drivers/base/memory: pass a block_id to init_memory_block()
[platform/kernel/linux-rpi.git] / mm / mmap.c
1 /*
2  * mm/mmap.c
3  *
4  * Written by obz.
5  *
6  * Address space accounting code        <alan@lxorguk.ukuu.org.uk>
7  */
8
9 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
10
11 #include <linux/kernel.h>
12 #include <linux/slab.h>
13 #include <linux/backing-dev.h>
14 #include <linux/mm.h>
15 #include <linux/vmacache.h>
16 #include <linux/shm.h>
17 #include <linux/mman.h>
18 #include <linux/pagemap.h>
19 #include <linux/swap.h>
20 #include <linux/syscalls.h>
21 #include <linux/capability.h>
22 #include <linux/init.h>
23 #include <linux/file.h>
24 #include <linux/fs.h>
25 #include <linux/personality.h>
26 #include <linux/security.h>
27 #include <linux/hugetlb.h>
28 #include <linux/shmem_fs.h>
29 #include <linux/profile.h>
30 #include <linux/export.h>
31 #include <linux/mount.h>
32 #include <linux/mempolicy.h>
33 #include <linux/rmap.h>
34 #include <linux/mmu_notifier.h>
35 #include <linux/mmdebug.h>
36 #include <linux/perf_event.h>
37 #include <linux/audit.h>
38 #include <linux/khugepaged.h>
39 #include <linux/uprobes.h>
40 #include <linux/rbtree_augmented.h>
41 #include <linux/notifier.h>
42 #include <linux/memory.h>
43 #include <linux/printk.h>
44 #include <linux/userfaultfd_k.h>
45 #include <linux/moduleparam.h>
46 #include <linux/pkeys.h>
47 #include <linux/oom.h>
48 #include <linux/sched/mm.h>
49
50 #include <linux/uaccess.h>
51 #include <asm/cacheflush.h>
52 #include <asm/tlb.h>
53 #include <asm/mmu_context.h>
54
55 #include "internal.h"
56
57 #ifndef arch_mmap_check
58 #define arch_mmap_check(addr, len, flags)       (0)
59 #endif
60
61 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_BITS
62 const int mmap_rnd_bits_min = CONFIG_ARCH_MMAP_RND_BITS_MIN;
63 const int mmap_rnd_bits_max = CONFIG_ARCH_MMAP_RND_BITS_MAX;
64 int mmap_rnd_bits __read_mostly = CONFIG_ARCH_MMAP_RND_BITS;
65 #endif
66 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS
67 const int mmap_rnd_compat_bits_min = CONFIG_ARCH_MMAP_RND_COMPAT_BITS_MIN;
68 const int mmap_rnd_compat_bits_max = CONFIG_ARCH_MMAP_RND_COMPAT_BITS_MAX;
69 int mmap_rnd_compat_bits __read_mostly = CONFIG_ARCH_MMAP_RND_COMPAT_BITS;
70 #endif
71
72 static bool ignore_rlimit_data;
73 core_param(ignore_rlimit_data, ignore_rlimit_data, bool, 0644);
74
75 static void unmap_region(struct mm_struct *mm,
76                 struct vm_area_struct *vma, struct vm_area_struct *prev,
77                 unsigned long start, unsigned long end);
78
79 /* description of effects of mapping type and prot in current implementation.
80  * this is due to the limited x86 page protection hardware.  The expected
81  * behavior is in parens:
82  *
83  * map_type     prot
84  *              PROT_NONE       PROT_READ       PROT_WRITE      PROT_EXEC
85  * MAP_SHARED   r: (no) no      r: (yes) yes    r: (no) yes     r: (no) yes
86  *              w: (no) no      w: (no) no      w: (yes) yes    w: (no) no
87  *              x: (no) no      x: (no) yes     x: (no) yes     x: (yes) yes
88  *
89  * MAP_PRIVATE  r: (no) no      r: (yes) yes    r: (no) yes     r: (no) yes
90  *              w: (no) no      w: (no) no      w: (copy) copy  w: (no) no
91  *              x: (no) no      x: (no) yes     x: (no) yes     x: (yes) yes
92  */
93 pgprot_t protection_map[16] __ro_after_init = {
94         __P000, __P001, __P010, __P011, __P100, __P101, __P110, __P111,
95         __S000, __S001, __S010, __S011, __S100, __S101, __S110, __S111
96 };
97
98 #ifndef CONFIG_ARCH_HAS_FILTER_PGPROT
99 static inline pgprot_t arch_filter_pgprot(pgprot_t prot)
100 {
101         return prot;
102 }
103 #endif
104
105 pgprot_t vm_get_page_prot(unsigned long vm_flags)
106 {
107         pgprot_t ret = __pgprot(pgprot_val(protection_map[vm_flags &
108                                 (VM_READ|VM_WRITE|VM_EXEC|VM_SHARED)]) |
109                         pgprot_val(arch_vm_get_page_prot(vm_flags)));
110
111         return arch_filter_pgprot(ret);
112 }
113 EXPORT_SYMBOL(vm_get_page_prot);
114
115 static pgprot_t vm_pgprot_modify(pgprot_t oldprot, unsigned long vm_flags)
116 {
117         return pgprot_modify(oldprot, vm_get_page_prot(vm_flags));
118 }
119
120 /* Update vma->vm_page_prot to reflect vma->vm_flags. */
121 void vma_set_page_prot(struct vm_area_struct *vma)
122 {
123         unsigned long vm_flags = vma->vm_flags;
124         pgprot_t vm_page_prot;
125
126         vm_page_prot = vm_pgprot_modify(vma->vm_page_prot, vm_flags);
127         if (vma_wants_writenotify(vma, vm_page_prot)) {
128                 vm_flags &= ~VM_SHARED;
129                 vm_page_prot = vm_pgprot_modify(vm_page_prot, vm_flags);
130         }
131         /* remove_protection_ptes reads vma->vm_page_prot without mmap_sem */
132         WRITE_ONCE(vma->vm_page_prot, vm_page_prot);
133 }
134
135 /*
136  * Requires inode->i_mapping->i_mmap_rwsem
137  */
138 static void __remove_shared_vm_struct(struct vm_area_struct *vma,
139                 struct file *file, struct address_space *mapping)
140 {
141         if (vma->vm_flags & VM_DENYWRITE)
142                 atomic_inc(&file_inode(file)->i_writecount);
143         if (vma->vm_flags & VM_SHARED)
144                 mapping_unmap_writable(mapping);
145
146         flush_dcache_mmap_lock(mapping);
147         vma_interval_tree_remove(vma, &mapping->i_mmap);
148         flush_dcache_mmap_unlock(mapping);
149 }
150
151 /*
152  * Unlink a file-based vm structure from its interval tree, to hide
153  * vma from rmap and vmtruncate before freeing its page tables.
154  */
155 void unlink_file_vma(struct vm_area_struct *vma)
156 {
157         struct file *file = vma->vm_file;
158
159         if (file) {
160                 struct address_space *mapping = file->f_mapping;
161                 i_mmap_lock_write(mapping);
162                 __remove_shared_vm_struct(vma, file, mapping);
163                 i_mmap_unlock_write(mapping);
164         }
165 }
166
167 /*
168  * Close a vm structure and free it, returning the next.
169  */
170 static struct vm_area_struct *remove_vma(struct vm_area_struct *vma)
171 {
172         struct vm_area_struct *next = vma->vm_next;
173
174         might_sleep();
175         if (vma->vm_ops && vma->vm_ops->close)
176                 vma->vm_ops->close(vma);
177         if (vma->vm_file)
178                 fput(vma->vm_file);
179         mpol_put(vma_policy(vma));
180         vm_area_free(vma);
181         return next;
182 }
183
184 static int do_brk_flags(unsigned long addr, unsigned long request, unsigned long flags,
185                 struct list_head *uf);
186 SYSCALL_DEFINE1(brk, unsigned long, brk)
187 {
188         unsigned long retval;
189         unsigned long newbrk, oldbrk;
190         struct mm_struct *mm = current->mm;
191         struct vm_area_struct *next;
192         unsigned long min_brk;
193         bool populate;
194         LIST_HEAD(uf);
195
196         if (down_write_killable(&mm->mmap_sem))
197                 return -EINTR;
198
199 #ifdef CONFIG_COMPAT_BRK
200         /*
201          * CONFIG_COMPAT_BRK can still be overridden by setting
202          * randomize_va_space to 2, which will still cause mm->start_brk
203          * to be arbitrarily shifted
204          */
205         if (current->brk_randomized)
206                 min_brk = mm->start_brk;
207         else
208                 min_brk = mm->end_data;
209 #else
210         min_brk = mm->start_brk;
211 #endif
212         if (brk < min_brk)
213                 goto out;
214
215         /*
216          * Check against rlimit here. If this check is done later after the test
217          * of oldbrk with newbrk then it can escape the test and let the data
218          * segment grow beyond its set limit the in case where the limit is
219          * not page aligned -Ram Gupta
220          */
221         if (check_data_rlimit(rlimit(RLIMIT_DATA), brk, mm->start_brk,
222                               mm->end_data, mm->start_data))
223                 goto out;
224
225         newbrk = PAGE_ALIGN(brk);
226         oldbrk = PAGE_ALIGN(mm->brk);
227         if (oldbrk == newbrk)
228                 goto set_brk;
229
230         /* Always allow shrinking brk. */
231         if (brk <= mm->brk) {
232                 if (!do_munmap(mm, newbrk, oldbrk-newbrk, &uf))
233                         goto set_brk;
234                 goto out;
235         }
236
237         /* Check against existing mmap mappings. */
238         next = find_vma(mm, oldbrk);
239         if (next && newbrk + PAGE_SIZE > vm_start_gap(next))
240                 goto out;
241
242         /* Ok, looks good - let it rip. */
243         if (do_brk_flags(oldbrk, newbrk-oldbrk, 0, &uf) < 0)
244                 goto out;
245
246 set_brk:
247         mm->brk = brk;
248         populate = newbrk > oldbrk && (mm->def_flags & VM_LOCKED) != 0;
249         up_write(&mm->mmap_sem);
250         userfaultfd_unmap_complete(mm, &uf);
251         if (populate)
252                 mm_populate(oldbrk, newbrk - oldbrk);
253         return brk;
254
255 out:
256         retval = mm->brk;
257         up_write(&mm->mmap_sem);
258         return retval;
259 }
260
261 static long vma_compute_subtree_gap(struct vm_area_struct *vma)
262 {
263         unsigned long max, prev_end, subtree_gap;
264
265         /*
266          * Note: in the rare case of a VM_GROWSDOWN above a VM_GROWSUP, we
267          * allow two stack_guard_gaps between them here, and when choosing
268          * an unmapped area; whereas when expanding we only require one.
269          * That's a little inconsistent, but keeps the code here simpler.
270          */
271         max = vm_start_gap(vma);
272         if (vma->vm_prev) {
273                 prev_end = vm_end_gap(vma->vm_prev);
274                 if (max > prev_end)
275                         max -= prev_end;
276                 else
277                         max = 0;
278         }
279         if (vma->vm_rb.rb_left) {
280                 subtree_gap = rb_entry(vma->vm_rb.rb_left,
281                                 struct vm_area_struct, vm_rb)->rb_subtree_gap;
282                 if (subtree_gap > max)
283                         max = subtree_gap;
284         }
285         if (vma->vm_rb.rb_right) {
286                 subtree_gap = rb_entry(vma->vm_rb.rb_right,
287                                 struct vm_area_struct, vm_rb)->rb_subtree_gap;
288                 if (subtree_gap > max)
289                         max = subtree_gap;
290         }
291         return max;
292 }
293
294 #ifdef CONFIG_DEBUG_VM_RB
295 static int browse_rb(struct mm_struct *mm)
296 {
297         struct rb_root *root = &mm->mm_rb;
298         int i = 0, j, bug = 0;
299         struct rb_node *nd, *pn = NULL;
300         unsigned long prev = 0, pend = 0;
301
302         for (nd = rb_first(root); nd; nd = rb_next(nd)) {
303                 struct vm_area_struct *vma;
304                 vma = rb_entry(nd, struct vm_area_struct, vm_rb);
305                 if (vma->vm_start < prev) {
306                         pr_emerg("vm_start %lx < prev %lx\n",
307                                   vma->vm_start, prev);
308                         bug = 1;
309                 }
310                 if (vma->vm_start < pend) {
311                         pr_emerg("vm_start %lx < pend %lx\n",
312                                   vma->vm_start, pend);
313                         bug = 1;
314                 }
315                 if (vma->vm_start > vma->vm_end) {
316                         pr_emerg("vm_start %lx > vm_end %lx\n",
317                                   vma->vm_start, vma->vm_end);
318                         bug = 1;
319                 }
320                 spin_lock(&mm->page_table_lock);
321                 if (vma->rb_subtree_gap != vma_compute_subtree_gap(vma)) {
322                         pr_emerg("free gap %lx, correct %lx\n",
323                                vma->rb_subtree_gap,
324                                vma_compute_subtree_gap(vma));
325                         bug = 1;
326                 }
327                 spin_unlock(&mm->page_table_lock);
328                 i++;
329                 pn = nd;
330                 prev = vma->vm_start;
331                 pend = vma->vm_end;
332         }
333         j = 0;
334         for (nd = pn; nd; nd = rb_prev(nd))
335                 j++;
336         if (i != j) {
337                 pr_emerg("backwards %d, forwards %d\n", j, i);
338                 bug = 1;
339         }
340         return bug ? -1 : i;
341 }
342
343 static void validate_mm_rb(struct rb_root *root, struct vm_area_struct *ignore)
344 {
345         struct rb_node *nd;
346
347         for (nd = rb_first(root); nd; nd = rb_next(nd)) {
348                 struct vm_area_struct *vma;
349                 vma = rb_entry(nd, struct vm_area_struct, vm_rb);
350                 VM_BUG_ON_VMA(vma != ignore &&
351                         vma->rb_subtree_gap != vma_compute_subtree_gap(vma),
352                         vma);
353         }
354 }
355
356 static void validate_mm(struct mm_struct *mm)
357 {
358         int bug = 0;
359         int i = 0;
360         unsigned long highest_address = 0;
361         struct vm_area_struct *vma = mm->mmap;
362
363         while (vma) {
364                 struct anon_vma *anon_vma = vma->anon_vma;
365                 struct anon_vma_chain *avc;
366
367                 if (anon_vma) {
368                         anon_vma_lock_read(anon_vma);
369                         list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
370                                 anon_vma_interval_tree_verify(avc);
371                         anon_vma_unlock_read(anon_vma);
372                 }
373
374                 highest_address = vm_end_gap(vma);
375                 vma = vma->vm_next;
376                 i++;
377         }
378         if (i != mm->map_count) {
379                 pr_emerg("map_count %d vm_next %d\n", mm->map_count, i);
380                 bug = 1;
381         }
382         if (highest_address != mm->highest_vm_end) {
383                 pr_emerg("mm->highest_vm_end %lx, found %lx\n",
384                           mm->highest_vm_end, highest_address);
385                 bug = 1;
386         }
387         i = browse_rb(mm);
388         if (i != mm->map_count) {
389                 if (i != -1)
390                         pr_emerg("map_count %d rb %d\n", mm->map_count, i);
391                 bug = 1;
392         }
393         VM_BUG_ON_MM(bug, mm);
394 }
395 #else
396 #define validate_mm_rb(root, ignore) do { } while (0)
397 #define validate_mm(mm) do { } while (0)
398 #endif
399
400 RB_DECLARE_CALLBACKS(static, vma_gap_callbacks, struct vm_area_struct, vm_rb,
401                      unsigned long, rb_subtree_gap, vma_compute_subtree_gap)
402
403 /*
404  * Update augmented rbtree rb_subtree_gap values after vma->vm_start or
405  * vma->vm_prev->vm_end values changed, without modifying the vma's position
406  * in the rbtree.
407  */
408 static void vma_gap_update(struct vm_area_struct *vma)
409 {
410         /*
411          * As it turns out, RB_DECLARE_CALLBACKS() already created a callback
412          * function that does exacltly what we want.
413          */
414         vma_gap_callbacks_propagate(&vma->vm_rb, NULL);
415 }
416
417 static inline void vma_rb_insert(struct vm_area_struct *vma,
418                                  struct rb_root *root)
419 {
420         /* All rb_subtree_gap values must be consistent prior to insertion */
421         validate_mm_rb(root, NULL);
422
423         rb_insert_augmented(&vma->vm_rb, root, &vma_gap_callbacks);
424 }
425
426 static void __vma_rb_erase(struct vm_area_struct *vma, struct rb_root *root)
427 {
428         /*
429          * Note rb_erase_augmented is a fairly large inline function,
430          * so make sure we instantiate it only once with our desired
431          * augmented rbtree callbacks.
432          */
433         rb_erase_augmented(&vma->vm_rb, root, &vma_gap_callbacks);
434 }
435
436 static __always_inline void vma_rb_erase_ignore(struct vm_area_struct *vma,
437                                                 struct rb_root *root,
438                                                 struct vm_area_struct *ignore)
439 {
440         /*
441          * All rb_subtree_gap values must be consistent prior to erase,
442          * with the possible exception of the "next" vma being erased if
443          * next->vm_start was reduced.
444          */
445         validate_mm_rb(root, ignore);
446
447         __vma_rb_erase(vma, root);
448 }
449
450 static __always_inline void vma_rb_erase(struct vm_area_struct *vma,
451                                          struct rb_root *root)
452 {
453         /*
454          * All rb_subtree_gap values must be consistent prior to erase,
455          * with the possible exception of the vma being erased.
456          */
457         validate_mm_rb(root, vma);
458
459         __vma_rb_erase(vma, root);
460 }
461
462 /*
463  * vma has some anon_vma assigned, and is already inserted on that
464  * anon_vma's interval trees.
