6 * Address space accounting code <alan@lxorguk.ukuu.org.uk>
9 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
11 #include <linux/kernel.h>
12 #include <linux/slab.h>
13 #include <linux/backing-dev.h>
15 #include <linux/vmacache.h>
16 #include <linux/shm.h>
17 #include <linux/mman.h>
18 #include <linux/pagemap.h>
19 #include <linux/swap.h>
20 #include <linux/syscalls.h>
21 #include <linux/capability.h>
22 #include <linux/init.h>
23 #include <linux/file.h>
25 #include <linux/personality.h>
26 #include <linux/security.h>
27 #include <linux/hugetlb.h>
28 #include <linux/shmem_fs.h>
29 #include <linux/profile.h>
30 #include <linux/export.h>
31 #include <linux/mount.h>
32 #include <linux/mempolicy.h>
33 #include <linux/rmap.h>
34 #include <linux/mmu_notifier.h>
35 #include <linux/mmdebug.h>
36 #include <linux/perf_event.h>
37 #include <linux/audit.h>
38 #include <linux/khugepaged.h>
39 #include <linux/uprobes.h>
40 #include <linux/rbtree_augmented.h>
41 #include <linux/notifier.h>
42 #include <linux/memory.h>
43 #include <linux/printk.h>
44 #include <linux/userfaultfd_k.h>
45 #include <linux/moduleparam.h>
46 #include <linux/pkeys.h>
47 #include <linux/oom.h>
48 #include <linux/sched/mm.h>
50 #include <linux/uaccess.h>
51 #include <asm/cacheflush.h>
53 #include <asm/mmu_context.h>
57 #ifndef arch_mmap_check
58 #define arch_mmap_check(addr, len, flags) (0)
61 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_BITS
62 const int mmap_rnd_bits_min = CONFIG_ARCH_MMAP_RND_BITS_MIN;
63 const int mmap_rnd_bits_max = CONFIG_ARCH_MMAP_RND_BITS_MAX;
64 int mmap_rnd_bits __read_mostly = CONFIG_ARCH_MMAP_RND_BITS;
66 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS
67 const int mmap_rnd_compat_bits_min = CONFIG_ARCH_MMAP_RND_COMPAT_BITS_MIN;
68 const int mmap_rnd_compat_bits_max = CONFIG_ARCH_MMAP_RND_COMPAT_BITS_MAX;
69 int mmap_rnd_compat_bits __read_mostly = CONFIG_ARCH_MMAP_RND_COMPAT_BITS;
72 static bool ignore_rlimit_data;
73 core_param(ignore_rlimit_data, ignore_rlimit_data, bool, 0644);
75 static void unmap_region(struct mm_struct *mm,
76 struct vm_area_struct *vma, struct vm_area_struct *prev,
77 unsigned long start, unsigned long end);
79 /* description of effects of mapping type and prot in current implementation.
80 * this is due to the limited x86 page protection hardware. The expected
81 * behavior is in parens:
84 * PROT_NONE PROT_READ PROT_WRITE PROT_EXEC
85 * MAP_SHARED r: (no) no r: (yes) yes r: (no) yes r: (no) yes
86 * w: (no) no w: (no) no w: (yes) yes w: (no) no
87 * x: (no) no x: (no) yes x: (no) yes x: (yes) yes
89 * MAP_PRIVATE r: (no) no r: (yes) yes r: (no) yes r: (no) yes
90 * w: (no) no w: (no) no w: (copy) copy w: (no) no
91 * x: (no) no x: (no) yes x: (no) yes x: (yes) yes
93 pgprot_t protection_map[16] __ro_after_init = {
94 __P000, __P001, __P010, __P011, __P100, __P101, __P110, __P111,
95 __S000, __S001, __S010, __S011, __S100, __S101, __S110, __S111
98 #ifndef CONFIG_ARCH_HAS_FILTER_PGPROT
99 static inline pgprot_t arch_filter_pgprot(pgprot_t prot)
105 pgprot_t vm_get_page_prot(unsigned long vm_flags)
107 pgprot_t ret = __pgprot(pgprot_val(protection_map[vm_flags &
108 (VM_READ|VM_WRITE|VM_EXEC|VM_SHARED)]) |
109 pgprot_val(arch_vm_get_page_prot(vm_flags)));
111 return arch_filter_pgprot(ret);
113 EXPORT_SYMBOL(vm_get_page_prot);
115 static pgprot_t vm_pgprot_modify(pgprot_t oldprot, unsigned long vm_flags)
117 return pgprot_modify(oldprot, vm_get_page_prot(vm_flags));
120 /* Update vma->vm_page_prot to reflect vma->vm_flags. */
121 void vma_set_page_prot(struct vm_area_struct *vma)
123 unsigned long vm_flags = vma->vm_flags;
124 pgprot_t vm_page_prot;
126 vm_page_prot = vm_pgprot_modify(vma->vm_page_prot, vm_flags);
127 if (vma_wants_writenotify(vma, vm_page_prot)) {
128 vm_flags &= ~VM_SHARED;
129 vm_page_prot = vm_pgprot_modify(vm_page_prot, vm_flags);
131 /* remove_protection_ptes reads vma->vm_page_prot without mmap_sem */
132 WRITE_ONCE(vma->vm_page_prot, vm_page_prot);
136 * Requires inode->i_mapping->i_mmap_rwsem
138 static void __remove_shared_vm_struct(struct vm_area_struct *vma,
139 struct file *file, struct address_space *mapping)
141 if (vma->vm_flags & VM_DENYWRITE)
142 atomic_inc(&file_inode(file)->i_writecount);
143 if (vma->vm_flags & VM_SHARED)
144 mapping_unmap_writable(mapping);
146 flush_dcache_mmap_lock(mapping);
147 vma_interval_tree_remove(vma, &mapping->i_mmap);
148 flush_dcache_mmap_unlock(mapping);
152 * Unlink a file-based vm structure from its interval tree, to hide
153 * vma from rmap and vmtruncate before freeing its page tables.
155 void unlink_file_vma(struct vm_area_struct *vma)
157 struct file *file = vma->vm_file;
160 struct address_space *mapping = file->f_mapping;
161 i_mmap_lock_write(mapping);
162 __remove_shared_vm_struct(vma, file, mapping);
163 i_mmap_unlock_write(mapping);
168 * Close a vm structure and free it, returning the next.
170 static struct vm_area_struct *remove_vma(struct vm_area_struct *vma)
172 struct vm_area_struct *next = vma->vm_next;
175 if (vma->vm_ops && vma->vm_ops->close)
176 vma->vm_ops->close(vma);
179 mpol_put(vma_policy(vma));
184 static int do_brk_flags(unsigned long addr, unsigned long request, unsigned long flags,
185 struct list_head *uf);
186 SYSCALL_DEFINE1(brk, unsigned long, brk)
188 unsigned long retval;
189 unsigned long newbrk, oldbrk;
190 struct mm_struct *mm = current->mm;
191 struct vm_area_struct *next;
192 unsigned long min_brk;
196 if (down_write_killable(&mm->mmap_sem))
199 #ifdef CONFIG_COMPAT_BRK
201 * CONFIG_COMPAT_BRK can still be overridden by setting
202 * randomize_va_space to 2, which will still cause mm->start_brk
203 * to be arbitrarily shifted
205 if (current->brk_randomized)
206 min_brk = mm->start_brk;
208 min_brk = mm->end_data;
210 min_brk = mm->start_brk;
216 * Check against rlimit here. If this check is done later after the test
217 * of oldbrk with newbrk then it can escape the test and let the data
218 * segment grow beyond its set limit the in case where the limit is
219 * not page aligned -Ram Gupta
221 if (check_data_rlimit(rlimit(RLIMIT_DATA), brk, mm->start_brk,
222 mm->end_data, mm->start_data))
225 newbrk = PAGE_ALIGN(brk);
226 oldbrk = PAGE_ALIGN(mm->brk);
227 if (oldbrk == newbrk)
230 /* Always allow shrinking brk. */
231 if (brk <= mm->brk) {
232 if (!do_munmap(mm, newbrk, oldbrk-newbrk, &uf))
237 /* Check against existing mmap mappings. */
238 next = find_vma(mm, oldbrk);
239 if (next && newbrk + PAGE_SIZE > vm_start_gap(next))
242 /* Ok, looks good - let it rip. */
243 if (do_brk_flags(oldbrk, newbrk-oldbrk, 0, &uf) < 0)
248 populate = newbrk > oldbrk && (mm->def_flags & VM_LOCKED) != 0;
249 up_write(&mm->mmap_sem);
250 userfaultfd_unmap_complete(mm, &uf);
252 mm_populate(oldbrk, newbrk - oldbrk);
257 up_write(&mm->mmap_sem);
261 static long vma_compute_subtree_gap(struct vm_area_struct *vma)
263 unsigned long max, prev_end, subtree_gap;
266 * Note: in the rare case of a VM_GROWSDOWN above a VM_GROWSUP, we
267 * allow two stack_guard_gaps between them here, and when choosing
268 * an unmapped area; whereas when expanding we only require one.
269 * That's a little inconsistent, but keeps the code here simpler.
271 max = vm_start_gap(vma);
273 prev_end = vm_end_gap(vma->vm_prev);
279 if (vma->vm_rb.rb_left) {
280 subtree_gap = rb_entry(vma->vm_rb.rb_left,
281 struct vm_area_struct, vm_rb)->rb_subtree_gap;
282 if (subtree_gap > max)
285 if (vma->vm_rb.rb_right) {
286 subtree_gap = rb_entry(vma->vm_rb.rb_right,
287 struct vm_area_struct, vm_rb)->rb_subtree_gap;
288 if (subtree_gap > max)
294 #ifdef CONFIG_DEBUG_VM_RB
295 static int browse_rb(struct mm_struct *mm)
297 struct rb_root *root = &mm->mm_rb;
298 int i = 0, j, bug = 0;
299 struct rb_node *nd, *pn = NULL;
300 unsigned long prev = 0, pend = 0;
302 for (nd = rb_first(root); nd; nd = rb_next(nd)) {
303 struct vm_area_struct *vma;
304 vma = rb_entry(nd, struct vm_area_struct, vm_rb);
305 if (vma->vm_start < prev) {
306 pr_emerg("vm_start %lx < prev %lx\n",
307 vma->vm_start, prev);
310 if (vma->vm_start < pend) {
311 pr_emerg("vm_start %lx < pend %lx\n",
312 vma->vm_start, pend);
315 if (vma->vm_start > vma->vm_end) {
316 pr_emerg("vm_start %lx > vm_end %lx\n",
317 vma->vm_start, vma->vm_end);
320 spin_lock(&mm->page_table_lock);
321 if (vma->rb_subtree_gap != vma_compute_subtree_gap(vma)) {
322 pr_emerg("free gap %lx, correct %lx\n",
324 vma_compute_subtree_gap(vma));
327 spin_unlock(&mm->page_table_lock);
330 prev = vma->vm_start;
334 for (nd = pn; nd; nd = rb_prev(nd))
337 pr_emerg("backwards %d, forwards %d\n", j, i);
343 static void validate_mm_rb(struct rb_root *root, struct vm_area_struct *ignore)
347 for (nd = rb_first(root); nd; nd = rb_next(nd)) {
348 struct vm_area_struct *vma;
349 vma = rb_entry(nd, struct vm_area_struct, vm_rb);
350 VM_BUG_ON_VMA(vma != ignore &&
351 vma->rb_subtree_gap != vma_compute_subtree_gap(vma),
356 static void validate_mm(struct mm_struct *mm)
360 unsigned long highest_address = 0;
361 struct vm_area_struct *vma = mm->mmap;
364 struct anon_vma *anon_vma = vma->anon_vma;
365 struct anon_vma_chain *avc;
368 anon_vma_lock_read(anon_vma);
369 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
370 anon_vma_interval_tree_verify(avc);
371 anon_vma_unlock_read(anon_vma);
374 highest_address = vm_end_gap(vma);
378 if (i != mm->map_count) {
379 pr_emerg("map_count %d vm_next %d\n", mm->map_count, i);
382 if (highest_address != mm->highest_vm_end) {
383 pr_emerg("mm->highest_vm_end %lx, found %lx\n",
384 mm->highest_vm_end, highest_address);
388 if (i != mm->map_count) {
390 pr_emerg("map_count %d rb %d\n", mm->map_count, i);
393 VM_BUG_ON_MM(bug, mm);
396 #define validate_mm_rb(root, ignore) do { } while (0)
397 #define validate_mm(mm) do { } while (0)
400 RB_DECLARE_CALLBACKS(static, vma_gap_callbacks, struct vm_area_struct, vm_rb,
401 unsigned long, rb_subtree_gap, vma_compute_subtree_gap)
404 * Update augmented rbtree rb_subtree_gap values after vma->vm_start or
405 * vma->vm_prev->vm_end values changed, without modifying the vma's position
408 static void vma_gap_update(struct vm_area_struct *vma)
411 * As it turns out, RB_DECLARE_CALLBACKS() already created a callback
412 * function that does exacltly what we want.
414 vma_gap_callbacks_propagate(&vma->vm_rb, NULL);
417 static inline void vma_rb_insert(struct vm_area_struct *vma,
418 struct rb_root *root)
420 /* All rb_subtree_gap values must be consistent prior to insertion */
421 validate_mm_rb(root, NULL);
423 rb_insert_augmented(&vma->vm_rb, root, &vma_gap_callbacks);
426 static void __vma_rb_erase(struct vm_area_struct *vma, struct rb_root *root)
429 * Note rb_erase_augmented is a fairly large inline function,
430 * so make sure we instantiate it only once with our desired
431 * augmented rbtree callbacks.
433 rb_erase_augmented(&vma->vm_rb, root, &vma_gap_callbacks);
436 static __always_inline void vma_rb_erase_ignore(struct vm_area_struct *vma,
437 struct rb_root *root,
438 struct vm_area_struct *ignore)
441 * All rb_subtree_gap values must be consistent prior to erase,
442 * with the possible exception of the "next" vma being erased if
443 * next->vm_start was reduced.
