mm_struct *mm, struct vm_area_struct *vma)
2405 {
2406         unsigned long nr_accounted = 0;
2407
2408         /* Update high watermark before we lower total_vm */
2409         update_hiwater_vm(mm);
2410         do {
2411                 long nrpages = vma_pages(vma);
2412
2413                 if (vma->vm_flags & VM_ACCOUNT)
2414                         nr_accounted += nrpages;
2415                 vm_stat_account(mm, vma->vm_flags, -nrpages);
2416                 vma = remove_vma(vma);
2417         } while (vma);
2418         vm_unacct_memory(nr_accounted);
2419         validate_mm(mm);
2420 }
2421
2422 /*
2423  * Get rid of page table information in the indicated region.
2424  *
2425  * Called with the mm semaphore held.
2426  */
2427 static void unmap_region(struct mm_struct *mm,
2428                 struct vm_area_struct *vma, struct vm_area_struct *prev,
2429                 unsigned long start, unsigned long end)
2430 {
2431         struct vm_area_struct *next = prev ? prev->vm_next : mm->mmap;
2432         struct mmu_gather tlb;
2433
2434         lru_add_drain();
2435         tlb_gather_mmu(&tlb, mm, start, end);
2436         update_hiwater_rss(mm);
2437         unmap_vmas(&tlb, vma, start, end);
2438         free_pgtables(&tlb, vma, prev ? prev->vm_end : FIRST_USER_ADDRESS,
2439                                  next ? next->vm_start : USER_PGTABLES_CEILING);
2440         tlb_finish_mmu(&tlb, start, end);
2441 }
2442
2443 /*
2444  * Create a list of vma's touched by the unmap, removing them from the mm's
2445  * vma list as we go..
2446  */
2447 static void
2448 detach_vmas_to_be_unmapped(struct mm_struct *mm, struct vm_area_struct *vma,
2449         struct vm_area_struct *prev, unsigned long end)
2450 {
2451         struct vm_area_struct **insertion_point;
2452         struct vm_area_struct *tail_vma = NULL;
2453
2454         insertion_point = (prev ? &prev->vm_next : &mm->mmap);
2455         vma->vm_prev = NULL;
2456         do {
2457                 vma_rb_erase(vma, &mm->mm_rb);
2458                 mm->map_count--;
2459                 tail_vma = vma;
2460                 vma = vma->vm_next;
2461         } while (vma && vma->vm_start < end);
2462         *insertion_point = vma;
2463         if (vma) {
2464                 vma->vm_prev = prev;
2465                 vma_gap_update(vma);
2466         } else
2467                 mm->highest_vm_end = prev ? prev->vm_end : 0;
2468         tail_vma->vm_next = NULL;
2469
2470         /* Kill the cache */
2471         vmacache_invalidate(mm);
2472 }
2473
2474 /*
2475  * __split_vma() bypasses sysctl_max_map_count checking.  We use this on the
2476  * munmap path where it doesn't make sense to fail.
2477  */
2478 static int __split_vma(struct mm_struct *mm, struct vm_area_struct *vma,
2479               unsigned long addr, int new_below)
2480 {
2481         struct vm_area_struct *new;
2482         int err;
2483
2484         if (is_vm_hugetlb_page(vma) && (addr &
2485                                         ~(huge_page_mask(hstate_vma(vma)))))
2486                 return -EINVAL;
2487
2488         new = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
2489         if (!new)
2490                 return -ENOMEM;
2491
2492         /* most fields are the same, copy all, and then fixup */
2493         *new = *vma;
2494
2495         INIT_LIST_HEAD(&new->anon_vma_chain);
2496
2497         if (new_below)
2498                 new->vm_end = addr;
2499         else {
2500                 new->vm_start = addr;
2501                 new->vm_pgoff += ((addr - vma->vm_start) >> PAGE_SHIFT);
2502         }
2503
2504         err = vma_dup_policy(vma, new);
2505         if (err)
2506                 goto out_free_vma;
2507
2508         err = anon_vma_clone(new, vma);
2509         if (err)
2510                 goto out_free_mpol;
2511
2512         if (new->vm_file)
2513                 get_file(new->vm_file);
2514
2515         if (new->vm_ops && new->vm_ops->open)
2516                 new->vm_ops->open(new);
2517
2518         if (new_below)
2519                 err = vma_adjust(vma, addr, vma->vm_end, vma->vm_pgoff +
2520                         ((addr - new->vm_start) >> PAGE_SHIFT), new);
2521         else
2522                 err = vma_adjust(vma, vma->vm_start, addr, vma->vm_pgoff, new);
2523
2524         /* Success. */
2525         if (!err)
2526                 return 0;
2527
2528         /* Clean everything up if vma_adjust failed. */
2529         if (new->vm_ops && new->vm_ops->close)
2530                 new->vm_ops->close(new);
2531         if (new->vm_file)
2532                 fput(new->vm_file);
2533         unlink_anon_vmas(new);
2534  out_free_mpol:
2535         mpol_put(vma_policy(new));
2536  out_free_vma:
2537         kmem_cache_free(vm_area_cachep, new);
2538         return err;
2539 }
2540
2541 /*
2542  * Split a vma into two pieces at address 'addr', a new vma is allocated
2543  * either for the first part or the tail.