465  *
466  * Before updating the vma's vm_start / vm_end / vm_pgoff fields, the
467  * vma must be removed from the anon_vma's interval trees using
468  * anon_vma_interval_tree_pre_update_vma().
469  *
470  * After the update, the vma will be reinserted using
471  * anon_vma_interval_tree_post_update_vma().
472  *
473  * The entire update must be protected by exclusive mmap_sem and by
474  * the root anon_vma's mutex.
475  */
476 static inline void
477 anon_vma_interval_tree_pre_update_vma(struct vm_area_struct *vma)
478 {
479         struct anon_vma_chain *avc;
480
481         list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
482                 anon_vma_interval_tree_remove(avc, &avc->anon_vma->rb_root);
483 }
484
485 static inline void
486 anon_vma_interval_tree_post_update_vma(struct vm_area_struct *vma)
487 {
488         struct anon_vma_chain *avc;
489
490         list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
491                 anon_vma_interval_tree_insert(avc, &avc->anon_vma->rb_root);
492 }
493
494 static int find_vma_links(struct mm_struct *mm, unsigned long addr,
495                 unsigned long end, struct vm_area_struct **pprev,
496                 struct rb_node ***rb_link, struct rb_node **rb_parent)
497 {
498         struct rb_node **__rb_link, *__rb_parent, *rb_prev;
499
500         __rb_link = &mm->mm_rb.rb_node;
501         rb_prev = __rb_parent = NULL;
502
503         while (*__rb_link) {
504                 struct vm_area_struct *vma_tmp;
505
506                 __rb_parent = *__rb_link;
507                 vma_tmp = rb_entry(__rb_parent, struct vm_area_struct, vm_rb);
508
509                 if (vma_tmp->vm_end > addr) {
510                         /* Fail if an existing vma overlaps the area */
511                         if (vma_tmp->vm_start < end)
512                                 return -ENOMEM;
513                         __rb_link = &__rb_parent->rb_left;
514                 } else {
515                         rb_prev = __rb_parent;
516                         __rb_link = &__rb_parent->rb_right;
517                 }
518         }
519
520         *pprev = NULL;
521         if (rb_prev)
522                 *pprev = rb_entry(rb_prev, struct vm_area_struct, vm_rb);
523         *rb_link = __rb_link;
524         *rb_parent = __rb_parent;
525         return 0;
526 }
527
528 static unsigned long count_vma_pages_range(struct mm_struct *mm,
529                 unsigned long addr, unsigned long end)
530 {
531         unsigned long nr_pages = 0;
532         struct vm_area_struct *vma;
533
534         /* Find first overlaping mapping */
535         vma = find_vma_intersection(mm, addr, end);
536         if (!vma)
537                 return 0;
538
539         nr_pages = (min(end, vma->vm_end) -
540                 max(addr, vma->vm_start)) >> PAGE_SHIFT;
541
542         /* Iterate over the rest of the overlaps */
543         for (vma = vma->vm_next; vma; vma = vma->vm_next) {
544                 unsigned long overlap_len;
545
546                 if (vma->vm_start > end)
547                         break;
548
549                 overlap_len = min(end, vma->vm_end) - vma->vm_start;
550                 nr_pages += overlap_len >> PAGE_SHIFT;
551         }
552
553         return nr_pages;
554 }
555
556 void __vma_link_rb(struct mm_struct *mm, struct vm_area_struct *vma,
557                 struct rb_node **rb_link, struct rb_node *rb_parent)
558 {
559         /* Update tracking information for the gap following the new vma. */
560         if (vma->vm_next)
561                 vma_gap_update(vma->vm_next);
562         else
563                 mm->highest_vm_end = vm_end_gap(vma);
564
565         /*
566          * vma->vm_prev wasn't known when we followed the rbtree to find the
567          * correct insertion point for that vma. As a result, we could not
568          * update the vma vm_rb parents rb_subtree_gap values on the way down.
569          * So, we first insert the vma with a zero rb_subtree_gap value
570          * (to be consistent with what we did on the way down), and then
571          * immediately update the gap to the correct value. Finally we
572          * rebalance the rbtree after all augmented values have been set.
573          */
574         rb_link_node(&vma->vm_rb, rb_parent, rb_link);
575         vma->rb_subtree_gap = 0;
576         vma_gap_update(vma);
577         vma_rb_insert(vma, &mm->mm_rb);
578 }
579
580 static void __vma_link_file(struct vm_area_struct *vma)
581 {
582         struct file *file;
583
584         file = vma->vm_file;
585         if (file) {
586                 struct address_space *mapping = file->f_mapping;
587
588                 if (vma->vm_flags & VM_DENYWRITE)
589                         atomic_dec(&file_inode(file)->i_writecount);
590                 if (vma->vm_flags & VM_SHARED)
591                         atomic_inc(&mapping->i_mmap_writable);
592
593                 flush_dcache_mmap_lock(mapping);
594                 vma_interval_tree_insert(vma, &mapping->i_mmap);
595                 flush_dcache_mmap_unlock(mapping);
596         }
597 }
598
599 static void
600 __vma_link(struct mm_struct *mm, struct vm_area_struct *vma,
601         struct vm_area_struct *prev, struct rb_node **rb_link,
602         struct rb_node *rb_parent)
603 {
604         __vma_link_list(mm, vma, prev, rb_parent);
605         __vma_link_rb(mm, vma, rb_link, rb_parent);
606 }
607
608 static void vma_link(struct mm_struct *mm, struct vm_area_struct *vma,
609                         struct vm_area_struct *prev, struct rb_node **rb_link,
610                         struct rb_node *rb_parent)
611 {
612         struct address_space *mapping = NULL;
613
614         if (vma->vm_file) {
615                 mapping = vma->vm_file->f_mapping;
616                 i_mmap_lock_write(mapping);
617         }
618
619         __vma_link(mm, vma, prev, rb_link, rb_parent);
620         __vma_link_file(vma);
621
622         if (mapping)
623                 i_mmap_unlock_write(mapping);
624
625         mm->map_count++;
626         validate_mm(mm);
627 }
628
629 /*
630  * Helper for vma_adjust() in the split_vma insert case: insert a vma into the
631  * mm's list and rbtree.  It has already been inserted into the interval tree.
632  */
633 static void __insert_vm_struct(struct mm_struct *mm, struct vm_area_struct *vma)
634 {
635         struct vm_area_struct *prev;
636         struct rb_node **rb_link, *rb_parent;
637
638         if (find_vma_links(mm, vma->vm_start, vma->vm_end,
639                            &prev, &rb_link, &rb_parent))
640                 BUG();
641         __vma_link(mm, vma, prev, rb_link, rb_parent);
642         mm->map_count++;
643 }
644
645 static __always_inline void __vma_unlink_common(struct mm_struct *mm,
646                                                 struct vm_area_struct *vma,
647                                                 struct vm_area_struct *prev,
648                                                 bool has_prev,
649                                                 struct vm_area_struct *ignore)
650 {
651         struct vm_area_struct *next;
652
653         vma_rb_erase_ignore(vma, &mm->mm_rb, ignore);
654         next = vma->vm_next;
655         if (has_prev)
656                 prev->vm_next = next;
657         else {
658                 prev = vma->vm_prev;
659                 if (prev)
660                         prev->vm_next = next;
661                 else
662                         mm->mmap = next;
663         }
664         if (next)
665                 next->vm_prev = prev;
666
667         /* Kill the cache */
668         vmacache_invalidate(mm);
669 }
670
671 static inline void __vma_unlink_prev(struct mm_struct *mm,
672                                      struct vm_area_struct *vma,
673                                      struct vm_area_struct *prev)
674 {
675         __vma_unlink_common(mm, vma, prev, true, vma);
676 }
677
678 /*
679  * We cannot adjust vm_start, vm_end, vm_pgoff fields of a vma that
680  * is already present in an i_mmap tree without adjusting the tree.
681  * The following helper function should be used when such adjustments
682  * are necessary.  The "insert" vma (if any) is to be inserted
683  * before we drop the necessary locks.
684  */
685 int __vma_adjust(struct vm_area_struct *vma, unsigned long start,
686         unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert,
687         struct vm_area_struct *expand)
688 {
689         struct mm_struct *mm = vma->vm_mm;
690         struct vm_area_struct *next = vma->vm_next, *orig_vma = vma;
691         struct address_space *mapping = NULL;
692         struct rb_root_cached *root = NULL;
693         struct anon_vma *anon_vma = NULL;
694         struct file *file = vma->vm_file;
695         bool start_changed = false, end_changed = false;
696         long adjust_next = 0;
697         int remove_next = 0;
698
699         if (next && !insert) {
700                 struct vm_area_struct *exporter = NULL, *importer = NULL;
701
702                 if (end >= next->vm_end) {
703                         /*
704                          * vma expands, overlapping all the next, and
705                          * perhaps the one after too (mprotect case 6).
706                          * The only other cases that gets here are
707                          * case 1, case 7 and case 8.
708                          */
709                         if (next == expand) {
710                                 /*
711                                  * The only case where we don't expand "vma"
712                                  * and we expand "next" instead is case 8.
713                                  */
714                                 VM_WARN_ON(end != next->vm_end);
715                                 /*
716                                  * remove_next == 3 means we're
717                                  * removing "vma" and that to do so we
718                                  * swapped "vma" and "next".
719                                  */
720                                 remove_next = 3;
721                                 VM_WARN_ON(file != next->vm_file);
722                                 swap(vma, next);
723                         } else {
724                                 VM_WARN_ON(expand != vma);
725                                 /*
726                                  * case 1, 6, 7, remove_next == 2 is case 6,
727                                  * remove_next == 1 is case 1 or 7.
728                                  */
729                                 remove_next = 1 + (end > next->vm_end);
730                                 VM_WARN_ON(remove_next == 2 &&
731                                            end != next->vm_next->vm_end);
732                                 VM_WARN_ON(remove_next == 1 &&
733                                            end != next->vm_end);
734                                 /* trim end to next, for case 6 first pass */
735                                 end = next->vm_end;
736                         }
737
738                         exporter = next;
739                         importer = vma;
740
741                         /*
742                          * If next doesn't have anon_vma, import from vma after
743                          * next, if the vma overlaps with it.
744                          */
745                         if (remove_next == 2 && !next->anon_vma)
746                                 exporter = next->vm_next;
747
748                 } else if (end > next->vm_start) {
749                         /*
750                          * vma expands, overlapping part of the next:
751                          * mprotect case 5 shifting the boundary up.
752                          */
753                         adjust_next = (end - next->vm_start) >> PAGE_SHIFT;
754                         exporter = next;
755                         importer = vma;
756                         VM_WARN_ON(expand != importer);
757                 } else if (end < vma->vm_end) {
758                         /*
759                          * vma shrinks, and !insert tells it's not
760                          * split_vma inserting another: so it must be
761                          * mprotect case 4 shifting the boundary down.
762                          */
763                         adjust_next = -((vma->vm_end - end) >> PAGE_SHIFT);
764                         exporter = vma;
765                         importer = next;
766                         VM_WARN_ON(expand != importer);
767                 }
768
769                 /*
770                  * Easily overlooked: when mprotect shifts the boundary,
771                  * make sure the expanding vma has anon_vma set if the
772                  * shrinking vma had, to cover any anon pages imported.
773                  */
774                 if (exporter && exporter->anon_vma && !importer->anon_vma) {
775                         int error;
776
777                         importer->anon_vma = exporter->anon_vma;
778                         error = anon_vma_clone(importer, exporter);
779                         if (error)
780                                 return error;
781                 }
782         }
783 again:
784         vma_adjust_trans_huge(orig_vma, start, end, adjust_next);
785
786         if (file) {
787                 mapping = file->f_mapping;
788                 root = &mapping->i_mmap;
789                 uprobe_munmap(vma, vma->vm_start, vma->vm_end);
790
791                 if (adjust_next)
792                         uprobe_munmap(next, next->vm_start, next->vm_end);
793
794                 i_mmap_lock_write(mapping);
795                 if (insert) {
796                         /*
797                          * Put into interval tree now, so instantiated pages
798                          * are visible to arm/parisc __flush_dcache_page
799                          * throughout; but we cannot insert into address
800                          * space until vma start or end is updated.
801                          */
802                         __vma_link_file(insert);
803                 }
804         }
805
806         anon_vma = vma->anon_vma;
807         if (!anon_vma && adjust_next)
808                 anon_vma = next->anon_vma;
809         if (anon_vma) {
810                 VM_WARN_ON(adjust_next && next->anon_vma &&
811                            anon_vma != next->anon_vma);
812                 anon_vma_lock_write(anon_vma);
813                 anon_vma_interval_tree_pre_update_vma(vma);
814                 if (adjust_next)
815                         anon_vma_interval_tree_pre_update_vma(next);
816         }
817
818         if (root) {
819                 flush_dcache_mmap_lock(mapping);
820                 vma_interval_tree_remove(vma, root);
821                 if (adjust_next)
822                         vma_interval_tree_remove(next, root);
823         }
824
825         if (start != vma->vm_start) {
826                 vma->vm_start = start;
827                 start_changed = true;
828         }
829         if (end != vma->vm_end) {
830                 vma->vm_end = end;
831                 end_changed = true;
832         }
833         vma->vm_pgoff = pgoff;
834         if (adjust_next) {
835                 next->vm_start += adjust_next << PAGE_SHIFT;
836                 next->vm_pgoff += adjust_next;
837         }
838
839         if (root) {
840                 if (adjust_next)
841                         vma_interval_tree_insert(next, root);
842                 vma_interval_tree_insert(vma, root);
843                 flush_dcache_mmap_unlock(mapping);
844         }
845
846         if (remove_next) {
847                 /*
848                  * vma_merge has merged next into vma, and needs
849                  * us to remove next before dropping the locks.
850                  */
851                 if (remove_next != 3)
852                         __vma_unlink_prev(mm, next, vma);
853                 else
854                         /*
855                          * vma is not before next if they've been
856                          * swapped.
857                          *
858                          * pre-swap() next->vm_start was reduced so
859                          * tell validate_mm_rb to ignore pre-swap()
860                          * "next" (which is stored in post-swap()
861                          * "vma").
862                          */
863                         __vma_unlink_common(mm, next, NULL, false, vma);
864                 if (file)
865                         __remove_shared_vm_struct(next, file, mapping);
866         } else if (insert) {
867                 /*
868                  * split_vma has split insert from vma, and needs
869                  * us to insert it before dropping the locks
870                  * (it may either follow vma or precede it).
871                  */
872                 __insert_vm_struct(mm, insert);
873         } else {
874                 if (start_changed)
875                         vma_gap_update(vma);
876                 if (end_changed) {
877                         if (!next)
878                                 mm->highest_vm_end = vm_end_gap(vma);
879                         else if (!adjust_next)
880                                 vma_gap_update(next);
881                 }
882         }
883
884         if (anon_vma) {
885                 anon_vma_interval_tree_post_update_vma(vma);
886                 if (adjust_next)
887                         anon_vma_interval_tree_post_update_vma(next);
888                 anon_vma_unlock_write(anon_vma);
889         }
890         if (mapping)
891                 i_mmap_unlock_write(mapping);
892
893         if (root) {
894                 uprobe_mmap(vma);
895
896                 if (adjust_next)
897                         uprobe_mmap(next);
898         }
899
900         if (remove_next) {
901                 if (file) {
902                         uprobe_munmap(next, next->vm_start, next->vm_end);
903                         fput(file);
904                 }
905                 if (next->anon_vma)
906                         anon_vma_merge(vma, next);
907                 mm->map_count--;
908                 mpol_put(vma_policy(next));
909                 vm_area_free(next);
910                 /*
911                  * In mprotect's case 6 (see comments on vma_merge),
912                  * we must remove another next too. It would clutter
913                  * up the code too much to do both in one go.
914                  */
915                 if (remove_next != 3) {
916                         /*
917                          * If "next" was removed and vma->vm_end was
918                          * expanded (up) over it, in turn
919                          * "next->vm_prev->vm_end" changed and the
920                          * "vma->vm_next" gap must be updated.
921                          */
922                         next = vma->vm_next;
923                 } else {
924                         /*
925                          * For the scope of the comment "next" and
926                          * "vma" considered pre-swap(): if "vma" was
927                          * removed, next->vm_start was expanded (down)
928                          * over it and the "next" gap must be updated.
929                          * Because of the swap() the post-swap() "vma"
930                          * actually points to pre-swap() "next"
931                          * (post-swap() "next" as opposed is now a
932                          * dangling pointer).
933                          */
934                         next = vma;
935                 }
936                 if (remove_next == 2) {
937                         remove_next = 1;
938                         end = next->vm_end;
939                         goto again;
940                 }
941                 else if (next)
942                         vma_gap_update(next);
943                 else {
944                         /*
945                          * If remove_next == 2 we obviously can't
946                          * reach this path.
947                          *
948                          * If remove_next == 3 we can't reach this
949                          * path because pre-swap() next is always not
950                          * NULL. pre-swap() "next" is not being
951                          * removed and its next->vm_end is not altered
952                          * (and furthermore "end" already matches
953                          * next->vm_end in remove_next == 3).
954                          *
955                          * We reach this only in the remove_next == 1
956                          * case if the "next" vma that was removed was
957                          * the highest vma of the mm. However in such
958                          * case next->vm_end == "end" and the extended
959                          * "vma" has vma->vm_end == next->vm_end so
960                          * mm->highest_vm_end doesn't need any update
961                          * in remove_next == 1 case.
962                          */
963                         VM_WARN_ON(mm->highest_vm_end != vm_end_gap(vma));
964                 }
965         }
966         if (insert && file)
967                 uprobe_mmap(insert);
968
969         validate_mm(mm);
970
971         return 0;
972 }
973
974 /*
975  * If the vma has a ->close operation then the driver probably needs to release
976  * per-vma resources, so we don't attempt to merge those.