445 validate_mm_rb(root, ignore);
447 __vma_rb_erase(vma, root);
450 static __always_inline void vma_rb_erase(struct vm_area_struct *vma,
451 struct rb_root *root)
454 * All rb_subtree_gap values must be consistent prior to erase,
455 * with the possible exception of the vma being erased.
457 validate_mm_rb(root, vma);
459 __vma_rb_erase(vma, root);
463 * vma has some anon_vma assigned, and is already inserted on that
464 * anon_vma's interval trees.
466 * Before updating the vma's vm_start / vm_end / vm_pgoff fields, the
467 * vma must be removed from the anon_vma's interval trees using
468 * anon_vma_interval_tree_pre_update_vma().
470 * After the update, the vma will be reinserted using
471 * anon_vma_interval_tree_post_update_vma().
473 * The entire update must be protected by exclusive mmap_sem and by
474 * the root anon_vma's mutex.
477 anon_vma_interval_tree_pre_update_vma(struct vm_area_struct *vma)
479 struct anon_vma_chain *avc;
481 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
482 anon_vma_interval_tree_remove(avc, &avc->anon_vma->rb_root);
486 anon_vma_interval_tree_post_update_vma(struct vm_area_struct *vma)
488 struct anon_vma_chain *avc;
490 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
491 anon_vma_interval_tree_insert(avc, &avc->anon_vma->rb_root);
494 static int find_vma_links(struct mm_struct *mm, unsigned long addr,
495 unsigned long end, struct vm_area_struct **pprev,
496 struct rb_node ***rb_link, struct rb_node **rb_parent)
498 struct rb_node **__rb_link, *__rb_parent, *rb_prev;
500 __rb_link = &mm->mm_rb.rb_node;
501 rb_prev = __rb_parent = NULL;
504 struct vm_area_struct *vma_tmp;
506 __rb_parent = *__rb_link;
507 vma_tmp = rb_entry(__rb_parent, struct vm_area_struct, vm_rb);
509 if (vma_tmp->vm_end > addr) {
510 /* Fail if an existing vma overlaps the area */
511 if (vma_tmp->vm_start < end)
513 __rb_link = &__rb_parent->rb_left;
515 rb_prev = __rb_parent;
516 __rb_link = &__rb_parent->rb_right;
522 *pprev = rb_entry(rb_prev, struct vm_area_struct, vm_rb);
523 *rb_link = __rb_link;
524 *rb_parent = __rb_parent;
528 static unsigned long count_vma_pages_range(struct mm_struct *mm,
529 unsigned long addr, unsigned long end)
531 unsigned long nr_pages = 0;
532 struct vm_area_struct *vma;
534 /* Find first overlaping mapping */
535 vma = find_vma_intersection(mm, addr, end);
539 nr_pages = (min(end, vma->vm_end) -
540 max(addr, vma->vm_start)) >> PAGE_SHIFT;
542 /* Iterate over the rest of the overlaps */
543 for (vma = vma->vm_next; vma; vma = vma->vm_next) {
544 unsigned long overlap_len;
546 if (vma->vm_start > end)
549 overlap_len = min(end, vma->vm_end) - vma->vm_start;
550 nr_pages += overlap_len >> PAGE_SHIFT;
556 void __vma_link_rb(struct mm_struct *mm, struct vm_area_struct *vma,
557 struct rb_node **rb_link, struct rb_node *rb_parent)
559 /* Update tracking information for the gap following the new vma. */
561 vma_gap_update(vma->vm_next);
563 mm->highest_vm_end = vm_end_gap(vma);
566 * vma->vm_prev wasn't known when we followed the rbtree to find the
567 * correct insertion point for that vma. As a result, we could not
568 * update the vma vm_rb parents rb_subtree_gap values on the way down.
569 * So, we first insert the vma with a zero rb_subtree_gap value
570 * (to be consistent with what we did on the way down), and then
571 * immediately update the gap to the correct value. Finally we
572 * rebalance the rbtree after all augmented values have been set.
574 rb_link_node(&vma->vm_rb, rb_parent, rb_link);
575 vma->rb_subtree_gap = 0;
577 vma_rb_insert(vma, &mm->mm_rb);
580 static void __vma_link_file(struct vm_area_struct *vma)
586 struct address_space *mapping = file->f_mapping;
588 if (vma->vm_flags & VM_DENYWRITE)
589 atomic_dec(&file_inode(file)->i_writecount);
590 if (vma->vm_flags & VM_SHARED)
591 atomic_inc(&mapping->i_mmap_writable);
593 flush_dcache_mmap_lock(mapping);
594 vma_interval_tree_insert(vma, &mapping->i_mmap);
595 flush_dcache_mmap_unlock(mapping);
600 __vma_link(struct mm_struct *mm, struct vm_area_struct *vma,
601 struct vm_area_struct *prev, struct rb_node **rb_link,
602 struct rb_node *rb_parent)
604 __vma_link_list(mm, vma, prev, rb_parent);
605 __vma_link_rb(mm, vma, rb_link, rb_parent);
608 static void vma_link(struct mm_struct *mm, struct vm_area_struct *vma,
609 struct vm_area_struct *prev, struct rb_node **rb_link,
610 struct rb_node *rb_parent)
612 struct address_space *mapping = NULL;
615 mapping = vma->vm_file->f_mapping;
616 i_mmap_lock_write(mapping);
619 __vma_link(mm, vma, prev, rb_link, rb_parent);
620 __vma_link_file(vma);
623 i_mmap_unlock_write(mapping);
630 * Helper for vma_adjust() in the split_vma insert case: insert a vma into the
631 * mm's list and rbtree. It has already been inserted into the interval tree.
633 static void __insert_vm_struct(struct mm_struct *mm, struct vm_area_struct *vma)
635 struct vm_area_struct *prev;
636 struct rb_node **rb_link, *rb_parent;
638 if (find_vma_links(mm, vma->vm_start, vma->vm_end,
639 &prev, &rb_link, &rb_parent))
641 __vma_link(mm, vma, prev, rb_link, rb_parent);
645 static __always_inline void __vma_unlink_common(struct mm_struct *mm,
646 struct vm_area_struct *vma,
647 struct vm_area_struct *prev,
649 struct vm_area_struct *ignore)
651 struct vm_area_struct *next;
653 vma_rb_erase_ignore(vma, &mm->mm_rb, ignore);
656 prev->vm_next = next;
660 prev->vm_next = next;
665 next->vm_prev = prev;
668 vmacache_invalidate(mm);
671 static inline void __vma_unlink_prev(struct mm_struct *mm,
672 struct vm_area_struct *vma,
673 struct vm_area_struct *prev)
675 __vma_unlink_common(mm, vma, prev, true, vma);
679 * We cannot adjust vm_start, vm_end, vm_pgoff fields of a vma that
680 * is already present in an i_mmap tree without adjusting the tree.
681 * The following helper function should be used when such adjustments
682 * are necessary. The "insert" vma (if any) is to be inserted
683 * before we drop the necessary locks.
685 int __vma_adjust(struct vm_area_struct *vma, unsigned long start,
686 unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert,
687 struct vm_area_struct *expand)
689 struct mm_struct *mm = vma->vm_mm;
690 struct vm_area_struct *next = vma->vm_next, *orig_vma = vma;
691 struct address_space *mapping = NULL;
692 struct rb_root_cached *root = NULL;
693 struct anon_vma *anon_vma = NULL;
694 struct file *file = vma->vm_file;
695 bool start_changed = false, end_changed = false;
696 long adjust_next = 0;
699 if (next && !insert) {
700 struct vm_area_struct *exporter = NULL, *importer = NULL;
702 if (end >= next->vm_end) {
704 * vma expands, overlapping all the next, and
705 * perhaps the one after too (mprotect case 6).
706 * The only other cases that gets here are
707 * case 1, case 7 and case 8.
709 if (next == expand) {
711 * The only case where we don't expand "vma"
712 * and we expand "next" instead is case 8.
714 VM_WARN_ON(end != next->vm_end);
716 * remove_next == 3 means we're
717 * removing "vma" and that to do so we
718 * swapped "vma" and "next".
721 VM_WARN_ON(file != next->vm_file);
724 VM_WARN_ON(expand != vma);
726 * case 1, 6, 7, remove_next == 2 is case 6,
727 * remove_next == 1 is case 1 or 7.
729 remove_next = 1 + (end > next->vm_end);
730 VM_WARN_ON(remove_next == 2 &&
731 end != next->vm_next->vm_end);
732 VM_WARN_ON(remove_next == 1 &&
733 end != next->vm_end);
734 /* trim end to next, for case 6 first pass */
742 * If next doesn't have anon_vma, import from vma after
743 * next, if the vma overlaps with it.
745 if (remove_next == 2 && !next->anon_vma)
746 exporter = next->vm_next;
748 } else if (end > next->vm_start) {
750 * vma expands, overlapping part of the next:
751 * mprotect case 5 shifting the boundary up.
753 adjust_next = (end - next->vm_start) >> PAGE_SHIFT;
756 VM_WARN_ON(expand != importer);
757 } else if (end < vma->vm_end) {
759 * vma shrinks, and !insert tells it's not
760 * split_vma inserting another: so it must be
761 * mprotect case 4 shifting the boundary down.
763 adjust_next = -((vma->vm_end - end) >> PAGE_SHIFT);
766 VM_WARN_ON(expand != importer);
770 * Easily overlooked: when mprotect shifts the boundary,
771 * make sure the expanding vma has anon_vma set if the
772 * shrinking vma had, to cover any anon pages imported.
774 if (exporter && exporter->anon_vma && !importer->anon_vma) {
777 importer->anon_vma = exporter->anon_vma;
778 error = anon_vma_clone(importer, exporter);
784 vma_adjust_trans_huge(orig_vma, start, end, adjust_next);
787 mapping = file->f_mapping;
788 root = &mapping->i_mmap;
789 uprobe_munmap(vma, vma->vm_start, vma->vm_end);
792 uprobe_munmap(next, next->vm_start, next->vm_end);
794 i_mmap_lock_write(mapping);
797 * Put into interval tree now, so instantiated pages
798 * are visible to arm/parisc __flush_dcache_page
799 * throughout; but we cannot insert into address
800 * space until vma start or end is updated.
802 __vma_link_file(insert);
806 anon_vma = vma->anon_vma;
807 if (!anon_vma && adjust_next)
808 anon_vma = next->anon_vma;
810 VM_WARN_ON(adjust_next && next->anon_vma &&
811 anon_vma != next->anon_vma);
812 anon_vma_lock_write(anon_vma);
813 anon_vma_interval_tree_pre_update_vma(vma);
815 anon_vma_interval_tree_pre_update_vma(next);
819 flush_dcache_mmap_lock(mapping);
820 vma_interval_tree_remove(vma, root);
822 vma_interval_tree_remove(next, root);
825 if (start != vma->vm_start) {
826 vma->vm_start = start;
827 start_changed = true;
829 if (end != vma->vm_end) {
833 vma->vm_pgoff = pgoff;
835 next->vm_start += adjust_next << PAGE_SHIFT;
836 next->vm_pgoff += adjust_next;
841 vma_interval_tree_insert(next, root);
842 vma_interval_tree_insert(vma, root);
843 flush_dcache_mmap_unlock(mapping);
848 * vma_merge has merged next into vma, and needs
849 * us to remove next before dropping the locks.
851 if (remove_next != 3)
852 __vma_unlink_prev(mm, next, vma);
855 * vma is not before next if they've been
858 * pre-swap() next->vm_start was reduced so
859 * tell validate_mm_rb to ignore pre-swap()
860 * "next" (which is stored in post-swap()
863 __vma_unlink_common(mm, next, NULL, false, vma);
865 __remove_shared_vm_struct(next, file, mapping);
868 * split_vma has split insert from vma, and needs
869 * us to insert it before dropping the locks
870 * (it may either follow vma or precede it).
872 __insert_vm_struct(mm, insert);
878 mm->highest_vm_end = vm_end_gap(vma);
879 else if (!adjust_next)
880 vma_gap_update(next);
885 anon_vma_interval_tree_post_update_vma(vma);
887 anon_vma_interval_tree_post_update_vma(next);
888 anon_vma_unlock_write(anon_vma);
891 i_mmap_unlock_write(mapping);
902 uprobe_munmap(next, next->vm_start, next->vm_end);
906 anon_vma_merge(vma, next);
908 mpol_put(vma_policy(next));
911 * In mprotect's case 6 (see comments on vma_merge),
912 * we must remove another next too. It would clutter
913 * up the code too much to do both in one go.
915 if (remove_next != 3) {
917 * If "next" was removed and vma->vm_end was
918 * expanded (up) over it, in turn
919 * "next->vm_prev->vm_end" changed and the
920 * "vma->vm_next" gap must be updated.
925 * For the scope of the comment "next" and
926 * "vma" considered pre-swap(): if "vma" was
927 * removed, next->vm_start was expanded (down)
928 * over it and the "next" gap must be updated.
929 * Because of the swap() the post-swap() "vma"
930 * actually points to pre-swap() "next"
931 * (post-swap() "next" as opposed is now a
936 if (remove_next == 2) {
942 vma_gap_update(next);
945 * If remove_next == 2 we obviously can't
948 * If remove_next == 3 we can't reach this
949 * path because pre-swap() next is always not
950 * NULL. pre-swap() "next" is not being
951 * removed and its next->vm_end is not altered
952 * (and furthermore "end" already matches
953 * next->vm_end in remove_next == 3).
955 * We reach this only in the remove_next == 1
956 * case if the "next" vma that was removed was
957 * the highest vma of the mm. However in such
958 * case next->vm_end == "end" and the extended
959 * "vma" has vma->vm_end == next->vm_end so
960 * mm->highest_vm_end doesn't need any update
961 * in remove_next == 1 case.
963 VM_WARN_ON(mm->highest_vm_end != vm_end_gap(vma));
975 * If the vma has a ->close operation then the driver probably needs to release
976 * per-vma resources, so we don't attempt to merge those.