2544  */
2545 int split_vma(struct mm_struct *mm, struct vm_area_struct *vma,
2546               unsigned long addr, int new_below)
2547 {
2548         if (mm->map_count >= sysctl_max_map_count)
2549                 return -ENOMEM;
2550
2551         return __split_vma(mm, vma, addr, new_below);
2552 }
2553
2554 /* Munmap is split into 2 main parts -- this part which finds
2555  * what needs doing, and the areas themselves, which do the
2556  * work.  This now handles partial unmappings.
2557  * Jeremy Fitzhardinge <jeremy@goop.org>
2558  */
2559 int do_munmap(struct mm_struct *mm, unsigned long start, size_t len)
2560 {
2561         unsigned long end;
2562         struct vm_area_struct *vma, *prev, *last;
2563
2564         if ((offset_in_page(start)) || start > TASK_SIZE || len > TASK_SIZE-start)
2565                 return -EINVAL;
2566
2567         len = PAGE_ALIGN(len);
2568         if (len == 0)
2569                 return -EINVAL;
2570
2571         /* Find the first overlapping VMA */
2572         vma = find_vma(mm, start);
2573         if (!vma)
2574                 return 0;
2575         prev = vma->vm_prev;
2576         /* we have  start < vma->vm_end  */
2577
2578         /* if it doesn't overlap, we have nothing.. */
2579         end = start + len;
2580         if (vma->vm_start >= end)
2581                 return 0;
2582
2583         /*
2584          * If we need to split any vma, do it now to save pain later.
2585          *
2586          * Note: mremap's move_vma VM_ACCOUNT handling assumes a partially
2587          * unmapped vm_area_struct will remain in use: so lower split_vma
2588          * places tmp vma above, and higher split_vma places tmp vma below.
2589          */
2590         if (start > vma->vm_start) {
2591                 int error;
2592
2593                 /*
2594                  * Make sure that map_count on return from munmap() will
2595                  * not exceed its limit; but let map_count go just above
2596                  * its limit temporarily, to help free resources as expected.
2597                  */
2598                 if (end < vma->vm_end && mm->map_count >= sysctl_max_map_count)
2599                         return -ENOMEM;
2600
2601                 error = __split_vma(mm, vma, start, 0);
2602                 if (error)
2603                         return error;
2604                 prev = vma;
2605         }
2606
2607         /* Does it split the last one? */
2608         last = find_vma(mm, end);
2609         if (last && end > last->vm_start) {
2610                 int error = __split_vma(mm, last, end, 1);
2611                 if (error)
2612                         return error;
2613         }
2614         vma = prev ? prev->vm_next : mm->mmap;
2615
2616         /*
2617          * unlock any mlock()ed ranges before detaching vmas
2618          */
2619         if (mm->locked_vm) {
2620                 struct vm_area_struct *tmp = vma;
2621                 while (tmp && tmp->vm_start < end) {
2622                         if (tmp->vm_flags & VM_LOCKED) {
2623                                 mm->locked_vm -= vma_pages(tmp);
2624                                 munlock_vma_pages_all(tmp);
2625                         }
2626                         tmp = tmp->vm_next;
2627                 }
2628         }
2629
2630         /*
2631          * Remove the vma's, and unmap the actual pages
2632          */
2633         detach_vmas_to_be_unmapped(mm, vma, prev, end);
2634         unmap_region(mm, vma, prev, start, end);
2635
2636         arch_unmap(mm, vma, start, end);
2637
2638         /* Fix up all other VM information */
2639         remove_vma_list(mm, vma);
2640
2641         return 0;
2642 }
2643
2644 int vm_munmap(unsigned long start, size_t len)
2645 {
2646         int ret;
2647         struct mm_struct *mm = current->mm;
2648
2649         if (down_write_killable(&mm->mmap_sem))
2650                 return -EINTR;
2651
2652         ret = do_munmap(mm, start, len);
2653         up_write(&mm->mmap_sem);
2654         return ret;
2655 }
2656 EXPORT_SYMBOL(vm_munmap);
2657
2658 SYSCALL_DEFINE2(munmap, unsigned long, addr, size_t, len)
2659 {
2660         int ret;
2661         struct mm_struct *mm = current->mm;
2662
2663         profile_munmap(addr);
2664         if (down_write_killable(&mm->mmap_sem))
2665                 return -EINTR;
2666         ret = do_munmap(mm, addr, len);
2667         up_write(&mm->mmap_sem);
2668         return ret;
2669 }
2670
2671
2672 /*
2673  * Emulation of deprecated remap_file_pages() syscall.
