mm/mmap.c: add mlock_future_check() helper
[platform/adaptation/renesas_rcar/renesas_kernel.git] / mm / mmap.c
1 /*
2  * mm/mmap.c
3  *
4  * Written by obz.
5  *
6  * Address space accounting code        <alan@lxorguk.ukuu.org.uk>
7  */
8
9 #include <linux/kernel.h>
10 #include <linux/slab.h>
11 #include <linux/backing-dev.h>
12 #include <linux/mm.h>
13 #include <linux/shm.h>
14 #include <linux/mman.h>
15 #include <linux/pagemap.h>
16 #include <linux/swap.h>
17 #include <linux/syscalls.h>
18 #include <linux/capability.h>
19 #include <linux/init.h>
20 #include <linux/file.h>
21 #include <linux/fs.h>
22 #include <linux/personality.h>
23 #include <linux/security.h>
24 #include <linux/hugetlb.h>
25 #include <linux/profile.h>
26 #include <linux/export.h>
27 #include <linux/mount.h>
28 #include <linux/mempolicy.h>
29 #include <linux/rmap.h>
30 #include <linux/mmu_notifier.h>
31 #include <linux/perf_event.h>
32 #include <linux/audit.h>
33 #include <linux/khugepaged.h>
34 #include <linux/uprobes.h>
35 #include <linux/rbtree_augmented.h>
36 #include <linux/sched/sysctl.h>
37 #include <linux/notifier.h>
38 #include <linux/memory.h>
39
40 #include <asm/uaccess.h>
41 #include <asm/cacheflush.h>
42 #include <asm/tlb.h>
43 #include <asm/mmu_context.h>
44
45 #include "internal.h"
46
47 #ifndef arch_mmap_check
48 #define arch_mmap_check(addr, len, flags)       (0)
49 #endif
50
51 #ifndef arch_rebalance_pgtables
52 #define arch_rebalance_pgtables(addr, len)              (addr)
53 #endif
54
55 static void unmap_region(struct mm_struct *mm,
56                 struct vm_area_struct *vma, struct vm_area_struct *prev,
57                 unsigned long start, unsigned long end);
58
59 /* description of effects of mapping type and prot in current implementation.
60  * this is due to the limited x86 page protection hardware.  The expected
61  * behavior is in parens:
62  *
63  * map_type     prot
64  *              PROT_NONE       PROT_READ       PROT_WRITE      PROT_EXEC
65  * MAP_SHARED   r: (no) no      r: (yes) yes    r: (no) yes     r: (no) yes
66  *              w: (no) no      w: (no) no      w: (yes) yes    w: (no) no
67  *              x: (no) no      x: (no) yes     x: (no) yes     x: (yes) yes
68  *              
69  * MAP_PRIVATE  r: (no) no      r: (yes) yes    r: (no) yes     r: (no) yes
70  *              w: (no) no      w: (no) no      w: (copy) copy  w: (no) no
71  *              x: (no) no      x: (no) yes     x: (no) yes     x: (yes) yes
72  *
73  */
74 pgprot_t protection_map[16] = {
75         __P000, __P001, __P010, __P011, __P100, __P101, __P110, __P111,
76         __S000, __S001, __S010, __S011, __S100, __S101, __S110, __S111
77 };
78
79 pgprot_t vm_get_page_prot(unsigned long vm_flags)
80 {
81         return __pgprot(pgprot_val(protection_map[vm_flags &
82                                 (VM_READ|VM_WRITE|VM_EXEC|VM_SHARED)]) |
83                         pgprot_val(arch_vm_get_page_prot(vm_flags)));
84 }
85 EXPORT_SYMBOL(vm_get_page_prot);
86
87 int sysctl_overcommit_memory __read_mostly = OVERCOMMIT_GUESS;  /* heuristic overcommit */
88 int sysctl_overcommit_ratio __read_mostly = 50; /* default is 50% */
89 unsigned long sysctl_overcommit_kbytes __read_mostly;
90 int sysctl_max_map_count __read_mostly = DEFAULT_MAX_MAP_COUNT;
91 unsigned long sysctl_user_reserve_kbytes __read_mostly = 1UL << 17; /* 128MB */
92 unsigned long sysctl_admin_reserve_kbytes __read_mostly = 1UL << 13; /* 8MB */
93 /*
94  * Make sure vm_committed_as in one cacheline and not cacheline shared with
95  * other variables. It can be updated by several CPUs frequently.
96  */
97 struct percpu_counter vm_committed_as ____cacheline_aligned_in_smp;
98
99 /*
100  * The global memory commitment made in the system can be a metric
101  * that can be used to drive ballooning decisions when Linux is hosted
102  * as a guest. On Hyper-V, the host implements a policy engine for dynamically
103  * balancing memory across competing virtual machines that are hosted.
104  * Several metrics drive this policy engine including the guest reported
105  * memory commitment.
106  */
107 unsigned long vm_memory_committed(void)
108 {
109         return percpu_counter_read_positive(&vm_committed_as);
110 }
111 EXPORT_SYMBOL_GPL(vm_memory_committed);
112
113 /*
114  * Check that a process has enough memory to allocate a new virtual
115  * mapping. 0 means there is enough memory for the allocation to
116  * succeed and -ENOMEM implies there is not.
117  *
118  * We currently support three overcommit policies, which are set via the
119  * vm.overcommit_memory sysctl.  See Documentation/vm/overcommit-accounting
120  *
121  * Strict overcommit modes added 2002 Feb 26 by Alan Cox.
122  * Additional code 2002 Jul 20 by Robert Love.
123  *
124  * cap_sys_admin is 1 if the process has admin privileges, 0 otherwise.
125  *
126  * Note this is a helper function intended to be used by LSMs which
127  * wish to use this logic.
128  */
129 int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin)
130 {
131         unsigned long free, allowed, reserve;
132
133         vm_acct_memory(pages);
134
135         /*
136          * Sometimes we want to use more memory than we have
137          */
138         if (sysctl_overcommit_memory == OVERCOMMIT_ALWAYS)
139                 return 0;
140
141         if (sysctl_overcommit_memory == OVERCOMMIT_GUESS) {
142                 free = global_page_state(NR_FREE_PAGES);
143                 free += global_page_state(NR_FILE_PAGES);
144
145                 /*
146                  * shmem pages shouldn't be counted as free in this
147                  * case, they can't be purged, only swapped out, and
148                  * that won't affect the overall amount of available
149                  * memory in the system.
150                  */
151                 free -= global_page_state(NR_SHMEM);
152
153                 free += get_nr_swap_pages();
154
155                 /*
156                  * Any slabs which are created with the
157                  * SLAB_RECLAIM_ACCOUNT flag claim to have contents
158                  * which are reclaimable, under pressure.  The dentry
159                  * cache and most inode caches should fall into this
160                  */
161                 free += global_page_state(NR_SLAB_RECLAIMABLE);
162
163                 /*
164                  * Leave reserved pages. The pages are not for anonymous pages.
165                  */
166                 if (free <= totalreserve_pages)
167                         goto error;
168                 else
169                         free -= totalreserve_pages;
170
171                 /*
172                  * Reserve some for root
173                  */
174                 if (!cap_sys_admin)
175                         free -= sysctl_admin_reserve_kbytes >> (PAGE_SHIFT - 10);
176
177                 if (free > pages)
178                         return 0;
179
180                 goto error;
181         }
182
183         allowed = vm_commit_limit();
184         /*
185          * Reserve some for root
186          */
187         if (!cap_sys_admin)
188                 allowed -= sysctl_admin_reserve_kbytes >> (PAGE_SHIFT - 10);
189
190         /*
191          * Don't let a single process grow so big a user can't recover
192          */
193         if (mm) {
194                 reserve = sysctl_user_reserve_kbytes >> (PAGE_SHIFT - 10);
195                 allowed -= min(mm->total_vm / 32, reserve);
196         }
197
198         if (percpu_counter_read_positive(&vm_committed_as) < allowed)
199                 return 0;
200 error:
201         vm_unacct_memory(pages);
202
203         return -ENOMEM;
204 }
205
206 /*
207  * Requires inode->i_mapping->i_mmap_mutex
208  */
209 static void __remove_shared_vm_struct(struct vm_area_struct *vma,
210                 struct file *file, struct address_space *mapping)
211 {
212         if (vma->vm_flags & VM_DENYWRITE)
213                 atomic_inc(&file_inode(file)->i_writecount);
214         if (vma->vm_flags & VM_SHARED)
215                 mapping->i_mmap_writable--;
216
217         flush_dcache_mmap_lock(mapping);
218         if (unlikely(vma->vm_flags & VM_NONLINEAR))
219                 list_del_init(&vma->shared.nonlinear);
220         else
221                 vma_interval_tree_remove(vma, &mapping->i_mmap);
222         flush_dcache_mmap_unlock(mapping);
223 }
224
225 /*
226  * Unlink a file-based vm structure from its interval tree, to hide
227  * vma from rmap and vmtruncate before freeing its page tables.
228  */
229 void unlink_file_vma(struct vm_area_struct *vma)
230 {
231         struct file *file = vma->vm_file;
232
233         if (file) {
234                 struct address_space *mapping = file->f_mapping;
235                 mutex_lock(&mapping->i_mmap_mutex);
236                 __remove_shared_vm_struct(vma, file, mapping);
237                 mutex_unlock(&mapping->i_mmap_mutex);
238         }
239 }
240
241 /*
242  * Close a vm structure and free it, returning the next.
243  */
244 static struct vm_area_struct *remove_vma(struct vm_area_struct *vma)
245 {
246         struct vm_area_struct *next = vma->vm_next;
247
248         might_sleep();
249         if (vma->vm_ops && vma->vm_ops->close)
250                 vma->vm_ops->close(vma);
251         if (vma->vm_file)
252                 fput(vma->vm_file);
253         mpol_put(vma_policy(vma));
254         kmem_cache_free(vm_area_cachep, vma);
255         return next;
256 }
257
258 static unsigned long do_brk(unsigned long addr, unsigned long len);
259
260 SYSCALL_DEFINE1(brk, unsigned long, brk)
261 {
262         unsigned long rlim, retval;
263         unsigned long newbrk, oldbrk;
264         struct mm_struct *mm = current->mm;
265         unsigned long min_brk;
266         bool populate;
267
268         down_write(&mm->mmap_sem);
269
270 #ifdef CONFIG_COMPAT_BRK
271         /*
272          * CONFIG_COMPAT_BRK can still be overridden by setting
273          * randomize_va_space to 2, which will still cause mm->start_brk
274          * to be arbitrarily shifted
275          */
276         if (current->brk_randomized)
277                 min_brk = mm->start_brk;
278         else
279                 min_brk = mm->end_data;
280 #else
281         min_brk = mm->start_brk;
282 #endif
283         if (brk < min_brk)
284                 goto out;
285
286         /*
287          * Check against rlimit here. If this check is done later after the test
288          * of oldbrk with newbrk then it can escape the test and let the data
289          * segment grow beyond its set limit the in case where the limit is
290          * not page aligned -Ram Gupta
291          */
292         rlim = rlimit(RLIMIT_DATA);
293         if (rlim < RLIM_INFINITY && (brk - mm->start_brk) +
294                         (mm->end_data - mm->start_data) > rlim)
295                 goto out;
296
297         newbrk = PAGE_ALIGN(brk);
298         oldbrk = PAGE_ALIGN(mm->brk);
299         if (oldbrk == newbrk)
300                 goto set_brk;
301
302         /* Always allow shrinking brk. */
303         if (brk <= mm->brk) {
304                 if (!do_munmap(mm, newbrk, oldbrk-newbrk))
305                         goto set_brk;
306                 goto out;
307         }
308
309         /* Check against existing mmap mappings. */
310         if (find_vma_intersection(mm, oldbrk, newbrk+PAGE_SIZE))
311                 goto out;
312
313         /* Ok, looks good - let it rip. */
314         if (do_brk(oldbrk, newbrk-oldbrk) != oldbrk)
315                 goto out;
316
317 set_brk:
318         mm->brk = brk;
319         populate = newbrk > oldbrk && (mm->def_flags & VM_LOCKED) != 0;
320         up_write(&mm->mmap_sem);
321         if (populate)
322                 mm_populate(oldbrk, newbrk - oldbrk);
323         return brk;
324
325 out:
326         retval = mm->brk;
327         up_write(&mm->mmap_sem);
328         return retval;
329 }
330
331 static long vma_compute_subtree_gap(struct vm_area_struct *vma)
332 {
333         unsigned long max, subtree_gap;
334         max = vma->vm_start;
335         if (vma->vm_prev)
336                 max -= vma->vm_prev->vm_end;
337         if (vma->vm_rb.rb_left) {
338                 subtree_gap = rb_entry(vma->vm_rb.rb_left,
339                                 struct vm_area_struct, vm_rb)->rb_subtree_gap;
340                 if (subtree_gap > max)
341                         max = subtree_gap;
342         }
343         if (vma->vm_rb.rb_right) {
344                 subtree_gap = rb_entry(vma->vm_rb.rb_right,
345                                 struct vm_area_struct, vm_rb)->rb_subtree_gap;
346                 if (subtree_gap > max)
347                         max = subtree_gap;
348         }
349         return max;
350 }
351
352 #ifdef CONFIG_DEBUG_VM_RB
353 static int browse_rb(struct rb_root *root)
354 {
355         int i = 0, j, bug = 0;
356         struct rb_node *nd, *pn = NULL;
357         unsigned long prev = 0, pend = 0;
358
359         for (nd = rb_first(root); nd; nd = rb_next(nd)) {
360                 struct vm_area_struct *vma;
361                 vma = rb_entry(nd, struct vm_area_struct, vm_rb);
362                 if (vma->vm_start < prev) {
363                         printk("vm_start %lx prev %lx\n", vma->vm_start, prev);
364                         bug = 1;
365                 }
366                 if (vma->vm_start < pend) {
367                         printk("vm_start %lx pend %lx\n", vma->vm_start, pend);
368                         bug = 1;
369                 }
370                 if (vma->vm_start > vma->vm_end) {
371                         printk("vm_end %lx < vm_start %lx\n",
372                                 vma->vm_end, vma->vm_start);
373                         bug = 1;
374                 }
375                 if (vma->rb_subtree_gap != vma_compute_subtree_gap(vma)) {
376                         printk("free gap %lx, correct %lx\n",
377                                vma->rb_subtree_gap,
378                                vma_compute_subtree_gap(vma));
379                         bug = 1;
380                 }
381                 i++;
382                 pn = nd;
383                 prev = vma->vm_start;
384                 pend = vma->vm_end;
385         }
386         j = 0;
387         for (nd = pn; nd; nd = rb_prev(nd))
388                 j++;
389         if (i != j) {
390                 printk("backwards %d, forwards %d\n", j, i);
391                 bug = 1;
392         }
393         return bug ? -1 : i;
394 }
395
396 static void validate_mm_rb(struct rb_root *root, struct vm_area_struct *ignore)
397 {
398         struct rb_node *nd;
399
400         for (nd = rb_first(root); nd; nd = rb_next(nd)) {
401                 struct vm_area_struct *vma;
402                 vma = rb_entry(nd, struct vm_area_struct, vm_rb);
403                 BUG_ON(vma != ignore &&
404                        vma->rb_subtree_gap != vma_compute_subtree_gap(vma));
405         }
406 }
407
408 void validate_mm(struct mm_struct *mm)
409 {
410         int bug = 0;
411         int i = 0;
412         unsigned long highest_address = 0;
413         struct vm_area_struct *vma = mm->mmap;
414         while (vma) {
415                 struct anon_vma_chain *avc;
416                 vma_lock_anon_vma(vma);
417                 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
418                         anon_vma_interval_tree_verify(avc);
419                 vma_unlock_anon_vma(vma);
420                 highest_address = vma->vm_end;
421                 vma = vma->vm_next;
422                 i++;
423         }
424         if (i != mm->map_count) {
425                 printk("map_count %d vm_next %d\n", mm->map_count, i);
426                 bug = 1;
427         }
428         if (highest_address != mm->highest_vm_end) {
429                 printk("mm->highest_vm_end %lx, found %lx\n",
430                        mm->highest_vm_end, highest_address);
431                 bug = 1;
432         }
433         i = browse_rb(&mm->mm_rb);
434         if (i != mm->map_count) {
435                 printk("map_count %d rb %d\n", mm->map_count, i);
436                 bug = 1;
437         }
438         BUG_ON(bug);
439 }
440 #else
441 #define validate_mm_rb(root, ignore) do { } while (0)
442 #define validate_mm(mm) do { } while (0)
443 #endif
444
445 RB_DECLARE_CALLBACKS(static, vma_gap_callbacks, struct vm_area_struct, vm_rb,
446                      unsigned long, rb_subtree_gap, vma_compute_subtree_gap)
447
448 /*
449  * Update augmented rbtree rb_subtree_gap values after vma->vm_start or
450  * vma->vm_prev->vm_end values changed, without modifying the vma's position
451  * in the rbtree.