978 static inline int is_mergeable_vma(struct vm_area_struct *vma,
979 struct file *file, unsigned long vm_flags,
980 struct vm_userfaultfd_ctx vm_userfaultfd_ctx)
983 * VM_SOFTDIRTY should not prevent from VMA merging, if we
984 * match the flags but dirty bit -- the caller should mark
985 * merged VMA as dirty. If dirty bit won't be excluded from
986 * comparison, we increase pressue on the memory system forcing
987 * the kernel to generate new VMAs when old one could be
990 if ((vma->vm_flags ^ vm_flags) & ~VM_SOFTDIRTY)
992 if (vma->vm_file != file)
994 if (vma->vm_ops && vma->vm_ops->close)
996 if (!is_mergeable_vm_userfaultfd_ctx(vma, vm_userfaultfd_ctx))
1001 static inline int is_mergeable_anon_vma(struct anon_vma *anon_vma1,
1002 struct anon_vma *anon_vma2,
1003 struct vm_area_struct *vma)
1006 * The list_is_singular() test is to avoid merging VMA cloned from
1007 * parents. This can improve scalability caused by anon_vma lock.
1009 if ((!anon_vma1 || !anon_vma2) && (!vma ||
1010 list_is_singular(&vma->anon_vma_chain)))
1012 return anon_vma1 == anon_vma2;
1016 * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
1017 * in front of (at a lower virtual address and file offset than) the vma.
1019 * We cannot merge two vmas if they have differently assigned (non-NULL)
1020 * anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
1022 * We don't check here for the merged mmap wrapping around the end of pagecache
1023 * indices (16TB on ia32) because do_mmap_pgoff() does not permit mmap's which
1024 * wrap, nor mmaps which cover the final page at index -1UL.
1027 can_vma_merge_before(struct vm_area_struct *vma, unsigned long vm_flags,
1028 struct anon_vma *anon_vma, struct file *file,
1030 struct vm_userfaultfd_ctx vm_userfaultfd_ctx)
1032 if (is_mergeable_vma(vma, file, vm_flags, vm_userfaultfd_ctx) &&
1033 is_mergeable_anon_vma(anon_vma, vma->anon_vma, vma)) {
1034 if (vma->vm_pgoff == vm_pgoff)
1041 * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
1042 * beyond (at a higher virtual address and file offset than) the vma.
1044 * We cannot merge two vmas if they have differently assigned (non-NULL)
1045 * anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
1048 can_vma_merge_after(struct vm_area_struct *vma, unsigned long vm_flags,
1049 struct anon_vma *anon_vma, struct file *file,
1051 struct vm_userfaultfd_ctx vm_userfaultfd_ctx)
1053 if (is_mergeable_vma(vma, file, vm_flags, vm_userfaultfd_ctx) &&
1054 is_mergeable_anon_vma(anon_vma, vma->anon_vma, vma)) {
1056 vm_pglen = vma_pages(vma);
1057 if (vma->vm_pgoff + vm_pglen == vm_pgoff)
1064 * Given a mapping request (addr,end,vm_flags,file,pgoff), figure out
1065 * whether that can be merged with its predecessor or its successor.
1066 * Or both (it neatly fills a hole).
1068 * In most cases - when called for mmap, brk or mremap - [addr,end) is
1069 * certain not to be mapped by the time vma_merge is called; but when
1070 * called for mprotect, it is certain to be already mapped (either at
1071 * an offset within prev, or at the start of next), and the flags of
1072 * this area are about to be changed to vm_flags - and the no-change
1073 * case has already been eliminated.
1075 * The following mprotect cases have to be considered, where AAAA is
1076 * the area passed down from mprotect_fixup, never extending beyond one
1077 * vma, PPPPPP is the prev vma specified, and NNNNNN the next vma after:
1079 * AAAA AAAA AAAA AAAA
1080 * PPPPPPNNNNNN PPPPPPNNNNNN PPPPPPNNNNNN PPPPNNNNXXXX
1081 * cannot merge might become might become might become
1082 * PPNNNNNNNNNN PPPPPPPPPPNN PPPPPPPPPPPP 6 or
1083 * mmap, brk or case 4 below case 5 below PPPPPPPPXXXX 7 or
1084 * mremap move: PPPPXXXXXXXX 8
1086 * PPPP NNNN PPPPPPPPPPPP PPPPPPPPNNNN PPPPNNNNNNNN
1087 * might become case 1 below case 2 below case 3 below
1089 * It is important for case 8 that the the vma NNNN overlapping the
1090 * region AAAA is never going to extended over XXXX. Instead XXXX must
1091 * be extended in region AAAA and NNNN must be removed. This way in
1092 * all cases where vma_merge succeeds, the moment vma_adjust drops the
1093 * rmap_locks, the properties of the merged vma will be already
1094 * correct for the whole merged range. Some of those properties like
1095 * vm_page_prot/vm_flags may be accessed by rmap_walks and they must
1096 * be correct for the whole merged range immediately after the
1097 * rmap_locks are released. Otherwise if XXXX would be removed and
1098 * NNNN would be extended over the XXXX range, remove_migration_ptes
1099 * or other rmap walkers (if working on addresses beyond the "end"
1100 * parameter) may establish ptes with the wrong permissions of NNNN
1101 * instead of the right permissions of XXXX.
1103 struct vm_area_struct *vma_merge(struct mm_struct *mm,
1104 struct vm_area_struct *prev, unsigned long addr,
1105 unsigned long end, unsigned long vm_flags,
1106 struct anon_vma *anon_vma, struct file *file,
1107 pgoff_t pgoff, struct mempolicy *policy,
1108 struct vm_userfaultfd_ctx vm_userfaultfd_ctx)
1110 pgoff_t pglen = (end - addr) >> PAGE_SHIFT;
1111 struct vm_area_struct *area, *next;
1115 * We later require that vma->vm_flags == vm_flags,
1116 * so this tests vma->vm_flags & VM_SPECIAL, too.
1118 if (vm_flags & VM_SPECIAL)
1122 next = prev->vm_next;
1126 if (area && area->vm_end == end) /* cases 6, 7, 8 */
1127 next = next->vm_next;
1129 /* verify some invariant that must be enforced by the caller */
1130 VM_WARN_ON(prev && addr <= prev->vm_start);
1131 VM_WARN_ON(area && end > area->vm_end);
1132 VM_WARN_ON(addr >= end);
1135 * Can it merge with the predecessor?
1137 if (prev && prev->vm_end == addr &&
1138 mpol_equal(vma_policy(prev), policy) &&
1139 can_vma_merge_after(prev, vm_flags,
1140 anon_vma, file, pgoff,
1141 vm_userfaultfd_ctx)) {
1143 * OK, it can. Can we now merge in the successor as well?
1145 if (next && end == next->vm_start &&
1146 mpol_equal(policy, vma_policy(next)) &&
1147 can_vma_merge_before(next, vm_flags,
1150 vm_userfaultfd_ctx) &&
1151 is_mergeable_anon_vma(prev->anon_vma,
1152 next->anon_vma, NULL)) {
1154 err = __vma_adjust(prev, prev->vm_start,
1155 next->vm_end, prev->vm_pgoff, NULL,
1157 } else /* cases 2, 5, 7 */
1158 err = __vma_adjust(prev, prev->vm_start,
1159 end, prev->vm_pgoff, NULL, prev);
1162 khugepaged_enter_vma_merge(prev, vm_flags);
1167 * Can this new request be merged in front of next?
1169 if (next && end == next->vm_start &&
1170 mpol_equal(policy, vma_policy(next)) &&
1171 can_vma_merge_before(next, vm_flags,
1172 anon_vma, file, pgoff+pglen,
1173 vm_userfaultfd_ctx)) {
1174 if (prev && addr < prev->vm_end) /* case 4 */
1175 err = __vma_adjust(prev, prev->vm_start,
1176 addr, prev->vm_pgoff, NULL, next);
1177 else { /* cases 3, 8 */
1178 err = __vma_adjust(area, addr, next->vm_end,
1179 next->vm_pgoff - pglen, NULL, next);
1181 * In case 3 area is already equal to next and
1182 * this is a noop, but in case 8 "area" has
1183 * been removed and next was expanded over it.
1189 khugepaged_enter_vma_merge(area, vm_flags);
1197 * Rough compatbility check to quickly see if it's even worth looking
1198 * at sharing an anon_vma.
1200 * They need to have the same vm_file, and the flags can only differ
1201 * in things that mprotect may change.
1203 * NOTE! The fact that we share an anon_vma doesn't _have_ to mean that
1204 * we can merge the two vma's. For example, we refuse to merge a vma if
1205 * there is a vm_ops->close() function, because that indicates that the
1206 * driver is doing some kind of reference counting. But that doesn't
1207 * really matter for the anon_vma sharing case.
1209 static int anon_vma_compatible(struct vm_area_struct *a, struct vm_area_struct *b)
1211 return a->vm_end == b->vm_start &&
1212 mpol_equal(vma_policy(a), vma_policy(b)) &&
1213 a->vm_file == b->vm_file &&
1214 !((a->vm_flags ^ b->vm_flags) & ~(VM_READ|VM_WRITE|VM_EXEC|VM_SOFTDIRTY)) &&
1215 b->vm_pgoff == a->vm_pgoff + ((b->vm_start - a->vm_start) >> PAGE_SHIFT);
1219 * Do some basic sanity checking to see if we can re-use the anon_vma
1220 * from 'old'. The 'a'/'b' vma's are in VM order - one of them will be
1221 * the same as 'old', the other will be the new one that is trying
1222 * to share the anon_vma.
1224 * NOTE! This runs with mm_sem held for reading, so it is possible that
1225 * the anon_vma of 'old' is concurrently in the process of being set up
1226 * by another page fault trying to merge _that_. But that's ok: if it
1227 * is being set up, that automatically means that it will be a singleton
1228 * acceptable for merging, so we can do all of this optimistically. But
1229 * we do that READ_ONCE() to make sure that we never re-load the pointer.
1231 * IOW: that the "list_is_singular()" test on the anon_vma_chain only
1232 * matters for the 'stable anon_vma' case (ie the thing we want to avoid
1233 * is to return an anon_vma that is "complex" due to having gone through
1236 * We also make sure that the two vma's are compatible (adjacent,
1237 * and with the same memory policies). That's all stable, even with just
1238 * a read lock on the mm_sem.
1240 static struct anon_vma *reusable_anon_vma(struct vm_area_struct *old, struct vm_area_struct *a, struct vm_area_struct *b)
1242 if (anon_vma_compatible(a, b)) {
1243 struct anon_vma *anon_vma = READ_ONCE(old->anon_vma);
1245 if (anon_vma && list_is_singular(&old->anon_vma_chain))
1252 * find_mergeable_anon_vma is used by anon_vma_prepare, to check
1253 * neighbouring vmas for a suitable anon_vma, before it goes off
1254 * to allocate a new anon_vma. It checks because a repetitive
1255 * sequence of mprotects and faults may otherwise lead to distinct
1256 * anon_vmas being allocated, preventing vma merge in subsequent
1259 struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *vma)
1261 struct anon_vma *anon_vma;
1262 struct vm_area_struct *near;
1264 near = vma->vm_next;
1268 anon_vma = reusable_anon_vma(near, vma, near);
1272 near = vma->vm_prev;
1276 anon_vma = reusable_anon_vma(near, near, vma);
1281 * There's no absolute need to look only at touching neighbours:
1282 * we could search further afield for "compatible" anon_vmas.
1283 * But it would probably just be a waste of time searching,
1284 * or lead to too many vmas hanging off the same anon_vma.
1285 * We're trying to allow mprotect remerging later on,
1286 * not trying to minimize memory used for anon_vmas.
1292 * If a hint addr is less than mmap_min_addr change hint to be as
1293 * low as possible but still greater than mmap_min_addr
1295 static inline unsigned long round_hint_to_min(unsigned long hint)
1298 if (((void *)hint != NULL) &&
1299 (hint < mmap_min_addr))
1300 return PAGE_ALIGN(mmap_min_addr);
1304 static inline int mlock_future_check(struct mm_struct *mm,
1305 unsigned long flags,
1308 unsigned long locked, lock_limit;
1310 /* mlock MCL_FUTURE? */
1311 if (flags & VM_LOCKED) {
1312 locked = len >> PAGE_SHIFT;
1313 locked += mm->locked_vm;
1314 lock_limit = rlimit(RLIMIT_MEMLOCK);
1315 lock_limit >>= PAGE_SHIFT;
1316 if (locked > lock_limit && !capable(CAP_IPC_LOCK))
1322 static inline u64 file_mmap_size_max(struct file *file, struct inode *inode)
1324 if (S_ISREG(inode->i_mode))
1325 return MAX_LFS_FILESIZE;
1327 if (S_ISBLK(inode->i_mode))
1328 return MAX_LFS_FILESIZE;
1330 /* Special "we do even unsigned file positions" case */
1331 if (file->f_mode & FMODE_UNSIGNED_OFFSET)
1334 /* Yes, random drivers might want more. But I'm tired of buggy drivers */
1338 static inline bool file_mmap_ok(struct file *file, struct inode *inode,
1339 unsigned long pgoff, unsigned long len)
1341 u64 maxsize = file_mmap_size_max(file, inode);
1343 if (maxsize && len > maxsize)
1346 if (pgoff > maxsize >> PAGE_SHIFT)
1352 * The caller must hold down_write(¤t->mm->mmap_sem).
1354 unsigned long do_mmap(struct file *file, unsigned long addr,
1355 unsigned long len, unsigned long prot,
1356 unsigned long flags, vm_flags_t vm_flags,
1357 unsigned long pgoff, unsigned long *populate,
1358 struct list_head *uf)
1360 struct mm_struct *mm = current->mm;
1369 * Does the application expect PROT_READ to imply PROT_EXEC?
1371 * (the exception is when the underlying filesystem is noexec
1372 * mounted, in which case we dont add PROT_EXEC.)