2674  */
2675 SYSCALL_DEFINE5(remap_file_pages, unsigned long, start, unsigned long, size,
2676                 unsigned long, prot, unsigned long, pgoff, unsigned long, flags)
2677 {
2678
2679         struct mm_struct *mm = current->mm;
2680         struct vm_area_struct *vma;
2681         unsigned long populate = 0;
2682         unsigned long ret = -EINVAL;
2683         struct file *file;
2684
2685         pr_warn_once("%s (%d) uses deprecated remap_file_pages() syscall. See Documentation/vm/remap_file_pages.txt.\n",
2686                      current->comm, current->pid);
2687
2688         if (prot)
2689                 return ret;
2690         start = start & PAGE_MASK;
2691         size = size & PAGE_MASK;
2692
2693         if (start + size <= start)
2694                 return ret;
2695
2696         /* Does pgoff wrap? */
2697         if (pgoff + (size >> PAGE_SHIFT) < pgoff)
2698                 return ret;
2699
2700         if (down_write_killable(&mm->mmap_sem))
2701                 return -EINTR;
2702
2703         vma = find_vma(mm, start);
2704
2705         if (!vma || !(vma->vm_flags & VM_SHARED))
2706                 goto out;
2707
2708         if (start < vma->vm_start)
2709                 goto out;
2710
2711         if (start + size > vma->vm_end) {
2712                 struct vm_area_struct *next;
2713
2714                 for (next = vma->vm_next; next; next = next->vm_next) {
2715                         /* hole between vmas ? */
2716                         if (next->vm_start != next->vm_prev->vm_end)
2717                                 goto out;
2718
2719                         if (next->vm_file != vma->vm_file)
2720                                 goto out;
2721
2722                         if (next->vm_flags != vma->vm_flags)
2723                                 goto out;
2724
2725                         if (start + size <= next->vm_end)
2726                                 break;
2727                 }
2728
2729                 if (!next)
2730                         goto out;
2731         }
2732
2733         prot |= vma->vm_flags & VM_READ ? PROT_READ : 0;
2734         prot |= vma->vm_flags & VM_WRITE ? PROT_WRITE : 0;
2735         prot |= vma->vm_flags & VM_EXEC ? PROT_EXEC : 0;
2736
2737         flags &= MAP_NONBLOCK;
2738         flags |= MAP_SHARED | MAP_FIXED | MAP_POPULATE;
2739         if (vma->vm_flags & VM_LOCKED) {
2740                 struct vm_area_struct *tmp;
2741                 flags |= MAP_LOCKED;
2742
2743                 /* drop PG_Mlocked flag for over-mapped range */
2744                 for (tmp = vma; tmp->vm_start >= start + size;
2745                                 tmp = tmp->vm_next) {
2746                         /*
2747                          * Split pmd and munlock page on the border
2748                          * of the range.
2749                          */
2750                         vma_adjust_trans_huge(tmp, start, start + size, 0);
2751
2752                         munlock_vma_pages_range(tmp,
2753                                         max(tmp->vm_start, start),
2754                                         min(tmp->vm_end, start + size));
2755                 }
2756         }
2757
2758         file = get_file(vma->vm_file);
2759         ret = do_mmap_pgoff(vma->vm_file, start, size,
2760                         prot, flags, pgoff, &populate);
2761         fput(file);
2762 out:
2763         up_write(&mm->mmap_sem);
2764         if (populate)
2765                 mm_populate(ret, populate);
2766         if (!IS_ERR_VALUE(ret))
2767                 ret = 0;
2768         return ret;
2769 }
2770
2771 static inline void verify_mm_writelocked(struct mm_struct *mm)
2772 {
2773 #ifdef CONFIG_DEBUG_VM
2774         if (unlikely(down_read_trylock(&mm->mmap_sem))) {
2775                 WARN_ON(1);
2776                 up_read(&mm->mmap_sem);
2777         }
2778 #endif
2779 }
2780
2781 /*
2782  *  this is really a simplified "do_mmap".  it only handles
2783  *  anonymous maps.  eventually we may be able to do some
2784  *  brk-specific accounting here.
2785  */
2786 static int do_brk(unsigned long addr, unsigned long request)
2787 {
2788         struct mm_struct *mm = current->mm;
2789         struct vm_area_struct *vma, *prev;
2790         unsigned long flags, len;
2791         struct rb_node **rb_link, *rb_parent;
2792         pgoff_t pgoff = addr >> PAGE_SHIFT;
2793         int error;
2794
2795         len = PAGE_ALIGN(request);
2796         if (len < request)
2797                 return -ENOMEM;
2798         if (!len)
2799                 return 0;
2800
2801         flags = VM_DATA_DEFAULT_FLAGS | VM_ACCOUNT | mm->def_flags;
2802
2803         error = get_unmapped_area(NULL, addr, len, 0, MAP_FIXED);
2804         if (offset_in_page(error))
2805                 return error;
2806
2807         error = mlock_future_check(mm, mm->def_flags, len);
2808         if (error)
2809                 return error;
2810
2811         /*
2812          * mm->mmap_sem is required to protect against another thread
2813          * changing the mappings in case we sleep.