452  */
453 static void vma_gap_update(struct vm_area_struct *vma)
454 {
455         /*
456          * As it turns out, RB_DECLARE_CALLBACKS() already created a callback
457          * function that does exacltly what we want.
458          */
459         vma_gap_callbacks_propagate(&vma->vm_rb, NULL);
460 }
461
462 static inline void vma_rb_insert(struct vm_area_struct *vma,
463                                  struct rb_root *root)
464 {
465         /* All rb_subtree_gap values must be consistent prior to insertion */
466         validate_mm_rb(root, NULL);
467
468         rb_insert_augmented(&vma->vm_rb, root, &vma_gap_callbacks);
469 }
470
471 static void vma_rb_erase(struct vm_area_struct *vma, struct rb_root *root)
472 {
473         /*
474          * All rb_subtree_gap values must be consistent prior to erase,
475          * with the possible exception of the vma being erased.
476          */
477         validate_mm_rb(root, vma);
478
479         /*
480          * Note rb_erase_augmented is a fairly large inline function,
481          * so make sure we instantiate it only once with our desired
482          * augmented rbtree callbacks.
483          */
484         rb_erase_augmented(&vma->vm_rb, root, &vma_gap_callbacks);
485 }
486
487 /*
488  * vma has some anon_vma assigned, and is already inserted on that
489  * anon_vma's interval trees.
490  *
491  * Before updating the vma's vm_start / vm_end / vm_pgoff fields, the
492  * vma must be removed from the anon_vma's interval trees using
493  * anon_vma_interval_tree_pre_update_vma().
494  *
495  * After the update, the vma will be reinserted using
496  * anon_vma_interval_tree_post_update_vma().
497  *
498  * The entire update must be protected by exclusive mmap_sem and by
499  * the root anon_vma's mutex.
500  */
501 static inline void
502 anon_vma_interval_tree_pre_update_vma(struct vm_area_struct *vma)
503 {
504         struct anon_vma_chain *avc;
505
506         list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
507                 anon_vma_interval_tree_remove(avc, &avc->anon_vma->rb_root);
508 }
509
510 static inline void
511 anon_vma_interval_tree_post_update_vma(struct vm_area_struct *vma)
512 {
513         struct anon_vma_chain *avc;
514
515         list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
516                 anon_vma_interval_tree_insert(avc, &avc->anon_vma->rb_root);
517 }
518
519 static int find_vma_links(struct mm_struct *mm, unsigned long addr,
520                 unsigned long end, struct vm_area_struct **pprev,
521                 struct rb_node ***rb_link, struct rb_node **rb_parent)
522 {
523         struct rb_node **__rb_link, *__rb_parent, *rb_prev;
524
525         __rb_link = &mm->mm_rb.rb_node;
526         rb_prev = __rb_parent = NULL;
527
528         while (*__rb_link) {
529                 struct vm_area_struct *vma_tmp;
530
531                 __rb_parent = *__rb_link;
532                 vma_tmp = rb_entry(__rb_parent, struct vm_area_struct, vm_rb);
533
534                 if (vma_tmp->vm_end > addr) {
535                         /* Fail if an existing vma overlaps the area */
536                         if (vma_tmp->vm_start < end)
537                                 return -ENOMEM;
538                         __rb_link = &__rb_parent->rb_left;
539                 } else {
540                         rb_prev = __rb_parent;
541                         __rb_link = &__rb_parent->rb_right;
542                 }
543         }
544
545         *pprev = NULL;
546         if (rb_prev)
547                 *pprev = rb_entry(rb_prev, struct vm_area_struct, vm_rb);
548         *rb_link = __rb_link;
549         *rb_parent = __rb_parent;
550         return 0;
551 }
552
553 static unsigned long count_vma_pages_range(struct mm_struct *mm,
554                 unsigned long addr, unsigned long end)
555 {
556         unsigned long nr_pages = 0;
557         struct vm_area_struct *vma;
558
559         /* Find first overlaping mapping */
560         vma = find_vma_intersection(mm, addr, end);
561         if (!vma)
562                 return 0;
563
564         nr_pages = (min(end, vma->vm_end) -
565                 max(addr, vma->vm_start)) >> PAGE_SHIFT;
566
567         /* Iterate over the rest of the overlaps */
568         for (vma = vma->vm_next; vma; vma = vma->vm_next) {
569                 unsigned long overlap_len;
570
571                 if (vma->vm_start > end)
572                         break;
573
574                 overlap_len = min(end, vma->vm_end) - vma->vm_start;
575                 nr_pages += overlap_len >> PAGE_SHIFT;
576         }
577
578         return nr_pages;
579 }
580
581 void __vma_link_rb(struct mm_struct *mm, struct vm_area_struct *vma,
582                 struct rb_node **rb_link, struct rb_node *rb_parent)
583 {
584         /* Update tracking information for the gap following the new vma. */
585         if (vma->vm_next)
586                 vma_gap_update(vma->vm_next);
587         else
588                 mm->highest_vm_end = vma->vm_end;
589
590         /*
591          * vma->vm_prev wasn't known when we followed the rbtree to find the
592          * correct insertion point for that vma. As a result, we could not
593          * update the vma vm_rb parents rb_subtree_gap values on the way down.
594          * So, we first insert the vma with a zero rb_subtree_gap value
595          * (to be consistent with what we did on the way down), and then
596          * immediately update the gap to the correct value. Finally we
597          * rebalance the rbtree after all augmented values have been set.
598          */
599         rb_link_node(&vma->vm_rb, rb_parent, rb_link);
600         vma->rb_subtree_gap = 0;
601         vma_gap_update(vma);
602         vma_rb_insert(vma, &mm->mm_rb);
603 }
604
605 static void __vma_link_file(struct vm_area_struct *vma)
606 {
607         struct file *file;
608
609         file = vma->vm_file;
610         if (file) {
611                 struct address_space *mapping = file->f_mapping;
612
613                 if (vma->vm_flags & VM_DENYWRITE)
614                         atomic_dec(&file_inode(file)->i_writecount);
615                 if (vma->vm_flags & VM_SHARED)
616                         mapping->i_mmap_writable++;
617
618                 flush_dcache_mmap_lock(mapping);
619                 if (unlikely(vma->vm_flags & VM_NONLINEAR))
620                         vma_nonlinear_insert(vma, &mapping->i_mmap_nonlinear);
621                 else
622                         vma_interval_tree_insert(vma, &mapping->i_mmap);
623                 flush_dcache_mmap_unlock(mapping);
624         }
625 }
626
627 static void
628 __vma_link(struct mm_struct *mm, struct vm_area_struct *vma,
629         struct vm_area_struct *prev, struct rb_node **rb_link,
630         struct rb_node *rb_parent)
631 {
632         __vma_link_list(mm, vma, prev, rb_parent);
633         __vma_link_rb(mm, vma, rb_link, rb_parent);
634 }
635
636 static void vma_link(struct mm_struct *mm, struct vm_area_struct *vma,
637                         struct vm_area_struct *prev, struct rb_node **rb_link,
638                         struct rb_node *rb_parent)
639 {
640         struct address_space *mapping = NULL;
641
642         if (vma->vm_file)
643                 mapping = vma->vm_file->f_mapping;
644
645         if (mapping)
646                 mutex_lock(&mapping->i_mmap_mutex);
647
648         __vma_link(mm, vma, prev, rb_link, rb_parent);
649         __vma_link_file(vma);
650
651         if (mapping)
652                 mutex_unlock(&mapping->i_mmap_mutex);
653
654         mm->map_count++;
655         validate_mm(mm);
656 }
657
658 /*
659  * Helper for vma_adjust() in the split_vma insert case: insert a vma into the
660  * mm's list and rbtree.  It has already been inserted into the interval tree.
661  */
662 static void __insert_vm_struct(struct mm_struct *mm, struct vm_area_struct *vma)
663 {
664         struct vm_area_struct *prev;
665         struct rb_node **rb_link, *rb_parent;
666
667         if (find_vma_links(mm, vma->vm_start, vma->vm_end,
668                            &prev, &rb_link, &rb_parent))
669                 BUG();
670         __vma_link(mm, vma, prev, rb_link, rb_parent);
671         mm->map_count++;
672 }
673
674 static inline void
675 __vma_unlink(struct mm_struct *mm, struct vm_area_struct *vma,
676                 struct vm_area_struct *prev)
677 {
678         struct vm_area_struct *next;
679
680         vma_rb_erase(vma, &mm->mm_rb);
681         prev->vm_next = next = vma->vm_next;
682         if (next)
683                 next->vm_prev = prev;
684         if (mm->mmap_cache == vma)
685                 mm->mmap_cache = prev;
686 }
687
688 /*
689  * We cannot adjust vm_start, vm_end, vm_pgoff fields of a vma that
690  * is already present in an i_mmap tree without adjusting the tree.
691  * The following helper function should be used when such adjustments
692  * are necessary.  The "insert" vma (if any) is to be inserted
693  * before we drop the necessary locks.
694  */
695 int vma_adjust(struct vm_area_struct *vma, unsigned long start,
696         unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert)
697 {
698         struct mm_struct *mm = vma->vm_mm;
699         struct vm_area_struct *next = vma->vm_next;
700         struct vm_area_struct *importer = NULL;
701         struct address_space *mapping = NULL;
702         struct rb_root *root = NULL;
703         struct anon_vma *anon_vma = NULL;
704         struct file *file = vma->vm_file;
705         bool start_changed = false, end_changed = false;
706         long adjust_next = 0;
707         int remove_next = 0;
708
709         if (next && !insert) {
710                 struct vm_area_struct *exporter = NULL;
711
712                 if (end >= next->vm_end) {
713                         /*
714                          * vma expands, overlapping all the next, and
715                          * perhaps the one after too (mprotect case 6).
716                          */
717 again:                  remove_next = 1 + (end > next->vm_end);
718                         end = next->vm_end;
719                         exporter = next;
720                         importer = vma;
721                 } else if (end > next->vm_start) {
722                         /*
723                          * vma expands, overlapping part of the next:
724                          * mprotect case 5 shifting the boundary up.
725                          */
726                         adjust_next = (end - next->vm_start) >> PAGE_SHIFT;
727                         exporter = next;
728                         importer = vma;
729                 } else if (end < vma->vm_end) {
730                         /*
731                          * vma shrinks, and !insert tells it's not
732                          * split_vma inserting another: so it must be
733                          * mprotect case 4 shifting the boundary down.
734                          */
735                         adjust_next = - ((vma->vm_end - end) >> PAGE_SHIFT);
736                         exporter = vma;
737                         importer = next;
738                 }
739
740                 /*
741                  * Easily overlooked: when mprotect shifts the boundary,
742                  * make sure the expanding vma has anon_vma set if the
743                  * shrinking vma had, to cover any anon pages imported.
744                  */
745                 if (exporter && exporter->anon_vma && !importer->anon_vma) {
746                         if (anon_vma_clone(importer, exporter))
747                                 return -ENOMEM;
748                         importer->anon_vma = exporter->anon_vma;
749                 }
750         }
751
752         if (file) {
753                 mapping = file->f_mapping;
754                 if (!(vma->vm_flags & VM_NONLINEAR)) {
755                         root = &mapping->i_mmap;
756                         uprobe_munmap(vma, vma->vm_start, vma->vm_end);
757
758                         if (adjust_next)
759                                 uprobe_munmap(next, next->vm_start,
760                                                         next->vm_end);
761                 }
762
763                 mutex_lock(&mapping->i_mmap_mutex);
764                 if (insert) {
765                         /*
766                          * Put into interval tree now, so instantiated pages
767                          * are visible to arm/parisc __flush_dcache_page
768                          * throughout; but we cannot insert into address
769                          * space until vma start or end is updated.
770                          */
771                         __vma_link_file(insert);
772                 }
773         }
774
775         vma_adjust_trans_huge(vma, start, end, adjust_next);
776
777         anon_vma = vma->anon_vma;
778         if (!anon_vma && adjust_next)
779                 anon_vma = next->anon_vma;
780         if (anon_vma) {
781                 VM_BUG_ON(adjust_next && next->anon_vma &&
782                           anon_vma != next->anon_vma);
783                 anon_vma_lock_write(anon_vma);
784                 anon_vma_interval_tree_pre_update_vma(vma);
785                 if (adjust_next)
786                         anon_vma_interval_tree_pre_update_vma(next);
787         }
788
789         if (root) {
790                 flush_dcache_mmap_lock(mapping);
791                 vma_interval_tree_remove(vma, root);
792                 if (adjust_next)
793                         vma_interval_tree_remove(next, root);
794         }
795
796         if (start != vma->vm_start) {
797                 vma->vm_start = start;
798                 start_changed = true;
799         }
800         if (end != vma->vm_end) {
801                 vma->vm_end = end;
802                 end_changed = true;
803         }
804         vma->vm_pgoff = pgoff;
805         if (adjust_next) {
806                 next->vm_start += adjust_next << PAGE_SHIFT;
807                 next->vm_pgoff += adjust_next;
808         }
809
810         if (root) {
811                 if (adjust_next)
812                         vma_interval_tree_insert(next, root);
813                 vma_interval_tree_insert(vma, root);
814                 flush_dcache_mmap_unlock(mapping);
815         }
816
817         if (remove_next) {
818                 /*
819                  * vma_merge has merged next into vma, and needs
820                  * us to remove next before dropping the locks.
821                  */
822                 __vma_unlink(mm, next, vma);
823                 if (file)
824                         __remove_shared_vm_struct(next, file, mapping);
825         } else if (insert) {
826                 /*
827                  * split_vma has split insert from vma, and needs
828                  * us to insert it before dropping the locks
829                  * (it may either follow vma or precede it).