977  */
978 static inline int is_mergeable_vma(struct vm_area_struct *vma,
979                                 struct file *file, unsigned long vm_flags,
980                                 struct vm_userfaultfd_ctx vm_userfaultfd_ctx)
981 {
982         /*
983          * VM_SOFTDIRTY should not prevent from VMA merging, if we
984          * match the flags but dirty bit -- the caller should mark
985          * merged VMA as dirty. If dirty bit won't be excluded from
986          * comparison, we increase pressue on the memory system forcing
987          * the kernel to generate new VMAs when old one could be
988          * extended instead.
989          */
990         if ((vma->vm_flags ^ vm_flags) & ~VM_SOFTDIRTY)
991                 return 0;
992         if (vma->vm_file != file)
993                 return 0;
994         if (vma->vm_ops && vma->vm_ops->close)
995                 return 0;
996         if (!is_mergeable_vm_userfaultfd_ctx(vma, vm_userfaultfd_ctx))
997                 return 0;
998         return 1;
999 }
1000
1001 static inline int is_mergeable_anon_vma(struct anon_vma *anon_vma1,
1002                                         struct anon_vma *anon_vma2,
1003                                         struct vm_area_struct *vma)
1004 {
1005         /*
1006          * The list_is_singular() test is to avoid merging VMA cloned from
1007          * parents. This can improve scalability caused by anon_vma lock.
1008          */
1009         if ((!anon_vma1 || !anon_vma2) && (!vma ||
1010                 list_is_singular(&vma->anon_vma_chain)))
1011                 return 1;
1012         return anon_vma1 == anon_vma2;
1013 }
1014
1015 /*
1016  * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
1017  * in front of (at a lower virtual address and file offset than) the vma.
1018  *
1019  * We cannot merge two vmas if they have differently assigned (non-NULL)
1020  * anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
1021  *
1022  * We don't check here for the merged mmap wrapping around the end of pagecache
1023  * indices (16TB on ia32) because do_mmap_pgoff() does not permit mmap's which
1024  * wrap, nor mmaps which cover the final page at index -1UL.
1025  */
1026 static int
1027 can_vma_merge_before(struct vm_area_struct *vma, unsigned long vm_flags,
1028                      struct anon_vma *anon_vma, struct file *file,
1029                      pgoff_t vm_pgoff,
1030                      struct vm_userfaultfd_ctx vm_userfaultfd_ctx)
1031 {
1032         if (is_mergeable_vma(vma, file, vm_flags, vm_userfaultfd_ctx) &&
1033             is_mergeable_anon_vma(anon_vma, vma->anon_vma, vma)) {
1034                 if (vma->vm_pgoff == vm_pgoff)
1035                         return 1;
1036         }
1037         return 0;
1038 }
1039
1040 /*
1041  * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
1042  * beyond (at a higher virtual address and file offset than) the vma.
1043  *
1044  * We cannot merge two vmas if they have differently assigned (non-NULL)
1045  * anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
1046  */
1047 static int
1048 can_vma_merge_after(struct vm_area_struct *vma, unsigned long vm_flags,
1049                     struct anon_vma *anon_vma, struct file *file,
1050                     pgoff_t vm_pgoff,
1051                     struct vm_userfaultfd_ctx vm_userfaultfd_ctx)
1052 {
1053         if (is_mergeable_vma(vma, file, vm_flags, vm_userfaultfd_ctx) &&
1054             is_mergeable_anon_vma(anon_vma, vma->anon_vma, vma)) {
1055                 pgoff_t vm_pglen;
1056                 vm_pglen = vma_pages(vma);
1057                 if (vma->vm_pgoff + vm_pglen == vm_pgoff)
1058                         return 1;
1059         }
1060         return 0;
1061 }
1062
1063 /*
1064  * Given a mapping request (addr,end,vm_flags,file,pgoff), figure out
1065  * whether that can be merged with its predecessor or its successor.
1066  * Or both (it neatly fills a hole).
1067  *
1068  * In most cases - when called for mmap, brk or mremap - [addr,end) is
1069  * certain not to be mapped by the time vma_merge is called; but when
1070  * called for mprotect, it is certain to be already mapped (either at
1071  * an offset within prev, or at the start of next), and the flags of
1072  * this area are about to be changed to vm_flags - and the no-change
1073  * case has already been eliminated.
1074  *
1075  * The following mprotect cases have to be considered, where AAAA is
1076  * the area passed down from mprotect_fixup, never extending beyond one
1077  * vma, PPPPPP is the prev vma specified, and NNNNNN the next vma after:
1078  *
1079  *     AAAA             AAAA                AAAA          AAAA
1080  *    PPPPPPNNNNNN    PPPPPPNNNNNN    PPPPPPNNNNNN    PPPPNNNNXXXX
1081  *    cannot merge    might become    might become    might become
1082  *                    PPNNNNNNNNNN    PPPPPPPPPPNN    PPPPPPPPPPPP 6 or
1083  *    mmap, brk or    case 4 below    case 5 below    PPPPPPPPXXXX 7 or
1084  *    mremap move:                                    PPPPXXXXXXXX 8
1085  *        AAAA
1086  *    PPPP    NNNN    PPPPPPPPPPPP    PPPPPPPPNNNN    PPPPNNNNNNNN
1087  *    might become    case 1 below    case 2 below    case 3 below
1088  *
1089  * It is important for case 8 that the the vma NNNN overlapping the
1090  * region AAAA is never going to extended over XXXX. Instead XXXX must
1091  * be extended in region AAAA and NNNN must be removed. This way in
1092  * all cases where vma_merge succeeds, the moment vma_adjust drops the
1093  * rmap_locks, the properties of the merged vma will be already
1094  * correct for the whole merged range. Some of those properties like
1095  * vm_page_prot/vm_flags may be accessed by rmap_walks and they must
1096  * be correct for the whole merged range immediately after the
1097  * rmap_locks are released. Otherwise if XXXX would be removed and
1098  * NNNN would be extended over the XXXX range, remove_migration_ptes
1099  * or other rmap walkers (if working on addresses beyond the "end"
1100  * parameter) may establish ptes with the wrong permissions of NNNN
1101  * instead of the right permissions of XXXX.
1102  */
1103 struct vm_area_struct *vma_merge(struct mm_struct *mm,
1104                         struct vm_area_struct *prev, unsigned long addr,
1105                         unsigned long end, unsigned long vm_flags,
1106                         struct anon_vma *anon_vma, struct file *file,
1107                         pgoff_t pgoff, struct mempolicy *policy,
1108                         struct vm_userfaultfd_ctx vm_userfaultfd_ctx)
1109 {
1110         pgoff_t pglen = (end - addr) >> PAGE_SHIFT;
1111         struct vm_area_struct *area, *next;
1112         int err;
1113
1114         /*
1115          * We later require that vma->vm_flags == vm_flags,
1116          * so this tests vma->vm_flags & VM_SPECIAL, too.
1117          */
1118         if (vm_flags & VM_SPECIAL)
1119                 return NULL;
1120
1121         if (prev)
1122                 next = prev->vm_next;
1123         else
1124                 next = mm->mmap;
1125         area = next;
1126         if (area && area->vm_end == end)                /* cases 6, 7, 8 */
1127                 next = next->vm_next;
1128
1129         /* verify some invariant that must be enforced by the caller */
1130         VM_WARN_ON(prev && addr <= prev->vm_start);
1131         VM_WARN_ON(area && end > area->vm_end);
1132         VM_WARN_ON(addr >= end);
1133
1134         /*
1135          * Can it merge with the predecessor?
1136          */
1137         if (prev && prev->vm_end == addr &&
1138                         mpol_equal(vma_policy(prev), policy) &&
1139                         can_vma_merge_after(prev, vm_flags,
1140                                             anon_vma, file, pgoff,
1141                                             vm_userfaultfd_ctx)) {
1142                 /*
1143                  * OK, it can.  Can we now merge in the successor as well?
1144                  */
1145                 if (next && end == next->vm_start &&
1146                                 mpol_equal(policy, vma_policy(next)) &&
1147                                 can_vma_merge_before(next, vm_flags,
1148                                                      anon_vma, file,
1149                                                      pgoff+pglen,
1150                                                      vm_userfaultfd_ctx) &&
1151                                 is_mergeable_anon_vma(prev->anon_vma,
1152                                                       next->anon_vma, NULL)) {
1153                                                         /* cases 1, 6 */
1154                         err = __vma_adjust(prev, prev->vm_start,
1155                                          next->vm_end, prev->vm_pgoff, NULL,
1156                                          prev);
1157                 } else                                  /* cases 2, 5, 7 */
1158                         err = __vma_adjust(prev, prev->vm_start,
1159                                          end, prev->vm_pgoff, NULL, prev);
1160                 if (err)
1161                         return NULL;
1162                 khugepaged_enter_vma_merge(prev, vm_flags);
1163                 return prev;
1164         }
1165
1166         /*
1167          * Can this new request be merged in front of next?
1168          */
1169         if (next && end == next->vm_start &&
1170                         mpol_equal(policy, vma_policy(next)) &&
1171                         can_vma_merge_before(next, vm_flags,
1172                                              anon_vma, file, pgoff+pglen,
1173                                              vm_userfaultfd_ctx)) {
1174                 if (prev && addr < prev->vm_end)        /* case 4 */
1175                         err = __vma_adjust(prev, prev->vm_start,
1176                                          addr, prev->vm_pgoff, NULL, next);
1177                 else {                                  /* cases 3, 8 */
1178                         err = __vma_adjust(area, addr, next->vm_end,
1179                                          next->vm_pgoff - pglen, NULL, next);
1180                         /*
1181                          * In case 3 area is already equal to next and
1182                          * this is a noop, but in case 8 "area" has
1183                          * been removed and next was expanded over it.
1184                          */
1185                         area = next;
1186                 }
1187                 if (err)
1188                         return NULL;
1189                 khugepaged_enter_vma_merge(area, vm_flags);
1190                 return area;
1191         }
1192
1193         return NULL;
1194 }
1195
1196 /*
1197  * Rough compatbility check to quickly see if it's even worth looking
1198  * at sharing an anon_vma.
1199  *
1200  * They need to have the same vm_file, and the flags can only differ
1201  * in things that mprotect may change.
1202  *
1203  * NOTE! The fact that we share an anon_vma doesn't _have_ to mean that
1204  * we can merge the two vma's. For example, we refuse to merge a vma if
1205  * there is a vm_ops->close() function, because that indicates that the
1206  * driver is doing some kind of reference counting. But that doesn't
1207  * really matter for the anon_vma sharing case.
1208  */
1209 static int anon_vma_compatible(struct vm_area_struct *a, struct vm_area_struct *b)
1210 {
1211         return a->vm_end == b->vm_start &&
1212                 mpol_equal(vma_policy(a), vma_policy(b)) &&
1213                 a->vm_file == b->vm_file &&
1214                 !((a->vm_flags ^ b->vm_flags) & ~(VM_READ|VM_WRITE|VM_EXEC|VM_SOFTDIRTY)) &&
1215                 b->vm_pgoff == a->vm_pgoff + ((b->vm_start - a->vm_start) >> PAGE_SHIFT);
1216 }
1217
1218 /*
1219  * Do some basic sanity checking to see if we can re-use the anon_vma
1220  * from 'old'. The 'a'/'b' vma's are in VM order - one of them will be
1221  * the same as 'old', the other will be the new one that is trying
1222  * to share the anon_vma.
1223  *
1224  * NOTE! This runs with mm_sem held for reading, so it is possible that
1225  * the anon_vma of 'old' is concurrently in the process of being set up
1226  * by another page fault trying to merge _that_. But that's ok: if it
1227  * is being set up, that automatically means that it will be a singleton
1228  * acceptable for merging, so we can do all of this optimistically. But
1229  * we do that READ_ONCE() to make sure that we never re-load the pointer.
1230  *
1231  * IOW: that the "list_is_singular()" test on the anon_vma_chain only
1232  * matters for the 'stable anon_vma' case (ie the thing we want to avoid
1233  * is to return an anon_vma that is "complex" due to having gone through
1234  * a fork).
1235  *
1236  * We also make sure that the two vma's are compatible (adjacent,
1237  * and with the same memory policies). That's all stable, even with just
1238  * a read lock on the mm_sem.
1239  */
1240 static struct anon_vma *reusable_anon_vma(struct vm_area_struct *old, struct vm_area_struct *a, struct vm_area_struct *b)
1241 {
1242         if (anon_vma_compatible(a, b)) {
1243                 struct anon_vma *anon_vma = READ_ONCE(old->anon_vma);
1244
1245                 if (anon_vma && list_is_singular(&old->anon_vma_chain))
1246                         return anon_vma;
1247         }
1248         return NULL;
1249 }
1250
1251 /*
1252  * find_mergeable_anon_vma is used by anon_vma_prepare, to check
1253  * neighbouring vmas for a suitable anon_vma, before it goes off
1254  * to allocate a new anon_vma.  It checks because a repetitive
1255  * sequence of mprotects and faults may otherwise lead to distinct
1256  * anon_vmas being allocated, preventing vma merge in subsequent
1257  * mprotect.
1258  */
1259 struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *vma)
1260 {
1261         struct anon_vma *anon_vma;
1262         struct vm_area_struct *near;
1263
1264         near = vma->vm_next;
1265         if (!near)
1266                 goto try_prev;
1267
1268         anon_vma = reusable_anon_vma(near, vma, near);
1269         if (anon_vma)
1270                 return anon_vma;
1271 try_prev:
1272         near = vma->vm_prev;
1273         if (!near)
1274                 goto none;
1275
1276         anon_vma = reusable_anon_vma(near, near, vma);
1277         if (anon_vma)
1278                 return anon_vma;
1279 none:
1280         /*
1281          * There's no absolute need to look only at touching neighbours:
1282          * we could search further afield for "compatible" anon_vmas.
1283          * But it would probably just be a waste of time searching,
1284          * or lead to too many vmas hanging off the same anon_vma.
1285          * We're trying to allow mprotect remerging later on,
1286          * not trying to minimize memory used for anon_vmas.
1287          */
1288         return NULL;
1289 }
1290
1291 /*
1292  * If a hint addr is less than mmap_min_addr change hint to be as
1293  * low as possible but still greater than mmap_min_addr
1294  */
1295 static inline unsigned long round_hint_to_min(unsigned long hint)
1296 {
1297         hint &= PAGE_MASK;
1298         if (((void *)hint != NULL) &&
1299             (hint < mmap_min_addr))
1300                 return PAGE_ALIGN(mmap_min_addr);
1301         return hint;
1302 }
1303
1304 static inline int mlock_future_check(struct mm_struct *mm,
1305                                      unsigned long flags,
1306                                      unsigned long len)
1307 {
1308         unsigned long locked, lock_limit;
1309
1310         /*  mlock MCL_FUTURE? */
1311         if (flags & VM_LOCKED) {
1312                 locked = len >> PAGE_SHIFT;
1313                 locked += mm->locked_vm;
1314                 lock_limit = rlimit(RLIMIT_MEMLOCK);
1315                 lock_limit >>= PAGE_SHIFT;
1316                 if (locked > lock_limit && !capable(CAP_IPC_LOCK))
1317                         return -EAGAIN;
1318         }
1319         return 0;
1320 }
1321
1322 static inline u64 file_mmap_size_max(struct file *file, struct inode *inode)
1323 {
1324         if (S_ISREG(inode->i_mode))
1325                 return MAX_LFS_FILESIZE;
1326
1327         if (S_ISBLK(inode->i_mode))
1328                 return MAX_LFS_FILESIZE;
1329
1330         /* Special "we do even unsigned file positions" case */
1331         if (file->f_mode & FMODE_UNSIGNED_OFFSET)
1332                 return 0;
1333
1334         /* Yes, random drivers might want more. But I'm tired of buggy drivers */
1335         return ULONG_MAX;
1336 }
1337
1338 static inline bool file_mmap_ok(struct file *file, struct inode *inode,
1339                                 unsigned long pgoff, unsigned long len)
1340 {
1341         u64 maxsize = file_mmap_size_max(file, inode);
1342
1343         if (maxsize && len > maxsize)
1344                 return false;
1345         maxsize -= len;
1346         if (pgoff > maxsize >> PAGE_SHIFT)
1347                 return false;
1348         return true;
1349 }
1350
1351 /*
1352  * The caller must hold down_write(&current->mm->mmap_sem).
1353  */
1354 unsigned long do_mmap(struct file *file, unsigned long addr,
1355                         unsigned long len, unsigned long prot,
1356                         unsigned long flags, vm_flags_t vm_flags,
1357                         unsigned long pgoff, unsigned long *populate,
1358                         struct list_head *uf)
1359 {
1360         struct mm_struct *mm = current->mm;
1361         int pkey = 0;
1362
1363         *populate = 0;
1364
1365         if (!len)
1366                 return -EINVAL;
1367
1368         /*
1369          * Does the application expect PROT_READ to imply PROT_EXEC?
1370          *
1371          * (the exception is when the underlying filesystem is noexec
1372          *  mounted, in which case we dont add PROT_EXEC.)
1373          */
1374         if ((prot & PROT_READ) && (current->personality & READ_IMPLIES_EXEC))
1375                 if (!(file && path_noexec(&file->f_path)))
1376                         prot |= PROT_EXEC;
1377
1378         /* force arch specific MAP_FIXED handling in get_unmapped_area */
1379         if (flags & MAP_FIXED_NOREPLACE)
1380                 flags |= MAP_FIXED;
1381
1382         if (!(flags & MAP_FIXED))
1383                 addr = round_hint_to_min(addr);
1384
1385         /* Careful about overflows.. */
1386         len = PAGE_ALIGN(len);
1387         if (!len)
1388                 return -ENOMEM;
1389
1390         /* offset overflow? */
1391         if ((pgoff + (len >> PAGE_SHIFT)) < pgoff)
1392                 return -EOVERFLOW;
1393
1394         /* Too many mappings? */
1395         if (mm->map_count > sysctl_max_map_count)
1396                 return -ENOMEM;
1397
1398         /* Obtain the address to map to. we verify (or select) it and ensure
1399          * that it represents a valid section of the address space.