2814          */
2815         verify_mm_writelocked(mm);
2816
2817         /*
2818          * Clear old maps.  this also does some error checking for us
2819          */
2820         while (find_vma_links(mm, addr, addr + len, &prev, &rb_link,
2821                               &rb_parent)) {
2822                 if (do_munmap(mm, addr, len))
2823                         return -ENOMEM;
2824         }
2825
2826         /* Check against address space limits *after* clearing old maps... */
2827         if (!may_expand_vm(mm, flags, len >> PAGE_SHIFT))
2828                 return -ENOMEM;
2829
2830         if (mm->map_count > sysctl_max_map_count)
2831                 return -ENOMEM;
2832
2833         if (security_vm_enough_memory_mm(mm, len >> PAGE_SHIFT))
2834                 return -ENOMEM;
2835
2836         /* Can we just expand an old private anonymous mapping? */
2837         vma = vma_merge(mm, prev, addr, addr + len, flags,
2838                         NULL, NULL, pgoff, NULL, NULL_VM_UFFD_CTX);
2839         if (vma)
2840                 goto out;
2841
2842         /*
2843          * create a vma struct for an anonymous mapping
2844          */
2845         vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
2846         if (!vma) {
2847                 vm_unacct_memory(len >> PAGE_SHIFT);
2848                 return -ENOMEM;
2849         }
2850
2851         INIT_LIST_HEAD(&vma->anon_vma_chain);
2852         vma->vm_mm = mm;
2853         vma->vm_start = addr;
2854         vma->vm_end = addr + len;
2855         vma->vm_pgoff = pgoff;
2856         vma->vm_flags = flags;
2857         vma->vm_page_prot = vm_get_page_prot(flags);
2858         vma_link(mm, vma, prev, rb_link, rb_parent);
2859 out:
2860         perf_event_mmap(vma);
2861         mm->total_vm += len >> PAGE_SHIFT;
2862         mm->data_vm += len >> PAGE_SHIFT;
2863         if (flags & VM_LOCKED)
2864                 mm->locked_vm += (len >> PAGE_SHIFT);
2865         vma->vm_flags |= VM_SOFTDIRTY;
2866         return 0;
2867 }
2868
2869 int vm_brk(unsigned long addr, unsigned long len)
2870 {
2871         struct mm_struct *mm = current->mm;
2872         int ret;
2873         bool populate;
2874
2875         if (down_write_killable(&mm->mmap_sem))
2876                 return -EINTR;
2877
2878         ret = do_brk(addr, len);
2879         populate = ((mm->def_flags & VM_LOCKED) != 0);
2880         up_write(&mm->mmap_sem);
2881         if (populate && !ret)
2882                 mm_populate(addr, len);
2883         return ret;
2884 }
2885 EXPORT_SYMBOL(vm_brk);
2886
2887 /* Release all mmaps. */
2888 void exit_mmap(struct mm_struct *mm)
2889 {
2890         struct mmu_gather tlb;
2891         struct vm_area_struct *vma;
2892         unsigned long nr_accounted = 0;
2893
2894         /* mm's last user has gone, and its about to be pulled down */
2895         mmu_notifier_release(mm);
2896
2897         if (mm->locked_vm) {
2898                 vma = mm->mmap;
2899                 while (vma) {
2900                         if (vma->vm_flags & VM_LOCKED)
2901                                 munlock_vma_pages_all(vma);
2902                         vma = vma->vm_next;
2903                 }
2904         }
2905
2906         arch_exit_mmap(mm);
2907
2908         vma = mm->mmap;
2909         if (!vma)       /* Can happen if dup_mmap() received an OOM */
2910                 return;
2911
2912         lru_add_drain();
2913         flush_cache_mm(mm);
2914         tlb_gather_mmu(&tlb, mm, 0, -1);
2915         /* update_hiwater_rss(mm) here? but nobody should be looking */
2916         /* Use -1 here to ensure all VMAs in the mm are unmapped */
2917         unmap_vmas(&tlb, vma, 0, -1);
2918
2919         free_pgtables(&tlb, vma, FIRST_USER_ADDRESS, USER_PGTABLES_CEILING);
2920         tlb_finish_mmu(&tlb, 0, -1);
2921
2922         /*
2923          * Walk the list again, actually closing and freeing it,
2924          * with preemption enabled, without holding any MM locks.
2925          */
2926         while (vma) {
2927                 if (vma->vm_flags & VM_ACCOUNT)
2928                         nr_accounted += vma_pages(vma);
2929                 vma = remove_vma(vma);
2930         }
2931         vm_unacct_memory(nr_accounted);
2932 }
2933
2934 /* Insert vm structure into process list sorted by address
2935  * and into the inode's i_mmap tree.  If vm_file is non-NULL
2936  * then i_mmap_rwsem is taken here.
2937  */
2938 int insert_vm_struct(struct mm_struct *mm, struct vm_area_struct *vma)
2939 {
2940         struct vm_area_struct *prev;
2941         struct rb_node **rb_link, *rb_parent;
2942
2943         if (find_vma_links(mm, vma->vm_start, vma->vm_end,
2944                            &prev, &rb_link, &rb_parent))
2945                 return -ENOMEM;
2946         if ((vma->vm_flags & VM_ACCOUNT) &&
2947              security_vm_enough_memory_mm(mm, vma_pages(vma)))
2948                 return -ENOMEM;
2949
2950         /*
2951          * The vm_pgoff of a purely anonymous vma should be irrelevant
2952          * until its first write fault, when page's anon_vma and index
2953          * are set.  But now set the vm_pgoff it will almost certainly
2954          * end up with (unless mremap moves it elsewhere before that
2955          * first wfault), so /proc/pid/maps tells a consistent story.
2956          *
2957          * By setting it to reflect the virtual start address of the
2958          * vma, merges and splits can happen in a seamless way, just
2959          * using the existing file pgoff checks and manipulations.
2960          * Similarly in do_mmap_pgoff and in do_brk.
2961          */
2962         if (vma_is_anonymous(vma)) {
2963                 BUG_ON(vma->anon_vma);
2964                 vma->vm_pgoff = vma->vm_start >> PAGE_SHIFT;
2965         }
2966
2967         vma_link(mm, vma, prev, rb_link, rb_parent);
2968         return 0;
2969 }
2970
2971 /*
2972  * Copy the vma structure to a new location in the same mm,
2973  * prior to moving page table entries, to effect an mremap move.
2974  */
2975 struct vm_area_struct *copy_vma(struct vm_area_struct **vmap,
2976         unsigned long addr, unsigned long len, pgoff_t pgoff,
2977         bool *need_rmap_locks)
2978 {
2979         struct vm_area_struct *vma = *vmap;
2980         unsigned long vma_start = vma->vm_start;
2981         struct mm_struct *mm = vma->vm_mm;
2982         struct vm_area_struct *new_vma, *prev;
2983         struct rb_node **rb_link, *rb_parent;
2984         bool faulted_in_anon_vma = true;
2985
2986         /*
2987          * If anonymous vma has not yet been faulted, update new pgoff
2988          * to match new location, to increase its chance of merging.