830                  */
831                 __insert_vm_struct(mm, insert);
832         } else {
833                 if (start_changed)
834                         vma_gap_update(vma);
835                 if (end_changed) {
836                         if (!next)
837                                 mm->highest_vm_end = end;
838                         else if (!adjust_next)
839                                 vma_gap_update(next);
840                 }
841         }
842
843         if (anon_vma) {
844                 anon_vma_interval_tree_post_update_vma(vma);
845                 if (adjust_next)
846                         anon_vma_interval_tree_post_update_vma(next);
847                 anon_vma_unlock_write(anon_vma);
848         }
849         if (mapping)
850                 mutex_unlock(&mapping->i_mmap_mutex);
851
852         if (root) {
853                 uprobe_mmap(vma);
854
855                 if (adjust_next)
856                         uprobe_mmap(next);
857         }
858
859         if (remove_next) {
860                 if (file) {
861                         uprobe_munmap(next, next->vm_start, next->vm_end);
862                         fput(file);
863                 }
864                 if (next->anon_vma)
865                         anon_vma_merge(vma, next);
866                 mm->map_count--;
867                 mpol_put(vma_policy(next));
868                 kmem_cache_free(vm_area_cachep, next);
869                 /*
870                  * In mprotect's case 6 (see comments on vma_merge),
871                  * we must remove another next too. It would clutter
872                  * up the code too much to do both in one go.
873                  */
874                 next = vma->vm_next;
875                 if (remove_next == 2)
876                         goto again;
877                 else if (next)
878                         vma_gap_update(next);
879                 else
880                         mm->highest_vm_end = end;
881         }
882         if (insert && file)
883                 uprobe_mmap(insert);
884
885         validate_mm(mm);
886
887         return 0;
888 }
889
890 /*
891  * If the vma has a ->close operation then the driver probably needs to release
892  * per-vma resources, so we don't attempt to merge those.
893  */
894 static inline int is_mergeable_vma(struct vm_area_struct *vma,
895                         struct file *file, unsigned long vm_flags)
896 {
897         if (vma->vm_flags ^ vm_flags)
898                 return 0;
899         if (vma->vm_file != file)
900                 return 0;
901         if (vma->vm_ops && vma->vm_ops->close)
902                 return 0;
903         return 1;
904 }
905
906 static inline int is_mergeable_anon_vma(struct anon_vma *anon_vma1,
907                                         struct anon_vma *anon_vma2,
908                                         struct vm_area_struct *vma)
909 {
910         /*
911          * The list_is_singular() test is to avoid merging VMA cloned from
912          * parents. This can improve scalability caused by anon_vma lock.
913          */
914         if ((!anon_vma1 || !anon_vma2) && (!vma ||
915                 list_is_singular(&vma->anon_vma_chain)))
916                 return 1;
917         return anon_vma1 == anon_vma2;
918 }
919
920 /*
921  * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
922  * in front of (at a lower virtual address and file offset than) the vma.
923  *
924  * We cannot merge two vmas if they have differently assigned (non-NULL)
925  * anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
926  *
927  * We don't check here for the merged mmap wrapping around the end of pagecache
928  * indices (16TB on ia32) because do_mmap_pgoff() does not permit mmap's which
929  * wrap, nor mmaps which cover the final page at index -1UL.
930  */
931 static int
932 can_vma_merge_before(struct vm_area_struct *vma, unsigned long vm_flags,
933         struct anon_vma *anon_vma, struct file *file, pgoff_t vm_pgoff)
934 {
935         if (is_mergeable_vma(vma, file, vm_flags) &&
936             is_mergeable_anon_vma(anon_vma, vma->anon_vma, vma)) {
937                 if (vma->vm_pgoff == vm_pgoff)
938                         return 1;
939         }
940         return 0;
941 }
942
943 /*
944  * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
945  * beyond (at a higher virtual address and file offset than) the vma.
946  *
947  * We cannot merge two vmas if they have differently assigned (non-NULL)
948  * anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
949  */
950 static int
951 can_vma_merge_after(struct vm_area_struct *vma, unsigned long vm_flags,
952         struct anon_vma *anon_vma, struct file *file, pgoff_t vm_pgoff)
953 {
954         if (is_mergeable_vma(vma, file, vm_flags) &&
955             is_mergeable_anon_vma(anon_vma, vma->anon_vma, vma)) {
956                 pgoff_t vm_pglen;
957                 vm_pglen = vma_pages(vma);
958                 if (vma->vm_pgoff + vm_pglen == vm_pgoff)
959                         return 1;
960         }
961         return 0;
962 }
963
964 /*
965  * Given a mapping request (addr,end,vm_flags,file,pgoff), figure out
966  * whether that can be merged with its predecessor or its successor.
967  * Or both (it neatly fills a hole).
968  *
969  * In most cases - when called for mmap, brk or mremap - [addr,end) is
970  * certain not to be mapped by the time vma_merge is called; but when
971  * called for mprotect, it is certain to be already mapped (either at
972  * an offset within prev, or at the start of next), and the flags of
973  * this area are about to be changed to vm_flags - and the no-change
974  * case has already been eliminated.
975  *
976  * The following mprotect cases have to be considered, where AAAA is
977  * the area passed down from mprotect_fixup, never extending beyond one
978  * vma, PPPPPP is the prev vma specified, and NNNNNN the next vma after:
979  *
980  *     AAAA             AAAA                AAAA          AAAA
981  *    PPPPPPNNNNNN    PPPPPPNNNNNN    PPPPPPNNNNNN    PPPPNNNNXXXX
982  *    cannot merge    might become    might become    might become
983  *                    PPNNNNNNNNNN    PPPPPPPPPPNN    PPPPPPPPPPPP 6 or
984  *    mmap, brk or    case 4 below    case 5 below    PPPPPPPPXXXX 7 or
985  *    mremap move:                                    PPPPNNNNNNNN 8
986  *        AAAA
987  *    PPPP    NNNN    PPPPPPPPPPPP    PPPPPPPPNNNN    PPPPNNNNNNNN
988  *    might become    case 1 below    case 2 below    case 3 below
989  *
990  * Odd one out? Case 8, because it extends NNNN but needs flags of XXXX:
991  * mprotect_fixup updates vm_flags & vm_page_prot on successful return.
992  */
993 struct vm_area_struct *vma_merge(struct mm_struct *mm,
994                         struct vm_area_struct *prev, unsigned long addr,
995                         unsigned long end, unsigned long vm_flags,
996                         struct anon_vma *anon_vma, struct file *file,
997                         pgoff_t pgoff, struct mempolicy *policy)
998 {
999         pgoff_t pglen = (end - addr) >> PAGE_SHIFT;
1000         struct vm_area_struct *area, *next;
1001         int err;
1002
1003         /*
1004          * We later require that vma->vm_flags == vm_flags,
1005          * so this tests vma->vm_flags & VM_SPECIAL, too.
1006          */
1007         if (vm_flags & VM_SPECIAL)
1008                 return NULL;
1009
1010         if (prev)
1011                 next = prev->vm_next;
1012         else
1013                 next = mm->mmap;
1014         area = next;
1015         if (next && next->vm_end == end)                /* cases 6, 7, 8 */
1016                 next = next->vm_next;
1017
1018         /*
1019          * Can it merge with the predecessor?
1020          */
1021         if (prev && prev->vm_end == addr &&
1022                         mpol_equal(vma_policy(prev), policy) &&
1023                         can_vma_merge_after(prev, vm_flags,
1024                                                 anon_vma, file, pgoff)) {
1025                 /*
1026                  * OK, it can.  Can we now merge in the successor as well?
1027                  */
1028                 if (next && end == next->vm_start &&
1029                                 mpol_equal(policy, vma_policy(next)) &&
1030                                 can_vma_merge_before(next, vm_flags,
1031                                         anon_vma, file, pgoff+pglen) &&
1032                                 is_mergeable_anon_vma(prev->anon_vma,
1033                                                       next->anon_vma, NULL)) {
1034                                                         /* cases 1, 6 */
1035                         err = vma_adjust(prev, prev->vm_start,
1036                                 next->vm_end, prev->vm_pgoff, NULL);
1037                 } else                                  /* cases 2, 5, 7 */
1038                         err = vma_adjust(prev, prev->vm_start,
1039                                 end, prev->vm_pgoff, NULL);
1040                 if (err)
1041                         return NULL;
1042                 khugepaged_enter_vma_merge(prev);
1043                 return prev;
1044         }
1045
1046         /*
1047          * Can this new request be merged in front of next?
1048          */
1049         if (next && end == next->vm_start &&
1050                         mpol_equal(policy, vma_policy(next)) &&
1051                         can_vma_merge_before(next, vm_flags,
1052                                         anon_vma, file, pgoff+pglen)) {
1053                 if (prev && addr < prev->vm_end)        /* case 4 */
1054                         err = vma_adjust(prev, prev->vm_start,
1055                                 addr, prev->vm_pgoff, NULL);
1056                 else                                    /* cases 3, 8 */
1057                         err = vma_adjust(area, addr, next->vm_end,
1058                                 next->vm_pgoff - pglen, NULL);
1059                 if (err)
1060                         return NULL;
1061                 khugepaged_enter_vma_merge(area);
1062                 return area;
1063         }
1064
1065         return NULL;
1066 }
1067
1068 /*
1069  * Rough compatbility check to quickly see if it's even worth looking
1070  * at sharing an anon_vma.
1071  *
1072  * They need to have the same vm_file, and the flags can only differ
1073  * in things that mprotect may change.
1074  *
1075  * NOTE! The fact that we share an anon_vma doesn't _have_ to mean that
1076  * we can merge the two vma's. For example, we refuse to merge a vma if
1077  * there is a vm_ops->close() function, because that indicates that the
1078  * driver is doing some kind of reference counting. But that doesn't
1079  * really matter for the anon_vma sharing case.
1080  */
1081 static int anon_vma_compatible(struct vm_area_struct *a, struct vm_area_struct *b)
1082 {
1083         return a->vm_end == b->vm_start &&
1084                 mpol_equal(vma_policy(a), vma_policy(b)) &&
1085                 a->vm_file == b->vm_file &&
1086                 !((a->vm_flags ^ b->vm_flags) & ~(VM_READ|VM_WRITE|VM_EXEC)) &&
1087                 b->vm_pgoff == a->vm_pgoff + ((b->vm_start - a->vm_start) >> PAGE_SHIFT);
1088 }
1089
1090 /*
1091  * Do some basic sanity checking to see if we can re-use the anon_vma
1092  * from 'old'. The 'a'/'b' vma's are in VM order - one of them will be
1093  * the same as 'old', the other will be the new one that is trying
1094  * to share the anon_vma.
1095  *
1096  * NOTE! This runs with mm_sem held for reading, so it is possible that
1097  * the anon_vma of 'old' is concurrently in the process of being set up
1098  * by another page fault trying to merge _that_. But that's ok: if it
1099  * is being set up, that automatically means that it will be a singleton
1100  * acceptable for merging, so we can do all of this optimistically. But
1101  * we do that ACCESS_ONCE() to make sure that we never re-load the pointer.
1102  *
1103  * IOW: that the "list_is_singular()" test on the anon_vma_chain only
1104  * matters for the 'stable anon_vma' case (ie the thing we want to avoid
1105  * is to return an anon_vma that is "complex" due to having gone through
1106  * a fork).
1107  *
1108  * We also make sure that the two vma's are compatible (adjacent,
1109  * and with the same memory policies). That's all stable, even with just
1110  * a read lock on the mm_sem.
1111  */
1112 static struct anon_vma *reusable_anon_vma(struct vm_area_struct *old, struct vm_area_struct *a, struct vm_area_struct *b)
1113 {
1114         if (anon_vma_compatible(a, b)) {
1115                 struct anon_vma *anon_vma = ACCESS_ONCE(old->anon_vma);
1116
1117                 if (anon_vma && list_is_singular(&old->anon_vma_chain))
1118                         return anon_vma;
1119         }
1120         return NULL;
1121 }
1122
1123 /*
1124  * find_mergeable_anon_vma is used by anon_vma_prepare, to check
1125  * neighbouring vmas for a suitable anon_vma, before it goes off
1126  * to allocate a new anon_vma.  It checks because a repetitive
1127  * sequence of mprotects and faults may otherwise lead to distinct
1128  * anon_vmas being allocated, preventing vma merge in subsequent
1129  * mprotect.
1130  */
1131 struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *vma)
1132 {
1133         struct anon_vma *anon_vma;
1134         struct vm_area_struct *near;
1135
1136         near = vma->vm_next;
1137         if (!near)
1138                 goto try_prev;
1139
1140         anon_vma = reusable_anon_vma(near, vma, near);
1141         if (anon_vma)
1142                 return anon_vma;
1143 try_prev:
1144         near = vma->vm_prev;
1145         if (!near)
1146                 goto none;
1147
1148         anon_vma = reusable_anon_vma(near, near, vma);
1149         if (anon_vma)
1150                 return anon_vma;
1151 none:
1152         /*
1153          * There's no absolute need to look only at touching neighbours:
1154          * we could search further afield for "compatible" anon_vmas.
1155          * But it would probably just be a waste of time searching,
1156          * or lead to too many vmas hanging off the same anon_vma.
1157          * We're trying to allow mprotect remerging later on,
1158          * not trying to minimize memory used for anon_vmas.
1159          */
1160         return NULL;
1161 }
1162
1163 #ifdef CONFIG_PROC_FS
1164 void vm_stat_account(struct mm_struct *mm, unsigned long flags,
1165                                                 struct file *file, long pages)
1166 {
1167         const unsigned long stack_flags
1168                 = VM_STACK_FLAGS & (VM_GROWSUP|VM_GROWSDOWN);
1169
1170         mm->total_vm += pages;
1171
1172         if (file) {
1173                 mm->shared_vm += pages;
1174                 if ((flags & (VM_EXEC|VM_WRITE)) == VM_EXEC)
1175                         mm->exec_vm += pages;
1176         } else if (flags & stack_flags)
1177                 mm->stack_vm += pages;
1178 }
1179 #endif /* CONFIG_PROC_FS */
1180
1181 /*
1182  * If a hint addr is less than mmap_min_addr change hint to be as
1183  * low as possible but still greater than mmap_min_addr
1184  */
1185 static inline unsigned long round_hint_to_min(unsigned long hint)
1186 {
1187         hint &= PAGE_MASK;
1188         if (((void *)hint != NULL) &&
1189             (hint < mmap_min_addr))
1190                 return PAGE_ALIGN(mmap_min_addr);
1191         return hint;
1192 }
1193
1194 static inline int mlock_future_check(struct mm_struct *mm,
1195                                      unsigned long flags,
1196                                      unsigned long len)
1197 {
1198         unsigned long locked, lock_limit;
1199
1200         /*  mlock MCL_FUTURE? */
1201         if (flags & VM_LOCKED) {
1202                 locked = len >> PAGE_SHIFT;
1203                 locked += mm->locked_vm;
1204                 lock_limit = rlimit(RLIMIT_MEMLOCK);
1205                 lock_limit >>= PAGE_SHIFT;
1206                 if (locked > lock_limit && !capable(CAP_IPC_LOCK))
1207                         return -EAGAIN;
1208         }
1209         return 0;
1210 }
1211
1212 /*
1213  * The caller must hold down_write(&current->mm->mmap_sem).
1214  */
1215
1216 unsigned long do_mmap_pgoff(struct file *file, unsigned long addr,
1217                         unsigned long len, unsigned long prot,
1218                         unsigned long flags, unsigned long pgoff,
1219                         unsigned long *populate)
1220 {
1221         struct mm_struct * mm = current->mm;
1222         vm_flags_t vm_flags;
1223
1224         *populate = 0;
1225
1226         /*
1227          * Does the application expect PROT_READ to imply PROT_EXEC?