1400          */
1401         addr = get_unmapped_area(file, addr, len, pgoff, flags);
1402         if (offset_in_page(addr))
1403                 return addr;
1404
1405         if (flags & MAP_FIXED_NOREPLACE) {
1406                 struct vm_area_struct *vma = find_vma(mm, addr);
1407
1408                 if (vma && vma->vm_start < addr + len)
1409                         return -EEXIST;
1410         }
1411
1412         if (prot == PROT_EXEC) {
1413                 pkey = execute_only_pkey(mm);
1414                 if (pkey < 0)
1415                         pkey = 0;
1416         }
1417
1418         /* Do simple checking here so the lower-level routines won't have
1419          * to. we assume access permissions have been handled by the open
1420          * of the memory object, so we don't do any here.
1421          */
1422         vm_flags |= calc_vm_prot_bits(prot, pkey) | calc_vm_flag_bits(flags) |
1423                         mm->def_flags | VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC;
1424
1425         if (flags & MAP_LOCKED)
1426                 if (!can_do_mlock())
1427                         return -EPERM;
1428
1429         if (mlock_future_check(mm, vm_flags, len))
1430                 return -EAGAIN;
1431
1432         if (file) {
1433                 struct inode *inode = file_inode(file);
1434                 unsigned long flags_mask;
1435
1436                 if (!file_mmap_ok(file, inode, pgoff, len))
1437                         return -EOVERFLOW;
1438
1439                 flags_mask = LEGACY_MAP_MASK | file->f_op->mmap_supported_flags;
1440
1441                 switch (flags & MAP_TYPE) {
1442                 case MAP_SHARED:
1443                         /*
1444                          * Force use of MAP_SHARED_VALIDATE with non-legacy
1445                          * flags. E.g. MAP_SYNC is dangerous to use with
1446                          * MAP_SHARED as you don't know which consistency model
1447                          * you will get. We silently ignore unsupported flags
1448                          * with MAP_SHARED to preserve backward compatibility.
1449                          */
1450                         flags &= LEGACY_MAP_MASK;
1451                         /* fall through */
1452                 case MAP_SHARED_VALIDATE:
1453                         if (flags & ~flags_mask)
1454                                 return -EOPNOTSUPP;
1455                         if ((prot&PROT_WRITE) && !(file->f_mode&FMODE_WRITE))
1456                                 return -EACCES;
1457
1458                         /*
1459                          * Make sure we don't allow writing to an append-only
1460                          * file..
1461                          */
1462                         if (IS_APPEND(inode) && (file->f_mode & FMODE_WRITE))
1463                                 return -EACCES;
1464
1465                         /*
1466                          * Make sure there are no mandatory locks on the file.
1467                          */
1468                         if (locks_verify_locked(file))
1469                                 return -EAGAIN;
1470
1471                         vm_flags |= VM_SHARED | VM_MAYSHARE;
1472                         if (!(file->f_mode & FMODE_WRITE))
1473                                 vm_flags &= ~(VM_MAYWRITE | VM_SHARED);
1474
1475                         /* fall through */
1476                 case MAP_PRIVATE:
1477                         if (!(file->f_mode & FMODE_READ))
1478                                 return -EACCES;
1479                         if (path_noexec(&file->f_path)) {
1480                                 if (vm_flags & VM_EXEC)
1481                                         return -EPERM;
1482                                 vm_flags &= ~VM_MAYEXEC;
1483                         }
1484
1485                         if (!file->f_op->mmap)
1486                                 return -ENODEV;
1487                         if (vm_flags & (VM_GROWSDOWN|VM_GROWSUP))
1488                                 return -EINVAL;
1489                         break;
1490
1491                 default:
1492                         return -EINVAL;
1493                 }
1494         } else {
1495                 switch (flags & MAP_TYPE) {
1496                 case MAP_SHARED:
1497                         if (vm_flags & (VM_GROWSDOWN|VM_GROWSUP))
1498                                 return -EINVAL;
1499                         /*
1500                          * Ignore pgoff.
1501                          */
1502                         pgoff = 0;
1503                         vm_flags |= VM_SHARED | VM_MAYSHARE;
1504                         break;
1505                 case MAP_PRIVATE:
1506                         /*
1507                          * Set pgoff according to addr for anon_vma.
1508                          */
1509                         pgoff = addr >> PAGE_SHIFT;
1510                         break;
1511                 default:
1512                         return -EINVAL;
1513                 }
1514         }
1515
1516         /*
1517          * Set 'VM_NORESERVE' if we should not account for the
1518          * memory use of this mapping.
1519          */
1520         if (flags & MAP_NORESERVE) {
1521                 /* We honor MAP_NORESERVE if allowed to overcommit */
1522                 if (sysctl_overcommit_memory != OVERCOMMIT_NEVER)
1523                         vm_flags |= VM_NORESERVE;
1524
1525                 /* hugetlb applies strict overcommit unless MAP_NORESERVE */
1526                 if (file && is_file_hugepages(file))
1527                         vm_flags |= VM_NORESERVE;
1528         }
1529
1530         addr = mmap_region(file, addr, len, vm_flags, pgoff, uf);
1531         if (!IS_ERR_VALUE(addr) &&
1532             ((vm_flags & VM_LOCKED) ||
1533              (flags & (MAP_POPULATE | MAP_NONBLOCK)) == MAP_POPULATE))
1534                 *populate = len;
1535         return addr;
1536 }
1537
1538 unsigned long ksys_mmap_pgoff(unsigned long addr, unsigned long len,
1539                               unsigned long prot, unsigned long flags,
1540                               unsigned long fd, unsigned long pgoff)
1541 {
1542         struct file *file = NULL;
1543         unsigned long retval;
1544
1545         if (!(flags & MAP_ANONYMOUS)) {
1546                 audit_mmap_fd(fd, flags);
1547                 file = fget(fd);
1548                 if (!file)
1549                         return -EBADF;
1550                 if (is_file_hugepages(file))
1551                         len = ALIGN(len, huge_page_size(hstate_file(file)));
1552                 retval = -EINVAL;
1553                 if (unlikely(flags & MAP_HUGETLB && !is_file_hugepages(file)))
1554                         goto out_fput;
1555         } else if (flags & MAP_HUGETLB) {
1556                 struct user_struct *user = NULL;
1557                 struct hstate *hs;
1558
1559                 hs = hstate_sizelog((flags >> MAP_HUGE_SHIFT) & MAP_HUGE_MASK);
1560                 if (!hs)
1561                         return -EINVAL;
1562
1563                 len = ALIGN(len, huge_page_size(hs));
1564                 /*
1565                  * VM_NORESERVE is used because the reservations will be
1566                  * taken when vm_ops->mmap() is called
1567                  * A dummy user value is used because we are not locking
1568                  * memory so no accounting is necessary
1569                  */
1570                 file = hugetlb_file_setup(HUGETLB_ANON_FILE, len,
1571                                 VM_NORESERVE,
1572                                 &user, HUGETLB_ANONHUGE_INODE,
1573                                 (flags >> MAP_HUGE_SHIFT) & MAP_HUGE_MASK);
1574                 if (IS_ERR(file))
1575                         return PTR_ERR(file);
1576         }
1577
1578         flags &= ~(MAP_EXECUTABLE | MAP_DENYWRITE);
1579
1580         retval = vm_mmap_pgoff(file, addr, len, prot, flags, pgoff);
1581 out_fput:
1582         if (file)
1583                 fput(file);
1584         return retval;
1585 }
1586
1587 SYSCALL_DEFINE6(mmap_pgoff, unsigned long, addr, unsigned long, len,
1588                 unsigned long, prot, unsigned long, flags,
1589                 unsigned long, fd, unsigned long, pgoff)
1590 {
1591         return ksys_mmap_pgoff(addr, len, prot, flags, fd, pgoff);
1592 }
1593
1594 #ifdef __ARCH_WANT_SYS_OLD_MMAP
1595 struct mmap_arg_struct {
1596         unsigned long addr;
1597         unsigned long len;
1598         unsigned long prot;
1599         unsigned long flags;
1600         unsigned long fd;
1601         unsigned long offset;
1602 };
1603
1604 SYSCALL_DEFINE1(old_mmap, struct mmap_arg_struct __user *, arg)
1605 {
1606         struct mmap_arg_struct a;
1607
1608         if (copy_from_user(&a, arg, sizeof(a)))
1609                 return -EFAULT;
1610         if (offset_in_page(a.offset))
1611                 return -EINVAL;
1612
1613         return ksys_mmap_pgoff(a.addr, a.len, a.prot, a.flags, a.fd,
1614                                a.offset >> PAGE_SHIFT);
1615 }
1616 #endif /* __ARCH_WANT_SYS_OLD_MMAP */
1617
1618 /*
1619  * Some shared mappigns will want the pages marked read-only
1620  * to track write events. If so, we'll downgrade vm_page_prot
1621  * to the private version (using protection_map[] without the
1622  * VM_SHARED bit).
1623  */
1624 int vma_wants_writenotify(struct vm_area_struct *vma, pgprot_t vm_page_prot)
1625 {
1626         vm_flags_t vm_flags = vma->vm_flags;
1627         const struct vm_operations_struct *vm_ops = vma->vm_ops;
1628
1629         /* If it was private or non-writable, the write bit is already clear */
1630         if ((vm_flags & (VM_WRITE|VM_SHARED)) != ((VM_WRITE|VM_SHARED)))
1631                 return 0;
1632
1633         /* The backer wishes to know when pages are first written to? */
1634         if (vm_ops && (vm_ops->page_mkwrite || vm_ops->pfn_mkwrite))
1635                 return 1;
1636
1637         /* The open routine did something to the protections that pgprot_modify
1638          * won't preserve? */
1639         if (pgprot_val(vm_page_prot) !=
1640             pgprot_val(vm_pgprot_modify(vm_page_prot, vm_flags)))
1641                 return 0;
1642
1643         /* Do we need to track softdirty? */
1644         if (IS_ENABLED(CONFIG_MEM_SOFT_DIRTY) && !(vm_flags & VM_SOFTDIRTY))
1645                 return 1;
1646
1647         /* Specialty mapping? */
1648         if (vm_flags & VM_PFNMAP)
1649                 return 0;
1650
1651         /* Can the mapping track the dirty pages? */
1652         return vma->vm_file && vma->vm_file->f_mapping &&
1653                 mapping_cap_account_dirty(vma->vm_file->f_mapping);
1654 }
1655
1656 /*
1657  * We account for memory if it's a private writeable mapping,
1658  * not hugepages and VM_NORESERVE wasn't set.
1659  */
1660 static inline int accountable_mapping(struct file *file, vm_flags_t vm_flags)
1661 {
1662         /*
1663          * hugetlb has its own accounting separate from the core VM
1664          * VM_HUGETLB may not be set yet so we cannot check for that flag.
1665          */
1666         if (file && is_file_hugepages(file))
1667                 return 0;
1668
1669         return (vm_flags & (VM_NORESERVE | VM_SHARED | VM_WRITE)) == VM_WRITE;
1670 }
1671
1672 unsigned long mmap_region(struct file *file, unsigned long addr,
1673                 unsigned long len, vm_flags_t vm_flags, unsigned long pgoff,
1674                 struct list_head *uf)
1675 {
1676         struct mm_struct *mm = current->mm;
1677         struct vm_area_struct *vma, *prev;
1678         int error;
1679         struct rb_node **rb_link, *rb_parent;
1680         unsigned long charged = 0;
1681
1682         /* Check against address space limit. */
1683         if (!may_expand_vm(mm, vm_flags, len >> PAGE_SHIFT)) {
1684                 unsigned long nr_pages;
1685
1686                 /*
1687                  * MAP_FIXED may remove pages of mappings that intersects with
1688                  * requested mapping. Account for the pages it would unmap.
1689                  */
1690                 nr_pages = count_vma_pages_range(mm, addr, addr + len);
1691
1692                 if (!may_expand_vm(mm, vm_flags,
1693                                         (len >> PAGE_SHIFT) - nr_pages))
1694                         return -ENOMEM;
1695         }
1696
1697         /* Clear old maps */
1698         while (find_vma_links(mm, addr, addr + len, &prev, &rb_link,
1699                               &rb_parent)) {
1700                 if (do_munmap(mm, addr, len, uf))
1701                         return -ENOMEM;
1702         }
1703
1704         /*
1705          * Private writable mapping: check memory availability
1706          */
1707         if (accountable_mapping(file, vm_flags)) {
1708                 charged = len >> PAGE_SHIFT;
1709                 if (security_vm_enough_memory_mm(mm, charged))
1710                         return -ENOMEM;
1711                 vm_flags |= VM_ACCOUNT;
1712         }
1713
1714         /*
1715          * Can we just expand an old mapping?
1716          */
1717         vma = vma_merge(mm, prev, addr, addr + len, vm_flags,
1718                         NULL, file, pgoff, NULL, NULL_VM_UFFD_CTX);
1719         if (vma)
1720                 goto out;
1721
1722         /*
1723          * Determine the object being mapped and call the appropriate
1724          * specific mapper. the address has already been validated, but
1725          * not unmapped, but the maps are removed from the list.
1726          */
1727         vma = vm_area_alloc(mm);
1728         if (!vma) {
1729                 error = -ENOMEM;
1730                 goto unacct_error;
1731         }
1732
1733         vma->vm_start = addr;
1734         vma->vm_end = addr + len;
1735         vma->vm_flags = vm_flags;
1736         vma->vm_page_prot = vm_get_page_prot(vm_flags);
1737         vma->vm_pgoff = pgoff;
1738
1739         if (file) {
1740                 if (vm_flags & VM_DENYWRITE) {
1741                         error = deny_write_access(file);
1742                         if (error)
1743                                 goto free_vma;
1744                 }
1745                 if (vm_flags & VM_SHARED) {
1746                         error = mapping_map_writable(file->f_mapping);
1747                         if (error)
1748                                 goto allow_write_and_free_vma;
1749                 }
1750
1751                 /* ->mmap() can change vma->vm_file, but must guarantee that
1752                  * vma_link() below can deny write-access if VM_DENYWRITE is set
1753                  * and map writably if VM_SHARED is set. This usually means the
1754                  * new file must not have been exposed to user-space, yet.
1755                  */
1756                 vma->vm_file = get_file(file);
1757                 error = call_mmap(file, vma);
1758                 if (error)
1759                         goto unmap_and_free_vma;
1760
1761                 /* Can addr have changed??
1762                  *
1763                  * Answer: Yes, several device drivers can do it in their
1764                  *         f_op->mmap method. -DaveM
1765                  * Bug: If addr is changed, prev, rb_link, rb_parent should
1766                  *      be updated for vma_link()
1767                  */
1768                 WARN_ON_ONCE(addr != vma->vm_start);
1769
1770                 addr = vma->vm_start;
1771                 vm_flags = vma->vm_flags;
1772         } else if (vm_flags & VM_SHARED) {
1773                 error = shmem_zero_setup(vma);
1774                 if (error)
1775                         goto free_vma;
1776         } else {
1777                 vma_set_anonymous(vma);
1778         }
1779
1780         vma_link(mm, vma, prev, rb_link, rb_parent);
1781         /* Once vma denies write, undo our temporary denial count */
1782         if (file) {
1783                 if (vm_flags & VM_SHARED)
1784                         mapping_unmap_writable(file->f_mapping);
1785                 if (vm_flags & VM_DENYWRITE)
1786                         allow_write_access(file);
1787         }
1788         file = vma->vm_file;
1789 out:
1790         perf_event_mmap(vma);
1791
1792         vm_stat_account(mm, vm_flags, len >> PAGE_SHIFT);
1793         if (vm_flags & VM_LOCKED) {
1794                 if ((vm_flags & VM_SPECIAL) || vma_is_dax(vma) ||
1795                                         is_vm_hugetlb_page(vma) ||
1796                                         vma == get_gate_vma(current->mm))
1797                         vma->vm_flags &= VM_LOCKED_CLEAR_MASK;
1798                 else
1799                         mm->locked_vm += (len >> PAGE_SHIFT);
1800         }
1801
1802         if (file)
1803                 uprobe_mmap(vma);
1804
1805         /*
1806          * New (or expanded) vma always get soft dirty status.
1807          * Otherwise user-space soft-dirty page tracker won't
1808          * be able to distinguish situation when vma area unmapped,
1809          * then new mapped in-place (which must be aimed as
1810          * a completely new data area).