2989          */
2990         if (unlikely(vma_is_anonymous(vma) && !vma->anon_vma)) {
2991                 pgoff = addr >> PAGE_SHIFT;
2992                 faulted_in_anon_vma = false;
2993         }
2994
2995         if (find_vma_links(mm, addr, addr + len, &prev, &rb_link, &rb_parent))
2996                 return NULL;    /* should never get here */
2997         new_vma = vma_merge(mm, prev, addr, addr + len, vma->vm_flags,
2998                             vma->anon_vma, vma->vm_file, pgoff, vma_policy(vma),
2999                             vma->vm_userfaultfd_ctx);
3000         if (new_vma) {
3001                 /*
3002                  * Source vma may have been merged into new_vma
3003                  */
3004                 if (unlikely(vma_start >= new_vma->vm_start &&
3005                              vma_start < new_vma->vm_end)) {
3006                         /*
3007                          * The only way we can get a vma_merge with
3008                          * self during an mremap is if the vma hasn't
3009                          * been faulted in yet and we were allowed to
3010                          * reset the dst vma->vm_pgoff to the
3011                          * destination address of the mremap to allow
3012                          * the merge to happen. mremap must change the
3013                          * vm_pgoff linearity between src and dst vmas
3014                          * (in turn preventing a vma_merge) to be
3015                          * safe. It is only safe to keep the vm_pgoff
3016                          * linear if there are no pages mapped yet.
3017                          */
3018                         VM_BUG_ON_VMA(faulted_in_anon_vma, new_vma);
3019                         *vmap = vma = new_vma;
3020                 }
3021                 *need_rmap_locks = (new_vma->vm_pgoff <= vma->vm_pgoff);
3022         } else {
3023                 new_vma = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
3024                 if (!new_vma)
3025                         goto out;
3026                 *new_vma = *vma;
3027                 new_vma->vm_start = addr;
3028                 new_vma->vm_end = addr + len;
3029                 new_vma->vm_pgoff = pgoff;
3030                 if (vma_dup_policy(vma, new_vma))
3031                         goto out_free_vma;
3032                 INIT_LIST_HEAD(&new_vma->anon_vma_chain);
3033                 if (anon_vma_clone(new_vma, vma))
3034                         goto out_free_mempol;
3035                 if (new_vma->vm_file)
3036                         get_file(new_vma->vm_file);
3037                 if (new_vma->vm_ops && new_vma->vm_ops->open)
3038                         new_vma->vm_ops->open(new_vma);
3039                 vma_link(mm, new_vma, prev, rb_link, rb_parent);
3040                 *need_rmap_locks = false;
3041         }
3042         return new_vma;
3043
3044 out_free_mempol:
3045         mpol_put(vma_policy(new_vma));
3046 out_free_vma:
3047         kmem_cache_free(vm_area_cachep, new_vma);
3048 out:
3049         return NULL;
3050 }
3051
3052 /*
3053  * Return true if the calling process may expand its vm space by the passed
3054  * number of pages
3055  */
3056 bool may_expand_vm(struct mm_struct *mm, vm_flags_t flags, unsigned long npages)
3057 {
3058         if (mm->total_vm + npages > rlimit(RLIMIT_AS) >> PAGE_SHIFT)
3059                 return false;
3060
3061         if (is_data_mapping(flags) &&
3062             mm->data_vm + npages > rlimit(RLIMIT_DATA) >> PAGE_SHIFT) {
3063                 /* Workaround for Valgrind */
3064                 if (rlimit(RLIMIT_DATA) == 0 &&
3065                     mm->data_vm + npages <= rlimit_max(RLIMIT_DATA) >> PAGE_SHIFT)
3066                         return true;
3067                 if (!ignore_rlimit_data) {
3068                         pr_warn_once("%s (%d): VmData %lu exceed data ulimit %lu. Update limits or use boot option ignore_rlimit_data.\n",
3069                                      current->comm, current->pid,
3070                                      (mm->data_vm + npages) << PAGE_SHIFT,
3071                                      rlimit(RLIMIT_DATA));
3072                         return false;
3073                 }
3074         }
3075
3076         return true;
3077 }
3078
3079 void vm_stat_account(struct mm_struct *mm, vm_flags_t flags, long npages)
3080 {
3081         mm->total_vm += npages;
3082
3083         if (is_exec_mapping(flags))
3084                 mm->exec_vm += npages;
3085         else if (is_stack_mapping(flags))
3086                 mm->stack_vm += npages;
3087         else if (is_data_mapping(flags))
3088                 mm->data_vm += npages;
3089 }
3090
3091 static int special_mapping_fault(struct vm_area_struct *vma,
3092                                  struct vm_fault *vmf);
3093
3094 /*
3095  * Having a close hook prevents vma merging regardless of flags.