1374 if ((prot & PROT_READ) && (current->personality & READ_IMPLIES_EXEC))
1375 if (!(file && path_noexec(&file->f_path)))
1378 /* force arch specific MAP_FIXED handling in get_unmapped_area */
1379 if (flags & MAP_FIXED_NOREPLACE)
1382 if (!(flags & MAP_FIXED))
1383 addr = round_hint_to_min(addr);
1385 /* Careful about overflows.. */
1386 len = PAGE_ALIGN(len);
1390 /* offset overflow? */
1391 if ((pgoff + (len >> PAGE_SHIFT)) < pgoff)
1394 /* Too many mappings? */
1395 if (mm->map_count > sysctl_max_map_count)
1398 /* Obtain the address to map to. we verify (or select) it and ensure
1399 * that it represents a valid section of the address space.
1401 addr = get_unmapped_area(file, addr, len, pgoff, flags);
1402 if (offset_in_page(addr))
1405 if (flags & MAP_FIXED_NOREPLACE) {
1406 struct vm_area_struct *vma = find_vma(mm, addr);
1408 if (vma && vma->vm_start < addr + len)
1412 if (prot == PROT_EXEC) {
1413 pkey = execute_only_pkey(mm);
1418 /* Do simple checking here so the lower-level routines won't have
1419 * to. we assume access permissions have been handled by the open
1420 * of the memory object, so we don't do any here.
1422 vm_flags |= calc_vm_prot_bits(prot, pkey) | calc_vm_flag_bits(flags) |
1423 mm->def_flags | VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC;
1425 if (flags & MAP_LOCKED)
1426 if (!can_do_mlock())
1429 if (mlock_future_check(mm, vm_flags, len))
1433 struct inode *inode = file_inode(file);
1434 unsigned long flags_mask;
1436 if (!file_mmap_ok(file, inode, pgoff, len))
1439 flags_mask = LEGACY_MAP_MASK | file->f_op->mmap_supported_flags;
1441 switch (flags & MAP_TYPE) {
1444 * Force use of MAP_SHARED_VALIDATE with non-legacy
1445 * flags. E.g. MAP_SYNC is dangerous to use with
1446 * MAP_SHARED as you don't know which consistency model
1447 * you will get. We silently ignore unsupported flags
1448 * with MAP_SHARED to preserve backward compatibility.
1450 flags &= LEGACY_MAP_MASK;
1452 case MAP_SHARED_VALIDATE:
1453 if (flags & ~flags_mask)
1455 if ((prot&PROT_WRITE) && !(file->f_mode&FMODE_WRITE))
1459 * Make sure we don't allow writing to an append-only
1462 if (IS_APPEND(inode) && (file->f_mode & FMODE_WRITE))
1466 * Make sure there are no mandatory locks on the file.
1468 if (locks_verify_locked(file))
1471 vm_flags |= VM_SHARED | VM_MAYSHARE;
1472 if (!(file->f_mode & FMODE_WRITE))
1473 vm_flags &= ~(VM_MAYWRITE | VM_SHARED);
1477 if (!(file->f_mode & FMODE_READ))
1479 if (path_noexec(&file->f_path)) {
1480 if (vm_flags & VM_EXEC)
1482 vm_flags &= ~VM_MAYEXEC;
1485 if (!file->f_op->mmap)
1487 if (vm_flags & (VM_GROWSDOWN|VM_GROWSUP))
1495 switch (flags & MAP_TYPE) {
1497 if (vm_flags & (VM_GROWSDOWN|VM_GROWSUP))
1503 vm_flags |= VM_SHARED | VM_MAYSHARE;
1507 * Set pgoff according to addr for anon_vma.
1509 pgoff = addr >> PAGE_SHIFT;
1517 * Set 'VM_NORESERVE' if we should not account for the
1518 * memory use of this mapping.
1520 if (flags & MAP_NORESERVE) {
1521 /* We honor MAP_NORESERVE if allowed to overcommit */
1522 if (sysctl_overcommit_memory != OVERCOMMIT_NEVER)
1523 vm_flags |= VM_NORESERVE;
1525 /* hugetlb applies strict overcommit unless MAP_NORESERVE */
1526 if (file && is_file_hugepages(file))
1527 vm_flags |= VM_NORESERVE;
1530 addr = mmap_region(file, addr, len, vm_flags, pgoff, uf);
1531 if (!IS_ERR_VALUE(addr) &&
1532 ((vm_flags & VM_LOCKED) ||
1533 (flags & (MAP_POPULATE | MAP_NONBLOCK)) == MAP_POPULATE))
1538 unsigned long ksys_mmap_pgoff(unsigned long addr, unsigned long len,
1539 unsigned long prot, unsigned long flags,
1540 unsigned long fd, unsigned long pgoff)
1542 struct file *file = NULL;
1543 unsigned long retval;
1545 if (!(flags & MAP_ANONYMOUS)) {
1546 audit_mmap_fd(fd, flags);
1550 if (is_file_hugepages(file))
1551 len = ALIGN(len, huge_page_size(hstate_file(file)));
1553 if (unlikely(flags & MAP_HUGETLB && !is_file_hugepages(file)))
1555 } else if (flags & MAP_HUGETLB) {
1556 struct user_struct *user = NULL;
1559 hs = hstate_sizelog((flags >> MAP_HUGE_SHIFT) & MAP_HUGE_MASK);
1563 len = ALIGN(len, huge_page_size(hs));
1565 * VM_NORESERVE is used because the reservations will be
1566 * taken when vm_ops->mmap() is called
1567 * A dummy user value is used because we are not locking
1568 * memory so no accounting is necessary
1570 file = hugetlb_file_setup(HUGETLB_ANON_FILE, len,
1572 &user, HUGETLB_ANONHUGE_INODE,
1573 (flags >> MAP_HUGE_SHIFT) & MAP_HUGE_MASK);
1575 return PTR_ERR(file);
1578 flags &= ~(MAP_EXECUTABLE | MAP_DENYWRITE);
1580 retval = vm_mmap_pgoff(file, addr, len, prot, flags, pgoff);
1587 SYSCALL_DEFINE6(mmap_pgoff, unsigned long, addr, unsigned long, len,
1588 unsigned long, prot, unsigned long, flags,
1589 unsigned long, fd, unsigned long, pgoff)
1591 return ksys_mmap_pgoff(addr, len, prot, flags, fd, pgoff);
1594 #ifdef __ARCH_WANT_SYS_OLD_MMAP
1595 struct mmap_arg_struct {
1599 unsigned long flags;
1601 unsigned long offset;
1604 SYSCALL_DEFINE1(old_mmap, struct mmap_arg_struct __user *, arg)
1606 struct mmap_arg_struct a;
1608 if (copy_from_user(&a, arg, sizeof(a)))
1610 if (offset_in_page(a.offset))
1613 return ksys_mmap_pgoff(a.addr, a.len, a.prot, a.flags, a.fd,
1614 a.offset >> PAGE_SHIFT);
1616 #endif /* __ARCH_WANT_SYS_OLD_MMAP */
1619 * Some shared mappigns will want the pages marked read-only
1620 * to track write events. If so, we'll downgrade vm_page_prot
1621 * to the private version (using protection_map[] without the
1624 int vma_wants_writenotify(struct vm_area_struct *vma, pgprot_t vm_page_prot)
1626 vm_flags_t vm_flags = vma->vm_flags;
1627 const struct vm_operations_struct *vm_ops = vma->vm_ops;
1629 /* If it was private or non-writable, the write bit is already clear */
1630 if ((vm_flags & (VM_WRITE|VM_SHARED)) != ((VM_WRITE|VM_SHARED)))
1633 /* The backer wishes to know when pages are first written to? */
1634 if (vm_ops && (vm_ops->page_mkwrite || vm_ops->pfn_mkwrite))
1637 /* The open routine did something to the protections that pgprot_modify
1638 * won't preserve? */
1639 if (pgprot_val(vm_page_prot) !=
1640 pgprot_val(vm_pgprot_modify(vm_page_prot, vm_flags)))
1643 /* Do we need to track softdirty? */
1644 if (IS_ENABLED(CONFIG_MEM_SOFT_DIRTY) && !(vm_flags & VM_SOFTDIRTY))
1647 /* Specialty mapping? */
1648 if (vm_flags & VM_PFNMAP)
1651 /* Can the mapping track the dirty pages? */
1652 return vma->vm_file && vma->vm_file->f_mapping &&
1653 mapping_cap_account_dirty(vma->vm_file->f_mapping);
1657 * We account for memory if it's a private writeable mapping,
1658 * not hugepages and VM_NORESERVE wasn't set.
1660 static inline int accountable_mapping(struct file *file, vm_flags_t vm_flags)
1663 * hugetlb has its own accounting separate from the core VM
1664 * VM_HUGETLB may not be set yet so we cannot check for that flag.
1666 if (file && is_file_hugepages(file))
1669 return (vm_flags & (VM_NORESERVE | VM_SHARED | VM_WRITE)) == VM_WRITE;
1672 unsigned long mmap_region(struct file *file, unsigned long addr,
1673 unsigned long len, vm_flags_t vm_flags, unsigned long pgoff,
1674 struct list_head *uf)
1676 struct mm_struct *mm = current->mm;
1677 struct vm_area_struct *vma, *prev;
1679 struct rb_node **rb_link, *rb_parent;
1680 unsigned long charged = 0;
1682 /* Check against address space limit. */
1683 if (!may_expand_vm(mm, vm_flags, len >> PAGE_SHIFT)) {
1684 unsigned long nr_pages;
1687 * MAP_FIXED may remove pages of mappings that intersects with
1688 * requested mapping. Account for the pages it would unmap.
1690 nr_pages = count_vma_pages_range(mm, addr, addr + len);
1692 if (!may_expand_vm(mm, vm_flags,
1693 (len >> PAGE_SHIFT) - nr_pages))
1697 /* Clear old maps */
1698 while (find_vma_links(mm, addr, addr + len, &prev, &rb_link,
1700 if (do_munmap(mm, addr, len, uf))
1705 * Private writable mapping: check memory availability
1707 if (accountable_mapping(file, vm_flags)) {
1708 charged = len >> PAGE_SHIFT;
1709 if (security_vm_enough_memory_mm(mm, charged))
1711 vm_flags |= VM_ACCOUNT;
1715 * Can we just expand an old mapping?
1717 vma = vma_merge(mm, prev, addr, addr + len, vm_flags,
1718 NULL, file, pgoff, NULL, NULL_VM_UFFD_CTX);
1723 * Determine the object being mapped and call the appropriate
1724 * specific mapper. the address has already been validated, but
1725 * not unmapped, but the maps are removed from the list.
1727 vma = vm_area_alloc(mm);
1733 vma->vm_start = addr;
1734 vma->vm_end = addr + len;
1735 vma->vm_flags = vm_flags;
1736 vma->vm_page_prot = vm_get_page_prot(vm_flags);
1737 vma->vm_pgoff = pgoff;
1740 if (vm_flags & VM_DENYWRITE) {
1741 error = deny_write_access(file);
1745 if (vm_flags & VM_SHARED) {
1746 error = mapping_map_writable(file->f_mapping);
1748 goto allow_write_and_free_vma;
1751 /* ->mmap() can change vma->vm_file, but must guarantee that
1752 * vma_link() below can deny write-access if VM_DENYWRITE is set
1753 * and map writably if VM_SHARED is set. This usually means the
1754 * new file must not have been exposed to user-space, yet.
1756 vma->vm_file = get_file(file);
1757 error = call_mmap(file, vma);
1759 goto unmap_and_free_vma;
1761 /* Can addr have changed??
1763 * Answer: Yes, several device drivers can do it in their
1764 * f_op->mmap method. -DaveM
1765 * Bug: If addr is changed, prev, rb_link, rb_parent should
1766 * be updated for vma_link()
1768 WARN_ON_ONCE(addr != vma->vm_start);
1770 addr = vma->vm_start;
1771 vm_flags = vma->vm_flags;
1772 } else if (vm_flags & VM_SHARED) {
1773 error = shmem_zero_setup(vma);
1777 vma_set_anonymous(vma);
1780 vma_link(mm, vma, prev, rb_link, rb_parent);
1781 /* Once vma denies write, undo our temporary denial count */
1783 if (vm_flags & VM_SHARED)
1784 mapping_unmap_writable(file->f_mapping);
1785 if (vm_flags & VM_DENYWRITE)
1786 allow_write_access(file);
1788 file = vma->vm_file;
1790 perf_event_mmap(vma);
1792 vm_stat_account(mm, vm_flags, len >> PAGE_SHIFT);
1793 if (vm_flags & VM_LOCKED) {
1794 if ((vm_flags & VM_SPECIAL) || vma_is_dax(vma) ||
1795 is_vm_hugetlb_page(vma) ||
1796 vma == get_gate_vma(current->mm))
1797 vma->vm_flags &= VM_LOCKED_CLEAR_MASK;
1799 mm->locked_vm += (len >> PAGE_SHIFT);
1806 * New (or expanded) vma always get soft dirty status.
1807 * Otherwise user-space soft-dirty page tracker won't
1808 * be able to distinguish situation when vma area unmapped,
1809 * then new mapped in-place (which must be aimed as
1810 * a completely new data area).