1811          */
1812         vma->vm_flags |= VM_SOFTDIRTY;
1813
1814         vma_set_page_prot(vma);
1815
1816         return addr;
1817
1818 unmap_and_free_vma:
1819         vma->vm_file = NULL;
1820         fput(file);
1821
1822         /* Undo any partial mapping done by a device driver. */
1823         unmap_region(mm, vma, prev, vma->vm_start, vma->vm_end);
1824         charged = 0;
1825         if (vm_flags & VM_SHARED)
1826                 mapping_unmap_writable(file->f_mapping);
1827 allow_write_and_free_vma:
1828         if (vm_flags & VM_DENYWRITE)
1829                 allow_write_access(file);
1830 free_vma:
1831         vm_area_free(vma);
1832 unacct_error:
1833         if (charged)
1834                 vm_unacct_memory(charged);
1835         return error;
1836 }
1837
1838 unsigned long unmapped_area(struct vm_unmapped_area_info *info)
1839 {
1840         /*
1841          * We implement the search by looking for an rbtree node that
1842          * immediately follows a suitable gap. That is,
1843          * - gap_start = vma->vm_prev->vm_end <= info->high_limit - length;
1844          * - gap_end   = vma->vm_start        >= info->low_limit  + length;
1845          * - gap_end - gap_start >= length
1846          */
1847
1848         struct mm_struct *mm = current->mm;
1849         struct vm_area_struct *vma;
1850         unsigned long length, low_limit, high_limit, gap_start, gap_end;
1851
1852         /* Adjust search length to account for worst case alignment overhead */
1853         length = info->length + info->align_mask;
1854         if (length < info->length)
1855                 return -ENOMEM;
1856
1857         /* Adjust search limits by the desired length */
1858         if (info->high_limit < length)
1859                 return -ENOMEM;
1860         high_limit = info->high_limit - length;
1861
1862         if (info->low_limit > high_limit)
1863                 return -ENOMEM;
1864         low_limit = info->low_limit + length;
1865
1866         /* Check if rbtree root looks promising */
1867         if (RB_EMPTY_ROOT(&mm->mm_rb))
1868                 goto check_highest;
1869         vma = rb_entry(mm->mm_rb.rb_node, struct vm_area_struct, vm_rb);
1870         if (vma->rb_subtree_gap < length)
1871                 goto check_highest;
1872
1873         while (true) {
1874                 /* Visit left subtree if it looks promising */
1875                 gap_end = vm_start_gap(vma);
1876                 if (gap_end >= low_limit && vma->vm_rb.rb_left) {
1877                         struct vm_area_struct *left =
1878                                 rb_entry(vma->vm_rb.rb_left,
1879                                          struct vm_area_struct, vm_rb);
1880                         if (left->rb_subtree_gap >= length) {
1881                                 vma = left;
1882                                 continue;
1883                         }
1884                 }
1885
1886                 gap_start = vma->vm_prev ? vm_end_gap(vma->vm_prev) : 0;
1887 check_current:
1888                 /* Check if current node has a suitable gap */
1889                 if (gap_start > high_limit)
1890                         return -ENOMEM;
1891                 if (gap_end >= low_limit &&
1892                     gap_end > gap_start && gap_end - gap_start >= length)
1893                         goto found;
1894
1895                 /* Visit right subtree if it looks promising */
1896                 if (vma->vm_rb.rb_right) {
1897                         struct vm_area_struct *right =
1898                                 rb_entry(vma->vm_rb.rb_right,
1899                                          struct vm_area_struct, vm_rb);
1900                         if (right->rb_subtree_gap >= length) {
1901                                 vma = right;
1902                                 continue;
1903                         }
1904                 }
1905
1906                 /* Go back up the rbtree to find next candidate node */
1907                 while (true) {
1908                         struct rb_node *prev = &vma->vm_rb;
1909                         if (!rb_parent(prev))
1910                                 goto check_highest;
1911                         vma = rb_entry(rb_parent(prev),
1912                                        struct vm_area_struct, vm_rb);
1913                         if (prev == vma->vm_rb.rb_left) {
1914                                 gap_start = vm_end_gap(vma->vm_prev);
1915                                 gap_end = vm_start_gap(vma);
1916                                 goto check_current;
1917                         }
1918                 }
1919         }
1920
1921 check_highest:
1922         /* Check highest gap, which does not precede any rbtree node */
1923         gap_start = mm->highest_vm_end;
1924         gap_end = ULONG_MAX;  /* Only for VM_BUG_ON below */
1925         if (gap_start > high_limit)
1926                 return -ENOMEM;
1927
1928 found:
1929         /* We found a suitable gap. Clip it with the original low_limit. */
1930         if (gap_start < info->low_limit)
1931                 gap_start = info->low_limit;
1932
1933         /* Adjust gap address to the desired alignment */
1934         gap_start += (info->align_offset - gap_start) & info->align_mask;
1935
1936         VM_BUG_ON(gap_start + info->length > info->high_limit);
1937         VM_BUG_ON(gap_start + info->length > gap_end);
1938         return gap_start;
1939 }
1940
1941 unsigned long unmapped_area_topdown(struct vm_unmapped_area_info *info)
1942 {
1943         struct mm_struct *mm = current->mm;
1944         struct vm_area_struct *vma;
1945         unsigned long length, low_limit, high_limit, gap_start, gap_end;
1946
1947         /* Adjust search length to account for worst case alignment overhead */
1948         length = info->length + info->align_mask;
1949         if (length < info->length)
1950                 return -ENOMEM;
1951
1952         /*
1953          * Adjust search limits by the desired length.
1954          * See implementation comment at top of unmapped_area().
1955          */
1956         gap_end = info->high_limit;
1957         if (gap_end < length)
1958                 return -ENOMEM;
1959         high_limit = gap_end - length;
1960
1961         if (info->low_limit > high_limit)
1962                 return -ENOMEM;
1963         low_limit = info->low_limit + length;
1964
1965         /* Check highest gap, which does not precede any rbtree node */
1966         gap_start = mm->highest_vm_end;
1967         if (gap_start <= high_limit)
1968                 goto found_highest;
1969
1970         /* Check if rbtree root looks promising */
1971         if (RB_EMPTY_ROOT(&mm->mm_rb))
1972                 return -ENOMEM;
1973         vma = rb_entry(mm->mm_rb.rb_node, struct vm_area_struct, vm_rb);
1974         if (vma->rb_subtree_gap < length)
1975                 return -ENOMEM;
1976
1977         while (true) {
1978                 /* Visit right subtree if it looks promising */
1979                 gap_start = vma->vm_prev ? vm_end_gap(vma->vm_prev) : 0;
1980                 if (gap_start <= high_limit && vma->vm_rb.rb_right) {
1981                         struct vm_area_struct *right =
1982                                 rb_entry(vma->vm_rb.rb_right,
1983                                          struct vm_area_struct, vm_rb);
1984                         if (right->rb_subtree_gap >= length) {
1985                                 vma = right;
1986                                 continue;
1987                         }
1988                 }
1989
1990 check_current:
1991                 /* Check if current node has a suitable gap */
1992                 gap_end = vm_start_gap(vma);
1993                 if (gap_end < low_limit)
1994                         return -ENOMEM;
1995                 if (gap_start <= high_limit &&
1996                     gap_end > gap_start && gap_end - gap_start >= length)
1997                         goto found;
1998
1999                 /* Visit left subtree if it looks promising */
2000                 if (vma->vm_rb.rb_left) {
2001                         struct vm_area_struct *left =
2002                                 rb_entry(vma->vm_rb.rb_left,
2003                                          struct vm_area_struct, vm_rb);
2004                         if (left->rb_subtree_gap >= length) {
2005                                 vma = left;
2006                                 continue;
2007                         }
2008                 }
2009
2010                 /* Go back up the rbtree to find next candidate node */
2011                 while (true) {
2012                         struct rb_node *prev = &vma->vm_rb;
2013                         if (!rb_parent(prev))
2014                                 return -ENOMEM;
2015                         vma = rb_entry(rb_parent(prev),
2016                                        struct vm_area_struct, vm_rb);
2017                         if (prev == vma->vm_rb.rb_right) {
2018                                 gap_start = vma->vm_prev ?
2019                                         vm_end_gap(vma->vm_prev) : 0;
2020                                 goto check_current;
2021                         }
2022                 }
2023         }
2024
2025 found:
2026         /* We found a suitable gap. Clip it with the original high_limit. */
2027         if (gap_end > info->high_limit)
2028                 gap_end = info->high_limit;
2029
2030 found_highest:
2031         /* Compute highest gap address at the desired alignment */
2032         gap_end -= info->length;
2033         gap_end -= (gap_end - info->align_offset) & info->align_mask;
2034
2035         VM_BUG_ON(gap_end < info->low_limit);
2036         VM_BUG_ON(gap_end < gap_start);
2037         return gap_end;
2038 }
2039
2040 /* Get an address range which is currently unmapped.
2041  * For shmat() with addr=0.
2042  *
2043  * Ugly calling convention alert:
2044  * Return value with the low bits set means error value,
2045  * ie
2046  *      if (ret & ~PAGE_MASK)
2047  *              error = ret;
2048  *
2049  * This function "knows" that -ENOMEM has the bits set.
2050  */
2051 #ifndef HAVE_ARCH_UNMAPPED_AREA
2052 unsigned long
2053 arch_get_unmapped_area(struct file *filp, unsigned long addr,
2054                 unsigned long len, unsigned long pgoff, unsigned long flags)
2055 {
2056         struct mm_struct *mm = current->mm;
2057         struct vm_area_struct *vma, *prev;
2058         struct vm_unmapped_area_info info;
2059
2060         if (len > TASK_SIZE - mmap_min_addr)
2061                 return -ENOMEM;
2062
2063         if (flags & MAP_FIXED)
2064                 return addr;
2065
2066         if (addr) {
2067                 addr = PAGE_ALIGN(addr);
2068                 vma = find_vma_prev(mm, addr, &prev);
2069                 if (TASK_SIZE - len >= addr && addr >= mmap_min_addr &&
2070                     (!vma || addr + len <= vm_start_gap(vma)) &&
2071                     (!prev || addr >= vm_end_gap(prev)))
2072                         return addr;
2073         }
2074
2075         info.flags = 0;
2076         info.length = len;
2077         info.low_limit = mm->mmap_base;
2078         info.high_limit = TASK_SIZE;
2079         info.align_mask = 0;
2080         return vm_unmapped_area(&info);
2081 }
2082 #endif
2083
2084 /*
2085  * This mmap-allocator allocates new areas top-down from below the
2086  * stack's low limit (the base):
2087  */
2088 #ifndef HAVE_ARCH_UNMAPPED_AREA_TOPDOWN
2089 unsigned long
2090 arch_get_unmapped_area_topdown(struct file *filp, const unsigned long addr0,
2091                           const unsigned long len, const unsigned long pgoff,
2092                           const unsigned long flags)
2093 {
2094         struct vm_area_struct *vma, *prev;
2095         struct mm_struct *mm = current->mm;
2096         unsigned long addr = addr0;
2097         struct vm_unmapped_area_info info;
2098
2099         /* requested length too big for entire address space */
2100         if (len > TASK_SIZE - mmap_min_addr)
2101                 return -ENOMEM;
2102
2103         if (flags & MAP_FIXED)
2104                 return addr;
2105
2106         /* requesting a specific address */
2107         if (addr) {
2108                 addr = PAGE_ALIGN(addr);
2109                 vma = find_vma_prev(mm, addr, &prev);
2110                 if (TASK_SIZE - len >= addr && addr >= mmap_min_addr &&
2111                                 (!vma || addr + len <= vm_start_gap(vma)) &&
2112                                 (!prev || addr >= vm_end_gap(prev)))
2113                         return addr;
2114         }
2115
2116         info.flags = VM_UNMAPPED_AREA_TOPDOWN;
2117         info.length = len;
2118         info.low_limit = max(PAGE_SIZE, mmap_min_addr);
2119         info.high_limit = mm->mmap_base;
2120         info.align_mask = 0;
2121         addr = vm_unmapped_area(&info);
2122
2123         /*
2124          * A failed mmap() very likely causes application failure,
2125          * so fall back to the bottom-up function here. This scenario
2126          * can happen with large stack limits and large mmap()
2127          * allocations.
2128          */
2129         if (offset_in_page(addr)) {
2130                 VM_BUG_ON(addr != -ENOMEM);
2131                 info.flags = 0;
2132                 info.low_limit = TASK_UNMAPPED_BASE;
2133                 info.high_limit = TASK_SIZE;
2134                 addr = vm_unmapped_area(&info);
2135         }
2136
2137         return addr;
2138 }
2139 #endif
2140
2141 unsigned long
2142 get_unmapped_area(struct file *file, unsigned long addr, unsigned long len,
2143                 unsigned long pgoff, unsigned long flags)
2144 {
2145         unsigned long (*get_area)(struct file *, unsigned long,
2146                                   unsigned long, unsigned long, unsigned long);
2147
2148         unsigned long error = arch_mmap_check(addr, len, flags);
2149         if (error)
2150                 return error;
2151
2152         /* Careful about overflows.. */
2153         if (len > TASK_SIZE)
2154                 return -ENOMEM;
2155
2156         get_area = current->mm->get_unmapped_area;
2157         if (file) {
2158                 if (file->f_op->get_unmapped_area)
2159                         get_area = file->f_op->get_unmapped_area;
2160         } else if (flags & MAP_SHARED) {
2161                 /*
2162                  * mmap_region() will call shmem_zero_setup() to create a file,
2163                  * so use shmem's get_unmapped_area in case it can be huge.
2164                  * do_mmap_pgoff() will clear pgoff, so match alignment.
2165                  */
2166                 pgoff = 0;
2167                 get_area = shmem_get_unmapped_area;
2168         }
2169
2170         addr = get_area(file, addr, len, pgoff, flags);
2171         if (IS_ERR_VALUE(addr))
2172                 return addr;
2173
2174         if (addr > TASK_SIZE - len)
2175                 return -ENOMEM;
2176         if (offset_in_page(addr))
2177                 return -EINVAL;
2178
2179         error = security_mmap_addr(addr);
2180         return error ? error : addr;
2181 }
2182
2183 EXPORT_SYMBOL(get_unmapped_area);
2184
2185 /* Look up the first VMA which satisfies  addr < vm_end,  NULL if none. */
2186 struct vm_area_struct *find_vma(struct mm_struct *mm, unsigned long addr)
2187 {
2188         struct rb_node *rb_node;
2189         struct vm_area_struct *vma;
2190
2191         /* Check the cache first. */
2192         vma = vmacache_find(mm, addr);
2193         if (likely(vma))
2194                 return vma;
2195
2196         rb_node = mm->mm_rb.rb_node;
2197
2198         while (rb_node) {
2199                 struct vm_area_struct *tmp;
2200
2201                 tmp = rb_entry(rb_node, struct vm_area_struct, vm_rb);
2202
2203                 if (tmp->vm_end > addr) {
2204                         vma = tmp;
2205                         if (tmp->vm_start <= addr)
2206                                 break;
2207                         rb_node = rb_node->rb_left;
2208                 } else
2209                         rb_node = rb_node->rb_right;
2210         }
2211
2212         if (vma)
2213                 vmacache_update(addr, vma);
2214         return vma;
2215 }
2216
2217 EXPORT_SYMBOL(find_vma);
2218
2219 /*
2220  * Same as find_vma, but also return a pointer to the previous VMA in *pprev.
2221  */
2222 struct vm_area_struct *
2223 find_vma_prev(struct mm_struct *mm, unsigned long addr,
2224                         struct vm_area_struct **pprev)
2225 {
2226         struct vm_area_struct *vma;
2227
2228         vma = find_vma(mm, addr);
2229         if (vma) {
2230                 *pprev = vma->vm_prev;
2231         } else {
2232                 struct rb_node *rb_node = mm->mm_rb.rb_node;
2233                 *pprev = NULL;
2234                 while (rb_node) {
2235                         *pprev = rb_entry(rb_node, struct vm_area_struct, vm_rb);
2236                         rb_node = rb_node->rb_right;
2237                 }
2238         }
2239         return vma;
2240 }
2241
2242 /*
2243  * Verify that the stack growth is acceptable and
2244  * update accounting. This is shared with both the
2245  * grow-up and grow-down cases.
2246  */
2247 static int acct_stack_growth(struct vm_area_struct *vma,
2248                              unsigned long size, unsigned long grow)
2249 {
2250         struct mm_struct *mm = vma->vm_mm;
2251         unsigned long new_start;
2252
2253         /* address space limit tests */
2254         if (!may_expand_vm(mm, vma->vm_flags, grow))
2255                 return -ENOMEM;
2256
2257         /* Stack limit test */
2258         if (size > rlimit(RLIMIT_STACK))
2259                 return -ENOMEM;
2260
2261         /* mlock limit tests */
2262         if (vma->vm_flags & VM_LOCKED) {
2263                 unsigned long locked;
2264                 unsigned long limit;
2265                 locked = mm->locked_vm + grow;
2266                 limit = rlimit(RLIMIT_MEMLOCK);
2267                 limit >>= PAGE_SHIFT;
2268                 if (locked > limit && !capable(CAP_IPC_LOCK))
2269                         return -ENOMEM;
2270         }
2271
2272         /* Check to ensure the stack will not grow into a hugetlb-only region */
2273         new_start = (vma->vm_flags & VM_GROWSUP) ? vma->vm_start :
2274                         vma->vm_end - size;
2275         if (is_hugepage_only_range(vma->vm_mm, new_start, size))
2276                 return -EFAULT;
2277
2278         /*
2279          * Overcommit..  This must be the final test, as it will
2280          * update security statistics.
2281          */
2282         if (security_vm_enough_memory_mm(mm, grow))
2283                 return -ENOMEM;
2284
2285         return 0;
2286 }
2287
2288 #if defined(CONFIG_STACK_GROWSUP) || defined(CONFIG_IA64)
2289 /*
2290  * PA-RISC uses this for its stack; IA64 for its Register Backing Store.
2291  * vma is the last one with address > vma->vm_end.  Have to extend vma.
2292  */
2293 int expand_upwards(struct vm_area_struct *vma, unsigned long address)
2294 {
2295         struct mm_struct *mm = vma->vm_mm;
2296         struct vm_area_struct *next;
2297         unsigned long gap_addr;
2298         int error = 0;
2299
2300         if (!(vma->vm_flags & VM_GROWSUP))
2301                 return -EFAULT;
2302
2303         /* Guard against exceeding limits of the address space. */
2304         address &= PAGE_MASK;
2305         if (address >= (TASK_SIZE & PAGE_MASK))
2306                 return -ENOMEM;
2307         address += PAGE_SIZE;
2308
2309         /* Enforce stack_guard_gap */
2310         gap_addr = address + stack_guard_gap;
2311
2312         /* Guard against overflow */
2313         if (gap_addr < address || gap_addr > TASK_SIZE)
2314                 gap_addr = TASK_SIZE;
2315
2316         next = vma->vm_next;
2317         if (next && next->vm_start < gap_addr &&
2318                         (next->vm_flags & (VM_WRITE|VM_READ|VM_EXEC))) {
2319                 if (!(next->vm_flags & VM_GROWSUP))
2320                         return -ENOMEM;
2321                 /* Check that both stack segments have the same anon_vma? */
2322         }
2323
2324         /* We must make sure the anon_vma is allocated. */
2325         if (unlikely(anon_vma_prepare(vma)))
2326                 return -ENOMEM;
2327
2328         /*
2329          * vma->vm_start/vm_end cannot change under us because the caller
2330          * is required to hold the mmap_sem in read mode.  We need the
2331          * anon_vma lock to serialize against concurrent expand_stacks.