3096  */
3097 static void special_mapping_close(struct vm_area_struct *vma)
3098 {
3099 }
3100
3101 static const char *special_mapping_name(struct vm_area_struct *vma)
3102 {
3103         return ((struct vm_special_mapping *)vma->vm_private_data)->name;
3104 }
3105
3106 static int special_mapping_mremap(struct vm_area_struct *new_vma)
3107 {
3108         struct vm_special_mapping *sm = new_vma->vm_private_data;
3109
3110         if (sm->mremap)
3111                 return sm->mremap(sm, new_vma);
3112         return 0;
3113 }
3114
3115 static const struct vm_operations_struct special_mapping_vmops = {
3116         .close = special_mapping_close,
3117         .fault = special_mapping_fault,
3118         .mremap = special_mapping_mremap,
3119         .name = special_mapping_name,
3120 };
3121
3122 static const struct vm_operations_struct legacy_special_mapping_vmops = {
3123         .close = special_mapping_close,
3124         .fault = special_mapping_fault,
3125 };
3126
3127 static int special_mapping_fault(struct vm_area_struct *vma,
3128                                 struct vm_fault *vmf)
3129 {
3130         pgoff_t pgoff;
3131         struct page **pages;
3132
3133         if (vma->vm_ops == &legacy_special_mapping_vmops) {
3134                 pages = vma->vm_private_data;
3135         } else {
3136                 struct vm_special_mapping *sm = vma->vm_private_data;
3137
3138                 if (sm->fault)
3139                         return sm->fault(sm, vma, vmf);
3140
3141                 pages = sm->pages;
3142         }
3143
3144         for (pgoff = vmf->pgoff; pgoff && *pages; ++pages)
3145                 pgoff--;
3146
3147         if (*pages) {
3148                 struct page *page = *pages;
3149                 get_page(page);
3150                 vmf->page = page;
3151                 return 0;
3152         }
3153
3154         return VM_FAULT_SIGBUS;
3155 }
3156
3157 static struct vm_area_struct *__install_special_mapping(
3158         struct mm_struct *mm,
3159         unsigned long addr, unsigned long len,
3160         unsigned long vm_flags, void *priv,
3161         const struct vm_operations_struct *ops)
3162 {
3163         int ret;
3164         struct vm_area_struct *vma;
3165
3166         vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
3167         if (unlikely(vma == NULL))
3168                 return ERR_PTR(-ENOMEM);
3169
3170         INIT_LIST_HEAD(&vma->anon_vma_chain);
3171         vma->vm_mm = mm;
3172         vma->vm_start = addr;
3173         vma->vm_end = addr + len;
3174
3175         vma->vm_flags = vm_flags | mm->def_flags | VM_DONTEXPAND | VM_SOFTDIRTY;
3176         vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
3177
3178         vma->vm_ops = ops;
3179         vma->vm_private_data = priv;
3180
3181         ret = insert_vm_struct(mm, vma);
3182         if (ret)
3183                 goto out;
3184
3185         vm_stat_account(mm, vma->vm_flags, len >> PAGE_SHIFT);
3186
3187         perf_event_mmap(vma);
3188
3189         return vma;
3190
3191 out:
3192         kmem_cache_free(vm_area_cachep, vma);
3193         return ERR_PTR(ret);
3194 }
3195
3196 bool vma_is_special_mapping(const struct vm_area_struct *vma,
3197         const struct vm_special_mapping *sm)
3198 {
3199         return vma->vm_private_data == sm &&
3200                 (vma->vm_ops == &special_mapping_vmops ||
3201                  vma->vm_ops == &legacy_special_mapping_vmops);
3202 }
3203
3204 /*
3205  * Called with mm->mmap_sem held for writing.
3206  * Insert a new vma covering the given region, with the given flags.
3207  * Its pages are supplied by the given array of struct page *.
3208  * The array can be shorter than len >> PAGE_SHIFT if it's null-terminated.
3209  * The region past the last page supplied will always produce SIGBUS.
3210  * The array pointer and the pages it points to are assumed to stay alive
3211  * for as long as this mapping might exist.
3212  */
3213 struct vm_area_struct *_install_special_mapping(
3214         struct mm_struct *mm,
3215         unsigned long addr, unsigned long len,
3216         unsigned long vm_flags, const struct vm_special_mapping *spec)
3217 {
3218         return __install_special_mapping(mm, addr, len, vm_flags, (void *)spec,
3219                                         &special_mapping_vmops);
3220 }
3221
3222 int install_special_mapping(struct mm_struct *mm,
3223                             unsigned long addr, unsigned long len,
3224                             unsigned long vm_flags, struct page **pages)
3225 {
3226         struct vm_area_struct *vma = __install_special_mapping(
3227                 mm, addr, len, vm_flags, (void *)pages,
3228                 &legacy_special_mapping_vmops);
3229
3230         return PTR_ERR_OR_ZERO(vma);
3231 }
3232
3233 static DEFINE_MUTEX(mm_all_locks_mutex);
3234
3235 static void vm_lock_anon_vma(struct mm_struct *mm, struct anon_vma *anon_vma)
3236 {
3237         if (!test_bit(0, (unsigned long *) &anon_vma->root->rb_root.rb_node)) {
3238                 /*
3239                  * The LSB of head.next can't change from under us
3240                  * because we hold the mm_all_locks_mutex.
3241                  */
3242                 down_write_nest_lock(&anon_vma->root->rwsem, &mm->mmap_sem);
3243                 /*
3244                  * We can safely modify head.next after taking the
3245                  * anon_vma->root->rwsem. If some other vma in this mm shares
3246                  * the same anon_vma we won't take it again.
3247                  *
3248                  * No need of atomic instructions here, head.next
3249                  * can't change from under us thanks to the
3250                  * anon_vma->root->rwsem.
3251                  */
3252                 if (__test_and_set_bit(0, (unsigned long *)
3253                                        &anon_vma->root->rb_root.rb_node))
3254                         BUG();
3255         }
3256 }
3257
3258 static void vm_lock_mapping(struct mm_struct *mm, struct address_space *mapping)
3259 {
3260         if (!test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) {
3261                 /*
3262                  * AS_MM_ALL_LOCKS can't change from under us because
3263                  * we hold the mm_all_locks_mutex.