1812 vma->vm_flags |= VM_SOFTDIRTY;
1814 vma_set_page_prot(vma);
1819 vma->vm_file = NULL;
1822 /* Undo any partial mapping done by a device driver. */
1823 unmap_region(mm, vma, prev, vma->vm_start, vma->vm_end);
1825 if (vm_flags & VM_SHARED)
1826 mapping_unmap_writable(file->f_mapping);
1827 allow_write_and_free_vma:
1828 if (vm_flags & VM_DENYWRITE)
1829 allow_write_access(file);
1834 vm_unacct_memory(charged);
1838 unsigned long unmapped_area(struct vm_unmapped_area_info *info)
1841 * We implement the search by looking for an rbtree node that
1842 * immediately follows a suitable gap. That is,
1843 * - gap_start = vma->vm_prev->vm_end <= info->high_limit - length;
1844 * - gap_end = vma->vm_start >= info->low_limit + length;
1845 * - gap_end - gap_start >= length
1848 struct mm_struct *mm = current->mm;
1849 struct vm_area_struct *vma;
1850 unsigned long length, low_limit, high_limit, gap_start, gap_end;
1852 /* Adjust search length to account for worst case alignment overhead */
1853 length = info->length + info->align_mask;
1854 if (length < info->length)
1857 /* Adjust search limits by the desired length */
1858 if (info->high_limit < length)
1860 high_limit = info->high_limit - length;
1862 if (info->low_limit > high_limit)
1864 low_limit = info->low_limit + length;
1866 /* Check if rbtree root looks promising */
1867 if (RB_EMPTY_ROOT(&mm->mm_rb))
1869 vma = rb_entry(mm->mm_rb.rb_node, struct vm_area_struct, vm_rb);
1870 if (vma->rb_subtree_gap < length)
1874 /* Visit left subtree if it looks promising */
1875 gap_end = vm_start_gap(vma);
1876 if (gap_end >= low_limit && vma->vm_rb.rb_left) {
1877 struct vm_area_struct *left =
1878 rb_entry(vma->vm_rb.rb_left,
1879 struct vm_area_struct, vm_rb);
1880 if (left->rb_subtree_gap >= length) {
1886 gap_start = vma->vm_prev ? vm_end_gap(vma->vm_prev) : 0;
1888 /* Check if current node has a suitable gap */
1889 if (gap_start > high_limit)
1891 if (gap_end >= low_limit &&
1892 gap_end > gap_start && gap_end - gap_start >= length)
1895 /* Visit right subtree if it looks promising */
1896 if (vma->vm_rb.rb_right) {
1897 struct vm_area_struct *right =
1898 rb_entry(vma->vm_rb.rb_right,
1899 struct vm_area_struct, vm_rb);
1900 if (right->rb_subtree_gap >= length) {
1906 /* Go back up the rbtree to find next candidate node */
1908 struct rb_node *prev = &vma->vm_rb;
1909 if (!rb_parent(prev))
1911 vma = rb_entry(rb_parent(prev),
1912 struct vm_area_struct, vm_rb);
1913 if (prev == vma->vm_rb.rb_left) {
1914 gap_start = vm_end_gap(vma->vm_prev);
1915 gap_end = vm_start_gap(vma);
1922 /* Check highest gap, which does not precede any rbtree node */
1923 gap_start = mm->highest_vm_end;
1924 gap_end = ULONG_MAX; /* Only for VM_BUG_ON below */
1925 if (gap_start > high_limit)
1929 /* We found a suitable gap. Clip it with the original low_limit. */
1930 if (gap_start < info->low_limit)
1931 gap_start = info->low_limit;
1933 /* Adjust gap address to the desired alignment */
1934 gap_start += (info->align_offset - gap_start) & info->align_mask;
1936 VM_BUG_ON(gap_start + info->length > info->high_limit);
1937 VM_BUG_ON(gap_start + info->length > gap_end);
1941 unsigned long unmapped_area_topdown(struct vm_unmapped_area_info *info)
1943 struct mm_struct *mm = current->mm;
1944 struct vm_area_struct *vma;
1945 unsigned long length, low_limit, high_limit, gap_start, gap_end;
1947 /* Adjust search length to account for worst case alignment overhead */
1948 length = info->length + info->align_mask;
1949 if (length < info->length)
1953 * Adjust search limits by the desired length.
1954 * See implementation comment at top of unmapped_area().
1956 gap_end = info->high_limit;
1957 if (gap_end < length)
1959 high_limit = gap_end - length;
1961 if (info->low_limit > high_limit)
1963 low_limit = info->low_limit + length;
1965 /* Check highest gap, which does not precede any rbtree node */
1966 gap_start = mm->highest_vm_end;
1967 if (gap_start <= high_limit)
1970 /* Check if rbtree root looks promising */
1971 if (RB_EMPTY_ROOT(&mm->mm_rb))
1973 vma = rb_entry(mm->mm_rb.rb_node, struct vm_area_struct, vm_rb);
1974 if (vma->rb_subtree_gap < length)
1978 /* Visit right subtree if it looks promising */
1979 gap_start = vma->vm_prev ? vm_end_gap(vma->vm_prev) : 0;
1980 if (gap_start <= high_limit && vma->vm_rb.rb_right) {
1981 struct vm_area_struct *right =
1982 rb_entry(vma->vm_rb.rb_right,
1983 struct vm_area_struct, vm_rb);
1984 if (right->rb_subtree_gap >= length) {
1991 /* Check if current node has a suitable gap */
1992 gap_end = vm_start_gap(vma);
1993 if (gap_end < low_limit)
1995 if (gap_start <= high_limit &&
1996 gap_end > gap_start && gap_end - gap_start >= length)
1999 /* Visit left subtree if it looks promising */
2000 if (vma->vm_rb.rb_left) {
2001 struct vm_area_struct *left =
2002 rb_entry(vma->vm_rb.rb_left,
2003 struct vm_area_struct, vm_rb);
2004 if (left->rb_subtree_gap >= length) {
2010 /* Go back up the rbtree to find next candidate node */
2012 struct rb_node *prev = &vma->vm_rb;
2013 if (!rb_parent(prev))
2015 vma = rb_entry(rb_parent(prev),
2016 struct vm_area_struct, vm_rb);
2017 if (prev == vma->vm_rb.rb_right) {
2018 gap_start = vma->vm_prev ?
2019 vm_end_gap(vma->vm_prev) : 0;
2026 /* We found a suitable gap. Clip it with the original high_limit. */
2027 if (gap_end > info->high_limit)
2028 gap_end = info->high_limit;
2031 /* Compute highest gap address at the desired alignment */
2032 gap_end -= info->length;
2033 gap_end -= (gap_end - info->align_offset) & info->align_mask;
2035 VM_BUG_ON(gap_end < info->low_limit);
2036 VM_BUG_ON(gap_end < gap_start);
2040 /* Get an address range which is currently unmapped.
2041 * For shmat() with addr=0.
2043 * Ugly calling convention alert:
2044 * Return value with the low bits set means error value,
2046 * if (ret & ~PAGE_MASK)
2049 * This function "knows" that -ENOMEM has the bits set.
2051 #ifndef HAVE_ARCH_UNMAPPED_AREA
2053 arch_get_unmapped_area(struct file *filp, unsigned long addr,
2054 unsigned long len, unsigned long pgoff, unsigned long flags)
2056 struct mm_struct *mm = current->mm;
2057 struct vm_area_struct *vma, *prev;
2058 struct vm_unmapped_area_info info;
2060 if (len > TASK_SIZE - mmap_min_addr)
2063 if (flags & MAP_FIXED)
2067 addr = PAGE_ALIGN(addr);
2068 vma = find_vma_prev(mm, addr, &prev);
2069 if (TASK_SIZE - len >= addr && addr >= mmap_min_addr &&
2070 (!vma || addr + len <= vm_start_gap(vma)) &&
2071 (!prev || addr >= vm_end_gap(prev)))
2077 info.low_limit = mm->mmap_base;
2078 info.high_limit = TASK_SIZE;
2079 info.align_mask = 0;
2080 return vm_unmapped_area(&info);
2085 * This mmap-allocator allocates new areas top-down from below the
2086 * stack's low limit (the base):
2088 #ifndef HAVE_ARCH_UNMAPPED_AREA_TOPDOWN
2090 arch_get_unmapped_area_topdown(struct file *filp, const unsigned long addr0,
2091 const unsigned long len, const unsigned long pgoff,
2092 const unsigned long flags)
2094 struct vm_area_struct *vma, *prev;
2095 struct mm_struct *mm = current->mm;
2096 unsigned long addr = addr0;
2097 struct vm_unmapped_area_info info;
2099 /* requested length too big for entire address space */
2100 if (len > TASK_SIZE - mmap_min_addr)
2103 if (flags & MAP_FIXED)
2106 /* requesting a specific address */
2108 addr = PAGE_ALIGN(addr);
2109 vma = find_vma_prev(mm, addr, &prev);
2110 if (TASK_SIZE - len >= addr && addr >= mmap_min_addr &&
2111 (!vma || addr + len <= vm_start_gap(vma)) &&
2112 (!prev || addr >= vm_end_gap(prev)))
2116 info.flags = VM_UNMAPPED_AREA_TOPDOWN;
2118 info.low_limit = max(PAGE_SIZE, mmap_min_addr);
2119 info.high_limit = mm->mmap_base;
2120 info.align_mask = 0;
2121 addr = vm_unmapped_area(&info);
2124 * A failed mmap() very likely causes application failure,
2125 * so fall back to the bottom-up function here. This scenario
2126 * can happen with large stack limits and large mmap()
2129 if (offset_in_page(addr)) {
2130 VM_BUG_ON(addr != -ENOMEM);
2132 info.low_limit = TASK_UNMAPPED_BASE;
2133 info.high_limit = TASK_SIZE;
2134 addr = vm_unmapped_area(&info);
2142 get_unmapped_area(struct file *file, unsigned long addr, unsigned long len,
2143 unsigned long pgoff, unsigned long flags)
2145 unsigned long (*get_area)(struct file *, unsigned long,
2146 unsigned long, unsigned long, unsigned long);
2148 unsigned long error = arch_mmap_check(addr, len, flags);
2152 /* Careful about overflows.. */
2153 if (len > TASK_SIZE)
2156 get_area = current->mm->get_unmapped_area;
2158 if (file->f_op->get_unmapped_area)
2159 get_area = file->f_op->get_unmapped_area;
2160 } else if (flags & MAP_SHARED) {
2162 * mmap_region() will call shmem_zero_setup() to create a file,
2163 * so use shmem's get_unmapped_area in case it can be huge.
2164 * do_mmap_pgoff() will clear pgoff, so match alignment.
2167 get_area = shmem_get_unmapped_area;
2170 addr = get_area(file, addr, len, pgoff, flags);
2171 if (IS_ERR_VALUE(addr))
2174 if (addr > TASK_SIZE - len)
2176 if (offset_in_page(addr))
2179 error = security_mmap_addr(addr);
2180 return error ? error : addr;
2183 EXPORT_SYMBOL(get_unmapped_area);
2185 /* Look up the first VMA which satisfies addr < vm_end, NULL if none. */
2186 struct vm_area_struct *find_vma(struct mm_struct *mm, unsigned long addr)
2188 struct rb_node *rb_node;
2189 struct vm_area_struct *vma;
2191 /* Check the cache first. */
2192 vma = vmacache_find(mm, addr);
2196 rb_node = mm->mm_rb.rb_node;
2199 struct vm_area_struct *tmp;
2201 tmp = rb_entry(rb_node, struct vm_area_struct, vm_rb);
2203 if (tmp->vm_end > addr) {
2205 if (tmp->vm_start <= addr)
2207 rb_node = rb_node->rb_left;
2209 rb_node = rb_node->rb_right;
2213 vmacache_update(addr, vma);
2217 EXPORT_SYMBOL(find_vma);
2220 * Same as find_vma, but also return a pointer to the previous VMA in *pprev.
2222 struct vm_area_struct *
2223 find_vma_prev(struct mm_struct *mm, unsigned long addr,
2224 struct vm_area_struct **pprev)
2226 struct vm_area_struct *vma;
2228 vma = find_vma(mm, addr);
2230 *pprev = vma->vm_prev;
2232 struct rb_node *rb_node = mm->mm_rb.rb_node;
2235 *pprev = rb_entry(rb_node, struct vm_area_struct, vm_rb);
2236 rb_node = rb_node->rb_right;
2243 * Verify that the stack growth is acceptable and
2244 * update accounting. This is shared with both the
2245 * grow-up and grow-down cases.
2247 static int acct_stack_growth(struct vm_area_struct *vma,
2248 unsigned long size, unsigned long grow)
2250 struct mm_struct *mm = vma->vm_mm;
2251 unsigned long new_start;
2253 /* address space limit tests */
2254 if (!may_expand_vm(mm, vma->vm_flags, grow))
2257 /* Stack limit test */
2258 if (size > rlimit(RLIMIT_STACK))
2261 /* mlock limit tests */
2262 if (vma->vm_flags & VM_LOCKED) {
2263 unsigned long locked;
2264 unsigned long limit;
2265 locked = mm->locked_vm + grow;
2266 limit = rlimit(RLIMIT_MEMLOCK);
2267 limit >>= PAGE_SHIFT;
2268 if (locked > limit && !capable(CAP_IPC_LOCK))
2272 /* Check to ensure the stack will not grow into a hugetlb-only region */
2273 new_start = (vma->vm_flags & VM_GROWSUP) ? vma->vm_start :
2275 if (is_hugepage_only_range(vma->vm_mm, new_start, size))
2279 * Overcommit.. This must be the final test, as it will
2280 * update security statistics.
2282 if (security_vm_enough_memory_mm(mm, grow))
2288 #if defined(CONFIG_STACK_GROWSUP) || defined(CONFIG_IA64)
2290 * PA-RISC uses this for its stack; IA64 for its Register Backing Store.
2291 * vma is the last one with address > vma->vm_end. Have to extend vma.
2293 int expand_upwards(struct vm_area_struct *vma, unsigned long address)
2295 struct mm_struct *mm = vma->vm_mm;
2296 struct vm_area_struct *next;
2297 unsigned long gap_addr;
2300 if (!(vma->vm_flags & VM_GROWSUP))
2303 /* Guard against exceeding limits of the address space. */
2304 address &= PAGE_MASK;
2305 if (address >= (TASK_SIZE & PAGE_MASK))
2307 address += PAGE_SIZE;
2309 /* Enforce stack_guard_gap */
2310 gap_addr = address + stack_guard_gap;
2312 /* Guard against overflow */
2313 if (gap_addr < address || gap_addr > TASK_SIZE)
2314 gap_addr = TASK_SIZE;
2316 next = vma->vm_next;
2317 if (next && next->vm_start < gap_addr &&
2318 (next->vm_flags & (VM_WRITE|VM_READ|VM_EXEC))) {
2319 if (!(next->vm_flags & VM_GROWSUP))
2321 /* Check that both stack segments have the same anon_vma? */
2324 /* We must make sure the anon_vma is allocated. */
2325 if (unlikely(anon_vma_prepare(vma)))
2329 * vma->vm_start/vm_end cannot change under us because the caller
2330 * is required to hold the mmap_sem in read mode. We need the
2331 * anon_vma lock to serialize against concurrent expand_stacks.