2332          */
2333         anon_vma_lock_write(vma->anon_vma);
2334
2335         /* Somebody else might have raced and expanded it already */
2336         if (address > vma->vm_end) {
2337                 unsigned long size, grow;
2338
2339                 size = address - vma->vm_start;
2340                 grow = (address - vma->vm_end) >> PAGE_SHIFT;
2341
2342                 error = -ENOMEM;
2343                 if (vma->vm_pgoff + (size >> PAGE_SHIFT) >= vma->vm_pgoff) {
2344                         error = acct_stack_growth(vma, size, grow);
2345                         if (!error) {
2346                                 /*
2347                                  * vma_gap_update() doesn't support concurrent
2348                                  * updates, but we only hold a shared mmap_sem
2349                                  * lock here, so we need to protect against
2350                                  * concurrent vma expansions.
2351                                  * anon_vma_lock_write() doesn't help here, as
2352                                  * we don't guarantee that all growable vmas
2353                                  * in a mm share the same root anon vma.
2354                                  * So, we reuse mm->page_table_lock to guard
2355                                  * against concurrent vma expansions.
2356                                  */
2357                                 spin_lock(&mm->page_table_lock);
2358                                 if (vma->vm_flags & VM_LOCKED)
2359                                         mm->locked_vm += grow;
2360                                 vm_stat_account(mm, vma->vm_flags, grow);
2361                                 anon_vma_interval_tree_pre_update_vma(vma);
2362                                 vma->vm_end = address;
2363                                 anon_vma_interval_tree_post_update_vma(vma);
2364                                 if (vma->vm_next)
2365                                         vma_gap_update(vma->vm_next);
2366                                 else
2367                                         mm->highest_vm_end = vm_end_gap(vma);
2368                                 spin_unlock(&mm->page_table_lock);
2369
2370                                 perf_event_mmap(vma);
2371                         }
2372                 }
2373         }
2374         anon_vma_unlock_write(vma->anon_vma);
2375         khugepaged_enter_vma_merge(vma, vma->vm_flags);
2376         validate_mm(mm);
2377         return error;
2378 }
2379 #endif /* CONFIG_STACK_GROWSUP || CONFIG_IA64 */
2380
2381 /*
2382  * vma is the first one with address < vma->vm_start.  Have to extend vma.
2383  */
2384 int expand_downwards(struct vm_area_struct *vma,
2385                                    unsigned long address)
2386 {
2387         struct mm_struct *mm = vma->vm_mm;
2388         struct vm_area_struct *prev;
2389         int error = 0;
2390
2391         address &= PAGE_MASK;
2392         if (address < mmap_min_addr)
2393                 return -EPERM;
2394
2395         /* Enforce stack_guard_gap */
2396         prev = vma->vm_prev;
2397         /* Check that both stack segments have the same anon_vma? */
2398         if (prev && !(prev->vm_flags & VM_GROWSDOWN) &&
2399                         (prev->vm_flags & (VM_WRITE|VM_READ|VM_EXEC))) {
2400                 if (address - prev->vm_end < stack_guard_gap)
2401                         return -ENOMEM;
2402         }
2403
2404         /* We must make sure the anon_vma is allocated. */
2405         if (unlikely(anon_vma_prepare(vma)))
2406                 return -ENOMEM;
2407
2408         /*
2409          * vma->vm_start/vm_end cannot change under us because the caller
2410          * is required to hold the mmap_sem in read mode.  We need the
2411          * anon_vma lock to serialize against concurrent expand_stacks.
2412          */
2413         anon_vma_lock_write(vma->anon_vma);
2414
2415         /* Somebody else might have raced and expanded it already */
2416         if (address < vma->vm_start) {
2417                 unsigned long size, grow;
2418
2419                 size = vma->vm_end - address;
2420                 grow = (vma->vm_start - address) >> PAGE_SHIFT;
2421
2422                 error = -ENOMEM;
2423                 if (grow <= vma->vm_pgoff) {
2424                         error = acct_stack_growth(vma, size, grow);
2425                         if (!error) {
2426                                 /*
2427                                  * vma_gap_update() doesn't support concurrent
2428                                  * updates, but we only hold a shared mmap_sem
2429                                  * lock here, so we need to protect against
2430                                  * concurrent vma expansions.
2431                                  * anon_vma_lock_write() doesn't help here, as
2432                                  * we don't guarantee that all growable vmas
2433                                  * in a mm share the same root anon vma.
2434                                  * So, we reuse mm->page_table_lock to guard
2435                                  * against concurrent vma expansions.
2436                                  */
2437                                 spin_lock(&mm->page_table_lock);
2438                                 if (vma->vm_flags & VM_LOCKED)
2439                                         mm->locked_vm += grow;
2440                                 vm_stat_account(mm, vma->vm_flags, grow);
2441                                 anon_vma_interval_tree_pre_update_vma(vma);
2442                                 vma->vm_start = address;
2443                                 vma->vm_pgoff -= grow;
2444                                 anon_vma_interval_tree_post_update_vma(vma);
2445                                 vma_gap_update(vma);
2446                                 spin_unlock(&mm->page_table_lock);
2447
2448                                 perf_event_mmap(vma);
2449                         }
2450                 }
2451         }
2452         anon_vma_unlock_write(vma->anon_vma);
2453         khugepaged_enter_vma_merge(vma, vma->vm_flags);
2454         validate_mm(mm);
2455         return error;
2456 }
2457
2458 /* enforced gap between the expanding stack and other mappings. */
2459 unsigned long stack_guard_gap = 256UL<<PAGE_SHIFT;
2460
2461 static int __init cmdline_parse_stack_guard_gap(char *p)
2462 {
2463         unsigned long val;
2464         char *endptr;
2465
2466         val = simple_strtoul(p, &endptr, 10);
2467         if (!*endptr)
2468                 stack_guard_gap = val << PAGE_SHIFT;
2469
2470         return 0;
2471 }
2472 __setup("stack_guard_gap=", cmdline_parse_stack_guard_gap);
2473
2474 #ifdef CONFIG_STACK_GROWSUP
2475 int expand_stack(struct vm_area_struct *vma, unsigned long address)
2476 {
2477         return expand_upwards(vma, address);
2478 }
2479
2480 struct vm_area_struct *
2481 find_extend_vma(struct mm_struct *mm, unsigned long addr)
2482 {
2483         struct vm_area_struct *vma, *prev;
2484
2485         addr &= PAGE_MASK;
2486         vma = find_vma_prev(mm, addr, &prev);
2487         if (vma && (vma->vm_start <= addr))
2488                 return vma;
2489         /* don't alter vm_end if the coredump is running */
2490         if (!prev || !mmget_still_valid(mm) || expand_stack(prev, addr))
2491                 return NULL;
2492         if (prev->vm_flags & VM_LOCKED)
2493                 populate_vma_page_range(prev, addr, prev->vm_end, NULL);
2494         return prev;
2495 }
2496 #else
2497 int expand_stack(struct vm_area_struct *vma, unsigned long address)
2498 {
2499         return expand_downwards(vma, address);
2500 }
2501
2502 struct vm_area_struct *
2503 find_extend_vma(struct mm_struct *mm, unsigned long addr)
2504 {
2505         struct vm_area_struct *vma;
2506         unsigned long start;
2507
2508         addr &= PAGE_MASK;
2509         vma = find_vma(mm, addr);
2510         if (!vma)
2511                 return NULL;
2512         if (vma->vm_start <= addr)
2513                 return vma;
2514         if (!(vma->vm_flags & VM_GROWSDOWN))
2515                 return NULL;
2516         /* don't alter vm_start if the coredump is running */
2517         if (!mmget_still_valid(mm))
2518                 return NULL;
2519         start = vma->vm_start;
2520         if (expand_stack(vma, addr))
2521                 return NULL;
2522         if (vma->vm_flags & VM_LOCKED)
2523                 populate_vma_page_range(vma, addr, start, NULL);
2524         return vma;
2525 }
2526 #endif
2527
2528 EXPORT_SYMBOL_GPL(find_extend_vma);
2529
2530 /*
2531  * Ok - we have the memory areas we should free on the vma list,
2532  * so release them, and do the vma updates.
2533  *
2534  * Called with the mm semaphore held.
2535  */
2536 static void remove_vma_list(struct mm_struct *mm, struct vm_area_struct *vma)
2537 {
2538         unsigned long nr_accounted = 0;
2539
2540         /* Update high watermark before we lower total_vm */
2541         update_hiwater_vm(mm);
2542         do {
2543                 long nrpages = vma_pages(vma);
2544
2545                 if (vma->vm_flags & VM_ACCOUNT)
2546                         nr_accounted += nrpages;
2547                 vm_stat_account(mm, vma->vm_flags, -nrpages);
2548                 vma = remove_vma(vma);
2549         } while (vma);
2550         vm_unacct_memory(nr_accounted);
2551         validate_mm(mm);
2552 }
2553
2554 /*
2555  * Get rid of page table information in the indicated region.
2556  *
2557  * Called with the mm semaphore held.
2558  */
2559 static void unmap_region(struct mm_struct *mm,
2560                 struct vm_area_struct *vma, struct vm_area_struct *prev,
2561                 unsigned long start, unsigned long end)
2562 {
2563         struct vm_area_struct *next = prev ? prev->vm_next : mm->mmap;
2564         struct mmu_gather tlb;
2565
2566         lru_add_drain();
2567         tlb_gather_mmu(&tlb, mm, start, end);
2568         update_hiwater_rss(mm);
2569         unmap_vmas(&tlb, vma, start, end);
2570         free_pgtables(&tlb, vma, prev ? prev->vm_end : FIRST_USER_ADDRESS,
2571                                  next ? next->vm_start : USER_PGTABLES_CEILING);
2572         tlb_finish_mmu(&tlb, start, end);
2573 }
2574
2575 /*
2576  * Create a list of vma's touched by the unmap, removing them from the mm's
2577  * vma list as we go..
2578  */
2579 static void
2580 detach_vmas_to_be_unmapped(struct mm_struct *mm, struct vm_area_struct *vma,
2581         struct vm_area_struct *prev, unsigned long end)
2582 {
2583         struct vm_area_struct **insertion_point;
2584         struct vm_area_struct *tail_vma = NULL;
2585
2586         insertion_point = (prev ? &prev->vm_next : &mm->mmap);
2587         vma->vm_prev = NULL;
2588         do {
2589                 vma_rb_erase(vma, &mm->mm_rb);
2590                 mm->map_count--;
2591                 tail_vma = vma;
2592                 vma = vma->vm_next;
2593         } while (vma && vma->vm_start < end);
2594         *insertion_point = vma;
2595         if (vma) {
2596                 vma->vm_prev = prev;
2597                 vma_gap_update(vma);
2598         } else
2599                 mm->highest_vm_end = prev ? vm_end_gap(prev) : 0;
2600         tail_vma->vm_next = NULL;
2601
2602         /* Kill the cache */
2603         vmacache_invalidate(mm);
2604 }
2605
2606 /*
2607  * __split_vma() bypasses sysctl_max_map_count checking.  We use this where it
2608  * has already been checked or doesn't make sense to fail.
2609  */
2610 int __split_vma(struct mm_struct *mm, struct vm_area_struct *vma,
2611                 unsigned long addr, int new_below)
2612 {
2613         struct vm_area_struct *new;
2614         int err;
2615
2616         if (vma->vm_ops && vma->vm_ops->split) {
2617                 err = vma->vm_ops->split(vma, addr);
2618                 if (err)
2619                         return err;
2620         }
2621
2622         new = vm_area_dup(vma);
2623         if (!new)
2624                 return -ENOMEM;
2625
2626         if (new_below)
2627                 new->vm_end = addr;
2628         else {
2629                 new->vm_start = addr;
2630                 new->vm_pgoff += ((addr - vma->vm_start) >> PAGE_SHIFT);
2631         }
2632
2633         err = vma_dup_policy(vma, new);
2634         if (err)
2635                 goto out_free_vma;
2636
2637         err = anon_vma_clone(new, vma);
2638         if (err)
2639                 goto out_free_mpol;
2640
2641         if (new->vm_file)
2642                 get_file(new->vm_file);
2643
2644         if (new->vm_ops && new->vm_ops->open)
2645                 new->vm_ops->open(new);
2646
2647         if (new_below)
2648                 err = vma_adjust(vma, addr, vma->vm_end, vma->vm_pgoff +
2649                         ((addr - new->vm_start) >> PAGE_SHIFT), new);
2650         else
2651                 err = vma_adjust(vma, vma->vm_start, addr, vma->vm_pgoff, new);
2652
2653         /* Success. */
2654         if (!err)
2655                 return 0;
2656
2657         /* Clean everything up if vma_adjust failed. */
2658         if (new->vm_ops && new->vm_ops->close)
2659                 new->vm_ops->close(new);
2660         if (new->vm_file)
2661                 fput(new->vm_file);
2662         unlink_anon_vmas(new);
2663  out_free_mpol:
2664         mpol_put(vma_policy(new));
2665  out_free_vma:
2666         vm_area_free(new);
2667         return err;
2668 }
2669
2670 /*
2671  * Split a vma into two pieces at address 'addr', a new vma is allocated
2672  * either for the first part or the tail.
2673  */
2674 int split_vma(struct mm_struct *mm, struct vm_area_struct *vma,
2675               unsigned long addr, int new_below)
2676 {
2677         if (mm->map_count >= sysctl_max_map_count)
2678                 return -ENOMEM;
2679
2680         return __split_vma(mm, vma, addr, new_below);
2681 }
2682
2683 /* Munmap is split into 2 main parts -- this part which finds
2684  * what needs doing, and the areas themselves, which do the
2685  * work.  This now handles partial unmappings.
2686  * Jeremy Fitzhardinge <jeremy@goop.org>
2687  */
2688 int do_munmap(struct mm_struct *mm, unsigned long start, size_t len,
2689               struct list_head *uf)
2690 {
2691         unsigned long end;
2692         struct vm_area_struct *vma, *prev, *last;
2693
2694         if ((offset_in_page(start)) || start > TASK_SIZE || len > TASK_SIZE-start)
2695                 return -EINVAL;
2696
2697         len = PAGE_ALIGN(len);
2698         if (len == 0)
2699                 return -EINVAL;
2700
2701         /* Find the first overlapping VMA */
2702         vma = find_vma(mm, start);
2703         if (!vma)
2704                 return 0;
2705         prev = vma->vm_prev;
2706         /* we have  start < vma->vm_end  */
2707
2708         /* if it doesn't overlap, we have nothing.. */
2709         end = start + len;
2710         if (vma->vm_start >= end)
2711                 return 0;
2712
2713         /*
2714          * If we need to split any vma, do it now to save pain later.
2715          *
2716          * Note: mremap's move_vma VM_ACCOUNT handling assumes a partially
2717          * unmapped vm_area_struct will remain in use: so lower split_vma
2718          * places tmp vma above, and higher split_vma places tmp vma below.
2719          */
2720         if (start > vma->vm_start) {
2721                 int error;
2722
2723                 /*
2724                  * Make sure that map_count on return from munmap() will
2725                  * not exceed its limit; but let map_count go just above
2726                  * its limit temporarily, to help free resources as expected.
2727                  */
2728                 if (end < vma->vm_end && mm->map_count >= sysctl_max_map_count)
2729                         return -ENOMEM;
2730
2731                 error = __split_vma(mm, vma, start, 0);
2732                 if (error)
2733                         return error;
2734                 prev = vma;
2735         }
2736
2737         /* Does it split the last one? */
2738         last = find_vma(mm, end);
2739         if (last && end > last->vm_start) {
2740                 int error = __split_vma(mm, last, end, 1);
2741                 if (error)
2742                         return error;
2743         }
2744         vma = prev ? prev->vm_next : mm->mmap;
2745
2746         if (unlikely(uf)) {
2747                 /*
2748                  * If userfaultfd_unmap_prep returns an error the vmas
2749                  * will remain splitted, but userland will get a
2750                  * highly unexpected error anyway. This is no
2751                  * different than the case where the first of the two
2752                  * __split_vma fails, but we don't undo the first
2753                  * split, despite we could. This is unlikely enough
2754                  * failure that it's not worth optimizing it for.
2755                  */
2756                 int error = userfaultfd_unmap_prep(vma, start, end, uf);
2757                 if (error)
2758                         return error;
2759         }
2760
2761         /*
2762          * unlock any mlock()ed ranges before detaching vmas
2763          */
2764         if (mm->locked_vm) {
2765                 struct vm_area_struct *tmp = vma;
2766                 while (tmp && tmp->vm_start < end) {
2767                         if (tmp->vm_flags & VM_LOCKED) {
2768                                 mm->locked_vm -= vma_pages(tmp);
2769                                 munlock_vma_pages_all(tmp);
2770                         }
2771                         tmp = tmp->vm_next;
2772                 }
2773         }
2774
2775         /*
2776          * Remove the vma's, and unmap the actual pages
2777          */
2778         detach_vmas_to_be_unmapped(mm, vma, prev, end);
2779         unmap_region(mm, vma, prev, start, end);
2780
2781         arch_unmap(mm, vma, start, end);
2782
2783         /* Fix up all other VM information */
2784         remove_vma_list(mm, vma);
2785
2786         return 0;
2787 }
2788
2789 int vm_munmap(unsigned long start, size_t len)
2790 {
2791         int ret;
2792         struct mm_struct *mm = current->mm;
2793         LIST_HEAD(uf);
2794
2795         if (down_write_killable(&mm->mmap_sem))
2796                 return -EINTR;
2797
2798         ret = do_munmap(mm, start, len, &uf);
2799         up_write(&mm->mmap_sem);
2800         userfaultfd_unmap_complete(mm, &uf);
2801         return ret;
2802 }
2803 EXPORT_SYMBOL(vm_munmap);
2804
2805 SYSCALL_DEFINE2(munmap, unsigned long, addr, size_t, len)
2806 {
2807         profile_munmap(addr);
2808         return vm_munmap(addr, len);
2809 }
2810
2811
2812 /*
2813  * Emulation of deprecated remap_file_pages() syscall.