3264                  *
3265                  * Operations on ->flags have to be atomic because
3266                  * even if AS_MM_ALL_LOCKS is stable thanks to the
3267                  * mm_all_locks_mutex, there may be other cpus
3268                  * changing other bitflags in parallel to us.
3269                  */
3270                 if (test_and_set_bit(AS_MM_ALL_LOCKS, &mapping->flags))
3271                         BUG();
3272                 down_write_nest_lock(&mapping->i_mmap_rwsem, &mm->mmap_sem);
3273         }
3274 }
3275
3276 /*
3277  * This operation locks against the VM for all pte/vma/mm related
3278  * operations that could ever happen on a certain mm. This includes
3279  * vmtruncate, try_to_unmap, and all page faults.
3280  *
3281  * The caller must take the mmap_sem in write mode before calling
3282  * mm_take_all_locks(). The caller isn't allowed to release the
3283  * mmap_sem until mm_drop_all_locks() returns.
3284  *
3285  * mmap_sem in write mode is required in order to block all operations
3286  * that could modify pagetables and free pages without need of
3287  * altering the vma layout. It's also needed in write mode to avoid new
3288  * anon_vmas to be associated with existing vmas.
3289  *
3290  * A single task can't take more than one mm_take_all_locks() in a row
3291  * or it would deadlock.
3292  *
3293  * The LSB in anon_vma->rb_root.rb_node and the AS_MM_ALL_LOCKS bitflag in
3294  * mapping->flags avoid to take the same lock twice, if more than one
3295  * vma in this mm is backed by the same anon_vma or address_space.
3296  *
3297  * We take locks in following order, accordingly to comment at beginning
3298  * of mm/rmap.c:
3299  *   - all hugetlbfs_i_mmap_rwsem_key locks (aka mapping->i_mmap_rwsem for
3300  *     hugetlb mapping);
3301  *   - all i_mmap_rwsem locks;
3302  *   - all anon_vma->rwseml
3303  *
3304  * We can take all locks within these types randomly because the VM code
3305  * doesn't nest them and we protected from parallel mm_take_all_locks() by
3306  * mm_all_locks_mutex.
3307  *
3308  * mm_take_all_locks() and mm_drop_all_locks are expensive operations
3309  * that may have to take thousand of locks.
3310  *
3311  * mm_take_all_locks() can fail if it's interrupted by signals.
3312  */
3313 int mm_take_all_locks(struct mm_struct *mm)
3314 {
3315         struct vm_area_struct *vma;
3316         struct anon_vma_chain *avc;
3317
3318         BUG_ON(down_read_trylock(&mm->mmap_sem));
3319
3320         mutex_lock(&mm_all_locks_mutex);
3321
3322         for (vma = mm->mmap; vma; vma = vma->vm_next) {
3323                 if (signal_pending(current))
3324                         goto out_unlock;
3325                 if (vma->vm_file && vma->vm_file->f_mapping &&
3326                                 is_vm_hugetlb_page(vma))
3327                         vm_lock_mapping(mm, vma->vm_file->f_mapping);
3328         }
3329
3330         for (vma = mm->mmap; vma; vma = vma->vm_next) {
3331                 if (signal_pending(current))
3332                         goto out_unlock;
3333                 if (vma->vm_file && vma->vm_file->f_mapping &&
3334                                 !is_vm_hugetlb_page(vma))
3335                         vm_lock_mapping(mm, vma->vm_file->f_mapping);
3336         }
3337
3338         for (vma = mm->mmap; vma; vma = vma->vm_next) {
3339                 if (signal_pending(current))
3340                         goto out_unlock;
3341                 if (vma->anon_vma)
3342                         list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
3343                                 vm_lock_anon_vma(mm, avc->anon_vma);
3344         }
3345
3346         return 0;
3347
3348 out_unlock:
3349         mm_drop_all_locks(mm);
3350         return -EINTR;
3351 }
3352
3353 static void vm_unlock_anon_vma(struct anon_vma *anon_vma)
3354 {
3355         if (test_bit(0, (unsigned long *) &anon_vma->root->rb_root.rb_node)) {
3356                 /*
3357                  * The LSB of head.next can't change to 0 from under
3358                  * us because we hold the mm_all_locks_mutex.
3359                  *
3360                  * We must however clear the bitflag before unlocking
3361                  * the vma so the users using the anon_vma->rb_root will
3362                  * never see our bitflag.
3363                  *
3364                  * No need of atomic instructions here, head.next
3365                  * can't change from under us until we release the
3366                  * anon_vma->root->rwsem.
3367                  */
3368                 if (!__test_and_clear_bit(0, (unsigned long *)
3369                                           &anon_vma->root->rb_root.rb_node))
3370                         BUG();
3371                 anon_vma_unlock_write(anon_vma);
3372         }
3373 }
3374
3375 static void vm_unlock_mapping(struct address_space *mapping)
3376 {
3377         if (test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) {
3378                 /*
3379                  * AS_MM_ALL_LOCKS can't change to 0 from under us
3380                  * because we hold the mm_all_locks_mutex.
3381                  */
3382                 i_mmap_unlock_write(mapping);
3383                 if (!test_and_clear_bit(AS_MM_ALL_LOCKS,
3384                                         &mapping->flags))
3385                         BUG();
3386         }
3387 }
3388
3389 /*
3390  * The mmap_sem cannot be released by the caller until
3391  * mm_drop_all_locks() returns.