2333 anon_vma_lock_write(vma->anon_vma);
2335 /* Somebody else might have raced and expanded it already */
2336 if (address > vma->vm_end) {
2337 unsigned long size, grow;
2339 size = address - vma->vm_start;
2340 grow = (address - vma->vm_end) >> PAGE_SHIFT;
2343 if (vma->vm_pgoff + (size >> PAGE_SHIFT) >= vma->vm_pgoff) {
2344 error = acct_stack_growth(vma, size, grow);
2347 * vma_gap_update() doesn't support concurrent
2348 * updates, but we only hold a shared mmap_sem
2349 * lock here, so we need to protect against
2350 * concurrent vma expansions.
2351 * anon_vma_lock_write() doesn't help here, as
2352 * we don't guarantee that all growable vmas
2353 * in a mm share the same root anon vma.
2354 * So, we reuse mm->page_table_lock to guard
2355 * against concurrent vma expansions.
2357 spin_lock(&mm->page_table_lock);
2358 if (vma->vm_flags & VM_LOCKED)
2359 mm->locked_vm += grow;
2360 vm_stat_account(mm, vma->vm_flags, grow);
2361 anon_vma_interval_tree_pre_update_vma(vma);
2362 vma->vm_end = address;
2363 anon_vma_interval_tree_post_update_vma(vma);
2365 vma_gap_update(vma->vm_next);
2367 mm->highest_vm_end = vm_end_gap(vma);
2368 spin_unlock(&mm->page_table_lock);
2370 perf_event_mmap(vma);
2374 anon_vma_unlock_write(vma->anon_vma);
2375 khugepaged_enter_vma_merge(vma, vma->vm_flags);
2379 #endif /* CONFIG_STACK_GROWSUP || CONFIG_IA64 */
2382 * vma is the first one with address < vma->vm_start. Have to extend vma.
2384 int expand_downwards(struct vm_area_struct *vma,
2385 unsigned long address)
2387 struct mm_struct *mm = vma->vm_mm;
2388 struct vm_area_struct *prev;
2391 address &= PAGE_MASK;
2392 if (address < mmap_min_addr)
2395 /* Enforce stack_guard_gap */
2396 prev = vma->vm_prev;
2397 /* Check that both stack segments have the same anon_vma? */
2398 if (prev && !(prev->vm_flags & VM_GROWSDOWN) &&
2399 (prev->vm_flags & (VM_WRITE|VM_READ|VM_EXEC))) {
2400 if (address - prev->vm_end < stack_guard_gap)
2404 /* We must make sure the anon_vma is allocated. */
2405 if (unlikely(anon_vma_prepare(vma)))
2409 * vma->vm_start/vm_end cannot change under us because the caller
2410 * is required to hold the mmap_sem in read mode. We need the
2411 * anon_vma lock to serialize against concurrent expand_stacks.
2413 anon_vma_lock_write(vma->anon_vma);
2415 /* Somebody else might have raced and expanded it already */
2416 if (address < vma->vm_start) {
2417 unsigned long size, grow;
2419 size = vma->vm_end - address;
2420 grow = (vma->vm_start - address) >> PAGE_SHIFT;
2423 if (grow <= vma->vm_pgoff) {
2424 error = acct_stack_growth(vma, size, grow);
2427 * vma_gap_update() doesn't support concurrent
2428 * updates, but we only hold a shared mmap_sem
2429 * lock here, so we need to protect against
2430 * concurrent vma expansions.
2431 * anon_vma_lock_write() doesn't help here, as
2432 * we don't guarantee that all growable vmas
2433 * in a mm share the same root anon vma.
2434 * So, we reuse mm->page_table_lock to guard
2435 * against concurrent vma expansions.
2437 spin_lock(&mm->page_table_lock);
2438 if (vma->vm_flags & VM_LOCKED)
2439 mm->locked_vm += grow;
2440 vm_stat_account(mm, vma->vm_flags, grow);
2441 anon_vma_interval_tree_pre_update_vma(vma);
2442 vma->vm_start = address;
2443 vma->vm_pgoff -= grow;
2444 anon_vma_interval_tree_post_update_vma(vma);
2445 vma_gap_update(vma);
2446 spin_unlock(&mm->page_table_lock);
2448 perf_event_mmap(vma);
2452 anon_vma_unlock_write(vma->anon_vma);
2453 khugepaged_enter_vma_merge(vma, vma->vm_flags);
2458 /* enforced gap between the expanding stack and other mappings. */
2459 unsigned long stack_guard_gap = 256UL<<PAGE_SHIFT;
2461 static int __init cmdline_parse_stack_guard_gap(char *p)
2466 val = simple_strtoul(p, &endptr, 10);
2468 stack_guard_gap = val << PAGE_SHIFT;
2472 __setup("stack_guard_gap=", cmdline_parse_stack_guard_gap);
2474 #ifdef CONFIG_STACK_GROWSUP
2475 int expand_stack(struct vm_area_struct *vma, unsigned long address)
2477 return expand_upwards(vma, address);
2480 struct vm_area_struct *
2481 find_extend_vma(struct mm_struct *mm, unsigned long addr)
2483 struct vm_area_struct *vma, *prev;
2486 vma = find_vma_prev(mm, addr, &prev);
2487 if (vma && (vma->vm_start <= addr))
2489 /* don't alter vm_end if the coredump is running */
2490 if (!prev || !mmget_still_valid(mm) || expand_stack(prev, addr))
2492 if (prev->vm_flags & VM_LOCKED)
2493 populate_vma_page_range(prev, addr, prev->vm_end, NULL);
2497 int expand_stack(struct vm_area_struct *vma, unsigned long address)
2499 return expand_downwards(vma, address);
2502 struct vm_area_struct *
2503 find_extend_vma(struct mm_struct *mm, unsigned long addr)
2505 struct vm_area_struct *vma;
2506 unsigned long start;
2509 vma = find_vma(mm, addr);
2512 if (vma->vm_start <= addr)
2514 if (!(vma->vm_flags & VM_GROWSDOWN))
2516 /* don't alter vm_start if the coredump is running */
2517 if (!mmget_still_valid(mm))
2519 start = vma->vm_start;
2520 if (expand_stack(vma, addr))
2522 if (vma->vm_flags & VM_LOCKED)
2523 populate_vma_page_range(vma, addr, start, NULL);
2528 EXPORT_SYMBOL_GPL(find_extend_vma);
2531 * Ok - we have the memory areas we should free on the vma list,
2532 * so release them, and do the vma updates.
2534 * Called with the mm semaphore held.
2536 static void remove_vma_list(struct mm_struct *mm, struct vm_area_struct *vma)
2538 unsigned long nr_accounted = 0;
2540 /* Update high watermark before we lower total_vm */
2541 update_hiwater_vm(mm);
2543 long nrpages = vma_pages(vma);
2545 if (vma->vm_flags & VM_ACCOUNT)
2546 nr_accounted += nrpages;
2547 vm_stat_account(mm, vma->vm_flags, -nrpages);
2548 vma = remove_vma(vma);
2550 vm_unacct_memory(nr_accounted);
2555 * Get rid of page table information in the indicated region.
2557 * Called with the mm semaphore held.
2559 static void unmap_region(struct mm_struct *mm,
2560 struct vm_area_struct *vma, struct vm_area_struct *prev,
2561 unsigned long start, unsigned long end)
2563 struct vm_area_struct *next = prev ? prev->vm_next : mm->mmap;
2564 struct mmu_gather tlb;
2567 tlb_gather_mmu(&tlb, mm, start, end);
2568 update_hiwater_rss(mm);
2569 unmap_vmas(&tlb, vma, start, end);
2570 free_pgtables(&tlb, vma, prev ? prev->vm_end : FIRST_USER_ADDRESS,
2571 next ? next->vm_start : USER_PGTABLES_CEILING);
2572 tlb_finish_mmu(&tlb, start, end);
2576 * Create a list of vma's touched by the unmap, removing them from the mm's
2577 * vma list as we go..
2580 detach_vmas_to_be_unmapped(struct mm_struct *mm, struct vm_area_struct *vma,
2581 struct vm_area_struct *prev, unsigned long end)
2583 struct vm_area_struct **insertion_point;
2584 struct vm_area_struct *tail_vma = NULL;
2586 insertion_point = (prev ? &prev->vm_next : &mm->mmap);
2587 vma->vm_prev = NULL;
2589 vma_rb_erase(vma, &mm->mm_rb);
2593 } while (vma && vma->vm_start < end);
2594 *insertion_point = vma;
2596 vma->vm_prev = prev;
2597 vma_gap_update(vma);
2599 mm->highest_vm_end = prev ? vm_end_gap(prev) : 0;
2600 tail_vma->vm_next = NULL;
2602 /* Kill the cache */
2603 vmacache_invalidate(mm);
2607 * __split_vma() bypasses sysctl_max_map_count checking. We use this where it
2608 * has already been checked or doesn't make sense to fail.
2610 int __split_vma(struct mm_struct *mm, struct vm_area_struct *vma,
2611 unsigned long addr, int new_below)
2613 struct vm_area_struct *new;
2616 if (vma->vm_ops && vma->vm_ops->split) {
2617 err = vma->vm_ops->split(vma, addr);
2622 new = vm_area_dup(vma);
2629 new->vm_start = addr;
2630 new->vm_pgoff += ((addr - vma->vm_start) >> PAGE_SHIFT);
2633 err = vma_dup_policy(vma, new);
2637 err = anon_vma_clone(new, vma);
2642 get_file(new->vm_file);
2644 if (new->vm_ops && new->vm_ops->open)
2645 new->vm_ops->open(new);
2648 err = vma_adjust(vma, addr, vma->vm_end, vma->vm_pgoff +
2649 ((addr - new->vm_start) >> PAGE_SHIFT), new);
2651 err = vma_adjust(vma, vma->vm_start, addr, vma->vm_pgoff, new);
2657 /* Clean everything up if vma_adjust failed. */
2658 if (new->vm_ops && new->vm_ops->close)
2659 new->vm_ops->close(new);
2662 unlink_anon_vmas(new);
2664 mpol_put(vma_policy(new));
2671 * Split a vma into two pieces at address 'addr', a new vma is allocated
2672 * either for the first part or the tail.
2674 int split_vma(struct mm_struct *mm, struct vm_area_struct *vma,
2675 unsigned long addr, int new_below)
2677 if (mm->map_count >= sysctl_max_map_count)
2680 return __split_vma(mm, vma, addr, new_below);
2683 /* Munmap is split into 2 main parts -- this part which finds
2684 * what needs doing, and the areas themselves, which do the
2685 * work. This now handles partial unmappings.
2686 * Jeremy Fitzhardinge <jeremy@goop.org>
2688 int do_munmap(struct mm_struct *mm, unsigned long start, size_t len,
2689 struct list_head *uf)
2692 struct vm_area_struct *vma, *prev, *last;
2694 if ((offset_in_page(start)) || start > TASK_SIZE || len > TASK_SIZE-start)
2697 len = PAGE_ALIGN(len);
2701 /* Find the first overlapping VMA */
2702 vma = find_vma(mm, start);
2705 prev = vma->vm_prev;
2706 /* we have start < vma->vm_end */
2708 /* if it doesn't overlap, we have nothing.. */
2710 if (vma->vm_start >= end)
2714 * If we need to split any vma, do it now to save pain later.
2716 * Note: mremap's move_vma VM_ACCOUNT handling assumes a partially
2717 * unmapped vm_area_struct will remain in use: so lower split_vma
2718 * places tmp vma above, and higher split_vma places tmp vma below.
2720 if (start > vma->vm_start) {
2724 * Make sure that map_count on return from munmap() will
2725 * not exceed its limit; but let map_count go just above
2726 * its limit temporarily, to help free resources as expected.
2728 if (end < vma->vm_end && mm->map_count >= sysctl_max_map_count)
2731 error = __split_vma(mm, vma, start, 0);
2737 /* Does it split the last one? */
2738 last = find_vma(mm, end);
2739 if (last && end > last->vm_start) {
2740 int error = __split_vma(mm, last, end, 1);
2744 vma = prev ? prev->vm_next : mm->mmap;
2748 * If userfaultfd_unmap_prep returns an error the vmas
2749 * will remain splitted, but userland will get a
2750 * highly unexpected error anyway. This is no
2751 * different than the case where the first of the two
2752 * __split_vma fails, but we don't undo the first
2753 * split, despite we could. This is unlikely enough
2754 * failure that it's not worth optimizing it for.
2756 int error = userfaultfd_unmap_prep(vma, start, end, uf);
2762 * unlock any mlock()ed ranges before detaching vmas
2764 if (mm->locked_vm) {
2765 struct vm_area_struct *tmp = vma;
2766 while (tmp && tmp->vm_start < end) {
2767 if (tmp->vm_flags & VM_LOCKED) {
2768 mm->locked_vm -= vma_pages(tmp);
2769 munlock_vma_pages_all(tmp);
2776 * Remove the vma's, and unmap the actual pages
2778 detach_vmas_to_be_unmapped(mm, vma, prev, end);
2779 unmap_region(mm, vma, prev, start, end);
2781 arch_unmap(mm, vma, start, end);
2783 /* Fix up all other VM information */
2784 remove_vma_list(mm, vma);
2789 int vm_munmap(unsigned long start, size_t len)
2792 struct mm_struct *mm = current->mm;
2795 if (down_write_killable(&mm->mmap_sem))
2798 ret = do_munmap(mm, start, len, &uf);
2799 up_write(&mm->mmap_sem);
2800 userfaultfd_unmap_complete(mm, &uf);
2803 EXPORT_SYMBOL(vm_munmap);
2805 SYSCALL_DEFINE2(munmap, unsigned long, addr, size_t, len)
2807 profile_munmap(addr);
2808 return vm_munmap(addr, len);
2813 * Emulation of deprecated remap_file_pages() syscall.