1228          *
1229          * (the exception is when the underlying filesystem is noexec
1230          *  mounted, in which case we dont add PROT_EXEC.)
1231          */
1232         if ((prot & PROT_READ) && (current->personality & READ_IMPLIES_EXEC))
1233                 if (!(file && (file->f_path.mnt->mnt_flags & MNT_NOEXEC)))
1234                         prot |= PROT_EXEC;
1235
1236         if (!len)
1237                 return -EINVAL;
1238
1239         if (!(flags & MAP_FIXED))
1240                 addr = round_hint_to_min(addr);
1241
1242         /* Careful about overflows.. */
1243         len = PAGE_ALIGN(len);
1244         if (!len)
1245                 return -ENOMEM;
1246
1247         /* offset overflow? */
1248         if ((pgoff + (len >> PAGE_SHIFT)) < pgoff)
1249                return -EOVERFLOW;
1250
1251         /* Too many mappings? */
1252         if (mm->map_count > sysctl_max_map_count)
1253                 return -ENOMEM;
1254
1255         /* Obtain the address to map to. we verify (or select) it and ensure
1256          * that it represents a valid section of the address space.
1257          */
1258         addr = get_unmapped_area(file, addr, len, pgoff, flags);
1259         if (addr & ~PAGE_MASK)
1260                 return addr;
1261
1262         /* Do simple checking here so the lower-level routines won't have
1263          * to. we assume access permissions have been handled by the open
1264          * of the memory object, so we don't do any here.
1265          */
1266         vm_flags = calc_vm_prot_bits(prot) | calc_vm_flag_bits(flags) |
1267                         mm->def_flags | VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC;
1268
1269         if (flags & MAP_LOCKED)
1270                 if (!can_do_mlock())
1271                         return -EPERM;
1272
1273         if (mlock_future_check(mm, vm_flags, len))
1274                 return -EAGAIN;
1275
1276         if (file) {
1277                 struct inode *inode = file_inode(file);
1278
1279                 switch (flags & MAP_TYPE) {
1280                 case MAP_SHARED:
1281                         if ((prot&PROT_WRITE) && !(file->f_mode&FMODE_WRITE))
1282                                 return -EACCES;
1283
1284                         /*
1285                          * Make sure we don't allow writing to an append-only
1286                          * file..
1287                          */
1288                         if (IS_APPEND(inode) && (file->f_mode & FMODE_WRITE))
1289                                 return -EACCES;
1290
1291                         /*
1292                          * Make sure there are no mandatory locks on the file.
1293                          */
1294                         if (locks_verify_locked(inode))
1295                                 return -EAGAIN;
1296
1297                         vm_flags |= VM_SHARED | VM_MAYSHARE;
1298                         if (!(file->f_mode & FMODE_WRITE))
1299                                 vm_flags &= ~(VM_MAYWRITE | VM_SHARED);
1300
1301                         /* fall through */
1302                 case MAP_PRIVATE:
1303                         if (!(file->f_mode & FMODE_READ))
1304                                 return -EACCES;
1305                         if (file->f_path.mnt->mnt_flags & MNT_NOEXEC) {
1306                                 if (vm_flags & VM_EXEC)
1307                                         return -EPERM;
1308                                 vm_flags &= ~VM_MAYEXEC;
1309                         }
1310
1311                         if (!file->f_op->mmap)
1312                                 return -ENODEV;
1313                         if (vm_flags & (VM_GROWSDOWN|VM_GROWSUP))
1314                                 return -EINVAL;
1315                         break;
1316
1317                 default:
1318                         return -EINVAL;
1319                 }
1320         } else {
1321                 switch (flags & MAP_TYPE) {
1322                 case MAP_SHARED:
1323                         if (vm_flags & (VM_GROWSDOWN|VM_GROWSUP))
1324                                 return -EINVAL;
1325                         /*
1326                          * Ignore pgoff.
1327                          */
1328                         pgoff = 0;
1329                         vm_flags |= VM_SHARED | VM_MAYSHARE;
1330                         break;
1331                 case MAP_PRIVATE:
1332                         /*
1333                          * Set pgoff according to addr for anon_vma.
1334                          */
1335                         pgoff = addr >> PAGE_SHIFT;
1336                         break;
1337                 default:
1338                         return -EINVAL;
1339                 }
1340         }
1341
1342         /*
1343          * Set 'VM_NORESERVE' if we should not account for the
1344          * memory use of this mapping.
1345          */
1346         if (flags & MAP_NORESERVE) {
1347                 /* We honor MAP_NORESERVE if allowed to overcommit */
1348                 if (sysctl_overcommit_memory != OVERCOMMIT_NEVER)
1349                         vm_flags |= VM_NORESERVE;
1350
1351                 /* hugetlb applies strict overcommit unless MAP_NORESERVE */
1352                 if (file && is_file_hugepages(file))
1353                         vm_flags |= VM_NORESERVE;
1354         }
1355
1356         addr = mmap_region(file, addr, len, vm_flags, pgoff);
1357         if (!IS_ERR_VALUE(addr) &&
1358             ((vm_flags & VM_LOCKED) ||
1359              (flags & (MAP_POPULATE | MAP_NONBLOCK)) == MAP_POPULATE))
1360                 *populate = len;
1361         return addr;
1362 }
1363
1364 SYSCALL_DEFINE6(mmap_pgoff, unsigned long, addr, unsigned long, len,
1365                 unsigned long, prot, unsigned long, flags,
1366                 unsigned long, fd, unsigned long, pgoff)
1367 {
1368         struct file *file = NULL;
1369         unsigned long retval = -EBADF;
1370
1371         if (!(flags & MAP_ANONYMOUS)) {
1372                 audit_mmap_fd(fd, flags);
1373                 file = fget(fd);
1374                 if (!file)
1375                         goto out;
1376                 if (is_file_hugepages(file))
1377                         len = ALIGN(len, huge_page_size(hstate_file(file)));
1378                 retval = -EINVAL;
1379                 if (unlikely(flags & MAP_HUGETLB && !is_file_hugepages(file)))
1380                         goto out_fput;
1381         } else if (flags & MAP_HUGETLB) {
1382                 struct user_struct *user = NULL;
1383                 struct hstate *hs;
1384
1385                 hs = hstate_sizelog((flags >> MAP_HUGE_SHIFT) & SHM_HUGE_MASK);
1386                 if (!hs)
1387                         return -EINVAL;
1388
1389                 len = ALIGN(len, huge_page_size(hs));
1390                 /*
1391                  * VM_NORESERVE is used because the reservations will be
1392                  * taken when vm_ops->mmap() is called
1393                  * A dummy user value is used because we are not locking
1394                  * memory so no accounting is necessary
1395                  */
1396                 file = hugetlb_file_setup(HUGETLB_ANON_FILE, len,
1397                                 VM_NORESERVE,
1398                                 &user, HUGETLB_ANONHUGE_INODE,
1399                                 (flags >> MAP_HUGE_SHIFT) & MAP_HUGE_MASK);
1400                 if (IS_ERR(file))
1401                         return PTR_ERR(file);
1402         }
1403
1404         flags &= ~(MAP_EXECUTABLE | MAP_DENYWRITE);
1405
1406         retval = vm_mmap_pgoff(file, addr, len, prot, flags, pgoff);
1407 out_fput:
1408         if (file)
1409                 fput(file);
1410 out:
1411         return retval;
1412 }
1413
1414 #ifdef __ARCH_WANT_SYS_OLD_MMAP
1415 struct mmap_arg_struct {
1416         unsigned long addr;
1417         unsigned long len;
1418         unsigned long prot;
1419         unsigned long flags;
1420         unsigned long fd;
1421         unsigned long offset;
1422 };
1423
1424 SYSCALL_DEFINE1(old_mmap, struct mmap_arg_struct __user *, arg)
1425 {
1426         struct mmap_arg_struct a;
1427
1428         if (copy_from_user(&a, arg, sizeof(a)))
1429                 return -EFAULT;
1430         if (a.offset & ~PAGE_MASK)
1431                 return -EINVAL;
1432
1433         return sys_mmap_pgoff(a.addr, a.len, a.prot, a.flags, a.fd,
1434                               a.offset >> PAGE_SHIFT);
1435 }
1436 #endif /* __ARCH_WANT_SYS_OLD_MMAP */
1437
1438 /*
1439  * Some shared mappigns will want the pages marked read-only
1440  * to track write events. If so, we'll downgrade vm_page_prot
1441  * to the private version (using protection_map[] without the
1442  * VM_SHARED bit).
1443  */
1444 int vma_wants_writenotify(struct vm_area_struct *vma)
1445 {
1446         vm_flags_t vm_flags = vma->vm_flags;
1447
1448         /* If it was private or non-writable, the write bit is already clear */
1449         if ((vm_flags & (VM_WRITE|VM_SHARED)) != ((VM_WRITE|VM_SHARED)))
1450                 return 0;
1451
1452         /* The backer wishes to know when pages are first written to? */
1453         if (vma->vm_ops && vma->vm_ops->page_mkwrite)
1454                 return 1;
1455
1456         /* The open routine did something to the protections already? */
1457         if (pgprot_val(vma->vm_page_prot) !=
1458             pgprot_val(vm_get_page_prot(vm_flags)))
1459                 return 0;
1460
1461         /* Specialty mapping? */
1462         if (vm_flags & VM_PFNMAP)
1463                 return 0;
1464
1465         /* Can the mapping track the dirty pages? */
1466         return vma->vm_file && vma->vm_file->f_mapping &&
1467                 mapping_cap_account_dirty(vma->vm_file->f_mapping);
1468 }
1469
1470 /*
1471  * We account for memory if it's a private writeable mapping,
1472  * not hugepages and VM_NORESERVE wasn't set.
1473  */
1474 static inline int accountable_mapping(struct file *file, vm_flags_t vm_flags)
1475 {
1476         /*
1477          * hugetlb has its own accounting separate from the core VM
1478          * VM_HUGETLB may not be set yet so we cannot check for that flag.
1479          */
1480         if (file && is_file_hugepages(file))
1481                 return 0;
1482
1483         return (vm_flags & (VM_NORESERVE | VM_SHARED | VM_WRITE)) == VM_WRITE;
1484 }
1485
1486 unsigned long mmap_region(struct file *file, unsigned long addr,
1487                 unsigned long len, vm_flags_t vm_flags, unsigned long pgoff)
1488 {
1489         struct mm_struct *mm = current->mm;
1490         struct vm_area_struct *vma, *prev;
1491         int error;
1492         struct rb_node **rb_link, *rb_parent;
1493         unsigned long charged = 0;
1494
1495         /* Check against address space limit. */
1496         if (!may_expand_vm(mm, len >> PAGE_SHIFT)) {
1497                 unsigned long nr_pages;
1498
1499                 /*
1500                  * MAP_FIXED may remove pages of mappings that intersects with
1501                  * requested mapping. Account for the pages it would unmap.
1502                  */
1503                 if (!(vm_flags & MAP_FIXED))
1504                         return -ENOMEM;
1505
1506                 nr_pages = count_vma_pages_range(mm, addr, addr + len);
1507
1508                 if (!may_expand_vm(mm, (len >> PAGE_SHIFT) - nr_pages))
1509                         return -ENOMEM;
1510         }
1511
1512         /* Clear old maps */
1513         error = -ENOMEM;
1514 munmap_back:
1515         if (find_vma_links(mm, addr, addr + len, &prev, &rb_link, &rb_parent)) {
1516                 if (do_munmap(mm, addr, len))
1517                         return -ENOMEM;
1518                 goto munmap_back;
1519         }
1520
1521         /*
1522          * Private writable mapping: check memory availability
1523          */
1524         if (accountable_mapping(file, vm_flags)) {
1525                 charged = len >> PAGE_SHIFT;
1526                 if (security_vm_enough_memory_mm(mm, charged))
1527                         return -ENOMEM;
1528                 vm_flags |= VM_ACCOUNT;
1529         }
1530
1531         /*
1532          * Can we just expand an old mapping?
1533          */
1534         vma = vma_merge(mm, prev, addr, addr + len, vm_flags, NULL, file, pgoff, NULL);
1535         if (vma)
1536                 goto out;
1537
1538         /*
1539          * Determine the object being mapped and call the appropriate
1540          * specific mapper. the address has already been validated, but
1541          * not unmapped, but the maps are removed from the list.
1542          */
1543         vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
1544         if (!vma) {
1545                 error = -ENOMEM;
1546                 goto unacct_error;
1547         }
1548
1549         vma->vm_mm = mm;
1550         vma->vm_start = addr;
1551         vma->vm_end = addr + len;
1552         vma->vm_flags = vm_flags;
1553         vma->vm_page_prot = vm_get_page_prot(vm_flags);
1554         vma->vm_pgoff = pgoff;
1555         INIT_LIST_HEAD(&vma->anon_vma_chain);
1556
1557         if (file) {
1558                 if (vm_flags & VM_DENYWRITE) {
1559                         error = deny_write_access(file);
1560                         if (error)
1561                                 goto free_vma;
1562                 }
1563                 vma->vm_file = get_file(file);
1564                 error = file->f_op->mmap(file, vma);
1565                 if (error)
1566                         goto unmap_and_free_vma;
1567
1568                 /* Can addr have changed??
1569                  *
1570                  * Answer: Yes, several device drivers can do it in their
1571                  *         f_op->mmap method. -DaveM
1572                  * Bug: If addr is changed, prev, rb_link, rb_parent should
1573                  *      be updated for vma_link()
1574                  */
1575                 WARN_ON_ONCE(addr != vma->vm_start);
1576
1577                 addr = vma->vm_start;
1578                 vm_flags = vma->vm_flags;
1579         } else if (vm_flags & VM_SHARED) {
1580                 error = shmem_zero_setup(vma);
1581                 if (error)
1582                         goto free_vma;
1583         }
1584
1585         if (vma_wants_writenotify(vma)) {
1586                 pgprot_t pprot = vma->vm_page_prot;
1587
1588                 /* Can vma->vm_page_prot have changed??
1589                  *
1590                  * Answer: Yes, drivers may have changed it in their
1591                  *         f_op->mmap method.
1592                  *
1593                  * Ensures that vmas marked as uncached stay that way.
1594                  */
1595                 vma->vm_page_prot = vm_get_page_prot(vm_flags & ~VM_SHARED);
1596                 if (pgprot_val(pprot) == pgprot_val(pgprot_noncached(pprot)))
1597                         vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot);
1598         }
1599
1600         vma_link(mm, vma, prev, rb_link, rb_parent);
1601         /* Once vma denies write, undo our temporary denial count */
1602         if (vm_flags & VM_DENYWRITE)
1603                 allow_write_access(file);
1604         file = vma->vm_file;
1605 out:
1606         perf_event_mmap(vma);
1607
1608         vm_stat_account(mm, vm_flags, file, len >> PAGE_SHIFT);
1609         if (vm_flags & VM_LOCKED) {
1610                 if (!((vm_flags & VM_SPECIAL) || is_vm_hugetlb_page(vma) ||
1611                                         vma == get_gate_vma(current->mm)))
1612                         mm->locked_vm += (len >> PAGE_SHIFT);
1613                 else
1614                         vma->vm_flags &= ~VM_LOCKED;
1615         }
1616
1617         if (file)
1618                 uprobe_mmap(vma);
1619
1620         /*
1621          * New (or expanded) vma always get soft dirty status.