3392  */
3393 void mm_drop_all_locks(struct mm_struct *mm)
3394 {
3395         struct vm_area_struct *vma;
3396         struct anon_vma_chain *avc;
3397
3398         BUG_ON(down_read_trylock(&mm->mmap_sem));
3399         BUG_ON(!mutex_is_locked(&mm_all_locks_mutex));
3400
3401         for (vma = mm->mmap; vma; vma = vma->vm_next) {
3402                 if (vma->anon_vma)
3403                         list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
3404                                 vm_unlock_anon_vma(avc->anon_vma);
3405                 if (vma->vm_file && vma->vm_file->f_mapping)
3406                         vm_unlock_mapping(vma->vm_file->f_mapping);
3407         }
3408
3409         mutex_unlock(&mm_all_locks_mutex);
3410 }
3411
3412 /*
3413  * initialise the VMA slab
3414  */
3415 void __init mmap_init(void)
3416 {
3417         int ret;
3418
3419         ret = percpu_counter_init(&vm_committed_as, 0, GFP_KERNEL);
3420         VM_BUG_ON(ret);
3421 }
3422
3423 /*
3424  * Initialise sysctl_user_reserve_kbytes.
3425  *
3426  * This is intended to prevent a user from starting a single memory hogging
3427  * process, such that they cannot recover (kill the hog) in OVERCOMMIT_NEVER
3428  * mode.
3429  *
3430  * The default value is min(3% of free memory, 128MB)
3431  * 128MB is enough to recover with sshd/login, bash, and top/kill.
3432  */
3433 static int init_user_reserve(void)
3434 {
3435         unsigned long free_kbytes;
3436
3437         free_kbytes = global_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
3438
3439         sysctl_user_reserve_kbytes = min(free_kbytes / 32, 1UL << 17);
3440         return 0;
3441 }
3442 subsys_initcall(init_user_reserve);
3443
3444 /*
3445  * Initialise sysctl_admin_reserve_kbytes.
3446  *
3447  * The purpose of sysctl_admin_reserve_kbytes is to allow the sys admin
3448  * to log in and kill a memory hogging process.
3449  *
3450  * Systems with more than 256MB will reserve 8MB, enough to recover
3451  * with sshd, bash, and top in OVERCOMMIT_GUESS. Smaller systems will
3452  * only reserve 3% of free pages by default.
3453  */
3454 static int init_admin_reserve(void)
3455 {
3456         unsigned long free_kbytes;
3457
3458         free_kbytes = global_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
3459
3460         sysctl_admin_reserve_kbytes = min(free_kbytes / 32, 1UL << 13);
3461         return 0;
3462 }
3463 subsys_initcall(init_admin_reserve);
3464
3465 /*
3466  * Reinititalise user and admin reserves if memory is added or removed.
3467  *
3468  * The default user reserve max is 128MB, and the default max for the
3469  * admin reserve is 8MB. These are usually, but not always, enough to
3470  * enable recovery from a memory hogging process using login/sshd, a shell,
3471  * and tools like top. It may make sense to increase or even disable the
3472  * reserve depending on the existence of swap or variations in the recovery
3473  * tools. So, the admin may have changed them.
3474  *
3475  * If memory is added and the reserves have been eliminated or increased above
3476  * the default max, then we'll trust the admin.
3477  *
3478  * If memory is removed and there isn't enough free memory, then we
3479  * need to reset the reserves.
3480  *
3481  * Otherwise keep the reserve set by the admin.
3482  */
3483 static int reserve_mem_notifier(struct notifier_block *nb,
3484                              unsigned long action, void *data)
3485 {
3486         unsigned long tmp, free_kbytes;
3487
3488         switch (action) {
3489         case MEM_ONLINE:
3490                 /* Default max is 128MB. Leave alone if modified by operator. */
3491                 tmp = sysctl_user_reserve_kbytes;
3492                 if (0 < tmp && tmp < (1UL << 17))
3493                         init_user_reserve();
3494
3495                 /* Default max is 8MB.  Leave alone if modified by operator. */
3496                 tmp = sysctl_admin_reserve_kbytes;
3497                 if (0 < tmp && tmp < (1UL << 13))
3498                         init_admin_reserve();
3499
3500                 break;
3501         case MEM_OFFLINE:
3502                 free_kbytes = global_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
3503
3504                 if (sysctl_user_reserve_kbytes > free_kbytes) {
3505                         init_user_reserve();
3506                         pr_info("vm.user_reserve_kbytes reset to %lu\n",
3507                                 sysctl_user_reserve_kbytes);
3508                 }
3509
3510                 if (sysctl_admin_reserve_kbytes > free_kbytes) {
3511                         init_admin_reserve();
3512                         pr_info("vm.admin_reserve_kbytes reset to %lu\n",
3513                                 sysctl_admin_reserve_kbytes);
3514                 }
3515                 break;
3516         default:
3517                 break;
3518         }
3519         return NOTIFY_OK;
3520 }
3521
3522 static struct notifier_block reserve_mem_nb = {
3523         .notifier_call = reserve_mem_notifier,
3524 };
3525
3526 static int __meminit init_reserve_notifier(void)
3527 {
3528         if (register_hotmemory_notifier(&reserve_mem_nb))
3529                 pr_err("Failed registering memory add/remove notifier for admin reserve\n");
3530
3531         return 0;
3532 }
3533 subsys_initcall(init_reserve_notifier);