2814  */
2815 SYSCALL_DEFINE5(remap_file_pages, unsigned long, start, unsigned long, size,
2816                 unsigned long, prot, unsigned long, pgoff, unsigned long, flags)
2817 {
2818
2819         struct mm_struct *mm = current->mm;
2820         struct vm_area_struct *vma;
2821         unsigned long populate = 0;
2822         unsigned long ret = -EINVAL;
2823         struct file *file;
2824
2825         pr_warn_once("%s (%d) uses deprecated remap_file_pages() syscall. See Documentation/vm/remap_file_pages.rst.\n",
2826                      current->comm, current->pid);
2827
2828         if (prot)
2829                 return ret;
2830         start = start & PAGE_MASK;
2831         size = size & PAGE_MASK;
2832
2833         if (start + size <= start)
2834                 return ret;
2835
2836         /* Does pgoff wrap? */
2837         if (pgoff + (size >> PAGE_SHIFT) < pgoff)
2838                 return ret;
2839
2840         if (down_write_killable(&mm->mmap_sem))
2841                 return -EINTR;
2842
2843         vma = find_vma(mm, start);
2844
2845         if (!vma || !(vma->vm_flags & VM_SHARED))
2846                 goto out;
2847
2848         if (start < vma->vm_start)
2849                 goto out;
2850
2851         if (start + size > vma->vm_end) {
2852                 struct vm_area_struct *next;
2853
2854                 for (next = vma->vm_next; next; next = next->vm_next) {
2855                         /* hole between vmas ? */
2856                         if (next->vm_start != next->vm_prev->vm_end)
2857                                 goto out;
2858
2859                         if (next->vm_file != vma->vm_file)
2860                                 goto out;
2861
2862                         if (next->vm_flags != vma->vm_flags)
2863                                 goto out;
2864
2865                         if (start + size <= next->vm_end)
2866                                 break;
2867                 }
2868
2869                 if (!next)
2870                         goto out;
2871         }
2872
2873         prot |= vma->vm_flags & VM_READ ? PROT_READ : 0;
2874         prot |= vma->vm_flags & VM_WRITE ? PROT_WRITE : 0;
2875         prot |= vma->vm_flags & VM_EXEC ? PROT_EXEC : 0;
2876
2877         flags &= MAP_NONBLOCK;
2878         flags |= MAP_SHARED | MAP_FIXED | MAP_POPULATE;
2879         if (vma->vm_flags & VM_LOCKED) {
2880                 struct vm_area_struct *tmp;
2881                 flags |= MAP_LOCKED;
2882
2883                 /* drop PG_Mlocked flag for over-mapped range */
2884                 for (tmp = vma; tmp->vm_start >= start + size;
2885                                 tmp = tmp->vm_next) {
2886                         /*
2887                          * Split pmd and munlock page on the border
2888                          * of the range.
2889                          */
2890                         vma_adjust_trans_huge(tmp, start, start + size, 0);
2891
2892                         munlock_vma_pages_range(tmp,
2893                                         max(tmp->vm_start, start),
2894                                         min(tmp->vm_end, start + size));
2895                 }
2896         }
2897
2898         file = get_file(vma->vm_file);
2899         ret = do_mmap_pgoff(vma->vm_file, start, size,
2900                         prot, flags, pgoff, &populate, NULL);
2901         fput(file);
2902 out:
2903         up_write(&mm->mmap_sem);
2904         if (populate)
2905                 mm_populate(ret, populate);
2906         if (!IS_ERR_VALUE(ret))
2907                 ret = 0;
2908         return ret;
2909 }
2910
2911 static inline void verify_mm_writelocked(struct mm_struct *mm)
2912 {
2913 #ifdef CONFIG_DEBUG_VM
2914         if (unlikely(down_read_trylock(&mm->mmap_sem))) {
2915                 WARN_ON(1);
2916                 up_read(&mm->mmap_sem);
2917         }
2918 #endif
2919 }
2920
2921 /*
2922  *  this is really a simplified "do_mmap".  it only handles
2923  *  anonymous maps.  eventually we may be able to do some
2924  *  brk-specific accounting here.
2925  */
2926 static int do_brk_flags(unsigned long addr, unsigned long len, unsigned long flags, struct list_head *uf)
2927 {
2928         struct mm_struct *mm = current->mm;
2929         struct vm_area_struct *vma, *prev;
2930         struct rb_node **rb_link, *rb_parent;
2931         pgoff_t pgoff = addr >> PAGE_SHIFT;
2932         int error;
2933
2934         /* Until we need other flags, refuse anything except VM_EXEC. */
2935         if ((flags & (~VM_EXEC)) != 0)
2936                 return -EINVAL;
2937         flags |= VM_DATA_DEFAULT_FLAGS | VM_ACCOUNT | mm->def_flags;
2938
2939         error = get_unmapped_area(NULL, addr, len, 0, MAP_FIXED);
2940         if (offset_in_page(error))
2941                 return error;
2942
2943         error = mlock_future_check(mm, mm->def_flags, len);
2944         if (error)
2945                 return error;
2946
2947         /*
2948          * mm->mmap_sem is required to protect against another thread
2949          * changing the mappings in case we sleep.
2950          */
2951         verify_mm_writelocked(mm);
2952
2953         /*
2954          * Clear old maps.  this also does some error checking for us
2955          */
2956         while (find_vma_links(mm, addr, addr + len, &prev, &rb_link,
2957                               &rb_parent)) {
2958                 if (do_munmap(mm, addr, len, uf))
2959                         return -ENOMEM;
2960         }
2961
2962         /* Check against address space limits *after* clearing old maps... */
2963         if (!may_expand_vm(mm, flags, len >> PAGE_SHIFT))
2964                 return -ENOMEM;
2965
2966         if (mm->map_count > sysctl_max_map_count)
2967                 return -ENOMEM;
2968
2969         if (security_vm_enough_memory_mm(mm, len >> PAGE_SHIFT))
2970                 return -ENOMEM;
2971
2972         /* Can we just expand an old private anonymous mapping? */
2973         vma = vma_merge(mm, prev, addr, addr + len, flags,
2974                         NULL, NULL, pgoff, NULL, NULL_VM_UFFD_CTX);
2975         if (vma)
2976                 goto out;
2977
2978         /*
2979          * create a vma struct for an anonymous mapping
2980          */
2981         vma = vm_area_alloc(mm);
2982         if (!vma) {
2983                 vm_unacct_memory(len >> PAGE_SHIFT);
2984                 return -ENOMEM;
2985         }
2986
2987         vma_set_anonymous(vma);
2988         vma->vm_start = addr;
2989         vma->vm_end = addr + len;
2990         vma->vm_pgoff = pgoff;
2991         vma->vm_flags = flags;
2992         vma->vm_page_prot = vm_get_page_prot(flags);
2993         vma_link(mm, vma, prev, rb_link, rb_parent);
2994 out:
2995         perf_event_mmap(vma);
2996         mm->total_vm += len >> PAGE_SHIFT;
2997         mm->data_vm += len >> PAGE_SHIFT;
2998         if (flags & VM_LOCKED)
2999                 mm->locked_vm += (len >> PAGE_SHIFT);
3000         vma->vm_flags |= VM_SOFTDIRTY;
3001         return 0;
3002 }
3003
3004 int vm_brk_flags(unsigned long addr, unsigned long request, unsigned long flags)
3005 {
3006         struct mm_struct *mm = current->mm;
3007         unsigned long len;
3008         int ret;
3009         bool populate;
3010         LIST_HEAD(uf);
3011
3012         len = PAGE_ALIGN(request);
3013         if (len < request)
3014                 return -ENOMEM;
3015         if (!len)
3016                 return 0;
3017
3018         if (down_write_killable(&mm->mmap_sem))
3019                 return -EINTR;
3020
3021         ret = do_brk_flags(addr, len, flags, &uf);
3022         populate = ((mm->def_flags & VM_LOCKED) != 0);
3023         up_write(&mm->mmap_sem);
3024         userfaultfd_unmap_complete(mm, &uf);
3025         if (populate && !ret)
3026                 mm_populate(addr, len);
3027         return ret;
3028 }
3029 EXPORT_SYMBOL(vm_brk_flags);
3030
3031 int vm_brk(unsigned long addr, unsigned long len)
3032 {
3033         return vm_brk_flags(addr, len, 0);
3034 }
3035 EXPORT_SYMBOL(vm_brk);
3036
3037 /* Release all mmaps. */
3038 void exit_mmap(struct mm_struct *mm)
3039 {
3040         struct mmu_gather tlb;
3041         struct vm_area_struct *vma;
3042         unsigned long nr_accounted = 0;
3043
3044         /* mm's last user has gone, and its about to be pulled down */
3045         mmu_notifier_release(mm);
3046
3047         if (unlikely(mm_is_oom_victim(mm))) {
3048                 /*
3049                  * Manually reap the mm to free as much memory as possible.
3050                  * Then, as the oom reaper does, set MMF_OOM_SKIP to disregard
3051                  * this mm from further consideration.  Taking mm->mmap_sem for
3052                  * write after setting MMF_OOM_SKIP will guarantee that the oom
3053                  * reaper will not run on this mm again after mmap_sem is
3054                  * dropped.
3055                  *
3056                  * Nothing can be holding mm->mmap_sem here and the above call
3057                  * to mmu_notifier_release(mm) ensures mmu notifier callbacks in
3058                  * __oom_reap_task_mm() will not block.
3059                  *
3060                  * This needs to be done before calling munlock_vma_pages_all(),
3061                  * which clears VM_LOCKED, otherwise the oom reaper cannot
3062                  * reliably test it.
3063                  */
3064                 (void)__oom_reap_task_mm(mm);
3065
3066                 set_bit(MMF_OOM_SKIP, &mm->flags);
3067                 down_write(&mm->mmap_sem);
3068                 up_write(&mm->mmap_sem);
3069         }
3070
3071         if (mm->locked_vm) {
3072                 vma = mm->mmap;
3073                 while (vma) {
3074                         if (vma->vm_flags & VM_LOCKED)
3075                                 munlock_vma_pages_all(vma);
3076                         vma = vma->vm_next;
3077                 }
3078         }
3079
3080         arch_exit_mmap(mm);
3081
3082         vma = mm->mmap;
3083         if (!vma)       /* Can happen if dup_mmap() received an OOM */
3084                 return;
3085
3086         lru_add_drain();
3087         flush_cache_mm(mm);
3088         tlb_gather_mmu(&tlb, mm, 0, -1);
3089         /* update_hiwater_rss(mm) here? but nobody should be looking */
3090         /* Use -1 here to ensure all VMAs in the mm are unmapped */
3091         unmap_vmas(&tlb, vma, 0, -1);
3092         free_pgtables(&tlb, vma, FIRST_USER_ADDRESS, USER_PGTABLES_CEILING);
3093         tlb_finish_mmu(&tlb, 0, -1);
3094
3095         /*
3096          * Walk the list again, actually closing and freeing it,
3097          * with preemption enabled, without holding any MM locks.
3098          */
3099         while (vma) {
3100                 if (vma->vm_flags & VM_ACCOUNT)
3101                         nr_accounted += vma_pages(vma);
3102                 vma = remove_vma(vma);
3103         }
3104         vm_unacct_memory(nr_accounted);
3105 }
3106
3107 /* Insert vm structure into process list sorted by address
3108  * and into the inode's i_mmap tree.  If vm_file is non-NULL
3109  * then i_mmap_rwsem is taken here.
3110  */
3111 int insert_vm_struct(struct mm_struct *mm, struct vm_area_struct *vma)
3112 {
3113         struct vm_area_struct *prev;
3114         struct rb_node **rb_link, *rb_parent;
3115
3116         if (find_vma_links(mm, vma->vm_start, vma->vm_end,
3117                            &prev, &rb_link, &rb_parent))
3118                 return -ENOMEM;
3119         if ((vma->vm_flags & VM_ACCOUNT) &&
3120              security_vm_enough_memory_mm(mm, vma_pages(vma)))
3121                 return -ENOMEM;
3122
3123         /*
3124          * The vm_pgoff of a purely anonymous vma should be irrelevant
3125          * until its first write fault, when page's anon_vma and index
3126          * are set.  But now set the vm_pgoff it will almost certainly
3127          * end up with (unless mremap moves it elsewhere before that
3128          * first wfault), so /proc/pid/maps tells a consistent story.
3129          *
3130          * By setting it to reflect the virtual start address of the
3131          * vma, merges and splits can happen in a seamless way, just
3132          * using the existing file pgoff checks and manipulations.
3133          * Similarly in do_mmap_pgoff and in do_brk.
3134          */
3135         if (vma_is_anonymous(vma)) {
3136                 BUG_ON(vma->anon_vma);
3137                 vma->vm_pgoff = vma->vm_start >> PAGE_SHIFT;
3138         }
3139
3140         vma_link(mm, vma, prev, rb_link, rb_parent);
3141         return 0;
3142 }
3143
3144 /*
3145  * Copy the vma structure to a new location in the same mm,
3146  * prior to moving page table entries, to effect an mremap move.
3147  */
3148 struct vm_area_struct *copy_vma(struct vm_area_struct **vmap,
3149         unsigned long addr, unsigned long len, pgoff_t pgoff,
3150         bool *need_rmap_locks)
3151 {
3152         struct vm_area_struct *vma = *vmap;
3153         unsigned long vma_start = vma->vm_start;
3154         struct mm_struct *mm = vma->vm_mm;
3155         struct vm_area_struct *new_vma, *prev;
3156         struct rb_node **rb_link, *rb_parent;
3157         bool faulted_in_anon_vma = true;
3158
3159         /*
3160          * If anonymous vma has not yet been faulted, update new pgoff
3161          * to match new location, to increase its chance of merging.
3162          */
3163         if (unlikely(vma_is_anonymous(vma) && !vma->anon_vma)) {
3164                 pgoff = addr >> PAGE_SHIFT;
3165                 faulted_in_anon_vma = false;
3166         }
3167
3168         if (find_vma_links(mm, addr, addr + len, &prev, &rb_link, &rb_parent))
3169                 return NULL;    /* should never get here */
3170         new_vma = vma_merge(mm, prev, addr, addr + len, vma->vm_flags,
3171                             vma->anon_vma, vma->vm_file, pgoff, vma_policy(vma),
3172                             vma->vm_userfaultfd_ctx);
3173         if (new_vma) {
3174                 /*
3175                  * Source vma may have been merged into new_vma
3176                  */
3177                 if (unlikely(vma_start >= new_vma->vm_start &&
3178                              vma_start < new_vma->vm_end)) {
3179                         /*
3180                          * The only way we can get a vma_merge with
3181                          * self during an mremap is if the vma hasn't
3182                          * been faulted in yet and we were allowed to
3183                          * reset the dst vma->vm_pgoff to the
3184                          * destination address of the mremap to allow
3185                          * the merge to happen. mremap must change the
3186                          * vm_pgoff linearity between src and dst vmas
3187                          * (in turn preventing a vma_merge) to be
3188                          * safe. It is only safe to keep the vm_pgoff
3189                          * linear if there are no pages mapped yet.
3190                          */
3191                         VM_BUG_ON_VMA(faulted_in_anon_vma, new_vma);
3192                         *vmap = vma = new_vma;
3193                 }
3194                 *need_rmap_locks = (new_vma->vm_pgoff <= vma->vm_pgoff);
3195         } else {
3196                 new_vma = vm_area_dup(vma);
3197                 if (!new_vma)
3198                         goto out;
3199                 new_vma->vm_start = addr;
3200                 new_vma->vm_end = addr + len;
3201                 new_vma->vm_pgoff = pgoff;
3202                 if (vma_dup_policy(vma, new_vma))
3203                         goto out_free_vma;
3204                 if (anon_vma_clone(new_vma, vma))
3205                         goto out_free_mempol;
3206                 if (new_vma->vm_file)
3207                         get_file(new_vma->vm_file);
3208                 if (new_vma->vm_ops && new_vma->vm_ops->open)
3209                         new_vma->vm_ops->open(new_vma);
3210                 vma_link(mm, new_vma, prev, rb_link, rb_parent);
3211                 *need_rmap_locks = false;
3212         }
3213         return new_vma;
3214
3215 out_free_mempol:
3216         mpol_put(vma_policy(new_vma));
3217 out_free_vma:
3218         vm_area_free(new_vma);
3219 out:
3220         return NULL;
3221 }
3222
3223 /*
3224  * Return true if the calling process may expand its vm space by the passed
3225  * number of pages
3226  */
3227 bool may_expand_vm(struct mm_struct *mm, vm_flags_t flags, unsigned long npages)
3228 {
3229         if (mm->total_vm + npages > rlimit(RLIMIT_AS) >> PAGE_SHIFT)
3230                 return false;
3231
3232         if (is_data_mapping(flags) &&
3233             mm->data_vm + npages > rlimit(RLIMIT_DATA) >> PAGE_SHIFT) {
3234                 /* Workaround for Valgrind */
3235                 if (rlimit(RLIMIT_DATA) == 0 &&
3236                     mm->data_vm + npages <= rlimit_max(RLIMIT_DATA) >> PAGE_SHIFT)
3237                         return true;
3238
3239                 pr_warn_once("%s (%d): VmData %lu exceed data ulimit %lu. Update limits%s.\n",
3240                              current->comm, current->pid,
3241                              (mm->data_vm + npages) << PAGE_SHIFT,
3242                              rlimit(RLIMIT_DATA),
3243                              ignore_rlimit_data ? "" : " or use boot option ignore_rlimit_data");
3244
3245                 if (!ignore_rlimit_data)
3246                         return false;
3247         }
3248
3249         return true;
3250 }
3251
3252 void vm_stat_account(struct mm_struct *mm, vm_flags_t flags, long npages)
3253 {
3254         mm->total_vm += npages;
3255
3256         if (is_exec_mapping(flags))
3257                 mm->exec_vm += npages;
3258         else if (is_stack_mapping(flags))
3259                 mm->stack_vm += npages;
3260         else if (is_data_mapping(flags))
3261                 mm->data_vm += npages;
3262 }
3263
3264 static vm_fault_t special_mapping_fault(struct vm_fault *vmf);
3265
3266 /*
3267  * Having a close hook prevents vma merging regardless of flags.