1622          * Otherwise user-space soft-dirty page tracker won't
1623          * be able to distinguish situation when vma area unmapped,
1624          * then new mapped in-place (which must be aimed as
1625          * a completely new data area).
1626          */
1627         vma->vm_flags |= VM_SOFTDIRTY;
1628
1629         return addr;
1630
1631 unmap_and_free_vma:
1632         if (vm_flags & VM_DENYWRITE)
1633                 allow_write_access(file);
1634         vma->vm_file = NULL;
1635         fput(file);
1636
1637         /* Undo any partial mapping done by a device driver. */
1638         unmap_region(mm, vma, prev, vma->vm_start, vma->vm_end);
1639         charged = 0;
1640 free_vma:
1641         kmem_cache_free(vm_area_cachep, vma);
1642 unacct_error:
1643         if (charged)
1644                 vm_unacct_memory(charged);
1645         return error;
1646 }
1647
1648 unsigned long unmapped_area(struct vm_unmapped_area_info *info)
1649 {
1650         /*
1651          * We implement the search by looking for an rbtree node that
1652          * immediately follows a suitable gap. That is,
1653          * - gap_start = vma->vm_prev->vm_end <= info->high_limit - length;
1654          * - gap_end   = vma->vm_start        >= info->low_limit  + length;
1655          * - gap_end - gap_start >= length
1656          */
1657
1658         struct mm_struct *mm = current->mm;
1659         struct vm_area_struct *vma;
1660         unsigned long length, low_limit, high_limit, gap_start, gap_end;
1661
1662         /* Adjust search length to account for worst case alignment overhead */
1663         length = info->length + info->align_mask;
1664         if (length < info->length)
1665                 return -ENOMEM;
1666
1667         /* Adjust search limits by the desired length */
1668         if (info->high_limit < length)
1669                 return -ENOMEM;
1670         high_limit = info->high_limit - length;
1671
1672         if (info->low_limit > high_limit)
1673                 return -ENOMEM;
1674         low_limit = info->low_limit + length;
1675
1676         /* Check if rbtree root looks promising */
1677         if (RB_EMPTY_ROOT(&mm->mm_rb))
1678                 goto check_highest;
1679         vma = rb_entry(mm->mm_rb.rb_node, struct vm_area_struct, vm_rb);
1680         if (vma->rb_subtree_gap < length)
1681                 goto check_highest;
1682
1683         while (true) {
1684                 /* Visit left subtree if it looks promising */
1685                 gap_end = vma->vm_start;
1686                 if (gap_end >= low_limit && vma->vm_rb.rb_left) {
1687                         struct vm_area_struct *left =
1688                                 rb_entry(vma->vm_rb.rb_left,
1689                                          struct vm_area_struct, vm_rb);
1690                         if (left->rb_subtree_gap >= length) {
1691                                 vma = left;
1692                                 continue;
1693                         }
1694                 }
1695
1696                 gap_start = vma->vm_prev ? vma->vm_prev->vm_end : 0;
1697 check_current:
1698                 /* Check if current node has a suitable gap */
1699                 if (gap_start > high_limit)
1700                         return -ENOMEM;
1701                 if (gap_end >= low_limit && gap_end - gap_start >= length)
1702                         goto found;
1703
1704                 /* Visit right subtree if it looks promising */
1705                 if (vma->vm_rb.rb_right) {
1706                         struct vm_area_struct *right =
1707                                 rb_entry(vma->vm_rb.rb_right,
1708                                          struct vm_area_struct, vm_rb);
1709                         if (right->rb_subtree_gap >= length) {
1710                                 vma = right;
1711                                 continue;
1712                         }
1713                 }
1714
1715                 /* Go back up the rbtree to find next candidate node */
1716                 while (true) {
1717                         struct rb_node *prev = &vma->vm_rb;
1718                         if (!rb_parent(prev))
1719                                 goto check_highest;
1720                         vma = rb_entry(rb_parent(prev),
1721                                        struct vm_area_struct, vm_rb);
1722                         if (prev == vma->vm_rb.rb_left) {
1723                                 gap_start = vma->vm_prev->vm_end;
1724                                 gap_end = vma->vm_start;
1725                                 goto check_current;
1726                         }
1727                 }
1728         }
1729
1730 check_highest:
1731         /* Check highest gap, which does not precede any rbtree node */
1732         gap_start = mm->highest_vm_end;
1733         gap_end = ULONG_MAX;  /* Only for VM_BUG_ON below */
1734         if (gap_start > high_limit)
1735                 return -ENOMEM;
1736
1737 found:
1738         /* We found a suitable gap. Clip it with the original low_limit. */
1739         if (gap_start < info->low_limit)
1740                 gap_start = info->low_limit;
1741
1742         /* Adjust gap address to the desired alignment */
1743         gap_start += (info->align_offset - gap_start) & info->align_mask;
1744
1745         VM_BUG_ON(gap_start + info->length > info->high_limit);
1746         VM_BUG_ON(gap_start + info->length > gap_end);
1747         return gap_start;
1748 }
1749
1750 unsigned long unmapped_area_topdown(struct vm_unmapped_area_info *info)
1751 {
1752         struct mm_struct *mm = current->mm;
1753         struct vm_area_struct *vma;
1754         unsigned long length, low_limit, high_limit, gap_start, gap_end;
1755
1756         /* Adjust search length to account for worst case alignment overhead */
1757         length = info->length + info->align_mask;
1758         if (length < info->length)
1759                 return -ENOMEM;
1760
1761         /*
1762          * Adjust search limits by the desired length.
1763          * See implementation comment at top of unmapped_area().
1764          */
1765         gap_end = info->high_limit;
1766         if (gap_end < length)
1767                 return -ENOMEM;
1768         high_limit = gap_end - length;
1769
1770         if (info->low_limit > high_limit)
1771                 return -ENOMEM;
1772         low_limit = info->low_limit + length;
1773
1774         /* Check highest gap, which does not precede any rbtree node */
1775         gap_start = mm->highest_vm_end;
1776         if (gap_start <= high_limit)
1777                 goto found_highest;
1778
1779         /* Check if rbtree root looks promising */
1780         if (RB_EMPTY_ROOT(&mm->mm_rb))
1781                 return -ENOMEM;
1782         vma = rb_entry(mm->mm_rb.rb_node, struct vm_area_struct, vm_rb);
1783         if (vma->rb_subtree_gap < length)
1784                 return -ENOMEM;
1785
1786         while (true) {
1787                 /* Visit right subtree if it looks promising */
1788                 gap_start = vma->vm_prev ? vma->vm_prev->vm_end : 0;
1789                 if (gap_start <= high_limit && vma->vm_rb.rb_right) {
1790                         struct vm_area_struct *right =
1791                                 rb_entry(vma->vm_rb.rb_right,
1792                                          struct vm_area_struct, vm_rb);
1793                         if (right->rb_subtree_gap >= length) {
1794                                 vma = right;
1795                                 continue;
1796                         }
1797                 }
1798
1799 check_current:
1800                 /* Check if current node has a suitable gap */
1801                 gap_end = vma->vm_start;
1802                 if (gap_end < low_limit)
1803                         return -ENOMEM;
1804                 if (gap_start <= high_limit && gap_end - gap_start >= length)
1805                         goto found;
1806
1807                 /* Visit left subtree if it looks promising */
1808                 if (vma->vm_rb.rb_left) {
1809                         struct vm_area_struct *left =
1810                                 rb_entry(vma->vm_rb.rb_left,
1811                                          struct vm_area_struct, vm_rb);
1812                         if (left->rb_subtree_gap >= length) {
1813                                 vma = left;
1814                                 continue;
1815                         }
1816                 }
1817
1818                 /* Go back up the rbtree to find next candidate node */
1819                 while (true) {
1820                         struct rb_node *prev = &vma->vm_rb;
1821                         if (!rb_parent(prev))
1822                                 return -ENOMEM;
1823                         vma = rb_entry(rb_parent(prev),
1824                                        struct vm_area_struct, vm_rb);
1825                         if (prev == vma->vm_rb.rb_right) {
1826                                 gap_start = vma->vm_prev ?
1827                                         vma->vm_prev->vm_end : 0;
1828                                 goto check_current;
1829                         }
1830                 }
1831         }
1832
1833 found:
1834         /* We found a suitable gap. Clip it with the original high_limit. */
1835         if (gap_end > info->high_limit)
1836                 gap_end = info->high_limit;
1837
1838 found_highest:
1839         /* Compute highest gap address at the desired alignment */
1840         gap_end -= info->length;
1841         gap_end -= (gap_end - info->align_offset) & info->align_mask;
1842
1843         VM_BUG_ON(gap_end < info->low_limit);
1844         VM_BUG_ON(gap_end < gap_start);
1845         return gap_end;
1846 }
1847
1848 /* Get an address range which is currently unmapped.
1849  * For shmat() with addr=0.
1850  *
1851  * Ugly calling convention alert:
1852  * Return value with the low bits set means error value,
1853  * ie
1854  *      if (ret & ~PAGE_MASK)
1855  *              error = ret;
1856  *
1857  * This function "knows" that -ENOMEM has the bits set.
1858  */
1859 #ifndef HAVE_ARCH_UNMAPPED_AREA
1860 unsigned long
1861 arch_get_unmapped_area(struct file *filp, unsigned long addr,
1862                 unsigned long len, unsigned long pgoff, unsigned long flags)
1863 {
1864         struct mm_struct *mm = current->mm;
1865         struct vm_area_struct *vma;
1866         struct vm_unmapped_area_info info;
1867
1868         if (len > TASK_SIZE - mmap_min_addr)
1869                 return -ENOMEM;
1870
1871         if (flags & MAP_FIXED)
1872                 return addr;
1873
1874         if (addr) {
1875                 addr = PAGE_ALIGN(addr);
1876                 vma = find_vma(mm, addr);
1877                 if (TASK_SIZE - len >= addr && addr >= mmap_min_addr &&
1878                     (!vma || addr + len <= vma->vm_start))
1879                         return addr;
1880         }
1881
1882         info.flags = 0;
1883         info.length = len;
1884         info.low_limit = mm->mmap_base;
1885         info.high_limit = TASK_SIZE;
1886         info.align_mask = 0;
1887         return vm_unmapped_area(&info);
1888 }
1889 #endif  
1890
1891 /*
1892  * This mmap-allocator allocates new areas top-down from below the
1893  * stack's low limit (the base):
1894  */
1895 #ifndef HAVE_ARCH_UNMAPPED_AREA_TOPDOWN
1896 unsigned long
1897 arch_get_unmapped_area_topdown(struct file *filp, const unsigned long addr0,
1898                           const unsigned long len, const unsigned long pgoff,
1899                           const unsigned long flags)
1900 {
1901         struct vm_area_struct *vma;
1902         struct mm_struct *mm = current->mm;
1903         unsigned long addr = addr0;
1904         struct vm_unmapped_area_info info;
1905
1906         /* requested length too big for entire address space */
1907         if (len > TASK_SIZE - mmap_min_addr)
1908                 return -ENOMEM;
1909
1910         if (flags & MAP_FIXED)
1911                 return addr;
1912
1913         /* requesting a specific address */
1914         if (addr) {
1915                 addr = PAGE_ALIGN(addr);
1916                 vma = find_vma(mm, addr);
1917                 if (TASK_SIZE - len >= addr && addr >= mmap_min_addr &&
1918                                 (!vma || addr + len <= vma->vm_start))
1919                         return addr;
1920         }
1921
1922         info.flags = VM_UNMAPPED_AREA_TOPDOWN;
1923         info.length = len;
1924         info.low_limit = max(PAGE_SIZE, mmap_min_addr);
1925         info.high_limit = mm->mmap_base;
1926         info.align_mask = 0;
1927         addr = vm_unmapped_area(&info);
1928
1929         /*
1930          * A failed mmap() very likely causes application failure,
1931          * so fall back to the bottom-up function here. This scenario
1932          * can happen with large stack limits and large mmap()
1933          * allocations.
1934          */
1935         if (addr & ~PAGE_MASK) {
1936                 VM_BUG_ON(addr != -ENOMEM);
1937                 info.flags = 0;
1938                 info.low_limit = TASK_UNMAPPED_BASE;
1939                 info.high_limit = TASK_SIZE;
1940                 addr = vm_unmapped_area(&info);
1941         }
1942
1943         return addr;
1944 }
1945 #endif
1946
1947 unsigned long
1948 get_unmapped_area(struct file *file, unsigned long addr, unsigned long len,
1949                 unsigned long pgoff, unsigned long flags)
1950 {
1951         unsigned long (*get_area)(struct file *, unsigned long,
1952                                   unsigned long, unsigned long, unsigned long);
1953
1954         unsigned long error = arch_mmap_check(addr, len, flags);
1955         if (error)
1956                 return error;
1957
1958         /* Careful about overflows.. */
1959         if (len > TASK_SIZE)
1960                 return -ENOMEM;
1961
1962         get_area = current->mm->get_unmapped_area;
1963         if (file && file->f_op->get_unmapped_area)
1964                 get_area = file->f_op->get_unmapped_area;
1965         addr = get_area(file, addr, len, pgoff, flags);
1966         if (IS_ERR_VALUE(addr))
1967                 return addr;
1968
1969         if (addr > TASK_SIZE - len)
1970                 return -ENOMEM;
1971         if (addr & ~PAGE_MASK)
1972                 return -EINVAL;
1973
1974         addr = arch_rebalance_pgtables(addr, len);
1975         error = security_mmap_addr(addr);
1976         return error ? error : addr;
1977 }
1978
1979 EXPORT_SYMBOL(get_unmapped_area);
1980
1981 /* Look up the first VMA which satisfies  addr < vm_end,  NULL if none. */
1982 struct vm_area_struct *find_vma(struct mm_struct *mm, unsigned long addr)
1983 {
1984         struct vm_area_struct *vma = NULL;
1985
1986         /* Check the cache first. */
1987         /* (Cache hit rate is typically around 35%.) */
1988         vma = ACCESS_ONCE(mm->mmap_cache);
1989         if (!(vma && vma->vm_end > addr && vma->vm_start <= addr)) {
1990                 struct rb_node *rb_node;
1991
1992                 rb_node = mm->mm_rb.rb_node;
1993                 vma = NULL;
1994
1995                 while (rb_node) {
1996                         struct vm_area_struct *vma_tmp;
1997
1998                         vma_tmp = rb_entry(rb_node,
1999                                            struct vm_area_struct, vm_rb);
2000
2001                         if (vma_tmp->vm_end > addr) {
2002                                 vma = vma_tmp;
2003                                 if (vma_tmp->vm_start <= addr)
2004                                         break;
2005                                 rb_node = rb_node->rb_left;
2006                         } else
2007                                 rb_node = rb_node->rb_right;
2008                 }
2009                 if (vma)
2010                         mm->mmap_cache = vma;
2011         }
2012         return vma;
2013 }
2014
2015 EXPORT_SYMBOL(find_vma);
2016
2017 /*
2018  * Same as find_vma, but also return a pointer to the previous VMA in *pprev.