2815 SYSCALL_DEFINE5(remap_file_pages, unsigned long, start, unsigned long, size,
2816 unsigned long, prot, unsigned long, pgoff, unsigned long, flags)
2819 struct mm_struct *mm = current->mm;
2820 struct vm_area_struct *vma;
2821 unsigned long populate = 0;
2822 unsigned long ret = -EINVAL;
2825 pr_warn_once("%s (%d) uses deprecated remap_file_pages() syscall. See Documentation/vm/remap_file_pages.rst.\n",
2826 current->comm, current->pid);
2830 start = start & PAGE_MASK;
2831 size = size & PAGE_MASK;
2833 if (start + size <= start)
2836 /* Does pgoff wrap? */
2837 if (pgoff + (size >> PAGE_SHIFT) < pgoff)
2840 if (down_write_killable(&mm->mmap_sem))
2843 vma = find_vma(mm, start);
2845 if (!vma || !(vma->vm_flags & VM_SHARED))
2848 if (start < vma->vm_start)
2851 if (start + size > vma->vm_end) {
2852 struct vm_area_struct *next;
2854 for (next = vma->vm_next; next; next = next->vm_next) {
2855 /* hole between vmas ? */
2856 if (next->vm_start != next->vm_prev->vm_end)
2859 if (next->vm_file != vma->vm_file)
2862 if (next->vm_flags != vma->vm_flags)
2865 if (start + size <= next->vm_end)
2873 prot |= vma->vm_flags & VM_READ ? PROT_READ : 0;
2874 prot |= vma->vm_flags & VM_WRITE ? PROT_WRITE : 0;
2875 prot |= vma->vm_flags & VM_EXEC ? PROT_EXEC : 0;
2877 flags &= MAP_NONBLOCK;
2878 flags |= MAP_SHARED | MAP_FIXED | MAP_POPULATE;
2879 if (vma->vm_flags & VM_LOCKED) {
2880 struct vm_area_struct *tmp;
2881 flags |= MAP_LOCKED;
2883 /* drop PG_Mlocked flag for over-mapped range */
2884 for (tmp = vma; tmp->vm_start >= start + size;
2885 tmp = tmp->vm_next) {
2887 * Split pmd and munlock page on the border
2890 vma_adjust_trans_huge(tmp, start, start + size, 0);
2892 munlock_vma_pages_range(tmp,
2893 max(tmp->vm_start, start),
2894 min(tmp->vm_end, start + size));
2898 file = get_file(vma->vm_file);
2899 ret = do_mmap_pgoff(vma->vm_file, start, size,
2900 prot, flags, pgoff, &populate, NULL);
2903 up_write(&mm->mmap_sem);
2905 mm_populate(ret, populate);
2906 if (!IS_ERR_VALUE(ret))
2911 static inline void verify_mm_writelocked(struct mm_struct *mm)
2913 #ifdef CONFIG_DEBUG_VM
2914 if (unlikely(down_read_trylock(&mm->mmap_sem))) {
2916 up_read(&mm->mmap_sem);
2922 * this is really a simplified "do_mmap". it only handles
2923 * anonymous maps. eventually we may be able to do some
2924 * brk-specific accounting here.
2926 static int do_brk_flags(unsigned long addr, unsigned long len, unsigned long flags, struct list_head *uf)
2928 struct mm_struct *mm = current->mm;
2929 struct vm_area_struct *vma, *prev;
2930 struct rb_node **rb_link, *rb_parent;
2931 pgoff_t pgoff = addr >> PAGE_SHIFT;
2934 /* Until we need other flags, refuse anything except VM_EXEC. */
2935 if ((flags & (~VM_EXEC)) != 0)
2937 flags |= VM_DATA_DEFAULT_FLAGS | VM_ACCOUNT | mm->def_flags;
2939 error = get_unmapped_area(NULL, addr, len, 0, MAP_FIXED);
2940 if (offset_in_page(error))
2943 error = mlock_future_check(mm, mm->def_flags, len);
2948 * mm->mmap_sem is required to protect against another thread
2949 * changing the mappings in case we sleep.
2951 verify_mm_writelocked(mm);
2954 * Clear old maps. this also does some error checking for us
2956 while (find_vma_links(mm, addr, addr + len, &prev, &rb_link,
2958 if (do_munmap(mm, addr, len, uf))
2962 /* Check against address space limits *after* clearing old maps... */
2963 if (!may_expand_vm(mm, flags, len >> PAGE_SHIFT))
2966 if (mm->map_count > sysctl_max_map_count)
2969 if (security_vm_enough_memory_mm(mm, len >> PAGE_SHIFT))
2972 /* Can we just expand an old private anonymous mapping? */
2973 vma = vma_merge(mm, prev, addr, addr + len, flags,
2974 NULL, NULL, pgoff, NULL, NULL_VM_UFFD_CTX);
2979 * create a vma struct for an anonymous mapping
2981 vma = vm_area_alloc(mm);
2983 vm_unacct_memory(len >> PAGE_SHIFT);
2987 vma_set_anonymous(vma);
2988 vma->vm_start = addr;
2989 vma->vm_end = addr + len;
2990 vma->vm_pgoff = pgoff;
2991 vma->vm_flags = flags;
2992 vma->vm_page_prot = vm_get_page_prot(flags);
2993 vma_link(mm, vma, prev, rb_link, rb_parent);
2995 perf_event_mmap(vma);
2996 mm->total_vm += len >> PAGE_SHIFT;
2997 mm->data_vm += len >> PAGE_SHIFT;
2998 if (flags & VM_LOCKED)
2999 mm->locked_vm += (len >> PAGE_SHIFT);
3000 vma->vm_flags |= VM_SOFTDIRTY;
3004 int vm_brk_flags(unsigned long addr, unsigned long request, unsigned long flags)
3006 struct mm_struct *mm = current->mm;
3012 len = PAGE_ALIGN(request);
3018 if (down_write_killable(&mm->mmap_sem))
3021 ret = do_brk_flags(addr, len, flags, &uf);
3022 populate = ((mm->def_flags & VM_LOCKED) != 0);
3023 up_write(&mm->mmap_sem);
3024 userfaultfd_unmap_complete(mm, &uf);
3025 if (populate && !ret)
3026 mm_populate(addr, len);
3029 EXPORT_SYMBOL(vm_brk_flags);
3031 int vm_brk(unsigned long addr, unsigned long len)
3033 return vm_brk_flags(addr, len, 0);
3035 EXPORT_SYMBOL(vm_brk);
3037 /* Release all mmaps. */
3038 void exit_mmap(struct mm_struct *mm)
3040 struct mmu_gather tlb;
3041 struct vm_area_struct *vma;
3042 unsigned long nr_accounted = 0;
3044 /* mm's last user has gone, and its about to be pulled down */
3045 mmu_notifier_release(mm);
3047 if (unlikely(mm_is_oom_victim(mm))) {
3049 * Manually reap the mm to free as much memory as possible.
3050 * Then, as the oom reaper does, set MMF_OOM_SKIP to disregard
3051 * this mm from further consideration. Taking mm->mmap_sem for
3052 * write after setting MMF_OOM_SKIP will guarantee that the oom
3053 * reaper will not run on this mm again after mmap_sem is
3056 * Nothing can be holding mm->mmap_sem here and the above call
3057 * to mmu_notifier_release(mm) ensures mmu notifier callbacks in
3058 * __oom_reap_task_mm() will not block.
3060 * This needs to be done before calling munlock_vma_pages_all(),
3061 * which clears VM_LOCKED, otherwise the oom reaper cannot
3064 (void)__oom_reap_task_mm(mm);
3066 set_bit(MMF_OOM_SKIP, &mm->flags);
3067 down_write(&mm->mmap_sem);
3068 up_write(&mm->mmap_sem);
3071 if (mm->locked_vm) {
3074 if (vma->vm_flags & VM_LOCKED)
3075 munlock_vma_pages_all(vma);
3083 if (!vma) /* Can happen if dup_mmap() received an OOM */
3088 tlb_gather_mmu(&tlb, mm, 0, -1);
3089 /* update_hiwater_rss(mm) here? but nobody should be looking */
3090 /* Use -1 here to ensure all VMAs in the mm are unmapped */
3091 unmap_vmas(&tlb, vma, 0, -1);
3092 free_pgtables(&tlb, vma, FIRST_USER_ADDRESS, USER_PGTABLES_CEILING);
3093 tlb_finish_mmu(&tlb, 0, -1);
3096 * Walk the list again, actually closing and freeing it,
3097 * with preemption enabled, without holding any MM locks.
3100 if (vma->vm_flags & VM_ACCOUNT)
3101 nr_accounted += vma_pages(vma);
3102 vma = remove_vma(vma);
3104 vm_unacct_memory(nr_accounted);
3107 /* Insert vm structure into process list sorted by address
3108 * and into the inode's i_mmap tree. If vm_file is non-NULL
3109 * then i_mmap_rwsem is taken here.
3111 int insert_vm_struct(struct mm_struct *mm, struct vm_area_struct *vma)
3113 struct vm_area_struct *prev;
3114 struct rb_node **rb_link, *rb_parent;
3116 if (find_vma_links(mm, vma->vm_start, vma->vm_end,
3117 &prev, &rb_link, &rb_parent))
3119 if ((vma->vm_flags & VM_ACCOUNT) &&
3120 security_vm_enough_memory_mm(mm, vma_pages(vma)))
3124 * The vm_pgoff of a purely anonymous vma should be irrelevant
3125 * until its first write fault, when page's anon_vma and index
3126 * are set. But now set the vm_pgoff it will almost certainly
3127 * end up with (unless mremap moves it elsewhere before that
3128 * first wfault), so /proc/pid/maps tells a consistent story.
3130 * By setting it to reflect the virtual start address of the
3131 * vma, merges and splits can happen in a seamless way, just
3132 * using the existing file pgoff checks and manipulations.
3133 * Similarly in do_mmap_pgoff and in do_brk.
3135 if (vma_is_anonymous(vma)) {
3136 BUG_ON(vma->anon_vma);
3137 vma->vm_pgoff = vma->vm_start >> PAGE_SHIFT;
3140 vma_link(mm, vma, prev, rb_link, rb_parent);
3145 * Copy the vma structure to a new location in the same mm,
3146 * prior to moving page table entries, to effect an mremap move.
3148 struct vm_area_struct *copy_vma(struct vm_area_struct **vmap,
3149 unsigned long addr, unsigned long len, pgoff_t pgoff,
3150 bool *need_rmap_locks)
3152 struct vm_area_struct *vma = *vmap;
3153 unsigned long vma_start = vma->vm_start;
3154 struct mm_struct *mm = vma->vm_mm;
3155 struct vm_area_struct *new_vma, *prev;
3156 struct rb_node **rb_link, *rb_parent;
3157 bool faulted_in_anon_vma = true;
3160 * If anonymous vma has not yet been faulted, update new pgoff
3161 * to match new location, to increase its chance of merging.
3163 if (unlikely(vma_is_anonymous(vma) && !vma->anon_vma)) {
3164 pgoff = addr >> PAGE_SHIFT;
3165 faulted_in_anon_vma = false;
3168 if (find_vma_links(mm, addr, addr + len, &prev, &rb_link, &rb_parent))
3169 return NULL; /* should never get here */
3170 new_vma = vma_merge(mm, prev, addr, addr + len, vma->vm_flags,
3171 vma->anon_vma, vma->vm_file, pgoff, vma_policy(vma),
3172 vma->vm_userfaultfd_ctx);
3175 * Source vma may have been merged into new_vma
3177 if (unlikely(vma_start >= new_vma->vm_start &&
3178 vma_start < new_vma->vm_end)) {
3180 * The only way we can get a vma_merge with
3181 * self during an mremap is if the vma hasn't
3182 * been faulted in yet and we were allowed to
3183 * reset the dst vma->vm_pgoff to the
3184 * destination address of the mremap to allow
3185 * the merge to happen. mremap must change the
3186 * vm_pgoff linearity between src and dst vmas
3187 * (in turn preventing a vma_merge) to be
3188 * safe. It is only safe to keep the vm_pgoff
3189 * linear if there are no pages mapped yet.
3191 VM_BUG_ON_VMA(faulted_in_anon_vma, new_vma);
3192 *vmap = vma = new_vma;
3194 *need_rmap_locks = (new_vma->vm_pgoff <= vma->vm_pgoff);
3196 new_vma = vm_area_dup(vma);
3199 new_vma->vm_start = addr;
3200 new_vma->vm_end = addr + len;
3201 new_vma->vm_pgoff = pgoff;
3202 if (vma_dup_policy(vma, new_vma))
3204 if (anon_vma_clone(new_vma, vma))
3205 goto out_free_mempol;
3206 if (new_vma->vm_file)
3207 get_file(new_vma->vm_file);
3208 if (new_vma->vm_ops && new_vma->vm_ops->open)
3209 new_vma->vm_ops->open(new_vma);
3210 vma_link(mm, new_vma, prev, rb_link, rb_parent);
3211 *need_rmap_locks = false;
3216 mpol_put(vma_policy(new_vma));
3218 vm_area_free(new_vma);
3224 * Return true if the calling process may expand its vm space by the passed
3227 bool may_expand_vm(struct mm_struct *mm, vm_flags_t flags, unsigned long npages)
3229 if (mm->total_vm + npages > rlimit(RLIMIT_AS) >> PAGE_SHIFT)
3232 if (is_data_mapping(flags) &&
3233 mm->data_vm + npages > rlimit(RLIMIT_DATA) >> PAGE_SHIFT) {
3234 /* Workaround for Valgrind */
3235 if (rlimit(RLIMIT_DATA) == 0 &&
3236 mm->data_vm + npages <= rlimit_max(RLIMIT_DATA) >> PAGE_SHIFT)
3239 pr_warn_once("%s (%d): VmData %lu exceed data ulimit %lu. Update limits%s.\n",
3240 current->comm, current->pid,
3241 (mm->data_vm + npages) << PAGE_SHIFT,
3242 rlimit(RLIMIT_DATA),
3243 ignore_rlimit_data ? "" : " or use boot option ignore_rlimit_data");
3245 if (!ignore_rlimit_data)
3252 void vm_stat_account(struct mm_struct *mm, vm_flags_t flags, long npages)
3254 mm->total_vm += npages;
3256 if (is_exec_mapping(flags))
3257 mm->exec_vm += npages;
3258 else if (is_stack_mapping(flags))
3259 mm->stack_vm += npages;
3260 else if (is_data_mapping(flags))
3261 mm->data_vm += npages;
3264 static vm_fault_t special_mapping_fault(struct vm_fault *vmf);
3267 * Having a close hook prevents vma merging regardless of flags.