3268  */
3269 static void special_mapping_close(struct vm_area_struct *vma)
3270 {
3271 }
3272
3273 static const char *special_mapping_name(struct vm_area_struct *vma)
3274 {
3275         return ((struct vm_special_mapping *)vma->vm_private_data)->name;
3276 }
3277
3278 static int special_mapping_mremap(struct vm_area_struct *new_vma)
3279 {
3280         struct vm_special_mapping *sm = new_vma->vm_private_data;
3281
3282         if (WARN_ON_ONCE(current->mm != new_vma->vm_mm))
3283                 return -EFAULT;
3284
3285         if (sm->mremap)
3286                 return sm->mremap(sm, new_vma);
3287
3288         return 0;
3289 }
3290
3291 static const struct vm_operations_struct special_mapping_vmops = {
3292         .close = special_mapping_close,
3293         .fault = special_mapping_fault,
3294         .mremap = special_mapping_mremap,
3295         .name = special_mapping_name,
3296 };
3297
3298 static const struct vm_operations_struct legacy_special_mapping_vmops = {
3299         .close = special_mapping_close,
3300         .fault = special_mapping_fault,
3301 };
3302
3303 static vm_fault_t special_mapping_fault(struct vm_fault *vmf)
3304 {
3305         struct vm_area_struct *vma = vmf->vma;
3306         pgoff_t pgoff;
3307         struct page **pages;
3308
3309         if (vma->vm_ops == &legacy_special_mapping_vmops) {
3310                 pages = vma->vm_private_data;
3311         } else {
3312                 struct vm_special_mapping *sm = vma->vm_private_data;
3313
3314                 if (sm->fault)
3315                         return sm->fault(sm, vmf->vma, vmf);
3316
3317                 pages = sm->pages;
3318         }
3319
3320         for (pgoff = vmf->pgoff; pgoff && *pages; ++pages)
3321                 pgoff--;
3322
3323         if (*pages) {
3324                 struct page *page = *pages;
3325                 get_page(page);
3326                 vmf->page = page;
3327                 return 0;
3328         }
3329
3330         return VM_FAULT_SIGBUS;
3331 }
3332
3333 static struct vm_area_struct *__install_special_mapping(
3334         struct mm_struct *mm,
3335         unsigned long addr, unsigned long len,
3336         unsigned long vm_flags, void *priv,
3337         const struct vm_operations_struct *ops)
3338 {
3339         int ret;
3340         struct vm_area_struct *vma;
3341
3342         vma = vm_area_alloc(mm);
3343         if (unlikely(vma == NULL))
3344                 return ERR_PTR(-ENOMEM);
3345
3346         vma->vm_start = addr;
3347         vma->vm_end = addr + len;
3348
3349         vma->vm_flags = vm_flags | mm->def_flags | VM_DONTEXPAND | VM_SOFTDIRTY;
3350         vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
3351
3352         vma->vm_ops = ops;
3353         vma->vm_private_data = priv;
3354
3355         ret = insert_vm_struct(mm, vma);
3356         if (ret)
3357                 goto out;
3358
3359         vm_stat_account(mm, vma->vm_flags, len >> PAGE_SHIFT);
3360
3361         perf_event_mmap(vma);
3362
3363         return vma;
3364
3365 out:
3366         vm_area_free(vma);
3367         return ERR_PTR(ret);
3368 }
3369
3370 bool vma_is_special_mapping(const struct vm_area_struct *vma,
3371         const struct vm_special_mapping *sm)
3372 {
3373         return vma->vm_private_data == sm &&
3374                 (vma->vm_ops == &special_mapping_vmops ||
3375                  vma->vm_ops == &legacy_special_mapping_vmops);
3376 }
3377
3378 /*
3379  * Called with mm->mmap_sem held for writing.
3380  * Insert a new vma covering the given region, with the given flags.
3381  * Its pages are supplied by the given array of struct page *.
3382  * The array can be shorter than len >> PAGE_SHIFT if it's null-terminated.
3383  * The region past the last page supplied will always produce SIGBUS.
3384  * The array pointer and the pages it points to are assumed to stay alive
3385  * for as long as this mapping might exist.
3386  */
3387 struct vm_area_struct *_install_special_mapping(
3388         struct mm_struct *mm,
3389         unsigned long addr, unsigned long len,
3390         unsigned long vm_flags, const struct vm_special_mapping *spec)
3391 {
3392         return __install_special_mapping(mm, addr, len, vm_flags, (void *)spec,
3393                                         &special_mapping_vmops);
3394 }
3395
3396 int install_special_mapping(struct mm_struct *mm,
3397                             unsigned long addr, unsigned long len,
3398                             unsigned long vm_flags, struct page **pages)
3399 {
3400         struct vm_area_struct *vma = __install_special_mapping(
3401                 mm, addr, len, vm_flags, (void *)pages,
3402                 &legacy_special_mapping_vmops);
3403
3404         return PTR_ERR_OR_ZERO(vma);
3405 }
3406
3407 static DEFINE_MUTEX(mm_all_locks_mutex);
3408
3409 static void vm_lock_anon_vma(struct mm_struct *mm, struct anon_vma *anon_vma)
3410 {
3411         if (!test_bit(0, (unsigned long *) &anon_vma->root->rb_root.rb_root.rb_node)) {
3412                 /*
3413                  * The LSB of head.next can't change from under us
3414                  * because we hold the mm_all_locks_mutex.
3415                  */
3416                 down_write_nest_lock(&anon_vma->root->rwsem, &mm->mmap_sem);
3417                 /*
3418                  * We can safely modify head.next after taking the
3419                  * anon_vma->root->rwsem. If some other vma in this mm shares
3420                  * the same anon_vma we won't take it again.
3421                  *
3422                  * No need of atomic instructions here, head.next
3423                  * can't change from under us thanks to the
3424                  * anon_vma->root->rwsem.
3425                  */
3426                 if (__test_and_set_bit(0, (unsigned long *)
3427                                        &anon_vma->root->rb_root.rb_root.rb_node))
3428                         BUG();
3429         }
3430 }
3431
3432 static void vm_lock_mapping(struct mm_struct *mm, struct address_space *mapping)
3433 {
3434         if (!test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) {
3435                 /*
3436                  * AS_MM_ALL_LOCKS can't change from under us because
3437                  * we hold the mm_all_locks_mutex.
3438                  *
3439                  * Operations on ->flags have to be atomic because
3440                  * even if AS_MM_ALL_LOCKS is stable thanks to the
3441                  * mm_all_locks_mutex, there may be other cpus
3442                  * changing other bitflags in parallel to us.
3443                  */
3444                 if (test_and_set_bit(AS_MM_ALL_LOCKS, &mapping->flags))
3445                         BUG();
3446                 down_write_nest_lock(&mapping->i_mmap_rwsem, &mm->mmap_sem);
3447         }
3448 }
3449
3450 /*
3451  * This operation locks against the VM for all pte/vma/mm related
3452  * operations that could ever happen on a certain mm. This includes
3453  * vmtruncate, try_to_unmap, and all page faults.
3454  *
3455  * The caller must take the mmap_sem in write mode before calling
3456  * mm_take_all_locks(). The caller isn't allowed to release the
3457  * mmap_sem until mm_drop_all_locks() returns.
3458  *
3459  * mmap_sem in write mode is required in order to block all operations
3460  * that could modify pagetables and free pages without need of
3461  * altering the vma layout. It's also needed in write mode to avoid new
3462  * anon_vmas to be associated with existing vmas.
3463  *
3464  * A single task can't take more than one mm_take_all_locks() in a row
3465  * or it would deadlock.
3466  *
3467  * The LSB in anon_vma->rb_root.rb_node and the AS_MM_ALL_LOCKS bitflag in
3468  * mapping->flags avoid to take the same lock twice, if more than one
3469  * vma in this mm is backed by the same anon_vma or address_space.
3470  *
3471  * We take locks in following order, accordingly to comment at beginning
3472  * of mm/rmap.c:
3473  *   - all hugetlbfs_i_mmap_rwsem_key locks (aka mapping->i_mmap_rwsem for
3474  *     hugetlb mapping);
3475  *   - all i_mmap_rwsem locks;
3476  *   - all anon_vma->rwseml
3477  *
3478  * We can take all locks within these types randomly because the VM code
3479  * doesn't nest them and we protected from parallel mm_take_all_locks() by
3480  * mm_all_locks_mutex.
3481  *
3482  * mm_take_all_locks() and mm_drop_all_locks are expensive operations
3483  * that may have to take thousand of locks.
3484  *
3485  * mm_take_all_locks() can fail if it's interrupted by signals.
3486  */
3487 int mm_take_all_locks(struct mm_struct *mm)
3488 {
3489         struct vm_area_struct *vma;
3490         struct anon_vma_chain *avc;
3491
3492         BUG_ON(down_read_trylock(&mm->mmap_sem));
3493
3494         mutex_lock(&mm_all_locks_mutex);
3495
3496         for (vma = mm->mmap; vma; vma = vma->vm_next) {
3497                 if (signal_pending(current))
3498                         goto out_unlock;
3499                 if (vma->vm_file && vma->vm_file->f_mapping &&
3500                                 is_vm_hugetlb_page(vma))
3501                         vm_lock_mapping(mm, vma->vm_file->f_mapping);
3502         }
3503
3504         for (vma = mm->mmap; vma; vma = vma->vm_next) {
3505                 if (signal_pending(current))
3506                         goto out_unlock;
3507                 if (vma->vm_file && vma->vm_file->f_mapping &&
3508                                 !is_vm_hugetlb_page(vma))
3509                         vm_lock_mapping(mm, vma->vm_file->f_mapping);
3510         }
3511
3512         for (vma = mm->mmap; vma; vma = vma->vm_next) {
3513                 if (signal_pending(current))
3514                         goto out_unlock;
3515                 if (vma->anon_vma)
3516                         list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
3517                                 vm_lock_anon_vma(mm, avc->anon_vma);
3518         }
3519
3520         return 0;
3521
3522 out_unlock:
3523         mm_drop_all_locks(mm);
3524         return -EINTR;
3525 }
3526
3527 static void vm_unlock_anon_vma(struct anon_vma *anon_vma)
3528 {
3529         if (test_bit(0, (unsigned long *) &anon_vma->root->rb_root.rb_root.rb_node)) {
3530                 /*
3531                  * The LSB of head.next can't change to 0 from under
3532                  * us because we hold the mm_all_locks_mutex.
3533                  *
3534                  * We must however clear the bitflag before unlocking
3535                  * the vma so the users using the anon_vma->rb_root will
3536                  * never see our bitflag.
3537                  *
3538                  * No need of atomic instructions here, head.next
3539                  * can't change from under us until we release the
3540                  * anon_vma->root->rwsem.
3541                  */
3542                 if (!__test_and_clear_bit(0, (unsigned long *)
3543                                           &anon_vma->root->rb_root.rb_root.rb_node))
3544                         BUG();
3545                 anon_vma_unlock_write(anon_vma);
3546         }
3547 }
3548
3549 static void vm_unlock_mapping(struct address_space *mapping)
3550 {
3551         if (test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) {
3552                 /*
3553                  * AS_MM_ALL_LOCKS can't change to 0 from under us
3554                  * because we hold the mm_all_locks_mutex.
3555                  */
3556                 i_mmap_unlock_write(mapping);
3557                 if (!test_and_clear_bit(AS_MM_ALL_LOCKS,
3558                                         &mapping->flags))
3559                         BUG();
3560         }
3561 }
3562
3563 /*
3564  * The mmap_sem cannot be released by the caller until
3565  * mm_drop_all_locks() returns.
3566  */
3567 void mm_drop_all_locks(struct mm_struct *mm)
3568 {
3569         struct vm_area_struct *vma;
3570         struct anon_vma_chain *avc;
3571
3572         BUG_ON(down_read_trylock(&mm->mmap_sem));
3573         BUG_ON(!mutex_is_locked(&mm_all_locks_mutex));
3574
3575         for (vma = mm->mmap; vma; vma = vma->vm_next) {
3576                 if (vma->anon_vma)
3577                         list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
3578                                 vm_unlock_anon_vma(avc->anon_vma);
3579                 if (vma->vm_file && vma->vm_file->f_mapping)
3580                         vm_unlock_mapping(vma->vm_file->f_mapping);
3581         }
3582
3583         mutex_unlock(&mm_all_locks_mutex);
3584 }
3585
3586 /*
3587  * initialise the percpu counter for VM
3588  */
3589 void __init mmap_init(void)
3590 {
3591         int ret;
3592
3593         ret = percpu_counter_init(&vm_committed_as, 0, GFP_KERNEL);
3594         VM_BUG_ON(ret);
3595 }
3596
3597 /*
3598  * Initialise sysctl_user_reserve_kbytes.
3599  *
3600  * This is intended to prevent a user from starting a single memory hogging
3601  * process, such that they cannot recover (kill the hog) in OVERCOMMIT_NEVER
3602  * mode.
3603  *
3604  * The default value is min(3% of free memory, 128MB)
3605  * 128MB is enough to recover with sshd/login, bash, and top/kill.
3606  */
3607 static int init_user_reserve(void)
3608 {
3609         unsigned long free_kbytes;
3610
3611         free_kbytes = global_zone_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
3612
3613         sysctl_user_reserve_kbytes = min(free_kbytes / 32, 1UL << 17);
3614         return 0;
3615 }
3616 subsys_initcall(init_user_reserve);
3617
3618 /*
3619  * Initialise sysctl_admin_reserve_kbytes.
3620  *
3621  * The purpose of sysctl_admin_reserve_kbytes is to allow the sys admin
3622  * to log in and kill a memory hogging process.
3623  *
3624  * Systems with more than 256MB will reserve 8MB, enough to recover
3625  * with sshd, bash, and top in OVERCOMMIT_GUESS. Smaller systems will
3626  * only reserve 3% of free pages by default.
3627  */
3628 static int init_admin_reserve(void)
3629 {
3630         unsigned long free_kbytes;
3631
3632         free_kbytes = global_zone_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
3633
3634         sysctl_admin_reserve_kbytes = min(free_kbytes / 32, 1UL << 13);
3635         return 0;
3636 }
3637 subsys_initcall(init_admin_reserve);
3638
3639 /*
3640  * Reinititalise user and admin reserves if memory is added or removed.
3641  *
3642  * The default user reserve max is 128MB, and the default max for the
3643  * admin reserve is 8MB. These are usually, but not always, enough to
3644  * enable recovery from a memory hogging process using login/sshd, a shell,
3645  * and tools like top. It may make sense to increase or even disable the
3646  * reserve depending on the existence of swap or variations in the recovery
3647  * tools. So, the admin may have changed them.
3648  *
3649  * If memory is added and the reserves have been eliminated or increased above
3650  * the default max, then we'll trust the admin.
3651  *
3652  * If memory is removed and there isn't enough free memory, then we
3653  * need to reset the reserves.
3654  *
3655  * Otherwise keep the reserve set by the admin.
3656  */
3657 static int reserve_mem_notifier(struct notifier_block *nb,
3658                              unsigned long action, void *data)
3659 {
3660         unsigned long tmp, free_kbytes;
3661
3662         switch (action) {
3663         case MEM_ONLINE:
3664                 /* Default max is 128MB. Leave alone if modified by operator. */
3665                 tmp = sysctl_user_reserve_kbytes;
3666                 if (0 < tmp && tmp < (1UL << 17))
3667                         init_user_reserve();
3668
3669                 /* Default max is 8MB.  Leave alone if modified by operator. */
3670                 tmp = sysctl_admin_reserve_kbytes;
3671                 if (0 < tmp && tmp < (1UL << 13))
3672                         init_admin_reserve();
3673
3674                 break;
3675         case MEM_OFFLINE:
3676                 free_kbytes = global_zone_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
3677
3678                 if (sysctl_user_reserve_kbytes > free_kbytes) {
3679                         init_user_reserve();
3680                         pr_info("vm.user_reserve_kbytes reset to %lu\n",
3681                                 sysctl_user_reserve_kbytes);
3682                 }
3683
3684                 if (sysctl_admin_reserve_kbytes > free_kbytes) {
3685                         init_admin_reserve();
3686                         pr_info("vm.admin_reserve_kbytes reset to %lu\n",
3687                                 sysctl_admin_reserve_kbytes);
3688                 }
3689                 break;
3690         default:
3691                 break;
3692         }
3693         return NOTIFY_OK;
3694 }
3695
3696 static struct notifier_block reserve_mem_nb = {
3697         .notifier_call = reserve_mem_notifier,
3698 };
3699
3700 static int __meminit init_reserve_notifier(void)
3701 {
3702         if (register_hotmemory_notifier(&reserve_mem_nb))
3703                 pr_err("Failed registering memory add/remove notifier for admin reserve\n");
3704
3705         return 0;
3706 }
3707 subsys_initcall(init_reserve_notifier);