2019  */
2020 struct vm_area_struct *
2021 find_vma_prev(struct mm_struct *mm, unsigned long addr,
2022                         struct vm_area_struct **pprev)
2023 {
2024         struct vm_area_struct *vma;
2025
2026         vma = find_vma(mm, addr);
2027         if (vma) {
2028                 *pprev = vma->vm_prev;
2029         } else {
2030                 struct rb_node *rb_node = mm->mm_rb.rb_node;
2031                 *pprev = NULL;
2032                 while (rb_node) {
2033                         *pprev = rb_entry(rb_node, struct vm_area_struct, vm_rb);
2034                         rb_node = rb_node->rb_right;
2035                 }
2036         }
2037         return vma;
2038 }
2039
2040 /*
2041  * Verify that the stack growth is acceptable and
2042  * update accounting. This is shared with both the
2043  * grow-up and grow-down cases.
2044  */
2045 static int acct_stack_growth(struct vm_area_struct *vma, unsigned long size, unsigned long grow)
2046 {
2047         struct mm_struct *mm = vma->vm_mm;
2048         struct rlimit *rlim = current->signal->rlim;
2049         unsigned long new_start;
2050
2051         /* address space limit tests */
2052         if (!may_expand_vm(mm, grow))
2053                 return -ENOMEM;
2054
2055         /* Stack limit test */
2056         if (size > ACCESS_ONCE(rlim[RLIMIT_STACK].rlim_cur))
2057                 return -ENOMEM;
2058
2059         /* mlock limit tests */
2060         if (vma->vm_flags & VM_LOCKED) {
2061                 unsigned long locked;
2062                 unsigned long limit;
2063                 locked = mm->locked_vm + grow;
2064                 limit = ACCESS_ONCE(rlim[RLIMIT_MEMLOCK].rlim_cur);
2065                 limit >>= PAGE_SHIFT;
2066                 if (locked > limit && !capable(CAP_IPC_LOCK))
2067                         return -ENOMEM;
2068         }
2069
2070         /* Check to ensure the stack will not grow into a hugetlb-only region */
2071         new_start = (vma->vm_flags & VM_GROWSUP) ? vma->vm_start :
2072                         vma->vm_end - size;
2073         if (is_hugepage_only_range(vma->vm_mm, new_start, size))
2074                 return -EFAULT;
2075
2076         /*
2077          * Overcommit..  This must be the final test, as it will
2078          * update security statistics.
2079          */
2080         if (security_vm_enough_memory_mm(mm, grow))
2081                 return -ENOMEM;
2082
2083         /* Ok, everything looks good - let it rip */
2084         if (vma->vm_flags & VM_LOCKED)
2085                 mm->locked_vm += grow;
2086         vm_stat_account(mm, vma->vm_flags, vma->vm_file, grow);
2087         return 0;
2088 }
2089
2090 #if defined(CONFIG_STACK_GROWSUP) || defined(CONFIG_IA64)
2091 /*
2092  * PA-RISC uses this for its stack; IA64 for its Register Backing Store.
2093  * vma is the last one with address > vma->vm_end.  Have to extend vma.
2094  */
2095 int expand_upwards(struct vm_area_struct *vma, unsigned long address)
2096 {
2097         int error;
2098
2099         if (!(vma->vm_flags & VM_GROWSUP))
2100                 return -EFAULT;
2101
2102         /*
2103          * We must make sure the anon_vma is allocated
2104          * so that the anon_vma locking is not a noop.
2105          */
2106         if (unlikely(anon_vma_prepare(vma)))
2107                 return -ENOMEM;
2108         vma_lock_anon_vma(vma);
2109
2110         /*
2111          * vma->vm_start/vm_end cannot change under us because the caller
2112          * is required to hold the mmap_sem in read mode.  We need the
2113          * anon_vma lock to serialize against concurrent expand_stacks.
2114          * Also guard against wrapping around to address 0.
2115          */
2116         if (address < PAGE_ALIGN(address+4))
2117                 address = PAGE_ALIGN(address+4);
2118         else {
2119                 vma_unlock_anon_vma(vma);
2120                 return -ENOMEM;
2121         }
2122         error = 0;
2123
2124         /* Somebody else might have raced and expanded it already */
2125         if (address > vma->vm_end) {
2126                 unsigned long size, grow;
2127
2128                 size = address - vma->vm_start;
2129                 grow = (address - vma->vm_end) >> PAGE_SHIFT;
2130
2131                 error = -ENOMEM;
2132                 if (vma->vm_pgoff + (size >> PAGE_SHIFT) >= vma->vm_pgoff) {
2133                         error = acct_stack_growth(vma, size, grow);
2134                         if (!error) {
2135                                 /*
2136                                  * vma_gap_update() doesn't support concurrent
2137                                  * updates, but we only hold a shared mmap_sem
2138                                  * lock here, so we need to protect against
2139                                  * concurrent vma expansions.
2140                                  * vma_lock_anon_vma() doesn't help here, as
2141                                  * we don't guarantee that all growable vmas
2142                                  * in a mm share the same root anon vma.
2143                                  * So, we reuse mm->page_table_lock to guard
2144                                  * against concurrent vma expansions.
2145                                  */
2146                                 spin_lock(&vma->vm_mm->page_table_lock);
2147                                 anon_vma_interval_tree_pre_update_vma(vma);
2148                                 vma->vm_end = address;
2149                                 anon_vma_interval_tree_post_update_vma(vma);
2150                                 if (vma->vm_next)
2151                                         vma_gap_update(vma->vm_next);
2152                                 else
2153                                         vma->vm_mm->highest_vm_end = address;
2154                                 spin_unlock(&vma->vm_mm->page_table_lock);
2155
2156                                 perf_event_mmap(vma);
2157                         }
2158                 }
2159         }
2160         vma_unlock_anon_vma(vma);
2161         khugepaged_enter_vma_merge(vma);
2162         validate_mm(vma->vm_mm);
2163         return error;
2164 }
2165 #endif /* CONFIG_STACK_GROWSUP || CONFIG_IA64 */
2166
2167 /*
2168  * vma is the first one with address < vma->vm_start.  Have to extend vma.
2169  */
2170 int expand_downwards(struct vm_area_struct *vma,
2171                                    unsigned long address)
2172 {
2173         int error;
2174
2175         /*
2176          * We must make sure the anon_vma is allocated
2177          * so that the anon_vma locking is not a noop.
2178          */
2179         if (unlikely(anon_vma_prepare(vma)))
2180                 return -ENOMEM;
2181
2182         address &= PAGE_MASK;
2183         error = security_mmap_addr(address);
2184         if (error)
2185                 return error;
2186
2187         vma_lock_anon_vma(vma);
2188
2189         /*
2190          * vma->vm_start/vm_end cannot change under us because the caller
2191          * is required to hold the mmap_sem in read mode.  We need the
2192          * anon_vma lock to serialize against concurrent expand_stacks.
2193          */
2194
2195         /* Somebody else might have raced and expanded it already */
2196         if (address < vma->vm_start) {
2197                 unsigned long size, grow;
2198
2199                 size = vma->vm_end - address;
2200                 grow = (vma->vm_start - address) >> PAGE_SHIFT;
2201
2202                 error = -ENOMEM;
2203                 if (grow <= vma->vm_pgoff) {
2204                         error = acct_stack_growth(vma, size, grow);
2205                         if (!error) {
2206                                 /*
2207                                  * vma_gap_update() doesn't support concurrent
2208                                  * updates, but we only hold a shared mmap_sem
2209                                  * lock here, so we need to protect against
2210                                  * concurrent vma expansions.
2211                                  * vma_lock_anon_vma() doesn't help here, as
2212                                  * we don't guarantee that all growable vmas
2213                                  * in a mm share the same root anon vma.
2214                                  * So, we reuse mm->page_table_lock to guard
2215                                  * against concurrent vma expansions.
2216                                  */
2217                                 spin_lock(&vma->vm_mm->page_table_lock);
2218                                 anon_vma_interval_tree_pre_update_vma(vma);
2219                                 vma->vm_start = address;
2220                                 vma->vm_pgoff -= grow;
2221                                 anon_vma_interval_tree_post_update_vma(vma);
2222                                 vma_gap_update(vma);
2223                                 spin_unlock(&vma->vm_mm->page_table_lock);
2224
2225                                 perf_event_mmap(vma);
2226                         }
2227                 }
2228         }
2229         vma_unlock_anon_vma(vma);
2230         khugepaged_enter_vma_merge(vma);
2231         validate_mm(vma->vm_mm);
2232         return error;
2233 }
2234
2235 /*
2236  * Note how expand_stack() refuses to expand the stack all the way to
2237  * abut the next virtual mapping, *unless* that mapping itself is also
2238  * a stack mapping. We want to leave room for a guard page, after all
2239  * (the guard page itself is not added here, that is done by the
2240  * actual page faulting logic)
2241  *
2242  * This matches the behavior of the guard page logic (see mm/memory.c:
2243  * check_stack_guard_page()), which only allows the guard page to be
2244  * removed under these circumstances.
2245  */
2246 #ifdef CONFIG_STACK_GROWSUP
2247 int expand_stack(struct vm_area_struct *vma, unsigned long address)
2248 {
2249         struct vm_area_struct *next;
2250
2251         address &= PAGE_MASK;
2252         next = vma->vm_next;
2253         if (next && next->vm_start == address + PAGE_SIZE) {
2254                 if (!(next->vm_flags & VM_GROWSUP))
2255                         return -ENOMEM;
2256         }
2257         return expand_upwards(vma, address);
2258 }
2259
2260 struct vm_area_struct *
2261 find_extend_vma(struct mm_struct *mm, unsigned long addr)
2262 {
2263         struct vm_area_struct *vma, *prev;
2264
2265         addr &= PAGE_MASK;
2266         vma = find_vma_prev(mm, addr, &prev);
2267         if (vma && (vma->vm_start <= addr))
2268                 return vma;
2269         if (!prev || expand_stack(prev, addr))
2270                 return NULL;
2271         if (prev->vm_flags & VM_LOCKED)
2272                 __mlock_vma_pages_range(prev, addr, prev->vm_end, NULL);
2273         return prev;
2274 }
2275 #else
2276 int expand_stack(struct vm_area_struct *vma, unsigned long address)
2277 {
2278         struct vm_area_struct *prev;
2279
2280         address &= PAGE_MASK;
2281         prev = vma->vm_prev;
2282         if (prev && prev->vm_end == address) {
2283                 if (!(prev->vm_flags & VM_GROWSDOWN))
2284                         return -ENOMEM;
2285         }
2286         return expand_downwards(vma, address);
2287 }
2288
2289 struct vm_area_struct *
2290 find_extend_vma(struct mm_struct * mm, unsigned long addr)
2291 {
2292         struct vm_area_struct * vma;
2293         unsigned long start;
2294
2295         addr &= PAGE_MASK;
2296         vma = find_vma(mm,addr);
2297         if (!vma)
2298                 return NULL;
2299         if (vma->vm_start <= addr)
2300                 return vma;
2301         if (!(vma->vm_flags & VM_GROWSDOWN))
2302                 return NULL;
2303         start = vma->vm_start;
2304         if (expand_stack(vma, addr))
2305                 return NULL;
2306         if (vma->vm_flags & VM_LOCKED)
2307                 __mlock_vma_pages_range(vma, addr, start, NULL);
2308         return vma;
2309 }
2310 #endif
2311
2312 /*
2313  * Ok - we have the memory areas we should free on the vma list,
2314  * so release them, and do the vma updates.
2315  *
2316  * Called with the mm semaphore held.
2317  */
2318 static void remove_vma_list(struct mm_struct *mm, struct vm_area_struct *vma)
2319 {
2320         unsigned long nr_accounted = 0;
2321
2322         /* Update high watermark before we lower total_vm */
2323         update_hiwater_vm(mm);
2324         do {
2325                 long nrpages = vma_pages(vma);
2326
2327                 if (vma->vm_flags & VM_ACCOUNT)
2328                         nr_accounted += nrpages;
2329                 vm_stat_account(mm, vma->vm_flags, vma->vm_file, -nrpages);
2330                 vma = remove_vma(vma);
2331         } while (vma);
2332         vm_unacct_memory(nr_accounted);
2333         validate_mm(mm);
2334 }
2335
2336 /*
2337  * Get rid of page table information in the indicated region.
2338  *
2339  * Called with the mm semaphore held.
2340  */
2341 static void unmap_region(struct mm_struct *mm,
2342                 struct vm_area_struct *vma, struct vm_area_struct *prev,
2343                 unsigned long start, unsigned long end)
2344 {
2345         struct vm_area_struct *next = prev? prev->vm_next: mm->mmap;
2346         struct mmu_gather tlb;
2347
2348         lru_add_drain();
2349         tlb_gather_mmu(&tlb, mm, start, end);
2350         update_hiwater_rss(mm);
2351         unmap_vmas(&tlb, vma, start, end);
2352         free_pgtables(&tlb, vma, prev ? prev->vm_end : FIRST_USER_ADDRESS,
2353                                  next ? next->vm_start : USER_PGTABLES_CEILING);
2354         tlb_finish_mmu(&tlb, start, end);
2355 }
2356
2357 /*
2358  * Create a list of vma's touched by the unmap, removing them from the mm's
2359  * vma list as we go..
2360  */
2361 static void
2362 detach_vmas_to_be_unmapped(struct mm_struct *mm, struct vm_area_struct *vma,
2363         struct vm_area_struct *prev, unsigned long end)
2364 {
2365         struct vm_area_struct **insertion_point;
2366         struct vm_area_struct *tail_vma = NULL;
2367
2368         insertion_point = (prev ? &prev->vm_next : &mm->mmap);
2369         vma->vm_prev = NULL;
2370         do {
2371                 vma_rb_erase(vma, &mm->mm_rb);
2372                 mm->map_count--;
2373                 tail_vma = vma;
2374                 vma = vma->vm_next;
2375         } while (vma && vma->vm_start < end);
2376         *insertion_point = vma;
2377         if (vma) {
2378                 vma->vm_prev = prev;
2379                 vma_gap_update(vma);
2380         } else
2381                 mm->highest_vm_end = prev ? prev->vm_end : 0;
2382         tail_vma->vm_next = NULL;
2383         mm->mmap_cache = NULL;          /* Kill the cache. */
2384 }
2385
2386 /*
2387  * __split_vma() bypasses sysctl_max_map_count checking.  We use this on the
2388  * munmap path where it doesn't make sense to fail.
2389  */
2390 static int __split_vma(struct mm_struct * mm, struct vm_area_struct * vma,
2391               unsigned long addr, int new_below)
2392 {
2393         struct vm_area_struct *new;
2394         int err = -ENOMEM;
2395
2396         if (is_vm_hugetlb_page(vma) && (addr &
2397                                         ~(huge_page_mask(hstate_vma(vma)))))
2398                 return -EINVAL;
2399
2400         new = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
2401         if (!new)
2402                 goto out_err;
2403
2404         /* most fields are the same, copy all, and then fixup */
2405         *new = *vma;
2406
2407         INIT_LIST_HEAD(&new->anon_vma_chain);
2408
2409         if (new_below)
2410                 new->vm_end = addr;
2411         else {
2412                 new->vm_start = addr;
2413                 new->vm_pgoff += ((addr - vma->vm_start) >> PAGE_SHIFT);
2414         }
2415
2416         err = vma_dup_policy(vma, new);
2417         if (err)
2418                 goto out_free_vma;
2419
2420         if (anon_vma_clone(new, vma))
2421                 goto out_free_mpol;
2422
2423         if (new->vm_file)
2424                 get_file(new->vm_file);
2425
2426         if (new->vm_ops && new->vm_ops->open)
2427                 new->vm_ops->open(new);
2428
2429         if (new_below)
2430                 err = vma_adjust(vma, addr, vma->vm_end, vma->vm_pgoff +
2431                         ((addr - new->vm_start) >> PAGE_SHIFT), new);
2432         else
2433                 err = vma_adjust(vma, vma->vm_start, addr, vma->vm_pgoff, new);
2434
2435         /* Success. */
2436         if (!err)
2437                 return 0;
2438
2439         /* Clean everything up if vma_adjust failed. */
2440         if (new->vm_ops && new->vm_ops->close)
2441                 new->vm_ops->close(new);
2442         if (new->vm_file)
2443                 fput(new->vm_file);
2444         unlink_anon_vmas(new);
2445  out_free_mpol:
2446         mpol_put(vma_policy(new));
2447  out_free_vma:
2448         kmem_cache_free(vm_area_cachep, new);
2449  out_err:
2450         return err;
2451 }
2452
2453 /*
2454  * Split a vma into two pieces at address 'addr', a new vma is allocated
2455  * either for the first part or the tail.