3269 static void special_mapping_close(struct vm_area_struct *vma)
3273 static const char *special_mapping_name(struct vm_area_struct *vma)
3275 return ((struct vm_special_mapping *)vma->vm_private_data)->name;
3278 static int special_mapping_mremap(struct vm_area_struct *new_vma)
3280 struct vm_special_mapping *sm = new_vma->vm_private_data;
3282 if (WARN_ON_ONCE(current->mm != new_vma->vm_mm))
3286 return sm->mremap(sm, new_vma);
3291 static const struct vm_operations_struct special_mapping_vmops = {
3292 .close = special_mapping_close,
3293 .fault = special_mapping_fault,
3294 .mremap = special_mapping_mremap,
3295 .name = special_mapping_name,
3298 static const struct vm_operations_struct legacy_special_mapping_vmops = {
3299 .close = special_mapping_close,
3300 .fault = special_mapping_fault,
3303 static vm_fault_t special_mapping_fault(struct vm_fault *vmf)
3305 struct vm_area_struct *vma = vmf->vma;
3307 struct page **pages;
3309 if (vma->vm_ops == &legacy_special_mapping_vmops) {
3310 pages = vma->vm_private_data;
3312 struct vm_special_mapping *sm = vma->vm_private_data;
3315 return sm->fault(sm, vmf->vma, vmf);
3320 for (pgoff = vmf->pgoff; pgoff && *pages; ++pages)
3324 struct page *page = *pages;
3330 return VM_FAULT_SIGBUS;
3333 static struct vm_area_struct *__install_special_mapping(
3334 struct mm_struct *mm,
3335 unsigned long addr, unsigned long len,
3336 unsigned long vm_flags, void *priv,
3337 const struct vm_operations_struct *ops)
3340 struct vm_area_struct *vma;
3342 vma = vm_area_alloc(mm);
3343 if (unlikely(vma == NULL))
3344 return ERR_PTR(-ENOMEM);
3346 vma->vm_start = addr;
3347 vma->vm_end = addr + len;
3349 vma->vm_flags = vm_flags | mm->def_flags | VM_DONTEXPAND | VM_SOFTDIRTY;
3350 vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
3353 vma->vm_private_data = priv;
3355 ret = insert_vm_struct(mm, vma);
3359 vm_stat_account(mm, vma->vm_flags, len >> PAGE_SHIFT);
3361 perf_event_mmap(vma);
3367 return ERR_PTR(ret);
3370 bool vma_is_special_mapping(const struct vm_area_struct *vma,
3371 const struct vm_special_mapping *sm)
3373 return vma->vm_private_data == sm &&
3374 (vma->vm_ops == &special_mapping_vmops ||
3375 vma->vm_ops == &legacy_special_mapping_vmops);
3379 * Called with mm->mmap_sem held for writing.
3380 * Insert a new vma covering the given region, with the given flags.
3381 * Its pages are supplied by the given array of struct page *.
3382 * The array can be shorter than len >> PAGE_SHIFT if it's null-terminated.
3383 * The region past the last page supplied will always produce SIGBUS.
3384 * The array pointer and the pages it points to are assumed to stay alive
3385 * for as long as this mapping might exist.
3387 struct vm_area_struct *_install_special_mapping(
3388 struct mm_struct *mm,
3389 unsigned long addr, unsigned long len,
3390 unsigned long vm_flags, const struct vm_special_mapping *spec)
3392 return __install_special_mapping(mm, addr, len, vm_flags, (void *)spec,
3393 &special_mapping_vmops);
3396 int install_special_mapping(struct mm_struct *mm,
3397 unsigned long addr, unsigned long len,
3398 unsigned long vm_flags, struct page **pages)
3400 struct vm_area_struct *vma = __install_special_mapping(
3401 mm, addr, len, vm_flags, (void *)pages,
3402 &legacy_special_mapping_vmops);
3404 return PTR_ERR_OR_ZERO(vma);
3407 static DEFINE_MUTEX(mm_all_locks_mutex);
3409 static void vm_lock_anon_vma(struct mm_struct *mm, struct anon_vma *anon_vma)
3411 if (!test_bit(0, (unsigned long *) &anon_vma->root->rb_root.rb_root.rb_node)) {
3413 * The LSB of head.next can't change from under us
3414 * because we hold the mm_all_locks_mutex.
3416 down_write_nest_lock(&anon_vma->root->rwsem, &mm->mmap_sem);
3418 * We can safely modify head.next after taking the
3419 * anon_vma->root->rwsem. If some other vma in this mm shares
3420 * the same anon_vma we won't take it again.
3422 * No need of atomic instructions here, head.next
3423 * can't change from under us thanks to the
3424 * anon_vma->root->rwsem.
3426 if (__test_and_set_bit(0, (unsigned long *)
3427 &anon_vma->root->rb_root.rb_root.rb_node))
3432 static void vm_lock_mapping(struct mm_struct *mm, struct address_space *mapping)
3434 if (!test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) {
3436 * AS_MM_ALL_LOCKS can't change from under us because
3437 * we hold the mm_all_locks_mutex.
3439 * Operations on ->flags have to be atomic because
3440 * even if AS_MM_ALL_LOCKS is stable thanks to the
3441 * mm_all_locks_mutex, there may be other cpus
3442 * changing other bitflags in parallel to us.
3444 if (test_and_set_bit(AS_MM_ALL_LOCKS, &mapping->flags))
3446 down_write_nest_lock(&mapping->i_mmap_rwsem, &mm->mmap_sem);
3451 * This operation locks against the VM for all pte/vma/mm related
3452 * operations that could ever happen on a certain mm. This includes
3453 * vmtruncate, try_to_unmap, and all page faults.
3455 * The caller must take the mmap_sem in write mode before calling
3456 * mm_take_all_locks(). The caller isn't allowed to release the
3457 * mmap_sem until mm_drop_all_locks() returns.
3459 * mmap_sem in write mode is required in order to block all operations
3460 * that could modify pagetables and free pages without need of
3461 * altering the vma layout. It's also needed in write mode to avoid new
3462 * anon_vmas to be associated with existing vmas.
3464 * A single task can't take more than one mm_take_all_locks() in a row
3465 * or it would deadlock.
3467 * The LSB in anon_vma->rb_root.rb_node and the AS_MM_ALL_LOCKS bitflag in
3468 * mapping->flags avoid to take the same lock twice, if more than one
3469 * vma in this mm is backed by the same anon_vma or address_space.
3471 * We take locks in following order, accordingly to comment at beginning
3473 * - all hugetlbfs_i_mmap_rwsem_key locks (aka mapping->i_mmap_rwsem for
3475 * - all i_mmap_rwsem locks;
3476 * - all anon_vma->rwseml
3478 * We can take all locks within these types randomly because the VM code
3479 * doesn't nest them and we protected from parallel mm_take_all_locks() by
3480 * mm_all_locks_mutex.
3482 * mm_take_all_locks() and mm_drop_all_locks are expensive operations
3483 * that may have to take thousand of locks.
3485 * mm_take_all_locks() can fail if it's interrupted by signals.
3487 int mm_take_all_locks(struct mm_struct *mm)
3489 struct vm_area_struct *vma;
3490 struct anon_vma_chain *avc;
3492 BUG_ON(down_read_trylock(&mm->mmap_sem));
3494 mutex_lock(&mm_all_locks_mutex);
3496 for (vma = mm->mmap; vma; vma = vma->vm_next) {
3497 if (signal_pending(current))
3499 if (vma->vm_file && vma->vm_file->f_mapping &&
3500 is_vm_hugetlb_page(vma))
3501 vm_lock_mapping(mm, vma->vm_file->f_mapping);
3504 for (vma = mm->mmap; vma; vma = vma->vm_next) {
3505 if (signal_pending(current))
3507 if (vma->vm_file && vma->vm_file->f_mapping &&
3508 !is_vm_hugetlb_page(vma))
3509 vm_lock_mapping(mm, vma->vm_file->f_mapping);
3512 for (vma = mm->mmap; vma; vma = vma->vm_next) {
3513 if (signal_pending(current))
3516 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
3517 vm_lock_anon_vma(mm, avc->anon_vma);
3523 mm_drop_all_locks(mm);
3527 static void vm_unlock_anon_vma(struct anon_vma *anon_vma)
3529 if (test_bit(0, (unsigned long *) &anon_vma->root->rb_root.rb_root.rb_node)) {
3531 * The LSB of head.next can't change to 0 from under
3532 * us because we hold the mm_all_locks_mutex.
3534 * We must however clear the bitflag before unlocking
3535 * the vma so the users using the anon_vma->rb_root will
3536 * never see our bitflag.
3538 * No need of atomic instructions here, head.next
3539 * can't change from under us until we release the
3540 * anon_vma->root->rwsem.
3542 if (!__test_and_clear_bit(0, (unsigned long *)
3543 &anon_vma->root->rb_root.rb_root.rb_node))
3545 anon_vma_unlock_write(anon_vma);
3549 static void vm_unlock_mapping(struct address_space *mapping)
3551 if (test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) {
3553 * AS_MM_ALL_LOCKS can't change to 0 from under us
3554 * because we hold the mm_all_locks_mutex.
3556 i_mmap_unlock_write(mapping);
3557 if (!test_and_clear_bit(AS_MM_ALL_LOCKS,
3564 * The mmap_sem cannot be released by the caller until
3565 * mm_drop_all_locks() returns.
3567 void mm_drop_all_locks(struct mm_struct *mm)
3569 struct vm_area_struct *vma;
3570 struct anon_vma_chain *avc;
3572 BUG_ON(down_read_trylock(&mm->mmap_sem));
3573 BUG_ON(!mutex_is_locked(&mm_all_locks_mutex));
3575 for (vma = mm->mmap; vma; vma = vma->vm_next) {
3577 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
3578 vm_unlock_anon_vma(avc->anon_vma);
3579 if (vma->vm_file && vma->vm_file->f_mapping)
3580 vm_unlock_mapping(vma->vm_file->f_mapping);
3583 mutex_unlock(&mm_all_locks_mutex);
3587 * initialise the percpu counter for VM
3589 void __init mmap_init(void)
3593 ret = percpu_counter_init(&vm_committed_as, 0, GFP_KERNEL);
3598 * Initialise sysctl_user_reserve_kbytes.
3600 * This is intended to prevent a user from starting a single memory hogging
3601 * process, such that they cannot recover (kill the hog) in OVERCOMMIT_NEVER
3604 * The default value is min(3% of free memory, 128MB)
3605 * 128MB is enough to recover with sshd/login, bash, and top/kill.
3607 static int init_user_reserve(void)
3609 unsigned long free_kbytes;
3611 free_kbytes = global_zone_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
3613 sysctl_user_reserve_kbytes = min(free_kbytes / 32, 1UL << 17);
3616 subsys_initcall(init_user_reserve);
3619 * Initialise sysctl_admin_reserve_kbytes.
3621 * The purpose of sysctl_admin_reserve_kbytes is to allow the sys admin
3622 * to log in and kill a memory hogging process.
3624 * Systems with more than 256MB will reserve 8MB, enough to recover
3625 * with sshd, bash, and top in OVERCOMMIT_GUESS. Smaller systems will
3626 * only reserve 3% of free pages by default.
3628 static int init_admin_reserve(void)
3630 unsigned long free_kbytes;
3632 free_kbytes = global_zone_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
3634 sysctl_admin_reserve_kbytes = min(free_kbytes / 32, 1UL << 13);
3637 subsys_initcall(init_admin_reserve);
3640 * Reinititalise user and admin reserves if memory is added or removed.
3642 * The default user reserve max is 128MB, and the default max for the
3643 * admin reserve is 8MB. These are usually, but not always, enough to
3644 * enable recovery from a memory hogging process using login/sshd, a shell,
3645 * and tools like top. It may make sense to increase or even disable the
3646 * reserve depending on the existence of swap or variations in the recovery
3647 * tools. So, the admin may have changed them.
3649 * If memory is added and the reserves have been eliminated or increased above
3650 * the default max, then we'll trust the admin.
3652 * If memory is removed and there isn't enough free memory, then we
3653 * need to reset the reserves.
3655 * Otherwise keep the reserve set by the admin.
3657 static int reserve_mem_notifier(struct notifier_block *nb,
3658 unsigned long action, void *data)
3660 unsigned long tmp, free_kbytes;
3664 /* Default max is 128MB. Leave alone if modified by operator. */
3665 tmp = sysctl_user_reserve_kbytes;
3666 if (0 < tmp && tmp < (1UL << 17))
3667 init_user_reserve();
3669 /* Default max is 8MB. Leave alone if modified by operator. */
3670 tmp = sysctl_admin_reserve_kbytes;
3671 if (0 < tmp && tmp < (1UL << 13))
3672 init_admin_reserve();
3676 free_kbytes = global_zone_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
3678 if (sysctl_user_reserve_kbytes > free_kbytes) {
3679 init_user_reserve();
3680 pr_info("vm.user_reserve_kbytes reset to %lu\n",
3681 sysctl_user_reserve_kbytes);
3684 if (sysctl_admin_reserve_kbytes > free_kbytes) {
3685 init_admin_reserve();
3686 pr_info("vm.admin_reserve_kbytes reset to %lu\n",
3687 sysctl_admin_reserve_kbytes);
3696 static struct notifier_block reserve_mem_nb = {
3697 .notifier_call = reserve_mem_notifier,
3700 static int __meminit init_reserve_notifier(void)
3702 if (register_hotmemory_notifier(&reserve_mem_nb))
3703 pr_err("Failed registering memory add/remove notifier for admin reserve\n");
3707 subsys_initcall(init_reserve_notifier);