2456  */
2457 int split_vma(struct mm_struct *mm, struct vm_area_struct *vma,
2458               unsigned long addr, int new_below)
2459 {
2460         if (mm->map_count >= sysctl_max_map_count)
2461                 return -ENOMEM;
2462
2463         return __split_vma(mm, vma, addr, new_below);
2464 }
2465
2466 /* Munmap is split into 2 main parts -- this part which finds
2467  * what needs doing, and the areas themselves, which do the
2468  * work.  This now handles partial unmappings.
2469  * Jeremy Fitzhardinge <jeremy@goop.org>
2470  */
2471 int do_munmap(struct mm_struct *mm, unsigned long start, size_t len)
2472 {
2473         unsigned long end;
2474         struct vm_area_struct *vma, *prev, *last;
2475
2476         if ((start & ~PAGE_MASK) || start > TASK_SIZE || len > TASK_SIZE-start)
2477                 return -EINVAL;
2478
2479         if ((len = PAGE_ALIGN(len)) == 0)
2480                 return -EINVAL;
2481
2482         /* Find the first overlapping VMA */
2483         vma = find_vma(mm, start);
2484         if (!vma)
2485                 return 0;
2486         prev = vma->vm_prev;
2487         /* we have  start < vma->vm_end  */
2488
2489         /* if it doesn't overlap, we have nothing.. */
2490         end = start + len;
2491         if (vma->vm_start >= end)
2492                 return 0;
2493
2494         /*
2495          * If we need to split any vma, do it now to save pain later.
2496          *
2497          * Note: mremap's move_vma VM_ACCOUNT handling assumes a partially
2498          * unmapped vm_area_struct will remain in use: so lower split_vma
2499          * places tmp vma above, and higher split_vma places tmp vma below.
2500          */
2501         if (start > vma->vm_start) {
2502                 int error;
2503
2504                 /*
2505                  * Make sure that map_count on return from munmap() will
2506                  * not exceed its limit; but let map_count go just above
2507                  * its limit temporarily, to help free resources as expected.
2508                  */
2509                 if (end < vma->vm_end && mm->map_count >= sysctl_max_map_count)
2510                         return -ENOMEM;
2511
2512                 error = __split_vma(mm, vma, start, 0);
2513                 if (error)
2514                         return error;
2515                 prev = vma;
2516         }
2517
2518         /* Does it split the last one? */
2519         last = find_vma(mm, end);
2520         if (last && end > last->vm_start) {
2521                 int error = __split_vma(mm, last, end, 1);
2522                 if (error)
2523                         return error;
2524         }
2525         vma = prev? prev->vm_next: mm->mmap;
2526
2527         /*
2528          * unlock any mlock()ed ranges before detaching vmas
2529          */
2530         if (mm->locked_vm) {
2531                 struct vm_area_struct *tmp = vma;
2532                 while (tmp && tmp->vm_start < end) {
2533                         if (tmp->vm_flags & VM_LOCKED) {
2534                                 mm->locked_vm -= vma_pages(tmp);
2535                                 munlock_vma_pages_all(tmp);
2536                         }
2537                         tmp = tmp->vm_next;
2538                 }
2539         }
2540
2541         /*
2542          * Remove the vma's, and unmap the actual pages
2543          */
2544         detach_vmas_to_be_unmapped(mm, vma, prev, end);
2545         unmap_region(mm, vma, prev, start, end);
2546
2547         /* Fix up all other VM information */
2548         remove_vma_list(mm, vma);
2549
2550         return 0;
2551 }
2552
2553 int vm_munmap(unsigned long start, size_t len)
2554 {
2555         int ret;
2556         struct mm_struct *mm = current->mm;
2557
2558         down_write(&mm->mmap_sem);
2559         ret = do_munmap(mm, start, len);
2560         up_write(&mm->mmap_sem);
2561         return ret;
2562 }
2563 EXPORT_SYMBOL(vm_munmap);
2564
2565 SYSCALL_DEFINE2(munmap, unsigned long, addr, size_t, len)
2566 {
2567         profile_munmap(addr);
2568         return vm_munmap(addr, len);
2569 }
2570
2571 static inline void verify_mm_writelocked(struct mm_struct *mm)
2572 {
2573 #ifdef CONFIG_DEBUG_VM
2574         if (unlikely(down_read_trylock(&mm->mmap_sem))) {
2575                 WARN_ON(1);
2576                 up_read(&mm->mmap_sem);
2577         }
2578 #endif
2579 }
2580
2581 /*
2582  *  this is really a simplified "do_mmap".  it only handles
2583  *  anonymous maps.  eventually we may be able to do some
2584  *  brk-specific accounting here.
2585  */
2586 static unsigned long do_brk(unsigned long addr, unsigned long len)
2587 {
2588         struct mm_struct * mm = current->mm;
2589         struct vm_area_struct * vma, * prev;
2590         unsigned long flags;
2591         struct rb_node ** rb_link, * rb_parent;
2592         pgoff_t pgoff = addr >> PAGE_SHIFT;
2593         int error;
2594
2595         len = PAGE_ALIGN(len);
2596         if (!len)
2597                 return addr;
2598
2599         flags = VM_DATA_DEFAULT_FLAGS | VM_ACCOUNT | mm->def_flags;
2600
2601         error = get_unmapped_area(NULL, addr, len, 0, MAP_FIXED);
2602         if (error & ~PAGE_MASK)
2603                 return error;
2604
2605         error = mlock_future_check(mm, mm->def_flags, len);
2606         if (error)
2607                 return error;
2608
2609         /*
2610          * mm->mmap_sem is required to protect against another thread
2611          * changing the mappings in case we sleep.
2612          */
2613         verify_mm_writelocked(mm);
2614
2615         /*
2616          * Clear old maps.  this also does some error checking for us
2617          */
2618  munmap_back:
2619         if (find_vma_links(mm, addr, addr + len, &prev, &rb_link, &rb_parent)) {
2620                 if (do_munmap(mm, addr, len))
2621                         return -ENOMEM;
2622                 goto munmap_back;
2623         }
2624
2625         /* Check against address space limits *after* clearing old maps... */
2626         if (!may_expand_vm(mm, len >> PAGE_SHIFT))
2627                 return -ENOMEM;
2628
2629         if (mm->map_count > sysctl_max_map_count)
2630                 return -ENOMEM;
2631
2632         if (security_vm_enough_memory_mm(mm, len >> PAGE_SHIFT))
2633                 return -ENOMEM;
2634
2635         /* Can we just expand an old private anonymous mapping? */
2636         vma = vma_merge(mm, prev, addr, addr + len, flags,
2637                                         NULL, NULL, pgoff, NULL);
2638         if (vma)
2639                 goto out;
2640
2641         /*
2642          * create a vma struct for an anonymous mapping
2643          */
2644         vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
2645         if (!vma) {
2646                 vm_unacct_memory(len >> PAGE_SHIFT);
2647                 return -ENOMEM;
2648         }
2649
2650         INIT_LIST_HEAD(&vma->anon_vma_chain);
2651         vma->vm_mm = mm;
2652         vma->vm_start = addr;
2653         vma->vm_end = addr + len;
2654         vma->vm_pgoff = pgoff;
2655         vma->vm_flags = flags;
2656         vma->vm_page_prot = vm_get_page_prot(flags);
2657         vma_link(mm, vma, prev, rb_link, rb_parent);
2658 out:
2659         perf_event_mmap(vma);
2660         mm->total_vm += len >> PAGE_SHIFT;
2661         if (flags & VM_LOCKED)
2662                 mm->locked_vm += (len >> PAGE_SHIFT);
2663         vma->vm_flags |= VM_SOFTDIRTY;
2664         return addr;
2665 }
2666
2667 unsigned long vm_brk(unsigned long addr, unsigned long len)
2668 {
2669         struct mm_struct *mm = current->mm;
2670         unsigned long ret;
2671         bool populate;
2672
2673         down_write(&mm->mmap_sem);
2674         ret = do_brk(addr, len);
2675         populate = ((mm->def_flags & VM_LOCKED) != 0);
2676         up_write(&mm->mmap_sem);
2677         if (populate)
2678                 mm_populate(addr, len);
2679         return ret;
2680 }
2681 EXPORT_SYMBOL(vm_brk);
2682
2683 /* Release all mmaps. */
2684 void exit_mmap(struct mm_struct *mm)
2685 {
2686         struct mmu_gather tlb;
2687         struct vm_area_struct *vma;
2688         unsigned long nr_accounted = 0;
2689
2690         /* mm's last user has gone, and its about to be pulled down */
2691         mmu_notifier_release(mm);
2692
2693         if (mm->locked_vm) {
2694                 vma = mm->mmap;
2695                 while (vma) {
2696                         if (vma->vm_flags & VM_LOCKED)
2697                                 munlock_vma_pages_all(vma);
2698                         vma = vma->vm_next;
2699                 }
2700         }
2701
2702         arch_exit_mmap(mm);
2703
2704         vma = mm->mmap;
2705         if (!vma)       /* Can happen if dup_mmap() received an OOM */
2706                 return;
2707
2708         lru_add_drain();
2709         flush_cache_mm(mm);
2710         tlb_gather_mmu(&tlb, mm, 0, -1);
2711         /* update_hiwater_rss(mm) here? but nobody should be looking */
2712         /* Use -1 here to ensure all VMAs in the mm are unmapped */
2713         unmap_vmas(&tlb, vma, 0, -1);
2714
2715         free_pgtables(&tlb, vma, FIRST_USER_ADDRESS, USER_PGTABLES_CEILING);
2716         tlb_finish_mmu(&tlb, 0, -1);
2717
2718         /*
2719          * Walk the list again, actually closing and freeing it,
2720          * with preemption enabled, without holding any MM locks.
2721          */
2722         while (vma) {
2723                 if (vma->vm_flags & VM_ACCOUNT)
2724                         nr_accounted += vma_pages(vma);
2725                 vma = remove_vma(vma);
2726         }
2727         vm_unacct_memory(nr_accounted);
2728
2729         WARN_ON(atomic_long_read(&mm->nr_ptes) >
2730                         (FIRST_USER_ADDRESS+PMD_SIZE-1)>>PMD_SHIFT);
2731 }
2732
2733 /* Insert vm structure into process list sorted by address
2734  * and into the inode's i_mmap tree.  If vm_file is non-NULL
2735  * then i_mmap_mutex is taken here.
2736  */
2737 int insert_vm_struct(struct mm_struct *mm, struct vm_area_struct *vma)
2738 {
2739         struct vm_area_struct *prev;
2740         struct rb_node **rb_link, *rb_parent;
2741
2742         /*
2743          * The vm_pgoff of a purely anonymous vma should be irrelevant
2744          * until its first write fault, when page's anon_vma and index
2745          * are set.  But now set the vm_pgoff it will almost certainly
2746          * end up with (unless mremap moves it elsewhere before that
2747          * first wfault), so /proc/pid/maps tells a consistent story.
2748          *
2749          * By setting it to reflect the virtual start address of the
2750          * vma, merges and splits can happen in a seamless way, just
2751          * using the existing file pgoff checks and manipulations.
2752          * Similarly in do_mmap_pgoff and in do_brk.
2753          */
2754         if (!vma->vm_file) {
2755                 BUG_ON(vma->anon_vma);
2756                 vma->vm_pgoff = vma->vm_start >> PAGE_SHIFT;
2757         }
2758         if (find_vma_links(mm, vma->vm_start, vma->vm_end,
2759                            &prev, &rb_link, &rb_parent))
2760                 return -ENOMEM;
2761         if ((vma->vm_flags & VM_ACCOUNT) &&
2762              security_vm_enough_memory_mm(mm, vma_pages(vma)))
2763                 return -ENOMEM;
2764
2765         vma_link(mm, vma, prev, rb_link, rb_parent);
2766         return 0;
2767 }
2768
2769 /*
2770  * Copy the vma structure to a new location in the same mm,
2771  * prior to moving page table entries, to effect an mremap move.
2772  */
2773 struct vm_area_struct *copy_vma(struct vm_area_struct **vmap,
2774         unsigned long addr, unsigned long len, pgoff_t pgoff,
2775         bool *need_rmap_locks)
2776 {
2777         struct vm_area_struct *vma = *vmap;
2778         unsigned long vma_start = vma->vm_start;
2779         struct mm_struct *mm = vma->vm_mm;
2780         struct vm_area_struct *new_vma, *prev;
2781         struct rb_node **rb_link, *rb_parent;
2782         bool faulted_in_anon_vma = true;
2783
2784         /*
2785          * If anonymous vma has not yet been faulted, update new pgoff
2786          * to match new location, to increase its chance of merging.
2787          */
2788         if (unlikely(!vma->vm_file && !vma->anon_vma)) {
2789                 pgoff = addr >> PAGE_SHIFT;
2790                 faulted_in_anon_vma = false;
2791         }
2792
2793         if (find_vma_links(mm, addr, addr + len, &prev, &rb_link, &rb_parent))
2794                 return NULL;    /* should never get here */
2795         new_vma = vma_merge(mm, prev, addr, addr + len, vma->vm_flags,
2796                         vma->anon_vma, vma->vm_file, pgoff, vma_policy(vma));
2797         if (new_vma) {
2798                 /*
2799                  * Source vma may have been merged into new_vma
2800                  */
2801                 if (unlikely(vma_start >= new_vma->vm_start &&
2802                              vma_start < new_vma->vm_end)) {
2803                         /*
2804                          * The only way we can get a vma_merge with
2805                          * self during an mremap is if the vma hasn't
2806                          * been faulted in yet and we were allowed to
2807                          * reset the dst vma->vm_pgoff to the
2808                          * destination address of the mremap to allow
2809                          * the merge to happen. mremap must change the
2810                          * vm_pgoff linearity between src and dst vmas
2811                          * (in turn preventing a vma_merge) to be
2812                          * safe. It is only safe to keep the vm_pgoff
2813                          * linear if there are no pages mapped yet.
2814                          */
2815                         VM_BUG_ON(faulted_in_anon_vma);
2816                         *vmap = vma = new_vma;
2817                 }
2818                 *need_rmap_locks = (new_vma->vm_pgoff <= vma->vm_pgoff);
2819         } else {
2820                 new_vma = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
2821                 if (new_vma) {
2822                         *new_vma = *vma;
2823                         new_vma->vm_start = addr;
2824                         new_vma->vm_end = addr + len;
2825                         new_vma->vm_pgoff = pgoff;
2826                         if (vma_dup_policy(vma, new_vma))
2827                                 goto out_free_vma;
2828                         INIT_LIST_HEAD(&new_vma->anon_vma_chain);
2829                         if (anon_vma_clone(new_vma, vma))
2830                                 goto out_free_mempol;
2831                         if (new_vma->vm_file)
2832                                 get_file(new_vma->vm_file);
2833                         if (new_vma->vm_ops && new_vma->vm_ops->open)
2834                                 new_vma->vm_ops->open(new_vma);
2835                         vma_link(mm, new_vma, prev, rb_link, rb_parent);
2836                         *need_rmap_locks = false;
2837                 }
2838         }
2839         return new_vma;
2840
2841  out_free_mempol:
2842         mpol_put(vma_policy(new_vma));
2843  out_free_vma:
2844         kmem_cache_free(vm_area_cachep, new_vma);
2845         return NULL;
2846 }
2847
2848 /*
2849  * Return true if the calling process may expand its vm space by the passed
2850  * number of pages
2851  */
2852 int may_expand_vm(struct mm_struct *mm, unsigned long npages)
2853 {
2854         unsigned long cur = mm->total_vm;       /* pages */
2855         unsigned long lim;
2856
2857         lim = rlimit(RLIMIT_AS) >> PAGE_SHIFT;
2858
2859         if (cur + npages > lim)
2860                 return 0;
2861         return 1;
2862 }
2863
2864
2865 static int special_mapping_fault(struct vm_area_struct *vma,
2866                                 struct vm_fault *vmf)
2867 {
2868         pgoff_t pgoff;
2869         struct page **pages;
2870
2871         /*
2872          * special mappings have no vm_file, and in that case, the mm
2873          * uses vm_pgoff internally. So we have to subtract it from here.
2874          * We are allowed to do this because we are the mm; do not copy
2875          * this code into drivers!
2876          */
2877         pgoff = vmf->pgoff - vma->vm_pgoff;
2878
2879         for (pages = vma->vm_private_data; pgoff && *pages; ++pages)
2880                 pgoff--;
2881
2882         if (*pages) {
2883                 struct page *page = *pages;
2884                 get_page(page);
2885                 vmf->page = page;
2886                 return 0;
2887         }
2888
2889         return VM_FAULT_SIGBUS;
2890 }
2891
2892 /*
2893  * Having a close hook prevents vma merging regardless of flags.
2894  */
2895 static void special_mapping_close(struct vm_area_struct *vma)
2896 {
2897 }
2898
2899 static const struct vm_operations_struct special_mapping_vmops = {
2900         .close = special_mapping_close,
2901         .fault = special_mapping_fault,
2902 };
2903
2904 /*
2905  * Called with mm->mmap_sem held for writing.
2906  * Insert a new vma covering the given region, with the given flags.
2907  * Its pages are supplied by the given array of struct page *.
2908  * The array can be shorter than len >> PAGE_SHIFT if it's null-terminated.
2909  * The region past the last page supplied will always produce SIGBUS.
2910  * The array pointer and the pages it points to are assumed to stay alive
2911  * for as long as this mapping might exist.
2912  */
2913 int install_special_mapping(struct mm_struct *mm,
2914                             unsigned long addr, unsigned long len,
2915                             unsigned long vm_flags, struct page **pages)
2916 {
2917         int ret;
2918         struct vm_area_struct *vma;
2919
2920         vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
2921         if (unlikely(vma == NULL))
2922                 return -ENOMEM;
2923
2924         INIT_LIST_HEAD(&vma->anon_vma_chain);
2925         vma->vm_mm = mm;
2926         vma->vm_start = addr;
2927         vma->vm_end = addr + len;
2928
2929         vma->vm_flags = vm_flags | mm->def_flags | VM_DONTEXPAND | VM_SOFTDIRTY;
2930         vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
2931
2932         vma->vm_ops = &special_mapping_vmops;
2933         vma->vm_private_data = pages;
2934
2935         ret = insert_vm_struct(mm, vma);
2936         if (ret)
2937                 goto out;
2938
2939         mm->total_vm += len >> PAGE_SHIFT;
2940
2941         perf_event_mmap(vma);
2942
2943         return 0;
2944
2945 out:
2946         kmem_cache_free(vm_area_cachep, vma);
2947         return ret;
2948 }
2949
2950 static DEFINE_MUTEX(mm_all_locks_mutex);
2951
2952 static void vm_lock_anon_vma(struct mm_struct *mm, struct anon_vma *anon_vma)
2953 {
2954         if (!test_bit(0, (unsigned long *) &anon_vma->root->rb_root.rb_node)) {
2955                 /*
2956                  * The LSB of head.next can't change from under us
2957                  * because we hold the mm_all_locks_mutex.
2958                  */
2959                 down_write_nest_lock(&anon_vma->root->rwsem, &mm->mmap_sem);
2960                 /*
2961                  * We can safely modify head.next after taking the
2962                  * anon_vma->root->rwsem. If some other vma in this mm shares
2963                  * the same anon_vma we won't take it again.
2964                  *
2965                  * No need of atomic instructions here, head.next
2966                  * can't change from under us thanks to the
2967                  * anon_vma->root->rwsem.
2968                  */
2969                 if (__test_and_set_bit(0, (unsigned long *)
2970                                        &anon_vma->root->rb_root.rb_node))
2971                         BUG();
2972         }
2973 }
2974
2975 static void vm_lock_mapping(struct mm_struct *mm, struct address_space *mapping)
2976 {
2977         if (!test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) {
2978                 /*
2979                  * AS_MM_ALL_LOCKS can't change from under us because
2980                  * we hold the mm_all_locks_mutex.
2981                  *
2982                  * Operations on ->flags have to be atomic because
2983                  * even if AS_MM_ALL_LOCKS is stable thanks to the
2984                  * mm_all_locks_mutex, there may be other cpus
2985                  * changing other bitflags in parallel to us.
2986                  */
2987                 if (test_and_set_bit(AS_MM_ALL_LOCKS, &mapping->flags))
2988                         BUG();
2989                 mutex_lock_nest_lock(&mapping->i_mmap_mutex, &mm->mmap_sem);
2990         }
2991 }
2992
2993 /*
2994  * This operation locks against the VM for all pte/vma/mm related
2995  * operations that could ever happen on a certain mm. This includes
2996  * vmtruncate, try_to_unmap, and all page faults.
2997  *
2998  * The caller must take the mmap_sem in write mode before calling
2999  * mm_take_all_locks(). The caller isn't allowed to release the
3000  * mmap_sem until mm_drop_all_locks() returns.
3001  *
3002  * mmap_sem in write mode is required in order to block all operations
3003  * that could modify pagetables and free pages without need of
3004  * altering the vma layout (for example populate_range() with
3005  * nonlinear vmas). It's also needed in write mode to avoid new
3006  * anon_vmas to be associated with existing vmas.
3007  *
3008  * A single task can't take more than one mm_take_all_locks() in a row
3009  * or it would deadlock.
3010  *
3011  * The LSB in anon_vma->rb_root.rb_node and the AS_MM_ALL_LOCKS bitflag in
3012  * mapping->flags avoid to take the same lock twice, if more than one
3013  * vma in this mm is backed by the same anon_vma or address_space.
3014  *
3015  * We can take all the locks in random order because the VM code
3016  * taking i_mmap_mutex or anon_vma->rwsem outside the mmap_sem never
3017  * takes more than one of them in a row. Secondly we're protected
3018  * against a concurrent mm_take_all_locks() by the mm_all_locks_mutex.
3019  *
3020  * mm_take_all_locks() and mm_drop_all_locks are expensive operations
3021  * that may have to take thousand of locks.
3022  *
3023  * mm_take_all_locks() can fail if it's interrupted by signals.
3024  */
3025 int mm_take_all_locks(struct mm_struct *mm)
3026 {
3027         struct vm_area_struct *vma;
3028         struct anon_vma_chain *avc;
3029
3030         BUG_ON(down_read_trylock(&mm->mmap_sem));
3031
3032         mutex_lock(&mm_all_locks_mutex);
3033
3034         for (vma = mm->mmap; vma; vma = vma->vm_next) {
3035                 if (signal_pending(current))
3036                         goto out_unlock;
3037                 if (vma->vm_file && vma->vm_file->f_mapping)
3038                         vm_lock_mapping(mm, vma->vm_file->f_mapping);
3039         }
3040
3041         for (vma = mm->mmap; vma; vma = vma->vm_next) {
3042                 if (signal_pending(current))
3043                         goto out_unlock;
3044                 if (vma->anon_vma)
3045                         list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
3046                                 vm_lock_anon_vma(mm, avc->anon_vma);
3047         }
3048
3049         return 0;
3050
3051 out_unlock:
3052         mm_drop_all_locks(mm);
3053         return -EINTR;
3054 }
3055
3056 static void vm_unlock_anon_vma(struct anon_vma *anon_vma)
3057 {
3058         if (test_bit(0, (unsigned long *) &anon_vma->root->rb_root.rb_node)) {
3059                 /*
3060                  * The LSB of head.next can't change to 0 from under
3061                  * us because we hold the mm_all_locks_mutex.
3062                  *
3063                  * We must however clear the bitflag before unlocking
3064                  * the vma so the users using the anon_vma->rb_root will
3065                  * never see our bitflag.
3066                  *
3067                  * No need of atomic instructions here, head.next
3068                  * can't change from under us until we release the
3069                  * anon_vma->root->rwsem.
3070                  */
3071                 if (!__test_and_clear_bit(0, (unsigned long *)
3072                                           &anon_vma->root->rb_root.rb_node))
3073                         BUG();
3074                 anon_vma_unlock_write(anon_vma);
3075         }
3076 }
3077
3078 static void vm_unlock_mapping(struct address_space *mapping)
3079 {
3080         if (test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) {
3081                 /*
3082                  * AS_MM_ALL_LOCKS can't change to 0 from under us
3083                  * because we hold the mm_all_locks_mutex.
3084                  */
3085                 mutex_unlock(&mapping->i_mmap_mutex);
3086                 if (!test_and_clear_bit(AS_MM_ALL_LOCKS,
3087                                         &mapping->flags))
3088                         BUG();
3089         }
3090 }
3091
3092 /*
3093  * The mmap_sem cannot be released by the caller until
3094  * mm_drop_all_locks() returns.
3095  */
3096 void mm_drop_all_locks(struct mm_struct *mm)
3097 {
3098         struct vm_area_struct *vma;
3099         struct anon_vma_chain *avc;
3100
3101         BUG_ON(down_read_trylock(&mm->mmap_sem));
3102         BUG_ON(!mutex_is_locked(&mm_all_locks_mutex));
3103
3104         for (vma = mm->mmap; vma; vma = vma->vm_next) {
3105                 if (vma->anon_vma)
3106                         list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
3107                                 vm_unlock_anon_vma(avc->anon_vma);
3108                 if (vma->vm_file && vma->vm_file->f_mapping)
3109                         vm_unlock_mapping(vma->vm_file->f_mapping);
3110         }
3111
3112         mutex_unlock(&mm_all_locks_mutex);
3113 }
3114
3115 /*
3116  * initialise the VMA slab
3117  */
3118 void __init mmap_init(void)
3119 {
3120         int ret;
3121
3122         ret = percpu_counter_init(&vm_committed_as, 0);
3123         VM_BUG_ON(ret);
3124 }
3125
3126 /*
3127  * Initialise sysctl_user_reserve_kbytes.
3128  *
3129  * This is intended to prevent a user from starting a single memory hogging
3130  * process, such that they cannot recover (kill the hog) in OVERCOMMIT_NEVER
3131  * mode.
3132  *
3133  * The default value is min(3% of free memory, 128MB)
3134  * 128MB is enough to recover with sshd/login, bash, and top/kill.
3135  */
3136 static int init_user_reserve(void)
3137 {
3138         unsigned long free_kbytes;
3139
3140         free_kbytes = global_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
3141
3142         sysctl_user_reserve_kbytes = min(free_kbytes / 32, 1UL << 17);
3143         return 0;
3144 }
3145 module_init(init_user_reserve)
3146
3147 /*
3148  * Initialise sysctl_admin_reserve_kbytes.
3149  *
3150  * The purpose of sysctl_admin_reserve_kbytes is to allow the sys admin
3151  * to log in and kill a memory hogging process.
3152  *
3153  * Systems with more than 256MB will reserve 8MB, enough to recover
3154  * with sshd, bash, and top in OVERCOMMIT_GUESS. Smaller systems will
3155  * only reserve 3% of free pages by default.
3156  */
3157 static int init_admin_reserve(void)
3158 {
3159         unsigned long free_kbytes;
3160
3161         free_kbytes = global_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
3162
3163         sysctl_admin_reserve_kbytes = min(free_kbytes / 32, 1UL << 13);
3164         return 0;
3165 }
3166 module_init(init_admin_reserve)
3167
3168 /*
3169  * Reinititalise user and admin reserves if memory is added or removed.
3170  *
3171  * The default user reserve max is 128MB, and the default max for the
3172  * admin reserve is 8MB. These are usually, but not always, enough to
3173  * enable recovery from a memory hogging process using login/sshd, a shell,
3174  * and tools like top. It may make sense to increase or even disable the
3175  * reserve depending on the existence of swap or variations in the recovery
3176  * tools. So, the admin may have changed them.
3177  *
3178  * If memory is added and the reserves have been eliminated or increased above
3179  * the default max, then we'll trust the admin.
3180  *
3181  * If memory is removed and there isn't enough free memory, then we
3182  * need to reset the reserves.
3183  *
3184  * Otherwise keep the reserve set by the admin.
3185  */
3186 static int reserve_mem_notifier(struct notifier_block *nb,
3187                              unsigned long action, void *data)
3188 {
3189         unsigned long tmp, free_kbytes;
3190
3191         switch (action) {
3192         case MEM_ONLINE:
3193                 /* Default max is 128MB. Leave alone if modified by operator. */
3194                 tmp = sysctl_user_reserve_kbytes;
3195                 if (0 < tmp && tmp < (1UL << 17))
3196                         init_user_reserve();
3197
3198                 /* Default max is 8MB.  Leave alone if modified by operator. */
3199                 tmp = sysctl_admin_reserve_kbytes;
3200                 if (0 < tmp && tmp < (1UL << 13))
3201                         init_admin_reserve();
3202
3203                 break;
3204         case MEM_OFFLINE:
3205                 free_kbytes = global_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
3206
3207                 if (sysctl_user_reserve_kbytes > free_kbytes) {
3208                         init_user_reserve();
3209                         pr_info("vm.user_reserve_kbytes reset to %lu\n",
3210                                 sysctl_user_reserve_kbytes);
3211                 }
3212
3213                 if (sysctl_admin_reserve_kbytes > free_kbytes) {
3214                         init_admin_reserve();
3215                         pr_info("vm.admin_reserve_kbytes reset to %lu\n",
3216                                 sysctl_admin_reserve_kbytes);
3217                 }
3218                 break;
3219         default:
3220                 break;
3221         }
3222         return NOTIFY_OK;
3223 }
3224
3225 static struct notifier_block reserve_mem_nb = {
3226         .notifier_call = reserve_mem_notifier,
3227 };
3228
3229 static int __meminit init_reserve_notifier(void)
3230 {
3231         if (register_hotmemory_notifier(&reserve_mem_nb))
3232                 printk("Failed registering memory add/remove notifier for admin reserve");
3233
3234         return 0;
3235 }
3236 module_init(init_reserve_notifier)